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The local approximate output regulation problem: convergence
region estimates
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SUMMARY

In this paper, the problem of local approximate output regulation is considered. The presented results
answer the question: given a controller solving the local approximate output regulation problem, how to
estimate the set of initial conditions for which approximate output regulation occurs. The results
are illustrated by a disturbance rejection problem for the TORA system. Copyright # 2004 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper, we consider the problem of asymptotic regulation of the output of a dynamical
system, which is subject to disturbances generated by an external system. This problem is known
as the output regulation problem. For non-linear systems, solutions to the local output
regulation problem were given in References [1, 2] (see also References [3–5]). Even though the
local output regulation problem may be solvable, it can be extremely difficult to find a controller
solving it. This is due to the fact that finding such a controller requires solving the so-called
regulator equations, which are mixed partial differential and non-linear algebraic equations. To
overcome this difficulty, it was proposed in Reference [6] to design controllers based on
approximate solutions to the regulator equations. For such a controller, if the initial conditions
of the closed-loop system and the exosystem are sufficiently small, the regulation error declines
to small values, which are of the same order of magnitude as the error in the regulator
equations. This is called local approximate output regulation. Methods for finding such
approximate solutions to the local output regulation problem were presented in References
[3, 7, 8]. Controllers proposed in these papers solve the approximate output regulation problem
in some neighbourhood of the origin. In practice, it is important to estimate this neighbourhood
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of admissible initial conditions. Without finding such estimates, approximate solutions to the
local output regulation problem may not be satisfactory from an engineering point of view.

For the case of exact local output regulation, such an estimation problem was addressed in
References [9–11]. In this paper, we extend these results to the case of approximate output
regulation. As in References [9–11], the analysis in this paper is based on the results of
Demidovich [12, 13], which give sufficient conditions for every trajectory in a certain set to be
exponentially stable. More information related to such properties of dynamical systems can be
found in References [9, 14–16].

The paper is organized as follows. In Section 2, we recall the local (approximate) output
regulation problem and formulate the problem of estimating the set of admissible initial
conditions. In Section 3, some auxiliary technical results are presented. Section 4 contains the
main estimation results. In Section 5, the obtained results are applied to a disturbance rejection
problem in the TORA system (see References [17, 18] for details about the TORA system).
Conclusions are presented in Section 6. The proofs of all results are given in the appendix.

The notations used in the paper are the following:AT is the transpose of matrixA; norm of a
vector is denoted as jzj ¼ ðzTzÞ1=2; for a positive definite matrix P ¼ PT > 0; we define the vector
norm j � jP as jzjP :¼

ffiffiffiffiffiffiffiffiffiffi
zTPz

p
; jjPjj is the operator norm of the matrix P induced by the vector

norm j � j; I is the identity matrix; the largest eigenvalue of a symmetric matrix J ¼ JT is denoted
LðJÞ and DFzðzÞ is the Jacobian matrix of FðzÞ:

2. ESTIMATION PROBLEM STATEMENT

First, we recall the problem of local output regulation. Following Reference [1], consider
systems modelled by equations of the form

’xx ¼ f ðx; u;wÞ ð1Þ

e ¼ hðx;wÞ; y ¼ hmðx;wÞ ð2Þ

with state x 2 Rn; input u 2 Rp; regulated output e 2 Rlr ;measured output y 2 Rlm and exogenous
input w 2 Rm generated by the linear exosystem

’ww ¼ Sw ð3Þ

The exogenous signal wðtÞ can be viewed as a disturbance in Equation (1) or as a reference signal
in (2). The functions f ; h and hm are at least continuously differentiable and f ð0; 0; 0Þ ¼ 0;
hð0; 0Þ ¼ 0; hmð0; 0Þ ¼ 0: It is assumed that exosystem (3) is neutrally stable, i.e. the equilibrium
w ¼ 0 is Lyapunov stable in forward and backward time (see Reference [4]). The assumption of
linearity of the exosystem is introduced in order to avoid unnecessary technical complications.
All results presented below can be extended to the case of a general neutrally stable exosystem.
Due to the neutral stability assumption, the spectrum of S consists of simple eigenvalues on the
imaginary axis and, possibly, multiple eigenvalues at zero. Without loss of generality, we assume
that S is skew-symmetric and thus any solution of system (3) has the property jwðtÞj � Const:
Notice, that if the right-hand side of (1) depends on a vector c of unknown constant parameters,
w and c can be united and treated together as an external signal ðw;cÞ generated by an extended
exosystem given by Equations (3) and ’cc ¼ 0: This extended exosystem also satisfies the
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assumptions given above. Here we assume that such extension has already been performed and
that (3) corresponds to an extended exosystem.

The local output regulation problem is to find, if possible, an output feedback of the form

’xx ¼ Zðx; yÞ ð4Þ

u ¼ yðx; yÞ ð5Þ

with Zð0; 0Þ ¼ 0 and yð0; 0Þ ¼ 0 such that (a) eðtÞ ¼ hðxðtÞ;wðtÞÞ ! 0 as t ! 1 along every
solution of the system

’xx ¼ f ðx; yðx; hmðx;wÞÞ;wÞ ð6Þ

’xx ¼ Zðx; hmðx;wÞÞ ð7Þ

’ww ¼ Sw ð8Þ

starting close enough to the origin; (b) for wðtÞ ¼ 0; the equilibrium point ðx; xÞ ¼ ð0; 0Þ of the
closed-loop system (6), (7) is locally exponentially stable.

Denote z :¼ ðxT; xTÞT 2 Rnþk (k is the dimension of x). Then, the closed-loop system (6),(7)
can be written as

’zz ¼ Fðz;wÞ ð9Þ

e ¼ %hhðz;wÞ :¼ hðx;wÞ

where Fðz;wÞ is the right-hand side of (6), (7). It is well-known (see References [1, 3]) that a
controller solves the local output regulation problem if and only if the corresponding closed-
loop system (9) satisfies the following conditions:

ðAÞ The Jacobian matrix DFzð0; 0Þ is Hurwitz,
(BÞ There exists a mapping z ¼ pðwÞ defined in a neighbourhood W of the origin, with

pð0Þ ¼ 0; such that

@p
@w

ðwÞSw ¼ FðpðwÞ;wÞ

0 ¼ %hhðpðwÞ;wÞ for all w 2 W

ð10Þ

Even though the local output regulation can be solvable, it can be extremely difficult to find a
controller that solves it. For such controller, the closed-loop system would satisfy conditions
ðAÞ and ðBÞ: Condition ðBÞ is the one that is most difficult to satisfy. At the same time, in many
cases it is easier to find a controller that satisfies Equations (10) in condition ðBÞ approximately
(see References [3, 6, 7]), i.e.

ðBnÞ There exists a mapping z ¼ *ppðwÞ defined in a neighbourhood W of the origin, with
*ppð0Þ ¼ 0; such that

@ *pp
@w

ðwÞSw ¼ Fð *ppðwÞ;wÞ þ e1ðwÞ

0 ¼ %hhð *ppðwÞ;wÞ þ e2ðwÞ

ð11Þ

Copyright # 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2005; 15:1–13

OUTPUT REGULATION PROBLEM 3



for all w 2 W; where e1ðwÞ and e2ðwÞ are small (in some sense) continuous functions satisfying
e1ð0Þ ¼ 0 and e2ð0Þ ¼ 0:

It is known (see Reference [6]), that if the closed-loop system satisfies conditions ðAÞ and
ðBnÞ; then for all sufficiently small initial conditions zð0Þ and wð0Þ the regulated output eðtÞ
converges to *eeðwðtÞÞ; where *eeðwÞ is of the same order of magnitude as e1ðwÞ and e2ðwÞ: Since it is
required that the initial conditions must be sufficiently small, we come to the following
estimation problem: given the closed-loop system (9) and the neutrally stable exosystem (3)
satisfying conditions ðAÞ and ðBnÞ; estimate the region of admissible initial conditions for which
approximate output regulation is attained.

We will give a solution to this estimation problem based on the functions Fðz;wÞ; *ppðwÞ and
e1ðwÞ which are found at the stage of controller design [3, 6]. To simplify the subsequent analysis,
it is assumed that the closed-loop system (9) and the mappings *ppðwÞ; e1ðwÞ and e2ðwÞ are globally
defined for all z 2 Rnþk and w 2 Rm (i.e. W ¼ Rm). If this assumption does not hold, one should
restrict the subsequent results to sets Z � Rnþk and W � Rm for which Fðz;wÞ; *ppðwÞ; e1ðwÞ and
e2ðwÞ are well-defined.

Before proceeding with solving the estimation problem, we discuss the main idea of the
solution. First, we find two sets C � Rnþk and Wc � Rm having the following property: if
wðtÞ 2 Wc for t50; then any two solutions z1ðtÞ and z2ðtÞ of system (9) lying in C for all t50
converge to each other exponentially. We call such set C a convergence set and the set Wc a
companion to the set C: Such sets exist, due to condition ðA). This condition implies that near
the origin, for small wðtÞ; the closed-loop system (9) behaves like a linear asymptotically stable
system and, in particular, all its solutions are uniformly exponentially stable. Second, we find a
set Y � C�Wc of initial conditions ðzð0Þ;wð0ÞÞ such that any trajectory ðzðtÞ;wðtÞÞ starting in
this set satisfies the following conditions: wðtÞ 2 Wc; *ppðwðtÞÞ 2 C and zðtÞ 2 C for all t50: As
follows from (11), *zzðtÞ :¼ *ppðwðtÞÞ can be considered as a solution of the perturbed system

’zz ¼ Fðz;wÞ þ e1ðwÞ ð12Þ

and along this solution the regulated output equals �e2ðwðtÞÞ: Since zðtÞ is uniformly
exponentially stable (due to the choice of C and Wc), a small perturbation e1ðwðtÞÞ implies, in
the limit, a small difference between zðtÞ and *ppðwðtÞÞ with the upper bound proportional to the
upper bound of je1ðwðtÞÞj (see Reference [19, Chapter 5]). Consequently, the regulated output
eðtÞ; in the limit for t ! þ1; will be close to e2ðwðtÞÞ: Thus, if both e1ðwðtÞÞ and e2ðwðtÞÞ are
small, so is the regulated output eðtÞ: Thus, Y is an estimate of the set of initial conditions
for which approximate output regulation is attained. This reasoning will be made precise in
Section 4.

3. CONVERGENCE SETS AND THE DEMIDOVICH CONDITION

In this section, we present and discuss a technical result about convergence sets for a system with
input w given by

’zz ¼ Fðz;wðtÞÞ where z 2 Rnþk; w 2 Rm; Fð� ; �Þ 2 C1 ð13Þ

The next lemma gives sufficient conditions for sets C � Rnþk and Wc � Rm to be a
convergence set and its companion, respectively.
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Lemma 1 (Demidovich [12])
Suppose, a convex set C � Rnþk and a set Wc � Rm satisfy the Demidovich condition

sup
z2C; w2Wc

LðPDFzðz;wÞ þDFT
z ðz;wÞPÞ ¼: �a50 ð14Þ

for some positive definite matrix P ¼ PT > 0: Then, for any continuous input wðtÞ such that
wðtÞ 2 Wc for t50; any two solutions zðtÞ and %zzðtÞ of system (13) lying in C for all t50 satisfy

jzðtÞ � %zzðtÞj4Ce�btjzð0Þ � %zzð0Þj ð15Þ

for some b > 0 and C > 0 that are independent of the particular zðtÞ; %zzðtÞ and wðtÞ:

The proof of this result is based on the Lyapunov-like function Vðz; %zzÞ ¼ ðz� %zzÞTPðz� %zzÞ:
Condition (14) guarantees that for any z 2 C; %zz 2 C and w 2 Wc; the following relation holds:

2ðz� %zzÞTPðFðz;wÞ � Fð %zz;wÞÞ4�
a

jjPjj
ðz� %zzÞTPðz� %zzÞ ð16Þ

Due to exponential stability of the solution %zzðtÞ; small perturbations of the right-hand side of
(13) lead, in the limit, to small differences between %zzðtÞ and solutions of the perturbed system (see
e.g. Reference [19]). We formulate this statement in a way that is convenient for our purposes.

Lemma 2
Consider system (13) and the perturbed system

’zz ¼ Fðz;wðtÞÞ þ eðtÞ ð17Þ

where eðtÞ is a continuous perturbation term. Suppose C and Wc satisfy the conditions of
Lemma 1. Let wðtÞ 2 Wc for all t50 and %zzðtÞ be a solution of (13) such that the ellipsoid
EPð %zzðtÞ; rÞ :¼ fz : Vðz; %zzðtÞÞ4r2g is contained in C for all t50: If the perturbation term satisfies
jeðtÞjP4ar=ð2jjPjjÞ for t50; then any solution of the perturbed system (17) starting in
zð0Þ 2 EPð %zzð0Þ; rÞ satisfies

lim sup
t!þ1

jzðtÞ � %zzðtÞjP4
2jjPjj
a

lim sup
t!þ1

jeðtÞjP ð18Þ

In order to solve the estimation problem stated in Section 2, we need to find sets C and Wc

satisfying the Demidovich condition. If DFzð0; 0Þ is Hurwitz (this is the case in the
output regulation problem), one can choose a matrix P ¼ PT > 0 satisfying the matrix
inequality PDFzð0; 0Þ þDFT

z ð0; 0ÞP50: By continuity, PDFzðz;wÞ þDFT
z ðz;wÞP is negative

definite at least for small z and w: Hence, the Demidovich condition (14) is satisfied for CðRÞ :¼
fz : jzj5Rg and WðrÞ :¼ fw : jwj5rg for some small R and r: If PDFzðz;wÞ þDFT

z ðz;wÞP
depends only on part of the coordinates z; then the Demidovich condition is satisfied for
CNðRÞ :¼ fz : jNzj5Rg and WðrÞ :¼ fw : jwj5rg; where the matrix N is such that Nz consists
of the coordinates that are present in PDFzðz;wÞ þDFT

z ðz;wÞP: Having chosen the matrix N;
the numbers r and R can be found numerically (in some simple cases this can be done
analytically).
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4. MAIN RESULTS

Having found the sets CNðRÞ and WcðrÞ for which the closed-loop system (9) satisfies the
Demidovich condition, we can solve the estimation problem stated in Section 2. Prior to
formulating the solution, let us introduce the following functions:

mNðw0Þ :¼ sup
t50

jN *ppðwðt;w0ÞÞj; qðw0Þ :¼ sup
t50

je1ðwðt;w0ÞÞjP ð19Þ

where wðt;w0Þ is a solution of exosystem (3) satisfying wð0;w0Þ ¼ w0:Denote d to be the smallest
number such that the inequality jNzj4d jzjP is satisfied for all z 2 Rnþk: The number d can be
found from the formula d ¼ jjNP�1=2jj: Indeed,

d ¼ sup
jzjP¼1

jNzj ¼ sup
jP1=2zj¼1

jNzj ¼ sup
j *zzj¼1

jNP�1=2 *zzj ¼ jjNP�1=2jj

The following theorem gives an estimate of the set of admissible initial conditions in the form of
a neighbourhood of the approximate output-zeroing manifold z ¼ *ppðwÞ:

Theorem 1
Consider the closed-loop system (9) and the exosystem (3) satisfying conditions ðAÞ and ðBnÞ:
Suppose, the closed-loop system (9) satisfies the Demidovich condition (14) with CNðRÞ :¼
fz : jNzj5Rg and WcðrÞ :¼ fw : jwj5rg for some R > 0; r > 0 and some matrix N: Then, any
trajectory ðzðtÞ;wðtÞÞ of the closed-loop system (9) and the exosystem (3) starting in the set

Y :¼ ðz0;w0Þ : jw0j5r; mNðw0Þ þ
2d jjPjj

a
qðw0Þ5R; jz0 � *ppðw0ÞjP5

1

d
ðR�mNðw0ÞÞ

� �
ð20Þ

satisfies

lim sup
t!þ1

jzðtÞ � *ppðwðtÞÞjP4
2jjPjj
a

lim sup
t!þ1

je1ðwðtÞÞjP ð21Þ

and thus

lim sup
t!þ1

jeðtÞj4 %CC lim sup
t!þ1

je1ðwðtÞÞjP þ lim sup
t!þ1

je2ðwðtÞÞj ð22Þ

Herein, for all trajectories ðzðtÞ;wðtÞÞ such that jwðtÞj4K for some K > 0; the constant %CC > 0 can
be chosen independent of the particular zð0Þ and wð0Þ: &

Remark
Notice, that if the closed-loop system (9) satisfies the Demidovich condition (14) globally, i.e. for
C ¼ Rnþk and Wc ¼ Rm; then (21) and (22) hold globally.

The relation between the sets Y; CNðRÞ and WcðrÞ is shown schematically in Figure 1. If we
want the closed-loop system (9) and exosystem (3) to start in the set Y; we need to guarantee
that, first, the exosystem starts in a point w0 in the set M :¼ fw0 : jw0j5r;mNðw0Þ þ 2d jjPjj=a
qðw0Þ5Rg and, second, that the closed-loop system (9) starts in the setAðw0Þ :¼fz0:ðz0;w0Þ 2YÞg:
As can be seen in Figure 2, the sets Aðw0Þ may be different for different values of w0:
Thus, knowledge on w0 is important. In practice, however, we may not know the exact value of
w0: For example, if the exosystem generates disturbances, then, knowing the level of
disturbances, we can establish that w0 2 M; but still the exact value of w0 is unknown. In
order to cope with this difficulty, in the next result we find sets Z0 and W0 such that in whatever
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point w0 2 W0 the exosystem is initialized, output regulation will occur if the closed-loop system
starts in z0 2 Z0: Prior to formulating the result, we define the functions

dðrÞ :¼ sup
jw0 j5r

ðjN *ppðw0Þj þ d j *ppðw0ÞjPÞ; RðrÞ :¼ ðR� dðrÞÞ=d

ZðrÞ :¼ sup
jw0 j5r

jN *ppðw0Þj þ
2d jjPjj

a
je1ðw0ÞjP

� � ð23Þ

Figure 1. Relation between the sets Y; CNðRÞ and WcðrÞ: Y is an invariant set inside CNðRÞ �WcðrÞ:

Figure 2. The sets Y and AðwÞ: for different w1 and w2; the sets Aðw1Þ and Aðw2Þ may differ.
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Let r
*
> 0 be the largest number such that r

*
4r; dðrÞ5R and ZðrÞ5R for all r 2 ½0; r

*
Þ: The

estimates for the sets of admissible zð0Þ and wð0Þ are given by the next theorem.

Theorem 2
The conclusion of Theorem 1 holds for any trajectory ðzðtÞ;wðtÞÞ starting in

zð0Þ 2 EPðRðrÞÞ :¼ fz : jzjP5RðrÞg; wð0Þ 2 BwðrÞ :¼ fw : jwj5rg

for any r 2 ½0; r
*
Þ:

The proof of this theorem is based on the fact that for every r 2 ½0; r
*
Þ the set EPðRðrÞÞ � BwðrÞ is

a subset of Y; as shown in Figure 3.

5. EXAMPLE

We illustrate the application of Theorem 2. Consider the so-called TORA-system (Translational
Oscillator with a Rotational Actuator) described by equations of the form

’xx1 ¼ x2; ’xx2 ¼ �x1 þ e sin x3 þ mD

’xx3 ¼ x4; ’xx4 ¼ v

e ¼ ðx1 � e sin x3Þ

ð24Þ

where m and e51 are some positive parameters, v is a control input and D is a disturbance force.
This system is a non-linear benchmark mechanical system that was introduced in Reference [17]
(see also Reference [18]). The control problem is to find a controller such that e tends to zero in
the presence of a disturbance D generated by the system

’ww1 ¼ Ow2; ’ww2 ¼ �Ow1; D ¼ l arctanðw1=lÞ ð25Þ

Figure 3. Relation between the sets Y and EPðRðrÞÞ; BwðrÞ:
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For simplicity, we assume that both x and w are measured, i.e. y ¼ ðx;wÞ: This is a particular
case of the output regulation problem. It is very difficult to find an exact solution to this
problem. At the same time, we can relatively easily find an approximate solution: v ¼
cðwÞ þ Kðx� *ppðwÞÞ; where the mappings *ppðwÞ 2 R4 and cðwÞ 2 R are defined by the formulae

*pp1ðwÞ :¼ �
mw1

O2
; *pp2ðwÞ :¼ �

mw2

O
; *pp3ðwÞ :¼ �arcsin

mw1

O2e

� �

*pp4ðwÞ :¼ �
mOw2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

O4e2 � m2w2
1

q ð26Þ

cðwÞ :¼
mO2w1ðO

4e2 � m2ðw2
1 þ w2

2ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O4e2 � m2w2

1

q� �3 ð27Þ

and the matrix K is such that the closed-loop system has an asymptotically stable linearization
at the origin. Indeed, one can easily check that for such controller the closed-loop system
satisfies conditions ðAÞ and ðBnÞ with the specified *ppðwÞ; e1ðwÞ :¼ ð0;mðl arctanðw1=lÞ � w1Þ;
0; 0ÞT and e2ðwÞ � 0 (see References [3, 6, 7] for details on finding approximate solutions to the
local output regulation problem). Let us apply Theorem 2 to estimate the set of admissible
ðxð0Þ;wð0ÞÞ (since the controller is static, then z ¼ x) for the following values of the parameters:
e ¼ 0:5; m ¼ 0:04; l ¼ 3; O ¼ 1; K ¼ ð12;�4;�8;�5Þ:

First, we must choose a matrix P ¼ PT > 0 such that PDFxð0; 0Þ þ ðDFxð0; 0ÞÞ
TP50:

We find such P from the Lyapunov equation PDFxð0; 0Þ þ ðDFxð0; 0ÞÞ
TP ¼ �Q; where Q is

the diagonal matrix diagð2; 8; 1; 1Þ: For convenience, P is normalized such that jjPjj ¼ 1: Since
DFxðx;wÞ only depends on x3; the matrix N for the set CNðRÞ is chosen equal to N ¼ ð0; 0; 1; 0Þ;
i.e. such that Nx ¼ x3: So, the convergence set C is sought in the form CNðRÞ :¼ fx : jx3j5Rg
(see Section 3 for details). Since DFxðx;wÞ does not depend on w; the companion set Wc

can be taken equal to R2: For the convergence set CNðRÞ we choose R ¼ 0:88:
The corresponding a equals to a ¼ 0:083: We have chosen arbitrary R from the range
of R’s for which the corresponding a is positive. Such range is determined numerically. Finally,
after computing RðrÞ; ZðrÞ and r

*
; we obtain estimates of the admissible initial conditions

set EPðRðrÞÞ � BwðrÞ; where RðrÞ is given in Figure 4. Theorem 2 provides the estimates for
r 2 ½0; r

*
Þ: In our case, r

*
� 2:3 (for r ¼ r

*
; the function ZðrÞ reaches R). For r > r

*
; Theorem 2

does not guarantee that both xðtÞ starting in EPðRðrÞÞ and *ppðwðtÞÞ with wðtÞ starting in BwðrÞ will
lie in the convergence set CNðRÞ: Thus, Lemma 2 cannot be applied and inequalities (21) and
(22) may not hold.

Note, that the mappings *ppðwÞ and cðwÞ and, thus, the closed-loop system are defined only for
jw1j5O2e=m: For the given values of the system parameters this constraint is given by jw1j512:5:
The obtained estimates satisfy this condition. The estimates are fairly conservative. According
to simulations, for a fixed level of disturbance r; approximate output regulation still occurs for
xð0Þ 2 EPð %RRðrÞÞ with %RRðrÞ about 4 times larger than the obtained RðrÞ: One possible reason for
such conservativeness is the specific choice of the matrix P and the number R: A different choice
for P and R may result in better estimates. At the moment, it is an open question how to choose
these parameters in order to obtain the best (in some sense) estimates.
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6. CONCLUSIONS

In this paper, we have considered the problem of estimating the set of admissible initial
conditions for a solution to the local approximate output regulation problem. The presented
solutions to this estimation problem are based on the so-called Demidovich condition. The
obtained estimates consist of initial conditions for which the trajectories of the forced closed-
loop system converge to a certain neighbourhood of the approximate output-zeroing manifold.
The results are illustrated by application to a disturbance rejection problem in the TORA
system. Since the exosystem is allowed to generate constant signals, the obtained results are also
applicable for systems with parametric uncertainties. Although the analysis in the paper was
performed under the assumption of linearity of the exosystem, the results can be extended to the
case of general neutrally stable exosystems.

The obtained estimates are, in general, fairly conservative, since they are based on quadratic
stability analysis and strongly depend on the choice of the parameters N; P and R: Despite this
conservatism, the results can be rather useful in the following situations. First, one can directly
use the estimates in practice (for certain simple systems they may be quite satisfactory). Second,
if the estimates are too conservative, one can use them as a starting point for obtaining less
conservative estimates by means of, for example, backward integration. The third way is to use
the estimates as a criterion for choosing/tuning certain controller parameters. Since controller
design admits some freedom in choosing certain controller parameters (such as the matrix K in
the TORA example), one can choose parameters which guarantee larger estimates. For
example, one can aim at finding controller parameters that guarantee satisfaction of the
Demidovich condition globally. For such controller, the upper bound of the limit values of the
regulation error would be proportional to the upper bound on the error in the regulator

Figure 4. Estimates for the TORA system: RðrÞ and r for the estimates EPðRðrÞÞ � BwðrÞ:
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equations, regardless of the initial conditions, i.e. approximate output regulation is attained
globally.

APPENDIX A

Proof of Lemma 2
Denote z :¼ z� %zz: It satisfies the equation

’zz :¼ Fðz;wðtÞÞ þ eðtÞ � Fð %zz;wðtÞÞ ðA1Þ

Consider the Lyapunov function VðzÞ :¼ zTPz: Its derivative satisfies

dV

dt
¼ 2zTPðFðz;wðtÞÞ � Fð %zz;wðtÞÞ þ eðtÞÞ

Notice, that in the region jzjP4r both %zzðtÞ and z ¼ zþ %zzðtÞ belong to C: Since wðtÞ belongs
to Wc for all t50; we can apply Lemma 1. By formula (16) and by the Cauchy inequality,
we obtain

dV

dt
4�

a
jjPjj

jzj2P þ 2jzjPjeðtÞjP4�
a

jjPjj
jzj2P þ 2jzjPlðt0Þ for t5t050 ðA2Þ

where lðt0Þ :¼ supt5t0
jeðtÞjP: By the conditions of the lemma, lðt0Þ5ar=ð2jjPjjÞ for any t050:

Thus, from (A2) we can conclude that the ellipsoid %EEPðrÞ :¼ fz : VðzÞ5r2g is invariant with
respect to (A1). Application of Theorem 5.1 from [19] implies that for any solution starting in
%EEPðrÞ and any Z satisfying 2jjPjj=alðt0Þ5Z5r there exists T > 0 such that jzðtÞjP4Z for all
t5t0 þ T : Due to the arbitrary choice of Z > 2jjPjj=alðt0Þ; any solution of (A1) starting in %EEPðrÞ
satisfies

lim sup
t!þ1

jzðtÞjP4
2jjPjj
a

lðt0Þ

Since the left-hand side does not depend on t0; we can conclude that

lim sup
t!þ1

jzðtÞjP4
2jjPjj
a

lim sup
t0!þ1

lðt0Þ ¼
2jjPjj
a

lim sup
t!þ1

jeðtÞjP &

Proof of Theorem 1
We need to show that (21) holds for any solution ðzðtÞ;wðtÞÞ that starts in ðzð0Þ;wð0ÞÞ satisfying
the relations: jwð0Þj5r; mNðwð0ÞÞ þ 2d jjPjj=a qðwð0ÞÞ5R and zð0Þ 2 EPð *ppðwð0ÞÞ; rÞ; where
EPð %zz; rÞ :¼ fz : jz� %zzjP5rg and r :¼ ðR�mNðwð0ÞÞÞ=d: Due to the conditions on the initial
conditions and the properties of the exosystem, jwðtÞj � jwð0Þj5r and the solution %zzðtÞ :¼ *ppðwðtÞÞ
of the system

’zz ¼ Fðz;wðtÞÞ þ e1ðwðtÞÞ ðA3Þ

satisfies

jN %zzðtÞj4 sup
t50

jN *ppðwðtÞÞj ¼ mNðwð0ÞÞ5R
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Hence, %zzðtÞ 2 CNðRÞ and wðtÞ 2 WcðrÞ for all t50: Let us show that EPð %zzðtÞ; rÞ � CNðRÞ for
all t50: Suppose z 2 EPð %zzðtÞ; rÞ for some t50: Then,

jNzj4jN %zzðtÞj þ jNðz� %zzðtÞÞj4mNðwð0ÞÞ þ djz� %zzðtÞjP5mNðwð0ÞÞ þ dr ¼ R

Consequently, EPð %zzðtÞ; rÞ � CNðRÞ for all t50: The sets CNðRÞ and WcðrÞ satisfy the conditions
of Lemma 1. As follows from the second inequality in the definition of Y; the term e1ðwðtÞÞ
satisfies

je1ðwðtÞÞjP4 sup
t50

je1ðwðtÞÞjP ¼ qðwð0ÞÞ5
a

2jjPjj
r

Thus, by Lemma 2, we obtain that any solution of system (9) starting in zð0Þ 2 EPð %zzð0Þ; rÞ
satisfies (21). It remains to show that (22) holds with the number %CC > 0 being independent from
particular zð0Þ; wð0Þ as long as jwð0Þj5K for some K > 0: As follows from (21), for any K > 0
any solution of the closed-loop system (9) and the exosystem (3) starting in ðzð0Þ;wð0ÞÞ 2 Y;
where jwð0Þj5K ; converges to the compact set

YK :¼ ðz;wÞ : jwj4K ; jz� *ppðwÞjP4
2jjPjj
a

je1ðwÞjP

� �

Since %hhðz;wÞ is continuously differentiable, it is Lipschitz over any compact set. Thus, there
exists L > 0 such that j %hhðz1;wÞ � %hhðz2;wÞj4Ljz1 � z2jP for all ðz1;wÞ; ðz2;wÞ 2 YK : Hence, in the
limit we obtain:

lim sup
t!þ1

j %hhðzðtÞ;wðtÞÞj4 lim sup
t!þ1

ðj %hhð *ppðwðtÞÞ;wðtÞÞj þ j %hhðzðtÞ;wðtÞÞ � %hhð *ppðwðtÞÞ;wðtÞÞjÞ

4 lim sup
t!þ1

je2ðwðtÞÞj þ lim sup
t!þ1

LjzðtÞ � *ppðwðtÞÞjP

4 lim sup
t!þ1

je2ðwðtÞÞj þ lim sup
t!þ1

2jjPjjL
a

je1ðwðtÞÞjP

Thus, the constant %CC in (22) can be chosen equal to %CC :¼ 2jjPjjL=a: &

Proof of Theorem 2
It is sufficient to show that EPðRðrÞÞ � BwðrÞ � Y for any r 2 ½0; r

*
Þ: Then, the statement of

Theorem 2 follows from Theorem 1. Suppose z0 2 EPðRðrÞÞ and w0 2 BwðrÞ for some fixed r 2
½0; r

*
Þ: According to the definition of Y; we first need to show that jw0j5r: This is true due to

the fact that jw0j5r5r
*
4r: Next, we show that mNðw0Þ þ 2d jjPjj=a jqðw0ÞjP5R: By the

definition of ZðrÞ; it holds that jN *ppðwÞj þ 2d jjPjj=a je1ðwÞjP4ZðrÞ for all jwj5r: The choice of
jw0j5r implies jwðt;w0Þj � jw0j5r: Hence, by the definition of mNðw0Þ and qðw0Þ we obtain

mNðw0Þ ¼ sup
t50

jN *ppðwðt;w0ÞÞj4 sup
jwj5r

jN *ppðwÞj

qðw0Þ ¼ sup
t50

je1ðwðt;w0ÞÞjP4 sup
jwj5r

je1ðwÞjP
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Thus, we obtain

mNðw0Þ þ
2d jjPjj

a
jqðw0ÞjP4 sup

jwj5r

jN *ppðwÞj þ
2d jjPjj

a
je1ðwÞjP

� �
¼ ZðrÞ

The choice of r5r
*
implies that ZðrÞ5R and consequently mNðw0Þ þ 2d jjPjj=a jqðw0ÞjP5R:

Next, we need to show that jz0 � *ppðw0ÞjP5ðR�mNðw0ÞÞ=d: The triangle inequality implies

jz0 � *ppðw0ÞjP4jz0jP þ j *ppðw0ÞjP ðA4Þ

By the choice of z0 and by the definition of RðrÞ;

jz0jP5RðrÞ ¼ ðR� dðrÞÞ=d ¼ R� sup
jwj5r

ðjN *ppðwÞj þ d j *ppðwÞjPÞ

 !,
d

4 ðR�mNðw0ÞÞ=d � j *ppðw0ÞjP

Substituting this inequality in (A4), we obtain jz0 � *ppðw0ÞjP5ðR�mNðw0ÞÞ=d: This completes
the proof. &
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