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SUMMARY

We study the problem of designing state-feedback controllers to track time-varying state trajectories that
may exhibit jumps. Both plants and controllers considered are modeled as hybrid dynamical systems, which
are systems with both continuous and discrete dynamics, given in terms of a flow set, a flow map, a jump set,
and a jump map. Using recently developed tools for the study of stability in hybrid systems, we recast the
tracking problem as the task of asymptotically stabilizing a set, the tracking set, and derive conditions for the
design of state-feedback tracking controllers with the property that the jump times of the plant coincide with
those of the given reference trajectories. The resulting tracking controllers guarantee that solutions of the
plant starting close to the reference trajectory stay close to it and that the difference between each solution
of the controlled plant and the reference trajectory converges to zero asymptotically. Constructive conditions
for tracking control design in terms of LMIs are proposed for a class of hybrid systems with linear maps
and input-triggered jumps. The results are illustrated by various examples. Copyright © 2013 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The literature on stability analysis and stabilization of equilibria for systems with state jumps is rel-
atively well developed; see, for example, [1–5] for results for hybrid systems, [6–8] for results in the
scope of measure differential inclusions, [9, 10] in the scope of complementarity systems, [11, 12]
in the scope of impulsive dynamical systems, and many others. On the other hand, in many control
problems, such as tracking, output regulation, synchronization, and observer design, the goal con-
sists of stabilizing time-varying trajectories. To effectively tackle such problems for hybrid systems,
results on the stability and stabilization of time-varying trajectories of such systems are imperative.
Unfortunately, general results for stabilizing impulsive/discontinuous or, more generally, hybrid tra-
jectories are not currently available. Notable specific solutions to stabilization of such trajectories
are given by the work in [13–16], in which the state estimation and tracking problems for particular
classes of mechanical systems with impacts are addressed, the work in [17], in which an observer-
based control design problem for a class of complementarity systems is studied, the work in [18],
in which tracking control and observer design problems for a class of measure differential inclu-
sions is solved, the work in [19–22], in which a tracking problem for a class of mechanical systems
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with unilateral constraints is addressed, and the work in [23] considering the juggling problem as a
tracking problem.

In this paper, we present sufficient conditions characterizing controllers solving a state tracking
control problem for a general class of hybrid systems. More specifically, we consider plants given
in terms of a constrained flow equation‡

P� D fp.� ,u/, .� ,u/ 2 Cp (1)

and a constrained jump inclusion

�C 2Gp.� ,u/, .� ,u/ 2Dp , (2)

with output function given by the identity, that is, y D � . The set Cp is the flow set, which is where
continuous evolution or flows are possible. The single-valued map fp , called the flow map, defines
the differential equation governing the flows. The set Dp is the jump set, which collects the points
from where discrete evolution or jumps are possible. From this set, the state is updated via the set-
valued map Gp , called the jump map. For this class of hybrid systems, a controller assigning the
input u and measuring � is to be designed such that the difference between � and the reference
trajectory r , which may both flow and jump, is well behaved in a sense to be made more precise
later. Without being precise about a notion of tracking at this point, it should be expected that the
tracking controller guarantees both stability and attractivity properties relative to the reference tra-
jectory. Stability consists of the property that solutions to the plant starting close to the reference
stay close to it, whereas attractivity consists of the property that the distance between the plant’s
solution component and the reference decreases asymptotically. A major challenge in guaranteeing
these properties for hybrid systems is that the jump times of the reference trajectory and the state
of the controlled plant do not coincide in general. In Section 2, we discuss in more detail how this
complicates the tracking control design problem. The proposed approach in this article consists of
recasting the state tracking problem for hybrid systems, which is defined in Section 3, as the sta-
bilization of a closed set that embeds the reference trajectory. Exploiting sufficient conditions for
asymptotic stability of closed sets for hybrid systems, in Section 4, we present sufficient conditions
for a class of hybrid state-feedback tracking controllers enforcing that the jump times of the plant
coincide with those of the given reference trajectory. Section 5 considers a special case of hybrid
systems with linear maps and jumps triggered by the inputs and proposes constructive conditions
for control design given in terms of LMIs. The proposed approach and results are illustrated by
examples in Section 6. Section 7 presents concluding remarks.

Notation. The following notational conventions are used throughout the paper. The n-dimensional
Euclidean space is denoted by Rn, real numbers by R, nonnegative real numbers by R>0, and natural
numbers including 0 by N. Given a set S , S denotes its closure; given a vector x 2Rn, jxj denotes
the Euclidean vector norm; given a set S �Rn and a point x 2Rn, we define jxjS WD infy2S jx�yj
as the distance from x to the set S . Given vectors x and y, we write Œx>y>�> with the shorthand
notation .x, y/. The inner product operation between two vectors x and y is denoted hx,yi. Given
a continuously differentiable function V , rV denotes its gradient. Given a locally Lipschitz func-
tion V , V ı.x,w/ denotes the Clarke-generalized derivative of V at x in the direction w [24], that
is, V ı.x,w/ D max�2@V.x/h�,wi, where @V.x/ is the generalized gradient of V in the sense of
Clarke, which is a closed, convex, and nonempty set equal to the convex hull of all limit sequences
of rV.xi / with xi ! x taking value away from every set of measure zero in which V is nondiffer-
entiable. A function ˛ W R>0! R>0 is said to belong to class-K (˛ 2 K1) if it is continuous, zero
at zero, and strictly increasing and to belong to class-K1 (˛ 2 K1) if it belongs to class-K and is
unbounded. PD denotes the set of real-valued positive definite functions, that is, � 2 PD implies
�.0/D 0 and �.s/ > 0 for all s 6D 0. The identity function is denoted Id. For a symmetric matrix A,
we denote by �min.A/ and �max.A/ its minimum and maximum eigenvalues, respectively.

‡ As defined in Section 3, the solutions to (1) and (2) will be given by (absolutely) continuous functions on each interval
of flow.
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2. OBSTACLES TO TRACKING CONTROL DESIGN FOR HYBRID SYSTEMS

To illustrate the difficulties in tracking control design problems for systems with state jumps,
consider a scalar, single-valued hybrid plant as in (1) and (2) with state � and output y D � , and
the reference trajectory to be tracked given by the sawtooth signal shown in Figure 1, which has
discontinuities when reaching 1. Trajectories � to the plant can be specified as functions defined on
hybrid time domains dom � , which are subsets of R>0 � N, and parameterize the trajectories by
flow time t and jump time j , see [5]. A common approach used in tracking control of continuous-
time and discrete-time plants consists of defining the tracking error and then analyzing the resulting
time-varying error dynamics; a different approach to tracking control that is based on dynamic inver-
sion appeared in [25]. Following the former approach, the reference trajectory r on the hybrid time
domain dom r is given by

r.t , j /D t � t rj 8t 2
�
t rj , t rjC1

�
, (3)

where t rj D j , j 2 N. Note that r.t , j / 2 Œ0, 1� for all .t , j / 2 dom r , where dom r is the union of
Œt rj , t rjC1�� ¹j º for every j 2N. Let

Tr WD
[

j2N>0

®
.t rj , j � 1/

¯
(4)

denote the fixed values of .t , j / at which r jumps. Then, the dynamics of the tracking error e defined
as

e D y � r.t , j /D � � r.t , j /

are given by the flow equation

Pe D fp.eC r.t , j /,u/� 1 (5)

when

.eC r.t , j /,u/ 2 Cp and t 2
�
t rj , t rjC1

�
, (6)

and by the jump equation

eC DGe.eC r.t , j /,u, t , j / (7)

when

.eC r.t , j /,u/ 2Dp or .t , j / 2 Tr , (8)

(a) Hybrid arc (b) Projection onto

Figure 1. Reference trajectory for the tracking control problem in Section 2.
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Figure 2. A resulting jump map Ge for the error system in the tracking control problem of Section 2 when
Gp.� ,u/D 0 and Dp D ¹.� ,u/ W � D 1º. The map Ge is defined for each .� , r/ 2 .R� ¹1º/� .¹1º � Œ0, 1�/.

where Ge is defined at every point satisfying (8) as

Ge.eC r ,u, t , j /D

8<
:
Gp.eC r ,u/� r .eC r ,u/ 2Dp , .t , j / 62 Tr
eC r .eC r ,u/ 62Dp , .t , j / 2 Tr
Gp.eC r ,u/ .eC r ,u/ 2Dp , .t , j / 2 Tr

,

where Gp is the jump map of plants (1) and (2).
The first challenge to tracking control for hybrid systems is due to the impossibility of writing

conditions (6) and (8) in terms of the tracking error solely. Note that this issue also emerges in the
continuous-time and discrete-time settings, but it is aggravated in hybrid systems because the flow
and jump conditions depend on the state. As a consequence, the dynamics of the tracking error
depend on � and r . Now, suppose that a feedback law u D �c.y, r/ is designed to map the error to
zero when both the plant’s state � and r jump simultaneously, that is, the third case in the definition
of Ge yields Ge D 0. The second challenge to tracking control emerges from the possibility that,
from points � in Cp that are nearby Dp and times .t , j / 2 Tr , Ge updates e to jeCj D e C 1,
which is far from zero (also when e is arbitrarily close to zero). In fact, Figure 2 depicts a partic-
ular map Ge as a function of � and r.t , j / when the jumps of the plant occur when � D 1, that is,
Dp WD ¹.� ,u/ W � D 1º, and with Gp.� ,u/D � C u, �c.y, r/D �� , resulting in Gp.� ,u/D 0 when
� D 1. In this case, when .t , j / 2 Tr (equivalently, r.t , j / D 1), if � D 1, then eC D 0 (i.e., the
tracking error jumps to zero); however, if � is slightly below 1 and .t , j / 2 Tr , then jeCj will be
close to 1 after the jump (of the reference). This peaking phenomenon, which is due to the jump
instants of plant and reference not coinciding, has also been recognized in [8, 13, 16, 17, 21] and
imposes a difficulty in guaranteeing that the norm of e converges to zero.

We consider tracking controllers that tackle the first challenge earlier while avoiding the issue of
an increasing error signal in the second challenge by ensuring that jumps of the plant occur at the
same instant as the jumps of the reference trajectories. For this purpose, we recast the tracking con-
trol problem as the stabilization of a closed set that embeds the time-varying reference trajectory.
For the design of the tracking controllers, we exploit sufficient conditions for asymptotic stability
of hybrid systems in [26] (see also [27] and [4]). An alternative approach for tracking control for
hybrid systems based on generating the reference trajectories from an exosystem was proposed
in [28].

3. PROBLEM STATEMENT

In this paper, we consider the state tracking problem for plants modeled as hybrid systems (1) and
(2). In this way, a plant is denoted Hp and has state � 2 Rnp , input u 2 Rmp , and output y D � . Its

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2014; 24:1585–1608
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dynamics are given by

Hp

8<
:
P� D fp.� ,u/ .� ,u/ 2 Cp
�C 2 Gp.� ,u/ .� ,u/ 2Dp
y D h.�/ WD �

. (9)

The set Cp � Rnp � Rmp is the flow set, the function fp W C ! Rnp is the flow map, the set
Dp �Rnp �Rmp is the jump set, Gp WD�Rnp is the jump map,§ and h is the output map, given
by the identity function. The data of the hybrid system Hp are thus given by .Cp ,fp ,Dp ,Gp , Id/.

Solutions to hybrid systems Hp are defined by pairs of hybrid arcs �p and hybrid inputs u on
hybrid time domains. Hybrid time domains are subsets of R>0 �N given by the union of intervals
of the form Œtj , tjC1��¹j º, tj 6 tjC1. More precisely, a set E �R>0�N is a compact hybrid time
domain if

E D

J�1[
jD0

�
Œtj , tjC1�� ¹j º

�

for some finite sequence of jump instants 0 D t0 6 t1 6 t2 � � � 6 tJ . It is a hybrid time domain
if for all .T ,J / 2 E, E \ .Œ0,T �� ¹0, 1, : : : J º/ is a compact hybrid time domain. A function
�p W dom �p ! Rnp is a hybrid arc if dom �p is a hybrid time domain and, for each j 2 N,
the function t 7! �p.t , j / is absolutely continuous on the interval ¹t W .t , j / 2 dom �pº. A func-
tion u W dom u ! Rmp is a hybrid input if dom u is a hybrid time domain and, for each j 2 N,
the function t 7! u.t , j / is Lebesgue measurable and locally essentially bounded on the interval
¹t W .t , j / 2 dom uº. Then, a hybrid arc �p W dom �p ! Rnp and a hybrid input u W dom u! Rmp

define a solution pair .�p ,u/ to the hybrid system Hp from the initial condition �p.0, 0/ if the
following conditions hold:

(S0) .�p.0, 0/,u.0, 0// 2 Cp [Dp , and dom �p D dom u (D dom .�p ,u/).
(S1) For each j 2N such that Ij WD ¹t W .t , j / 2 dom .�p ,u/º has nonempty interior int.Ij /,

.�p.t , j /,u.t , j // 2 Cp for all t 2 int.Ij /,

and, for almost all t 2 Ij ,

d�p

dt
.t , j /D fp.�p.t , j /,u.t , j //.

(S2) For each .t , j / 2 dom .�p ,u/ such that .t , j C 1/ 2 dom .�p ,u/,

.�p.t , j /,u.t , j // 2Dp , �p.t , j C 1/ 2Gp.�p.t , j /,u.t , j //.

A solution pair .�p ,u/ to Hp is said to be complete if dom .�p ,u/ is unbounded, Zeno if it is com-
plete but the projection of dom .�p ,u/ onto R>0 is bounded, discrete if its domain is ¹0º �N, and
maximal if there does not exist another pair .�p ,u/0 such that .�p ,u/ is a truncation of .�p ,u/0 to
some proper subset of dom .�p ,u/0.

We consider hybrid arcs r W dom r ! Rnp defining reference trajectories to be tracked by the
plant Hp . As for the construction of hybrid time domains earlier, the sequence of times correspond-
ing to the jump instants of a reference trajectory r is denoted 0 D t r0 6 t r1 6 t r2 6 � � �. By using the
definition of Hp in (9), hybrid tracking controllers with state 	 2 Rnc and data .Cc ,fc ,Dc ,Gc , �c/
are given by

Hc

8<
:
P	 D fc.	,y, r/ .	,y, r/ 2 Cc
	C 2 Gc.	, y, r/ .	,y, r/ 2Dc
u D �c.	,y, r/

. (10)

The input of Hc has been assigned to .y, r/, whereas its output u to the input of the plant Hp .

§The notation� indicates thatGp is a set-valued map, that is, subsets ofD are mapped to subsets of Rnp .

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2014; 24:1585–1608
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The closed-loop system (9)-(10) resulting from interconnecting Hp and Hc is denoted Hcl . Its
state is given by

.� , 	/ 2Rnp �Rnc

and its dynamics by¶

�
P�
P	

�
D

�
fp.� , �c.	, � , r//
fc.	, � , r/

� ³
.� , �c.	, � , r// 2 Cp

and .	, � , r/ 2 Cc
,�

�C

	C

�
2

�
Gp.� , �c.	, � , r//

	

� ³
.� , �c.	, � , r// 2Dp

and .	, � , r/ 62Dc
,�

�C

	C

�
2

�
�

Gc.	, � , r/

� ³
.� , �c.	, � , r// 62Dp

and .	, � , r/ 2Dc
,�

�C

	C

�
2

²�
Gp.� , �c.	, � , r//

	

�
,

�
�

Gc.	, � , r/

�³ ³
.� , �c.	, � , r// 2Dp

and .	, � , r/ 2Dc
.

(11)

where, for notational simplicity, we have omitted the argument .t , j / of the time-varying reference
r . Solutions to this closed-loop system are denoted � D .�p ,�c/ and are defined as for Hp earlier.

Using the aforementioned definitions, our goal is to solve the following problem:

Problem (?): Given a plant Hp and a complete reference trajectory r , design the data
.Cc ,fc ,Dc ,Gc , �c/ of the controller Hc so that the error between every plant solution �p and
the reference trajectory r is bounded by a class-K1 function of the difference between their initial
values, which corresponds to stability, and asymptotically converging to zero, which corresponds to
attractivity.

The next section formally introduces the notions of stability and attractivity and the proposed
approach.

4. A CLASS OF HYBRID CONTROLLERS FOR STATE TRACKING WITH KNOWN
REFERENCE TRAJECTORIES

4.1. Main approach

In smooth systems, a well-known approach is to introduce the tracking error e D � � r and then
analyze the corresponding dynamics. This approach is used for autonomous systems with prespec-
ified time-triggered state jumps in [30]. However, in general, as pointed out in Section 2, the flow
and jump sets as well as the flow and jump maps of the error dynamics depend on t and j explicitly,
resulting in a nonautonomous hybrid system. To address this issue, we recast Problem (?), which
pertains to the stabilization of a time-varying set, as the stabilization of a closed, not necessarily
bounded, time-invariant set. Inspired by the idea of treating time in time-varying systems as a state,
we achieve this by embedding the given reference trajectory into an extended hybrid system model
and defining a set, the tracking set, imposing conditions on the state representing tracking of the
given reference trajectory. More precisely, given a reference r W dom r ! Rnp , following (4), we
define the set Tr collecting all of the points .t , j / in the domain of r at which r jumps, that is, every
point .t rj , j / 2 dom r for which .t rj , j C 1/ 2 dom r . Auxiliary variables 
 2 R>0 and k 2 N
are incorporated as states to parametrize the given reference trajectory r . In other words, 
 evolves
continuously according to the flow time parameter t , whereas k evolves discretely according to the

¶ For the case when conditions .� , �c.�, � , r// 2Dp and .�, � , r/ 2Dc hold simultaneously, the jump map can instead

be defined as

�
Gp.� , �c.�, � , r//
Gc.�, � , r/

�
. The definition used in (11) leads to an outer semicontinuous set-valued jump

map when Gp and Gc are outer semicontinuous. A set-valued map S W Rn� Rm is outer semicontinuous at x 2 Rn

if for each sequence ¹xiº1iD1 converging to a point x 2 Rn and each sequence yi 2 S.xi/ converging to a point y, it
holds that y 2 S.x/; see [29, Definition 5.4].
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jump time parameter j at jumps of r . In this setting, the set to be stabilized, called the tracking set,
is given by

AD ¹.� , 	, 
 , k/ 2Rnp �Rnc �R>0 �N W � D r.
 , k/, 	 2ˆº, (12)

for some closed set ˆ � Rnc capturing the set of points asymptotically approached by the con-
troller’s state. For instance, for the example of Section 2, the resulting tracking set A with the
proposed approach is given by

¹.� , 	, 
 , k/ W � C t rk D 
 2
�
t rk , t rkC1

�
, .t rk , k/ 2 .0, 0/[ Trº, (13)

where Tr is given in (4). The set in (13) is closed and unbounded in the 
 and k components.
The next ingredient of the approach is to guarantee, by design of the controller, that the jumps of

the plant and of the reference trajectory occur simultaneously. This will be a constraint in the design
of the controller, which, although it restricts the type of systems for which the tracking problem can
be solved, as Section 6 illustrates, permits to solve a range of relevant hybrid tracking problems.

With a controller satisfying such a property, our approach is to recast the problem under study
as a stabilization problem of the set A for the resulting closed-loop system, which we denote by
H?
cl
D .C ,F ,G,D/. Its state is given by

x WD .� , 	, 
 , k/ 2Rnp �Rnc �R>0 �N DW X .

The flow of H?
cl

is governed by

2
664
P�
P	
P

Pk

3
775D

2
64
fp.� , �c.	, � , r.
 , k///
fc.	, � , r.
 , k//

1

0

3
75DW F.� , 	, 
 , k/ (14)

when flow of Hp , the reference, and Hc is possible, that is,

.� , �c.	, � , r.
 , k/// 2 Cp , 
 2 Œt rk , t rkC1�, and .	, � , r.
 , k// 2 Cc . (15)

Points .� , 	, 
 , k/ satisfying these conditions define the flow set C of H?
cl

as follows:

C WD ¹x 2 X W .� , �c.	, � , r.
 , k/// 2 Cp , 
 2 Œt rk , t rkC1�, .	, � , r.
 , k// 2 Ccº.

Jumps of H?
cl

are governed by

2
664
�C

	C


C

kC

3
775 2

2
64
Gp.� , �c.	, � , r.
 , k///

	




kC 1

3
75DWG1.� , 	, 
 , k/ (16)

when only the plant and the reference jump, that is,

.� , �c.	, � , r.
 , k/// 2Dp , .
 , k/ 2 Tr , and .	, � , r.
 , k// 62Dc , (17)

by 2
664
�C

	C


C

kC

3
775 2

2
64

�

Gc.	, � , r.
 , k//



k

3
75DWG2.� , 	, 
 , k/ (18)

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2014; 24:1585–1608
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when only the controller jumps, that is,

.� , �c.	, � , r.
 , k/// 62Dp , 
 2
�
t rk , t rkC1

�
, and .	, � , r.
 , k// 2Dc , (19)

and by the union of G1 and G2 in (16) and (18), respectively, when||

.� , �c.	, � , r.
 , k/// 2Dp , .
 , k/ 2 Tr , and .	, � , r.
 , k// 2Dc . (20)

Points .� , 	, 
 , k/ satisfying these conditions define the jump set D of H?
cl

as follows:

D WDD1 [D2, D1 WD ¹x 2 X W .� , �c.	, � , r.
 , k/// 2Dp , .
 , k/ 2 Trº,
D2 WD

®
x 2 X W 
 2

�
t rk , t rkC1

�
, .	, � , r.
 , k// 2Dc

¯
.

The jump map G of H?
cl

is given by

G.� , 	, 
 , k/ WD

8<
:
G1.� , 	, 
 , k/ .� , 	, 
 , k/ 2D1 nD2
G2.� , 	, 
 , k/ .� , 	, 
 , k/ 2D2 nD1
¹G1.� , 	, 
 , k/,G2.� , 	, 
 , k/º .� , 	, 
 , k/ 2D1 \D2

,

where G1 and G2 are given in (16) and (18), respectively.
The proposed approach reduces the tracking problem to the stabilization of the tracking set A.

Then, by exploiting sufficient conditions for asymptotic stability of hybrid systems, a solution to
Problem (?) can be obtained using the stability notion given next. Denoting by SH?

cl
.�?.0, 0// the

set of maximal solutions �? to H?
cl

from �?.0, 0/, the set A is said to be

� uniformly globally stable if there exists ˛ 2 K1 such that each solution �? 2 SH?
cl
.�?.0, 0//

satisfies j�?.t , j /jA 6 ˛.j�?.0, 0/jA/ for all .t , j / 2 dom �?;
� uniformly globally attractive if for each " > 0 and � > 0 there exists N > 0 such that, for any

solution �? 2 SH?
cl
.�?.0, 0// with j�?.0, 0/jA 6 �, .t , j / 2 dom �? and t C j > N imply

j�?.t , j /jA 6 "; and
� uniformly globally asymptotically stable if it is both uniformly globally stable and uniformly

globally attractive.

In contrast with the contributions in [13–16], where the controllers only guarantee convergence to
zero of the tracking error (i.e., attractivity), the results in the following section provide conditions
guaranteeing that the tracking set A is uniformly globally asymptotically stable.

4.2. Characterization of hybrid controllers

The following result establishes a sufficient condition for stabilization of the tracking set A.

Theorem 4.1 (Sufficient conditions for uniformly globally asymptotically stable)
Given a complete reference trajectory r W dom r ! Rnp and associated tracking set A in (12), if
there exists a hybrid controller Hc guaranteeing that

1. the jumps of r and Hp occur simultaneously and
2. there exist a function V WRnp�Rnc�R>0�N!R that is continuous on C [D [G.D/ and

locally Lipschitz on a neighborhood of C , functions ˛1,˛2 2 K1, and continuous functions
�1, �2, �3 2 PD such that

(a) for all .� , 	, 
 , k/ 2 C [D [G.D/,

˛1.j.� , 	, 
 , k/jA/6 V.� , 	, 
 , k/6 ˛2.j.� , 	, 
 , k/jA/I (21)

|| Note that with a controller guaranteeing that the jumps of the plant and of the reference trajectory occur simultaneously,
we have .�, � , r.� ,k// 2 Cp , � 2 Œt rk , t rkC1/ and .� , �c.�, � , r.� ,k/// 2 Dp , .� ,k/ 2 Tr , indicating that
writing the conditions involving Cp ,Dp , or Tr is equivalent.
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(b) for all .� , 	, 
 , k/ 2 C ,

V ı..� , 	, 
 , k/,F.� , 	, 
 , k//6 ��3 .j.� , 	, 
 , k/jA/ I (22)

(c) for all .� , 	, 
 , k/ 2D1 and all g 2G1.� , 	, 
 , k/,

V.g/� V.� , 	, 
 , k/6 ��1 .j.� , 	, 
 , k/jA/ I (23)

(d) for all .� , 	, 
 , k/ 2D2 and all g 2G2.� , 	, 
 , k/,

V.g/� V.� , 	, 
 , k/6 ��2 .j.� , 	, 
 , k/jA/ I (24)

then

(1?) there exists ˛ 2 K1 such that for each .�p.0, 0/,�c.0, 0// 2 Rnp �Rnc , we have that each
maximal solution � D .�p ,�c/ to Hcl in (11) satisfies

j.�p.t , j /� r.t , j /,�c.t , j //j¹0º�ˆ 6 ˛.j.�p.0, 0/� r.0, 0/,�c.0, 0//j¹0º�ˆ/I (25)

(2?) for each " > 0 and each � > 0, there exists N > 0 such that, for each maximal
solution � D .�p ,�c/ to Hcl in (11) with .�p.0, 0/,�c.0, 0// 2 Rnp � Rnc such that
j.�p.0, 0/� r.0, 0/,�c.0, 0//j¹0º�ˆ 6 �, we have that

.t , j / 2 dom �, t C j >N ) j.�p.t , j /� r.t , j /,�c.t , j //j¹0º�ˆ 6 ". (26)

Proof
Let � D .�p ,�c/ 2 SHcl . For each .t , j / 2 dom �, define the hybrid arc �� on dom � such that
�� .t , j / D t . For each i 2 N, denote by `i 2 N the jump times .t ri , `i / 2 dom � at which the
reference jumps, that is, r , have a jump at .t r0 , `0/, .t r1 , `1/, .t r2 , `2/, : : :.** Define the hybrid arc �k
on dom � as

�k.t , j /D 0 8.t , j / 2 dom �, t 2 Œ0, t r1 �, j 2 ¹0, : : : , `0º,

�k.t , j /D �k.t
r
i , `i�1/C 1 8.t , j / 2 dom �, t 2 Œt ri , t riC1�, j 2 ¹`i�1C 1, : : : , `iº, i > 0.

By using item 1 of the assumptions, by construction,

�? WD
�
�>, �� , �k

�>
(27)

is a maximal solution to H?
cl

from Œ�.0, 0/>, 0, 0�>. Let t .j / denote the smallest time t such that
.t , j / 2 dom �? and j.t/ denote the smallest index j such that .t , j / 2 dom �?. Then, following
the arguments in the proof of [26, Theorem 3.18], we have that, for each .t , j / 2 dom �?,

V.�?.t , j //�V.�?.0, 0//D
Z t

0

dV

d�
.�?.�, j.�///d�C

jX
sD1

�
V.�?.t.s/, s//� V.�?.t.s/, s � 1//

�
.

Because along flows, �?.t , j / 2 C for each j and every t 2 .tj , tjC1/ such that .t , j / 2
dom �?, using item 2 and the fact that, for almost every t 2 .tj , tjC1/, d

dt
V.��.t , j // 6

V ı.��.t , j /, P��.t , j // (see [24] and [4, Section IV.B]), we have that for each t 2 .tj , tjC1/ such
that .t , j / 2 dom �?,Z t

0

dV

d�
.�?.�, j.�///d�6 �

Z t

0

�3.j�
?.�, j.�//jA/d�. (28)

Using item 1 and the construction of the jump map G, jumps of the plant/reference and controller
are associated with different .t , j /’s in dom �. Define �1.dom �?/ and �2.dom �?/ as the set

**Jumps of the hybrid controller are possible between .t ri , `i/ and .t riC1, `iC1/, and `iC1 > `i C1 because jumps of the
plant occur when r jumps, as given in item 1.
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of such .t , j /’s, respectively (in particular, �1.dom �?/ is the collection of points .t ri , `i / defined
earlier). By using item 2, it follows that for each .t 0, j 0/ 2 �1.dom �?/, because only the plant and
reference have a jump, we have

V.�?.t 0, j 0C 1//� V.�?.t 0, j 0//6 ��1
�
j�?.t 0, j 0/jA

�
. (29)

By using item 2, it follows that for every .t 0, j 0/ 2 �2.dom �?/, only the controller jumps, and
we have

V.�?.t 0, j 0C 1//� V.�?.t 0, j 0//6 ��2
�
j�?.t 0, j 0/jA

�
. (30)

Combining bounds (28)–(30), we obtain, for each .t , j / 2 dom �?,

V.�?.t , j //� V.�?.0, 0//6 �
Z t

0

�3.j�
?.�, j.�//jA/d�

�
X

.t 0,j 0/2�1.dom �?/,t 0Cj 06tCj
�1
�
j�?.t 0, j 0/jA

�

�
X

.t 0,j 0/2�2.dom �?/,t 0Cj 06tCj
�2
�
j�?.t 0, j 0/jA

�
.

(31)

Because of �1, �2, �3 taking on nonnegative values, we already have

V.�?.t , j //6 V.�?.0, 0// 8.t , j / 2 dom �?.

By the definition of hybrid arc in Section 3 and completeness of r , A is a closed subset of
Rnp �Rnc �R>0 �N. Using the lower bound in (21), we have

j.�.t , j /,�� .t , j /,�k.t , j //jA 6 ˛�11 ıV.�?.0, 0//D ˛�11 ıV.�.0, 0/, 0, 0/ 8.t , j / 2 dom �?,

and using the upper bound, we obtain

j.�.t , j /,�� .t , j /,�k.t , j //jA 6 ˛�11 ı V.�.0, 0/, 0, 0/

6 ˛�11 ı ˛2.j.�p.0, 0/� r.0, 0/,�c.0, 0//j¹0º�ˆ/

for all .t , j / 2 dom �?. Then, A is uniformly globally stable for H?
cl

. By the definition of A, we
have that (25) holds with ˛ WD ˛�11 ı ˛2.

Now, we show uniform global attractivity. Given " and � satisfying 0 < " < �, let "0 be such that
0 < "0 < ". Define

�."0,�/ WD ¹´ 2Rnp �Rnc �R>0 �N W "
0 6 j´jA 6 �º,

and let �0 > 0 be such that ¹´ W V.x/6 �0º � �.0,�/. For each solution � D .�p ,�c/ 2 SHcl
with .�p.0, 0/,�c.0, 0/, 0, 0/ 2 ¹´ W V.´/6 �0º, following the construction in (27), associate a
solution �? to H?

cl
. It follows that each �? satisfies (31), and because of the right-hand side of this

expression being nonpositive, each �? remains in �.0,�/. Using (21), we obtain from (31)

˛1.j�
?.t , j /jA/6 V.�?.t , j //6 ��."0/.t C j1.t , j /C j2.t , j //C ˛2.�/ (32)

6 ��."0/.t C j /C ˛2.�/ (33)

for each .t , j / 2 dom �? for which �?.t , j / 2�."0,�/, where �.s/ WDmin¹�1.s/, �2.s/, �3.s/º for
each s > 0, and for each i D 1, 2, ji .t , j / denotes the largest j 0 such that .t 0, j 0/ 2 �i .dom �?/ and
t 0Cj 0 6 tCj . To arrive to (33), we have used the fact that, by construction, j1.t , j /Cj2.t , j /D j .
Then, it follows that

t C j >N WD ˛2.�/� ˛1."/

�."0/
) j�?.t , j /jA 6 ".

Consequently, A is uniformly globally attractive for H?
cl

. By the definition of A, we have
that (26) holds. �
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Remark 4.2
According to Theorem 4.1, the hybrid controller Hc has to be synthesized so that it enforces
(22)-(24). In particular, condition (22) depends on fc ,Cc and �c ; (23) depends on �c ; and (24)
depends on Gc and Dc , which are all to be chosen in the design. These can be exploited in deriv-
ing constructive control design techniques for specific classes of hybrid systems. The next section
introduces a synthesis procedure for a class of hybrid systems with linear maps and input-triggered
jumps. Several examples in Section 6 illustrate the feasibility of the design of controllers satisfying
the conditions of the theorem.

Remark 4.3
Theorem 4.1 implies that complete solutions to the closed-loop system are such that
j.� , 	, 
 , k/.t , j /jA! 0 as t C j !1, that is,

j�.t , j /� r.
.t , j /, k.t , j //j ! 0 as t C j !1.

This includes all possible solutions with unconstrained initial conditions of 
 and k, in particular,
it holds for all solutions with 
.0, 0/ D k.0, 0/ D 0, for which r.
.t , j /, k.t , j // D r.t , j / and,
consequently,

j�.t , j /� r.t , j /j ! 0 as t C j !1.

Note that complete solutions to H?
cl

have the property that 
.t , j / C k.t , j / is unbounded as
t C j !1. Furthermore, it implies that �.t , j / D r.t , j / on the domain of definition of solutions
starting from �.0, 0/D r.0, 0/, 
.0, 0/D k.0, 0/D 0, when solutions from such points exist.

Conditions 2(b)–(d) in Theorem 4.1 can be relaxed under further conditions on the solutions to
Hcl . In particular, the next result following [26, Proposition 3.24] relaxing the conditions at jumps
will be useful in designing a tracking controller for a motion control system in Example 6.2. It estab-
lishes that conditions (1?) and (2?) in Theorem 4.1 hold if the Lyapunov function is nonincreasing
during jumps, strictly decreasing during flow, and the duration of flow is sufficiently large for
every solution.

Corollary 4.4 (Special case of sufficient conditions for uniformly globally asymptotically stable)
Suppose that the conditions in Theorem 4.1 hold with �1 � 0 and �2 � 0. If for each � > 0,
there exists  2 K1 such that for every maximal solution � to Hcl in (11) with j.�p.0, 0/ �
r.0, 0/,�c.0, 0//j¹0º�ˆ 6 �,

t C j >N , .t , j / 2 dom � ) t > .N /, (34)

then (1?) and (2?) in Theorem 4.1 hold.

Proof
The claim follows from (32) with � D �3 and (34). In fact, continuing the proof of Theorem 4.1
from (32), we obtain

˛1.j�
?.t , j /jA/6 V.�?.t , j //6 ��3."0/.t C j1.t , j /C j2.t , j //C ˛2.�/ (35)

6 ��3."0/t C ˛2.�/. (36)

Then, j�?.t , j /A 6 " holds when t C j >N WD �1
�
˛2.	/�˛1."/


."0/

	
. �

5. SYNTHESIS RESULTS FOR A CLASS OF HYBRID SYSTEMS WITH
LINEAR MAPPINGS

In Section 4, we have presented a characterization of tracking controllers solving Problem (?) for
a general class of hybrid systems. This characterization, formalized in Theorem 4.1, requires the
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tracking controller to ensure that the plant and the reference jump simultaneously as well as that the
tracking set is asymptotically stabilized. This section presents controller synthesis results for a par-
ticular class of hybrid systems with linear flow and jump maps in terms of constructive conditions
in the form of LMIs. As in related works (see, e.g, [31, 32]), impulsive control inputs are permitted
when controlling the plants.

Let us consider a class of plants given by the hybrid systems of the form

H`
p

8̂<
:̂
P� D fp.� ,u/ WD Ap� CBpu1 .� ,u/ 2 Cp WD ¹.� ,u/ W u2 D 0º

�C DGp.� ,u/ WDEp� CFpu2 .� ,u/ 2Dp WD ¹.� ,u/ W u2 ¤ 0º

y D h.�/ WD �

, (37)

where � 2 Rnp and u1,u2 2 Rmp . In (37), we employ a decomposition of the control input

u D
�
u>1 u>2

�>
2 R2mp into an impulsive control component u2 and a nonimpulsive con-

trol component u1. Note that, compared with (9), we now consider plants with single-valued jump
map Gp . In the next section, we study an example of a mechanical motion system with impulsive
controls that can be modeled as in (37).

The following assumption imposes the existence of feedforward inputs ur D
�
ur1
> ur2

>
�>

inducing the reference r to be tracked.

Assumption 5.1
The reference trajectory r has a sequence of jump times Tr , and there exist inputs ur1 and ur2
such that

Pr D Apr CBpu
r
1 .t , j / 62 Tr ,

rC DEpr CFpu
r
2 .t , j / 2 Tr ,

(38)

and ur2.t , j /¤ 0 if and only if .t , j / 2 Tr .

We propose the following family of static controllers to solve the tracking problem:

u1 D u
r
1CK1.� � r/,

u2 D

8<
:
0 ur2 D 0
ur2CK2.� � r/ ur2 ¤ 0 and ur2CK2.� � r/¤ 0
ur2C .1C "/K2.� � r/ ur2 ¤ 0 and ur2CK2.� � r/D 0

,
(39)

where " > 0 is a sufficiently small parameter andK1,K2 are controller gains to be designed. During
jumps, the feedback law u2 updates the plant state by using a linear function of the state and
reference. Moreover, the expression for u2 (especially, the third line of its definition in (39))
enforces that

u2 D 0 if and only if ur2 D 0, (40)

which, when combined with the conditions in Assumption 5.1, implies that jumps of the plant always
coincide with jumps of the reference trajectory. Finally, control law (39) can be decomposed into
feedforward terms (ur1 and ur2) and feedback terms depending on the tracking error (� � r).

Incorporating the auxiliary variables .
 , k/ as in Section 4.1, because of the static linear controller
(39), the closed-loop system H?

cl
results in

H?,`
cl

8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂ˆ̂:

P� D Ap� CBp
�
ur1.
 , k/CK1.� � r.
 , k//

�
P
 D 1
Pk D 0

9=
; 
 2 �t rk , t rkC1

�
, k 2N

�C DGp,cl.� , 
 , k/

C D 

kC D kC 1

9=
; .
 , k/ 2 Tr

, (41)
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where

Gp,cl.� , 
 , k/D

´
Ep�CFp

�
ur2.
 , k/CK2.� � r.
 , k//

�
ur2.
 , k/CK2.� � r.
 , k//¤ 0

Ep�CFp
�
ur2.
 , k/C .1C "/K2.� � r.
 , k//

�
ur2.
 , k/CK2.� � r.
 , k//D 0

.

We provide conditions to design the feedback gains K1, K2 and the parameter " in (39) such that
the tracking set A in (12) (which, because of the static controller considered here, is given by
AD ¹.� , 
 , k/ 2Rnp �R>0 �N W � � r.
 , k/D 0º) is uniformly globally asymptotically stable for
closed-loop system (41). Our first synthesis result is as follows.

Theorem 5.2
Consider a hybrid plant given by (37) and a complete hybrid reference trajectory r . If
Assumption 5.1 holds and the following LMIs are feasible for real matrices Y1,Y2 and a real
symmetric matrix X

ApX CBpY1CXA
>
p C Y

>
1 B

>
p � 0, (42)



X XE>p C Y

>
2 F

>
p

EpX CFpY2 X

�
	 0, (43)

then tracking controller (39) with gains

K1 D Y1X
�1, K2 D Y2X

�1

and " > 0 such that††

X XE>p C Y

>
2 F

>
p

EpX CFpY2 X

�
C "



0 Y >2 F

>
p

FpY2 0

�
	 0, (44)

guarantees that the tracking set A is uniformly globally asymptotically stable for closed-loop
system (41).

Proof
Note that the dynamics of the tracking error e WD � � r.
 , k/ are given by

Pe D .Ap CBpK1/e DW fe.e/, 
 2
�
t rk , t rkC1

�
, k 2N,

eC D .Ep CFpK2/e DW ge,1.e/, .
 , k/ 2 Tr and ur2.
 , k/CK2e ¤ 0,

eC D .Ep CFp.1C "/K2/e DW ge,2.e/, .
 , k/ 2 Tr and ur2.
 , k/CK2e D 0.

(45)

Consider a candidate Lyapunov function V.e/ D e>Pe with symmetric matrix P for system (45).
Its evaluation along solutions of (45) gives

hrV.e/,fe.e/i D e
>
�
P.Ap CBpK1/C .Ap CBpK1/

>P
	
e .
 , k/ 62 Tr ,

V.ge,1.e//� V.e/D e
>
�
.Ep CFpK2/

>P.Ep CFpK2/�P
	
e .
 , k/ 2 Tr ^ ur2.
 , k/CK2e ¤ 0,

V.ge,2.e//� V.e/D e
>
�
.Ep CFp.1C "/K2/

>P.Ep CFp.1C "/K2/�P
	
e

.
 , k/ 2 Tr ^ ur2.
 , k/CK2e D 0.
(46)

Theorem 4.1 implies that A is globally asymptotically stable for (41) if the following matrix
inequalities hold:

P 	 0, (47)

†† Condition (43) implies that condition (44) holds for sufficiently small parameter ".
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P.Ap CBpK1/C .Ap CBpK1/
>P � 0, (48)

.Ep CFpK2/
>P.Ep CFpK2/�P � 0, (49)

.Ep CFp.1C "/K2/
>P.Ep CFp.1C "/K2/�P � 0. (50)

In fact, symmetry of the matrix P implies that (21) holds with V.e/ D e>Pe, ˛1.s/ D �min.P /s
2

and ˛2.s/D �max.P /s
2, where �min.P / and �max.P / are strictly positive because of (47). Moreover,

(48) implies the existence of a positive definite matrix Q3 	 0 such that

hrV.e/,fe.e/i6 �e>Q3e 6 ��min.Q3/jej
2

holds. Hence, (22) holds with �3.s/D �min.Q3/s
2. Additionally, (49) and (50) imply the existence

of a positive definite matrix Q1,> 0 such that

V.ge,i .e//� V.e/6 �e>Q1e 6 ��min.Q1/jej
2, for i D 1, 2,

from which (23) follows with �1.s/ D �min.Q1/s
2. We can select �1 D �2 because requirement 2

of Theorem 4.1 holds vacuously: static controller (39) does not contain jumps of internal states.
Using P 	 0 and applying a Schur complement to (49) give


P E>p CK
>
2 F
>
p

Ep CFpK2 P�1

�
	 0. (51)

By premultiplying and postmultiplying this inequality by

�
P�1 0

0 I

�
, we obtain the equivalent

expression 

P�1 P�1E>p CP

�1K>2 F
>
p

EpP
�1CFpK2P

�1 P�1

�
	 0. (52)

By using the change of variablesX D P�1 and Y2 DK2P�1, the aforementioned inequality can be
rewritten as (43) (where (43) implies that X and P are indeed positive definite). Observe that (49)
directly implies (50) (as well as its equivalent form in (44)) for sufficiently small " > 0 because the
eigenvalues of the parameterized matrix .Ep C Fp.1C Q"/K2/>P.Ep C .1C Q"/FpK2/ � P with
Q"> 0 small are continuous in Q" (see, e.g., [33, Theorem 5.1, p. 107]).

Premultiplying and postmultiplying (48) by P�1 give equivalently

P�1A>p CP
�1K>1 B

>
p CApP

�1CBpK1P
�1 � 0. (53)

Applying the change of variables X D P�1 and Y1 D K1P�1 gives LMI (42). This completes the
proof. �

The conditions in Theorem 5.2 require the existence of a (quadratic) Lyapunov function that
decays both along flows and jumps of the closed-loop system. Because this requirement may be
difficult to meet in some cases, we now formulate a result that alleviates this requirement to require-
ments where only decay of the Lyapunov function along either flow or jumps is required together
with additional requirements on the set Tr of reference jump times. These requirements are formu-
lated by adapting the formulation of the jump time requirements of [34] to our case, where multiple
jumps can occur at the same time instant. This leads to the following definitions of minimum average
interjump time and maximal average interjump time. Related contributions in the context of general
stability (not necessarily for tracking) allowing for increase of Lyapunov functions include the work
in [35] for dynamical systems with solutions exhibiting jumps and in [36] for the stabilization of
rigid bodies by means of hybrid control.
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Definition 5.3 � The sequence of jump times ¹.t rj , j r/º in Tr is said to have minimal average
interjump time 
 > 0, if there exists an N0 > 0 such that for all .t , j / 2 dom r and all
.T ,J / 2 dom r where T C J > t C j ,

J � j 6N0C
T � t



. (54)

All jump time sequences ¹.t rj , j r/º such that (54) is satisfied are denoted by SavgŒ
 ,N0�.
� The sequence of jump times ¹.t rj , j r/º in Tr is said to have maximal average interjump time

 > 0, if there exists an N0 > 0 such that for all .t , j / 2 dom r and all .T ,J / 2 dom r where
T C J > t C j ,

J � j > T � t


�N0. (55)

All jump time sequences ¹.t rj , j r/º such that (55) is satisfied are denoted by Sr-avgŒ
 �.

As observed in [34], SavgŒ
 , 1� corresponds to a minimal interjump time requirement with dwell-
time 
 . For N0 > 1, ¹.t rj , j r/º 2 SavgŒ
 ,N0� implies that the sequence of jump times satisfies an
average interjump time requirement. Given N0 > 0, condition (55) is a reverse average interjump
time condition that demands jumps to occur in average at least every 
 time units.

Now, we can state the following result.

Theorem 5.4
Consider a hybrid plant given by (37) and a complete hybrid reference trajectory r . Suppose
Assumption 5.1 holds and that either of the following two conditions holds:

(A.1) The sequence of reference jump times ¹.t rj , j r/º is in SavgŒ
 ,N0� with 
 > �d
c

, c > 0,
d < 0 and N0 > 0.

(A.2) The sequence of reference jump times ¹.t rj , j r/º is in Sr-avgŒ
 � with 
 6 �d
c

, c < 0, d > 0,
N0 > 0 and dom r is unbounded in t -direction.

If, additionally, the following LMIs are feasible for real matrices Y1,Y2 and a real symmetric
matrix X :

ApX CBpY1CXA
>
p C Y

>
1 B

>
p C cX � 0, (56)



exp.�d/X XE>p C Y

>
2 F

>
p

EpX CFpY2 X

�
	 0, (57)

then tracking controller (39) with gains K1 D Y1X�1, K2 D Y2X�1, and � > 0 such that

exp.�d/X XE>p C Y

>
2 F

>
p

EpX CFpY2 X

�
C �



0 Y >2 F

>
p

FpY2 0

�
	 0, (58)

guarantees that the set A is a uniformly globally asymptotically stable set for closed-loop
system (41).

Proof
Similar to the proof of Theorem 5.2, we prove uniform global asymptotic stability of A for dynamics
(41) by proving that the set e D 0 is uniformly globally asymptotically stable for (45). Along the
lines of Theorem 5.2, it can be shown that the satisfaction of LMIs (56) and (58) guarantees that the
evolution of the candidate Lyapunov function V.e/D e>Pe, with P D P> 	 0, along the solutions
of (45) satisfies

hrV.e/, fe.e/i6 �.cC ı/V .t , j / 62 Tr , (59)

V.ge,i .e//6 exp.�d/V .t , j / 2 Tr , for i D 1, 2 (60)
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for some ı > 0.
Let us now show that (59) and (60) imply that A is a uniformly globally asymptotically stable

set of system (41) if either of the two conditions on the sequence of reference jump times ¹.t rj , j r/º
posed in the theorem, that is, condition A.1 or A.2, holds. Here, we apply analogous reasoning as
presented in [34], further taking into account that jumps can directly follow each other.

Let us first consider the case in which condition A.1 holds, and let T > 0 be given. Because
this condition requires a minimum average interjump time, it follows that the time domain dom r is
unbounded in t -direction, that is, for all T > 0, there exists J 2 N such that .T ,J / 2 dom r . By
construction of controller (39) and Assumption 5.1, the time domain of (41) is equal to dom r , such
that e.T ,J / can be evaluated for all T > 0 and J such that .T ,J / 2 dom r . From (59) and (60),
with c > 0 and d < 0, it follows that

V.e.T ,J //6 exp.�cT � ıT / exp.�dJ /V .e.0, 0//, for .T ,J / 2 dom r . (61)

The fact that the sequence of reference jump times ¹.t rj , j r/º is in SavgŒ
 ,N0� implies that J 6
N0C

T
�

and, hence,

V.e.T , J //6 exp.�dN0/ exp




�c �

d



� ı

�
T

�
V.e.0, 0//, for .T ,J / 2 dom r , (62)

where we also used that d < 0. Next, we use that 
 > �d
c

, with c > 0, implies that �c � d
�
� ı 6

�ı < 0, which together with (62) and the fact V.e/ D e>Pe with P D P> 	 0, indeed implies
that the set e D 0 is uniformly globally asymptotically stable under dynamics (45). Hence, A is
uniformly globally asymptotically stable for the closed-loop system (41).

Next, let us consider the case in which condition A.2 holds, and let T > 0 be given. Because
dom r is unbounded in t -direction, for all T > 0, we can choose a J such that .T ,J / 2 dom r , and
one can evaluate e.T ,J / for T !1 and appropriate J .

From (60) and (59) with c < 0 and d > 0, it follows that

V.e.T ,J //6 exp .�cT � ıT / exp .�dJ /V .e.0, 0// , for .T ,J / 2 dom r . (63)

The fact that the sequence of reference jump times ¹.t rj , j r/º is in Sr-avgŒ
 ,N0� implies that

J > T
�
�N0 and, hence,

V.e.T , J //6 exp




�c �

d



� ı

�
T

�
V.e.0, 0//, for .T ,J / 2 dom r , (64)

where we also used that d > 0. Next, we use that 
 6 �d
c

, with c < 0 and d > 0, implies that
�c � d

�
� ı 6 �ı < 0, which together with (64) and the fact V.e/ D e>Pe, with P D P> 	 0,

indeed implies that the set e D 0 is uniformly globally asymptotically stable for system (45). Hence,
A is uniformly globally asymptotically stable for closed-loop system (41). �

It is worth pointing out that, similarly to Theorem 5.2, condition (57) in Theorem 5.4 implies that
condition (58) holds for sufficiently small parameter ". In this way, once condition (57) is satisfied,
the design of the parameter " reduces to picking a sufficiently small value such that (58) holds.

6. EXAMPLES

In this section, first, we illustrate our results in Section 4.2 and show that in the presented examples,
a given controller solves the tracking problem. Subsequently, in three examples, the synthesis results
presented in Section 5 are used to design controllers solving the tracking problem.
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Example 6.1 (Tracking a periodic square wave signal)
Consider the scalar hybrid plant Hp

P� D�a� C u1 � u1 > 0, j�j> 0, (65)

�C D bC u2 � u1 6 0, j�j> 0, (66)

where‡‡ a, b > 0, and consider the problem of tracking the square wave signal

r.t , j /D .�1/jC1

defined for each .t , j / such that t 2 Œt rj , t rjC1�, t
r
j D j , j 2 N. It follows that Tr WD

¹.1, 0/, .2, 1/, .3, 2/, : : :º. Considering static state-feedback controllers and following the approach
proposed in Section 4, the goal is to solve Tracking Control Problem (?) with A given by

AD ¹.� , 
 , k/ W � D r.
 , k/º D ¹.� , 
 , k/ W � D .�1/kC1, 
 2
�
t rk , t rkC1

�
, .t rk , k/ 2 .0, 0/[ Trº.

For this purpose, we consider the controller�
u1
u2

�
D �c.� , r.
 , k//D

�
a r.
 , k/

�b � r.
 , k/C �.� � r.
 , k//

�
,

with � 2 Œ0, 1/. It follows that, for every initial condition �.0, 0/ < 0, every jump of r triggers a
jump of the plant. In fact, if �.0, 0/ < 0, because u1 D a r.
 , k/, we have that a�.0, 0/r.0, 0/ > 0
and solutions initially flow. Without loss of generality, we only consider trajectories from initial
conditions �.0, 0/ < 0 because trajectories of �.0, 0/ > 0 would directly experience a jump at
.t , j /D .0, 0/, because r.0, 0/D�1.

Flows of � will not trigger a jump because the sign of � remains constant. Jumps of the closed-loop
system occur only when r changes sign, which occurs when .t , j / 2 Tr .

Then, the resulting closed-loop system is given by

P� D �a.� C r.
 , k//
P
 D 1
Pk D 0

9=
; a � r.
 , k/> 0, j�j> 0


 2
�
t r
k

, t r
kC1

� , (67)

�C D �r.
 , k/C �.� � r.
 , k//

C D 


kC D kC 1

9=
; a � r.
 , k/6 0, j�j> 0

.
 , k/ 2 Tr , (68)

which can be written as H with data .C ,f ,D,G/ and captures all of the solutions to the original
system with initial conditions �.0, 0/ < 0, 
.0, 0/ D k.0, 0/ D 0. To establish asymptotic stability
of A for (67) and (68), consider the Lyapunov function

V.� , 
 , k/D
1

2
.� � r.
 , k//2,

for which condition (21) holds trivially because for each .� , 
 , k/ 2 C [D [G.D/, j.� , 
 , k/jA D
j� � r.
 , k/j.§§ For each .� , 
 , k/ satisfying a � r.
 , k/> 0, j�j> 0, 
 2 Œt r

k
, t r
kC1

�, we have

hrV.� , 
 , k/,f .� , 
 , k/i D �a.� � r.
 , k//2 � .� � r.
 , k//
dr

d

.
 , k/D�2aV.� , 
 , k/

‡‡The condition j�j> 0 in the flow and jump sets of Hp removes solutions that only jump at the origin. In fact, otherwise,
for the initial condition �.0,0/D 0, there exists an input u2 such that there is a solution �p satisfying �p.0, j /D 0
for all j 2N.

§§ This follows by noting that, for the particular reference trajectory, the minimizer x0 D .� 0, � 0,k0/ of minx02A jx�x0j
for each x 2C[D[G.D/must satisfy k0 D k. Then, the minimum distance between .� , � ,k/ and A is the distance
between a point and a line, which in this case is given by j� � r.� ,k/j.
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because @r
@�
D 0 for all 
 , k. For each .� , 
 , k/ satisfying a � r.
 , k/ 6 0, j�j > 0, .
 , k/ 2 Tr ,

we have

V.G.� , 
 , k//� V.� , 
 , k/D�.1� �2/V .� , 
 , k/.

Because a > 0 and � 2 Œ0, 1/, Theorem 4.1 implies uniform global asymptotic stability of A for
closed-loop systems (67) and (68) (actually, the aforementioned Lyapunov function V establishes
exponential stability). Figure 3(a) depicts a closed-loop system trajectory converging to the refer-
ence asymptotically, both along flows and jumps. Figure 3(b) depicts the Lyapunov function along
the trajectory, which asymptotically converges to zero.

Example 6.2 (Tracking for a motion control system)
Consider an inertia M > 0 that is actuated using a force u, as shown in Figure 4. The position
of the inertia is denoted by �1 and its velocity by �2. The controller force u contains a Lebesgue
integrable part u1 and an impulsive part u2 with impulses at instants ti 2N. The plant is impulsive
and modeled as

P� D

�
�2
u1
M

�
when t 6D ti , �

C D � C

�
0
u2
M

�
when t D ti , (69)

where the state � is assumed to be completely measured. Note that the model for the plant in (69) is
time dependent and, hence, different from the model in (9). The input u will be designed, such that

the state � tracks a reference r D

�
r1
r2

�
, shown in Figure 5 and given by

0 2 4 6
−1.5

−1

−0.5

0

0.5

1

1.5

(a)

0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(b)

Figure 3. Reference and closed-loop system trajectories for Example 6.1. The Lyapunov function along the
trajectories is also shown. Parameters: aD b D 1 and �D 0.9.

Figure 4. Schematic representation of a motion control system.
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1

1.5
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Figure 5. Reference and closed-loop trajectories for Example 6.2. Parameters: M D 1, �1 D 1, and
�2 D 0.5.

r D

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂:

�
t � j
1

�
, .t , j / 2

[
k2N

Œ4k, 4kC 1�� ¹4kº�
1

0

�
, .t , j / 2

[
k2N

Œ4kC 1, 4kC 2�� ¹4kC 1º�
1� t C j

0

�
, .t , j / 2

[
k2N

Œ4kC 2, 4kC 3�� ¹4kC 2º�
0

0

�
, .t , j / 2

[
k2N

Œ4kC 3, 4kC 4�� ¹4kC 3º

. (70)

The component r2 jumps at times .t , j / 2 Tr D
S
j2N¹.j C 1, j /º. Such a reference trajectory can

be desirable for the position of the end effector of a robot system, as it represents fast point-to-point
motion. We propose the following control law to stabilize the set A D ¹.� , 
 , k/ W � � r.
 , k/ D 0º
for the given reference trajectory:

u1 D��1.�1 � r1/� �2.�2 � r2/,

u2 D

8̂̂̂
<̂
ˆ̂̂̂:

0, .t , j / 62 Tr
M , .t , j / 2

[
k2N

.4kC 3, 4kC 2/[ .4kC 4, 4kC 3/

�M , .t , j / 2
[
k2N

.4kC 1, 4k/[ .4kC 2, 4kC 1/
, (71)

where �1,�2 > 0.
By using the change of coordinates e D � � r.
 , k/, the closed-loop system can be written as a

hybrid system with state .e, 
 , k/ and dynamics given by

Pe D

�
0 1

�	1
M
�	2
M

�
e

P
 D 1
Pk D 0

9>>=
>>; 
 2

�
t r
k

, t r
kC1

�
,

eC D e


C D 


kC D kC 1

9=
; .
 , k/ 2 Tr . (72)

The feedforward signal u2 assures that x and r experience equal jumps at the same time instances,
such that e is not affected by the jumps. Furthermore, if the initial conditions are �.0, 0/ D r.0, 0/,

.0, 0/ D k.0, 0/ D 0, then the solution satisfies r.t , j / D �.t , j / for all .t , j / 2 dom r . Because

�1,�2 > 0, the matrix

�
0 1

�	1
M
�	2
M

�
is Hurwitz. Then, we can select V.e, 
 , k/ D e>Pe with

P D P> 	 0, such that

hreV.e, 
 , k/,f .e/i6 �V.e, 
 , k/,
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where f .e/D

�
0 1

�	1
M
�	2
M

�
e follows from (72). Because e is constant over jumps, we obtain

V.G.e, 
 , k//� V.e, 
 , k/D 0 8.e, 
 , k/, (73)

where G.e, 
 , k/ D .e, 
 , k C 1/ follows from (72). By the properties of V , there exist functions
˛1,˛2 and � such that both (21) and (22) are satisfied. Conditions (23) and (24) hold with �1 � 0
and �2 � 0. Moreover, the hybrid time domain of each solution to the closed-loop system is such
that tj D j . Then, for each element .t , j / in its hybrid time domain, we have t > j from where it
follows that if t C j > N , then t > N

2
. Hence, global uniform asymptotic stability of the set A for

closed-loop system (72) follows using Corollary 4.4 (note that (72) takes the form of H?
cl

with sets
Cp and Cc covering the entire state space and sets Dp and Dc empty). In Figure 5, a closed-loop
trajectory is shown for parameters M D 1, �1 D 1 and �2 D 0.5. For these system parameters, we

used P D

�
2.25 0.5
0.5 2

�
. In this example, the controller parameters are chosen to induce critically

underdamped error dynamics, such that the closed-loop response shows a damped oscillation as it
converges to the reference trajectory.

The next three examples illustrate the controller synthesis results presented in Section 5.

Example 6.3 (LMI-based controller synthesis without jump time restriction)

Consider system (37) with Ap D

�
0 1

0.1 0.1

�
, Bp D

�
0

1

�
, Ep D

�
0.9 0

0 0.9

�
, and

Fp D

�
0

1

�
. We aim to design a hybrid controller as in (39), where the controllers are synthe-

sized using Theorem 5.2. Numerically, we find the solutions X D

�
7.99 �1.84
�1.84 9.97

�
, Y1 D�

�9.97 �3.33
�
, and Y2 D

�
0.5 0.25

�
to the LMIs (42) and (43), which correspond to the

controller gains K1 D
�
�1.38 �0.59

�
and K2 D

�
0.07 0.04

�
. To illustrate the behavior of

the closed-loop system, Figure 6 contains closed-loop trajectories of this system using a reference
that is a solution to (38) with feedforward signal ur1 � 0 and ur2 given in (71) for M D 1. Accu-
rate tracking is obtained because the plant trajectory converges asymptotically to the reference. The
Lyapunov function V is shown to decrease both during jumps, and during flow.

Example 6.4 (LMI-based controller synthesis with a minimum average interjump time condition)
In this example, the results in Theorem 5.4 are used to design a tracking controller for system (69)
with M D 1 and design a controller to follow reference (70), that is, a solution to the hybrid system
for feedforward signal ur1 � 0 and ur2 given in (71). Because the feedforward signal ur2 is nonzero
once every continuous-time unit, we observe that ¹.t rj , j r/º 2 SavgŒ1, 1�. ForM D 1, system (69) can

be written as (37) with Ap D

�
0 1

0 0

�
, Bp D

�
0

1

�
, Ep D

�
1 0

0 1

�
, and Fp D

�
0

1

�
. To use

the LMI-based controller synthesis, we select c D 1, d D�1, and apply an LMI solver to find solu-

tions to LMIs (56) and (57). The solutions X D

�
1.05 �0.85
�0.85 2.42

�
, Y1 D

�
�1.57 �2.29

�
,

and Y2 D
�
�0.23 0.61

�
are obtained, yielding gains K1 D

�
�3.16 �2.05

�
and K2 D�

�0.02 0.25
�
, for controller (39).

In Figure 7, simulations are shown for the closed-loop system. In panels (a) and (b), we observe
that the plant trajectory � converges asymptotically to the reference r . As shown in panel (c), the
Lyapunov function does increase over jumps. In fact, repetitive jumps would be unstable: the matrix

Ep C FpK2 D

�
1 0

�0.02 1.25

�
has eigenvalues 1 and 1.25. However, the unstable jumping

behavior is compensated by stable behavior during flow, as depicted in panel (c).
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Figure 6. (a) and (b) Reference and closed-loop trajectories of system (37) and controller (39) with param-
eters given in Example 6.3 from initial condition r.0, 0/ D .�0.5 1/>, �.0, 0/ D .0 2/>. (c) Lyapunov

function evaluated along this trajectory.
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Figure 7. (a) and (b) Reference and closed-loop trajectories of (69) using the synthesized controller with
parameters K1 D Œ�3.16 � 2.05� and K2 D Œ�0.02 0.25� from initial condition r.0, 0/ D .�0.5 1/>,

�.0, 0/D .0 2/>. (c) Lyapunov function evaluated along this trajectory.
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Figure 8. (a) and (b) Reference and closed-loop trajectories of system (37) with controller (39) and parame-
ters given in Section 6.5 from initial condition r.0, 0/D .�0.5 1/>, �.0, 0/D .0 2/>. (c) Lyapunov function

evaluated along this trajectory.

Example 6.5 (LMI-based controller synthesis with a maximum average interjump time)

Consider system (37) with Ap D

�
0 1

0.1 0.1

�
, Bp D

�
0

0

�
, Ep D

�
0.5 0

0 0.5

�
, and Fp D�

0

1

�
. Note that this system has unstable flow dynamics and allows no controller input during flow.

For a reference trajectory with maximum average interjump time 1, that is, ¹.t rj , j r/º 2 Sr-avgŒ1, 1�,
the hybrid tracking problem can be solved. Choosing c D �1 and d D 1, LMIs (56) and (57) are

solved numerically to find the solutionsX D

�
61.85 18.20
18.20 25.18

�
and Y2 D

�
2.67 1.00

�
and arbi-

trary Y1, which yields the controller gain K2 D
�
0.04 0.01

�
. The behavior for the closed-loop

system is illustrated in Figure 8 for a reference that is a solution to (37) and (39) when the feed-
forward signal ur2 is given in (71). As shown in panel (c) of Figure 8, the Lyapunov function does
increase over flow. However, this increase is compensated by decrease of the Lyapunov function at
the jump instances.

7. CONCLUSIONS

For a class of hybrid systems given in terms of hybrid inclusions, we have stated a tracking control
problem for the tracking of reference signals with jumps. The proposed technique consists of embed-
ding the reference trajectory into an extended hybrid system model and defining a set, the tracking
set, imposing conditions on the state representing tracking of the reference trajectory. Next,
Lyapunov stability tools are applied to the extended system to guarantee global asymptotic stability
of the tracking set. The class of controllers should ensure that the jump times of the plant coincide
with those of the given reference trajectories as, otherwise, it is difficult to obtain asymptotic con-
vergence of the tracking error to zero (relaxation of this condition is the subject of current research
and may require alternative formulations of the tracking problem). LMI-based synthesis techniques
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for a class of hybrid systems with linear flow and jump maps have been proposed, and the results in
the paper are illustrated by examples.
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