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SUMMARY

External forces affect the dynamics of load-carrying robot devices. The knowledge of such disturbances
is generally needed for control purposes. However, direct disturbance measurement using force sensors is
not always possible. This paper introduces a force estimator for force-sensor-less robotic manipulators. The
algorithm is based on the knowledge of the dynamics of the robotic device, whereas mass of the load is
typically unknown. Using this algorithm, low-frequency external forces can be estimated robustly even for
quasi-statically time-varying and uncertain loads. Experiments validate the proposed strategy in practice.
Moreover, the applicability of the estimation algorithm is further illustrated by using it in a human–robot
comanipulation setup in which the robot is providing additional coordinated forcing to alleviate human effort
needed to manipulate the robot. Copyright © 2013 John Wiley & Sons, Ltd.

Received 4 October 2011; Revised 19 December 2012; Accepted 22 December 2012

KEY WORDS: disturbance estimation; robotics

1. INTRODUCTION

In this paper, we consider the problem of robust estimation of disturbance forces acting on load-
carrying robotic systems. This problem is encountered in the scope of both teleoperation and
human–robotic comanipulation (think of a human and a robot jointly performing a load-carrying
and positioning task). In both contexts, the robot interacts with the environment, and its dynamics
are dependent on external forces induced by this interaction. These forces can be contact forces
(interaction forces between environmental objects and the robot), or they can reflect an interaction
between the robot and a human operator (as encountered in human–robotic comanipulation). It is
well known that haptic robotic devices and teleoperation systems exploit information regarding the
external forces (see [1] and [2], e.g., for haptic feedback).

In human–robotic comanipulation, knowledge on the unknown force applied by the human is
typically needed to achieve coordinated comanipulation. One option for obtaining such disturbance
information is to equip the robot with force sensors; for examples of such robotic devices, especially
haptic devices, which use force sensors, the reader is referred to [1, 3]. However, in many cases, the
most important external forces for multilink robots appear at the end effector. Note that force sens-
ing at the end effector of the robot is often not feasible because the external forces will typically
interact with the load directly (and not with the robot end effector). Besides, in some cases, the
position at which the external forces are applied is a priori unknown and may be on a robot link as
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opposed to on the end effector. Moreover, the usage of force sensors can be expensive and increase
the production costs of the robot.
For these reasons, a disturbance estimation scheme for force-sensor-less robots is needed. Distur-
bance observers (DOB) have been widely used in different motion control applications [4–6] for
determining the disturbance forces, such as friction forces. However, the performance enhancement
of these DOB strategies may lead to smaller stability margins for the motion control [7]; therefore,
a robust design with respect to the environmental disturbances and model uncertainties is needed.
Previous results on robustly stable DOB [8–11] are based on linear robust control techniques. Some
nonlinear DOB have been developed for the estimation of harmonic disturbance signals in [12, 13].

Various strategies have also been considered for force-sensor-less control schemes estimating the
external force. Eom et al. [14] proposed an adaptive disturbance observer scheme, and Ohishi et al.
[15, 16] proposed an H1 estimation algorithm. In [17], a control strategy called ‘force observer’ is
introduced. This design uses an observer-type algorithm for the estimation of exogenous force. The
drawback of these approaches is that they assume perfect knowledge of the model of the system.

In parallel with force estimation strategies, based on DOB, another approach using sensor fusion
has been developed to diminish the noise levels of the force sensors. In [18], force and acceleration
sensors are combined, whereas in [19], data from force sensors and position encoders are fused.
Sensor fusion provides better qualitative results than those obtained by employing more expensive
force sensors.

Two novel contributions are presented in the paper. Firstly, we present an estimation strategy for
low-frequency external forces acting on a robotic manipulator with a load with unknown, possibly
time-varying mass. Applications with time-varying mass can be encountered in the case of dis-
persing liquids from a container (e.g., painting or concrete pouring on building sites). This method
extends a result presented in [20], which considered only the case with time-invariant mass. The
proposed algorithm is robust for large uncertainties in the mass of the load. Secondly, this estima-
tion strategy is used to solve a human–robot comanipulation problem. In recent years, the problem
of cooperative motion control by a human and a robot has been tackled in [21] using ‘interactive
virtual impedance’, whereas in [22], a set of tests for model identification is applied to tune the
disturbance observer. In [23], a discussion on the state of the art in force-sensor-less power assist
control is presented with an emphasis on the estimation of the human force using linear models for
the robot with the load. The strategies discussed earlier assume more or less perfect knowledge of
the dynamics of the robot with the load, that is, the mass of the load is considered known, or with
very small uncertainty, and constant.

In the control scheme for the comanipulation problem proposed in this paper, the human is in
charge of the position control, and the robot supplies an additional force, which is based on an esti-
mation of the force that the human has applied to the load. As a consequence, the robot actions
ensure that the task can be performed faster and with less human effort.

A preliminary version of the estimation approach proposed here has been published in [24], where
it was limited to three-dimensional linear robots and constant load inertias and applied in the con-
text of force-sensor-less bilateral teleoperation. Here, the estimation approach is extended to generic
robotic applications and time-varying load inertias, and we propose to employ it in a strategy for
human–robotic comanipulation.

The paper is structured as follows. Section 2 recalls some theoretical results that will be used in
the sequel. In Section 3, we present the force estimation algorithm. In Section 4, we introduce a
human–robot comanipulation control strategy that uses the estimation result. In Section 5, the effec-
tiveness of the estimation algorithm is validated on an experimental one-degree-of-freedom (1-DOF)
robot, and that of the comanipulation strategy is illustrated using an example of a 2-DOF robot. In
the final section of the paper, the conclusions and some perspectives on future work are discussed.

2. PRELIMINARIES

In this section, we recall some definitions and results concerning the property of input-to-state sta-
bility as introduced by Sontag in [25], see also [26]. The input-to-state stability property of nonlinear
systems is exploited in the proof of the main result of Section 3.
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Consider the general nonlinear system

Px.t/D f .x.t/,u.t//, x.0/D x0, (1)

with solutions '.t , x0,u/, where f W Rn � Rm ! Rn is continuously differentiable. The set of
all measurable locally bounded functions u W RC ! Rm, endowed with the supremum norm
sup¹ju.t/j, t > 0º <1, is denoted as Lm1. A function � W RC! RC is called a class K -function,
that is, � 2 K , if it is continuous, strictly increasing, and �.0/ D 0. A function � W RC ! RC is
called a class K1-function if � 2 K and �.s/!1 as s !1. A function ˇ W RC �RC ! RC

is a class K L -function if for each fixed t > 0, ˇ.�, t / 2 K , and for each fixed s > 0, ˇ.s, t / is
decreasing to zero as t !1.

Definition 1 ([25])
System (1) is input-to-state stable (ISS) if there exist a function ˇ 2K L and a function � 2K1
such that, for each input u 2 Lm1, all initial values x0 and for any t > 0, the following inequality
holds:

j'.t , x0,u/j6 ˇ.jx0j, t /C �. sup
06�6t

ju.�/j/. (2)

Definition 2 ([25])
A smooth function V W Rn ! R is called an ISS Lyapunov function for system (1) if there exist
functions ˛1,˛2 2K1, ˛3,� 2K such that

˛1.jxj/6 V.x/6 ˛2.jxj/ (3)

and

jxj> �.juj/) @V

@x
f .x,u/6 �˛3.jxj/ (4)

hold for all x 2Rn and u 2Rm.

The quantitative aspects regarding the existence of an ISS Lyapunov function have been
developed in [25] and [27]. These results are synthesized by the following theorem.

Theorem 1
If an ISS Lyapunov function exists for system (1), then system (1) is ISS with ˇ.�, t / D ˛�11 ı
�.˛2.�/, t / and � D ˛�11 ı ˛2 ı �, where � is the solution of the differential equation:

d

dt
�.r , t /D�˛3 ı ˛

�1
2 .�.r , t //, (5)

with the initial condition �.r , 0/D r .

Similar results have been developed in [28] concerning the input-to-state stability property of
discrete-time nonlinear systems.

3. ROBUST DISTURBANCE ESTIMATOR

3.1. Problem statement

Consider the nonlinear system dynamics of a robot described by

M.q, t / RqCD.q, Pq, t /D � C J T .q/FE, (6)

where q 2 Rn is the vector of generalized joint displacements, Pq 2 Rn is the generalized joint
velocity vector, Rq 2 Rn is the generalized joint acceleration vector, and � 2 Rn is the robot torque
vector. Moreover, FE 2 Rd is the external force vector (d is the space dimension, d D 2 for
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two-dimensional space or d D 3 for three-dimensional space) applied on a point mass rigidly
attached to the end effector of the robot, M 2 Rn�n is the symmetric, positive definite inertia
matrix, D 2 Rn is the vector containing the sum of centripetal, Coriolis, friction, and gravitational
forces/torques, and J 2 Rn�d is the Jacobian matrix relating the end-effector velocity Px 2 Rd to
the generalized joint velocity Pq by Px D J.q/ Pq. We consider the case in which the robot carries an
additional load of unknown and possibly quasi-statically time-varying massm.t/ at its end effector.
In (6), the unknown load mass m.t/ is incorporated in the inertia matrix M.q, t /.

For the sake of simplicity, we adopt the following assumption.

Assumption 1
The Jacobian matrix J is nonsingular at all times of operation.

Remark 1
The aforementioned assumption implies that we do not consider redundant robots, that is, d D n,
and no kinematic singularities are encountered.

The objective of this control strategy is to determine an estimate OFE 2Rn of the external force.
In the following section, we describe the force estimation algorithm.

3.2. Disturbance estimator design

We design an estimation controller strategy as schematically depicted in Figure 1. Herein,†Rm rep-
resents the robot dynamics in (6), the controller Clin compensates for the robot dynamics without
the load, and the controller C estimates the external force OFE, with � D �lin C Q� , where �lin and Q�
are the outputs of the controllers Clin and C , respectively. Assuming that the dynamics in (6) can be
linearly parameterized with respect to the quasi-statically time-varying mass m.t/ of the load (the
inertial, gravitational, centripetal, Coriolis, and friction forces are typically linear with respect to the
mass m.t/), then (6) can be written as

MR.q/ RqCDR.q, Pq/Cm.t/PM. Rq, Pq, q/C Pm.t/P PM. Pq, q/D � C J T .q/FE, (7)

FE J-TPM

K0 K1 Kp-1 Kp

-

+

JT

F

ΣRm

q,q,q

FE

+ Clin

C

τlin

τ~

JT

+
+

τ
Σ
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-
- -

. ..
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Figure 1. External force estimation controller.
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where MR.q/ and DR.q, Pq/ contain the information concerning the robot dynamics without the
end-effector load, m.t/ (and Pm.t/) is the function describing the evolution of the unknown mass
of the load (and its time derivative), and PM. Rq, Pq, q/, P PM. Pq, q/ represent the remaining terms that
depend on the mass of the load. Now, we adopt the following assumption on the time dependency
of the mass of the load.

Assumption 2
The load mass m.t/ is assumed to be quasi-statically time-varying, that is, Pm.t/ � 0, and the term
related to Pm.t/ can be neglected in the dynamics of the robot.

Exploiting Assumption 2 in (7) yields

MR.q/ RqCDR.q, Pq/Cm.t/PM. Rq, Pq, q/D � C J T .q/FE. (8)

The controller Clin is designed on the basis of the idea of partial feedback linearization:

�lin DMR.q/ RqCDR.q, Pq/. (9)

Remark 2
In building this controller, it has been assumed that an accurate model of the robot without the load
is available. If this assumption is not met, then all the unmodeled dynamics will create an equivalent
force at the end effector, which will be composed with the external force, and the resulting force
will be estimated.

Introducing relation (9) and � D �linC Q� in (6) leads to

m.t/PM. Rq, Pq, q/D Q� C J T .q/FE, (10)

where PM and J are known and we have to design Q� , the output of controller C , such that, indepen-
dent of the magnitude of the unknown mass of the load, estimation of the external force FE can be
achieved. Here, we assume that m.t/ 2 ŒMmin,Mmax�, 8t 2RC, with Mmin > 0.
By defining OF WD J�T Q� , (10) can be written as

m.t/J�T .q/PM. Rq, Pq, q/D OF CFE. (11)

If we define �.p/ WD J�T .q/PM. Rq, Pq, q/, with p > 1 a constant integer and �.p/ denoting the pth
time derivative of �, then (11) is equivalent to the linear differential equation

m.t/�.p/ D OF CFE. (12)

If we consider the control strategy

OF D�

pX
iD0

Ki�
.i/, (13)

with Ki D diag.Ki ,1, : : : ,Ki ,j , : : : ,Ki ,n/ 2 Rn�n, i D 0, : : : ,p, then the output OFE D K0�

represents the estimated human force. We care to stress that OF represents (part of) the control
action applied, whereas OFE represents an estimate for the external force FE. The choice of param-
eters Ki should be made such that Ki > 0, for i D 0, 1, : : : ,p � 1, mIn C Kp > 0, and®
�jm�p C

Pp
iD0Ki ,j�

i D 0
¯T

CC D ; for all m 2 ŒMmin,Mmax�, where In 2 Rn�n is the n � n
identity matrix. The control strategy is depicted in Figure 1 using a chain of p integrators. Owing to
the diagonal structure of the matricesKi , i D 0, : : : ,p, relation (12) can be written as a juxtaposition
of equations:

m.t/�
.p/
j D�

pX
iD0

Ki ,j�
.i/
j CFE,j , (14)
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where �j and FE,j , j D 1, : : : ,n, are the j th components of the vector � and the external force
vector FE, respectively. This means that system (12) can be seen as a decoupled system where the
input FE,j only affects variable �j and its time derivatives. From a physical point of view, this
means that every actuator/encoder pair is used independently of the others after the separation of
the � variables. For example, if the external force acts in two-dimensional space, even if the robot
has more degrees of freedom available, only two DOFs are used for the force estimation. For each
of decoupled differential equations (14), we can write the state-space representation of the single
input–single output system as

Pxj .t/D

0
BBBBBBBB@

�
Kp�1,j

m.t/CKp,j
: : : : : : : : : �

K0,j
m.t/CKp,j

1 0 : : : 0 0

0
. . .

. . .
...

...
...

. . .
. . . 0

...
0 : : : 0 1 0

1
CCCCCCCCA
xj .t/C

0
BBBBBBBB@

1
m.t/CKp,j

0

...

...
0

1
CCCCCCCCA
uj .t/,

yj .t/DK0,jx
j
p.t/, j D 1, 2, : : : ,n,

(15)

where uj D FE,j is the j th component of the external force vector, xj D
�
�
.p�1/
j , : : : , �j

�
T is the

state vector, and yj D OFE,j is the j th component of the estimated force, the output of the system.
Note that the desired behavior for system (15) is yj .t/! uj .t/ as t !1.

Let us now define the estimation error ej WD uj�yj , j D 1, 2, : : : ,n. We define the new state vec-

tor "j WD
�
"
j
1 , : : : , "jp

�
WD

�
ej , Pej , : : : , e.p�1/j

�
containing the estimation error and its derivatives.

Rewriting system (15) in terms of this new state variable "j leads to

P"j D Aj .t/"j CBj .t/vj .t/, j D 1, : : : ,n, (16)

where

Aj .t/ WD

0
BBBBBBBB@

0 1 0 : : : 0

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 : : : : : : 0 1

�
K0,j

m.t/CKp,j
: : : : : : : : : �

Kp�1,j
m.t/CKp,j

1
CCCCCCCCA

,

Bj .t/ WD

0
BBBBBBBB@

0 : : : : : : 0

... : : : : : :
...

... : : : : : :
...

0 : : : : : : 0

K1,j
m.t/CKp,j

: : :
Kp�1,j

m.t/CKp,j
1

1
CCCCCCCCA

,

and vj .t/ WD
�
Puj , : : : ,u.p/j

�
T .

The following technical result formulates the conditions under which error dynamics (16) are ISS
with respect to vj .t/, which also implies the global uniform asymptotic stability (GUAS) of "j D 0
for constant uj .t/, that is, vj .t/D 0, for m.t/ 2 ŒMmin,Mmax�.
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Theorem 2
Consider systems (16). If there exist matrices Pj D P Tj > 0 and scalars 	j > 0, j D 1, : : : ,n, such
that the following LMIs are satisfied:

PjA
j
i C

�
A
j
i

�T
Pj 6 �	jPj , i 2 ¹1, 2º and j 2 ¹1, : : : ,nº, (17)

with

A
j
1 D

�
0 I

�K0,j˛
j : : : �Kp�1,j˛

j

�
, (18)

A
j
2 D

�
0 I

�K0,j˛j : : : �Kp�1,j˛j

�
, (19)

and ˛j D 1
MmaxCKp,j

, ˛j D 1
MminCKp,j

, then systems (16) are ISS with respect to the input vj .t/

for each j 2 ¹1, : : : ,nº. In particular, functions ˇj and �j (Theorem 1) are respectively given by

ˇj .r , t /D

s
�max.Pj /

�min.Pj /
re
�
�min.Pj /

�max.Pj /

�j
4 t (20)

and

�j .r/D
4

	j

�max.Pj /

�min.Pj /
r , (21)

where �min.Pj /Dmin.eig.Pj // and �max.Pj /Dmax.eig.Pj //.

Proof
Appendix I. �

Corollary 1
Consider systems (15) with a constant input uj .t/ D Uj . Under the conditions of Theorem 2, the

equilibrium point xj D
�
0, : : : , 0, Uj

K0,j

�T
is globally uniformly asymptotically stable (GUAS).

Using Corollary 1, we prove that y.t/ ! u.t/ when t ! 1 (i.e., the estimated force OFE.t/ con-
verges to the external force FE.t/), for a constant input signal u.t/ (i.e., a constant external force)
and quasi-statically time-varying parameter m.t/ 2 ŒMmin,Mmax�. In other words, the estimation
algorithm provides exact estimation of a constant unknown external force. Theorem 2 shows that
for a nonconstant external force, the estimation error remains bounded and that this bound can
be related to the time derivatives of the external force via a linear ISS gain relation (see (21)).
Moreover, the function ˇj .r , t / as in (20) reflects a bound on the transient convergence rate of the
estimation algorithm.

Remark 3
In this section, we have chosen to estimate the external force, but it is also possible, using the same
approach, to estimate the equivalent torque applied by the environmental forces �E D J T .q/FE. In
this case, (10) becomes

m.t/PM. Rq, Pq, q/D Q� C �E, (22)

which means that we can directly substitute �.p/ WD PM. Rq, Pq, q/ and obtain a relation similar to
(12) and proceed with the algorithm as for estimation of the external force. In this second case,
Assumption 1 is no longer needed because the Jacobian J.q/ does not need to be invertible to
determine the new variable �.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2014; 24:1772–1796
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Remark 4
In practice, for both pseudo-linearizing controller (9) and feedback controller (13), knowledge about
the acceleration of the joints is needed. Such an acceleration signal can be obtained by numeri-
cal differentiation (and additional filtering) of the joint velocity signal, by employing acceleration
observers (see e.g., [29, 30]), or by using an accelerometer.

Remark 5
This disturbance estimator is not suitable for estimating reaction forces induced by (hard) unilateral
constraints. Because these forces typically exhibit the same spectrum as the actuator input of the
robotic device, the algorithm proposed here is not fast enough to track these forces.

4. HUMAN–ROBOTIC COMANIPULATION STRATEGY

4.1. Setup description

In this section, we exploit the estimation algorithm proposed in the previous section in the scope of
robot-assisted load carrying by human operators. The main goal of the robot in achieving comanip-
ulation is to scale up the force that the human operator applies to the load. In that way, the human
will ‘feel’ a load with lower mass but will still be in charge of the position control of the load. When
designing a robot control scheme for this purpose, we face the following problems:

� The mass of the load is unknown and possibly (quasi-statically) time varying.
� The force that the human operator applies is unknown because there are no force sensors on

the load; the human operator is in direct contact with the load to be transported. The only
measurements available are the position coordinates of the robot links.

In Figure 2, we present the problem setup in more detail. The human operator has a desired trajec-
tory xd (in Cartesian coordinates of the load) in mind and establishes a position control strategy H
so that, using the (visual) feedback loop (x), he can achieve the positioning goal. Using this strategy,
the human operator will apply the force FH to the load with the mass m.t/. The problem is that in
many applications, the mass is too heavy for the human to transport or the speed achieved is too
low. The assisting robotic device with the load m.t/ is represented by the dynamic block †Rm. The
controller C estimates the human force, FH, by OFH, using the measurements of the motor encoders
from the joints of the robot. Hereto, we employ the disturbance estimation strategy of Section 3
(refer back to Figure 1 for further details about †Rm and C ). We note that we assume that the
human force on the load is directly transferred into an equal force (no torque) on the end effector.

This estimated force is amplified by a factor ˆ, and the resulting force is applied to the load,
thereby amplifying the human operator power. The block FK represents a forward kinematics block
from the joint coordinates q to Cartesian coordinates x. One can observe the positive feedback
loop in Figure 2. We note once more that the human operator is in charge of the path planning and
position control.

4.2. Controller design

The unknown variables in the problem discussed in the previous section are the mass of the load and
the human operator’s force. The only measurements available are the joint coordinates of the robotic
device. Using this partial information, we have to estimate the human force, and the robot should

H Rm
q

FH

FH

+ ++
-xd

C

x
FKΣ

Φ

Figure 2. Setup for human–robotic comanipulation.
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time

Robot 
Force

TT0
F

FH

estimation
phase

amplification
phase

estimation
phase

amplification
phase

2TT+T0

Ψ

Figure 3. Temporal division of the control strategy.

apply an additive force that scales the human force. As the available measurements do not allow a
direct control strategy because of unknown parameters and signals (a force control is dependent on
the mass of the load), we propose to tackle the problem in the following two temporal steps:

(1) Estimate the human operator force.
(2) Apply the scaled force.

The question that arises is how to obtain this temporal division in the algorithm (Figure 3). In this
respect, it is important to note the difference between the frequencies with which a human operator
and the robot can perform their tasks. Studies [31] and [32] have shown that a human can perform
a task with a frequency of up to 6 Hz, which is much slower than the typical sampling frequency
used in a robotic control scheme. This means that if the frequency with which the two steps of our
procedure are implemented is significantly higher than 6 Hz, then the robotic device can correctly
track the force of the human operator and apply the scaled force to achieve its goal.
The force generated by the robot is a signal similar to a pulse width modulation signal (Figure 3).
Such an input signal generates a series of accelerations and decelerations with a frequency of 1

T
,

with T the length of a cycle. This frequency should be set above the maximal frequency that a
human can perceive to avoid that the operator feels a possibly disturbing vibration induced by the
algorithm. In [33], it has been shown that a human subject can feel a vibrating object with frequen-
cies up to 500 Hz. Unfortunately, no research has been carried out for the perception of signals
other than periodical ones in position (i.e., it is not known what is the human perception for periodic
signals in acceleration). Moreover, human perception greatly depends on the amplitude of the vibra-
tion because for higher amplitudes, the perception limit is 500 Hz, whereas for lower amplitudes,
the sensitivity limit decreases to 40 Hz. This information should also be taken into consideration
when choosing the cycle period T .
The second issue of this design is to determine the real amplification coefficient, ‰ (Figure 3).
Because the desired amplification coefficient is ˆ, which is applied during the entire period of the
cycle T , we must determine a new scaling coefficient ‰ because the amplification period lasts only
for a time interval with length T � T0. Assuming that the effect of the robot action should be the
same in both cases, that is, the average robot force is the same during one cycle period, one can
determine the scaling factor ‰ (Section 4.4).
The algorithm for the estimation of external force (in this case, the external force is the human
force) was discussed in Section 3, whereas the algorithm effectuating the amplification of the human
force is presented in Section 4.4. The stability of the overall comanipulation strategy is discussed in
Section 4.3.

4.3. Stability of the estimation algorithm over the two phases

Because of the model switching introduced in the comanipulation algorithm, we have to study the
stability of the estimation error dynamics over the entire cycle of the comanipulation algorithm as
in Figure 3. For this reason, we are using a discrete-time modeling approach, and we first study the
behavior of the estimation error dynamics by sampling the continuous-time estimation error signal
"j .t/ at the beginning of each cycle, and next, we also study the intersample behavior.
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4.3.1. Stability of the discrete-time system. To simplify the notation, we consider each input–output
decoupled system (between the external force, which in the comanipulation setup is the human force,
and the estimated force) separately.
Recall the definitions of the estimation error ej WD uj � yj as the difference between the

human force and the estimation of the human force and the state vector "j WD
�
"
j
1 , : : : , "jp

�
WD�

ej , Pej , : : : , e.p�1/j

�
containing the estimation error and its time derivatives. The error dynamics in

the first phase of the cycle (kT 6 t < kT C T0, 8k 2N) are given by relation (16).
During the second phase of the algorithm (kT C T0 6 t < .kC 1/T , 8k 2N), the estimation error
dynamics are described by the following system of equations:

P"j .t/D Ipv
j .t/, (23)

where Ip is the p � p identity matrix. Herein, we used the aforementioned definitions of "j and vj

and the fact that the time derivatives Py, y.2/, : : : ,y.p�1/ (where y is the estimate of human force)
are all zero, because we keep the estimation of the human force constant in the amplification phase.
We will now exploit an exact discretization of system (16), (23).
The solution of system (16) at time t D kT C T0, with k 2N, is

"j .kT C T0/D e
Qj .kTCT0/"j .kT /

C

Z kTCT0

kT

eQj .kTCT0�s/Bj .s/vj .s/ds,
(24)

where Qj .t/ D
R t
kT
Aj .s/ds D

R t�kT
0

Aj .kT C �/d� . Define wj
k
WD

R T0
0
eQj .T0��/Bj .kT C

�/vj .kT C �/d� . Then, (24) can be written as "j .kT C T0/D eQj .kTCT0/"j .kT /Cw
j

k
.

Now, consider the second phase of the algorithm. The solution of system (23) is

"j ..kC 1/T /D "j .kT C T0/C

Z .kC1/T

kTCT0

vj .s/ds. (25)

Let �j
k
WD
R T�T0
0 vj .kTCT0C�/d� ; then using relation (24) and (25), one obtains "j ..kC1/T /D

eQj .kTCT0/".kT /Cw
j

k
C�

j

k
. Let us now define "j

k
WD "j .kT /, the estimation error vector sampled

at the beginning of the cycle, and !j
k
WD w

j

k
C�

j

k
, the input of the discretized system. The resulting

discrete-time system can then be formulated as follows:

"
j

kC1
D eQj .kTCT0/"

j

k
C!

j

k
, (26)

where

Qj .kT C T0/D

0
BBBB@

0 T0 0 0
...

. . .
. . . 0

0 � � � 0 T0

�K
j
0 


j

k
� � � � � � �Kp�1,j


j

k

1
CCCCA , (27)

with 
j
k
WD
R kTCT0
kT

1

m.t/CK
j
p

dt . Here, (26) is a nonlinear parameter-varying system with unknown

parameter 
j
k

. Because m.t/ 2 ŒMmin,Mmax�,8t , is bounded, the unknown parameter 
j
k

, is also

bounded by 
j
k
2

�
T0

MmaxCK
j
p

, T0

MminCK
j
p

�
for all k. The challenge that remains is to study the input-

to-state stability of discrete-time nonlinear system (26) with respect to the input !j
k

. But before we
proceed to this step, we need to evaluate the exponential of the matrix Qj .kT CT0/ in more detail.
Namely, input-to-state stability of (26) implies, firstly, the global uniform asymptotic stability of
"j D 0 when !j D 0 (i.e., when vj .t/ D 0: constant human force) and the boundedness of the
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error "j for bounded vj .t/ (i.e., time-varying human forcing with bounded time derivatives).¶ For
the sake of transparency of notation, denote Qj .kT C T0/DWQj ,k .

To compute the matrix exponential eQj ,k , we are using a procedure similar to the one intro-
duced in [34] and [35], which employs the Cayley–Hamilton theorem. Herein, it is exploited that if
p.�/D det.�In �A/ is the characteristic polynomial of a matrix A 2Rn�n, then p.A/D 0.

This means that given the matrix Qj ,k , for any i > p, there exists a set of coefficients cji ,r 2 R
such that the i th power of Qj ,k can be expressed in terms of its first p � 1 powers:

Qi
j ,k D c

j
i ,0Ip C c

j
i ,1Qj ,k C � � � C c

j
i ,p�1Q

p�1

j ,k . (28)

We now exploit (28) to determine the exponential of the matrix Qj ,k:

eQj ,k D

1X
iD0

Qi
j ,k

i Š
D

1X
iD0

1

iŠ

p�1X
rD0

c
j
i ,rQ

r
j ,k , (29)

or

eQj ,k D

p�1X
rD0

Qr
j ,k

1X
iD0

c
j
i ,r

i Š
. (30)

Let qjr WD
P1
iD0

c
j

i ,r
iŠ

, which means that eQj ,k D
Pp�1
rD0 Q

r
j ,kq

j
r .

Using (27), we can decompose Qj ,k as follows: Qj ,k D U C 

j

k
Lj , where

U D

0
BBB@
0 T0 0 0
...

. . .
. . . 0

0 � � � 0 T0
0 � � � � � � 0

1
CCCA and Lj D

0
BBBB@

0 � � � 0
...

. . .
...

0 � � � 0

�K
j
0 � � � �Kp�1,j

1
CCCCA . (31)

Because the matrices U and Lj are noncommutative, we have that

�
U C 


j

k
Lj

�r
D

rX
sD0

�


j

k

�s C srX
tD1

…t

�
U r�s ,Lsj

	
, (32)

where…t

�
U r�s ,Lsj

�
is the t -th noncommutative product of r�s matricesU and s matricesLj and

C sr is the r-combinations from a set with s elements
�
C sr D

sŠ
rŠ.s�r/Š

�
. But as

PC sr
tD1…t

�
U r�s ,Lsj

�
is independent of the unknown parameter 
j

k
, denote Sjr ,s WD

PC sr
tD1…t

�
U r�s ,Lsj

�
, which allows to

writeQj ,k D
�
U C 


j

k
Lj

�r
D
Pr
sD0

�


j

k

�s
S
j
r ,s . Consequently, the expression for the exponential

matrix becomes

eQj ,k D

p�1X
rD0

rX
sD0

�


j

k

�s
qjr S

j
r ,s . (33)

For each scalar product
�


j

k

�s
q
j
r , we define

ajr ,s WD max

�
j

k
2

"
T0

MmaxCK
j
p

I
T0

MminCK
j
p

#
°�


j

k

�s
qjr

±
(34)

¶In essence, we aim to formulate an extension of Theorem 2 in the scope of the cyclic comanipulation algorithm as in
Figure 3.
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and

ajr ,s WD min

�
j

k
2

"
T0

MmaxCK
j
p

I
T0

MminCK
j
p

#
°�


j

k

�s
qjr

±
. (35)

Then, there always exists a �jr ,s 2 Œ0, 1� such that�


j

k

�s
qjr D �

j
r ,sa

j
r ,s C

�
1� �jr ,s

	
ajr ,s . (36)

Introducing relation (36) in expression (33) leads to

eQj ,k D

p�1X
rD0

rX
sD0



�jr ,sa

j
r ,s C

�
1� �jr ,s

	
ajr ,s

�
Sjr ,s , (37)

for some �jr ,s 2 Œ0, 1�.
Let us define �j

l
WD p.pC1/

2
ajr ,sS

j
r ,s and ı

j

l
WD �

j
r ,s

2
p.pC1/

, with l D r.rC1/
2
C s C 1, for

l 2
°
1, : : : , p.pC1/

2

±
, r 2 ¹0, : : : ,p � 1º, s 2 ¹0, : : : , rº. Similarly, we define �j

l
D p.pC1/

2
a
j
r ,sS

j
r ,s

and ıj
l
D
�
1� �

j
r ,s

�
2

p.pC1/
, with l D p.pC1/

2
C r.rC1/

2
CsC1, for l 2

°
p.pC1/

2
C 1, : : : ,p.pC 1/

±
,

r 2 ¹0, : : : ,p � 1º, s 2 ¹0, : : : , rº. This means that expression (37) is equivalent to

eQj ,k D

p.pC1/X
lD1

ı
j

l
�
j

l
, (38)

with
Pp.pC1/

lD1
ı
j

l
D 1.

Thus, we have now found the generators for a convex set that overapproximates the exponential of

matrix eQj ,k , with the uncertain parameter 
j
k

. Notice that qjr D
P1
iD0

c
j

i ,r
iŠ

is an infinite sum and
will in practice be approximated by a finite sum of length N . Next, we provide an explicit upper
bound on the 2-norm of the approximation error induced by such truncation.

Theorem 3
Consider an integer N 2N and a real positive scalar #j such that

� j D
q
ƒj
#j
< 1, where

ƒj D max

�
j

k
2

"
T0

MmaxCK
j
p

I
T0

MminCK
j
p

#
°

eig
�
QT
j ,kQj ,k

�±
. (39)

� 8i >N ,
q
# ij < iŠ.

Then, �����
1X
iDN

Qi
j ,k

i Š

�����
2

6
Nj

1� j
for all k. (40)

Proof
Appendix II. �

Using Theorem 3, we can choose N such that the approximation error is small (even as low as the
machine accuracy), and we can correctly evaluate matrices �j

l
, which are the generators for the

polytopic overapproximation of eQj ,k .
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Theorem 4
Consider discrete-time systems (26). If there exist matrices �j D�Tj > 0 and scalars &j > 0, such
that the following LMIs are satisfied:

�
j

l

T
�j�

j

l
��j 6 �&j�j , l 2 ¹1, : : : ,p.pC 1/º, (41)

where �j
l

are defined earlier, then systems (26) are ISS with respect to the inputs !j
k

for each
j 2 ¹1, : : : ,nº.

Proof
Appendix III. �

LMIs (41) are defined for the nontruncated �j
l

, but in practice, we evaluate the vertex matrices
by using a truncation after N iterations as provided by Theorem 3. The errors can be as low as the
machine accuracy, just as the errors obtained from the numerical solver of the LMIs. Moreover, we
can gain some robustness for these evaluation errors if the scalar &j is chosen greater than 0.

4.3.2. Intersample behavior. According to Theorem 2, the error dynamics are ISS for t 2
.kT , kTCT0�, which implies that for bounded "j .kT /, "j .t/will be bounded for t 2 ŒkT , kTCT0/.
Using Theorem 4, we can prove that the error dynamics are ISS on the sampling instance t D kT ,
with k 2 N. To prove the stability of the overall continuous-time system, we need to show that the
error dynamics are also bounded for t 2 ŒkT C T0, .kC 1/T �.
The continuous-time error dynamics for t 2 .kT C T0, .kC 1/T / are given by

P"j .t/D Ipv
j .t/. (42)

The solution of (42) for time t 2 .kT C T0, .kC 1/T / is given by

"j .t/D "j .kT C T0/C

Z t

kTCT0

vj .s/ds (43)

or

"j .t/D "j .kT C T0/C

0
BB@

uj .t/� uj .kT C T0/
...

u
.p�1/
j .t/� u

.p�1/
j .kT C T0/

1
CCA . (44)

Given the fact that uj is the human force and therefore a bounded signal with bounded time deriva-
tives and using Theorem 2, we know that "j .kT C T0/ is also bounded. Hence, we can conclude
that for any t 2 .kT C T0, .kC 1/T /, "j .t/ is also bounded.

4.4. Scaling the human force

With the maximal human operation frequency, we can determine the period T of one cycle of the
algorithm, which includes the estimation and amplification stages, see Figure 3. Using the analy-
sis in Theorem 2, one can obtain an upper bound for the settling time for the estimator (from the
expression of the function ˇj in (20)). If we consider that the output has settled if the error has
dropped below 5% of the initial value, then the settling time for function ˇj as in (20) is given
by T js > � 4

�j

�max.Pj /

�min.Pj /
ln.0.05/ D � 4

�j

�max.Pj /

�min.Pj /
.�2.9957/ ' 3 4

�j

�max.Pj /

�min.Pj /
. The duration of the

estimation phase T0 is chosen to be longer than the maximum settling time for each input–output

channels, that is, maxjD1,:::,n

°
3 4
�j

�max.Pj /

�min.Pj /

±
< T0 < T . This means that the scaled force is applied

for a time interval of length T � T0 during one cycle. The strategy we proposed in Section 4.1 has
set a required scaling factor ˆ, but during one cycle, the scaled force is applied for only a fraction
of time (T � T0). Therefore, we have to determine the new scaling factor ‰, which leads to an
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overall scaling factor ˆ. The human applies the average force 1
T

R .kC1/T
kT FHdt , over the cycle k.

We consider the following assumption:

Assumption 3
FH is constant during each cycle, that is, FH.t/D FH.kT /, 8t 2 ŒkT , .kC 1/T /.

Because 1
T

is chosen to be significantly larger than the maximum frequency of human operator, this
is a reasonable assumption. Under this assumption, the human applies the force FH.kT /, and the
robot should apply the force ˆFH.kT /, presumably with ˆ > 0. The robot applies the force FR,
with

FR.t/D

²
OF .t/, kT 6 t < kT C T0

‰ OFH.kT C T0/, kT C T0 6 t < .kC 1/T
. (45)

Under Assumption 3, systems (15) reach the equilibrium point
�
�
.p�1/
j , : : : , �j

�T
D�

0, : : : , 0, FE,j
K0,j

�T
. This means that OF D�

Pp
iD0Ki�

.i/ DK0�D� OFH. Consequently, the average

force supplied by the robot is approximately given by

FR D
1

T

 Z kTCT0

kT

.�1/ OFH.t/dt C

Z .kC1/T

kTCT0

‰ OFH.kT C T0/dt

!
, (46)

where ‰ is the scaling factor we have to determine and we have ignored the torque corresponding
to the controller Clin because the human force is supposed to move only the load and not the robot
links. Let us suppose that OFH.kT CT0/D FH.kT CT0/, that is, the estimation is working; then by
also using Assumption 3, the right-hand side of relation (46) is equivalent to

1

T

 
‰.T � T0/FH.kT /�

Z kTCT0

kT

OFH.t/dt

!
, (47)

where the second term is approximately equal to T0
T
FH.kT /. Note that the lower the settling time for

the estimation procedure, the better the approximation. Using this approximation and the require-
ment that 1

T

R .kC1/T
kT

FRdt D ˆFH.kT /, we obtain the following equation from which we can
determine the scaling factor ‰:

ˆFH.kT /D
1

T
.‰.T � T0/FH.kT /� T0FH.kT // (48)

or

‰ D
ˆT C T0

T � T0
. (49)

The estimation/force scaling algorithm is now fully defined, and the design goals have been reached.
The human operator now has a supplementary force at his disposal that can enhance his performance
by manipulating a larger variety of unknown loads.

5. AN APPLICATION

In Section 5.1, we will first illustrate the effectiveness of the disturbance estimator proposed in
Section 3 by means of experiments. In Section 5.2, we present an application of the human–robotic
comanipulation strategy proposed in Section 4 to a 2-DOF robotic manipulator.
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5.1. Disturbance estimation

5.1.1. Experimental results. The force estimation control scheme presented in Section 3 has been
implemented on an experimental 1-DOF haptic device for estimating the human force applied to
the device. The mechanical setup has been designed in the Dynamics and Control Laboratory of the
Eindhoven University of Technology, the Netherlands, for an eye surgery robotics project (Figure 4).
The details of the mechanical design have been presented in [36, 37]. The dynamics of this model
are represented in Figure 5 in the upper gray rectangle, where FH is the human force applied to the
lever, F is the equivalent force applied by the motor translated to a force acting at the tip of the
lever, Fm is the force measured by the force sensor (which is only used for validation purposes), x
is the position of the lever tip measured using the motor encoder, m is the system inertia, and Ff is
friction force.

The estimation strategy is applied to determine the human force, knowing that the system inertia
(composed of the robot mechanical parts and the human hand) ranges between m 2 Œ0.25, 0.75� kg.
In Figure 5, the control blocks are presented. The blocks s

˛.s/
and s2

˛.s/
provide estimates for the

velocity and the acceleration, respectively, where 1
˛.s/

is a second-order low-pass filter with poles

above the human frequency range of 6 Hz, that is, ˛.s/ D 3.4483s2 C 3103s C 931035 to avoid

Figure 4. 1-DOF haptic device for eye surgery [36].

FH

+
+ 1

ms
1
sF

Ff

Fm

x

Ffid

K0

K1

s s2

v~x a~x.
+

+
+

FH

-

α (s)α (s)

-

Figure 5. Estimation of the human force on the 1-DOF device.
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amplification of high-frequency measurement noise. The parameters K0 and K1 are chosen as
follows: K0 D 27 � 106 and K1 D �0.2. The block Ffid provides an estimation of the friction
force using the friction model identified in [38]. The results of the estimation procedure are com-
pared with those measured by the force sensor available on the 1-DOF haptic device for the robot
without load (Figure 6). Even though the measured force is subject to noise, this figure clearly shows
that the estimation algorithm is providing a consistent tracking of the human force. Of course, the
results of the estimation method are affected by the accuracy of the model used.

Next, we added an additional load of 0.11 kg to the end effector and applied the same estimation
algorithm to estimate the human force in a second experiment. We note that no knowledge on the
additional load is used in the estimator and this experiment clearly illustrates (Figure 7) that the
estimator is robust against relatively large uncertainties in the load, which is a property not present
in conventional DOB (see the next section for additional comparative results).

5.1.2. Comparison with a nonlinear disturbance observer. In this section, we will compare in simu-
lation the force estimation algorithm proposed in the previous section with the nonlinear disturbance
observer (NDOB) introduced in [39] and extended in [40]. Both algorithms are applied on a two-
link robot model in the horizontal plane, Figure 8. We assume that the links are rigid and the joints

0 1 2 3 4 5
−4

−3

−2

−1

0

1
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F
or
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 [N

]

Figure 6. Results of the estimation algorithm on the 1-DOF device (solid line, estimated force; dotted line,
measured force).
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Figure 7. Results of the estimation algorithm on the 1-DOF device with extra load (solid line, estimated
force; dotted line, measured force).
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l1,m1,J1

x

y

m(t)

θ1

θ2
τ1

τ2

τHl2,m2,J2

Figure 8. A two-link robot.

are frictionless. The dynamics of the robot can be described by

MR.q/ RqCDR.q, Pq/Cm.t/PM. Rq, Pq, q/D � C J T .q/FH, (50)

where �H D J T .q/FH is the torque applied by the human operator, � D
�
�1 �2

	T
represents the

actuator torques, and

MR D

0
@ J1C

m1l
2
1

4
Cm2l

2
1

m2l1l2
2

cos.�2 � �1/

m2l1l2
2

cos.�2 � �1/ J2C
m2l

2
2

4

1
A , DR D

 
�m2l1l2

2
P�22 sin.�2 � �1/

m2l1l2
2
P�21 sin.�2 � �1/

!
,

PM D

 
l21
R�1C l1l2 R�2 cos.�2 � �1/� l1l2 P�22 sin.�2 � �1/

l1l2 R�1 cos.�2 � �1/C l22 R�2C l1l2 P�
2
1 sin.�2 � �1/

!
, J D

�
�l1 sin �1 �l2 sin �2
l1 cos �1 l2 cos �2

�
.

Herein, li , mi , and Ji are the length, mass, and moment of inertia about the center of mass of link
i , i D 1, 2, respectively. Moreover, m.t/ represents the mass of the load.

For simulation purposes, we consider the following parametric settings: l1 D l2 D 0.6 m,

m1 D m2 D 2 kg, and J1 D J2 D
m1l

2
1

12
D 0.06 kgm2 for the robot links. We assume that the

mass of the load varies between Mmin D 10 kg and Mmax D 50 kg by the law m.t/ D 40e�
t
2 C 10

(exponential shape), t > 0 (we did not choose a quasi-static function for this parameter to show that
our algorithm can cope with more uncertainties in our system).

For the estimation phase, we have chosen only one integrator (p D 1) per input–output channel
with the gains in (13) given by

K1 D

�
�5 0

0 �5

�
, (51)

K0 D

�
105 0

0 105

�
. (52)

For the NDOB introduced in [39], the defining parameter is the matrix LD 500I2, where I2 is the
2� 2 identity matrix. Moreover, because, on the one hand, this algorithm requires knowledge of the
model of the robot with the load and, on the other hand, the mass of the load m.t/ is only known to
satisfy m.t/ 2 ŒMmin,Mmax�D Œ10, 50� kg,8t , we have chosen a nominal value of 30 kg to be used
in the NDOB.

For both simulations, we have considered that position and velocity measurements in the robot
joints are available; the acceleration information is obtained by numerical differentiation of the
velocity signal. On the model of the robot, we apply an external force F D

�
Fx Fy

	
with

Fx D 10 cos.2�t/, Fy D 10 sin.2�t/, the force in x-direction and y-direction, respectively.
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Figure 9. Robustness of the force estimation algorithm for time-varying load mass m.t/D 40e�
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Figure 10. Robustness of the force estimation algorithm for time-varying load mass m.t/ D
20
�
2
�
t
0.5 �


t
0.5 � 0.5

˘	
C 1

	
C 10.

The results for these simulations are presented in Figure 9, where the dashed line is the external
(human) force, the dotted line is the estimated force using the algorithm introduced in [39, 40], and
the solid line is the force estimated using the algorithm introduced in this paper. For both cases, we
have considered null initial conditions for the estimated forces. We have chosen a fast convergence
rate for the two estimators because the emphasis of this comparison is on stationary error for the
two methods. One can see that our algorithm tracks perfectly the exogenous force, whereas the other
algorithm is not robust to the variation of mass of the load. The same algorithm was also applied for
a different time-varying load mass (m.t/ D 20

�
2
�
t
0.5 �


t
0.5 � 0.5

˘	
C 1

	
C 10, which expresses

a sawtooth shape), and the results can be seen in Figure 10. One can observe in this figure that the
algorithm introduced in this paper is robust against such (unknown) time-dependent variations in
the load mass, whereas the algorithm in [39, 40] is not.
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5.2. Human–robot comanipulation

In this section, we will apply the estimation and amplification strategy proposed in Section 4 to
the two-link robot model in the horizontal plane, see Figure 8, with the time-varying load mass
as m.t/ D 40e�

t
2 C 10, t > 0. We assume now a robotic setup under more realistic conditions

including friction in the joints and quantization errors for the encoders and for the gyroscopes used to
obtain position and velocity measurements, respectively. The (set-valued) friction model (including
both Coulomb and viscous friction) that we have introduced for every joint of the two-link robot is
defined by

Ff . Pqi / 2 a Pqi C bSign . Pqi / , (53)

with i 2 ¹1, 2º, where Sign.�/ represents the set-value-sign function

Sign.x/D

8<
:
�1, x < 0
Œ�1, 1�, x D 0
1, x > 0

(54)

and a D 5 Nm/s and b D 2 Nm. To emphasize the robustness of our algorithm, we do not take
into account the friction model in the design of the controller. We have considered the following
sensor specifications: encoders with 104 pulses/rad resolution and 16-bit gyroscopes. The acceler-
ation information is again obtained by numerical differentiation of the velocity measurement. The
sampling and the control update rates are set to 10 kHz.

Knowing that a human operator can not generate signals with a frequency greater than 6 Hz, the
cycle period for our design is T D 0.01 s

�
1
T
D 100� 6

	
. For the estimation phase, we have chosen,

as in the previous simulation, only one integrator (p D 1) per input–output channel with parameters
given in (51) and (52).

We have solved LMIs (17) for 	j D 4000 yielding Pj D 1 (�max.Pj /D �min.Pj /D 1), j D 1, 2.
Consequently, estimation error dynamics (16) is ISS with respect to vj .t/, j D 1, 2. Now, the
ISS result in Theorem 2 provides an ultimate bound on the estimation error of 4

�j
sup.vj .t// D

0.001 sup. Puj .t//, j D 1, 2.
The ISS property also provides some important insights for the design of the global controller
because it allows to determine the period of the estimation cycle T0. The function ˇj , j D 1, 2,
as in (20), is providing a bound on the convergence rate for the system: ˇ.r , t / D re�1000t ,

and the settling time is Ts D maxjD1,2

°
3 4
�j

±
D 0.003 s. As a consequence, we have chosen

T0 D 0.005 s > Ts.
We assume that the desired value for the scaling parameter ˆ is 3, that is, the robot adds a force

equivalent to three times the human force. Hence, according to relation (49), ‰ D 7.
Regarding the stability of the estimation algorithm over both phases, it is easy to check that

Qj ,k D �
K
j
0
T0

m.t/CK
j
1

2


�100I �100

9

�
. Therefore, we can consider matrices �j1 D e�100 and

�
j
2 D e�

100
9 , &j D 0.5, and �j D 1 to satisfy LMIs (41). Consequently, the conditions of

Theorem 4 are met and, therefore, the discrete-time system is ISS. Concerning the intersample
behavior, the argument presented in Section 4.3.2 holds in this particular case as well.

The simulation setup from Figure 2 contains also the human operator. We have emulated the
human behavior by a proportional–derivative controller on each input–output channel with a
first-order low-pass filter for frequencies higher than 6 Hz and saturation bounds on the human
force level. The ‘human’ controller on each Cartesian direction has been emulated by a linear
transfer function:

H.s/D
Kd .Td sC 1/

TPLsC 1
D
250.1C s/
1
2�
sC 1

, s 2C (55)

with saturation at ˙250 N. We have chosen this ‘human’-like behavior to emulate the fact that
the human response is typically below a 6-Hz bandwidth [32, 33] and that according to common
labor legislation, the human worker is not allowed to carry a load with a mass higher than 25 kg,
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see [41,42]. The human acts as a motion controller, see Figure 2, aiming to stabilize the set point in
end-effector task space given by .x,y/D .0.5, 0.5/.

Let us now present the simulation results where the initial condition .q1, q2, Pq1, Pq2/ D
.�=4, 0, 0, 0/ is used. The simulation of the estimation algorithm is presented in Figure 11 for a
short time frame (the dashed-dotted line is the human force, and the solid line is the estimated
force). Because of the friction in the joint for which there is no compensation mechanism, the esti-
mated force will converge to the sum of the friction force in the joint and the external force. In
practice, a model for the friction in the joints will be available, and the residues that will remain
because of the inconsistencies between the friction model and the real friction will be small with
respect to the external force. Here, we opted for the introduction of relatively large friction force
without compensation to illustrate the robustness of the strategy for such model uncertainties.

In Figures 12 and 14, the results obtained by the estimation and amplification control algorithm
introduced in this article (solid line) are compared with the use of human force alone (dotted line)
and the use of human force in conjunction with the compensation for the dynamics of the robot links
(dashed-dotted line), that is, the partial feedback linearization controller �lin from (9).

This simulation focusses on two important issues of this comparison: the end-effector displace-
ment (Figures 12 and 13) and the applied human force (Figure 14). Figures 12 and 13 show clear
differences between the end-effector displacements resulting from the approach proposed in this
paper and the case of human actuation (with compensation of the link dynamics). Clearly, the
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Figure 11. Comparison human force estimation with applied human force.
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Figure 14. Human force (lines of ‘human’ and ‘human and links compensation’ visually overlap).

transients in case of the ‘estimation and amplification’ approach proposed in this paper are more
high-frequent and slighter weaker damped. This can be understood from the fact that the amplifica-
tion strategy amplifies the human action and that the human acts as a motion controller to achieve
set point control. Hence, the gain of the ‘human motion controller’ is effectively increased, causing
these changes in the transient behavior. The benefits of the approach of estimating and amplifying
the human actuation proposed here are twofold. First, the most important benefit is the fact that the
human is supported by the force amplification strategy. In Figure 14, we only selected the first 4 s
of the simulation when higher human force input is required. One can see that even though there is

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2014; 24:1772–1796
DOI: 10.1002/rnc



ROBUST DISTURBANCE ESTIMATION FOR HUMAN–ROBOTIC COMANIPULATION 1793

a saturation of the human force, our algorithm manages to provide extra force such that the human
force will desaturate sooner. Moreover, by using this approach, the set point (in end-effector task
space given by .x,y/D .0.5, 0.5/) is approached with much higher accuracy, see Figures 12 and 13,
than with the other approaches (where the steady-state errors are due to frictional effects incorpo-
rated in the simulation, see (53)). The latter effect is again due to the amplification support for
the human motion controller. This means that the extra power delivered by the robotic manipulator
using the control strategy introduced in this paper ensures a more accurate control for the human
over the load.

6. CONCLUSIONS

A new disturbance force estimator algorithm for a force-sensor-less robotic setup has been intro-
duced. The estimation strategy is robust to large uncertainties on the mass of the load that the robotic
device is manipulating at the end effector. Moreover, this unknown mass may also quasi-statically
vary over time. We have validated the effectiveness of the estimation approach in experiments.
The applications for this force estimation algorithm range from haptic devices to the estimation of
compliant contact forces. In this paper, we have applied the proposed estimation algorithm to sup-
port a human–robotic comanipulation strategy. Herein, the robotic device enhances the force that a
human operator applies to the load. In this application, the force estimation algorithm is used for
determining the force applied by the human, in the first step of the strategy and, then, this force is
amplified, in the second phase of the strategy.
The perspectives of this study are the extension of the concept to n-DOF haptic devices and
teleoperation setups.

APPENDIX

I. Proof of Theorem 2

Let ˛j .t/ D 1
m.t/CKp,j

2 Œ˛j ,˛j �, j D 1, : : : ,n. Then, ˛j .t/ D �j .t/˛j C .1 � �j .t//˛j ,

j D 1, : : : ,n, with 0 6 �j .t/ 6 1,8t > 0. Hence, the time-varying matrix Aj .t/ can be written as
a convex combination of two matrices Aj1 and Aj2 :

Aj .t/D �j .t/A
j
1 C .1� �

j .t//A
j
2 ,8t 2RC, j D 1, : : : ,n, (56)

with Aj1 and Aj2 as in (18) and (19), respectively, and �j .t/ 2 Œ0, 1�, 8t .
Because there exist Pj D P Tj > 0 and 	j > 0 such that (17) is satisfied, it holds that

PjA
j .t/C

�
Aj
	T
.t/Pj D Pj

�
�j .t/A

j
1 C .1� �

j .t//A
j
2

�
C

�
�j .t/

�
A
j
1

�T
C .1� �j .t//

�
A
j
2

�T�
Pj

D �j .t/

�
PjA

j
1 C

�
A
j
1

�T
Pj

�
C .1� �j .t//

�
PjA

j
2 C

�
A
j
2

�T
Pj

�
6 ��j .t/	jPj � .1� �j .t//	jPj
D�	jPj .

(57)
Let us define the P -norm jxjP WD

p
xTPx and consider the candidate ISS Lyapunov functions

Vj D
1
2
j"j j2Pj . The time derivative of Vj along the solutions of (16) satisfies

PVj D
1

2

�
"j
	T �

PjA
j .t/C

�
Aj .t/

	T
Pj

�
"j

C
�
"j
	T
PjB

j .t/vj .t/.
(58)
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Let vj .t/ WD Bj .t/vj .t/. Then using (57), relation (58) can be written as

PVj 6 �
1

2
	j j"

j j2Pj C j"
j jPj sup

t2RC
jvj .t/jPj (59)

) PVj 6 �
1

4
	j j"

j j2Pj C j"
j jPj

 
�
1

4
	j j"

j jPj C sup
t2RC

jvj .t/jPj

!
, (60)

which means that

j"j jPj >
4

	j
sup
t2RC

jvj .t/jPj )
PVj 6 �

1

4
	j j"

j j2Pj . (61)

After straightforward computations, we ultimately arrive at the following implications:

k"j k> 4

	j

s
�max.Pj /

�min.Pj /
sup
t2R
.vj .t//) PVj 6 �

	j

4
�min.Pj /k"

j k2. (62)

Define the functions

˛
j
1.r/ WD

�min.Pj/

2
r2, ˛

j
2.r/ WD

�max.Pj/

2
r2, ˛

j
3.r/ WD

	j

4
�min.Pj/r

2, �j.r/ WD
4

	j

s
�max.Pj/

�min.Pj/
r .

(63)

Then, the solution of differential equation (5) is �.r , t /D re
�
�min.Pj /

�max.Pj /

�j
2 t .

Using these definitions, Definition 2, and Theorem 1, we can conclude that system (16) is ISS with
the functions ˇj and �j defined as in (20) and (21), respectively.

II. Proof of Theorem 3

�����
1X
iDN

Qi
j ,k

i Š

�����
2

6
1X
iDN

�����
Qi
j ,k

i Š

�����
2

6
1X
iDN

���Qi
j ,k

���
2

i Š
6
1X
iDN

q�
ƒj
	i

i Š
, (64)

where the inequality
��Ai��2

2
6 kAk22 � : : : � kAk22 D max.eig..ATA//i has been used. Using the

property that 8a 2RC, 9N 2N such that 8i >N ,
p
ai < iŠ, inequality (64) becomes

�����
1X
iDN

Qi
j ,k

i Š

�����
2

6
1X
iDN

q�
ƒj
	i

i Š
6
1X
iDN

ij . (65)

Let us now employ the known result of convergence of geometric series, which states that 8a 2
Œ0, 1�, limn!1

Pn
iD0 a

i D limn!1
1�anC1

1�a
D 1

1�a
, to obtain�����

1X
iDN

Qi
j ,k

i Š

�����
2

6
Nj

1� j
for all k. (66)

III. Proof of Theorem 4

By using the Schur complement, relations (41) can be written as 
��j �

j

l

T
�j

�j�
j

l
��j

!
6 �&j�j . (67)
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Multiplying every inequality (67) with ıj
l

and summing them up, we obtain0
@ ��j

Pp.p�1/

lD1
ı
j

l

Pp.p�1/

lD1
ı
j

l
�
j

l

T
�j

�j
Pp.p�1/

lD1
ı
j

l
�
j

l
��j

Pp.p�1/

lD1
ı
j

l

1
A6 �&j�j p.p�1/X

lD1

ı
j

l
, (68)

which according to (38) is  
��j eQj ,k

T
�j

�j e
Qj ,k ��j

!
6 �&j�j (69)

or

eQj ,k
T
�j e

Qj ,k ��j 6 �&j�j . (70)

Let the candidate Lyapunov function be V j
k
D
�
"
j

k

�
T�j "

j

k
. We compute4V j D V j

kC1
� V

j

k
:

4Vj D
�
"
j

k

�
T
�
eQj ,k

	
T�j e

Qj ,k"
j

k
�
�
"
j

k

�
T�j "

j

k
C 2

�
"
j

k

�
T
�
eQj ,k

	
T�j!

j

k
C
�
!
j

k

�
T�j!

j

k
,

(71)
which according to (70) gives

4Vj 6 �&j
�
"
j

k

�
T�j "

j

k
C 2

�
"
j

k

�
T
�
eQj ,k

	
T�j!

j

k
C
�
!
j

k

�
T�j!

j

k
. (72)

After some straightforward computations, we can show that

��"j��
2
> 2

&j

s
�max.�j /

�min.�j /
sup
k2N

�
!
j

k

�
)4Vj 6 �

&j

2
k"j k22, (73)

where �max.�j / and �min.�j / are the largest and the smallest eigenvalues of matrix �j ,
respectively.
Equation (73) implies that system (26) is ISS with respect to the input !j

k
; see [28] for sufficient

conditions for the ISS of discrete-time systems, in which a discrete-time equivalent of Theorem 1
is presented.
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