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SUMMARY

Chatter is an instability phenomenon in high-speed milling that limits machining productivity by the induc-
tion of tool vibrations, inferior machining accuracy, noise, and wear of machine components. In this paper,
a fixed-structure active chatter control design methodology is proposed, which enables dedicated shaping of
the chatter stability boundary such that working points of higher machining productivity become feasible
while avoiding chatter. The control design problem is cast into a nonsmooth optimization problem, which
is solved using bundle methods. Using this approach, fixed-structure dynamic (delayed) output feedback
controllers can be synthesized. Distinct benefits of this approach are the a priori fixing of the controller order,
the limitation of the control action, and the fact that no finite-dimensional model approximations and online
chatter estimation techniques are required. All these benefits are important in milling practice. Representa-
tive examples illustrate the power of the proposed methodology in terms of increasing the chatter-free depth
of cut, thereby enabling significant increases in machining productivity. Copyright © 2014 John Wiley &
Sons, Ltd.

Received 6 December 2013; Revised 23 October 2014; Accepted 7 November 2014

KEY WORDS: robust control; delay systems; high-speed milling; machining chatter; fixed-order controller
synthesis

1. INTRODUCTION

High-speed milling is a widely used manufacturing technique to produce, for example, moulds
and dies or components for the aerospace industry. The productivity in milling is often limited by
the occurrence of an instability phenomenon called (regenerative) chatter. Chatter results in heavy
vibrations of the tool causing an inferior workpiece surface quality, rapid tool wear, and noise.

The occurrence of chatter can be visualized in so-called stability lobes diagrams SLD. In an
SLD, the chatter stability boundary between a stable cut (i.e., without chatter) and an unstable cut
(i.e., with chatter) is visualized in terms of two important machining parameters, namely, the spindle
speed and depth of cut. Given the fact that chatter should be avoided at all times, the chatter boundary
in the SLD represents a firm limit on the material removal rate (determined by the spindle speed and
depth-of-cut). To overcome chatter vibrations in high-speed milling and, therewith, to enable the
chatter-free increase of the material removal rate, dedicated active control strategies are required.

The chatter stability boundary can be altered by passively or actively adapting the machine
dynamics. Passive chatter suppression techniques exist that use dampers [1] or vibration absorbers
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[2]. Passive dampers are relatively cheap and easy to implement and never destabilize the system.
However, the practically achievable amount of damping is rather limited. Moreover, vibration
absorbers require accurate tuning of their natural frequencies and, consequently, lack robustness to
changing machining conditions. Active chatter control in milling has mainly been focused on active
damping of the machine dynamics [3, 4] or workpiece [5]. Damping the machine or workpiece
dynamics, either passively or actively, results in a uniform increase of the stability boundary for all
spindle speeds.

To enable more dedicated shaping of the stability boundary (e.g., lifting the SLD locally around
a specific spindle speed at which one desires to operate for the manufacturing of a certain product),
the regenerative effect, which is inherent to the metal cutting process and which is the root cause
for chatter, should be taken into account during chatter controller design. In [6, 7], active chatter
control methodologies, taking the regenerative effect into account, have been developed in the case
of turning. Recently, an active chatter control methodology for the high speed milling process is
presented in [8], which has also been validated experimentally in [9].

Except for the work in [4, 8], all research on active chatter control is limited to low spindle speeds
(i.e., below 5000 rpm). Moreover, all aforementioned research either does not include the regener-
ative effect during controller design or utilizes high-order finite-dimensional approximations of the
milling model for controller design, yielding high-order controllers, which is disadvantageous from
an implementation perspective. In this respect, it is important to note that relatively high frequencies
play a role in the stabilization of chatter, which makes the implementation of high-order controllers
prohibitive in practice.

This paper presents a controller design methodology, which can guarantee chatter-free milling
operations in an a priori defined range of process parameters, such as spindle speed and depth of cut.
The proposed model-based approach toward controller synthesis explicitly takes into account the
regenerative effect responsible for chatter. As a consequence, the approach employs milling models
in terms of a set of DDEs. We refrain from employing finite-dimensional approximations of the
delay yielding high-order models and high-order controllers as proposed in [8]. Instead, we propose
a design for low-order fixed-structure active chatter controllers for the milling process. The latter
novel approach has two advantages: firstly, it avoids controller design and stability analysis based
on only approximated models and, secondly, it avoids the use of high-order controllers, which is
disadvantageous from an implementation perspective.

An important part of the controller design is the selection of the variable used for feedback, see
[8]. In this reference, it has been advocated that so-called perturbation feedback (i.e., only feeding
back the chatter vibrations as opposed to the full vibration of the milling machine) is favorable from
the point of view of limiting the control action, which is important in practice. Hereto, online estima-
tion techniques for the chatter vibrations are needed because these cannot be measured directly, see
[8, 10]. In the current paper, we propose an alternative way to achieve such perturbation feedback
while still only using measurements of the full vibrations of the milling machine. Hereto, we pro-
pose to employ delayed output feedback (sometimes referred to as Pyragas feedback [11]), which is
beneficial from an implementation perspective.

In fixed-structure or fixed-order controller synthesis for time-delay systems, results are often
obtained using a Lyapunov-based approach, see, for example, [12]. Lyapunov-based approaches
allow the incorporation of a more general class of uncertainties, such as time-varying uncertainties.
However, the resulting optimization problems are in the form of bilinear matrix inequalities where
the number of unknown variables in general grows quadratically with the number of states [13],
which may lead to computational issues. Moreover, generally, the application of a Lyapunov
approach leads to conservative results. The usage of an eigenvalue-based approach can overcome
these disadvantages as explained in [14]. Therefore, we employ such an eigenvalue-based approach
in this paper.

The main contributions of this paper can be summarized as follows. Firstly, we propose a fixed-
order controller design technique for the high-speed milling process. This technique guarantees
the avoidance of chatter in a pre-defined range of working points (in terms of spindle speed and
depth-of-cut). In this way, large increases in productivity (material removal rate) can be achieved
while avoiding chatter. Secondly, the proposed control strategy has favorable properties from an
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implementation perspective in three ways. Firstly, it allows the user to pre-specify the order of
the controller and hence supports low-order controller design, which is desirable in a real-time
implementation. Secondly, the proposed strategy limits the control action by employing so-called
perturbation feedback, and, thirdly, it implements such perturbation feedback through delayed
output-feedback, which avoids the need for online estimation of chatter vibrations. A preliminary
version of this work has appeared in [15]. Additional contributions of the current paper with respect
to [15] are the following: firstly, the synthesis methodology has been extended to accommodate the
design of delayed output feedback control (which benefits explained in the preceding text); secondly,
the inclusion of the design of dynamic output feedback chatter controllers (which can improve
performance with respect to static controllers); thirdly, more details about the synthesis method-
ology and algorithm are provided; and, finally, other and more extensive application examples
are presented.

The paper is organized as follows. Section 2 presents the model of the milling process. The
problem setting is described in Section 3. The problem will be cast into a generalized plant
formulation, which is discussed in Section 4. Section 5 presents the fixed-structure controller design
methodology. Results for an illustrative example are presented in Section 6. Finally, conclusions are
drawn in Section 7.

2. THE HIGH-SPEED MILLING PROCESS

This section presents a comprehensive model of the milling process and discusses (chatter-related)
stability properties of the model. For more details regarding modelling and stability analysis of the
milling process, including experimental validation, see, for example, [16–20].

2.1. High-speed milling model

In Figure 1, a schematic representation of the milling process is given. A block diagram of the
milling process, with controller, is given in Figure 2. As can be seen from the block diagram, even
without the controller, the milling process is a closed-loop position-driven process. The setpoint
of the open-loop milling process is the predefined motion of the tool with respect to the work-
piece, given in terms of the static chip thickness hj;stat.t/ D f´ sin�j .t/, where f´ is the feed
per tooth and �j .t/ the rotation angle of the j -th tooth of the tool with respect to the y (normal)

Figure 1. Schematic representation of the milling process.
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Figure 2. Block diagram of the milling process.

axis see (Figure 1(b)). However, the total chip thickness hj .t/ also depends on the interaction
between the cutter and the workpiece. This leads to cutter vibrations resulting in a dynamic dis-
placement vt .t/ D

�
vt;x.t/ vt;y.t/

�T
of the tool, see Figure 1(b), which is superimposed on the

predefined tool motion. This results in a wavy surface on the workpiece. The next tooth encoun-
ters the wavy surface, left behind by the previous tooth, and generates its own waviness. This
is called the regenerative effect and results in the block Delay in Figure 2, see [21]. The differ-
ence between the current and previous wavy surface is denoted as the dynamic chip thickness
hj;dyn.t/ D

�
sin�j .t/ cos�j .t/

�
.vt .t/ � vt .t � �// with � D 60=.´n/ the delay, ´ the number

of teeth, and n the spindle speed in revolutions per minute (rpm). Hence, the total chip thick-
ness removed by tooth j at time t; hj .t/, is the sum of the static and dynamic chip thickness:
hj .t/ D hj;stat.t/C hj;dyn.t/.

The cutting force model (indicated by the Cutting block in Figure 2) relates the total chip thick-
ness to the forces acting at the tool tip of the machine spindle. The forces in the tangential and radial
directions, Ft and Fr in Figure 1(b), for a single tooth j are described by the following exponential
cutting force model:

Ftj .t/ D gj .�j .t//Kt ap hj .t/
xF ;

Frj .t/ D gj .�j .t//Kr ap hj .t/
xF ;

(1)

where 0 < xF 6 1 andKt ; Kr > 0 are cutting parameters, which depend on the workpiece material,
and ap is the axial depth of cut, see Figure 1(a). The function gj .�j .t// in (1) describes whether a
tooth is in or out of cut:

gj .�j .t// D

²
1; �s 6 �j .t/ 6 �e ^ hj .t/ > 0;
0; else;

(2)

where �s and �e are the entry and exit angle of the cut, respectively. Via trigonometric func-
tions, the cutting force components in the x(feed) and y(normal) directions can be determined, see
Figure 1(b). Hence, the total cutting forces in the x-direction and y-direction can be obtained by
summing over all ´ teeth:

F t .t/ D ap

´�1X
jD0

gj .�j .t//

��
hj;stat.t/C

�
sin�j .t/ cos�j .t/

�
.vt .t/ � vt .t � �//

�xF S.t/
�
Kt
Kr

�	
;

(3)
where

S.t/ D
�
� cos�j .t/ � sin�j .t/

sin�j .t/ � cos�j .t/

�
:

The cutting force interacts with the spindle and tool dynamics (block Spindle) in Figure 2. The
machine dynamics are modeled via a linear multi-input-multi-output (MIMO) state-space model,
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Figure 3. Schematic overview of spindle dynamics model, k 2 ¹x; yº. F a; va: forces, displacements at
actuator. F t ; vt : forces, displacements at tooltip.

Px.t/ D Ax.t/C BtF t .t/C BaF a.t/;

vt .t/ D Ctx.t/;

va.t/ D Cax.t/;
(4)

where x.t/ is the state (the order of this model primarily depends on the order of the spindle-tool
dynamics model) and cutting forces F t .t/ D

�
Ft;x.t/ Ft;y.t/

�T
given in (3), where Ft;x.t/ and

Ft;y.t/ are the cutting forces in the x-direction and y-direction, respectively. The control forces are
given by F a.t/ D

�
Fa;x.t/ Fa;y.t/

�T
, where Fa;x.t/ and Fa;y.t/ are the control forces acting

in the x-direction and y-direction, respectively, see Figure 3. In practice, the actuators used to
induce these control forces are, for example, active magnetic bearings [4, 7, 9, 22]. Moreover, vt .t/
and va.t/ represent the displacements of the cutter and the measured displacements available for
feedback, respectively. The measured displacements va.t/ are displacements in the spindle bearing,
which can in practice, for example, be measured using eddy-current sensors [9].

Substitution of (3) into (4) yields the nonlinear, non-autonomous DDE describing the milling
process:

Px.t/ D Ax.t/

CBtap
´�1X
jD0

gj.�j .t//

��
hj;stat.t/C

�
sin�j .t/ cos�j .t/

�
Ct .x.t/�x.t � �//

�xFS.t/
�
Kt
Kr

�	

CBaF a.t/;

va.t/ D Cax.t/:
(5)

2.2. Stability of the milling process

In this section, we briefly discuss the stability analysis of the milling process, where instability
relates to the occurrence of the undesired chatter phenomenon.

In the milling process, the static chip thickness is periodic with time � D 60
´n

. Here, n is the spindle
speed in rpm. In general, the uncontrolled (i.e., F a.t/ � 0) milling model (5) has a periodic solution
x�.t/with period time � [23]. To validate this fact, let us adopt the following decomposition of x.t/:

x.t/ D x�.t/C Qx.t/; (6)

where x�.t/ is a � -periodic motion that can be considered as the ideal motion when no chatter occurs
and Qx.t/ the perturbation term. When no chatter occurs, Qx.t/ D 0 and the tool motion is described
by the following ODE:

Px�.t/ D Ax�.t/C Btap
´�1X
jD0

gj .�j .t//hj;stat.t/
xF S.t/

�
Kt
Kr

�
; (7)
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which follows from (5) by exploiting the fact that x�.t/ D x�.t � �/ 8t . The ODE in (7) represents
a linear system with a periodic excitation with period time � . Hence, when A has no eigenvalues at
il2�ftpe , for ftpe WD 1

�
and all l 2 Z, the solution x�.t/ exists, is unique and is � -periodic [24].

Chatter vibrations are related to oscillations in Qx.t/ and, hence, the periodic solution x�.t/ is (at
least locally) asymptotically stable when no chatter occurs and when chatter occurs it is unstable, see
also [19]. Therefore, the chatter stability boundary can be found by studying the (local) asymptotic
stability of the periodic solution x�.t/. To this end, the uncontrolled milling model is linearized
about the periodic solution x�.t/, which yields the following linearised dynamics in terms of the
perturbations Qx.t/:

PQx.t/ D A Qx.t/C apBt
´�1X
jD0

Hj .t/Ct . Qx.t/ � Qx.t � �//C BaF a.t/;

Qva.t/ D Ca Qx.t/;

(8)

where

Hj .t/ D gj .�j .t//xF .f´ sin�j .t//
xF�1S.t/

�
Kt
Kr

� �
sin�j .t/ cos�j .t/

�
: (9)

As can be observed from (8) and (9), the linearised model is a delayed, periodically time-
varying system. Stability of these kinds of systems can be assessed using, for example, the
semi-discretization method of [25]. The main idea in semi-discretization is that only the delay
term is discretized, instead of the actual time-domain terms. All stability lobes diagrams, presented
throughout the paper, are determined using the semi-discretization method.

3. PROBLEM STATEMENT

As discussed in Section 1, the aim of this paper is to design a finite-dimensional fixed-structure
linear controller K of low order to generate control inputs F a based on measurements va, which
guarantees the following:

� robust stability of Qx D 0 in (8), (9) for ‘uncertainties’ in depth of cut ap and time delay � ;
� performance by minimizing the total amount of actuator energy needed to stabilize the milling

process.

By guaranteeing robust stability for ‘uncertainties’ in ap and � , chatter-free milling operations can
be guaranteed in an a priori defined range of spindle speeds n and depth of cut ap . Moreover,
limitation of the actuator forces will be included as a performance criterion in the controller design
as it also is an important practical performance requirement. As discussed in [8], an important aspect
in the active chatter control design procedure is the selection of the variable used for feedback.
In [8], it is concluded that perturbation feedback (i.e., Qva is used as an input to the controller) is
beneficial for reducing required actuator forces without compromising performance (in terms of the
achievable closed-loop depth of cut/spindle speed interval for which chatter can be eliminated). In
addition to such perturbation feedback, in this paper, we introduce dynamic delayed output feedback
for robust stabilization of the high-speed milling process. As we will show in the succeeding text,
by employing a specific form of dynamic delayed output feedback, no estimation algorithms are
required to estimate the perturbation part Qva of the measured displacements va (as is the case with
perturbation feedback, see [8]).

Then, the fixed-order controller K, with input Qva 2 R2 and output (control action) F a 2 R2, has
the following state-space description:

P�.t/ D Ac�.t/C Bc . Qva.t/ � ˇ Qva.t � �// ;

F a.t/ D Cc�.t/C Dc . Qva.t/ � ˇ Qva.t � �// :
(10)

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:3495–3514
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Herein, � 2 Rnc ;Ac 2 Rnc�nc ;Bc 2 Rnc�2;Cc 2 R2�nc , and Dc 2 R2�2 with nc the order of the
controller and ˇ 2 ¹0; 1º a constant. For the sake of generality, we present both the case of delayed
output feedback .ˇ D 1/ and the case of non-delayed output feedback .ˇ D 0/.

As mentioned before, the signal Qva.t/ can typically not be measured directly. For the two cases
of ˇ D 0 and ˇ D 1, the controller (10) can be implemented based on the measured spindle
displacements va.t/ as follows:

� If ˇ D 0, we employ dynamic output feedback control and an online estimate of Qva.t/ is
needed, which can be obtained using measurements of va.t/ and a chatter detection algorithm
as presented in [10].
� If ˇ D 1, we employ dynamic delayed output feedback. Then, by realising that Qva.t/ � Qva
.t��/ D va.t/�va.t��/, because v�a.t/ D v

�
a.t��/ due to the periodic nature of the chatter-

free solution, this controller can be directly implemented using only measurement of va.t/
(without the need for online estimation algorithms to estimate the chatter vibrations Qva.t/).
The latter approach is pursued (so for ˇ D 1) in this paper.

4. GENERALIZED PLANT FORMULATION

In order to solve the problem stated in the previous section, the model of the milling process will be
extended with uncertainties in depth of cut ap and spindle speed n. Hereto, the control goal will be
cast into the generalized plant framework, see Figure 4. The generalized plant P is a given system
with three sets of inputs and three sets of outputs. The signal pair p; q denotes the inputs/outputs of
the uncertainty channel connecting the plant to the uncertainty block �. The signal r represents an
external input in which possible disturbances, measurement noise, and reference inputs are stacked.
The signal F a is the control input. The output ´ can be considered as a performance variable while
y.t/ D Ca . Qx.t/ � ˇ Qx.t � �// denotes the outputs used for feedback.

To derive the generalized plant formulation, first, a time-invariant approximation of the linearized
model of the milling process (8) is employed. The focus in this work lies on full immersion cuts,
where the full width of the cutter is used for cutting. As described in [16], for full immersion cuts,
it is sufficient to average the dynamic cutting forces

P´�1
jD0 Hj .t/ over the tool path such that the

milling model becomes an autonomous (time-invariant) DDE model. Because the cutter is only
cutting when �s 6 � 6 �e , the averaged cutting forces are given by

NH D
´

2�

Z �e

�s

´�1X
jD0

Hj .�/d�: (11)

Then, the linear time-invariant model of the milling process is obtained by combining (8) withP´�1
jD0 Hj .t/ D NH and NH given in (11).
Based on the discussion aforementioned, let us define the following uncertainty sets:

ap D
1

2
Nap
�
1C ıap

�
; � D �0 C ı� ; (12)

where Nap is the maximal depth of cut for which stable milling is desired, ıap 2 C; jıap j 6 1; �0 D
N�C�
2

, and ı� 2
N���
2
Œ�1; 1�, such that 0 < � < N� . Here, � and N� together define the range of spindle

Figure 4. Generalized plant interconnection.
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speeds
h
60
´ N�
; 60
´�

i
for which stable milling is desired. Moreover, as described in Section 3, it is desired

to limit the magnitude of the actuator forces. Therefore, the performance output is chosen as the
weighted control input ´.s/ DWKS .s/F a.s/, s 2 C, where WKS is a stable weighting filter with
the following state-space realization:

PxKS .t/ D AKSxKS .t/C BKSF a.t/;

´.t/ D CKSxKS .t/C DKSF a.t/:
(13)

Substituting (12) in (8) with
P´�1
jD0 Hj .t// D NH and NH given in (11) and by adding the performance

input/output channels to the system and rearranging terms, the state-space representation of the
generalized plant P is given as follows‡:

PxP .t/ D AP;0xP .t/C AP;1xP .t � �0/C BPuP .t/

vP .t/ D CP;0xP .t/C CP;1xP .t � �0/C DPuP .t/
(14)

with the state vector xP .t/ D
h
QxT .t/ xTKS .t/

iT
, input vector uP .t/ D

h
qT .t/ rT .t/ F Ta .t/

iT
,

with r 2 R2 representing measurement noise on the output y, and output vector vP .t/ Dh
pT .t/ ´T .t/ yT .t/

iT
. The (structured) uncertainty channel input p.t/ and output q.t/ are

defined as

p.t/ D

2
4 p1.t/p

2
.t/

p
3
.t/

3
5 WD

2
4 Ctx.t � �0/

Cax.t � �0/
1
2
NapCt .x.t/ � x.t � �0// � 1

2
Napq1.t/

3
5 ; (15)

q.t/ D

2
4 q1.t/q

2
.t/

q
3
.t/

3
5 WD

2
4
�
Dı� � 1

�
p
1
.t/�

Dı� � 1
�
p
2
.t/

ıapp3
.t/

3
5 ; (16)

where the delay-operator Dı� is defined as Dı�x.t/ D x.t � ı� /. The state-space matrices of the
generalized plant in (14) are given by

AP;0 D
�

AC 1
2
NapBt NHCt 0
0 AKS

�
; AP;1 D

�
�1
2
NapBt NHCt 0

0 0

�
;

BP D
�
�1
2
NapBt NH 0 Bt NH 0 Ba
0 0 0 0 BKS

�
;

CP;0 D

2
66664

0 0
0 0

1
2
NapCt 0
0 CKS

Ca 0

3
77775 ; CP;1 D

2
66664

Ct 0
Ca 0

�1
2
NapCt 0

0 0
�ˇCa 0

3
77775 ;

DP D

2
66666664

0 0 0 0 0
0 0 0 0 0

�1
2
NapI2 0 0 0 0
0 0 0 0 DKS
0 �ˇI2 0 I2 0

3
77777775

with identity matrix In 2 Rn�n.

‡We employ ideas from [26] in constructing the generalized plant formulation.
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In the following discussion, the transfer function description of the generalized plant will also be
used. The transfer function description of the generalized plant P is given as follows:

P.s/ D .CP;0 C CP;1e�s�0/ ŒsI � AP;0 � AP;1e�s�0 �
�1 BP C DP ; (17)

s 2 C.
Let �.s/ denote the Laplace transform of the uncertainty term (16), such that q.s/ D �.s/p.s/

with

�.s/ D

� �
e�sı� � 1

�
I4 0

0 ıap I2

�
: (18)

It can be seen that the uncertainty term, given in the preceding text, depends on the frequency. In
[27], it has been shown that the delay uncertainty e�sı� �1 can be upper bounded by a (non-rational)
frequency-dependent upper bound �.i!/ given as follows:

�.!/ D

²
2 sin ı�!

2
; 8!; 0 6 ! 6 �=ı�

2; 8! > �=ı� ;
(19)

in the sense that
ˇ̌
e�i!ı� � 1

ˇ̌
6 �.!/. Let us define L.s/ D diag.�.!/I4; I2/, for all s D � C

i!; �; ! 2 R. Then the (scaled) generalized plant and uncertainty term is obtained as follows:

QP.s/ D diag.L.s/; I2; I2/P.s/; Q� D �.s/L�1.s/:

5. SYNTHESIS OF FIXED-STRUCTURE DELAYED OUTPUT FEEDBACK CONTROLLERS

In this section, we propose a synthesis technique for the design of fixed-structure (delayed) out-
put feedback controllers guaranteeing robust stability and performance. Based on the discussion in
the previous section, it becomes clear that the design of a controller guaranteeing such robustness
properties requires the following optimization problem to be solved:

min
K

sup
!2R

� Q�.N/;

subject to ‰.K/ < 0;
(20)

with N the lower fractional transformation LFT of QP and fixed-structure controller K (see [28] for
the definition of LFTs) and‰.K/ the spectral abscissa function of the closed-loop system defined as

‰.K/ WD sup
°
<.	/ W det



	I � NA0 � NA1e���0

�
D 0

±
; (21)

where

NA0 D
�

AC 1
2
NapBt NHCt 0
0 0

�
C

�
Ba 0
0 I

� �
Dc Cc
Bc Ac

� �
Ca 0
0 I

�
;

NA1 D
�
�1
2
NapBt NHCt 0

0 0

�
C

�
Ba 0
0 I

� �
Dc Cc
Bc Ac

� �
�ˇCa 0

0 0

�
:

The constraint on the objective function, defined in the preceding text, is a necessary condition to
guarantee the existence of the H1-norm of N along with stability of the closed-loop system, see
also [28].

The robust stability and performance requirement can now be translated into demanding that
the objective function in (20) is smaller than one. It is in general difficult to calculate � Q�.N/.
However, an upper bound on � Q�.N/ can be obtained by calculating the scaled H1 norm of N [28].
Because the uncertainties are modelled by complex uncertainties, see (12) and (18), as described in
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the previous section, a reasonable approach to solve the problem is to apply D-K-iteration, see [28].
Hereby, the optimization problem is given as follows:

min
K

inf
D2H1

��DND�1
��
1
;

subject to ‰.K/ < 0;
(22)

which is iteratively solved for K and D. Herein,

��DND�1
��
1
D sup
!2R
N

�
D.i!/N.i!/D.i!/�1

�
;

H1 denotes the set of functions that are analytic and bounded in the open right half plane, and the
structure of D is chosen such that D commutes with the uncertainty set Q�, that is, satisfies D Q� D
Q�D. We refer to, for example, [29] for more details on the computation of lower and upper bounds

on the complex structured singular value. For a given K, the problem of finding the scaling matrix
D can be turned into a convex optimization problem, which is generally solved pointwise in the
frequency domain (for example, by using the mussv command from the Robust Control Toolbox
of MATLAB [30], which uses the algorithm presented in [31]). Because our aim is to design fixed-
structure controllers, the problem of finding K, for a given D, in general results in a non-convex,
non-smooth, constrained optimization problem, given as follows:

min
K
f .K/; subject to ‰.K/ < 0 (23)

with f .K/ WD sup
!2R
N

�
D.i!/N.i!/D.i!/�1

�
.

The non-smooth dependence of the objective function (23) on the controller parameters of K
typically occurs when the maximum of the objective function is located at two (or more) differ-
ent frequencies. Due to the non-smoothness in (23), standard optimization algorithms cannot be
used to determine the (optimal) parameters of controller K, because these tend to chatter about
a non-smooth surface. Instead, non-smooth optimization techniques, based on bundle methods
[32, 33], will be used. Here, we employ a particular gradient bundle method, called gradient
sampling, developed by Burke et al. [34]. In this way, when the optimization approaches a non-
smooth manifold, at which, for example, a (smooth) steepest descent based algorithm will fail, the
bundle algorithm is able to use the information from both sides of the non-smooth manifold to turn
the corner and make progress toward the minimizer [35].

The gradient sampling algorithm can be used to locally minimize non-smooth, non-convex objec-
tive functions. In general, the gradient sampling algorithm is, however, quite expensive per iteration.
Therefore, Lewis and Overlon have developed a hybrid algorithm for non-smooth optimization
HANSO [36]. First, the BFGS method (named after its inventors Broyden, Fletcher, Goldfarb, and
Shannon), a quasi-Newton algorithm, with an inexact line search algorithm based on weak Wolfe
conditions is employed (see [37] for detail on BFGS and line search methods). When the BFGS
algorithm finds a minimizer, the optimization is stopped. In the event that, at a certain iteration, the
Wolfe conditions are not satisfied, which indicates that the optimization is near a non-smooth mani-
fold, the gradient sampling algorithm is employed where the sampling radius is adaptively reduced,
see [34].

The hybrid optimization algorithm HANSO, as discussed in the preceding text, is in general
applied to finite-dimensional systems with continuous objective functions. However, as shown in
[14, Chp. 9], the H1-norm of a system with time delay exhibits continuity properties and is
differentiable almost everywhere, which allows the application of HANSO for the present problem.

From (23), it can be seen that the problem of finding a fixed-structure controller, which guar-
antees robust performance of the milling process is actually a constrained optimization problem.
However, HANSO is only able to deal with unconstrained optimization problems. The constrained
optimization problem can, however, be converted to an unconstrained optimization problem using a
penalty method, see [38]. Hence, in this paper, we opt to replace the constrained objective function
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in (23) with an unconstrained (non-smooth) objective function, yielding the following unconstrained
optimization problem:

min
K
Nf .K/; (24)

where Nf .K/ D f .K/C � max .0;‰.K// and � is a positive constant. The value of � is in general
iteratively chosen, see [37] for rules on how to choose � .

During an optimization step, in order to evaluate the objective function (24) for given K and D,
the (scaled) H1-norm of DND�1 as well as spectral abscissa ‰.K/, defined in (21), needs to be
calculated. Because, in this case, the system is infinite dimensional (due to the presence of the time
delay), the standard Hamiltonian approach to calculate the H1-norm, as presented in [39], cannot
be used. Recently, in [40], a method is presented to compute the H1-norm of a stable time-delay
system with transfer function representation

G.s/ D C .sI � A0 � A1e�s� /
�1 BC D: (25)

Unfortunately, as can be seen from (17), the transfer function description of the generalized
plant is not in the form of (25). Hence, here, the H1-norm will be determined by calculat-
ing the singular values of D.i!/N.i!/;K.i!//D.i!/�1 pointwise across a grid of frequencies
! D Œ!1; !2; : : : ; !N �

T . The spectral abscissa is determined using the DDE-BIFTOOL [41] soft-
ware package, which can be used to determine the right-most characteristic roots of an LTI system
with time delays. More information about computation of characteristic roots for time-delay systems
can be found in [14].

Based on the discussion in the preceding text, an algorithm is devised to solve the fixed-structure
robust control synthesis problem for LTI time-delay systems with structured uncertainties, see [9]
for further details on this algorithm and the role of gradient sampling herein. Finally, we remark
that, because the controller synthesis problem posed in the preceding text is in general a non-convex
problem, the choice of the initial controller parameters, used as input for the fixed-order controller
synthesis procedure, requires careful consideration. As argued in [7, 8, 42], and confirmed by the
results in Section 6, it is beneficial to design a controller that changes the closed-loop spindle
dynamics in such a way that the dominant natural frequency of the (closed-loop) spindle dynamics
is close to a tooth passing excitation frequency. Therefore, it is desirable to choose initial controller
parameters inducing such desirable closed-loop characteristics at least approximately. This could,
for example, be carried out by employing the �-synthesis approach as presented in [8].

6. CONTROLLER SYNTHESIS RESULTS

In this section, the results of the application of the fixed-structure controller synthesis methodology,
presented in the previous section, to the robust chatter control problem will be presented. Delayed
output feedback controllers (with ˇ D 1 in (10)) will designed for the high-speed milling pro-
cess modelled in Section 2. Firstly, a static delayed output feedback case will be considered in
Section 6.1 for a milling process with a linear cutting model, which permits graphical illustration
of the benefits of the proposed optimization-based synthesis approach because the number of con-
troller parameters is limited in this case. Secondly, dynamic delayed output feedback controllers
will be designed in Section 6.2 for a milling process with a nonlinear cutting model to illustrate that
improved performance can be achieved by such dynamic controllers.

Here, the machine spindle-toolholder-tool dynamics, between inputs F t and F a and outputs vt
and va, see Figure 3, is modelled by two decoupled subsystems (representing the dynamics in two
.x; y/ orthogonal directions perpendicular to the spindle axis). The dynamics in both the x-direction
and y-direction are modelled as two-degree-of-freedom mass-spring-damper systems, see Figure 5,
with masses mi;k; i 2 ¹a; tº; k 2 ¹x; yº, with mt;x; mt;y the tool mass in x-direction and y-
direction, respectively, and ma;x ; ma;y the spindle/actuator mass in x-direction and y-direction,
respectively, the eigenfrequencies !i;k D

p
.ci;k=mi;k/; i 2 ¹a; tº; k 2 ¹x; yº, and dimensionless

damping ratios �i;k D bi;k=2
p
.ci;kmi;k/; i 2 ¹a; tº; k 2 ¹x; yº. This is carried out in order
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Figure 5. Spindle dynamics model, k 2 ¹x; yº. F a; va: forces, displacements at actuator. F t ; vt : forces,
displacements at tooltip.

Table I. Milling model parameters.

Parameter Value Parameter Value

mt;x D mt;y 0.015 kg Kt 462
h
N/mm.1CxF /

i

ma;x D ma;y 0.14 kg Kr 38:6
h
N/mm.1CxF /

i
!t;x D !t;y 2350 Hz ´ 4 [-]
!a;x D !a;y 1400 Hz �s 0 [rad]
�t;x D �t;y 0.05 [-] �e � [rad]
�a;x D �a;y 0.12 [-] f´ 0.2 mm/tooth

to capture the inherent dynamics between the actuator/sensor system (denoted by subscript a) and
the cutting tool (denoted by subscript t ). The parameters of the milling model, considered in this
section, are given in Table I.

6.1. Static delayed output feedback

In this section, a static delayed output feedback controller (nc D 0 and ˇ D 1, in (10)) will be
designed for the uncertain time-delay system (8). Moreover, a linear cutting model is considered
(i.e., xF D 1 in (3)). The structure of the controller (feedback gain) matrix is chosen such that it
has a similar structure as the averaged cutting force matrix NH, which can be written as the sum of
a diagonal matrix kI and a skew-symmetric matrix for a linear cutting model with full immersion
cutting, see [16, page 107]. Then, the controller matrix can be parametrized by only two parameters,
and only two controller parameters need to be synthesized; that is, the controller matrix structure is
given as

K D Dc D
�
k1 �k2
k2 k1

�
; (26)

with the unknown controller parameter vector Kp D
�
k1 k2

�T
. This allows for a graphical rep-

resentation of the results, thereby providing insight into the functioning of the optimization-based
controller synthesis approach.

The static delayed output-feedback controller is designed such that it stabilizes milling opera-
tions between n 2 Œ36000; 38000� rpm, for a depth of cut, which is as large as possible given the
performance requirement on the weighted control sensitivity, with a static performance weighting
WKS D Kp , whereKp D 1 �10�6 mm/N, to limit the control action needed for stabilization. More-
over, the parameter of the penalty function is set to � D 100, and the initial sampling radius for the
gradient sampling technique is set to s D 0:1.
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Figure 6. Objective function in K-step of algorithm (left) and feedback gains k1 and k2 (right) as a function
of iteration number.

Starting at the initial controller parameters k1 D k2 D 0, the fixed-structure controller
synthesis algorithm, as presented in Section 5, solves the constrained optimization problem
(23) by iterating over D and K. The algorithm converges after three D-K steps resulting in
sup
!2R
N

�
D.i!/N.i!/D�1.i!/

�
D 0:9992 therewith guaranteeing robust performance for milling

operations between n 2 Œ36000; 38000� rpm up to a depth of cut of Nap D 2:35 mm.
In Figure 6(a), the values of the objective function during the K-step, that is,

sup!2R N

�
DlND�1

l

�
C � max.0;‰.K// with l D 1; 2; 3 the index of the corresponding D-scale

matrices Dl , are given as function of iteration number. Moreover, the evolution of the feedback gains
k1 and k2 during the K-steps are given in Figure 6(b). The obtained feedback gains that guarantee
robust performance of the milling process for the desired uncertainties are given as

k1 D 697:1599N/mm;

k2 D �1071:058N/mm;

from which it can be seen that the controller parameters are smaller than the inverse of the perfor-
mance bound W �1KS imposed on the control sensitivity KS. A contour plot of the objective function
(24) for D D I is given in Figure 7. Moreover, optimization history (in the first K optimiza-
tion step, i.e., l D 1) is given in the feedback gain parameter space. It can be observed that the
optimization moves toward the (local) minimum of the objective function for the given D-scaling.

Figure 7. Contour plot of objective function (24) for fixed D-scales D D I; � D 100 together with optimiza-
tion result during the first K-step of the algorithm. The circle indicates the parameter values obtained at the

end of the first K-step.
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In Figure 8, a contour plot is depicted where the upper bound on sup!2R � Q�.N.i!// is calculated
for several values of k1 and k2. Moreover, the optimization history of the fixed-structure controller
synthesis algorithm in the feedback gain parameter space is given, where the end point of each
K-step in the D-K-iteration process is indicated by a circle. From the contour plot, it can be seen
that during the D-K-iteration, the optimization converges to a (local) minimum thereby guarantee-
ing robust performance of the milling process. During the second D-K-step, the optimization moves
along a non-smooth boundary of the objective function. In the same figure, the evaluation of the
objective function by using the default BFGS algorithm for smooth functions (see [37, Chp. 6],
invoked using fminunc from MATLAB) is given in grey. It can be seen that the standard BFGS
algorithm gets stuck at a non-smooth boundary of the objective function (a non-smooth boundary
can be distinguished from the non-smoothness of a contour).

Next, stability lobes diagrams (SLDs) are determined for the original linearized time-variant
model of the milling process (Equation (8)), as outlined in Section 2.2, with and without the static
delayed output-feedback controller. The SLD is given in Figure 9. It can be seen that the controller
synthesis algorithm has created a peak in the SLD near the desired spindle speed range correspond-
ing to a maximum depth of cut of ap;max D 3:52 in that desired spindle speed range. Note that
in open loop ap;max D 1:60 and, thus, a 120% improvement in the chatter-free depth of cut has
been achieved. Such a favorable shaping of the SLD is realized by altering the closed-loop spin-
dle dynamics near the first resonance, see Figure 10. The fact that particularly the first resonance
mode is targeted by this controller can be explained as follows. In Figure 9, it is indicated that the

Figure 8. Contour plot of objective function sup!2R � Q�.N.i!// together with optimization result using
Algorithm 5.1 (black) and standard BFGS (grey) during three D-K-iterations of the algorithm. The circles

indicate the end of each K-step.

Figure 9. Stability lobes diagram with and without static output feedback controller.
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Figure 10. Controlled Gtt;c.i!/ (solid) and uncontrolled (open-loop) Gtt .i!/ (dashed) tooltip spindle
dynamics for the static-output controller designed for a range of spindle speeds, n 2 Œ36000; 38000� rpm.

SLD associated with the open-loop system is dominated, in the spindle speed range of interest, by
a stability lobe corresponding to the first resonance mode of the spindle dynamics. This figure also
indicates that the SLD associated with the closed-loop system is dominated, in the spindle speed
range of interest, by a stability lobe corresponding to the second resonance mode of the (closed-
loop) spindle dynamics. Hence, the controller ensures a shifting of the first resonance peak thereby
alleviating the criticality of this resonance for the occurrence of chatter and allowing for higher
chatter-free depths of cut in closed loop as evidenced in Figure 9.

Based on the discussion earlier, it can be concluded that the proposed controller synthesis
strategy is able to effectively alter the SLD such that productivity is significantly increased. This
is even accomplished for the least number of controller parameters. In the next section, fixed-
structure controllers will be synthesized using dynamic delayed output-feedback controllers, thereby
increasing the versatility of the controllers and the achievable performance.

6.2. Dynamic delayed output feedback

The previous section illustrated the working principle of the proposed controller design method
using a static delayed output feedback controller with two controller parameters. In this section, the
results will be presented by synthesizing dynamic delayed output controllers as defined by (10) (with
ˇ D 1) for xF D 0:744 (i.e., for a nonlinear cutting model, see (3)). The other system parameters
are taken as in Table I.

The dynamic output feedback controller will be designed such that milling operations between
n 2 Œ34000; 36000� rpm are stabilized, for a depth of cut, which is as large as possible given the
performance requirement on the weighted control sensitivity. Here, the performance weightingWKS
is chosen as

WKS .s/ D Kp

1
2�fr;l

s C 1

1
2�fp;l

s C 1
�

1
2�fr;h

s C 1

1
2�fp;h

s C 1
; (27)

with Kp D 1 � 10�6 mm/N, fr;l D 100 Hz, fr;h D 7500 Hz, fp;l D 1 � 10�2 Hz, and fp;h D
2 �104 Hz. As before, the parameter of the penalty function is set to � D 100 and the initial sampling
radius of the gradient sampling algorithm is chosen as s D 0:1.

In order to reduce the number of optimization variables (i.e., controller parameters), the initial
controller, used as starting point for the optimization-based design, is transformed to the modal
canonical form (herewith, the system matrix Ac of the reduced-order controller has the real Jordan
form). After the transformation, the controller’s system matrix Ac is a block diagonal matrix, that
is, Ac D diag

�
Ac;1; : : : ;Ac;nC=2CnR

�
, with nC the number of complex eigenvalues and nR the

number of real eigenvalues, and

Ac;l D 	l ; for 	l 2 R; (28)
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and

Ac;l D
�
<.	l/ =.	l/
�=.	l/ <.	l/

�
; for 	l 2 C; (29)

where 	l is the solution of det.	lI�Ac/ D 0. Note that in this case, it is assumed that the eigenval-
ues have algebraic multiplicity one. Three fixed-structure controllers are synthesized, namely, for
nc D 0 (i.e., static delayed output feedback), and nc D 2 and nc D 4 (i.e., dynamic delayed output
feedback), using the algorithm as presented in Section 5. The algorithm has to optimize 4 param-
eters in case of nc D 0; 16 parameters in case of nc D 2 and 28 parameters in case of nc D 4.
The results are listed in Table II. As before, SLDs are computed with the designed fixed-structure
controllers and without control using the linearized time-variant model of the milling process (8),
as outlined in Section 2.2. The corresponding results are given in Figure 11. For completeness, the
maximal achievable depth of cut ap;max from the SLD in the desired spindle speed range is listed in
Table II. From the figure, it can be observed that for the case where nc D 0, the fixed-structure con-
troller indeed alters the SLD. In this case, based on the SLD, the depth of cut can be increased from
ap;max D 1:067 mm in open loop to 1.469 mm in closed loop, which is an improvement of approxi-
mately 38%. The peak of the closed-loop stability lobe is approximately located at n D 38700 rpm,
which is outside the domain of desired spindle speeds. Of course, if the peak of the sld could be
placed inside the desired interval of spindle speeds, then a higher maximum depth of cut could be
achieved. In order to shift the peak of the lobe at such a spindle speed, the controller, in this case,
needs to have more complexity (freedom), which is obtained by increasing the controller order.

For the dynamic fixed-structure controllers with nc D 2 and nc D 4, it can be observed in
Figure 11 that the SLD is altered such that a lobe is indeed created at the desired spindle speed
interval. Clearly, by increasing the order of the fixed-structure controller, the area for which robust
stability is guaranteed is increased. In this case, based on the SLD in Figure 11, the depth of cut can

Table II. Results from fixed-structure controller synthesis
for three different controller orders; Nap denotes the max-
imal depth of cut for which robust performance can be
guaranteed, and ap;max denotes the maximal depth of cut

in the SLD for the desired spindle speed interval.

nc [-] No. D-K-steps � Q� [-] Nap [mm] ap;max

0 7 0.9983 1.1250 1.4690
2 10 0.9918 1.8250 2.1456
4 9 0.9810 2.0000 2.3992

Figure 11. Stability lobes diagram for the structured delayed dynamic output feedback controllers for 0, 2,
and 4 controller states, respectively, and without control. The area for which robust stability is guaranteed is

indicated by the dashed boxes, see also Table II.
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Figure 12. Magnitude of the fixed-structure controller for nc D 0 (black dashed), nc D 2 (grey solid), and
nc D 4 (black solid) controller states, which stabilizes the milling process for n 2 Œ34000; 36000� rpm.

Also, the magnitude of the inverse of the performance weighting function WKS is given.

be increased from ap;max D 1:067 mm to ap;max D 2:146 for nc D 2 and to ap;max D 2:399 for
nc D 4, which leads to a productivity increase of approximately 101% and 125%, respectively.

The resulting fixed-structure controllers are given in Figure 12. From the figure, it can be seen
that the controllers designed for nc D 2 and nc D 4 are dynamic MIMO controllers with notch
characteristics. The closed-loop tooltip dynamics in both x-direction and y-direction are given in
Figure 13. In the same figure, the interval of tooth passing excitation frequencies ftpe associated
with the spindle speed interval n 2 Œ34000; 36000� rpm is indicated. It can be seen that the static
controller, that is, nc D 0, mainly changes the dynamics around the first resonance peak (at around
1300 Hz), see related discussion in Section 6.1. For the dynamic fixed-structure controllers with
nc D 2 and nc D 4, it can be observed that the controllers also alter the closed-loop tooltip spindle
dynamics such that the second resonance (at around 2500 Hz) is shifted to a lower frequency range.
This second resonance is altered such that it lies inside the area of desired tooth passing excitation
frequencies, which is beneficial for stability. The fact that a closed-loop spindle resonance situated
at a tooth-passing excitation frequency is beneficial for avoiding chatter can be explained as follows.
In the milling process, the highest depth of cut can be obtained (corresponding to a peak in the SLD)
when the dynamic chip thickness hj;dyn.t/ D vt .t/� vt .t � �/ is equal to zero. This relation can be
transformed to the frequency domain as follows:

H j;dyn.i!/ D .1 � e
�i!� /V t .i!/ DW Q.i!/V t .i!/; (30)

whereH j;dyn.i!/ and V t .i!/ are the Fourier transforms of hj;dyn.t/ and vt .t/, respectively. Hence,
the difference between the tooltip displacements of the present and previous cut is actually charac-
terized by a filter, denoted by Q.i!/, with zeros at ! D l 2�

�
D l2�ftpe; l D 0; 1; 2; : : : (and ftpe

the tooth-passing frequency). Moreover, for the milling process, the dominant (chatter) frequency
of the perturbation vibrations lies in general close to a resonance frequency of the spindle dynamics.
Then, by designing the controller such that the dominant closed-loop resonance frequency is close
to a tooth-passing frequency and due to the filter properties of the Q.i!/ (in particular the location
of the zeros ofQ.i!/ at ftpe-related frequencies), the dynamic chip thickness is enforced to be zero
at the desired spindle speed. This, in turn, results in a large depth of cut within the desired spindle
speed range and a peak in the SLD at that spindle speed (see Figure 11 for nc D 2 and nc D 4). So,
by applying robust control design techniques, a controller is designed, which tailors the tooltip spin-
dle dynamics, such that a resonance is created near a tooth passing harmonic, which in turn results
in a peak in the SLD and a high increase in productivity.
Remark. We care to stress that the fact that a closed-loop resonance is close to a tooth-passing
frequency only applies to the closed-loop dynamics (8), (9), (10) in perturbation coordinates and not
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Figure 13. Controlled Gtt;c.i!/ and uncontrolled Gtt .i!/ tooltip spindle dynamics in x-direction and y-
direction for fixed-structure controller for nc D 0; nc D 2 and nc D 4 states designed for a spindle speed
interval n 2 Œ34000; 36000� rpm. The interval of tooth passing excitation frequencies corresponding to the

spindle speed range is indicated by the grey area.

to the dynamics (7) governing the underlying periodic solution x�.t/ associated with the ‘no-chatter’
milling response. The latter statement is valid by the grace of the fact that the proposed controller
only employs feedback of the perturbation variables, see (10), and hence the control action vanishes
on the nominal periodic (no-chatter) solution x�.t/. As a consequence, this nominal solution is not
changed by the controller and the fact that a closed-loop resonance of the perturbation dynamics is
close to a tooth-passing frequency does not imply that the nominal solution is subject to (undesired)
resonance phenomena.

Related to this, we remark that if the controller would not be based on perturbation feedback, the
controller may affect the nominal solution, which, in turn, may become associated with resonance-
induced high-amplitude vibrations. Clearly, the latter scenario is generally undesired, and this
further motivates the usage of perturbation feedback and its implementation through Pyragas-type
delayed feedback. Finally, we note that if high-amplitude nominal vibrations would be induced,
other models for the chip thickness than that employed in this paper may be needed, as indicated
in [43].

7. CONCLUSIONS

This paper proposes a methodology to synthesize fixed-structure controllers guaranteeing robust
stability and performance of the high-speed milling process, in particular, the avoidance of chatter
in a predefined area of depth-of-cut and spindle speed while respecting limitations regarding the
required actuator forces. The resulting controllers are of low complexity (order) and facilitate a
significant increase in the feasible material removal rate.

The controller synthesis problem has been cast into a non-smooth constrained optimization
problem, which can be transformed to an unconstrained non-smooth optimization problem using a
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penalty function. The unconstrained optimization problem is solved using D-K-iteration. The K-step
is solved by utilizing a dedicated non-smooth optimization algorithm based on bundle methods.

An important aspect of the proposed controller structure is the choice of the measurement
variable used for feedback. Here, we have proposed delayed dynamic output-feedback controllers
for chatter mitigation in high-speed milling. The employment of delayed output feedback simplifies
the implementation of the active chatter control procedure in practice as no additional estimators for
chatter-related vibrations are needed. Moreover, the approach enables the design of relatively low-
order controllers, which is desirable from a real-time implementation perspective especially given
the high-frequency characteristics of the milling dynamics. The presented examples illustrate the
power of the proposed controller synthesis methodology in terms of ensuring a significantly higher
material removal rate in closed loop while avoiding chatter.

The real-life implementation of the control strategy proposed here gives rise to mechatronic
design challenges related to specifications on sensors, actuators, and computational platforms, and
further research is needed to experimentally validate the proposed control strategy in practice. For
industrial implementation of the proposed control strategy, an adapted machine tool design should
be pursued including integrated actuators and sensors. The design of such spindles is a challeng-
ing topic for future work. Nevertheless, prototype spindles have been developed already (see, e.g.,
[3, 4, 7, 44]) for such purpose. The latter fact illustrates the feasibility of applying advanced chatter
control strategies, such as that developed in this paper, in practice.
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