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Abstract
The response of strongly nonlinear dynamic systems to stochastic excitation exhibits many
interesting characteristics. In this paper, an impacting beam system under broad and small
banded, Gaussian noise excitation is investigated numerically as well as experimentally. The
emphasis lies on frequency domain characteristics. Phenomena like multiple resonance fre-
quencies and stochastic equivalents of harmonic and subharmonic solutions are found. A
better understanding of such stochastic response characteristics is obtained by a comparison
with nonlinear periodic response features. It is shown that these stochastic response phenom-
ena can provide valuable information on periodic response characteristics of the system.

1. Introduction

Nonlinear dynamic systems under random
excitation are frequently met in practice.
The excitation randomness can vary from
road profiles in vehicle motion, environmen-
tal loads, such as earthquakes and high build-
ing wind excitation, wave motions at sea ex-
citing offshore structures or ships, or electric
or acoustic noise exciting mechanical struc-
tures.
In this paper, a base excited beam sys-

tem with a strong nonlinearity (elastic stop)
is investigated. These kind of systems with
a local nonlinearity are very regular in prac-
tice for example in case of gear rattle, ships-
fender collisions and snubbers in satellite
solar-arrays. Although the nonlinearity is lo-
cal, the dynamic behaviour of the entire sys-
tem is strongly influenced by it. Nonlinear
periodic response phenomena of these kind
of systems have been studied extensively, see
Fey et al. [1996], Van de Vorst [1996], and
Van Campen et al. [1997].

∗Address all correspondence to this author.

When stochastic excitations are applied to
such systems, many unexpected interesting
response phenomena can be observed. These
phenomena are of specific interest because
they shed light on the common characteris-
tics of periodic and stochastic dynamic be-
haviour. As a consequence, the system’s be-
haviour can be understood more thoroughly.
For almost discontinuous nonlinearities, like
an elastic stop, and (in our case band lim-
ited) random excitation, numerical integra-
tion is the only effective approach.
First the system will be introduced. In sec-
tion 3, a brief survey of simulated periodic
response characteristics will be given. The
simulation procedure and -results will be dis-
cussed in sections 4 and 5. In sections 6 and 7
the experimental set-up is described and the
experimental results are discussed and com-
pared with simulation results. Finally, in sec-
tion 8, we present some conclusions.



2. The nonlinear beam system

2.1 System description

The system consists of a linear elastic beam,
clamped onto a rigid frame, and an elastic
stop (two half spheres), see figure 1. The
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Figure 1: The nonlinear base excited beam sys-
tem

system excitation comes from the prescribed
stochastic displacement y of the rigid frame.
The response x is the vertical displacement of
the beam at the point of contact. In the next
subsections 2.2, 2.3 and 2.4 the elastic beam
model, a model for the elastic stop and finally
the complete 1-dof model of the system will
be presented.

2.2 The elastic beam

The elastic beam was modeled as a single-
degree-of-freedom (SDOF) system using the
Rayleigh-Ritz method. The system model
can then be written as:

mẍ+ bẋ+ kx = F (1)

with mass m = 37.75 10−3 [kg], stiffness k =
736.3 [N/m] and damping b = 0.16 [kg/s].
The parameters m and k are tuned by means
of experiments on the single beam system,
and the damping parameter b was chosen ac-
cording to the damping of the first and higher
eigenmodes.

2.3 The elastic stop

The elastic stop is modeled using a Hertzian
contact model [Hertz, 1895; Goldsmith,

1960]:

F =
2
3
Er

√
Rr δ1.5 =

KHertzδ
1.5, δ ≥ 0 (2)

In equation (2), F is the contact force and
δ = y − x, δ ≥ 0 the relative displacement
of the two colliding spheres, whereas the re-
duced Young’s modulus Er represents the
material properties of both colliding bodies
(made of PTFE). Furthermore, the reduced
radius of curvatureRr represents the geomet-
rical properties of the colliding bodies. The
latter are defined as:

Er =
2

1−ν2
1

E1
+ 1−ν2

2
E2

, Rr =
R1R2

R1 +R2
(3)

where Ri is the principal radius of curvature
of body i, while Ei is the Young’s modu-
lus of body i and νi the Poisson’s ratio of
body i. The contact model (2) can be re-
fined by adding a hysteretic damping term,
see Lankarani and Nikravesh [1994], account-
ing for energy loss during collision, giving:

F = KHertz δ1.5

(
1 +

µ

KHertz
δ̇

)

= KHertz δ1.5

[
1 +

3(1 − e2)
4

δ̇

δ̇−

]
(4)

in which e is the coefficient of restitution, a
measure for energy dissipation. Moreover, δ̇−

is the velocity difference of the two colliding
bodies at the beginning of the impact. Both
KHertz as well as e were estimated experimen-
tally, using many collisions and least-squares
estimation. In these measurements the in-
dentation δ, the indentation velocity δ̇, and
the contact force F were monitored, see fig-
ure 2. The parameter KHertz has been esti-
mated by comparing F and δ at maximum
indentation (δ̇ = 0), assuming that the static
contact force is proportional to δ1.5, see equa-
tion (2). The coefficient of restitution e has
been estimated by considering the energy loss
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Figure 2: Measurement of several collisions to es-
timate KHertz and e

∆T during collision (surface within the hys-
teresis loop):

∆T =
∮

µ δ1.5 δ̇ dδ (5)

Therefore, µ and e can be estimated from:

µ =
∆T∮

δ1.5 δ̇ dδ
; e =

√
1−

4
3 µδ̇−

KHertz
(6)

The actual estimated parameter values are:
KHertz ≈ 2.1 108 N/m1.5, e ≈ 0.5.
The last value indicates that this damping is
essential in the model.

2.4 The SDOF nonlinear dynamical
model

The assembled nonlinear beam-impact model
is visualized in figure 3 and its SDOF equa-
tion of motion becomes:

mẍ+ bẋ+ kx+ f(δ) = bẏ + ky (7)
f(δ) = ε(−δ) F, F from (4)

ε(−δ) =
{
0 for δ ≤ 0
1 for δ > 0

It should be noted that KHertz considerably
exceeds the linear beam stiffness k, indicating
that the system is highly nonlinear.
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Figure 3: The SDOF model for the nonlinear
beam system

3. Periodic response overview

To facilitate the interpretation of stochas-
tic response phenomena, discussed later on
in this paper, some periodic phenomena of
the nonlinear beam system will be presented.
Figure 4 shows the maximum absolute dis-
placement x of periodic solutions as a func-
tion of excitation frequency for a 4-DOF
model of a comparable nonlinear beam sys-
tem, see Van de Vorst [1996]. Important res-
ponse characteristics are the harmonic reso-
nance peak, (1), and corresponding subhar-
monic resonances (1/2, 1/3) and superhar-
monic resonances (2), all with stable as well
as unstable branches.
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Figure 4: Maximum absolute displacements
|x|max of periodic solutions of a 4-DOF
model [Van de Vorst, 1996]



4. Simulation approach

4.1 Generation excitation signals

The base excitation of the system is as-
sumed to be Gaussian, band-limited noise,
as schematically shown in figure 5. For a de-

max f

Pyy(f)

f f f fmaxminmin

Figure 5: Excitation power spectral density
Pyy(f)

sired excitation power spectral density func-
tion (p.s.d.) Pyy(f) realizations can be gener-
ated using the method from Shinozuka [1972]
and Yang [1972]. It implies that a one-
dimensional Gaussian random process y(t)
with zero mean and one-sided p.s.d. : Gyy(f)
can be represented by a sum of cosine func-
tions with a uniformly distributed random
phase Φ. A realization ȳ(t) of y(t) can be
simulated by:

ȳ(t) =
√
∆f Re{F (t)} (8)

in which Re{F (t)} is the real part of F (t)
and

F (t) =
N∑

k=1

{√
2Gyy(fk)eiφk

}
ei2πfkt

(9)

is the finite complex Fourier transform of√
2 Gyy(f) eiφ (10)

where φ are the realized values of Φ.

4.2 Numerical time integration

A numerical time integration procedure is
used to compute the response realizations

x(t) which are then used to calculate esti-
mations for statistical moments, probability
density function and power spectral density.
Due to the random process stationarity and
assumed ergodicity we can suffice with a sin-
gle (long) realization and use time averaging.
For reasons of numerical efficiency, a con-

stant step size, second-order Runge-Kutta
scheme has been used for the integration.
Due to the existence of a soft-spring-region
(no contact) and a very stiff-spring-region
(contact) we can distinguish two relevant
stepsizes, which of course have been adjusted
to match stability and accuracy conditions.
Consequently, the time of impact has to be
determined accurately to avoid crossing the
contact border with the large time step. For
this purpose the Hénon method is imple-
mented within the integration routine.
This method is based on rearranging the

differential equation without the nonlineari-
ties (because a state just before impact will
be observed) in such a way that the contact-
distance δ = y − x becomes the indepen-
dent variable whereas t becomes one of the
dependent variables. From the last state
before impact, the differential equation is in-
tegrated until δ = 0 corresponding to tcontact,
ẋ(tcontact) and x(tcontact) = y(tcontact). Then
a switch is made to the much smaller integra-
tion step-size, using these initial conditions.

5. Simulation results

A uniformly distributed 0− 200 Hz band ex-
citation is applied to the system. For this
system, this excitation can be seen as a broad
band excitation. In figure 6, the p.s.d. of y(t)
is shown. An important property of the non-
linear response to Gaussian excitation is the
fact that it will be non-Gaussian. Figure 7 il-
lustrates the effect of the nonlinearity on the
probability density function (PDF) of output
δ. The non-Gaussian nature of the response
also follows from higher-order moments like
skewness and kurtosis. The estimates for the
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Figure 6: P.s.d. of 0-200 Hz band excitation y(t)
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Figure 7: PDF of δ(t) for a 0-200 Hz band exci-
tation

skewness and kurtosis are γ̂δ = −1.02 and
κ̂δ = 3.96. They deviate considerably from
the Gaussian values γ = 0 and κ = 3. A
nonzero skewness points at an asymmetry of
the PDF. This asymmetry of the response is
a nonlinear characteristic of the system due
to the elastic stop, see figure 8.
In literature very little attention is paid

to frequency domain characteristics of non-
linear dynamic systems excited by stochas-
tic processes. We will particularly focus on
the observation and interpretation of these
stochastic response phenomena, especially on
one-sided power spectral densities (p.s.d.’s).
The response p.s.d. of variable δ(t) is shown
in figure 9, which admits two important ob-
servations:

1. The p.s.d. Pδδ(f) shows multiple reso-
nance peaks.

2. It contains a considerable amount of low
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Figure 8: Parts of time series: 200 Hz band exci-
tation y(t) and response beam x(t)
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Figure 9: p.s.d. δ(t) for a 0-200 Hz band excita-
tion

frequency energy (0-15 Hz) which is due
to the asymmetry of the response pro-
cess.

These are general stochastic response charac-
teristics for weakly damped, strongly nonlin-
ear systems with an asymmetric nonlinearity.

6. Experimental set-up

In the next section, simulation results will
be validated by comparison to experimen-
tal results. Here the experimental set-up is
presented schematically in figure 10. Again,
a uniformly distributed Gaussian band lim-
ited excitation signal is generated numeri-



MTS

8. DIFA measurement system

1

MTS 7

6

4

3

82

Controller

5

1. PC-486/Labview

2. Controller
3. Servovalve
4. Hydraulic 
5. Hydraulic service

    power supply
manifold

6. Hydraulic actuator
7. Beam-impact system

Figure 10: The experimental set-up

cally. This signal is sent to a controller
which controls a servo valve using feedback
information from an internal displacement
transducer. The servo valve provides the in-
put for the hydraulic actuator by control-
ling the oil flow of the hydraulic power sup-
ply. A hydraulic service manifold connects
the hydraulic power supply and the servo
valve. This service manifold reduces fluc-
tuations and snapping in the hydraulic lines
during dynamic programs. All measurements
are monitored using a data acquisition soft-
ware package [DIFA, 1992]. Figure 11 shows
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Figure 11: The measurement equipment

the measurement equipment mounted on the
beam-impact system. A Linear Variable Dif-
ferential Transformer (LVDT) measures the
displacement of the rigid frame. The dis-
placement and velocity of the beam, at the
point of contact, are measured by a laser in-
terferometer. Furthermore, the acceleration
of the beam is measured by an accelerome-
ter. A force transducer is used to measure

the force acting on the rigid frame.

7. Experimental results

Again, a 200 Hz (broad) band excitation was
applied. The realized base-excitation spec-
trum is given in figure 12. This is not a uni-
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Figure 12: Power spectral density of the 200 Hz
band excitation

form spectrum anymore because hydraulic
actuator behaves like a first-order low-pass
filter. Therefore, it is necessary to repeat
the simulations with these rigid frame excita-
tion spectra for a correct comparison between
simulations and experiments.
The estimates of the probability density

functions of both the excitation y(t) and the
response δ(t) are shown in the figures 13
and 14, respectively. Again the results clearly
display the fact that the response is strongly
non-Gaussian. Both the simulated and
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measured 0-200 Hz band excitation
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Figure 14: Probability density function of δ(t) for
a 0-200 Hz band excitation

measured response p.s.d.’s are shown in fig-
ure 15. The most important response phe-
nomena like multiple resonance peaks and
the presence of a large amount of low fre-
quency energy are clearly visible in both ex-
perimental and simulation results. However,
the non-uniformity of Pyy(f) obstructs the
observation of the second characteristic. Fig-
ures 14 and 15 show that the experimental
and numerical results correspond to a large
extent. The experimental resonance peak
around 120 Hz is due to the second harmonic
resonance of the beam system, related to the
second eigenfrequency1. Of course, this res-

1In case of a nonlinear system, one cannot speak
of eigenfrequencies. However, here this terminology
is used for a frequency at which the system resonates.
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Figure 15: Power spectral density of the response
δ(t) to the 200 Hz band excitation

onance peak is missing in the simulation re-
sults as a consequence of SDOF modeling.
Finally, also two specific narrow-band ex-

citations were considered. Firstly, a band ex-
citation [23 ≤ f ≤ 43] [Hz], covering the ma-
jor part of the harmonic resonance peak was
applied. The relating response p.s.d. again
exhibits multiple resonance peaks. Secondly,
a band excitation [56 ≤ f ≤ 76] [Hz], cov-
ering the major part of the 1

2 subharmonic
resonance peak was applied; the relating res-
ponse p.s.d. is shown in Figure 16. This
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Figure 16: Power spectral density of the response
δ(t) to the 56-76 Hz band excitation

figure clearly displays a ’stochastic 1
2 subhar-

monic’ phenomenon in the response (for both



simulation and experiment), which can be re-
lated to the 1

2 subharmonic resonance peak
in Figure 4. These response characteristics
to narrow-banded excitation illuminate the
origin of the multiple resonance peaks in the
response to broad band excitations. For more
information on this we refer to Van de Wouw
et al. [1997].

8. Conclusions

We have applied Gaussian band limited ex-
citations to a strongly nonlinear impacting
system. The derived nonlinear model is
SDOF. Many interesting, specifically non-
linear, stochastic response phenomena have
been investigated both numerically as well as
experimentally. Especially frequency domain
characteristics have been emphasized.
Both broad- and narrow-band excitations

are applied in order to discriminate the origin
of certain frequency domain response char-
acteristics. Nonlinear stochastic phenomena
like multiple resonance peaks and a high-
energy, low-frequency response content are
found applying broad-band excitations.
Stochastic equivalents of harmonic and

subharmonic solutions are found. With re-
spect to all these response characteristics, the
numerical and experimental results agree to
large extent. The observed phenomena can
also be found in systems with other one-sided
nonlinearities, see Van de Wouw et al. [1997].
Therefore, these characteristics can give in-
sight in the nonlinear stochastic behaviour of
a large class of nonlinear dynamic systems.
Future research will involve the extension

of the model to include higher modes of the
beam. This extension will improve the res-
ponse characteristics around the second har-
monic resonance frequency. Moreover, such
a multi-degree-of-freedom model might also
describe the system better for lower frequen-
cies, because these higher modes affect the
behaviour in the lower frequency range for
periodic excitations, see Figure 4.

References

DIFA (1992). FA100 User Manual . DIFA Mea-
suring Systems, Breda, The Netherlands.

Fey, R., Van Campen, D., and De Kraker, A.
(1996). Long term structural dynamics of
mechanical systems with local nonlinearities.
Trans. ASME, J. Vibration and Acoustics ,
118(2), 147–153. Also publ. in: Proc. Win-
ter Annual Meeting ASME, Anaheim (Calif.,
USA), 8-13 Nov., DE-Vol. 50, AMD-Vol. 44,
eds. R.A. Ibrahim and N.S. Namachchivaya,
1992, pp. 159-167.

Goldsmith, W. (1960). Impact: The Theory
and Physical Behaviour of Colliding Solids.
E. Arnold Ltd., London.

Hertz, H. (1895). Gesammelte Werke, vol. 1:
Schriften Vermischten Inhalts . J.A. Barth,
Leipzig, Germany (German).

Lankarani, H. and Nikravesh, P. (1994). Contin-
uous contact force models for impact analysis
in multibody sytems. Nonlinear Dynamics , 5,
193 – 207.

Shinozuka, M. (1972). Monte carlo solution of
structural dynamics. Computers & Structures,
2, 855–874.

Van Campen, D., De Kraker, A., Fey, R., Van de
Vorst, E., and Van der Spek, J. (1997). Long-
term dynamics of nonlinear mdof engineering
systems. Chaos, Solitons and Fractals; Spe-
cial issue on Nonlinearities in Mechanical En-
gineering, 8(4), 455–477.

Van de Vorst, E. (1996). Long term dynamics
and stabilization of nonlinear mechanical sys-
tems . Ph.D. thesis, Eindhoven University of
Technology, The Netherlands.

Van de Wouw, N., De Kraker, A., and
Van Campen, D. (1997). Nonlinear phenomena
in a stochastically excited dynamic system. In
Proc. 1997 ASME Int. Mechanical Engineering
Congress and Exposition, Dallas (USA), DE-
Vol. 95, AMD-Vol. 223, 16-21 Nov. 1997 , pp.
151–158. eds. W.C. Xie, N.S. Namachchivaya
and O.M. O’Reilly.

Yang, J.-N. (1972). Simulation of random enve-
lope processes. Journal of Sound and Vibra-
tion, 21(1), 73–85.


