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Abstract— In this study, we consider a Cooperative Adaptive
Cruise Control (CACC) system which regulates inter-vehicle
distances in a vehicle string. Improved performance can be
achieved by utilizing information exchange between vehicles
through wireless communication besides local sensor measure-
ments. However, wireless communication introduces network-
induced effects that may compromise the performance of the
CACC system. Therefore, we approach the design of a CACC
system from a Networked Control System (NCS) perspective.
Network-induced imperfections in a NCS are mainly due to
limited bandwidth of the network, multiple nodes sharing the
same medium, and other limitations such as transmission delays
and losses. Tradeoffs between CACC performance and network
specifications need to be made for achieving desired perfor-
mance under these network-induced constraints. In this paper,
we present a NCS modelling framework that incorporates the
effect of sample-and-hold and network delays that occur due
to wireless communication. Moreover, we employ this model to
study the so-called string stability performance of the string in
which vehicles are interconnected by a vehicle following control
law and a constant time headway spacing policy. Specifically,
we study how string stability is affected by network-induced
effects such as delays.

I. INTRODUCTION

The ever increasing demand for mobility in today’s life
brings additional burden on the existing ground transporta-
tion infrastructure for which a feasible solution in the near
future lies in more efficient use of currently available means
of transportation. For this purpose, development of Intelligent
Transportation Systems (ITS) technologies that contribute
to improved traffic flow stability, throughput and safety
are needed. Cooperative Adaptive Cruise Control (CACC)
extends the currently available Adaptive Cruise Control
(ACC) with the addition of information exchange between
vehicles through Vehicle-to-Vehicle (V2V) and Vehicle-to-
Infrastructure (V2I) wireless communication.

In today’s traffic, limited human perception of traffic
conditions and reaction characteristics constrain the lower
limits of achievable safe inter-vehicle distances. Besides,
erroneous human driving characteristics may cause traffic
flow instabilities which result in so-called shockwaves. In
dense traffic conditions, a single driver overreacting to a
momentary disturbance (e.g. a slight deceleration of the
predecessor) can trigger a chain of reactions in the rest of
the follower vehicles. The amplification of such a disturbance
can bring the traffic to a full stop kilometers away from the
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disturbance source and cause traffic jams for no apparent
reason. ACC vehicles are also limited in their capability of
sensing their environment, and therefore, require relatively
high following distances for safe and comfortable operation.
Information exchange between vehicles provides several ad-
vantages over ACC technology and manually driven cars,
which can contribute significantly to improving the traffic
flow, especially on highways.

One of the earliest studies towards regulating inter-vehicle
distances to achieve improved traffic flow dates back to 60’s
in which the authors formulated the problem in an optimal
control design framework [1]. In following years, many
practical issues regarding a successful implementation were
addressed especially in the scope of the California PATH
program such as different inter-vehicle spacing strategies and
information flow structures [2], heterogeneous traffic condi-
tions [3], communication delays [4], and actuator limitations
[5].

In recent years, developments in the fields of decentralized
control of large-scale systems, formation control, decoupling
of complex systems, and networked control systems have
given rise to research on more systematic approaches from
a system theoretical perspective. In [6], [7], [8] the problem
is approached from a spatially invariant systems perspective.
These studies mainly focus on characterizing the intercon-
nection structure for obtaining scalable system properties.
Stankovic and Siljak [9], [10] approached the problem from
a large-scale systems perspective and used the inclusion
principle to decompose the interconnected vehicle string into
subsystems with overlapping states for which decentralized
controllers were designed.

In this paper, we approach the problem of regulating
intervehicle distances in a CACC system from a Networked
Control Systems (NCS) perspective. In the fields of NCS,
one considers the control of systems over a communication
network [11], [12]. In the scope of this paper, control over a
wireless communication network is the enabling technology
that makes CACC realizable, but very few studies consider
the imperfections that are introduced by the network [4],
[13], [14]. This is mainly due to the fact that systematic
NCS tools arose relatively recently. The main purpose of
this paper is to emphasize the necessity for considering
CACC in a NCS framework by studying the effects of
wireless communication on the performance of an existing
CACC controller. Moreover, we also demonstrate how these
analyses can provide the designer with guidelines for making
the tradeoffs between control and network specifications.

In Section II, we introduce the general control objective,
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the underlying longitudinal vehicle dynamics, and the control
structure which together form the CACC vehicle model that
will be used in the rest of the paper. In Section III, we
use the CACC vehicle model to derive the interconnected
vehicle string model. We use a lumped system model in
order to represent the CACC control laws as state feedback
controls that are suitable for the NCS analysis framework.
We distinguish between two types of data employed in the
CACC controller according to their way of being transferred
as locally sensed and wirelessly communicated information.
This allows us to consider the local sensor measurements
as internal dynamics of the interconnected system and focus
on the effects of network imperfections on the wirelessly
communicated data. In Section IV, we present the CACC
NCS model and derive the discrete-time interconnected sys-
tem model. In Section V, we present the frequency response
based string stability analysis and obtain maximum allowable
time delays for different controller and network parameters.
In Section VI, we demonstrate the results of the analysis
with simulations by using a sampled-data NCS model of a
two-vehicle string. The paper ends with discussion on future
research directions.

II. MODEL DESCRIPTION AND PROBLEM FORMULATION

The general objective of a CACC system is to pack the
driving vehicles together as tightly as possible in order
to increase traffic flow while preventing amplification of
disturbances throughout the string, which is known as string
instability [2], [15]. These are two conflicting objectives
when conventional methods are considered, since reducing
inter-vehicle distances results in shockwaves which adversely
affect the global traffic flow. Some other equally important
requirements are related to safety, comfort, and fuel con-
sumption, but are not in the scope of this work.

The vehicles forming the platoon are interconnected
through the vehicle following objective. Each vehicle is re-
quested to follow its predecessor while maintaining a desired,
but not necessarily constant, distance. Here, we consider
a constant time headway spacing policy where the desired
spacing (dr,i) between the front bumper of i-th vehicle to its
predecessor’s rear bumper is

dr,i = ri + hd,ivi, (1)

where i is the vehicle index, ri a constant term that forms
the gap between consecutive vehicles at standstill, hd,i is
the headway time constant representing the time that it will
take the i-th vehicle to arrive at the same position as its
predecessor when ri = 0 and vi is the vehicle velocity. For
the sake of simplicity, ri = 0 is taken in the rest of the
paper since it does not affect the dynamics of the system in
scope of this work. For similar reasons, the car length (Li)
will also be taken as zero. The actual distance between two
consecutive vehicles (di) is

di = qi−1 − (qi + Li) = qi−1 − qi, (2)

where qi is the absolute position of i-th vehicle in global
coordinates. The local control objective, referred to as vehicle

following, can now be defined as regulating the error

ei = di − dr,i, (3)

to zero in the presence of disturbances. An additional
requirement, so-called string stability, involves the global
performance of the CACC vehicle string with regard to
attenuation of disturbances along the vehicle string and will
be defined in more detail at the end of this section.

A. Longitudinal Vehicle Dynamics Model

We use the following linearized third-order state-space
representation of the longitudinal dynamics for each vehicle
in the string:

q̇i(t) = vi(t),
v̇i(t) = ai(t),
ȧi(t) = −η−1

i ai(t) + η−1
i ui(t), (4)

where qi(t), vi(t), ai(t) are respectively the absolute posi-
tion, velocity, acceleration, ηi represents the internal dy-
namics and ui is the control input of the i-th vehicle. This
model is widely used in the literature as a basis of analysis
[16]. Equivalently, by using Laplace transforms, L (qi(t)) =
Qi(s) and L (ui(t)) = Ui(s), the vehicle model can be
represented by the following transfer function as in [17]:

Gi(s) =
Qi(s)
Ui(s)

=
1

s2(ηis+ 1)
, s ∈ C. (5)

Note that the notational use of small letters for time-domain
signals and capital letters for their frequency-domain coun-
terparts will be retained throughout the rest of the paper.

B. Control Structure

Since our main focus is to investigate the network effects,
the details of the controller design are omitted in this paper.
We use an existing CACC controller design presented in [17],
which has been successfully implemented in the scope of
the Connect and Drive project and demonstrated with CACC
equipped vehicles [18]. Here, we briefly summarize the main
components.

The control structure for a single CACC equipped vehicle
is as shown in Fig. 1. CACC operation is introduced as an
addition to the underlying ACC in a feedforward fashion.
The signal conditioning block, Hi(s) = 1 + hd,is is used
to implement the spacing policy given in (1). The feedback

Fig. 1. Control structure block diagram of a single CACC equipped vehicle.

2052



controller (Ci,ACC(s)) that constitutes the ACC part is a
PD-type controller that acts on locally sensed data (e.g. using
radar) to perform the vehicle following objective and is given
as:

Ufb,i(s) = Ci,ACC(s)Ei(s) = ωk,i(ωk,i + s)Ei(s), (6)

where ωk,i is the bandwidth of the controller and is chosen
such that ωk,i << ωg,i = 1

ηi
holds in order to prevent

actuator saturation. The time-domain equivalent setting of
(6) is obtained by using (3) with (1) and (2) as follows:

ufb,i = ω2
k,iei + ωk,iėi,

= ω2
k,i(qi−1 − qi − hd,ivi)

+ ωk,i(vi−1 − vi − hd,iai). (7)

For notational convenience, kp,i = ω2
k,i and kd,i = ωk,i

will be used to represent respectively the proportional and
derivative gains of the ACC controller in the rest of the paper.
This controller uses the relative distance and relative velocity
between the host and the directly preceding vehicle, which
are available as sensed measurements through a radar unit
that is mounted in front of the vehicle.

Additional feedforward action is utilized to improve track-
ing performance and forms the CACC part of the controller
(Ci,CACC(s) in Fig. 1). It uses the acceleration of the
directly preceding vehicle (ai−1). Following well-known
design guidelines, the feedforward filter is given as follows:

Uff,i(s) = Ci,CACC(s)Ai−1(s) =
1

Hi(s)Gi(s)s2
Ai−1(s),

(8)
and achieves zero tracking error. Now, using Ai−1(s) =
s2Qi−1(s) = s2Gi−1(s)Ui−1(s), the s2 terms cancel and
(8) can be rewritten as:

Uff,i(s) =
1

Hi(s)Gi(s)
Gi−1(s)Ui−1(s). (9)

For a homogenuous vehicle string (i.e. identical vehicles and
Gi(s) = Gi−1(s)), this reduces to

Uff,i(s) =
1

Hi(s)
Ui−1(s) =

1
1 + hd,is

Ui−1(s). (10)

Here, it can be seen that additional dynamics is introduced
in the controller due to the velocity-dependent spacing pol-
icy, which gives the additional differential equation for the
feedforward filter:

u̇ff,i = −h−1
d,iuff,i + h−1

d,iui−1, (11)

to be used in the state-space representation of CACC vehicle
model.

C. CACC Vehicle Model

The general form of a CACC vehicle model with the
given control structure explained in the preceding section
is obtained by combining the vehicle longitudinal dynamics

equations in (4) with the feedback and feedforward control
laws given in (7) and (11):

ẋi = Aixi + Bs,iui︸ ︷︷ ︸
ACCpart

+ Bc,iu
∗
i−1︸ ︷︷ ︸

CACCpart

,

Ai =


0 1 0 0
0 0 1 0
0 0 −η−1

i 0
0 0 0 −h−1

d,i

 ,

Bs,i =


0
0
η−1
i

0

 , Bc,i =


0
0
0
h−1
d,i

 , (12)

with xTi = [qi vi ai uff,i]. Bs,i is the input vector
corresponding to the input ui which is generated by using
locally available (sensed) data and Bc,i is the input vector
for the additional CACC input u∗i−1, which is sent to the
i-th vehicle through the wireless network and is therefore
subject to network effects. The reason for this separation
denoted with an asterisk (*) will become clear to the reader
after we present the sampled-data model in Section IV. A
time-domain representation of the feed-back/forward control
input with the given spacing policy is

ui = ufb,i + uff,i,

= Ki,i−1xi−1 +Ki,ixi, (13)

Ki,i−1 =


kp,i
kd,i
0
0


T

,Ki,i = −


kp,i

kp,ihd,i + kd,i
kd,ihd,i
−l


T

,

where l = 1 corresponds to an operational CACC, and l = 0
gives only ACC.

D. String Stability

An important requirement in a CACC system is to avoid
amplification of disturbances throughout the string as the
vehicle index increases. Hence, stability is not only studied
in the time domain, but also in the spatial domain, such
as the so-called mesh stability [19]. For 1-D systems this
property is called string stability and can be quantified by
the magnitude of the string stability transfer function [17]:

SS∆i(s) =
∆i(s)

∆i−1(s)
, i ≥ 1, (14)

where ∆i(s) = L (δi) and δi ∈ {qi, vi, ai} is the signal of
interest. The string stability condition can then be obtained
in the frequency domain (s = jω) as follows:

|SS∆i
(jw)| ≤ 1,∀ω, i ≥ 1. (15)

III. INTERCONNECTED VEHICLE STRING MODEL

A reference vehicle model (with state x0) is introduced
which may either represent the rest of the traffic as seen
by the first vehicle in the string or the trajectory generated
by the first vehicle in case there are no preceding vehicles.
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Fig. 2. NCS model.

Also, the first CACC vehicle in the string requires special
consideration. It is capable of transmitting information to
its follower but receives no information from the preceding
traffic through the network. By considering these two special
cases for the reference and the first vehicles and using the
CACC vehicle model in (12) for each operational CACC
subsystem, we obtain the following equations for an n-
vehicle string:

ẋ0 = A0x0 +Bs,0ur,

ẋ1 = A1x1 +Bs,1u1,

ẋ2 = A2x2 +Bs,2u2 +Bc,2u
∗
1,

...
ẋn = Anxn +Bs,nun +Bc,nu

∗
n−1. (16)

By defining a new state vector Σn = [xT0 xT1 xT2 · · · xTn ]T ,
we lump n subsystems together with the reference model
(x0) and use the input of the reference vehicle model (u0 =
ur) as the exogenous input to the lumped system. We also
substitute the locally available control inputs, according to
(13), ui = [Ki,i−1 Ki,i][xTi−1 x

T
i ]T to obtain the following

vehicle string model that is suitable for the upcoming NCS
model analysis:

Σ̇n = AΣnΣn +BΣn û
∗ +Brur, (17)

with

AΣn =


A0 0 0 · · · 0

Λ1,0 Λ1,1 0 · · · 0
0 Λ2,1 Λ2,2 · · · 0
...

. . . . . .
...

0 · · · 0 Λn,n−1 Λn,n

 ,

BΣn
=


0 · · · 0
0 · · · 0
Bc,2 · · · 0

...
. . .

...
0 · · · Bc,n

 , Br =


Bs,0

0
...
0

 ,
Λj,j−1 = Bs,jKj,j−1, Λj,j = Aj +Bs,jKj,j ,

where j ∈ {1, 2, ..., n}.

IV. CACC NCS MODEL

The CACC NCS model schematics is shown in Fig. 2. In
the model, the constant, though uncertain, network-induced
delay denoted by τ is given by

τ = τ∗ + (l − 1)h, l ∈ Z, τ∗ ∈ [0, h], (18)

where h is the constant sampling interval. The data is sent
over the network at sampling instants sk = kh. The con-
troller responds instantaneously to newly arrived data. Using
the CACC model given in the previous section, continuous-
time CACC NCS model for a n-vehicle string becomes

Σ̇n = AΣn
Σn +BΣn

û∗ +Brur,

û∗(t) = ûk−l+1, t ∈ [sk + τ∗, sk+1 + τ∗]. (19)

Note that û∗(t) is piecewise constant due to the zero order
hold (ZOH) used to translate the discrete-time control com-
mands (sent over the wireless network) to the continuous-
time input û∗(t). The discrete-time NCS model description is
based on exact discretization of (19) at the sampling instants
sk = kh by using Σn,k = Σn(sk), k ∈ N:

Σn,k+1 = eAΣnhΣk +
∫ h−τ∗

0

eAΣnsdsBΣn ûk−l+1

+
∫ h

h−τ∗
eAΣnsdsBΣn

ûk−l +
∫ h

0

eAΣnsdsBrur,k.

(20)

Next, we write the model in state-space notation using the
augmented state vector ξk = [ΣTn,k û

T
k−1 û

T
k−2 ... ûTk−l]

T as
in [20]. Then, the discrete-time NCS model is given by

ξk+1 = Aξ(τ, h)ξk +Bξ(τ, h)ûk + Γr(h)ur,k, (21)

with

Aξ(τ, h) =


eAΣnh Ml−1 Ml−2 · · · M0

0 0 0 · · · 0
0 I 0 · · · 0
...

. . . · · ·
0 · · · 0 I 0

 ,
Bξ(τ, h) =

[
MT
l I 0 · · · 0

]T
,

Γr(h) =
∫ h

0

eAΣnsdsBr,

Mj(τ, h) =

{∫ h−tj
h−tj+1

eAΣnsdsBΣn
if 0 ≤ j ≤ 1,

0 if 1 < j ≤ l,
where t0 := 0, t1 = τ∗ and t2 := h. The CACC control
inputs ûk = [u1,k ... un−1,k] are sent through the wireless
network. By substituting the control law given in (13) for
(n− 1) vehicles we obtain

ûk = K̂Σn−1,k,

with

K̂ =


K1,0 K1,1 0 · · · 0

0 K2,1 K2,2 · · · 0
...

. . . . . .
...

0 · · · Kn−1,n−2 Kn−1,n−1

 ,
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(a) Schematic representation of CACC vehicle string.

(b) Control structure block diagram.

Fig. 3. 2-vehicle string (a) Schematic representation, (b) Control structure
block diagram.

which can equivalently be represented as a full state-feedback
control law by using the augmented state vector ξk as
follows:

ûk =
[
K̂ 0(n−1)×(l+ρ)

]
ξk = Kξξk, (22)

where 0(n−1)×(l+ρ) ∈ R(n−1)×(l+ρ) and ρ is such that xi ∈
Rρ (i.e. ρ = 4 for the given CACC vehicle model in (12)).
Now, we substitute (22) into (21) to obtain the closed loop
CACC NCS model:

ξk+1 = Aξ(τ, h)ξk + Γr(h)ur,k, (23)

with Aξ(τ, h) = Aξ(τ, h) + Bξ(τ, h)Kξ. We will use this
model in the next section to perform a string stability
analysis.

V. DISCRETE-TIME FREQUENCY RESPONSE ANALYSIS

String stability of the discrete-time CACC NCS model
is analyzed by using a discrete-time frequency response
approach. Similar to the continuous-time frequency domain
condition given in Section II, string stability is quantified by
the magnitude of the discrete-time string stability transfer
function (SS∆i

(z)), where z = ejω is the Z-transform
variable and ∆i(z) = Z{∆i(k)}. Discrete-time frequency
response condition for string stability is then given as

|SS∆i
(z)| =

∣∣∣∣ ∆i(z)
∆i−1(z)

∣∣∣∣ ≤ 1,∀ω, i = 1, ..., n, (24)

where ∆i(z) = Z(δi) and δi ∈ {qi, vi, ai} is the signal
whose propagation along the string is of interest. To compute
SS∆i

in (24) we note that

∆i(z)
∆i−1(z)

=
∆i(z)
ur(z)

(
∆i−1(z)
ur(z)

)−1

,

= Ψ∆i,r
(z)(Ψ∆i−1,r

(z))−1, (25)

where the discrete-time transfer functions (Ψ∆i,r
(z)) are

extracted from (23) by using

Ψ∆i,r(z) = C∆i
(zI −Aξ(τ, h))−1Γr(h), i = {1, 2, ..., n},

(26)
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Fig. 4. Maximum allowable ratio ( τ
h

) of time delays (τ ) to sampling
interval (h) for given vehicle following controllers (K1(s) = K2(s) =
ωk(ωk + s)) with different bandwidths (ωk).

where C∆i
is chosen accordingly to yield δi = C∆i

ξk.
Here, we demonstrate the string stability analysis approach

of the interconnected vehicle string for which the schematic
representation and the control structure block diagram are
shown in Fig. 3. For the sake of brevity, we use the CACC
NCS model presented in the previous section with n = 2
vehicles, which is the smallest number of vehicles where
string (in)-stability behavior can be observed. The discrete-
time CACC NCS model was obtained as explained in Section
IV for 0 ≤ τ ≤ 6h (i.e. l = 6 in (18)). Discrete-time
transfer functions are extracted by using (26) with δi = vi
in order to inspect the response of the CACC system to a
velocity disturbance. In Fig. 4, the maximum allowable ratio
( τh ) of constant time delays (τ ) to sampling intervals (h) are
shown for string stable operation of the CACC vehicle string.
The results are obtained for different bandwidths (ωk) of the
underlying vehicle following controllers denoted by K1 and
K2 in Fig. 3.(b) for which the control law was given in
(6). Maximum allowable ratio of the time delay to sampling
interval

(
τ
h

)
where string stability condition (24) is satisfied

is depicted with a color code for different sampling interval
(h), headway distance (hd) pairs.

The analyses show that a high sampling frequency is
desired to achieve string stability with relatively low inter-
vehicle distances (hd) while tolerating large delays. However,
from a practical point of view, increasing the sampling fre-
quency limits the number of nodes that can operate reliably in
the same network, hence also limiting the number of vehicles
in a string. Another observation is related to the selection
of the vehicle following controller bandwidths. Although
high bandwidth controllers are desirable for better asymptotic
tracking, it can be seen that from a string stability point
of view, this choice impairs the robustness of the controller
against communication delays. Therefore, the design of a
CACC system involves making tradeoffs between the ve-
hicle following controller, network performance and string
stability performance criteria in the face of network-induced
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Fig. 6. Simulation results for four representative (h, hd) pairs.

delays. The presented analyses can be used as guidelines for
the designer in making these tradeoffs.

VI. SIMULATION RESULTS

For validation of the results, simulations were performed
using the sampled-data NCS model in (19) with n = 2.
Frequency domain analysis results given in Fig. 5 were
compared with simulation results. In Fig. 6, velocity plots
corresponding to the representative (h, hd) pairs marked in
Fig. 5 are given. In the time plots, string stability is evaluated
by inspecting amplification of the response to a velocity
disturbance. Hence, the peak of the velocity response for the
preceding vehicle constitutes the string stability boundary
which is marked with the green line in Fig. 6. CACC
under ideal conditions (without network effects) is also
included for comparison. Simulation results are consistent
with the analysis results and demonstrate how string stability
performance can be affected by the network.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a Networked Control System
(NCS) framework for analyzing the effects of network-
induced impairments on Cooperative Adaptive Cruise Con-
trol (CACC) string stability performance. The effect of
sampling frequency, zero-order-hold and constant network
delays was inspected by modeling the CACC as a NCS
model. String stability was studied by using discrete-time
frequency response plots. Herewith, the maximum allowable

ratio of delays was obtained for various network, vehicle
following controller, and inter-vehicle spacing parameters.
We demonstrated the validity of the results by performing
simulations with the sampled-data NCS model of a 2-vehicle
string.

There are many other imperfections and constraints in
a NCS, such as variable sampling/transmission intervals,
packet dropouts, variable transmission delays, and communi-
cation constraints [12]. Future studies will focus on extend-
ing the NCS modeling and analysis framework presented in
this paper to incorporate these NCS imperfections.
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