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Abstract— Cooperative Adaptive Cruise Control (CACC)
employs wireless intervehicle communication, in addition to
onboard sensors, to obtain string-stable vehicle-following behav-
ior at small intervehicle distances. As a consequence, however,
CACC is vulnerable to communication impairments such as
packet loss, in which case it would effectively degrade to conven-
tional Adaptive Cruise Control (ACC), thereby increasing the
minimal intervehicle distance needed for string-stable behavior.
Therefore, a control strategy for graceful degradation of one-
vehicle look-ahead CACC is proposed to partially maintain the
string stability properties of CACC. This strategy is based on es-
timating the preceding vehicle’s information, here acceleration,
using the onboard sensors. Whenever needed, this estimated
acceleration can be used as an alternative to the desired
acceleration transmitted through wireless communication for
this type of CACC. It is shown through simulations and
experiments that the proposed strategy results in a noticeable
improvement of string stability characteristics, when compared
to the situation in which ACC is used as a fallback scenario.

I. INTRODUCTION

Cooperative Adaptive Cruise Control (CACC) is essen-
tially a vehicle-following control system that automatically
accelerates and decelerates so as to keep a desired distance
to the preceding vehicle [1]. To this end, onboard sensors are
employed, such as radar, that measure the intervehicle dis-
tance and relative velocity. In addition, extra information of
the preceding vehicle(s), e.g., the desired acceleration, is cast
through a wireless communication link. As a consequence,
the performance in terms of minimizing the intervehicle
distance while guaranteeing string stability, i.e., shock wave
attenuation in upstream direction, is significantly enhanced
when compared to conventional Adaptive Cruise Control
(ACC), which is operated without wireless communication
link. As a result, traffic throughput is increased, while
maintaining a sufficient level of safety [2], although string-
stable behavior per se does not guarantee the avoidance of
collisions. In addition, significant fuel savings are possible,
especially for trucks [3].

Inherent to the CACC concept is its vulnerability to
unreliable wireless communication due to high latency or
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Fig. 1. A homogeneous platoon of vehicles equipped with CACC.

packet loss. In [4], for instance, it was found that the ratio of
correctly received packets drops below 10 % on a motorway
junction with high traffic density, assuming all vehicles are
communicating. The relation between latency or packet loss
and string stability of CACC already attracted interest, see,
e.g., [5]. In addition to the existing literature on this topic,
this paper focusses on losing the wireless communication
link for an extended period of time. In this case, while not
taking any compensating actions, CACC inherently degrades
to ACC, which requires a significantly larger time headway
for string-stable behavior. As an example, [6] shows that the
minimum string-stable time headway increases from 0.25 s to
more than 3 s. It is, therefore, important to have an alternative
control technique that exhibits string-stable behavior for a
less dramatic increase in time headway, which comes into
action when a failure in the wireless communication is
detected. To this end, this paper presents a fallback strategy
to gracefully degrade functionality of a one-vehicle look-
ahead CACC, based on estimating the preceding vehicle’s
acceleration using the available data from an onboard sensor.

This paper is organized as follows. Section II first pro-
vides an overview of the adopted CACC and the notion of
string stability used in the present work. Next, Section III
introduces the graceful degradation strategy, upon which
Section IV analyses the string stability properties of the con-
trolled system, in comparison to those of ACC and CACC.
Section V then presents experimental results obtained with
two CACC-equipped passenger vehicles. Finally, Section VI
summarizes the main conclusions.

II. CONTROL OF VEHICLE PLATOONS

Consider a platoon of m vehicles as shown in Fig. 1 where
the vehicles are enumerated with index i = 1, . . . ,m, with
i = 1 indicating the lead vehicle. From the perspective of
road usage efficiency, it is desired that a short intervehicle
distance di is maintained within this platoon. ACC addresses
this need with the help of vehicle measurement devices, e.g.,
radar or lidar, which measure the relative velocity and the
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distance with respect to the preceding vehicle. A weakness
of ACC, however, is its inability to attenuate traffic shock
waves, e.g., caused by sudden braking or velocity decrease by
a vehicle within the platoon, in an upstream direction, unless
a large intervehicle distance is chosen [7]. This property of
shockwave attenuation is referred to as string stability.

A. String stability of a vehicle platoon

In the literature, three main directions towards defining
the notion of string stability can be distinguished: 1) a
formal Lyapunov-stability approach [8], 2) a stability ap-
proach for spatially-invariant linear systems [9], and 3) a
performance-oriented frequency-domain approach [1]. Due
to its capability of offering controller synthesis tools, the
last approach is more often used in the literature. In [6],
an overview of the most relevant literature in this respect is
given, based on which a general string stability definition is
proposed and, based on this generic defintion, string stability
conditions for linear unidirectionally-coupled homogeneous
systems are given that correspond to the conditions used in
the performance-oriented approach. This subsection briefly
summarizes these conditions.

Let the homogeneous vehicle platoon, in which all fol-
lower vehicles are controlled by a one-vehicle look-ahead
CACC, be formulated by the following state-space model
(omitting the time argument t for readability):



ẋ1

ẋ2

...
ẋm


 =




A0 O
Ã1 Ã0

. . .
. . .

O Ã1 Ã0







x1

x2

...
xm


+




B0

0
...
0


 u1 (1)

or, in short,
ẋ = Ax+Bu1 (2)

with xT =
(
xT
0 xT

1 . . . xT
m

)
, and the matrices A and

B defined accordingly. xi, i ∈ Sm, is the state vector of
vehicle i (typically containing distance or distance error,
position, velocity, acceleration, and possibly additional vari-
ables), with Sm = {i ∈ N | 1 ≤ i ≤ m} denoting the
set of all vehicles in a platoon of length m ∈ N. u1 is
the external input, which, in this case, is the input of the
uncontrolled lead vehicle. A0 and B0 are the system matrix
and input matrix, respectively, of the lead vehicle, whereas
Ã0 and Ã1 are the system and “input” matrix, respectively, of
the controlled follower vehicles. In addition, consider linear
output functions according to

yi = Cix, i ∈ Sm (3)

where yi is the output of vehicle i, and Ci the corresponding
output matrix. The model (2), (3), which will be further
detailed in Section II-B, is considered Lp string stable if
all outputs yi are bounded (in the Lp sense) for a bounded
input u1 and bounded initial condition perturbations x(0)
with m → ∞, i.e., infinite string length. Hence, yi(t) must
be bounded for all i ∈ N and for all t ≥ 0. If, in addition,

‖yi(t)−Cix̄‖Lp
≤ ‖yi−1(t)−Ci−1x̄‖Lp

, ∀ i ∈ N\{1} (4)

where x̄ denotes the equilibrium state of (2) with u1 ≡ 0 and
‖ · ‖Lp

denotes the signal p-norm, the interconnected system
is said to be strictly Lp string stable.

Remark 1: For linear homogeneous cascaded systems
with a unidirectional coupling, and with a scalar input u1

and scalar outputs yi, the notions of Lp string stability and
strict Lp string stability are equivalent [6]. ♦

Reformulating (2), (3) in the Laplace domain, while ex-
clusively focussing on input–output behavior, yields

yi(s) = Pi(s)u1(s), i ∈ Sm (5)

where yi(s) and u1(s), s ∈ C, denote the Laplace transforms
of yi(t) and u1(t), respectively, and Pi(s) = Ci(sI−A)−1B.
Assuming that the system (5) is square and functionally
controllable (i.e., P−1

i (s) exists for all i ∈ Sm), the string

stability complementary sensitivity (SSCS) is defined as

Γi(s) := Pi(s)P
−1
i−1(s) (6)

such that yi(s) = Γi(s)yi−1(s). Adopting the L2 signal norm
(i.e., p = 2), the following condition for strict L2 string
stability then holds [6].

Condition 1 (Strict L2 String Stability): The system (2),
(3), with Laplace-domain representation (5), is strictly L2

string stable if and only if

‖P1(s)‖H∞
< ∞ (7a)

‖Γi(s)‖H∞
≤ 1, ∀ i ∈ N\{1} (7b)

where Γi(s) is the SSCS according to (6) and ‖·‖H∞
denotes

the H∞ system norm.
As mentioned before, ACC is not efficient in maintaining

string stability in a platoon of vehicles. As a result, in the
early 90’s the concept of platooning with the help of wireless
information has been introduced [1]. Nowadays, the resulting
control strategies are referred to as Cooperative Adaptive
Cruise Control (CACC). The next subsection presents an
overview of the CACC strategy employed in this paper.

B. Cooperative Adaptive Cruise Control

The objective of CACC is to guarantee that, within a string
of vehicles, the intervehicle distances di, i ∈ Sm\{1}, are
regulated to a safe but small value. In addition, this string
should be able to attenuate the shock waves that arise as a
result of a sudden change in the state of a vehicle in the
platoon due to, e.g., braking. In the following, a control
design strategy is briefly explained which guarantees that the
above objectives are satisfied. Although the results obtained
in the present paper are rather generic and independent of the
selected CACC strategy, a specific CACC structure is chosen
to be able to proceed with the details of the proposed method,
being the one-vehicle look-ahead CACC as developed and
experimentally validated in [7].

Consider the following model of a vehicle within a platoon
of m vehicles as shown in Fig. 1:



ḋi
v̇i
ȧi


 =




vi−1 − vi
ai

− 1
τ
ai +

1
τ
ui


 , i ∈ Sm\{1} (8)
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Fig. 2. Block scheme of the CACC system.

with di = qi−1 − qi−Li being the distance between vehicle
i and i− 1, where qi and qi−1 are the rear bumper position
of vehicle i and i − 1, respectively, and Li is the length of
vehicle i; vi is the velocity and ai is the acceleration of ve-
hicle i. Moreover, ui is the vehicle input, to be interpreted as
desired acceleration, and τ is the time constant representing
the driveline dynamics. Also, the following policy for the
intervehicle spacing is adopted:

dr,i(t) = ri + hvi(t), i ∈ Sm\{1} (9)

where dr,i is the desired distance between vehicle i and i−1,
h is the time headway, and ri is the standstill distance. The
main objective is to regulate the distances di to dr,i(t), i.e.,

ei(t) = di(t)− dr,i(t) → 0 as t → ∞ (10)

while allowing for the fact that (10) may only be satisfied if
the lead vehicle drives with a constant velocity, i.e., a1 = 0.

In [7], it is shown that the following dynamic controller
achieves this vehicle-following objective:

u̇i = −
1

h
ui +

1

h
(kpei + kdėi + kdd ëi) +

1

h
ui−1 (11)

where kp, kd, and kdd are the controller coefficients. Fur-
thermore, it is shown that for a bounded ui−1 and subject
to the following constraints on the controller gains: kp, kd >
0, kdd + 1 > 0, (1 + kdd)kd − kpτ > 0, the intervehicle
distance di is regulated to dr,i as defined by the spacing
policy (9), thus satisfying (10). The block diagram of the
closed-loop system for vehicle i, subject to the controller
(11), is shown in Fig. 2, with

G(s) =
qi(s)

ui(s)
=

1

s2(τs+ 1)

H(s) = hs+ 1

K(s) = kp + kds+ kdds
2

D(s) = e−θs.

(12)

Here, qi(s) and ui(s) are the Laplace transforms of the
vehicle position qi(t) and the desired acceleration ui(t),
respectively; the vehicle transfer function G(s) follows from...
q i = − 1

τ
q̈i+

1
τ
ui, see (8), whereas the spacing policy trans-

fer function H(s) is related to (9) and the controller K(s)
represents the error feedback in (11). Also, θ is the time delay
induced by the wireless communication network. The above

setup is used for the purpose of controller design. However,
in experimental identification of the vehicle dynamics [7], it
was noticed that another delay needs to be included in the
transfer function G(s) in order to model the delay in the
vehicle’s actuation mechanism. Hence, in the remainder of
this paper it is assumed that

G(s) =
1

s2(τs+ 1)
e−φs (13)

where φ is the vehicle time delay.
Now let the vehicle acceleration be taken as a basis for

string stability, i.e., yi(t) = ai(t) ∀ i ∈ Sm, since it is
physically relevant on the one hand, and satisfies the norm
requirement on P1(s) in Condition 1 on the other hand. The
latter can be easily understood, because, with this choice of
outputs, P1(s) = 1

τs+1e
−φs, hence ‖P1(jω)‖H∞

= 1. The
corresponding SSCS is then given by

ΓCACC (s) =
ai(s)

ai−1(s)
=

1

H(s)

G(s)K(s) +D(s)

1 +G(s)K(s)
(14)

where ai(s) and ai−1(s) are the Laplace transforms of
ai(t) and ai−1(t), respectively. Note that, without loss of
generality, ri = Li = 0 ∀ i ∈ Sm\{1} is assumed.
Furthermore, it is noted that the SSCS (14) would be the
same in case the velocity vi is chosen as output, since
ai(s)

ai−1(s)
= svi(s)

svi−1(s)
= vi(s)

vi−1(s)
, but that the first requirement in

Condition 1 would not be satisfied in that case. In addition,
it is worth mentioning that the SSCS is independent of
the vehicle index i, which is a direct consequence of the
homogeneity assumption. Finally, it appears that for an ACC
system, i.e., where no feedforward path exists, the SSCS
ΓACC (s) can be obtained from (14) with D(s) = 0:

ΓACC (s) =
1

H(s)

G(s)K(s)

1 +G(s)K(s)
. (15)

III. GRACEFUL DEGRADATION

The main difference of the CACC proposed in the previous
section with its ACC counterpart is in the feedforward
path, see Fig. 2, which includes the effect of the preceding
vehicle’s desired acceleration ui−1 into the control loop.
However, this feedforward path depends on the quality of
the wireless intervehicle communication, in terms of latency
and packet loss. Consequently, if the wireless communication
fails, CACC would automatically degrade to ACC, leading to
a significant increase in minimal time headway to maintain
string-stable behavior. It is, therefore, desirable to implement
an alternative fallback scenario, i.e., a graceful degradation
technique, with less dramatic consequences. To this end, it is
proposed to estimate the actual acceleration of the preceding
vehicle, which can then be used as a replacement of the
desired acceleration in case no communication updates are
received. To arrive at an accurate acceleration estimation,
Section III-A first describes a dynamic model for the target
vehicle as a basis for state estimation, after which Section III-
B incorporates the acceleration estimation algorithm into the
CACC framework.
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Fig. 3. Probability density function p(a) of the object acceleration a.

A. Object tracking

Since there might be several object vehicles close to the
follower vehicle, a multi-object tracking algorithm needs
to be applied, which is able to distinguish and track the
desirable object in a multi-object environment. This involves,
firstly, associating the correct measurement data with the
various tracked objects and, secondly, estimating the objects’
states. In the scope of this paper, the focus is on the
estimation technique. Moreover, regardless of the specific
estimation technique, a dynamical object model has to be
adopted for the estimation algorithm, that represents the tar-
get’s pattern of motion as good as possible. In the following,
a concise description is given of the dynamic object model
as well as the estimation technique applied here.

1) Dynamic object model: In order to describe an object’s
longitudinal motion, the Singer acceleration model [10] is
adopted here, since this model appears to provide a good
approximation of the longitudinal vehicle dynamics [11].
This model takes into account the correlation in time of
the acceleration, namely if a target is accelerating at time
instant t, it is likely to be accelerating at time instant t+ τ
for a sufficiently small τ . This time correlation results in the
following state equation of a linear time-invariant system
describing the vehicle acceleration:

ȧ(t) = −αa(t) + u(t) (16)

with a being the acceleration of the object vehicle, α =
1/τm, where τm is the so-called maneuver time constant, and
u being the model input. Since u is unknown, the equivalent-

noise approach [12] is chosen, by assuming that this input is
a zero-mean uncorrelated random process (white noise). To
arrive at the statistical characteristics of this white noise, the
object vehicle is assumed to exhibit maximum acceleration
amax or deceleration −amax with a probability Pmax and
to have a probability P0 of zero acceleration, whereas other
acceleration values are uniformly distributed. This results in
the probability density function p(a) for the object accel-
eration a as shown in Fig. 3, which appeared to provide
a satisfactory representation of the object’s instantaneous
maneuver characteristics [10]. Consequently, the variance σ2

a

of the object acceleration equals

σ2
a =

a2max

3
(1 + 4Pmax − P0). (17)

It can then be shown [10] that, in order to satisfy p(a), the
covariance Cuu(τ) of the white-noise input u in (16) must
be equal to

Cuu(τ) = 2ασ2
aδ(τ). (18)

As a result, the random variable a, satisfying a probability
density function p(a) with variance σ2

a as in (17), while
being correlated in time through the maneuver time constant
τm, is described as a random process a(t), being the output
of a first-order system (16) with a white-noise input u(t)
satisfying (18).

Using the acceleration model (16), the corresponding
equation of motion can be formulated in the state space as

ẋ(t) = Ax(t) +Bu(t) (19a)

y(t) = Cx(t) (19b)

where xT =
(
q v a

)
, with q and v being the object

vehicle’s position and velocity, respectively. The vector yT =(
q v

)
is the output of the model and the matrices A, B,

and C are defined as follows:

A =



0 1 0
0 0 1
0 0 −α


 , B =



0
0
1


 , C =

(
1 0 0
0 1 0

)
. (20)

Note that the state equation (19a) closely resembles the
vehicle dynamics model (8) when replacing α by τ−1.
Moreover, Bu(t) is a white-noise signal, which can thus
be regarded as the process noise in the estimator design
described in the next subsection.

2) Estimation technique: The approach that is adopted for
estimation of the object vehicle acceleration, is the stand-
alone Kalman filter, where estimations of the internal state
of a linear dynamical system are based on the observations
of the sensors only [13]. Obviously, for real-time imple-
mentation in the vehicle control computer, a discrete-time
Kalman filter is required. However, in view of the upcoming
string stability analysis, the continuous-time equivalent of the
Kalman filter will be employed here. This Kalman filter is
based on the state-space model

ẋ(t) = Ax(t) + w(t)

y(t) = Cx(t) + v(t)
(21)

which corresponds to (19) and (20), with an additional
measurement noise vector v(t) and the process noise equal to
w(t) = Bu(t), according to the equivalent-noise approach.
v(t) is a Gaussian white-noise signal, the covariance matrix
R = E{v(t)vT(t)} of which is chosen based on the noise
parameters of the onboard sensor used in the implementation
of the observer, which, in this case, is a radar (refer to
Section V). Furthermore, using (18), the continuous-time
process noise covariance matrix Q = E{w(t)wT(t)} equals

Q = BBTE{u(t)uT(t)} =



0 0 0
0 0 0
0 0 2ασ2

a


 . (22)

With the given Q and R matrices, the following continuous-
time observer is obtained:

˙̂x(t) = Ax̂(t) + L
(
y(t)− Cx̂(t)

)
(23)
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with A and C according to (20). x̂ is estimate of the object
vehicle state xT =

(
q v a

)
and L is the continuous-time

Kalman filter gain matrix.

B. CACC fallback scenario

The “degraded” CACC (dCACC) employs the estimated
acceleration rather than the desired acceleration of the pre-
ceding vehicle1. However, the inputs of the acceleration
estimator, being the absolute object position and velocity,
cannot be measured. Instead, the onboard sensor provides
distance and relative velocity. The estimation algorithm thus
needs to be adapted, as explained in this subsection.

As a first step, the continuous-time estimator (23) is
described in the Laplace domain by a transfer function T (s),
which takes the actual position qi−1 and velocity vi−1 of
the preceding vehicle, contained in the measurement vector
y(t) in (23), as the input, and has the estimate âi−1 of
this vehicle’s acceleration, being the third element of the
estimated state, as the output. This yields

âi−1(s) = T (s)

(
qi−1(s)
vi−1(s)

)
(24)

where âi−1(s) denotes the Laplace transform of âi−1(t), and
qi−1(s) and vi−1(s) are the Laplace transforms of qi−1(t)
and vi−1(t), respectively. Moreover, the 1 × 2 observer
transfer function T (s) equals

T (s) = Ĉ(sI − Â)−1B̂ :=
(
Tqa(s) Tva(s)

)
(25)

with Â = A − LC, B̂ = L, and Ĉ =
(
0 0 1

)
. Note

that T (s) does not depend on the vehicle index i due to the
homogeneity assumption.

The second step involves a transformation to relative
coordinates, using the fact that (with Li = 0)

qi−1(s) = di(s) + qi(s)

vi−1(s) = ∆vi(s) + vi(s),
(26)

where ∆vi(s) denotes the Laplace transform of the relative
velocity ∆vi(t) = ḋi(t). Substituting (26) into (24) yields

âi−1(s) = T (s)

(
di(s)
∆vi(s)

)
+ T (s)

(
qi(s)
vi(s)

)

:= ∆̂ai(s) + âi(s).

(27)

As a result, the acceleration estimator is split into a relative-
coordinate estimator ∆̂ai(s) := T (s)

(
di(s) ∆vi(s)

)T
, where

∆̂ai(s) can be regarded as the Laplace transform of the esti-
mated relative acceleration ∆̂ai(t), and an absolute-coordin-
ate estimator âi(s) = T (s)

(
qi(s) vi(s)

)T
, where âi(s) is the

Laplace transform of the estimated local acceleration âi(t).
Finally, âi(s) in (27) can be easily computed with

âi(s) =
(
Tqa(s) Tva(s)

)(qi(s)
vi(s)

)

=

(
Tqa

s2
+

Tva

s

)
ai(s) := Taa(s)ai(s)

(28)

1Technically, dCACC is not cooperative, in the sense that information
exchange through wireless communication is no longer employed. However,
to clearly indicate its purpose, the proposed degradation mechanism is put
forward as degraded CACC rather than enhanced ACC.

−

qi−1 qiei ui

K

H

GH−1

−

s
T Taa s2

di

∆vi

ai∆̂ai âi

âi−1

Fig. 4. Block scheme of the fallback dCACC system.

which thus only requires the locally measured acceleration
ai to be available. The transfer function Taa(s), involving
the estimator dynamics, acts as a filter for the measured
acceleration ai, yielding the “estimated” acceleration âi,
effectively synchronizing the local vehicle acceleration mea-
surement with the estimated relative acceleration. The block
diagram of the closed-loop dCACC system, as a result of
this approach, is shown in Fig. 4.

IV. STRING STABILITY OF DEGRADED CACC

To analyze the string stability properties of the dCACC
strategy, the output of interest is chosen to be the ac-
celeration, since this directly guarantees the existence of
‖P1(s)‖H∞

being the first requirement in Condition 1 for
strict L2 string stability, as mentioned in Section II-B. The
SSCS ΓdCACC (s), as defined in (6), can then be computed
with yj(s) = aj(s), j = i, i−1. As a result, with the closed-
loop configuration given in Fig. 4, the SSCS reads

ΓdCACC (s) =
1

H(s)

G(s)
(
K(s) + s2Taa(s)

)

1 +G(s)K(s)
. (29)

Note that, according to Remark 1, strict L2 string stability
is equivalent to L2 string stability for the current system;
moreover, since only (strict) L2 string stability is considered,
this notion will be simply referred to as string stability.

The platoon of vehicles is string stable if also the second
requirement as mentioned under Condition 1 holds, i.e.,
‖ΓdCACC (s)‖H∞

≤ 1. Furthermore, if the system is string
unstable, ‖ΓdCACC (s)‖H∞

will exceed 1; still, in that case
we would aim at making this norm as low as possible to
minimize disturbance amplification. The frequency response
magnitudes of ΓCACC (jω) from (14), ΓdCACC (jω) from
(29), and ΓACC (jω) from (15) are shown in Fig. 5(a) and
5(b) for h = 0.3 s and h = 1.3 s, respectively. Here, the
model parameters, summarized in Table I, are set according
to the parameters of the test vehicles used for experiments;
see Section V. From the frequency response magnitudes, it
follows that for h = 0.3 s, only CACC appears to result in
string-stable behavior, whereas for h = 1.3 s, both CACC
and dCACC yield string stability. As expected, ACC is not
string stable in either case.
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Fig. 5. SSCS frequency response magnitude for (black) CACC, (dashed)
dCACC, and (grey) ACC with (a) h = 0.3 s and (b) h = 1.3 s.

TABLE I

VEHICLE AND CONTROLLER PARAMETERS.

Symbol Value Description

θ 0.02 s Communication delay
τ 0.1 s Vehicle time constant
φ 0.2 s Vehicle internal time delay
kp 0.2 Controller gain (proportional)
kd 0.7 Controller gain (differential)
kdd 0 Controller gain
amax 3 m/s2 Maximum acceleration
Pmax 0.01 Probability of maximum acceleration
P0 0.1 Probability of zero acceleration
α 1.25 s-1 Reciprocal maneuver time constant (1/τm)

In addition to the frequency responses, Fig. 6 shows the
time responses, where the lead vehicle in a platoon of 10
vehicles follows a smooth down-step velocity profile, with
h = 0.6 s. As a result of this disturbance, the string-stable
CACC system damps the shockwave completely, whereas the
dCACC and ACC systems start to propagate a shockwave.
However, dCACC clearly outperforms ACC in terms of
damping. For the given model and controller parameters, the
string-stable time headway region for dCACC appears to be
h ≥ 1.24 s, whereas for CACC and ACC this appears to
be h ≥ 0.25 s and h ≥ 3.16 s, respectively. Consequently,
dCACC represents a significant improvement over ACC
when it comes to string stability characteristics.

V. EXPERIMENTAL VALIDATION

The CACC system, with added graceful degradation fea-
ture, is implemented in two identical passenger cars (Toyota
Prius III Executive), equipped with a wireless communica-
tion device that follows the ITS G5 standard [14], enabling
the vehicles to communicate control-related information,
e.g., the desired acceleration. The relative position of the
preceding vehicle and its relative velocity are measured by
a long-range radar, which is an original vehicle component
in this case. Furthermore, a real-time platform executes the
CACC with a sampling time of ts = 0.01 s, yielding the
desired vehicle acceleration which is then forwarded to a
low-level acceleration controller of the vehicle.

The lead vehicle is velocity controlled, with a reference
velocity vr(t) that is generated based on the requirement to
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Fig. 6. Time response of the velocity vi(t), i = 1, . . . , 10 (black–light
grey), subject to (a) CACC, (b) ACC, and (c) dCACC.
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Fig. 7. Velocity test signal used for identification of the controlled vehicle
platoon; (a) frequency-domain magnitude and (b) time-domain signal.

provide sufficient frequency content for performing a non-
parametric system identification, in particular to identify the
SSCS function in the relevant frequency range. Towards this
end, the selected signal is a random-phase multisine signal
that covers the frequency range f ∈ [0, 0.3]Hz. This range
of excitation, as well as the frequency weighting factors
Mn, with n = 0, 1, . . . , N

2 − 1 and N being the number of
frequency intervals up to the sampling frequency fs = 1/ts,
are chosen based on the frequency content needed for SSCS
identification. The chosen frequency-domain magnitudes Mn

of the test signal, as a function of the discrete frequency
fn = n∆f , with frequency interval ∆f = fs/N , are shown
in Fig. 7(a); the resulting discrete-time signal vr(k) at time
tk = kts with k = 0, 1, . . . , N − 1, is shown in Fig. 7(b).

In order to run the dCACC system in the test vehicles, the
relative-acceleration estimator in (27) has been implemented
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Fig. 8. SSCS frequency response magnitude: (black) experimental and
(grey) theoretical, of the system subject to (a) CACC and (b) ACC.
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Fig. 9. dCACC characteristics: (a) SSCS frequency response magnitude:
(black) experimental and (grey) theoretical, and (b) lead vehicle acceleration:
(dashed black) desired, (solid grey) measured, and (solid black) estimated.

in the follower vehicle using the discrete-time equivalent
of the filter equation (23), with measurement input vector
yT(k) =

(
d2(k) ∆v2(k)

)
being the radar output, and with the

state vector x̂T(k) =
(
d̂2(k) ∆̂v2(k) ∆̂a2(k)

)
. This yields

the estimated relative acceleration ∆̂a2(k), based on which
the absolute target vehicle acceleration a1(k) is estimated by
adding the filtered locally measured acceleration â2(k), using
the discrete-frequency equivalent of Taa(s) in (28) combined
with an onboard acceleration sensor.

Using the measured test data, a nonparametric sys-
tem identification is performed to compute |ΓCACC (jωn)|,
|ΓACC (jωn)|, and |ΓdCACC (jωn)|, with ωn = n2π∆f .
Subsequently, these are compared with the theoretical values,
i.e., through equations (14), (15), and (29), respectively,
using h = 0.6 s headway time. The results are shown in
Fig. 8(a), 8(b), and 9(a). It can be clearly seen that the
experimental results match well with the theoretical ones in
the frequency range of excitation. It can thus be concluded
that the experiments confirm the improvement with respect
to string stability obtained with dCACC compared to the
conventional fallback scenario. Consequently, smaller time
headways are feasible under severe packet loss.

Finally, Fig. 9(b) shows the desired acceleration u1(k) and
the actual measured acceleration a1(k) of the lead vehicle,
both received in the follower vehicle via the communication
link, as well as the estimated acceleration â1(k), computed

locally in the follower vehicle. As can be seen in this figure,
â1(k) provides a satisfactory estimation of a1(k), but shows
a noticeable phase lag with respect to u1(k), which accounts
for the degraded string stability performance of dCACC.

VI. CONCLUSION

A graceful degradation technique for CACC was pre-
sented, serving as an alternative fallback scenario to ACC.
The idea behind the proposed approach is to obtain the
minimum loss of functionality of CACC when the wireless
communication link fails. The proposed strategy uses an
estimation of the preceding vehicle’s current acceleration as
a replacement to the desired acceleration which would nor-
mally be communicated. It was shown that the performance,
in terms of string stability of degraded CACC (dCACC), can
be maintained at a much higher level compared to an ACC
fallback scenario. Both theoretical as well as experimental
results showed that the dCACC system outperforms the ACC
fallback scenario with respect to string stability characteris-
tics by reducing the minimum string-stable time headway to
less than half of the required value in case of ACC.
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