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Abstract— In this paper, a novel Multi-Layer Consensus
Seeking (MLCS) framework is proposed, focusing on the
vehicular platooning problem. The vehicles are described by
linear heterogeneous dynamics. For example, we consider third-
order systems, however the algorithms discussed are suitable
for any higher-order. A velocity-dependent inter-vehicle spacing
policy is rigorously addressed. The approach used is both multi-
layered and consensus-based. The multi-layer approach allows
to separate the problem of estimating the desired trajectories
from the problem of controlling the vehicles towards those tra-
jectories while keeping a safety distance. Consensus algorithms
will be employed on each layer to solve these two problems.

I. INTRODUCTION

In the past two decades, network science has experienced
a spread in diverse fields [2]. A network is a description
of a reality of interest as an interconnection between sub-
systems, which are able to interact in order to achieve a certain
task. These sub-systems are typically described by dynamical
systems which exchange information that influence the global
behavior. In [4], a platoon of vehicles is controlled using
Vehicle to Vehicle (V2V) communication, which enables
the entire platoon to exhibit a stable behavior. This is a
motivation to look at Cooperative Adaptive Cruise Control [4]
(CACC) as an example of a network control problem. In this
paper, we take a more generic approach in the sense that we
approach the vehicular platooning problem as a distributed
coordination problem. In [7], a distributed coordination
approach based on consensus algorithms is proposed to solve
coordination problems of mobile robots, UAVs (Unmanned
Aerial Vehicles) and, more in general, dynamical systems
described by single or double integrator dynamics. Here, we
present a solution to the platooning problem which takes
into account higher-order linear dynamics and a velocity
dependent spacing policy (such as in [4]). Furthermore, we
will take into account heterogeneity in the dynamical models
of the vehicles in the platoon. The challenges coming from
these general assumptions are overcome using a multi-layer
approach. The multi-layer approach is introduced in [3, 5–8].
In particular, in [3], the concept of the coordination variable
is briefly explained. The approach presented in [8] is more
exclusively focused on the concepts of coordination variable
and coordination function. In [5], the implementation scheme
of the strategy with the coordination variable is discussed,
whereas in [6], the concept of distributed control through
coordination variables on each agent is underlined. The
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work in [7] contains all the previous results and a more
general description of the approach in four steps. All these
publications deal with the single integrator dynamics, double
integrator dynamics, or rigid body attitude dynamics whereas
the agents’ dynamical properties are identical, also referred to
as homogeneous dynamics. In many applications, however it is
important to consider heterogeneous dynamics. For example,
in the platooning problem, vehicles are typically characterized
by different models, e.g. a truck vs. a car, and their dynamics
are not adequately described by double integrator dynamics.

The main contribution of this paper is the presentation
of a multi-layer approach to solve the vehicular platooning
problem under higher-order linear heterogeneous dynamics
and actual velocity-dependent spacing policy. Furthermore,
this paper highlights that MLCS is a useful framework capable
of considering more complex scenarios than that addressed
with CACC in [4].

This paper is outlined as follows. In Section II, the vehicular
platooning problem with velocity-dependent spacing policy,
heterogeneous dynamics and safety requirements is stated.
In Section III, the Multi-Layer Consensus Seeking (MLCS)
framework is discussed. For each layer, we introduce a control
objective and propose a consensus algorithm to achieve the
objective. Finally, in Section IV, the proposed approach is
validated through numerical simulation.

II. VEHICULAR PLATOONING: PROBLEM
STATEMENT

We consider the platooning problem as presented, for exam-
ple, in [4]. We adopt the following longitudinal heterogeneous
vehicle dynamics:

ẋi = Aixi +Biui, with i = 1, 2, . . . , k, (1)

where:
• Ai ∈ Rn×n is the system matrix of the i-th vehicle, for

example: Ai =

0 1 0
0 0 1
0 0 − 1

τi

;

• Bi ∈ Rn×1 is the input matrix of the i-th vehicle, for

example: Bi =

 0
0
1
τi

;

• τi ∈ R is the time-constant which models the actuator
dynamics of the i-th vehicle;

• i ∈ N is an index associated with each vehicle;
• k ∈ N is the number of the vehicles in the platoon;
• xi ∈ Rn is the state vector of the i-th vehicle;
• ui ∈ R is the control input of the i-th vehicle.
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Fig. 1: Single lane heterogeneous platoon.

In general, dynamics in (1) can be described by completely
different entries for the matrices Ai and Bi, we only require
that the state dimension n ∈ N remains the same for each
vehicle. For the platooning problem, with the particular 3× 3
matrix Ai and 3× 1 matrix Bi mentioned above, the state
vector xi can be specified as:

xi =

sivi
ai

 , (2)

where:
• si : T → R is the absolute position of the i-th vehicle

in a global reference-frame C (depicted in Fig. 1);
• vi : T → R is the velocity of the i-th vehicle in the

global reference-frame C;
• ai : T → R is the acceleration of the i-th vehicle in the

global reference-frame C;
• T ⊆ R: is the continuous time set.

A. Control Objective

The control objective for the ensemble of vehicles in (1)
consists of driving at a desired speed and acceleration while
keeping a velocity-dependent spacing policy between the
vehicles. We define desired signals of position, velocity and
acceleration for the leader vehicle. Without loss of generality,
we assume that the first vehicle of the platoon (see Fig. 1) is
the leader vehicle. The desired reference is:

xd(t) =

sd(t)vd(t)
ad(t)

 (3)

where:
• sd(t) =

∫ t
t0
vd(τ) dτ , with t0 the initial time instance;

• vd(t) =
∫ t
t0
ad(τ) dτ ;

• ad(t) is a reference acceleration signal for the leader
vehicle.

Furthermore, each vehicle has to keep a desired distance from
the preceding vehicle. Assuming the vehicles’ length is equal
to zero, the desired position of each vehicle can be written
as:

sd1(t) = sd(t), sdi (t) = sd(t)−
i∑
l=2

(r + hvl(t)) (4)

with i = 2, . . . , k, where r ∈ R+ is a constant value, which
corresponds to the standstill distance between the vehicles.
Moreover, h ∈ R is the time-gap, which is a key parameter
for the platooning problem (see for example [4]). If h = 0 s,
then the spacing policy is constant, otherwise it is addressed
as velocity dependent, reflecting the dependence of the i-th
position from the actual local vehicular velocity. Concerning

the velocity and acceleration of the i-th vehicle with the
velocity-dependent spacing policy in (4), the desired velocities
and accelerations are:

vd1(t) = vd(t), vdi (t) = vd(t)− h
i∑
l=2

al(t),

ad1(t) = ad(t), adi (t) = ad(t)− h
i∑
l=2

ȧl(t)

(5)

with i = 2, . . . , k. The difficulty posed by the velocity-
dependent spacing policy is, at least, twofold. First, in
the expression of the i-th desired position, velocity and
acceleration, see (4) and (5), the summation contains the
influence of the actual velocities and accelerations of all
preceding vehicles on the i-th vehicle. Second, considering
time-varying signals of position, velocity and acceleration
in (3), we are implicitly considering the problem of controlling
the behavior of the platoon also during the transients and not
only at a desired cruise speed.

B. Safety Requirement

Platooning technology intends, among other advantages, to
ensure a high level of safety to the road users. Therefore, we
have to include safety requirements in the design phase of
the control strategy. The most obvious requirement, that we
have to consider, is that the vehicles must be able to react
to unexpected behavior of one or more neighboring vehicles.
To ensure safety, we will require that vehicles interact based
on measurements performed by sensing devices such as a
radar and/or a camera. This will result in the presence of
an interaction topology on the lower layer of MLCS. In
other words, after estimating the desired trajectories, with
MLCS the vehicles will be also capable of reacting to the
tracking error of neighbor vehicles. This means that with
MLCS, if a vehicle in the platoon is unable to track its
desired reference signal, the neighboring vehicles will react
and adapt to this unexpected behavior. This reaction is based
on measurements performed by on-board sensors and the
estimated trajectories of neighboring vehicles. Mathematically,
an interaction network between vehicles can be modeled
through a graph. A graph G = (V, E) is a set of nodes
V = {1, 2, . . . , k} (i.e., the vehicles) and edges E (i.e., the
sensing/communication of information). An edge can be
indicated as a couple (j, i) ∈ E when the information flows
from j to i. The network topology is described using an
adjacency matrix A = {aij} ∈ Rk×k where aij are defined
as:

aij =

{
1 if i 6= j and (j, i) ∈ E
0 otherwise

, (6)

and a Laplacian matrix L defined as the difference between
the diagonal matrix D (which entries are the number of the
incoming edges for each node) and the adjacency matrix A.
Here, we only consider directed fixed topologies containing
a directed spanning tree from the leader (see [7]).
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Fig. 2: Coordination variable estimates ξ̂i on the higher layer.

III. MULTI-LAYER CONSENSUS SEEKING

We propose to solve the platooning problem in two steps,
which constitute two layers. The first layer is intended to
solve the problem of estimating the desired trajectory for
each vehicle. This layer will be called the higher layer. The
second layer is intended to control the vehicles towards the
desired trajectories, while respecting the safety requirements.
This layer will be called the lower layer.

A. Higher Layer

On the higher layer we are facing the problem of estimating
the desired position (4), and velocity and acceleration (5) for
each vehicle. The approach, proposed to solve this problem,
consists of introducing a vector variable ξ, called coordination
variable, which is defined as:

ξ(t) =

sd(t)vd(t)
ad(t)

 . (7)

This coordination variable is supposed to be known, or
communicated by a road-side unit (RSU), to the leader
vehicle. In the remainder of this paper, we assume that ξ(t)
is communicated by a RSU to the first vehicle. The purpose
of the coordination variable in the multi-layer approach is to
enable the vehicles to reconstruct their desired trajectories (4)
and (5). Therefore, the coordination variable should include
only the information that cannot be a priori known by
the vehicles. It is possible to extend the content of the
coordination variable with extra information if there is a
need of tuning other parameters in a coordinated manner.
For example, we can imagine a scenario in which it is
desirable to tune the standstill distance r or the time-gap
h to change the platoon formation in order to realize complex
maneuvers. The coordination variable cannot be broadcast
to each vehicle, because we are supposing that no global
information is available to the individual vehicles. Therefore,
we introduce at each vehicle, an estimate of the i-th desired
trajectory according to:

ξ̂i =

ŝdiv̂di
âdi

 , with i = 1, 2, . . . , k. (8)

In (8), the desired values of position, velocity and acceleration,
which are locally computed estimates of (7) at the i-th
vehicle (see Fig. 2), are denoted by a hat. In the literature
(see [3], [8], [6] and [7]), this is called decentralization of
the coordination variable ξ.
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Fig. 3: Coordination variable estimates ξ̂i exchange on the
higher layer. The red star represents the road side unit
which communicates the coordination variable ξ to the leader
vehicle (orange node).

B. Consensus Algorithm on the Higher Layer
Upon introducing a local estimate of the coordination

variable in each vehicle (8), we face the problem of ensuring
convergence of the estimates towards the desired trajectories
in (4) and (5). We can define the following deviations for the
estimates (8) with respect to the trajectory communicated by
the RSU to the first vehicle in (7):

δ1 =

0
0
0

 , δi = −

∑i
l=2(r + hvl)

h
∑i
l=2 al

h
∑i
l=2 ȧl

 , (9)

with i = 2, 3, . . . , k. Assuming an initial condition for the
estimates in (8) different from the values in (7) and/or time-
varying references, we want to update the estimates (8) such
that:

lim
t→∞

ξ̂i(t) = ξ(t) + δi(t), with i = 1, 2, . . . , k. (10)

For the sake of simplicity, each estimate of the coordination
variable is updated according to the dynamics:

˙̂
ξi = νi, with i = 1, 2, . . . , k, (11)

where νi is the estimator-law that we have to define. We
assume that the platooning system is equipped with a
communication mechanism that enables each vehicle to
transmit the local estimate of the coordination variable to one
or more neighboring vehicles. In addition, we also assume that
the leader vehicle receives the true value of the coordination
variable (7). In this way, it is possible to assume a network
topology on the higher layer in which an edge from vehicle j
to vehicle i indicates the communication of the coordination
variable ξ̂j to vehicle i (see Fig. 3 for an example of network
topology on the higher layer). We introduce the desired
separation between the coordination variable estimates as:

∆ij
4
= δi − δj , with i, j = 1, 2, . . . , k and i 6= j. (12)

Using the definition of the deviations (9), we obtain:

∆ij = δi − δj = −

∑i
l=2(r + hvl)−

∑j
l=2(r + hvl)

h(
∑i
l=2 al −

∑j
l=2 al)

h(
∑i
l=2 ȧl −

∑j
l=2 ȧl)

 ,

(13)
with i = 2, 3, . . . , k and j = 1, 2, . . . , k. Assuming j < i (i.e.
i is one of the followers of vehicle j) we have:

∆ij = δi − δj = −


∑i
l=j+1(r + hvl)

h
∑i
l=j+1 al

h
∑i
l=j+1 ȧl

 , (14)



with i = 2, 3, . . . , k. Therefore, in (14) we have that ∆ij

depends only on the velocities, accelerations and jerks of
the vehicles between vehicle i and vehicle j + 1 (included).
From (14), it follows that the desired separations between the
coordination variable estimates of two consecutive vehicles
are:

∆i(i−1) = δi − δi−1 = −

r + hvi
hai
hȧi

 (15)

with i = 2, 3, . . . , k. Assuming a one-vehicle look-ahead
interaction topology on the higher layer (see Fig. 3), we
propose the following consensus algorithm with relative
deviations:

ν1 = ξ̇ + γ(ξ − ξ̂1)

νi = νi−1 + ∆̇i(i−1) + γ(ξ̂i−1 − ξ̂i + ∆i(i−1)),
(16)

with i = 2, 3, . . . , k. In (16), γ ∈ R+ is a positive gain which
determines the rate of convergence of the estimates ξ̂i towards
ξ + δi, while νi−1 + ∆̇i(i−1) is a feed-forward estimation
term which helps the tracking of time-varying trajectories.

C. Lower Layer

Assuming that each vehicle estimates its desired trajectory
using (11) and (16), then a control strategy could consist of
designing a local control action for each vehicle based on
the coordination variable ξ̂i, as depicted in Fig. 3. In this
case, the lower layer would be designed taking into account
only the (estimated) reference signals, and no other exchange
of information between the vehicles is considered. In other
words, we could define the control objective on the lower
layer as:

lim
t→∞

xi(t) = ξ̂i(t), ∀i ∈ {1, 2, . . . , k}. (17)

However, this approach will not guarantee a safe platooning.
In fact, in case of an unexpected behavior of one or
more vehicles, the neighboring vehicles cannot react. This
may happen because the higher layer is designed taking
into account only the estimated reference signals without
other exchange of information between the vehicles. For
example, if the desired acceleration is positive but the first
vehicle stops accelerating due to an unexpected failure, the
following vehicles will continue to track their estimated
reference trajectory. As a consequence, an accident will
occur. Therefore, we assume that on the lower layer, another
interaction topology exists (for example, see Fig. 4). Similar
to the higher layer, this interaction can be mathematically
described through a network topology on the lower layer,
where an edge from the vehicle j to the vehicle i indicates
the sensing/communication of information from vehicle j to
vehicle i. We assume that each vehicle is equipped with a
sensing/communication mechanism that enables each vehicle
to measure and/or to transmit:
• the relative position from a neighbour vehicle si − sj

(for example, measured with a radar and/or camera);
• the relative velocity from a neighbour vehicle vi − vj

(for example, measured with a radar and/or camera);
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Fig. 4: MLCS conceptual scheme. In this scheme, the lower
layer represents heterogeneous interacting vehicles (nodes
with different colors). Furthermore, it is worthwhile noticing
that in general the interaction topologies can be different on
the two layers.

• the relative acceleration from a neighbour vehicle ai−aj
(for example, ai is measured with a local accelerometer,
while aj is measured and transmitted through V2V
communication).

On the basis of the observations above, we consider the
following objective, instead of the control objective in (17):

lim
t→∞

(xi − xj) = ξ̂i − ξ̂j , j ∈ Ni, ∀i ∈ {1, 2, . . . , k}.
(18)

where Ni ⊂ V is the set of neighbors of vehicle i. The
control objective (17) is defined to ensure the tracking of the
desired trajectory, therefore the control algorithm on the lower
layer will still contain a feed-forward part to achieve (17).
Instead, the control objective (18) is intended to ensure the
correct relative distances, velocities and accelerations between
the vehicles in the platoon independently from the control
objective (17). We also specify that we aim to achieve (18)
by introducing interaction between vehicles supported by
sensing/communication devices. The control objective (18)
can be also interpreted as follows:

lim
t→∞

(ξ̂i−xi) = lim
t→∞

(ξ̂j−xj), j ∈ Ni, ∀i ∈ {1, 2, . . . , k}.
(19)

i.e. we desire that the tracking error ei
4
= ξ̂i − xi converges

to the same value as ej
4
= ξ̂j − xj . This would ensure a safe

behavior of the platoon at least asymptotically, because if ej
is not zero, we also desire that the vehicle i does not follow



its desired trajectories (4) and (5), that are designed without
taking into account failures on the vehicles.

D. Consensus Algorithm on the Lower Layer

Finally, it is possible to define a consensus algorithm that
achieves the control objectives (17) and (18) as:

ui = uri + cLi

k∑
j=1

aij(xi − xj + ξ̂j − ξ̂i), (20)

with i = 1, 2, . . . , k, where c ∈ R+ denotes the coupling
strength and Li ∈ R1×n with i = 1, 2, . . . , k are feedback
gain vectors. The protocol (20) contains:

1) a feed-forward action uri computed in real time on the
basis of the i-th estimated desired trajectory ξ̂i and
designed on the basis of the i-th linear model (1). This
action is desired to fulfill the control objective (17);

2) a feedback network-based action cLi
∑k
j=1 aij(xi −

xj + ξ̂j − ξ̂i) based on the interaction between the
vehicles on the lower layer. This action is designed to
fulfill the control objective (18).

There is no particular constraint for the choice of the technique
used to compute uri . However, assuming heterogeneous
vehicles, uri has to take into account the difference in vehicles’
dynamics, and it is not possible to use the desired acceleration
of the preceding vehicle as in [4]. Therefore, uri must be
computed with a control-tracking algorithm and based on the
model (1). An example is given in Section IV. Regarding
the choice of the parameters in (20), see [10] in which it is
proposed to compute the i-th matrix Li by solving the Linear
Matrix Inequality:

AiPi + PiA
T
i − 2BiB

T
i < 0 (21)

to obtain a solution Pi > 0, and computing:

Li = −BTi P−1i (22)

and also to choose c on the basis of the interaction topology
on the lower layer as follows:

c ≥ 1

min
i=2,3,...,k

{Re(λi)}
(23)

where Re(λi), with i = 2, 3, . . . , k denote the real part of
the non-zero eigenvalues of the Laplacian matrix, defined in
relation to the topology on the lower layer.

IV. SIMULATION RESULTS

In this section, numerical simulations are shown to validate
the stability of the whole closed-loop system, see Fig. 4. The
simulations are performed with Matlab/Simulink. For the
sake of simplicity, we consider a platoon of three vehicles of
which the dynamics are characterized by the time constants
in Table I, where the initial conditions are also listed. We
choose one-vehicle look-ahead interaction topologies both on
the higher and lower layer. The required standstill distance and
the time-gap are set to r = 5 m and h = 0.6 s, respectively.
The control gain on the higher layer is set to γ = 2. On the

TABLE I: Time constants and initial conditions.

Vehicle τi [s] si(0) [m] vi(0) [m/s] ai(0) [m/s2]

1 0.1 0 0 0
2 0.55 -10 0 0
3 0.08 -15 0 0

TABLE II: Gain vectors on the lower layer.

Vehicle Li

1 (−0.0654 −0.7236 −1.7194)
2 (−0.4403 −1.4519 −1.8921)
3 (−0.0379 −0.4561 −1.2369)

lower layer, the gain vectors Li with i = 1, 2, 3 are computed
solving the LMIs in (21), using the SeDuMi toolbox [9]. The
resulting gain vectors are given in Table II. The coupling
strength on the lower layer is set to c = 2, given the fact that
with a one-vehicle look-ahead interaction topology, all the
non-zero eigenvalues of the Laplacian matrix are equal to 1.

A. uri design example

In this simulation, we propose to design the feed-forward
action uri by solving an optimal linear quadratic (LQ) tracking
problem. Other choices are also possible. We define k
reference models:

ẋri = Aix
r
i +Biu

r
i , with i = 1, 2, . . . , k, (24)

where the matrices in (24) are defined in (1). As a result,
we design uri such that ξ̂i is a (globally asymptotically
stable) solution of the i-th system in (24), ∀i ∈ {1, 2, . . . , k}.
Mathematically, we search for the solution of the following
linear quadratic optimization problem:

min
ur
i (·)

∫ +∞

0

{(xri − ξ̂i)TQi(xri − ξ̂i) + uri
TRiu

r
i } dt

subject to
ẋri = Aix

r
i +Biu

r
i ,

(25)

where:
• Qi ≥ 0 is the state-weighting matrix;
• Ri > 0 is the input-weighting matrix.

The problem (25) can be solved by making the following
variable substitution:

ζi = xri − ξ̂i (26)

As a consequence, (25) is transformed into the following Op-
timal Linear Quadratic Regulation problem (LQR-problem),
with disturbance wi = Aiξ̂i − ˙̂

ξi:

min
ur
i (·)

∫ +∞

0

{ζTi Qiζi + uri
TRiu

r
i } dt

subject to

ζ̇i = Aiζi +Biu
r
i + wi

(27)

In [1], the solution of (27) under the ”disturbance” wi is
given by:

uri = Kfb,i(ξ̂i − xri )−R−1i BiKfw,iwi (28)
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where the matrices Kfb,i and Kfw,i can be computed
by solving some Algebraic Riccati Equations as discussed
in [1]. The choice of the LQ weighting matrices are: Qi =
diag{1, 100, 100} and Ri = 120, with i = 1, 2, 3. Also
in this case, the LMIs for the computation of uri , [1],
are solved using the SeDuMi toolbox [9]. A trapezoidal
desired acceleration is communicated by the RSU to the first
vehicle in the platoon. With the consensus algorithm (16), the
acceleration estimates âdi (t) follow the trajectories in Fig. 6.
Absolute velocities are depicted in Fig. 7. The errors in the
relative positions are shown in Fig. 8.

V. CONCLUSIONS

In this paper, we have proposed a Multi-Layer Consensus
Seeking (MLCS) approach to solve the vehicular platooning
problem. The dynamics considered are linear and hetero-
geneous, furthermore a velocity-dependent spacing policy
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Fig. 8: Errors in the relative positions.

is adopted. MLCS allows to tackle the complexity coming
from the above assumptions within a generic framework.
We envision that this framework can be used to step in a
higher level of automation when considering the realization of
complex maneuvers. This is the subject of ongoing research.
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