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Abstract— In automated driving, risk describes potential
harm to passengers of an autonomous vehicle (AV) and other
road users. Recent studies suggest that human-like driving
behavior emerges from embedding risk in AV motion plan-
ning algorithms. Additionally, providing evidence that risk is
minimized during the AV operation is essential to vehicle safety
certification. However, there has yet to be a consensus on how
to define and operationalize risk in motion planning or how
to bound or minimize it during operation. In this paper, we
define a stochastic risk measure and introduce it as a constraint
into both robust and stochastic nonlinear model predictive
path-following controllers (RMPC and SMPC respectively).
We compare the vehicle’s behavior arising from employing
SMPC and RMPC with respect to safety and path-following
performance. Further, the implementation of an automated
driving example is provided, showcasing the effects of different
risk tolerances and uncertainty growths in predictions of other
road users for both cases. We find that the RMPC is significantly
more conservative than the SMPC, while also displaying greater
following errors towards references. Further, the RMPCs be-
havior cannot be considered as human-like. Moreover, unlike
SMPC, the RMPC cannot account for different risk tolerances.
The RMPC generates undesired driving behavior for even
moderate uncertainties, which are handled better by the SMPC.

Index Terms— autonomous vehicles, motion planning, path
following, robust model predictive control, stochastic model
predictive control, risk assessment

I. INTRODUCTION

Introducing autonomous vehicles (AVs) into traffic at scale
will take a long period during which AVs and human-
controlled vehicles will share the roads. This development
leads to scenarios where AVs and human-controlled vehicles
have to predict each other’s future motion and interact [1].
For AVs to be accepted by human drivers, they should display
the kind of behaviors that human drivers expect from each
other. Such behavior, once understood, could be incorporated
into AVs and operationalized for motion planning.
Modeling human driving relies either on extensive use of
artificial intelligence or on models for each individual aspect
of driving [2]. Both approaches have limitations. Artificial in-
telligence lacks explainability and causal reasoning [3]. Mod-
eling each individual aspect of driving separately leads to a
fragmented motion planning design. However, in the quest to
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find an underlying theory of human driving, recent literature
suggests that AVs can mimic human driving by maintaining
a stochastic risk estimate below a threshold level. Further, a
correlation between an objective risk estimate and perceived
risk has been established [2], indicating the feasibility of
objective risk estimation methods for motion planning.

Here, in accordance with related literature, risk is under-
stood to be a stochastic quantity that describes the potential
harm resulting from driving with limited knowledge of cur-
rent and future driving states. Using a precise risk definition,
we develop a motion planning strategy that generates vehicle
behavior by limiting risk along the motion plan1.

For motion planning, competing interests such as risk and
travel time minimization must be balanced. Several motion
planning methods are established (see, e.g., [6]). We consider
model predictive control (MPC) because it allows for the
flexible integration of risk either in the objective function
or as a constraint. We focus on path-following MPC formu-
lations computing an actuator (e.g., velocity and turn rate)
input sequence. Path-following is preferable over trajectory-
tracking, because a time-independent reference path and a
reference velocity can be computed offline first and the
controller assigns the timing along the references online later
[7]. A path-following MPC scheme can effectively combine
motion planning and control, balancing path-following per-
formance (i.e., minimizing the error towards references) with
risk minimization (potentially pushing the vehicle away from
the references, i.e., around dynamic objects).

Two MPC formulations can accommodate the stochastic
nature of risk: robust MPC (RMPC) or stochastic MPC
(SMPC) [8]. However, to the best of our understanding, the
incorporation of risk in RMPC and SMPC schemes is still
incipient. For instance, [9] shows how to introduce stochastic
constraints regarding uncertain positions of other road users
into an extended trajectory-tracking RMPC formulation. It
also provides conditions for recursive feasibility (which, in
turn, guarantee AV safety) that rely on having uncertainties
with bounded support. This allows the RMPC formulation
to optimize for the worst-case (uncertainty) scenario, effec-
tively sidestepping the stochastic nature of the uncertainties,
potentially leading to more conservative behaviors [10] (here,
"conservative" means to take unnecessary large safety dis-
tances at the cost of path-following performance). Safety, in
terms of recursive feasiblity for an SMPC is reported in [11]
for a trajectory-tracking problem considering a linear system

1Current safety standards [4], [5] require car makers to show evidence
that their vehicles operate with "acceptably" low risk. We believe the work
presented here can support providing such evidence.
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model. Safety is proven by assuming a safe backup planner
that relies on worst-case scenario assumptions.
Note that unlike deterministic MPC, for which extensive
tools exist to analyze reference convergence and recursive
feasibility of trajectory-tracking and path-following problems
[12], tools for analyzing RMPC and SMPC schemes for
motion planning and control are limited. To the best of our
knowledge, the integration of stochastic risk into nonlinear
path-following SMPC and RMPC formulations is not re-
ported in the literature, and recursive feasibility conditions
for such formulations are only available for situations where
risk can be upper-bounded by analyzing the worst-case
scenarios. Furthermore, although the use of risk in motion
planning has been reported (see, e.g., [13], [14], [15]), there
is no consensus yet on its definition and operationalization.
This paper addresses some of these challenges. It provides
a method to integrate stochastic risk as part of an MPC
path-following problem formulation for automated driving
applications. Herein, a general stochastic risk definition
based on risk-inducing events is proposed. In addition, we
compare two different approaches, SMPC and RMPC though
a simulation-based case study of a representative automated
driving scenario. The comparison is based on 1) safety,
measured as the distance to an encountered object given a
specific risk tolerance, and 2) path-following performance
defined as reference error minimization. The simulation
scenario consists of an AV that must follow a prescribed
path in the presence of a moving obstacle. The effect of
different rates of growing uncertainties in the predictions of
the obstacle’s motion and of various risk tolerances is also
explored within the scenario.
The remainder of this article is organized as follows. Sec-
tion II provides our risk definition. Section III shows how
to integrate risk in the formulation of the path-following
problem. Section IV and V derive the respective RMPC and
SMPC formulations. In Section VI we present the simula-
tion scenario, highlighting the required modelling elements.
Section VII simulates the example with varying parameters.
The results, with attention to our objectives, are discussed
in VIII. Section IX highlights the benefits of SMPC over
RMPC and presents an outlook for future research.

Notation: In our scenario, the AV (or ego vehicle) and the
object are characterized by a configuration y := (q, θ) ∈ C.
The configuration space C denotes the set of acceptable actor
positions q := (c1, c2) ∈ R2 and heading angles θ ∈ [0, 2π).
A set of integers {a, a+ 1, ..., b}, with a < b, is denoted by
Zba and the set of positive reals including zero by R0,+. The
identity matrix of size p× p is denoted by Ip. We denote a
configuration at time k as yk and a predicted configuration
at time n given information available at time k as yn|k. The
same notation is applied for states, inputs, and constraints.
Finally, all variables associated with the ego vehicle and the
object will be identified, respectively, with e and o subscripts.

II. RISK DEFINITION

The definitions of risk vary in the literature; nevertheless,
safety standards [4], [5] formulate it as a combination of

the probability of occurrence of harm and the severity of
that harm2. Examples for risk in the scope of these safety
standards can be found in [17], [18]. Inspired by this ap-
proach, we define risk based on harm-inducing events E , e.g.,
collisions or strong deceleration. However, our definition can
be extended to other risk-inducing events.
Within a specific driving scenario, the occurrence of a harm-
inducing event at time k can be identified by ascertaining
whether specific conditions among kinematic variables asso-
ciated with the participants in the scenario are fulfilled at that
time. These conditions can, for example, evaluate whether
the physical boundaries of different participants overlap,
representing a collision. Let zk ∈ RnE denote the kinematic
variables at time k required to determine the occurrence of
an event E . Denote by BE,k the subset in RnE that satisfies
the conditions used to identify the occurrence of E at time
k. In general, zk is a random vector with associated proba-
bility density function pz,k, due to uncertainties involved in
measuring or estimating the kinematic variables of interest.
Lastly, let s : BE,k → R+,0 denote a function that assigns
the severity to every element of BE,k. Then, we can define
the risk Rk at time k as

Rk := E[s(zk)] =

ˆ
BE,k

s(z)pz,k(z)dz, (1)

that is, Rk is interpreted as the expected severity of event E at
time k. To constrain the risk at every time step, we introduce
the risk tolerance ε ∈ R+, such that Rk ≤ ε represents an
explicit risk constraint within our problem formulation.

III. PROBLEM FORMULATION

We proceed to integrate the risk defined in Section II,
in the formulation of a path-following problem. Also, the
control objectives and the control problem will be presented.
While the problem setup introduces some simplification,
we stress that our generic approach is not limited to the
presented setup.

A. Problem Setup

Consider a scenario consisting only of an AV, or ego
vehicle, and another vehicle, called the object. The ego is
provided with a reference path P and reference velocity
vref ∈ R+,0, and it is tasked with planning its own motion
online to minimize the error with respect to both references
within some finite horizon Zk0+Kk0

, with K a non-negative
integer. A path is defined as follows.

Definition 1: (Path) A path P is the image of a function
yP : R → C in the configuration space: P := {yP (λ) ∈
C | λ ∈ [λ0, λg] 7→ yP (λ)}, where yP is sufficiently often
differentiable with respect to λ.

2In a broader sense, the breaking of traffic laws, adhering to safety
specifications [15] and fairness among traffics participants [16] could also
be identified as risk-inducing events. However, this cannot necessarily be
related to physical harm, shifting away from the notions of safety standards.
To include risk-sources beyond safety standards, the definition of risk must
be reformulated on the basis of a more general cost instead of physical
harm. This will be addressed by future works of the authors.



c1

c2

Fig. 1. Illustration of the problem setup for two different time instances.
At time k the actors are displayed in black and for some time later k + n
in gray. Minimizing the reference error given an evolution of λ on the path
P would lead to a collision, where the gray area denotes Se(ye,n+k) ∩
So(yo,n+k).

We assume that the path provided to the ego vehicle is a
regular curve (i.e., its derivative never vanishes), satisfying
Definition 1. The path is exactly followable, that is, the
path satisfies the physical limitations of the ego vehicle.
Note that, we do not impose any collision constraints on
the references. This means that exact following of the path
and velocity reference could lead the ego to collide with the
object. Here, a collision between the ego and the object is the
only considered harm-inducing event E . To check whether a
collision occurred, we consider the ego vehicle’s and object’s
configuration, respectively, denoted by ye,k ∈ Ce,k ⊂ C
and yo,k ∈ Co,k ⊂ C at time k. To estimate a collision’s
severity, we also require the respective scalar velocities
ve,k, vo,k pointing in the direction of the heading angles
which are contained within the configurations. The velocities
are elements of the respective time-dependent compact sets
Ve,k,Vo,k ⊂ R. Therefore, zk = (yTe,k, ve,k,y

T
o,k, vo,k)T

denote the kinematic variables required to determine the risk
associated with a collision. A collision occurs if the occupied
compact regions of both actors intersect. We denote the re-
spective compact regions Se(ye,k),So(yo,k) ⊂ R2 at time k.
Hence, a collision is conditioned on Se(ye,k)∩So(yo,k) 6= ∅.
Clearly, the collision condition depends on the configuration
only, while the severity additionally requires the velocities.
Thus we define the set BE,k := {z ∈ Ce,k×Ve,k×Co,k×Vo,k |
Se(ye) ∩ So(yo) 6= ∅} to be used in the risk definition in
(1). The problem setup is illustrated in Figure 1.

We make the following assumptions to clarify which
information is available to the controller.

Assumption 1: (Object information) The object configura-
tion yo,k and velocity vo,k at time k are measured (either by
direct measurement or estimation) together with their associ-
ated independent probability densities pyo,k and pvo,k. For all
future instances n within a prediction horizon Zk+Nk , there
is a prediction model available for the object, that propagates
(yo,n|k, vo,n|k) in the time-dependent set Co,n|k × Vo,n|k

and estimates the independent probability density functions
pyo,n|k and pvo,n|k.

Assumption 2: (Ego information) The kinematic variables
associated with the ego vehicle are assumed to be measurable
at all times without any uncertainty.
We adopt Assumption 1 since we are interested in under-
standing the influence of prediction uncertainties, captured
within the risk measure, on the ego’s behavior. The uncertain-
ties associated with the object are generally more significant
than those with the ego vehicle, justifying Assumption 2.

B. Control Objectives

The problem is set up such that we seek to minimize
an error towards time-independent references. However, the
exact reference following may lead to collisions. To avoid
collisions, we introduce a risk constraint that potentially
forces the controller to deviate from the references, requiring
the controller to balance reference following with collision
risk. Thus, the controller performs online motion planning
and vehicle actuation for the ego vehicle based on the
following objectives:
(i) minimize the following error to the reference path and

velocity,
(ii) constraint satisfaction, explicitly including a risk con-

straint to enforce safety.

C. Control Problem

In contrast to trajectory-tracking, path-following treats the
time evolution along the path as an additional degree of
freedom. Thereby path-following allows the controller to
plan maneuvers by deviating from the reference velocity
and path. Suppose that the motion dynamics of the ego are
modeled by a discrete-time non-linear system of the form

xk+1 = f(xk,u1,k),

(yTe,k, ve,k) = h(xk),
(2)

where xk ∈ Rnx and u1,k ∈ Rnu1 represent the state
and input vectors at time k respectively. The function f
comprises the model equations and h the output functions.
The system is subject to state and input constraints, such
that x ∈ X and u1 ∈ U which must be satisfied at all times.
The constraints represent actuator limitations and dynamic
limits of the vehicle. We require the system to minimize the
error with respect to the path, where path-following allows
us to control the evolution along the path, parameterized by
λ ∈ [λ0, λg] [7]. To do so, an additional input u2,k ∈ Ve,k
is introduced to control the evolution of λ through the first-
order difference equation

λk+1 = g(λk,ye,k, u2,k), (3)

where g is a continuous function.
Next, we define the following error as

ek =

(
hT (xk)− yTP (λk)

u2,k − vref

)
, (4)

where vref ∈ R+,0 is the reference velocity. Indeed,
when ek = 0, the AV follows the reference path with



the reference velocity. Note that we assume that only the
objects configuration and velocity are uncertain, instead of
all variables leading us to separate the kinematic variables as
zk = (ze,k, zo). Thus, ze,k = (yTe,k, ve,k) are deterministic
variables3 and zo = (yTo , vo) are random variables. Further,
given s : R8 → R0,+, the general risk from (1) becomes

Rk =

˚

BE,k(ze,k)

s(zk)δze,k
(ze)pyo,k(y)pvo,k(v)dzedydv,

(5)
where pz,k = δze,k

pyo,kpvo,k due to the independence
assumption, and δze,k

is the Dirac distribution over ze,k.
Problem: Given the risk measure (5), the system dynamics
(2) - (3), a path yP satisfying Definition 1 and a reference
velocity vref , design a controller generating inputs u1, u2
such that:
(a) the error in (4) is minimized, in the sense that∑k0+K

k=k0
‖ek‖ is minimized,

(b) the constraints xk ∈ X , (u1,k, u2,k) ∈ U × Ve,k, and
Rk ≤ ε are satisfied for all k.

In the next two sections, we discuss two distinct MPC
approaches to solving this problem.

IV. ROBUST MODEL PREDICTIVE CONTROL

We take the RMPC approach of [9], formulated for
an extended trajectory-tracking problem with an uncertain
constraint, as the basis for tackling the problem stated in
Section III. In RMPC, the worst-case scenario is found by
realizing the random variables such that cost or a constrained
value are maximized. Given our problem formulation, the
ego vehicle is deterministic; hence, the path-following error
is deterministic, leaving the uncertainty only within the risk
constraint, defined in the following.

Definition 2: (Worst-case scenario: risk constraint) The
worst-case scenario given by (the kinematic variables) z ∈
BE,n|k(ze,n|k) that maximizes the severity function s.
As a consequence of Definition 2, if one further assumes that
s is continuous and Co,n|k×Vo,n|k is compact, the worst-case
risk is given by

Rwc,n|k = max
z∈BE,n|k(ze,n|k)

s(z). (6)

Note that this only holds under Assumptions 1 and 2 and
the assumption of compactness of Co,n|k × Vo,n|k, which
guarantee that BE,n|k(ze,n|k) is also compact. The worst-
case risk might be computeable in more general cases.
Thus, a careful construction of BE,n|k(ze,n|k) and random
variables with compact support are required to operationalize
a general risk measure within RMPC. The cost function to
be minimized at each sampling instance is

J(ye,k, λk,u1, u2) = E(ye,k+N |k, λk+N |k)

+

k+N−1∑
n=k

F (en|k, λn|k,u1,n|k, u2,n|k),
(7)

3ze,k is a variable of the domain of integration, such that BE,k(ze,k) :=
{(ze,k,zo),zo ∈ ×Co,k × Vo,k | Se(ye,k) ∩ So(yo) 6= ∅}.

where u1, u2 denote input sequences over the prediction
horizon of length N . Further, E : C × [λ0, λg] → R+,0

is the terminal cost and F : R4 × [λ0, λg] × U × Ve →
R+,0 represents the stage cost. Note that this is a generic
formulation. In practice, the stage and terminal cost might
assign a cost to fewer variables. To achieve our control
objectives, it is sufficient to minimize the error. The path-
following RMPC formulation is stated as

V RMPC(ye,k, λk) := min
u1,u2

J(ye,k, λk,u1, u2), (8a)

subject to:

xk|k = xk, λk|k = λk, (8b)

∀n ∈ Zk+N−1k : xn+1|k = f(xn|k,u1,n|k), (8c)

(yTe,n|k, ve,n|k) = h(xn|k), (8d)

λn+1|k = g(λn|k, u2,n|k), (8e)

en|k = (hT (xn|k)− yTP (λn|k), u2,n|k − vref )T , (8f)
xn|k ∈ X , (u1,n|k, u2,n|k) ∈ U × Ve, (8g)

∀n ∈ Zk+Nk : λn ∈ [λ0, λg], (8h)
Rwc,n|k ≤ ε, (8i)
(xk+N |k, λk+N |k) ∈ T ⊂ X × [λ0, λg]. (8j)

To enforce that the prediction starts at the current states,
the constraint (8b) is implemented. The system model is
integrated into (8c) - (8e). The error is given in (8f) to support
path-following by minimization of this error. State, input, and
risk constraints are implemented in (8g) and (8h). The worst-
case risk constraint is provided in (8i). Lastly, we we demand
that the state and path variable reach a terminal region T in
(8j). Due to Assumption 2 the objective function (7) is not
a worst-case cost (it just is a deterministic cost), and the
system model (8c) - (8e) remains without any uncertainty.

Remark 1: (Conditions for recursive feasibility and
asymptotic stability for RMPC) To prove recursive feasibility
and asymptotic stability, conditions on the system, cost,
constraints, and references are required. Also, stabilizing
terminal conditions need to be assumed. Strictly speaking,
the RMPC scheme (8a) - (8j) has not yet been proven to
be recursively feasible or asymptotically stabilize. Still, by
assessment of the authors, the proof of recursive feasibility
in [9] for an extended trajectory-tracking problem in con-
junction with the MPC path-following work of [12] can be
adapted without much modification to the problem at hand.

V. STOCHASTIC MODEL PREDICTIVE CONTROL

A different approach to treating the underlying uncertainty
in the risk definition is based on SMPC: Here, one must
not only use the uncertainty realization associated to the
worst-case scenario, which essentially convert the stochastic
problem into a deterministic problem (as done in the RMPC
approach); instead, the stochastic problem setting can be
directly integrated into the SMPC formulation.

For the SMPC formulation, we do not require the worst-
case scenario (see Definition 2). We employ (7) as a cost
function and keep the formulation (8b) - (8j) except for (8i),



where instead of the worst-case risk constraint Rwc,n|k ≤ ε
we implement the risk Equation 5 directly as a stochastic
risk constraint Rn|k ≤ ε. Due to Assumption 2, the objective
function (7) is not an expected value. Therefore we obtain
an optimal control problem with a chance constraint of the
expectation type, which reads

V SMPC(ye,k, λk) := min
u1,u2

J(ye,k, λk,u1, u2), (9)

subject to (8b) - (8h), Rn|k ≤ ε, (8j).
Remark 2: (Conditions for recursive feasibility and

asymptotic stability for SMPC) Similar to Remark 1, the
SMPC scheme has not yet been proven to be recursively
feasible nor asymptotically stabilize. Again, conditions on
the system, costs, constraints, references, as well as stabiliz-
ing terminal conditions are required. If recursive feasibility
is of interest (following the definition of safety by [9]), the
problem must be reformulated to a linear system model so
that existing proofs (see, e.g., [19], [20], [21]) for recursive
feasibility can be adapted to the path-following problem
at hand. However, this requires further assumptions on the
uncertainty, and it is an open research challenge that will be
addressed by future work of the authors.

VI. RISK-BASED PATH-FOLLOWING CONTROL OF AN AV

Embedding the RMPC and SMPC into a simulation envi-
ronment or real-world application requires extensive mod-
eling. We choose to keep the individual models of low
complexity, i.e., simplified dynamic model, circular shape
approximations and linearly growing Gaussian uncertainty,
such that the results are easily traceable and the impact of
different risk tolerances and uncertainty growths on the AV’s
behavior is explicit. While our example works with low-
complexity models, we stress that the generic approach will
also apply to higher-fidelity models.

A. System Model

For this case study, a unicycle vehicle model is selected,
which represents all configuration variables. This model
ignores the correlation between the velocity and turn rate
as an input and assumes moving along a curved trajectory.
Since the state vector equals the configuration vector, the
output equation h in (2) is not required; the model reads:

ẋ(t) =

ċ1(t)
ċ2(t)

θ̇(t)

 =

ve(t) cos (θe(t))
ve(t) sin (θe(t))

ωe(t)

 ,

where t ∈ R+,0 represents continuous time; the velocity ve ∈
R and turn rate ωe ∈ R are the inputs to the model. We use
a forward Euler discretization with the step size T , yielding
the discrete-time model as

xk+1 = xk +

 ve,k
ωe,k

(sin (θe,k + ωe,kT )− sin (θe,k))
ve,k
ωe,k

(cos (θe,k)− cos (θe,k + ωe,kT ))

ωe,kT

 .

(10)

c1

c2

Fig. 2. Approximation of path reference points λn|k . The dotted lines
represent the projection of the displacement vector u2,n|k onto the nearest
point on the path λn|k . The length of the tangent, given the relative angle
θe,n|k − θp,n|k , is then utilized to calculate λn+1|k . One can see that
estimated point λn+1|k is only an approximation of the actual closest point
from the ego vehicle to the path at n+ 1|k.

B. Path and Timing Law

As a path we utilize a regular curve, satisfying Definition 1
with constant curvature κ along an interval λ ∈ [λ0, λg]. For
reference feasibility (i.e., the curve is followable), κ must be
less than the turn rate limit of the vehicle model. The initial
point on the path is found by the closest point to the path
from the initial vehicle configuration, that is

λk|k = argmin
λ∈[λ0,λg ]

‖ye,k|k − yP (λ)‖.

Finding the reference point by minimization is compu-
tationally intensive. Therefore, after computing the initial
point λk|k, we approximate the following points within the
prediction horizon by projecting the displacement vector,
travelled by the ego vehicle in T seconds due to the velocity
u2,n|k, onto the tangent to the path at λn|k. Thus, the next
point is found with

λn+1|k = λn|k + u2,n|k cos (θe,n|k − θp,n|k)T,

where θp,n|k represents the reference heading angle, i.e,. the
angle of the tangent to the path at λn|k, see Figure 2.

C. Risk Model

Given the problem setup, we are required to derive the risk
of collision. We can assign a risk value to a collision using
a shape approximation, severity model, and a description of
the uncertainty.

1) Shape Approximation: The actor’s shapes are assumed
to be circles. Consequently, their orientation can be neglected
while determining inter-actor distances. Thus, the actor’s
orientation within the configuration is not required in the
following. Recall that qk = (c1,k, c2,k)T is the geometric
center of an actor at time instance k. The actor occupies a
circular region in R2 of radius r ∈ R+. Hence

S(yk) = {(c1, c2)T ∈ R2 | ‖qk − (c1, c2)T ‖ ≤ r}. (11)



Approximating the actor shapes by circles reduces the check-
ing for collision to examining if the Euclidean distance
between the centers of both circles is less or equal then the
sum of both radii; ‖qe− qo‖ ≤ re + ro, where re, ro denote
the respective radii of the ego vehicle and object. Reducing
the dimension of of z ∈ R8 by the respective heading angles
is indicated by ẑ ∈ R6. Therefore, we obtain B̂E,k(ẑe,k) :=
{(ẑe,k, ẑo), zo ∈ R2 × Vo,k | re + ro ≥ ‖qe,k − qo‖}.

2) Severity Model: The literature suggest various models
to estimate the collision severity (see, e.g., [14]). Due to
its computational efficiency, we use the differential kinetic
energy as a severity model s : Ve,k × Vo,k → R0,+, reading

s(ve,k, vo,k) =
1

2

∣∣(mev
2
e,k −mov

2
o,k

)∣∣ , (12)

where me,mo ∈ R+ are the masses of the respective actors4.
3) Uncertainty Model: With (11) and (12), the risk de-

pends on the position and velocity. In the problem setup
(see Section III-A), we assumed consistent configuration
and velocity pairs with associated probability density func-
tions for the object as given (see Assumption 1). Addi-
tionally, we assumed perfect knowledge of the ego vehi-
cle’s current and future kinematic variables (see Assump-
tion 2). Furthermore, for the circular shape approximation
of both actors as well as for the severity model we do
not require the respective heading angles. Therefore the
remaining random variables are the object’s position qo
and velocity vo. We choose truncated Gaussians centered
around qo,k and vo,k as the distributions with indepen-
dent probability density functions pqo,k, pv,k respectively at
time k. The truncation bounds at time k are qmin,k =
(c1,min,k, c2,min,k)T , qmax,k = (c1,max,k, c2,max,k)T for
the object’s position and vmin,k, vmax,k for the object’s
velocity. σc1,k, σc2,k, σv,k are the associated, respective stan-
dard deviations composed in Σk = Diag(σc1,k, σc2,k, σv,k).
To model a growing uncertainty along the prediction horizon,
we allow the standard deviation and truncation bounds to
grow linearly over time by introducing an additive term for
each as follows:

Σn+1|k = Σn|k +Q,

qmin,n+1|k = qmin,n|k −∆q,

qmax,n+1|k = qmax,n|k + ∆q,

vmin,n+1|k = vmin,n|k −∆v,

vmax,n+1|k = vmax,n|k + ∆v,

∀n ∈ Zk+Nk . The additive terms Q ∈ R3×3, ∆q ∈ R2
0,+ , and

∆v ∈ R0,+ are constant.
Remark 3: Note that we chose a truncated Gaussian so

that all random variables are bounded. The bounding, how-
ever, is only required for the RMPC (see Definition 2). Nev-
ertheless, we apply the same uncertainty model to the SMPC
and RMPC to ensure consistency within the comparison.

4Note that we reduced the domain of s from BE,k(ze,k) ⊂ R8, see (5),
to R2 by not requiring the positions and orientations of the actors.

4) Risk Derivation: With the characterized uncertainty,
we introduce (11) and (12) into (5), we obtain Rk =

˚

B̂E,k(ẑe,k)

s(ve,k, vo)δẑe,k
(ẑe)pv,k(vo)pqo,k(qo)dẑedqodvo.

(13)
To compute (13), we apply Monte Carlo sampling (MCS). In
order to numerically implement MCS, we utilize the collision
indicator function

IC(qe,k, qo,k) =

{
1 if ‖qe,k − qo,k‖ ≤ re + ro,

0 otherwise.
(14)

With the indicator function (14), the risk (13) is approxi-
mated by the law of large numbers, where (qo,j,k, vo,j,k) is
one of J samples drawn from the densities pqo,k, pv,k. This
leads the risk (13) to be approximated as

Rk ≈
1

J

J∑
j=1

IC(qe,k, qo,j,k)s(ve,k, vo,j,k). (15)

D. Robust Risk Implementation

For the robust MPC implementation, the challenge is to
find the object’s position and velocity, maximizing the risk.
This yields the optimization problem

Rwc,n|k = max
qo,vo

IC(qe,n|k, qo)s(ve,n|k, vo), s.b.t.: (16a)

qo ∈ [qmin,n|k, qmax,n|k], vo ∈ [vmin,n|k, vmax,n|k]. (16b)

While (16a) maximizes the severity and checks for a colli-
sion with the indicator function, constraints (16b) enforce a
solution under the given prediction (see Assumption 1). Due
to the indicator function in (16a), the constraint function is
nonsmooth, ruling out gradient-based solvers. We propose
to under-approximate the worst-case risk, arguing that the
RMPC will be (even) more conservative with the actual
worst-case. Hence, we find such under-approximation of the
risk by a brute-force approach using a uniform sampling of
L points within each truncation interval, such that

(qo, vo) ∈ [c1,min,n|k, ..., c1,max,n|k]×
[c2,min,n|k, ..., c2,max,n|k]× [vmin,n|k, ..., vmax,n|k].

(17)

We replace (16a) by a maximization of the risk over the grid
points in (17).

E. Stochastic Risk Implementation

For the SMPC implementation, we use random sampling
to compute the risk from (15). Hence, we directly implement
(15) within V SMPC(ye,k, λk) for J samples.

F. Cost Function and Terminal Conditions

In the theoretical RMPC V RMPC(ye,k, λk) and SMPC
V SMPC(ye,k, λk) formulation, terminal cost and constraints
are proposed. In practice, these increase the complexity; the
construction of terminal regions (8i) has substantial implica-
tions on the recursive feasibility since one must construct a
terminal region that can always be reached without constraint



violation. The inclusion of the risk measure within the cost
function is also possible, but similarly requires assumptions
to ensure recursive feasibility. This is due to reference error
minimization might increase the risk, and thus a monotonous
decrease in cost while approaching the references is not
provided, violating common assumptions. We leave this
challenge for future work, where the recursive feasibility of
the schemes will be investigated. The cost for this work is
a quadratic stage cost on the error to the references and we
do not employ terminal cost, hence

F (en|k) = eTn|kWen|k,

where W ∈ R4×4 is a positive definite weighting matrix.

VII. SIMULATION CASE STUDY

To demonstrate the impact of risk on the RMPC and
SMPC formulations, we design a scenario where the ego
is initially not on the reference path, and the initial ego
velocity is set to zero. At some distance, one object crosses
the reference path such that it would collide with the ego
if the ego vehicle would closely follow its initial reference
(comp. Figure 1). We simulate this scenario with varying
risk thresholds ε. Additionally, we simulate different growth
rates Q,∆q = (∆c1,∆c2),∆v. While the complete list
of parameters is provided in the Appendix, the varying
uncertainty parameters are displayed in Table I. For each
of the uncertainty settings, that is; low, medium, and high,
all six risk tolerances (see Table II) are simulated with both
methods. In total, 36 simulations are conducted.

TABLE I
VARYING SIMULATION PARAMETERS

Parameters Low Medium High
Additive uncertainty Q 0.1 · I3 0.8 · I3 1.5 · I3

Truncation growth
(∆c1,∆c2,∆v)

(1, 1, 1) (2, 2, 2) (3, 3, 3)

Figure 3 presents the simulation for the lowest and highest
risk tolerance. Figure 4 displays the ego velocities generated
by the respective controllers for selected cases presented in
Figure 3. To compare both approaches, we measure the path-
following performance and safety. The former is measured
as the accumulated error over the simulation time, i.e. eacc =∑k0+K
k=k0

‖ek‖, whereas safety is measured as the minimum
Euclidean distance dmin from the ego’s center to the object’s
center, which if dmin ≤ re + ro indicates a collision. The
results for all simulated scenarios are presented in Table II.
Note that dmin = 3.0 denotes a rounded value of dmin > 3.

VIII. DISCUSSION OF THE RESULTS

The results from Table II clearly indicate that different
risk tolerances do not affect the path-following performance
and safety of the RMPC, because any worst-case collision
risk would exceed the given risk tolerances. The behavior
of the RMPC is only significantly influenced by the level
of uncertainty. It shows that under medium and high un-
certainty, the RMPC keeps an unnecessarily large distance

to the object and does so at the cost of path-following
performance. Contrarily, the SMPC’s behavior is influenced
by the risk tolerance and the level of uncertainty. While
under low uncertainty, the SMPC is not altering its behavior
based on the risk tolerance, it does change its behavior for
different risk tolerances under more significant uncertainties.
Generally for the SMPC, with increasing risk tolerance the
minimum distance to the object dmin decreases and the
path-following performance improves. Overall, the SMPC
deviates less of the references and drives closer to the object
than the RMPC, while not colliding. The RMPC generally
appears to be strongly conservative in comparison to the
SMPC.

IX. CONCLUSIONS AND FUTURE WORK

This paper provides a general stochastic definition of risk
(Section II) and proposes a path-following problem with the
inclusion of an explicit risk constraint (Section III) in the
scope of autonomous driving. We proceed to derive general
RMPC and SMPC formulations to solve the path-following
problem (Sections IV and V). In the remainder of the paper,
we apply both methods to a representative example, in which
we simulate and compare the results of both methods in
terms of safety and path-following performance (Sections
VI - VIII). The overarching conclusion is that the presented
RMPC approach is disadvantageous for using uncertain risk
measures as a constraint. The motion plans of the RMPC
approach are overly conservative since the motion plan must
always account for the worst-case scenario, regardless of the
likelihood, and thus does not tolerate any risk. Especially
with large bounds on the uncertainty, the RMPC’s behavior
becomes unfavorable. Contrarily, the SMPC can account for
the underlying uncertainty and risk tolerances. It generates
more aggressive behavior under low uncertainty and more
conservative behavior under higher uncertainty, which is
generally desirable. However, the drawback of SMPC is that
there are currently no proofs of the recursive feasibility of
SMPC path-following schemes. If the recursive feasibility of
such schemes can be proven under reasonable assumptions,
safety can be genuinely guaranteed through constraint satis-
faction. Our future work will focus on proving the recursive
feasibility of SMPC path-following schemes. Finally, a risk

TABLE II
RESULTS

Low uncert. Medium uncert. High uncert.
eacc dmin eacc dmin eacc dmin

R
M

PC

ε = 0 53.5 9.1 72.3 14.7 98.7 20.3
ε = 500 53.5 9.1 72.2 14.7 98.7 20.3
ε = 1000 53.5 9.1 72.5 14.7 98.7 20.3
ε = 1500 53.5 9.1 71.7 14.7 98.7 20.3
ε = 2000 53.5 9.1 70.9 14.7 98.8 20.3
ε = 2500 53.5 9.1 71.2 14.7 98.7 20.3

SM
PC

ε = 0 40.3 3.3 47.5 6.9 64.2 10.5
ε = 500 39.5 3.6 44.9 5.0 54.7 7.9
ε = 1000 39.3 3.5 43.0 4.6 48.0 7.0
ε = 1500 39.2 3.5 42.4 3.5 53.0 4.8
ε = 2000 39.3 3.5 40.0 3.5 39.8 3.4
ε = 2500 39.2 3.5 39.5 3.4 35.7 3.5
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Fig. 3. RMPC and SMPC comparison for three different uncertainties and two risk tolerances. Top plots: ε = 0, bottom plots: ε = 2500. In all plots the
ego vehicle is displayed at k = 0s and the object at k = 9s, the markers represent a time difference of 1.5s. The RMPC (a) takes significant deviations
from the reference, increasing with the level of uncertainty for both risk tolerance settings. For all cases, the RMPC avoids a collision. The SMPC (b)
requires less time to converge to the path and leaves less distance to the object while, in all cases, successfully avoiding a collision. Further, the SMPC
leaves less distance to the object when the risk threshold increases. Also, under increasing uncertainty, the SMPC leaves more distance to the object.
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Fig. 4. Respective ego vehicle velocities for some of the cases presented
in Fig. 3. The SMPC converges earlier than the RMPC to the reference
velocity of vref = 4 in both settings. Under high uncertainty, the RMPC
chooses negative velocities, while the SMPC keeps positive velocities.

term within the cost function, higher fidelity models, and
increasingly complex scenarios should be investigated.
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APPENDIX

1) Path: goal point: yg = (65, 5, 0)T , initial point:
λ0 = −95, curvature: κ = 0.003. 2) Ego Vehicle: initial
configuration: ye,0 = (−10, 10, 0)T , radius: re = 1.5m,
mass: me = 1000kg, reference velocity: vref = 3m/s,
initial input u1,e = (0, 0)T . 3) Object: initial configuration:
yo,0 = (5,−5, π2 )T , radius: ro = 1.5m, mass: mo =
1000kg, constant inputs uo = (3, 0.0001)T , initial standard
deviation Σ0 = 0·I3, lower bound velocity: vmin = −5m/s,
upper bound velocity: vmax = 5m/s. 4) Other: sample time
T = 0.5s, prediction horizon: N = 6, weighting W = I4,
MCS samples J = 500, RMPC samples L = 40.
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