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Including Periodic Delay for
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The efficiency of the high-speed milling process is often limited by the occurrence of
chatter. In order to predict the occurrence of chatter, accurate models are necessary. In
most models regarding milling, the cutter is assumed to follow a circular tooth path.
However, the real tool path is trochoidal in the ideal case, i.e., without vibrations of the
tool. Therefore, models using a circular tool path lead to errors, especially when the
cutting angle is close to 0 or m radians. An updated model for the milling process is
presented which features a model of the undeformed chip thickness and a time-periodic
delay. In combination with this tool path model, a nonlinear cutting force model is used,
to include the dependency of the chatter boundary on the feed rate. The stability of the
milling system, and hence the occurrence of chatter, is investigated using both the tradi-
tional and the trochoidal model by means of the semi-discretization method. Due to the
combination of this updated tool path model with a nonlinear cutting force model, the
periodic solution of this system, representing a chatter-free process, needs to be computed
before the stability can be investigated. This periodic solution is computed using a finite
difference method for delay-differential equations. Especially for low immersion cuts, the
stability lobes diagram (SLD) using the updated model shows significant differences
compared to the SLD using the traditional model. Also the use of the nonlinear cutting
force model results in significant differences in the SLD compared to the linear cutting
force model. [DOI: 10.1115/1.2447465]

Keywords: high-speed milling, stability, finite difference method, tool path, periodic de-
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1 Introduction

High-speed milling is used in many sectors of industry. For
example in the aerospace manufacturing industry, large parts are
made out of a single workpiece where 90% of the material is
removed. Moreover, in the mould making industry high-speed
milling is used. Here, as a rule the radial immersion is low as a
result of the complex geometries of the workpiece and the difficult
machinability of the workpiece material. The material removal
rate in milling is often limited by the occurrence of an instability
phenomenon called regenerative chatter. Chatter results in heavy
vibrations of the tool causing an inferior workpiece surface qual-
ity, rapid tool wear and noise.

Research regarding regenerative chatter started in the late 1950s
with Refs. [1,2]. They have introduced a stability lobes diagram
(SLD), which graphically shows the stability limit as a function of
machining parameters, such as spindle speed and depth of cut.
The stability of the milling process for low immersion cutting is
recently investigated in Refs. [3-7]. In these papers, the focus lies
on the impact behavior of the tool hitting the workpiece for a
small period of time.

In most models regarding milling, see e.g., Refs. [8,9], the tooth
path is modeled as a circular arc. In this paper, we will call this
tooth path model the traditional model. Using this model, the un-
deformed chip thickness is approximated by a sinusoid. However,
the path of a milling cutter is trochoidal [10,11], which leads to
different equations for the undeformed chip thickness. More ac-
curate models exist compared to the sinusoidal approximation
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[12-14], but they are not widely used, because of the complex
equations involved. However, especially when sin ¢(7) is small
(with ¢(7) the tooth angle at time #), which is often the case in low
immersion cutting, the errors using the traditional model are large.
Furthermore, using the traditional model it is assumed that for
upmilling the entry angle of the cut is ¢,=0 rad and that the exit
angle for downmilling is ¢,= rad. The trochoidal model for the
static chip thickness shows that the tool enters the cut somewhat
sooner and leaves it somewhat later.

For the prediction of chatter in high-speed milling, not only is
the static chip thickness important, but also the dynamic chip
thickness, which is due to the regenerative effect. Most often, the
dynamic chip thickness is calculated by subtracting the vibrations
v(t—7) at the time 7—7 one tooth passing time earlier from the
vibrations v(z) at the current time ¢, see e.g., Refs. [8,15,16]. This
results in a delay differential equation (DDE) modeling the mill-
ing process. However, as was also shown by Long and Balachan-
dran [17], the delay is not constant, but periodic when the tro-
choidal tool path is taken into account.

In this paper, the effect of the trochoidal tooth path in combi-
nation with a nonlinear cutting force model on the stability is
investigated. This will answer the question whether the stability of
the milling process, computed using the circular tooth path, differs
significantly from the stability of the milling process, computed
using the trochoidal tooth path model. For this trochoidal tool path
model, an updated equation describing the static chip thickness is
derived. Furthermore, the delay is modeled as being periodic in-
stead of constant and equations for the entry and exit angles are
formulated. To include the effect of the feed rate on the stability
border, nonlinear relations between the chip thickness and cutting
force are used [18]. For a nonchatter situation, the system of pe-
riodic DDEs describing the milling process has a stable periodic
solution, whereas for the case when chatter occurs, this periodic
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Fig. 1 Schematic representation of the milling process; (a) side view, (b) top view

solution becomes unstable. Since a nonlinear cutting force model
is used in combination with a periodic delay, this periodic solution
has to be calculated explicitly. This periodic solution is found
using a finite difference scheme. The stability limit of this periodic
solution is assessed using the semi-discretization method of Refs.
[16,19]. This is a well-known method that can be used to deter-
mine the stability of delay differential equations. Especially for
low immersion cutting, it is shown that the stability lobes change
drastically using the trochoidal model compared with the lobes
generated using the traditional model.

The paper is organized as follows: in Sec. 2, the new equations
describing the undeformed chip thickness, the delay, and the entry
and exit angles are derived and a comparison between different
models is provided. In Sec. 3, a finite difference scheme is pre-
sented to compute a periodic solution of the model. In Sec. 4, the
stability of the new and the traditional model is investigated using
the semi-discretization method and discussed in terms of the im-
plications for the milling process in Sec. 5. Finally, conclusions
are drawn in Sec. 6.

2 Modeling the Milling Process

A schematic representation of the milling process is shown in
Fig. 1 and a block diagram of the model is shown in Fig. 2.

The cutter rotates at a spindle speed () and translates in x di-
rection with a certain chip load f,. The forces that act on tooth j of
the cutter are the tangential force F tj(t) and the radial force F ,j(t)

’—v Delay
F(t t -
Cutting £ Machine )

¥ +
+

hy stat(t)

Riayn(®) = [sin(;(8) cos(s;(0)] (@®) — 2t — (8

Fig. 2 Block diagram of the milling process
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and are a result of the chip thickness & j(t). Due to the dynamics of
the tool, toolholder, and spindle (represented in Fig. 1(b) by a
linear mass, spring, damper system), the tool displaces in x and y
directions by v(r)=[v,(1) vy(1)]".

The undeformed chip thickness is the sum of the static chip
thickness /1; () and the dynamic chip thickness 7; 4y,(?)

hi(t) = hj () + R gyn(2) (1)

The static chip thickness is the part of the chip thickness which is
due to the position of the tool that is dictated by the feed and
spindle speed. The dynamic chip thickness is the part which is a
result of the vibrations of the cutter.

For a two-dimensional case, the static chip thickness is often
modeled by

hj,slat(t) =f.sin d’j(t) ()

where f, is the chip load and ¢;(7) is the angle of tooth ; at time
t. The dynamic chip thickness is often modeled by

hj ayn(t) = [sin ¢;(1) cos ¢;(1)1(w (1) —v(t - 7)) 3)

Here the constant time delay is given by
T=— 4)

where z is the number of teeth and () is the spindle speed in rad/s.

This model assumes a circular tooth path. However, the real
tool path is trochoidal (see Fig. 3). In this figure, the chip load is
chosen rather unrealistically large to increase readability of the
figure. The tool moves in the feed direction x. The meaning of the
points defined in the figure are shown in Table 1. Here, p.(r) and
pj(t) represent the position of the center of the cutter and the
position of tooth j=0,1, ...,z at time 7, respectively. In Fig. 4, the
circular tool path approximation is shown.

The delay 7;(¢) is defined as the delay that is involved when
calculating the chip thickness that tooth j removes at time ¢. In
Fig. 3, (1) is the difference between the time when tooth 2 is at
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Fig. 3 The tooth path of a mill with three teeth

point M and the time when tooth 1 is at point N. Here, the index
2 refers to tooth 2, since this delay is involved when calculating
the dynamic chip thickness experienced by tooth 2 at time 7. The
center of the cutter at time ¢ is at position C2. At time 7— 7,(7), the
center is at position C1. Note that when applying Eq. (3) with a
constant delay 7, the vibrations at point O are subtracted from the
vibrations at point M to obtain the chip thickness experienced by
tooth 2 at time . However, the dynamic chip thickness is de-
scribed by the subtraction of the vibrations at point N from the
vibrations of point M.

In the sequel, an equation for the static chip thickness is derived
for the case of a trochoidal tool path. By doing so, an expression
for the delay is also obtained, which can be used to calculate the
dynamic chip thickness in a later stage. It should be noted that the
vibrations of the cutter are assumed zero for deriving the delay.
When vibrations of the tool are taken into account, points M and
N move as a result of these vibrations. Hence, the delay also
changes and becomes state dependent (see Ref. [20]). As men-
tioned by those authors, the influence of the state dependent delay
on the stability is small. Therefore, and for the sake of simplicity,
this is not taken into account here. In Ref. [21], the variation of
the delay as a function if the rotation angle is approximated by
introducing two separate constant delays in feed and normal di-
rection, respectively.

Table 1 Positions of points of Fig. 3

Point Position
...... Tooth 0
- Tooth 1
— Tooth 2
CO0 p(t=0)
cl pt=ry(0)
Cc2 pe(t)
M pao(t)

N pi(t=1,(1))
o pi(t=17)

Journal of Computational and Nonlinear Dynamics

Fig. 4 The circular tooth path approximation of a mill with
three teeth

The position of a point p;(r) on the tip of tooth j at time # can be
described as the sum of the position of the center of the cutter
p(O)=[dy()f,z/(2m) 0] at time ¢ and the position of the tip rela-
tive to this center. With gj:[px,_ pyj]T, this gives

pit)=p(t) + {

rsin ¢;(1) } JZ‘%U) +rsin ¢,(1) 5)

=| 27
rcos ¢,(t)

rcos ¢,(t)

with r the radius of the tool. Here a constant spindle speed () and
feed per tooth f, are assumed.

Point N in Fig. 3 can be described as the position of tooth 1 at
time 71— 7,(r). This position is described by

géqso(t = 0) + rsin ¢y (= 7(0)
T
rcos ¢y (t — 7,(1))

However, it can also be defined as the position of tooth 2 at time
t for a tool radius of r—hy . (¢). This yields

L2 41+ (r = By ga())sin (1)

p(t)=| 27
(r - hZ,S[at(t))COS ¢2(t)

For an arbitrary tooth j, Egs. (6) and (7) are, respectively, gener-
alized by

pilt=m(0) = (6)

™)

1_’j-1(l _ Tj(t)) _ 27T¢o(f - 7}(1)) + 7 sin <f>j_1(l - Tj(l)) ®
rcos ¢ (t = 7(1))
and
1 bo(1) + (r = I or(1))sin (1)
pit)=|2m 0 Jstat j ©)

(r_ hj,stat([))cos d)j(t)
Equating Egs. (8) and (9) in the y direction gives
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rcos ¢y (t = 7(1)) = (r = hj qu(1))cos ¢;(1) (10)

where tooth 0 equals tooth z and tooth j—1 equals tooth z—1.
After substitution of

2
¢,—(t)=¢o(t)—j9=ﬂt—j7 (11)
with 6 the angle between two subsequent teeth
2
L (12)
Z
the chip thickness can be expressed as
h; qu(t)cos (1) = r cos (1) —r cos(d)j(t - 7(1) + 0)
= hy cos ¢;(1)
=A (13)

Similarly, by equating Eqgs. (8) and (9) in x direction, another
expression for the chip thickness is found

hy (1)sin (1) = ’; ; Q7,(1) + 7 sin (1) — rsin( (¢ — 7,(1)) + 6)

:= h, sin ¢;(1)
=B (14)
Now, Egs. (13) and (14) can be used to express the chip thick-
ness. However, if the denominator of any of these equations ap-
proaches zero, the right part of this equation tends to +%. There-
fore, it will be shown that both equations can be combined to
obtain a single equation for the chip thickness that can always be
used. Before this expression for the chip thickness can be formu-

lated, first an expression for the time-varying delay should be
derived.

2.1 Time Delay. Setting %; ,(#)=h,=h, and using Egs. (13)
and (14) gives

B cos ¢;(t) = A sin ¢,(1) (15)

Substitution of Egs. (4), (11), (13), and (14) in Eq. (15) and ap-
plying trigonometric relations yields

LT o5 g6+ rsin( (0 - ) =0

N (16)
Since the contribution of the trochoidal tool path on the delay is
small compared to the nominal delay 7, the time-varying delay
can be regarded as the sum of the constant tooth passing time
delay 7 and a small time-periodic function &7,(¢)

(1) = 7+ 67(1) (17)

with &7(¢+7)=&7,_(¢). Substitution of Eq. (17) in Eq. (16) gives

- COS

(1
fcos (1) + f“—fﬁﬁﬁrj(z‘) +7sin(Qo7(1) =0  (18)
Since |Q§Tj(t)| <1, truncation of the Taylor’s series expansion of
sin[(A67(r)] after the first-order term yields sin[Q&7,(1)]
~67,(1). Using this approximation in Eq. (18) gives an expres-
sion for 87(r)

()2 208 B0
()=

f.cos (1) +rQ7 (19)

The time-varying delay can now be expressed by substituting Egs.
(12) and (19) in Eq. (17) and rearranging terms to obtain
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70r
f. cos (1) + or
A similar result was recently found by Long and Balachandran

[17], although they used a different approach where no equation
for the static chip thickness was derived.

7(1) = (20)

2.2 Chip Thickness. Since the time-varying delay is now
known, an expression for the chip thickness can be derived. The
chip thickness can be expressed either by Eq. (13) or (14). Since
h,=h,, the chip thickness can be described by

D sa(8) = Iy sin? (1) +h, cos? oi(1) (21)
which holds, since sin? <j>j(t)+cos2 ¢;(1)=1. Substitution of Eqgs.
(13) and (14) in Eq. (21) and applying trigonometric relations and
subsequently using Egs. (11) and (4) yields

/. .
D sa(t) = 1 = r cos(Q7(r) - 6) + —;7-1-(t)sm @;(1) (22)

Substitution of Eq. (20) in Eq. (22) and rearranging terms gives an
expression for the static chip thickness

hj Slal(t) =r—-r COs(M)
7 f.cos ¢(1) + Or

" (fz cos (1) + 0r>sm oi(1)

If the time-varying delay is not considered, i.e., 7,(1) := 7, expres-
sion (23) conforms with Eq. (2).

(23)

2.3 Entry and Exit Angles. For a full immersion cut, the
entry angle is usually defined as ¢,=0 rad and the exit angle as
¢,.= rad. However, the tool enters the cut somewhat earlier (i.e.,
¢,<0) and leaves the cut somewhat later (i.e., ¢,> ). This can
be shown using the definition of the chip thickness in Eq. (13). At
the entry and exit angles the chip thickness is zero, which gives

. oS $(1) = r cos(py(t = 7,(1)) + 6) _

. 0 24

) cos (1) @4
Using Eq. (11) this can also be expressed as

rcos ¢;(1) = r cos(;(1) = Q7(r) + 6) 0 (25)

cos ¢;(1)

This is true if the numerator is zero and the denominator is non-
zero. This gives two possible solutions of Eq. (25)

- Q1) + 0=2km (26)

D) = Q1) + 0=— p(1) + 2k (27)
with k=0,1,2,.... Substituting Eq. (20) in Eq. (26) and rearrang-
ing terms gives

_Ofcos ¢(0)  _
f.cos (1) + Or B

This does not lead to angles close to O or 7 radians. Substituting
Eq. (20) in Eq. (27) and rearranging terms gives

(28)

s 40 246,(1) + 2kerr

f.cos p{1) + Or -

This equation can not be solved analytically. Therefore, Eq. (29) is
approximated using Taylor’s series.

For a full immersion cut, the entry angle can be described by
b=0+S5p,= 5¢h,, with |5¢,| <1. Applying a Taylor’s series ex-
pansion, (cos d¢p,=1) to Eq. (29), for k=0, the entry angle ¢, can
be approximated by

(29)

Transactions of the ASME
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Fig. 5 Chip thickness as a function of rotation angle for vari-
ous models: r=5 mm, z=2, f,=2 mm/tooth

o,

2(f. + 6r)
For a full immersion cut, the exit angle can be described by ¢,
=g ()=7+6p,, with |8¢,[<1. Applying Taylor’s series,
(cos(m+ 8¢p,) =—1) to Eq. (29), for k=1, the exit angle ¢, can be
approximated by

by = 6, = (30)

o=t o~ mm

2(f.— 6r)

2.4 Results of the Tool Path Model. In the trochoidal model,
in contrast with the traditional model Eq. (2), the static chip thick-
ness is described by Eq. (23). The delay, which is traditionally
assumed constant, is updated using the periodic function Eq. (20).
Finally, the entry and exit angles are described by Egs. (30) and
(31), respectively.

For verification purposes, the approximate model for the chip
thickness Eq. (23) is compared to the chip thickness computed
numerically using the following optimization scheme. First, the
delay is computed numerically by minimizing the absolute value
of the left hand side of Eq. (16) via a constrained optimization
function with the boundary condition 0.757< 7,(r)<1.257. This
boundary condition is necessary to compute solutions where only
the latest tool passing is used. This delay is substituted in Eq. (22)
to calculate the chip thickness. The resulting chip thickness is
compared to the chip thickness using the circular tooth path of Eq.
(2), the trochoidal model of Eq. (23), and the models of Refs.
[10,12]. In Ref. [10] the chip thickness is approximated by

hj ) = 1+ f sin( (1)) = \r? = f7 cos® ¢b,(1)
In Ref. [12] the chip thickness is approximated by

2f, sin (1) f§ cos 2¢;(1)
hj,slal(t) =r| 1-|1- -

2
R R,

(31)

(32)

o o

f2sin gj(n)cos” ¢y(r) | 12
+

( o . )3
r+— cos ¢'(1)

2

In Fig. 5, the chip thickness is shown for r=5 mm and z=2 and
a rather unrealistic chip load f,=2 mm/tooth. This value is chosen
to magnify the differences between the various models for visual-
ization purposes. The trochoidal model of Eq. (23) and the model
of Ref. [12] fit the numerical results very well. It can be seen that
the chip thickness function does not have a symmetry axis at ¢
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Fig. 6 Relative error in chip thickness as a function of rotation
angle for various models: r=5 mm, z=2, f,=0.2 mm/tooth

=0.57r. However, the model of Ref. [10] and the traditional model
do have this symmetry axis. Furthermore, the maximum chip
thickness is larger than the chip load f, according to the numerical
results. This is also predicted by the model of Ref. [12] and the
proposed trochoidal model of Eq. (23), whereas the traditional and
the model in Ref. [10] do not predict this.

The errors of the chip thickness of the various models relative
to the numerically computed chip thickness are shown in Fig. 6.
Here a more realistic case of f,=0.2 mm/tooth is taken. Herein,
the differences between the models are clearly visible. Especially
when the chip thickness is small, the relative error becomes very
large for both the traditional model and the model of Ref. [10].
For the trochoidal model of Eq. (23) and the model of Ref. [12],
the errors are rather small. The drawback of the model in Ref. [12]
is that is does not give an expression for the delay.

The entry and exit angles according to Egs. (30) and (31) are
shown in Fig. 7 for the case where f,=0.2 mm/tooth. The results
of the various models, shown in Fig. 5, are also presented in this
figure. The expressions that are found for the entry and exit angles
match very well with the angles where the chip thickness of the
trochoidal model is zero.

The delay expressed by Eq. (20) is compared to the delay cal-
culated numerically using the optimization function. The results
can be seen in Fig. 8. In this figure, only half the period is shown,
since during the other half, the cutter is not in cut. Results of the
proposed model fit the numerical results very well. For small
angles, the delay is smaller than the constant delay 7. This corre-
sponds to the situation shown in Fig. 3 where point O is the point
at t—7 and point N the point at r—7,. When cutting, the tooth
reaches point O sooner than point N and hence 7,(1) <7. If 0.57
< ¢(t) < ¢,, the delay becomes larger than 7. Then point O’ is
reached later than point N’, where the prime symbolizes the new

0.01 0.01
=
= 0.005 0.005
]
& :
o0& - 0 . O
-6 -4 -2 0 2 1 1.005
g [(xm) 1ad] | 473 de [(xm) rad]

Fig. 7 Entry (left) and exit (right) angles. The values from Egs.
(30) and (31) are plotted as circles; r=5 mm, z=2,
f,=0.2 mm/tooth. For legend, see Fig. 5.
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position of points O and N.

The relative error of both the time delay and chip thickness of
the traditional model increases as the chip thickness becomes
smaller. Since the chip thickness is very small in low immersion
cutting, it is likely that the use of the traditional model leads to
errors for this type of cut. Therefore, in Sec. 4, the stability of
milling models using both tooth path models is investigated. In
the next section, the total milling model is presented in more
detail.

2.5 The Milling System. The milling model represented by
Fig. 2, contains several blocks. First, the block Machine will be
presented in more detail. The dynamics of the machine (due to
flexibilities of the tool, toolholder, and spindle system) are repre-
sented as a 2 degree of freedom (2DOF) mass—spring—damper
system in Fig. 1. For representing general linear dynamics, a state-
space formulation is used

Z(t) = Az(r) + Bu(r)

y(1) = Cz(t) + Du(r) (34)

These equations describe the relation between the input u of a
system (in our case the force that acts on the mill, i.e. u(z)=F(z))
and the output y of this system (in our case the displacement of
the tip of the mill, i.e. y(r)=v(1)).

Since in the milling _equations both the x and y directions are
necessary (assuming these dynamics are uncoupled), the state vec-
tors of these two directions, z, and z,, are assembled in a single
state vector z(f)= [zT(t) zT(t)]T Wthh yields the following set of
differential equations describing the machine dynamics

_()_[zx(n}_[Ax OHW] [BX 0][%@]
o) o adlaw] Lo B L

=Az(r) + Bu(r)

_[m)]_[cx 0][9@)} [DX OMW]
Y= o ] Lo C, Ilz) Lo D, [[u,(r)
=Cz(1) + Du(z) (35)

When the dynamics are modeled as a 2DOF linear mass—spring—
damper system, as depicted in Fig. 1, the state z; can be defined by
z:=[v; v;]". This yields
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0 1 o |
A=| ki _bi | Bi=| 1
m; m; m;

C;=[1000 0], and D;=0, where i=x,y and m;, b;, and k; represent
the mass, damping, and stiffness coefficients, respectively. How-
ever, more complex linear dynamics can be modeled using the
state-space representation of Eq. (35).

The new tooth path model has consequences for the blocks
Cutting and Delay in Fig. 2. The force that acts on the tooth j in
tangential and radial directions can be described by a so-called
exponential cutting force model [8,18]

Fy (1) = Kiaph(1)' g (1))

F, (1) = K.a,h(1)"g;(;(1)) (36)

where 0 <xp=<1, and K,,K,>0 are cutting parameters. The func-
tion g /(d)J(l)) descrlbei whether a tooth is in or out of cut

1, ¢< 1)<, Ahit)>0
g,-(¢,<r))={0 S B0 ben () >

This exponential model has the benefit that the stability lobes are
dependent on the feed rate. In Ref. [18], it was found that this
dependency occurs in practice. However, a drawback of this
model is the fact that it is nonsmooth for #=0. Moreover, in order
to compute the stability limit, it is necessary to calculate
JF, ,1dh;, which is singular for h;=0. Therefore, it is multiplied

by a WilldOW funCtion
< )
X

Note that for A j(t) <0, the forces are still zero due to the fact that
in that case g;(¢,(r))=0, see Eq. (37). Resuming, the force model
can be formulated as

4
e

F, (t) = exp(

(37)
else

s

Ka,hi(1)rgi(¢;(1)

1 —4
hy(t)

Using this window function, overcomes the problem of the singu-
larity of dF' tjq,j/(?h ;. Moreover, if this window function is used, the

cutting force is a continuously differentiable function of the chip
thickness. The factor —10™* in this smooth window function is
empirically determined such that the difference between Egs. (36)
and (38) is less than 1% for #;=0.01 mm. On the other hand,
when the factor would be chosen even smaller, the singularity
lim,, 110 JF, , 10h; of the nonsmooth function would become domi-
nant in the calculatlon of the stability.

After substitution of Egs. (1), (3), and (37), and summing for all
teeth, Eq. (38) can be described in feed x and normal y direction
as

)K,aphj<t>xfgj(¢j<t>) (38)

-1

4 Kt
F(r) = aEg,(d)j(z))exp( 0 )hj(r)XFsm[ K] (39)

Jj=0
with
(1) = h; g (8) + [sin (1) cos i(01((1) = v(t - 7,(1)))
(40)

and F(1)=[F (1) F,(1)]", and F,(r) and F,(z) the forces in x and y
directions, respectlvely Furthermore, l_)(t) [v.(1) vy (077, and

—cos ¢(t) —sin (1)
sin (1) —cos ¢(1)
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Substitution of Eq. (39) as input « into Eq. (35) and realizing
that v()=y(r)=Cz(r) (assuming that D=0) gives

1074 K,
() R (t)*rS(t) K,

(41)

z—1

(1) =Az(t) +Ba E gi(;(1) )exp(

y(1)=Cz(1)
with

(1) = h; ) + [sin (1) cos ¢(1)]C(z(r) — 2(t = 7,(1))
(42)

It is assumed that this system has a periodic solution with pe-
riod time 7=7. In Sec. 3, a method is presented to numerically
find this periodic solution using the finite difference method. The
existence of this periodic solution is not proven here, but for the
considered parameters in this paper, the periodic solution has al-
ways been found. Let us now assume that the periodic solution is
known and denote it by z*(z). If chatter occurs, this periodic so-
lution is unstable and otherwise it is stable. In order to determine
the (local) stability properties of z"(#), Eq. (41) is linearized about
the periodic solution z*(r). Using the decomposition z(1)=z"(r)
+Z(1), such linearization yields the following linearized dynamics

z-1

. . -10™
Z()=AZ+ Bap2 gj(¢,~(t))(th,»(t)"r‘ eXP( w0 )

Jj=0

107%) 10~ K,
o) Fe"p( 5 )h,(z) )S(’)[KJ

X[sin ¢(1) cos ¢(NIC(Z(0) - 2t = 7,(1)))

y(0) = Cz(0) (43)

with

R (1) = hy (1) + [sin ¢(1) cos ¢)(D1C(2"(1) = 2" (1 = 7,(1)))
(44)
Equation (43) can be abbreviated by
z-1

(1) = AZ+Ba, >, Hy(nC(Z(1) -
Jj=0

2t - 7(1)))

y(0) = Cz(1) (45)

with

*axg—1 — 10_4
H;(#) = g(¢;(O) xph; ()" exp IS

. 107
+h(t)Fexp(h())h(t)2) [ ]

X [sin (1) cos ¢;(1)] (46)
The semi-discretization method of Refs. [16,19] can be used to

determine the stability properties of delayed linear periodic time-
varying systems of the form

z-1

20 =Pz(1) + 2 Q}(0z(z - 7,(1)

j=0

P(+T)=P), Q;t+T)=Q;(1) 47)

with T the period time of the matrices P(z) and Q_;f(t). Since the
state z may be quite large for high-order machine dynamics, it is
more convenient to slightly adjust this equation to
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Fig. 9 Graphical interpretation of the finite difference method
for ODEs

z-1
{0 =POZ0 + 2 Q0y(t - (1)
=0
P(r+T)=P(t), Q;r+T)=Q;1) (48)
where Q;(r):Qi(t)C, j=0,...,z—1. The first equation in Eq. (45)
is written in the form of Eq. (48) with
=1

P(1)=A +a,>, BH,())C (49)
j=0
Q;()=-a,BH/(1), j=0,...,z2-1 (50)
Since
Hj(l‘+ DCz(t+ 7— 7t + 7))
=H,_()Cz(t-74(1), j=0,....z-1 (51)

Eq. (45) is periodic with perlod time 7.

The choice whether the tool path is modeled as a circular arc or
as a trochoid influences the delay, which is constant for the circu-
lar tool path and periodic for the trochoid tool path. Furthermore,
the matrix H;(r) changes as a result of the different entry and/or
exit angles (see Egs. (30) and (31)) and the new formulation for
the static chip thickness. However, the structure of the model as
presented in Eq. (48) does not change. Therefore, the semi-
discretization method can be used for both models. This will be
shown in Sec. 4. First, the method to find the periodic solution
z'(¢) is presented in the next section.

3 Periodic Solutions

In this section, a periodic solution z(¢+ T)=z(¢) with period time
T of the DDE

U0 =f(z(0).2(t = 70).1),  t+T)=1(0)

is approximated using the finite difference method (FDM). This
method (see e.g., Refs. [22,23]) is a well-known method to ap-
proximate periodic solutions of an ordinary differential equation
(ODE) of the form

(52)

A0 =fG0.0, +D=z0) (53)
by a number of segments (see Fig. 9).
The method uses a sequence of N points Z=[z{...z; ...zx]", on

a time grid with step length h. Here, the method is described for
an equidistant grid with step length h=T/N, but it can easily be
modified for a nonequidistant grid. Since in the case of a milling
model, one has to deal with a periodic DDE with known period
time T, in this section it is also assumed that the DDE Eq. (52) is
periodic and the period time is known. This makes the method
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Fig. 10 Graphical interpretation of period time and the delay. In this case
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easier, since no anchor equation is necessary in order to approxi-
mate the period time. The delayed state z(f— 7(r)) is approximated
by linear interpolation between the two closest discretization
points (see Fig. 10). Then

(1) =z (54)

2t = () = AZimpt + D iZiom, (55)
with a;= al-/(a/,-+,3,-), bl«=ﬁi/(al~+ﬁi), ai+,8l«=h, and ml=[7(t,)/h]
In Fig. 9, the forward Euler scheme is shown for an ODE, i.e.,

gi+1=g,-+hf(gi,ti). However, other schemes can also be used, like
the trapezoidal scheme, which can be described for ODEs as

I
[

Since z(T+1)=z(1), it follows that zy,;=z;. A zero of Eq. (58) can
be found by applying the Newton—Raphson algorithm; i.e., we
solve iteratively the set of equations

M,
P H(2) (59)

Each row in Eq. (58) has the same pattern which can be simplified
to

a;; ap 0 0 0
0 a, a 0 0
oH .22 .23
— = . +
74
0 0 0 aAy_| N-1 AN-IN 0
ay, 0 0 .. 0 ayy

with
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h
1= 22t E(f(gl’aIZZ—m + D121 1) + f(20, @023 + D220 1))
h
Zi—Zin t E(J_‘(Q’a@i—mn +biZicys 1) + [(Zis1> i1 Zimmsr + DiviZicma151i41))

h
INT AN+ T E(f(ZN, ANZN-m+1 F DN tN) + A (Zna 1> A1 ZNeme2 T Dy Zyoma 15 Ine)

i1 =i+ g(f(éi,l;) + f@isnstian) (56)
Using this latter scheme, Eq. (52) can be approximated by
h
Zip1 =2zt E(}_C(Zi’aiéi—mﬂ +bZiot) +]_C(§i+l’ai+l§i—m+2
+biniZimestis1)) (57)

The finite difference method is based on finding a zero of the
function

(58)

h
8&i=Pn—Pnt E(f(l_’il,ai‘_lil + bi‘_]i27ti) +f(12i2!“i+1‘_1i3

+bingitiv), i=1,...,N (60)

where p;1=zi, Pp=Zit1, 4i1=Zim+1s 42=Zi-m> aA0d ¢3=Zipi2-
Therefore, the partial derivative of g; should be calculated with
respect to five terms, namely p;;, Piz_, qi1> 92> and g;3.

This gives T )

0 a1.,l—m al,2—m al,3—m 0 0
0 0 Aoy A3 Ay
. . . (61)
“:_IN,me ﬁN,N*ﬂl‘Fl EN,meJrZ 0 0 .. 0
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h of(pisagi + biginst;)

a,»‘i =1+-
2 Ppi
1 Af(Pins @i1qi3 + biv1ginstivt)
a=—1+-
‘ 2 Pi

h df(pir,aigin + bign.t;)
Aim ="
2 (7@,'2

B haf(pi>aigi +biginst) B If(Pins@is1qin + b qinstivt)
A1 = +-

2 (?qil 2

Iq;)

3 hof(pin,ais1gis + bis1gintivt)

Aim2= "

(62)
993

Here, the equations in Eq. (62), respectively, conform with
gl dpi1s 9gil Ipins 9gil 9qin, Igil Iq;1, and dg;/ dq;3. The first ma-
trix of Eq. (61) defines the derivation of H with respect to the
present state and the second matrix defines the derivation of H
with respect to the delayed state. For systems with multiple de-
lays, this latter matrix needs to be built and added for every delay.

The reason for the notation of a in contrast to a is the follow-
ing. The matrix dH/dZ is of size N X N. However, it can occur that
terms such as a;;_,, fall outside this matrix if i-m <0 or i-m
> N. In that case, the term changes to a;;_,,,,,y, where y is chosen
such that 0<i—m+ yN<N. This can be done, due to the period-
icity of the system and the periodicity of the solution.

Using the above scheme for the milling model Eq. (41), the
periodic solution Z*(r) is found. Here, an nonequidistant grid is
chosen such that just before and just after the tool enters the cut,
a grid point exists. The dynamics of the spindle are modeled, in
both x and y directions, as a single degree-of-freedom linear
mass—spring—damper system, as shown in Fig. 1(b), with masses
my,my, stiffness coefficients k,,k,, and damping coefficients
b.,by. The natural’ frequencies of the system are defined by
o, =\k/m,, o,=\k,/m, and the dimensionless damping con-
stants by g’x=bx/2\f‘mxkx, {y=b)‘/2\s“‘myky. The parameters used in
the model are m,=m,=0.02kg, (,={,=005 @w=w
=27-2198 rad/s, K,=462 N/mm'**r, K,=38.6 N/mm'*%, xp
=0.744, r=5 mm, f,=0.2 mm/tooth, a,=10 mm (=100% immer-
sion), =30,000 rpm, z=2, and N=600. The cutting parameters
K, K,, and xp are adopted from Ref. [18]. The results are shown
in Fig. 11. In this figure, the results for the finite difference
method are combined with the results from time simulation over
20 revolutions where z(r<0)=0. In Fig. 11(a), the depth of cut is
chosen such that no chatter occurs, whereas in Fig. 11(b), the
depth of cut is increased in order to have chatter. As can be seen,
even if chatter occurs, the (unstable) periodic solution still can be
found by the finite difference method. Also for lower values of N,
the periodic solution is found, but of course the shape is more
coarse than the one displayed in Fig. 11. For the simulations in
time domain, model (41) is used, which is nonlinear in v. There-
fore, when chatter occurs, the tool leaves the cut due to the large
vibrations and the tool displacement remains bounded.

The stability of the periodic solution can be evaluated using the
semi-discretization method. This is shown in the next section.

4 Stability

In Ref. [16], the semi-discretization method is demonstrated for
a nonautonomous system with a constant delay. In Ref. [19], the
method was demonstrated for an autonomous system with a peri-
odic delay, where this periodic delay was due to a periodically
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Fig. 11 Displacement of the tool. Periodic solution using the

finite difference method and numerical simulation of 20 revolu-
tions (axis directions as in Fig. 3). (a) a,=1 mm; stable cut. (b)
a,=2 mm; unstable cut.

varying spindle speed. The milling model presented in Sec. 2 is a
nonautonomous system with multiple periodic delays (which are
due to the trochoidal nature of the toolpath). Using the semi-
discretization method for this model is straightforward by com-
bining the two cases discussed in Refs. [16,19].

Whenever a mill is cutting, the tool experiences a displacement.
This displacement is periodic with the tooth passing time 7= 7 and
is a result of the forces acting on the tool while cutting. In the
model, this displacement is a periodic solution of Eq. (41). When
no chatter occurs this periodic solution is stable and when chatter
occurs it is unstable. Therefore, the chatter boundary can be found
by regarding the stability of this periodic solution, which is as-
sessed by considering the eigenvalues of the monodromy matrix.

This matrix describes the transformation from a state of the
linearized system at #,=0 to the state at =7, where T is the period
time of the periodic solution. If all the eigenvalues of the mono-
dromy matrix, which are called the Floquet multipliers, are in
modulus less than one, the periodic solution is stable. If one or
more of the eigenvalues lie outside the unit circle, the periodic
solution is unstable. The semi-discretization method gives a finite-
dimensional approximation of the monodromy matrix ® of a pe-
riodic DDE over the principal period 7. The period T is divided
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Fig. 12 Stability lobes for upmilling using the traditional and the trochoidal model for several immersion levels. (a)
100% immersion; (b) 50% immersion; (¢) 10% immersion; (d) 5% immersion.

into k intervals of length Ar. Here, the method is described for an
equidistant grid, but it can easily be converted to a nonequidistant
grid. A vector g; is built containing the present and the delayed
states ¢;=[z] z',...z0 417, i=0,....k, and M=[max =(r)/h]. The
method computes the matrix I'; such that g;,;=I";q;. The mono-
dromy matrix can now simply be computed by ®=I",I",_;...T";.
If the dimension of the state is large compared to the number of
outputs, it is computationally more beneficial to include the
present state and the delayed outputs in the vector g;, i.e., g;
=[z yI,...yL,,]". This adjustment is also described by Eq. (48).

Stability lobes have been generated using the traditional tool
path model and the model presented in Sec. 2. At each combina-
tion of spindle speed and depth of cut, first the periodic solution is
computed using the finite difference method. Next, the stability of
the periodic solution is assessed using the semi-discretization
method. The parameter & is chosen to be 60. Here, also a nonequi-
distant grid is chosen such that just before and just after the tool
enters the cut, a grid point exists. The same parameters have been
used as mentioned in Sec. 3.

The stability lobes for up- and downmilling are shown in Figs.
12 and 13, respectively. In these figures, a wide range of immer-
sion ratios is chosen in order to analyze the effects on the stability
for both full immersion and extreme low immersion milling.

From these figures, it can be concluded that the differences
between the stability lobes of both models increase if the radial
immersion decreases. The differences in the static chip thickness,
entry, and exit angles and delay, as shown in Figs. 6, 7, and 8,
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respectively, are the largest when the angle is close to 0 or 7
radians. Therefore, for a low immersion cut these errors have a
relatively large effect on the stability.

In Ref. [24], the lobes have been computed using the new tooth
path model in combination with a linear cutting force model. In
that case, only the shift of the lobes to the left and right can be
seen. The extra peak as depicted in Fig. 13(d) does not occur in
that case.

A further discussion on the resulting stability lobes is presented
in the next section.

5 Discussion

The differences between the stability lobes using the traditional
model and the trochoidal model are mainly due to the periodic
motion of the cutter. For downmilling, on the right side of the
peak an increase in the stability limit can be seen, which results
even in an extra peak for 5% downmilling. For upmilling, the
same effect can be seen on the left side of the peak. Here, an extra
peak occurs for 10% immersion and for 50% and 5% immersion,
the stability limit increases drastically near the peak of the lobe.
Due to the periodic motion of the cutter, it may happen that the
cutter loses contact from the workpiece when ¢, < ¢;(1) < ¢, even
if no chatter occurs. This is depicted in Fig. 14, where the chip
thickness including the periodic vibrations is shown for a cut at
23,650 rpm and a,=33 mm for 5% downmilling, which is just
below the top of the second peak in Fig. 13(d). This kind of loss
of contact has an effect similar to a decrease of radial immersion
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Fig. 13 Stability lobes for downmilling using the traditional and the trochoidal model for several immersion levels.
(a) 100% immersion; (b) 50% immersion; (¢) 10% immersion; (d) 5% immersion.

periodic delay. This can be explained as follows. Chatter is caused
by vibrations of the cutter on the tooth path. The location of the
peaks of the SLD are defined by the ratio between the (dominant)
natural frequency (causing the vibrations) of the machine-tool sys-
tem and the tooth passing frequency (defining the tooth passing
period). In one tooth passing period, M+e€ waves exist on the
workpiece where M is the number of full waves and e<<1 the
fraction of incomplete waves, see the upper part of Fig. 15.

(i.e., a decrease of ¢,), which results in an increase of the stability
limit. When a circular tooth path is assumed or when xp=1, the
periodic vibrations are not included in the equations that are used
to calculate the stability. Therefore, this type of loss of contact is
not included in these models.

Apart from this effect, the peak of the lobe shifts to the right for
downmilling and to the left for upmilling. This effect is due to the

0.07 ,
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=] | € >i€] M=3
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Fig. 15 Effect of the frequency change f;—f, and the delay

Fig. 14 Chip thickness including periodic vibrations for a 5%
change 7 — 7, on the fraction of waves ¢, and e,=¢;

downmilling cut at 23,650 rpm and a,=33 mm
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Fig. 16 Stability lobe with some possible values for the num-
ber of waves M+e

If the lobe of an SLD is followed from left to right for a system
with a single natural frequency, the fraction € of these waves
decreases as is shown in Fig. 16. At the peak of a lobe, a jump is
present to a wave where M is decreased by one, i.e., the number
of waves goes, e.g., from 3.2 to 2.8. If the natural frequency of the
system increases, more waves are generated in the tooth path for
the same spindle speed (see the middle part of Fig. 15). This will
cause the stability lobes to move to the right, since for the same
spindle speed the fraction € is increased (e,>> €;). For downmill-
ing at 5%, the angles at which the cutter is engaged, lie close to .
As can be seen in Fig. 8, this gives a delay of about 1-1.5%
higher than the constant delay 7. Therefore, the interval t—7;(¢) is
1-1.5% larger than the interval — 7, which allows 1-1.5% more
waves to exist within this interval. This is depicted schematically
in the lower part of Fig. 15 (€3> €;). Hence, with increasing the
delay, the same effect is achieved as with an increased natural
frequency and the lobes move to the right in the case of low
immersion downmilling. Similarly, the delay is lower than 7 for
low immersion upmilling, which causes the peaks to move to the
left.

6 Conclusions

Traditionally the tool path of a nonvibrating mill is modeled as
a circular arc. In practice, the tool path is a trochoid. In modeling
the milling process, the actual tool path influences the static chip
thickness, the delay, and the entry and/or exit angles. Equations
for the static chip thickness, the periodic delay, and the entry and
exit angles have been derived using a trochoidal tool path. These
models are more accurate than the models traditionally used.

An updated milling model has been constructed using these
new equations. Hereafter, a nonlinear relation between the chip
thickness and cutting force is taken into account in order to model
the dependency of the stability limit to the chip load. The combi-
nation of the nonlinear cutting force model with the new tooth
path model results in the fact that the periodic movement of the
cutter needs to be calculated explicitly. The periodic solution of
the model is found using the finite difference method. If this pe-
riodic solution is unstable (stable), it means that chatter does (not)
occur. The limit of stability of the traditional model is compared
to the limit of stability of the trochoidal model. To determine the
stability of the periodic solution, the semi-discretization method is
used for several radial immersion levels for both up- and down-
milling. Results on the stability lobe diagram for low immersion
cutting show that the stability limit of the trochoidal model differs
significantly from that of the traditional model. More specifically,
it is shown that using the trochoidal model for low radial immer-
sion cuts, the peaks of the SLD move to the right for downmilling
and to the left for upmilling compared to the traditional model due
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to the periodic delay. Moreover, due to the fact that the tool loses
contact from the workpiece as a result of the periodic vibrations,
extra peaks in the SLD can occur for low immersion cuts. For
higher radial immersion rates, the differences between the two
models decrease. This loss of contact cannot be predicted using a
linear cutting force model.

From the simulation results, it can be concluded that for an
accurate prediction of the stability lobes for low-immersion cut-
ting it is necessary to drop the assumption that the tooth path is a
circular arc. The tooth path should be modeled as a trochoid. For
high immersion milling, the effect of the trochoidal tooth path
model on the stability is negligible.

In future work, the stability lobes of both models will be vali-
dated by performing dedicated experiments.
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