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A Semi-Analytical Study of
Stick-Slip Oscillations in Drilling
Systems
Rotary drilling systems are known to exhibit torsional stick-slip vibrations, which de-
crease drilling efficiency and accelerate the wear of drag bits. The mechanisms leading to
these torsional vibrations are analyzed using a model that includes both axial and tor-
sional drill string dynamics, which are coupled via a rate-independent bit-rock interac-
tion law. Earlier work following this approach featured a model that lacked two essential
aspects, namely, the axial flexibility of the drill string and dissipation due to friction
along the bottom hole assembly. In the current paper, axial stiffness and damping are
included, and a more realistic model is obtained. In the dynamic analysis of the drill
string model, the separation in time scales between the fast axial dynamics and slow
torsional dynamics is exploited. Therefore, the fast axial dynamics, which exhibits a
stick-slip limit cycle, is analyzed individually. In the dynamic analysis of a drill string
model without axial stiffness and damping, an analytical approach can be taken to obtain
an approximation of this limit cycle. Due to the additional complexity of the model
caused by the inclusion of axial stiffness and damping, this approach cannot be pursued
in this work. Therefore, a semi-analytical approach is developed to calculate the exact
axial limit cycle. In this approach, parametrized parts of the axial limit cycle are com-
puted analytically. In order to connect these parts, numerical optimization is used to find
the unknown parameters. This semi-analytical approach allows for a fast and accurate
computation of the axial limit cycles, leading to insight in the phenomena leading to
torsional vibrations. The effect of the (fast) axial limit cycle on the (relatively slow)
torsional dynamics is driven by the bit-rock interaction and can thus be obtained by
averaging the cutting and wearflat forces acting on the drill bit over one axial limit cycle.
Using these results, it is shown that the cutting forces generate an apparent velocity-
weakening effect in the torsional dynamics, whereas the wearflat forces yield a velocity-
strengthening effect. For a realistic bit geometry, the velocity-weakening effect is domi-

nant, leading to the onset of torsional vibrations. �DOI: 10.1115/1.4002386�
Introduction
Rotary drilling systems using drag bits, as used for the explo-

ation and production of oil and gas, are known to experience
ifferent types of oscillations, which can be categorized as lateral,
xial, and torsional vibrations. These vibrations might lead to
hirling, bit bouncing, and �torsional� stick-slip, respectively

1–6�. In the current work, the focus is on the axial and torsional
ibrations. Torsional stick-slip is characterized by phases where
he rotation of the bit completely stops �stick� and phases where
he bit reaches rotational speeds of up to two times the nominal
otational speed �slip�. These stick-slip oscillations decrease the
rilling efficiency, accelerate the wear of drag bits, and may even
ead to drill string failure because of fatigue.

In the analysis of the torsional vibrations, most studies rely on
ne or two degree-of-freedom models that account for the tor-
ional dynamics only. Usually, the resisting torque at the bit-rock
nterface is modeled by trivializing it as a frictional contact. Com-

on friction models include a �locally� velocity-weakening effect
7–10� and Coulomb friction �11�. These friction models are based
n experimental results �7,12� that show a decrease in the torque-
n-bit for increasing rotational speed. In these models, the rate
ffect is thus seen as an intrinsic property of the processes taking
lace at the bit-rock interface. However, it has to be noted that
hese experimental results are obtained by averaging the torque-
n-bit over multiple revolutions and may not hold at a faster, more
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relevant time scale. Moreover, bit-rock interaction experiments
using single cutters have not revealed any intrinsic velocity-
weakening effect �13�. Instead, the cutting forces remain constant
for a large range of cutting velocities. Therefore, the observed
velocity-weakening effect on full drill bits is likely to be the result
of complex drill string dynamics, rather than an intrinsic property
of the bit-rock interaction.

This insight has led to a different approach for modeling the
dynamics of drilling systems. Based on the rate-independent bit-
rock interaction model presented in Refs. �14,15�, a drill string
model is presented in Refs. �16,17�. In this approach, the axial and
torsional dynamics are coupled via the bit-rock interaction law,
which generates a regenerative effect �18,19� due to the cutting
forces, as well as contact forces. Furthermore, the axial and tor-
sional dynamics are described by lumped-parameter models as
opposed to more complex models such as a continuum approach
�20� or finite-element formulations �21�. This approach is moti-
vated by results from Ref. �22�, where it is shown that the lumped-
parameter approach gives a good qualitative description of the
phenomena as observed in more complex finite-element models.
Furthermore, the lumped-parameter approach allows for an in-
depth analysis, providing insight in the mechanisms leading to
vibrations, as in Ref. �23�. Here, it is shown that the axial and
torsional dynamics can be studied individually because of the dif-
ference in time scales. An analysis of the fast axial dynamics
shows the existence of an axial stick-slip limit cycle, whose prop-
erties are dependent on the rotational speed. This serves as the
driving force behind an apparent velocity-weakening effect in the
torsional dynamics, leading to torsional vibrations and stick-slip.
Hence, the axial dynamics is responsible for the onset of torsional

vibrations.
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In the approach in Refs. �16,17,23�, the drill string is modeled
s a single lumped inertia in the axial direction. It is thus assumed
hat the weight-on-bit is constant, which can be achieved by con-
rolling the hook load. However, this implies that the axial move-

ent of the drill string at the surface has to match the axial dis-
lacement of the drill bit in order not to compress or relax the drill
tring. Since the bit experiences high-frequency axial vibrations,
his is unrealistic.

Therefore, in the current work, the finite axial stiffness of the
rill string is taken into account, where it is assumed that the axial
osition of the drill string is prescribed at the surface. Further,
xial viscous damping is included to model the effect of dissipa-
ion due to friction along the bottom hole assembly �BHA�. Both
ffects are thus relevant in practice such that the model extensions
ead to a more realistic model. Here, the main question is whether
his updated model still predicts the onset of torsional vibrations
nd stick-slip, as observed in experiments on drilling rigs and
aptured by the original model in Ref. �23�. Because of the addi-
ional model complexity caused by the axial stiffness and damp-
ng, the approach as presented in Ref. �23�, where an approxima-
ion of the axial stick-slip limit cycle was obtained analytically,
annot be pursued. Therefore, a semi-analytical approach is devel-
ped to obtain the exact axial limit cycle. In this approach, param-
trized analytical solutions are derived for different parts of the
xial limit cycle, whereas numerical optimization is used to obtain
he unknown parameters leading to an exact characterization of
he full limit cycle. Next, it is shown that the axial dynamics
enerate an apparent velocity-weakening effect in the torsional
irection, forming the onset of torsional vibrations.

This paper is organized as follows. The drill string model will
e discussed in Sec. 2. Next, the axial limit cycle will be analyzed
sing a semi-analytical approach in Sec. 3. The obtained results
n the axial dynamics will be used to analyze the torsional dy-
amics in Sec. 4. Finally, conclusions will be presented in Sec. 5.

Modeling of Drilling Dynamics
The model of a drill string setup is depicted in Fig. 1. The BHA

ith axial and angular positions U and �, respectively, is modeled
s a discrete mass M with inertia I. The drill string is modeled as
spring with torsional stiffness C and axial stiffness K. At the top,
oth the axial and angular displacements are prescribed. This rep-
esents the rotary table, which is assumed to exhibit the constant
otational and vertical speeds, �0 and V0, respectively. The vis-
ous friction parameter D characterizes viscous friction along the

Fig. 1 Schematic model of a drill string
HA, leading to the equations of motion for the BHA as
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M
d2U

dt2 + D
dU

dt
+ K�U − V0t� = − Wc − Wf �1�

I
d2�

dt2 + C�� − �0t� = − Tc − Tf �2�

Here, W and T respectively denote the force and torque on the
drill bit as a result of the bit-rock interaction. This consists of a
cutting and friction component, denoted by superscripts c and f ,
respectively. The cutting process takes place on the cutting face of
the blades on the drill bit and describes the removal of the rock,
whereas the friction component is caused by the contact between
the underside of the blades �called the wearflat� and the well bot-
tom. Following Ref. �14�, these processes are modeled by

Wc = na��d, Wf = nal�̄
1 + sgn�dU/dt�

2
�3�

Tc =
1

2
na2�d, Tf =

1

2
na2��l�̄

1 + sgn�dU/dt�
2

�4�

with n the number of blades on the drill bit with radius a. The
cutting process is characterized by the intrinsic specific energy �,
which gives the required energy to destroy a unit volume of rock,
and the orientation of the cutting face, represented by �. The fric-
tional process takes place on the bit-rock interface with length l at
the underside of the blades, known as the wearflat. The bit-rock
contact at the wearflats is described by the contact stress, which is
constant �and equal to �̄� when the bit moves downward into the
rock. The contact force is thus independent of the magnitude of
the axial velocity. This is confirmed by experimental results pre-
sented in Ref. �15�, which show that the forces due to the bit-rock
interaction are indeed rate independent. Further, the geometry of
the bit-rock contact indicates that the wearflat is no longer in
contact with the rock when the bit moves upward. This is modeled
using the sign function in Wf. A frictional process at the wearflat
relates this contact force Wf to the friction torque Tf via the fric-
tion coefficient � and the parameter �, which characterizes the
spatial distribution of the wearflats. Finally, the cutting forces are
proportional to the depth-of-cut d, which is in general not con-
stant. Specifically, the depth-of-cut depends on the axial position
of the cutter with respect to the rock surface, as generated by the
previous blade some time tn ago. This is schematically depicted in
Fig. 2. Hence, the depth-of-cut, describing the height of material
in front of a single blade, can be written as

d�t� = U�t� − U�t − tn�t�� �5�

The delay tn itself is time dependent and denotes the time interval
in which the bit rotates 2	 /n rad, which is the angle between two

Fig. 2 Bottom hole profile between two successive blades „af-
ter Ref. †16‡…
successive blades:
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�
t−tn�t�

t
d��s�

ds
ds = ��t� − ��t − tn�t�� =

2	

n
�6�

n the calculation of the depth-of-cut and the delay, it is assumed
hat the drill bit moves down a perfectly vertical well. Lateral

otions of the drill bit �i.e., bit whirl� are not considered.
The equations of motion are scaled to reduce the number of

arameters. Thereto, the characteristic time scale t�=�I /C and
ength L�=2C /�a2 are introduced. Here, 2	t� is the period time
elated to the torsional resonance frequency. The characteristic
ength L� represents the depth-of-cut �for one revolution of the
rill bit� for a perfectly sharp cutter inducing a one radian twist in
he drill string. Typically, t��1 s and L��1 mm. These charac-
eristic parameters are used in coordinate transformation,

u�
� =
U − U0

L�

, ��
� = � − �0 �7�

here u and � are functions of the dimensionless time 
= t / t� and
epresent the �scaled� relative axial and angular velocities, respec-
ively. Next, U0�t� and �0�t� are the equilibrium solutions of Eqs.
1� and �2�, respectively. These equilibria are the trivial solutions
n the absence of vibrations and correspond to a constant axial and
orsional velocities since the drill bit has to follow the imposed
elocities V0 and �0. The coordinate transformation leads to

¨ �
� + �u̇�
� + �2u�
�

= n
�− v0�
n − 
n0� − u�
� + u�
 − 
n� + �g�u̇�
��� �8�

¨ �
� + ��
� = n�− v0�
n − 
n0� − u�
� + u�
 − 
n� + ��g�u̇�
��� �9�

��
� − ��
 − 
n� + �0
n = 2	/n �10�

here the dot denotes differentiation with respect to the dimen-
ionless time 
. It is noted that the equilibrium u=�=0 corre-
ponds to constant drilling, with positive and constant axial and
orsional velocities. The parameters � and � are the scaled axial
amping and viscous friction, whereas 
 characterizes the drill
tring design:

� =
D

M
� I

C
, � =� KI

MC
, 
 =

��aI

MC
�11�

he influence of wearflat friction is given by �, which is a mea-
ure of the bluntness of the bit and therefore equals zero for per-
ectly sharp cutters. The parameter � groups the parameters �, �,
nd � and characterizes the drill bit design:

� =
a2l�̄

2�C
, � = ��� �12�

ecause of scaling, all parameters are of O�1�. The only excep-
ion is 
, which, for a large class of drilling systems, is typically
f O�102–103�. This fact will be exploited later. The nonlinear
unction g�u̇�
�� describes whether the wearflat is in contact with
he rock �g=0� or not �g=1�. Following Filippov’s solution con-
ept, the discontinuity at u̇=−v0 �dU /dt=0� is replaced by a con-
ex set-valued map:

g�u̇�
�� �
1 − Sgn�u̇�
� + v0�

2
= �0, u̇ � − v0

�0,1� , u̇ = − v0

1, u̇ � − v0
	 �13�

here Sgn� · � is the set-valued sign function. Hence, the model in
qs. �8�–�10� and the set-valued map in Eq. �13� constitute a
elay-differential inclusion, of which the oscillatory behavior will
e analyzed.

It has to be noted that the model in Eqs. �8�–�10� is only valid
hen the bit rotates in the positive direction ��̇�−�0�, and the

lades either remove the material �d�0� or slide on the bottom of
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the borehole �d=0�. This results in two phases where the model in
the current form loses validity, namely, bit bouncing and torsional
stick.

Bit bouncing is characterized by a negative depth-of-cut d, in-
dicating that the bit is no longer in contact with the rock. It can be
caused by large axial vibrations and causes damage to the drill bit.
Bit bouncing should therefore be avoided at all times and is not
analyzed in this work.

Even though torsional stick is not included in the formulation in
Eqs. �8�–�10�, this model can be used to predict the onset of tor-
sional vibrations. These mechanisms leading to torsional vibra-
tions �and stick-slip� are the main interest of this study.

Nonetheless, torsional stick can be included in the model as
follows. Thereto, it is assumed that the frictional torque on the
wearflat is sufficient to prevent the bit from rotating backward,
which is a realistic assumption in practice. Therefore, when the
rotational speed d� /dt becomes zero, the bit sticks to the rock
��̇�
�=−�0� and no longer removes material. It is assumed that
the rock underneath the bit cannot be indented, implying that the
bit also sticks in the axial direction �u̇�
�=−v0�. Since the axial
dynamics is modeled as a single inertia, this implies the total
absence of axial drill string vibrations during a torsional stick
phase. Physically, torsional stick is caused when the torque ap-
plied to the bit is insufficient to overcome the cutting and friction
torque needed to drill. However, because of the continuous rota-
tion of the rotary table at the surface, the drill string is twisted,
increasing the torque applied to the drill bit. The bit starts moving
again when this force is sufficient to overcome the reacting torque
and generates a positive angular acceleration �for all g�� �0,1��:

n�− v0�
n − 
n0� − u�
� + u�
 − 
n� + ��g�� − ��
� � 0. �14�

Contrary to models commonly used for the the analysis of tor-
sional vibrations, the model used in the current work is based on
a rate-independent bit-rock interaction law, which couples the
axial and torsional dynamics. In this section, the model in Refs.
�16,17,23� is extended by incorporating the important effects of
the finite axial stiffness of the drill string as well as the axial
friction along the BHA. In Secs. 3 and 4, it will be shown that
axial stick-slip vibrations lead to an apparent velocity-weakening
effect of the torque-on-bit, which forms the onset of torsional
vibrations and stick-slip. Hereto, in Sec. 3, a semi-analytical
analysis approach providing an exact characterization of the axial
limit cycle is developed for the extended model, as opposed to the
approximate analysis in Ref. �23�, for a model without axial drill
string flexibility and axial dissipation.

3 Axial Dynamics

For a broad class of drilling systems, the magnitude of the
parameter 
, which is of O�102–103�, implies that the axial dy-
namics in Eq. �8� is fast when compared with the torsional dy-
namics in Eq. �9� �23�. This implies that, for this class of systems,
the axial dynamics can be analyzed individually, where the slowly
varying rotational speed can be considered constant. To emphasize
the fast time scale of the axial dynamics, the stretched time 
̄

=
�n
 is introduced.
In steady-state drilling, the average axial velocity �over mul-

tiple revolutions� of the drill bit should equal the imposed axial
velocity at the surface in order for the drill string length to be

constant on average. Any periodic motions in the axial velocity
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re therefore not periodic in the axial position, as required to find
rue periodic orbits. Therefore, the coordinate transformation,

1�
̄� =
− v̄0�
̄n − 
̄n0� − u�
̄� + u�
̄ − 
̄n� − �̄2u�
̄� − �̄u��
̄�

v̄0

�15�

2�
̄� =
u��
̄�

v̄0

�16�

s introduced. Physically, z1 is a scaled version of the deviation
rom the nominal forces acting on the drill bit, except the wearflat
orce. The coordinate z2 is a scaled version of the relative axial
elocity in stretched time, where � denotes differentiation with
espect to the stretched time 
̄. The application of the coordinate
ransformation to Eq. �8� yields the dynamics

1��
̄� = − �1 + �̄2�z2�
̄� + z2�
̄ − 
̄n� − �̄z1�
̄� − �̄
�

v̄0

ĝ�z2�
̄�� �17�

2��
̄� = z1�
̄� +
�

v̄0

ĝ�z2�
̄�� �18�

ith

ĝ�z2�
̄�� �
1 − Sgn�z2�
̄� + 1�

2
�19�

nd

�̄ =
�

�n

, �̄ =

�

�n

, v̄0 =

v0

�n

�20�

here �̄ and �̄ are of O�0.1�.
From Eqs. �17� and �18�, it can be seen that the equilibrium

oint is at z1=z2=0, corresponding to a constant drilling velocity.
ence, periodic oscillations will appear as periodic orbits in these
ew coordinates.

A major advantage of the coordinate transform is that the new
et of equations requires the delayed axial velocity z2�
̄− 
̄n�
u��
̄− 
̄n� / v̄0 instead of the delayed position u�
̄− 
̄n�. In the

tick phase, the axial velocity is explicitly known �dU /dt
0⇔z2=−1�, which is beneficial for the analysis of the axial

imit cycle in Sec. 3.2. It allows for the calculation of analytical
olutions for parts of the limit cycle. This is a highly efficient way
f calculating the axial limit cycles, compared with the usage of
eriodic solvers such as the shooting method or numerical inte-
ration, for example.

3.1 Axial Stability Analysis. By construction of the coordi-
ate transformation, the equilibrium solution of Eqs. �17�–�19�
quals z1=z2=0. Physically, this corresponds to a constant drilling
elocity. Therefore, around the equilibrium point, the full contact
tress is active. Stated differently, the nonlinearity ĝ�z2�
̄�� equals
, as can also be concluded from Eq. �19�. Therefore, the local
tability of the equilibrium �z1 ,z2�= �0,0� can be investigated by
onsidering the roots of the characteristic equation,

P�s� = s2 + �̄s + �̄2 + 1 − e−s
̄n = 0 �21�

tability properties are determined in two steps. First, the roots of
q. �21� are calculated for 
̄n=0. Second, Eq. �21� is evaluated at

he imaginary axis �s= i�� in order to track any roots crossing the
maginary axis for increasing delay 
̄n.

The results of a stability analysis for varying dimensionless
tiffness parameter �̄ and delay 
̄n, which is inversely proportional
o the rotational speed of the BHA, can be found in Fig. 3. From
he top graph, where no axial damping is present, it is clear that,
or small �̄, the range in the delay for which the equilibrium point
s locally asymptotically stable decreases with increasing stiffness.
or higher stiffness, multiple stability regions emerge, caused by
he complex interaction between the dynamics and the delay. The

21006-4 / Vol. 6, APRIL 2011
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bottom graph �for �̄=0.5� shows that the parameter region for
which the dynamics is locally asymptotically stable increases for
increasing delay, as the axial damping is increased. However, for
realistic values of the stiffness, damping �both of O�0.1��, and
delay �of O�10–102��, the axial equilibrium point is unstable.

For these parameter values, small perturbations around the
equilibrium point grow. Numerical simulations show that these
perturbations result in an axial limit cycle, which is analyzed in
more detail in the next section.

3.2 Axial Limit Cycle Analysis. A typical example of the
axial limit cycle in �z1 ,z2� coordinates is shown in the top graph
of Fig. 4, which gives the time series of z1 and z2 as well as the
delayed coordinate z̃2�
̄�=z2�
̄− 
̄n� and the nonlinearity ĝ. The
bottom graph shows the corresponding absolute position U and
velocity dU /dt. In these absolute coordinates, no limit cycle can
be observed because of the drift in the axial position, caused by
the nominal downward velocity. The limit cycle consists of two
distinct phases that can be recognized in both figures: the slip
phase and the stick phase.

The slip phase �for 
̄� �0, 
̄a+ 
̄b�� has a length of T̄slip= 
̄a+ 
̄b

and is characterized by a positive axial velocity dU /dt�0 �i.e.,
z2�−1�. Here, the bit penetrates the rock and moves downward.
In Fig. 4, this phase is highlighted by a black bar. Since the bit
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Fig. 3 Stability diagram in „�̄2 , �̄n…-space for �̄=0 „top… and �̄
=0.5 „bottom…. The stable region is depicted in gray, and the
unstable region is depicted in white.
moves downward, the full contact stress is mobilized and g=0.
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valuating Eq. �18� for ĝ=0 gives z2�=z1, such that z1 represents
he scaled acceleration of the bit. A stick phase is entered when
he axial velocity dU /dt drops to zero, where the wearflat forces
an accommodate variations in the other forces acting on the bit.

The stick phase �for 
̄� �
̄a+ 
̄b , 
̄n+ 
̄b�� has a length of T̄stick


̄n− 
̄a and is characterized by a zero axial velocity dU /dt=0
i.e., z2=−1�. This phase is highlighted by a gray bar in Fig. 4.
ecause of the positive rotational speed, the bit still removes the

ock, as can be concluded from the positive depth-of-cut d. The
tick phase is caused by the discontinuity in the contact forces at
ero axial velocity, which can entirely compensate the other forces
cting on the bit. As the depth-of-cut decreases, caused by the
hange in the rock profile left by the previous blade, the wearflat
orces can no longer accommodate for the decreasing cutting
orces and the bit enters a new slip phase.

During a large part of the stick phase, the depth-of-cut is con-
tant, as can be seen in Fig. 4. This is caused by the overlap in the
ngular position of the current and previous stick phases. At the
ngular position the bit started moving axially during the previous
otation, the depth-of-cut decreases. In order to maintain the stick
hase, the wearflat forces will increase until the maximum force is
eached �ĝ=0�. Then, the bit will start to move axially again,
ntering another slip phase. Since the wearflat forces can accom-
odate for some decrease in d, the period of the limit cycle is

lightly higher than the delay.
In Secs. 3.3 and 3.4, the slip and stick phase will be analyzed,
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ig. 4 Example of an axial limit cycle in „z1 ,z2… coordinates
top… and „U ,dU /dt… coordinates „bottom…
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3.3 Slip Phase. In the slip phase, the full contact stress is
active and the nonlinearity ĝ equals zero. Substituting this in Eqs.
�17� and �18� leads to the following linear delay-differential equa-
tions:

z1��
̄� = − �1 + �̄2�z2�
̄� + z2�
̄ − 
̄n� − �̄z1�
̄� �22�

z2��
̄� = z1�
̄� �23�

As can be seen in Fig. 4, the slip phase is split in parts a and b,
which are chosen such that the delayed scaled velocity z̃2�
̄�
=z2�
̄− 
̄n� is constant and equals �1 in phase b �for 
̄� �
̄a , 
̄a

+ 
̄b��. Furthermore, by the choice of the parts a of b, the delayed
velocity z̃2�
̄�=z2�
̄− 
̄n� in phase a �for 
̄� �0, 
̄a�� equals the
nondelayed z2�
̄� in phase b. It is therefore convenient to calculate
the solution in phase b first and consider the dynamics in the
reversed time 
̄r=−
̄:

z̀�
̄r� = Az�
̄r� + Bz̃2 �24�

Here, ` denotes differentiation with respect to the reversed time

r. The term z2�
̄r+ 
̄n� is known and can therefore be considered
as an input z̃2�
̄r�=z2�
̄r+ 
̄n� to a set of linear equations, which
yields the standard linear state-space form with state z= �z1 ,z2�T

and system matrices,

A = 
 �̄ 1 + �̄2

− 1 0
�, B = 
− 1

0
� �25�

3.3.1 Phase b. The total solution in phase b can now be ob-
tained as the solution to Eq. �24� for the delayed velocity z̃2=−1
and the initial condition zb�0�= �z1,min ,−1�T. Here, z1,min=z1�
̄a

+ 
̄b� is an unknown, which will be determined later. It represents
the minimum value of z1�
̄� in the stick phase, which is not nec-
essarily the overall minimum value. The solution in phase b is

given as a function of the local �reversed� time 
̄r
b= T̄slip− 
̄ and

reads

zb�
̄r
b� = eA
̄r

b
zb�0� −�

0


̄r
b

eA�
̄r
b−s�Bds �26�

3.3.2 Phase a. As for phase b, the dynamics in phase a is
described by Eq. �24�, but with a different initial condition z0 and
delayed velocity z̃2, which serves as an input for the state-space
model. The initial condition for the solution in phase a is given by
the result of phase b as za�0�=zb�
̄b�, whereas the delayed velocity
z2

a equals the solution in phase b, as can be seen in Fig. 4. Then,
the solution in phase a is given in the reversed local time as 
̄r

a

= 
̄a− 
̄ as

za�
̄r
a� = eA
̄r

b
za�0� +�

0


̄r
a

eA�
̄r
a−s�Bz2

b�s�ds �27�

It has to be noted that the integrals in Eqs. �26� and �27� can easily
be evaluated analytically. Next, since the solution z2

b in phase b is
used as an input for the linear dynamics in phase a, the solution
for phase a can only be defined for 
̄r

a� �0, 
̄b�. Stated differently,
the length of phase a cannot exceed the length of phase b : 
̄a
�
̄b. The validity of this condition will be checked in Sec. 3.5.

3.4 Stick Phase. The dynamics in Eqs. �17� and �18� in the
stick phase is characterized by z2�=0. Since the dynamics is con-
sidered in forward time, it can be described by

z��
̄� = �1 + �̄2� + z2�
̄ − 
̄n� �28�
1
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0 = z1�
̄� +
�

v0
ĝ�− 1� �29�

he bit sticks axially because the wearflat forces can compensate
ntirely for the difference between cutting forces and forces ex-
rted by the drill string. The value of the nonlinearity ĝ is there-
ore prescribed by the value of z1�
̄� and can be obtained by evalu-
ting Eq. �29�. The stick phase is subdivided into phases c, d, and
, which will be discussed next.

3.4.1 Phase c. In phase c, both the current velocity z2 and the
elayed velocity z̃2 equal �1. The solution in phase c can then be
btained by simply integrating Eq. �28� using the initial condition

1
c�0�=z1,min, as introduced before. This leads to the solution as a

unction of the local time 
̄c= 
̄− T̄slip:

z1
c�
̄c� = z1,min + �̄2
̄c �30�

z2
c�
̄c� = − 1 �31�

he initial condition for the solution in phase d is given by the
esult for phase c:

z1
d�0� = z1�
̄n� = z1

c�
̄n − T̄slip� = z1,min + �̄2�
̄n − T̄slip� �32�

3.4.2 Phases d and e. As for phase c, the solution in phases d
nd e can be obtained by integrating Eq. �28�. However, the de-
ayed velocity z̃2 is no longer constant. Since phase d starts at 
̄

̄n, this delayed velocity equals the solution in the slip phase, as
an also be concluded from Fig. 4. Using the local time 
̄d= 
̄

̄n, this can be expressed as

z2
d�
̄d − 
̄n� = z2�
̄d� = z2

a�
̄a − 
̄d� �33�

ere, it has to be recalled that phase a has a length of 
̄a and the
olution z2

a is given in reversed time, which explains the argument
f z2

a. Using this fact, the solution in phase d is given by

z1
d�
̄d� = z1

d�0� + �1 + �̄2�
̄d +�
0


̄d

z2
a�
̄a − s�ds �34�

z2
d�
̄d� = − 1 �35�

ince the length of phase a is limited, the integral is only defined
or 
̄d� �0, 
̄a�. However, the combined length of phases d and e
quals 
̄b, which is larger than �or equal to� 
̄a. Thus, in the final
art with a length of 
̄b− 
̄a, the delayed velocity is given by the
olution in phase b. Using the local time 
̄e= 
̄− 
̄n− 
̄a, the solu-
ion in phase e is similar to that of phase d:

z1
e�
̄e� = z1

e�0� + �1 + �̄2�
̄e +�
0


̄e

z2
b�
̄b − s�ds �36�

z2
e�
̄e� = − 1 �37�

ere, the initial condition reads z1
e�0�=z1

d�
̄b�.

3.5 Construction of the Total Solution. The axial limit cycle
s calculated by dividing it in phases a to e, for which analytic
xpressions can be found. However, three unknown parameters
emain. These parameters fully characterize the limit cycle and are
he initial condition z1,min and the lengths of phases a and b, being

a and 
̄b, respectively. To obtain these parameters, the limit cycle
t 
̄=0 is considered first. At this point, the stick phase ends and a
ew slip phase is initiated, which gives the conditions

z1�0� = z1
a�
̄a� = 0 �38�

z2�0� = za�
̄a� = − 1 �39�
2
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A third condition results from the properties of the limit cycle.
In practice, both the relative velocity u̇ and relative bit position u
are periodic. For the bit position to be periodic, the average rela-
tive velocity over one limit cycle has to be zero. Obviously, this
should also hold for the scaled velocity z2, yielding

�
0

T̄

z2�s�ds = 0 �40�

Here, T̄= T̄slip+ T̄stick= 
̄n+ 
̄b is the total period of the limit cycle.
Equations �38�–�40� are solved simultaneously using a numeri-

cal Nelder–Mead optimization scheme �24�, as implemented in
MATLAB, to obtain the values of 
̄a, 
̄b, and z1,min. However, it was
shown that the analytical solution of the limit cycle is only valid
for 
̄a�
̄b and 
̄a+ 
̄b�
̄n. Here, the latter condition provides a
lower bound for the delay, whereas the first condition can be
shown to imply an upper bound for the delay. Typical values of
the delay 
̄n are O�10–102�, which in practice corresponds to
drilling speeds of O�10–102� rpm. Since 
̄a+ 
̄b is of O�1�, the
lower bound is of little interest and focus is on the validity of the
condition 
̄a�
̄b, which is checked for a range in parameters in
Fig. 5. In this figure, three regions can be distinguished. First, in
the white region, no value of the delay 
̄n can be found satisfying
both conditions. Next, in the gray regions there exist values 
̄n
satisfying 
̄n�
̄a+ 
̄b and 
̄a�
̄b, where it is recalled that the lat-
ter provides an upper bound on the delay. Therefore, for increas-
ing delay 
̄n, the validity region in parameter space decreases until
the dark gray region remains, where the approximation is valid for
all 
̄n�
̄a+ 
̄b. Since a large range in the delay 
̄n is of interest,
only this dark gray region will be considered in the next section. It
is noted that this is not restrictive since typical values of �̄ and �̄
are of O�0.1�.

The axial dynamics is directly influenced by the torsional dy-
namics via the delay 
̄n, which varies continuously as a function
of the rotational speed. Therefore, to analyze the effect of the
delay on the axial limit cycle, Fig. 6 is considered. It is clear that
the delay has a major influence on the axial limit cycle. First, the
length of the stick phase is driven by the delay, which influences
the period time of the axial limit cycle. Here, the length of the slip
phase is hardly affected. Since the average value of the scaled
relative velocity z2 equals zero, an increase in the length of the
stick phase leads to an increase in the amplitude of the oscillation
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Fig. 5 Validity of the condition �̄a� �̄b in „�̄ , �̄2
…-space. The

dash-dotted line shows the line �̄a= �̄b for the minimal delay. For
increasing delay, the validity region decreases, as shown for
�̄n= ˆ5,10,20,40,80,160‰. Finally, the dashed line is a numerical
approximate of the asymptote for �̄n\�.
in the slip phase. This also increases the average value of z1 for
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ncreasing delay.
For the stick-slip limit cycle, it has to be noted that the average

earflat forces are smaller than the nominal wearflat forces. The
ominal wearflat force is based on a constant positive downward
elocity, such that the full wearflat force is mobilized continu-
usly. The stick-slip limit cycle causes the wearflat force to de-
rease in the stick phase, yielding lower forces on average. Since
he average rate of penetration has to equal the imposed axial
elocity at the surface, the decrease in average wearflat force is
ompensated by an elongation of the drill string. When the axial
tiffness is not taken into account and a constant hook load is
pplied at the surface, as in Ref. �23�, the response differs.
amely, a decrease in the average contact forces on the drill bit,

aused by the axial vibrations, leads to a higher rate of penetra-
ion. Finally, since the decrease in the average wearflat forces is
ependent on the delay �and the rotational speed�, this effect is of
mportance in the analysis of the torsional dynamics. Thereto, the
xial dynamics will be averaged in the next section.

3.6 Averaged Axial Response. In Sec. 4, it will be shown
hat the averaged wearflat force, characterized by the nonlinearity
ˆ , is of importance in the torsional dynamics. By averaging Eq.
18�, the average value �ĝ
a of the nonlinearity can be expressed
s a function of z1 as follows:

�ĝ
a = −
v̄0

�
�z1
a �41�

here it is noted that the averaged value of the scaled acceleration
z2�
a equals zero. In the slip phase, z1 represents the scaled accel-
ration of the bit. Since the slip phase connects two stick phases,
here the velocity dU /dt=0 �z2=−1�, the average value of z1
ver the slip phase equals zero. Hence, the average value �z1
a of

1 over one limit cycle can be calculated by evaluating the stick
hase only, leading to

z1
a =
1

T��
0


̄n−T̄slip

z1
c�s�ds +�

0


̄a

z1
d�s�ds +�

0


̄b−
̄a

z1
e�s�ds� �42�

he averaged value �z1
a is dependent on the system parameters �̄

nd �̄2 and the delay 
̄n only.
As an example, the limit cycle with �̄=0.1 and �̄2=0.1 is ana-

yzed for a wide range of the delay 
̄n. The results are depicted in
ig. 7, which shows the averaged value �z1
a and the minimum
alue z1,min of z1�
̄� in the stick phase, which both appear to be

fit
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ig. 6 Influence of the delay �̄n on the axial limit cycle for �̄
0.1 and �̄2=0.1
inear with the delay. To show this, a linear fit �z1
a is depicted as
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well, which is extrapolated for small 
̄n. Here, it has to be noted
that no results are available for small 
̄n since the calculation of
the axial limit cycle only holds when 
̄n�
̄a+ 
̄b. Next, the critical
delay 
̄n

crit at which stability of the equilibrium point is lost is
shown as a circle. This critical delay is a result of the stability
analysis in Sec. 3.1. The zoomed graph �bottom� in Fig. 7 shows
that the extrapolated linear fit intersects the critical delay, such
that the averaged value �ĝ
a of the nonlinearity can be written as

�ĝ
a = −
v̄0

�
�z1
a �

v̄0

�
A��̄,�̄��
̄n − 
̄n

crit��̄,�̄�� �43�

Here, A��̄ , �̄��0 is the slope of �z1
a, which is dependent on the
parameters �̄ and �̄. Next, it has to be noted that 
̄n�
̄n

crit, such
that the axial equilibrium point is unstable. Further, v̄0 and � are
both positive, yielding a positive average value �ĝ
a. Since g=0
corresponds to the full contact force and g=1 models the absence
of contact, this corresponds to a decrease in the average wearflat
force for increasing delay, as is concluded before.

The magnitude of the minimum value of z1�
̄� increases with
the delay but cannot grow unbounded. Namely, since z1,min is
related to the maximum value of the nonlinearity, the following
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Fig. 7 Averaged value Šz1‹a and minimum value z1,min for the
axial limit cycle with �̄=0.1 and �̄2=0.1. The black circle de-
notes the critical delay, at which stability is lost. The bottom
graph is a zoomed version of the top figure.
condition holds:
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− z1,min =
�

v̄0

gmax �
�

v̄0

�44�

hen the condition in Eq. �44� does not hold, the wearflat force
annot compensate all the other forces at dU /dt=0 and the bit
oes not stick. Instead, it will move upward. Even though this
oes not necessarily cause bit bouncing �depth-of-cut d�0�, it is
good indication for its occurrence in practice. This implies that

it bouncing is less likely to occur for bits with large wearflats
large ��, at a low rate of penetration v̄0 or small delay 
̄n, which
orresponds to high rotational speed �0. Here, it has to be noted
hat the delay plays a role via its influence on z1,min, as can be seen
n Fig. 7.

The value of A��̄ , �̄� as a function of the parameters �̄ and �̄ is
epicted in Fig. 8. To calculate A��̄ , �̄�, the averaged value �z1
a is
alculated for a range in the delay 
̄n, similar to Fig. 7. Since a
ange in the delay 
̄n is needed, this is only done in the region
here the calculation of the limit cycle holds for all 
̄n�
̄a+ 
̄b,
hich is the dark gray region in Fig. 5.
As can be seen in Fig. 8, the value of A��̄ , �̄� mainly depends

n the damping �̄; the dependence on the stiffness �̄2 is minor.
In this section, the fast axial dynamics are analyzed. Since the

xial equilibrium point, corresponding to constant downward mo-
ion, is unstable, small perturbations lead to an axial stick-slip
imit cycle. An exact characterization of this limit cycle is given
sing a semi-analytical approach. Here, parts of the axial limit
ycle are calculated analytically, whereas numerical optimization
s used to determine the unknown parameters. An analysis of the
imit cycle shows that the average wearflat forces decrease for
ncreasing delay �i.e., for decreasing rotational velocity�, which
orresponds to the results of the model without axial stiffness and
amping as in Ref. �23�.

Torsional Dynamics
In the previous section, the axial dynamics is analyzed under

he assumption that the parameters related to the slow torsional
ynamics are constant. For the analysis of the torsional dynamics,
he parameters related to the fast axial dynamics can be approxi-

ated by their averaged values. More specifically, these param-
ters are approximated by the averaged value over one axial limit
ycle for the current �slowly varying� delay. Thus, exploiting the
veraging of the axial dynamics in Eq. �9� yields

�̈�
� + ��
� = − nv0�
n�
� − 
n0� + n���ĝ
a �45�
ere, it has to be noted that the averaged value of the nonlinearity
ver one limit cycle is equal in all coordinate systems.

For this averaging approximation of the axial dynamics to be
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Fig. 8 Value of A in „�̄ , �̄2
…-space
alid, the axial limit cycle has to exist. This holds in the region
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where the axial equilibrium point is unstable and no bit bouncing
occurs. Next, the analytical calculation of the limit cycle can be
used when the conditions 
̄a�
̄b and 
̄a+ 
̄b�
̄n hold, as shown in
Sec. 3.5.

During a typical torsional limit cycle, the delay varies and
might even be small enough to stabilize the axial dynamics, which
can occur at high rotational speed. On the other hand, the bit can
stick torsionally. During torsional stick, the bit also sticks axially
since it is assumed that the rock cannot be indented. The approxi-
mation in Eq. �45� is invalid in these cases and is therefore only
valid in a part of the torsional dynamics. Nonetheless, the approxi-
mation can be used close to the torsional equilibrium point, which
corresponds to a constant rotational speed of the bit d� /dt�0.
Next, the condition that the axial equilibrium point is unstable has
to hold, i.e., 
̄n0�
̄n

crit, with 
̄n0=2	 / �n�0�. Then, substituting Eq.
�43� in Eq. �45� gives

�̈�
� + ��
� = − nv0�
n�
� − 
n0�

+ n�v̄0A��̄,�̄��
̄n�
� − 
̄n
crit��̄,�̄�� �46�

Here, the first term at the right-hand side �−nv0�
n−
n0�� corre-
sponds to the averaged cutting forces, whereas the second term
�n�v̄0A�
̄n− 
̄n

crit�� represents the averaged wearflat forces. Next, A
and 
̄n

crit are constant for a set of parameters �̄ , �̄, while the delay
varies with time. It is recalled that the delay 
n is defined by the
implicit Eq. �10�. However, it is beneficial for the analysis of the
torsional dynamics to have an explicit expression for the delay.
Thereto, a first-order Taylor approximation of the delayed relative
angular position ��
−
n� is used:

��
 − 
n� � ��
� − �̇�
�
n �47�

The delay 
n is typically of O�0.1�, while the characteristic time
of the torsional vibrations is 2	, which justifies the approxima-
tion. When combining Eq. �47� with Eq. �10�, the delay can be
written as


n��̇�
�� �
2	

n��0 + �̇�
��
�48�

Substituting this in Eq. �46� yields an autonomous nonlinear ap-
proximate of the torsional dynamics. This approximate is linear-
ized around �̇=0 �d� /dt�0� to determine local stability proper-
ties, yielding

�̈�
� + ��
� = nv0�A�
n0 − 
n
crit� − nv0��A − 1�

2	

n�0
2 �̇�
� �49�

Here, the relation v̄0
̄n=v0
n is used. In practice, bits are com-
monly characterized by ��1. Next, Fig. 8 shows that A�1 for
realistic parameter values �̄ , �̄. Therefore, the term �A−1 will in
general be negative, and the torsional equilibrium point is thus
unstable. Instability of the torsional equilibrium leads to torsional
limit cycling and, possibly, torsional stick-slip. On the other hand,
a high � can stabilize the torsional dynamics, where it is recalled
that �=��� is dependent on the geometry of the drill bit. Since �
characterizes the influence of the wearflat forces on the torsional
dynamics, a high influence of these forces will stabilize the tor-
sional dynamics, indicating that the wearflat forces do not gener-
ate the velocity-weakening effect. This can also be concluded
from Eq. �46�, where it is recalled that an increase in the torsional
velocity decreases the delay. An increasing rotational speed de-
creases the length of the stick phase, such that the averaged
wearflat force increases, causing an apparent damping. On the
other hand, the cutting forces are velocity weakening, as can be
concluded from Eq. �46� as well. For increasing rotational speed,
the averaged depth-of-cut decreases because of the constant
downward velocity, leading to lower cutting forces. For small �,
the influence of the cutting forces is larger than the wearflat
forces, yielding a net velocity-weakening effect in the torsional

dynamics.
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Hence, the fast axial vibrations form the onset of the torsional
ibrations. This conclusion is similar to that for the drilling system
s analyzed in Ref. �23�, where the effects of axial stiffness and
amping were not included. Thus, even though the addition of
xial stiffness and damping does significantly change the axial
imit cycles, the main qualitative effects on the torsional dynamics
emain unchanged for realistic parameter values.

Conclusions
In this work, the drill string model introduced in Ref. �16� and

nalyzed in Ref. �23� is extended with the essential aspects of
xial stiffness representing the axial flexibility of the drill string
nd viscous friction representing dissipation along the bottom hole
ssembly. Both aspects are relevant in practice such that the model
xtensions lead to a more realistic model. In the original work in
ef. �16�, the weight-on-bit is assumed to be constant and com-
ression or elongation of the drill string is not taken into account.
ince this is unrealistic for a vibrating drill bit, the axial flexibility

s included in the model in this paper, where a constant rate of
enetration is imposed at the surface.

For the original model in Ref. �16�, the mechanisms leading to
orsional stick-slip oscillations are analyzed in Ref. �23�. In the
urrent work, it is analyzed whether these mechanisms are still
alid for the extended and more realistic model.

As in Ref. �23�, the axial dynamics are analyzed individually,
hich is rooted in the separation of time scales between the fast

xial and slow torsional dynamics. For realistic parameter values,
he axial equilibrium point is unstable, and the drill bit experi-
nces axial stick-slip oscillations, where the stick phase is caused
y the discontinuity in the contact forces. In Ref. �23�, an approxi-
ation of the axial limit cycle is obtained analytically. Due to the

dditional model complexity caused by the axial damping and
tiffness, this approach is not possible for the extended model in
he current work. Instead, a semi-analytical approach to calculate
he exact limit cycle is developed.

The analysis approach exploits the fact that an analytic expres-
ion of the axial limit cycle can be found, where numerical opti-
ization is used to find the unknown parameters. This approach

llows for an efficient and accurate analysis of the axial stick-slip
imit cycle. Here, it is noted that the applicability of this semi-
nalytical approach is not limited to the analysis of drilling sys-
ems. For example, it is foreseen that this analysis can be applied
o mechanical systems with Coulomb friction.

The axial stick-slip limit cycle is dependent on the rotational
peed of the drill bit and therefore has an effect on the torsional
ynamics, which is analyzed by averaging the axial dynamics.
ere, two opposing effects play a role. First, the average cutting

orces generate an apparent velocity-weakening effect in the tor-
ional dynamics. Second, the average wearflat forces generate an
pparent velocity-strengthening effect. For realistic bit param-
ters, the overall effect is velocity weakening, explaining the onset
f torsional vibrations that might lead to torsional stick-slip. This
esult further validates the conclusions of Ref. �23� for a more
ealistic model, indicating that, as long as the axial stiffness and
amping parameters are not excessively large, the mechanisms
esponsible for the onset of torsional vibrations are qualitatively
nchanged.

The analysis of the onset of torsional vibrations might lead to
ew active control strategies for drilling systems. Namely, the
nset of torsional stick-slip vibrations is driven by the axial dy-
amics, such that stabilization of these axial dynamics may also
revent torsional vibrations. Similar observations were made in
efs. �10,25�. However, the analysis methodology proposed in

his paper can facilitate the design and performance evaluation of
ovel controllers for the axial dynamics. Moreover, existing con-
rol strategies targeting the torsional dynamics directly �11,26,27�

hould be tested on the current model as well.
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