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Drill-String System
In this paper, we aim for an improved understanding of the causes for torsional vibra
that appear in rotary drilling systems used for the exploration of oil and gas. For
purpose, an experimental drill-string setup is considered. In that system, torsional v
tions with and without stick-slip are observed in steady state. In order to obtain a
dictive model, a discontinuous static friction model is proposed. The steady-state beh
of the drill-string system is analyzed both numerically and experimentally. A compa
of numerical and experimental bifurcation diagrams indicates the predictive quality o
model. Moreover, specific friction model characteristics can be linked to the existen
torsional vibrations with and without stick-slip.@DOI: 10.1115/1.1850535#
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1 Introduction
Deep wells for the exploration and production of oil and gas

drilled with a rotary drilling system, which creates a borehole
means of a rock-cutting tool called a bit. The torque driving the
is generated at the surface by a motor with a mechanical trans
sion box. Via the transmission, the motor drives the rotary tabl
large disk that acts as a kinetic energy storage unit. The med
to transport the energy from the surface to the bit is a drill-stri
mainly consisting of drill pipes: slender tubes, about 9 m lo
coupled with threaded connections, having a typical outside di
eter of 127 mm and a wall thickness of 9 mm@1–5#. However,
smaller~e.g., 89 mm! and larger~e.g., 165 mm! drill pipe diam-
eters are also used. The drill-string can be up to 8 km long.
lowest part of the drill-string is the bottom-hole assembly cons
ing of drill collars and the bit. Dependent on the diameter of
hole, these drill collars have an inner diameter of 64–76 mm
an outer diameter of 120–240 mm. The bottom-hole assembly
be several hundred meters long.

The drill-string undergoes various types of vibrations duri
drilling @1,3–5#:

• torsional~rotational! vibrations, caused by nonlinear intera
tion between the bit and the rock or the drill-string and t
borehole wall. The frequency of the vibrations is usua
somewhat below the first natural frequency of torsional vib
tions, i.e., of the order of 0.05–0.5 Hz@1,2#.

• bending~lateral! vibrations, often caused by pipe eccentrici
leading to centripetal forces during rotation

• axial ~longitudinal! vibrations, due to bouncing of the drilling
bit on the rock during rotation

• hydraulic vibrations in the circulation system, stemming fro
pump pulsations

Drill-string vibrations are an important cause for premature fail
of drill-string components and drilling inefficiency. In this pape
torsional drill-string vibrations are investigated. Since the beh
ior of the system when a constant torque is applied at the ro
table of a drill-string system is of interest, the focus is on t
steady-state behavior of drill-string systems for such cons
torques.

Extensive research on the subject of torsional vibrations
already been conducted@1–9#. According to some of those result
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the cause for torsional vibrations is the stick-slip phenomenon
to the friction force between the bit and the well@1–5#. Moreover,
the cause for torsional vibrations can be the negative dampin
the friction force present due to the contact between the bit
the borehole~see, for example,@6,7#!. In order to gain an im-
proved understanding of the causes for torsional vibrations,
experimental drill-string setup is built. The setup consists o
DC-motor that is connected to the upper disk via a gear box.
upper and lower disks are connected via a low stiffness string a
at the lower disk, an additional brake is applied. In the set
torsional vibrations with and without stick-slip are observed a
the behavior of the setup is analyzed. However, using exis
friction models, which are used for modeling torsional vibratio
in drill-string systems@1–5,7#, not all steady-state phenomena o
served in the experimental drill-string system can be mode
Using another discontinuous static friction model, those exp
mentally observed phenomena are successfully predicted. In
a friction model, positive damping is present for very small ang
lar velocities; for higher angular velocities, negative damping
curs, and for even higher angular velocities, positive damping
again present in the friction~see @10–14#!. In @10,11#, such a
friction model is called a ‘‘humped friction model.’’ It follows tha
both in the model and the experiments the steady-state pe
mance undergoes various qualitative changes when the input
age is changed. These qualitative changes are typically captur
a bifurcation diagram that features the changes of equilibri
points into limit cycling~vibrations!. A comparison of numerical
and experimental bifurcation diagrams illustrates the predic
quality of the suggested model. Moreover, such a bifurcation d
gram provides improved insight into how torsional vibrations
drill-string systems are created.

In Sec. 2, the experimental drill-string setup is described. Ne
the dynamic behavior of the setup is modeled, the parameter
the model are estimated, and the obtained model is validated
the experimental system as well as in the estimated model
equilibria ~constant velocity! and limit cycles ~torsional vibra-
tions! are observed when a constant input torque is applied. Th
fore, in Sec. 3, the equilibrium point~set! is determined and re-
lated stability properties are discussed. Next, periodic soluti
and their stability properties are determined numerically. Sub
quently, based on the proposed model and estimated paramet
bifurcation diagram is presented and compared to experimen
obtained results in Sec. 4. In Sec. 5, conclusions are present

2 Drill-String Setup

2.1 Description of Setup. The experimental drill-string
setup is shown in Fig. 1. The setup consists of a power ampli

nal
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a DC motor, two rotational disks~upper and lower!, a low-
stiffness string, and an additional brake applied to the lower d
The input voltage from the computer, which is between25 V and
5 V, is fed into the DC motor via the power amplifier. The D
motor, which represents the drive motor of a real drill rig,
connected via the gear box to the upper steel disk~which repre-
sents the rotary table of the rig!. The upper and lower disks ar
connected through a low-stiffness steel string. The string is 1.5
long and the diameter of the string is 2 mm. The drill-string a
the lower brass disk represent the drill-string with the bottom-h
assembly at the real drill-rig, and the additional brake impleme
the friction force between the drill bit and borehole. The conta
material of the brake is rubber. The angular positions of the up
and lower disks are measured using incremental encoders.
angular velocities of both disks are obtained by numerical diff
entiation of the angular positions and filtering the resulting sign
using a low-pass filter with a cutoff frequency of 200 rad/s~31.8
Hz!. In Fig. 1, as well as further on in the text,uu andu l are the
angular positions of the upper and lower disks, respectively;Tf m
is the friction torque present at the upper disk; andTf l represents
the friction torque at the lower disk.

2.2 Model of the Setup. The drill-string setup is an electro
mechanical system. The model of the motor can be described

au5Lr i r1~Ri1Rr !i r1nkemu̇u (1)

Tm5nkmei r

whereu is the input voltage to the power amplifier;a is the am-
plification factor of the power amplifier;Ri is the output resistance
of the amplifier;Lr andRr are the inductance and the resistance
the rotor circuit, respectively;i r represents the rotor current;n is
reduction ratio of the gear;kem and kme are the electromotive
force constant and the torque constant, respectively; andTm is the
motor torque. In~1! and further in the text, a dot above a variab
indicates a time derivation~e.g., i r5di r /dt). The model of the
mechanical part of the setup can be described by the follow
pair of second-order differential equations:

Juüu1bu~ u̇u2 u̇ l !1ku~uu2u l !1Tf m~ u̇u!5Tm (2)

Jl ü l2bu~ u̇u2 u̇ l !2ku~uu2u l !1Tf l~ u̇ l !50

with the set-valued friction laws

Fig. 1 Experimental drill-string setup
710 Õ Vol. 126, DECEMBER 2004
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Tf m~ u̇u!PH Tmp~ u̇u! for u̇u.0

@2Tmn~0!,Tmp~0!# for u̇u50

2Tmn~ u̇u! for u̇u,0
(3)

Tf l~ u̇ l !PH Tlp~ u̇ l ! for u̇ l.0

@2Tln~0!,Tlp~0!# for u̇ l50

2Tln~ u̇ l ! for u̇ l,0

In ~2! Ju andJl are moments of inertia of the upper and lower di
with respect to the corresponding centers of mass, respecti
andbu , ku are the torsional damping and the stiffness parame
of the string, respectively. In~2! and ~3! Tf m represents the fric-
tion torque of the motor caused by the friction in the gear box a
in the bearings,Tf l is the friction torque present at the lower dis
which is caused by the friction between lower disk and the br
and the friction in the bearings at the lower disk. Nonlinear fun
tions Tmp( u̇u), Tmn( u̇u) represent complete friction torque
present in the bearings and motor for positive and negat
though nonzero, angular velocitiesu̇u , respectively, andTlp( u̇ l)
andTln( u̇ l) represent complete friction torques which act on t
lower disk for positive and negative, though nonzero, angular
locities u̇ l and for those nonlinear functions the following cond
tions hold:

Tmp~ u̇u!,Tlp~ u̇ l !.0,; u̇u ,u̇ l>0 and
(4)

Tmn~ u̇u!,Tln~ u̇ l !.0, ; u̇u ,u̇ l<0

which means that the friction torques are dissipative.
Equation~3! reflects that set-valued1 friction laws are used to

model the friction at the upper and lower disc. The reason for
choice is the fact that both at the upper and at the lower disc
sticking phenomenon is observed.

From ~3!, it can be noted that the friction torques are mode
using a static friction model. This choice is based on the follow
reasoning: we are interested in the steady-state behavior o
setup and not in the detailed dynamic modeling of the friction
very small angular velocities.

In the sequel, the following assumptions are adopted:

• Lr50: Since the electrical part of the system has much fa
dynamics than the mechanical part, the inductance of the
tor circuit is neglected. Moreover, with this assumption t
model of the setup is of a lower order.

• kme5kem: This is valid only when there is no loss of energ
in the magnetic field of the DC motor~for more information
see@15#!. This loss of energy is expected to be very smal

• b050: The torsional damping of the string is very sma
compared to the damping effects in the bearings and is th
fore neglected.

If we combine these assumptions with~1! and ~2!, then the fol-
lowing model of the setup can be obtained:

Juüu1ku~uu2u l !1Fn2kemkme

Ri1Rr
u̇u1Tf m~ u̇u!G5

ankme

Ri1Rr
u

(5)

Jl ü l2ku~uu2u l !1Tf l~ u̇ l !50

Next, by introduction ofTf u( u̇u) as

Tf u~ u̇u!5
n2kemkme

Ri1Rr
u̇u1Tf m~ u̇u! (6)

andkm as

1With the set@a,b# we mean the interval$xPRua<x<b%.
Transactions of the ASME
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the following model of the drill-string system can be obtained

Juüu1ku~uu2u l !1Tf u~ u̇u!5kmu
(8)

Jl ü l2ku~uu2u l !1Tf l~ u̇ l !50

whereTf u( u̇u) represents the equivalent friction torque presen
the upper disk andkm represents the motor constant. From~6!, it
can be concluded thatTf u( u̇u) consists of the bearing friction
torque Tf m( u̇u) at the upper disk and the additional ter
(n2kemkme) u̇u /(Ri1Rr), which has the nature of a viscous fric
tion and is due to the electromagnetic characteristics of the
motor.

According to~3! and ~6!, Tf u can be characterized as follows

Tf u~ u̇u!PH Tup~ u̇u! for u̇u.0

@2Tun~0!,Tup~0!# for u̇u50

2Tun~ u̇u! for u̇u,0

(9)

where Tup and 2Tun represent the equivalent friction torqu
present at the upper disk for positive and negative nonzero ang
velocities, withTup(0)5Tmp(0) and Tun(0)5Tmn(0). The dy-
namics of the fourth-order system~8!, can be described by a third
order state-space system because its dynamics is independe
the angular positions of the disks, but depends on the differe
between these two angular positions. Therefore, by choosing
coordinates defined byx15uu2u l , x25 u̇u and x35 u̇ l , the fol-
lowing state-space model can be obtained:

ẋ15x22x3

Fig. 2 Friction model at the upper disk
Journal of Dynamic Systems, Measurement, and Control
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Ju
Tf u~x2! (10)

ẋ35
ku

Jl
x12

1

Jl
Tf l~x3!

This model is used for further analysis of the dynamic behavio
the drill-string setup.

2.3 Parameter Estimation and Friction Modeling. In or-
der to obtain a predictive model of the drill-string setup, the p
rameters km , Ju , Jl , ku and nonlinear functionsTup( u̇u),
Tun( u̇u), Tlp( u̇ l), andTln( u̇ l) need to be estimated.

First, in order to estimate the parameters concerning the up
part of the setup@km , Ju , andTf u( u̇u)] the upper disk is discon-
nected from the lower disk. The parameter estimation is base
dedicated experiments involving responses of the system, w
constant and white-noise input voltagesu are applied, and an
identification procedure ensuring a close match between
model predictions and experimental results~see, for example,
@16#! and yields the following parameter values:

km53.5693
Nm

V
, Ju50.4765

kg m2

rad
(11)

In order to determine friction torqueTf u , appropriate nonlinear
functionsTup( u̇u) andTun( u̇u) in ~9! need to be determined. Dur
ing the parameter estimation of the friction torque at the up
part of the setup, the following is noted:

• The Stribeck effect is not present in the friction torque at t
upper disk. An explanation for this can be recognized in~6!.
Namely, this equation expresses that the friction in the bearing
the upper diskTf m may very well be small with respect to th
viscous friction term due to the electromagnetic forces in the
motor. Experiments show that this is indeed the case. Theref

Fig. 3 Friction model at the lower disk
DECEMBER 2004, Vol. 126 Õ 711
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the friction torque at the upper diskTf u is modeled as the Cou
lomb friction with the viscous friction as shown in Fig. 2~a!.

• The friction torque at the upper disk is asymmetric. Th
means thatTf u( u̇u)Þ2Tf u(2 u̇u), i.e., Tup( u̇u)ÞTun(2 u̇u).

Resuming, the friction torque at the upper part of the setup
modeled as

Tf u~ u̇u!PH Tsup1bupu̇u for u̇u.0

@2Tsun,Tsup# for u̇u50

2Tsun1bunu̇u for u̇u,0

(12)

with the following parameters:

Tsup50.3216 Nm, Tsun50.3026 Nm,
(13)

bup51.9667
kg m2

rad s
, bun52.0

kg m2

rad s

wherebup and bun are equivalent viscous coefficients present
the upper disk for positive and negative angular velocities, resp
n

d
d
f

i
p
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n
i

a
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tively, andTsup and2Tsun represent the maximum and minimum
value of the friction torque for zero angular velocities. The es
mated frictionTf u is shown in Fig. 2~b!.

During the investigation of the steady-state behavior of
whole drill-string setup when no brake is applied at the low
disk, it is noted that for certain constant input voltagesu, torsional
vibrations appear. Moreover, those vibrations donot always ex-
hibit the stick-slip phenomenon. In@1–5#, it is stated that torsiona
vibrations in drill-string systems can be modeled using the frict
model with the Stribeck effect@see Fig. 3~a!#. However, using
such model, only torsional vibrationswith stick-slip can been
modeled. Therefore, a humped friction model@10,11#, as shown in
Fig. 3~b!, is used. In Fig. 3, it can be seen that the differen
between the humped friction model and the friction model w
the Stribeck effect is evident for low angular velocities. Name
in the humped friction model, positive damping is present for ve
small angular velocities which is not the case for the friction
Fig. 3~a!.

Based on a neural network model@16–18#, the friction torque
in Fig. 3~b! can be expressed by
Tf l~ u̇ l !5H FTsl1T1S 12
2

11eb1uu̇ l u
D 1T2S 12

2

11eb2uu̇ l u
D Gsign~ u̇ l !1bl u̇ l for u̇ lÞ0,

@2Tsl ,Tsl# for u̇ l50,

(14)
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whereTsl , T1 , T2 , b1 , b2 , bl are the parameters of the frictio
model. Moreover,Tsl represents the maximum static frictio
level, andbl is the viscous friction coefficient.

Using dedicated experiments involving both transient a
steady-state behavior of the setup and an identification proce
ensuring a close match between the experimental results an
corresponding model predictions, the remaining parameters o
setup (ku ,Jl) and the parameters of the friction model~14! are
obtained

Jl50.0326
kg m2

rad
, ku50.078

Nm

rad
(15)

Tsl50.01663 Nm, bl50.00459
kg m2

rad s
,

T150.7016 Nm, T2520.7173 Nm,
(16)

b152.0427
s

rad
, b251.9205

s

rad

The estimated friction torque is shown in Fig. 4~a!.
A validation procedure is performed using different input s

nals such as quasi-random, harmonic, constant, ramp, and
bolic signals. For those signals, the comparison between the
sponses of the experimental setup and estimated model indi
the good quality of the obtained parameters.

In order to gain an improved insight in the causes for torsio
vibrations in real drilling systems, an additional brake is appl
to the lower disk of the experimental drill-string setup. The bra
material is rubber. For several levels of the normal forces~see Fig.
5!, no torsional vibrations in steady state are noted when a c
stant input voltage is applied. However, when water is added
tween the lower brass disk and the contact material of the br
torsional steady-state vibrations appear for constant input v
ages. Moreover, both torsional vibrations with and without sti
n
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slip behavior appear.2 Therefore, this is a motivation for using
friction model ~14! for modeling the contact force between th
brake and the lower disk. Due to the fact that we are intereste
investigation of torsional vibrations of drill-string systems, w
proceed with the analysis of the system when water is added
reproducible fashion.

For the estimation of the parameters of the friction model~14!
for the friction torque at the lower disk with brake, the estimat
parameters~11! and ~13! of system~10! are used. Next, a quasi
random signal is applied to the experimental setup. Then, usin
nonlinear least-square technique we tried to ensure a close m
between the experimentally obtained angular velocityu̇ l and the
corresponding model prediction. In such a way, the following
timates for the parameters of the friction model~14! are obtained:

Tsl50.0940 Nm, bl50.0042
Nm2

rad s
, T150.0826 Nm,

T2520.2910 Nm (17)

b156.3598
s

rad
, b250.0786

s

rad

The resulting estimated friction model at the lower disk w
brake is shown in Fig. 4~b!. A validation procedure for different
input signals provides evidence for the good quality of the e
mated model.

If we compare the estimated friction torque shown in Fig. 4~b!
with the one shown in Fig. 4~a! and with the proposed friction
torque @see Fig. 3~b!# it can be seen that the estimated frictio
torque, when the brake is applied at the lower disk, is qualitativ
the same as the proposed model. However, in the friction torqu
Fig. 4~b! the part observed for higher angular velocities, wh
viscous friction phenomenon is dominant, cannot been seen
cause:

2More about friction phenomenon due to a contact between two materials ca
found in @12,13,19,20#.
Transactions of the ASME
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• The input voltageu, which is fed from the computer into th
power amplifier of the motor, is limited (uP@25 V,5 V#).
Therefore, the maximal angular velocity, which can
achieved at both disks, is limited.

• During the parameter identification of the friction model
the lower disk, the maximally achieved angular velocity
the lower disk was around 12.6 rad/s.

Therefore, the estimated friction model for even higher velocit
is less accurate. However, it is expected that for higher ang
velocities the viscous friction phenomenon is dominant in the f
tion at the lower disk when the brake is applied.

Fig. 4 Estimated friction torques at the lower disk

Fig. 5 Applied normal force at the brake of the lower disk
Journal of Dynamic Systems, Measurement, and Control
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Since the steady-state behavior of the drill-string setup is
interest, in the sequel, such behavior of system~10!, with the
friction torque at the upper disk~12! and friction torque at the
lower disk ~14!, is analyzed.

3 Analysis of Nonlinear Dynamic Behavior
Since both equilibria~constant velocity at both the upper an

lower disk! and limit cycles~torsional vibrations at the lower disk!
are observed in the experimental setup, in this section, both
equilibrium points~sets! and the limit cycles of the model as we
as the related stability properties are analyzed.

3.1 Equilibrium Points. In the equilibrium points it holds
that (x1 ,x2 ,x3)5(x1eq ,x2eq ,x3eq), for u5uc , with uc a con-
stant, andx1eq , x2eq , x3eq satisfy the equations

x2eq2x3eq50

kmuc2Tf u~x3eq!2Tf l~x3eq!50 (18)

kux1eq2Tf l~x3eq!50

From ~18!, it can be noted that the following two cases should
considered:

• equilibrium points forx2eq5x3eqÞ0, i.e. both the lower and
the upper disk rotate with the same constant angular velo

• equilibrium points forx2eq5x3eq50, i.e. both the lower and
the upper disk stand still

For x3eq.0, Tf u(x3eq)5Tsup1bupx3eq @see~12!# and Tf l(x3eq)
5Tl(x3eq) with

Tl~x3eq!5Tsl1T1S 12
2

11eb1ux3equ
D 1T2S 12

2

11eb2ux3equ
D

1blx3eq sign~x3eq! (19)

@see~14!#. Thus, such an equilibrium point should satisfy the fo
lowing set of nonlinear algebraic equations:

x2eq5x3eq

kmuc2bupx3eq2Tsup2Tl~x3eq!50 (20)

x1eq5
Tl~x3eq!

ku

From~4!, ~9!, the second algebraic equation of~20! and due to the
fact thatx3eq.0, it can be concluded that the system only exhib
such an equilibrium point foruc.(Tsup1Tsl)/km . In general, the
second equation in~20! can have more than one solution. For th
estimated parameters~11!, ~13!, and ~15! of the system it holds
that

2bup2
dTl

dx3
,0, ;x3.0 (21)

which means that the considered system has only one equilib
point for givenuc for x3eq.0.

In a similar way, forx3eq,0, it follows that~10! has one equi-
librium point that is a solution of

x2eq5x3eq

kmuc2bunx3eq1Tsun1Tl~x3eq!50 (22)

x1eq52
Tl~x3eq!

ku

with uc,2(Tsun1Tsl)/km .
In order to obtain local stability conditions for the equilibrium

point for x3eq.0, the nonlinear system~10! is linearized around
the equilibrium point foruc.(Tsup1Tsl)/km . According to the
Routh-Hurwitz criterion, the equilibrium point of system~10! is
locally asymptotically stable for
DECEMBER 2004, Vol. 126 Õ 713
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dl.20.00114
kg m

rad s
(23)

for the estimated system parameters~11!, ~13!, and~15!, with

dl5
dTl

dx3
U

x35x3eq

(24)

wheredl represent the friction damping present at the lower d
when angular velocity isu̇ l5x3eq .

The same analysis can be performed foruc,2(Tsl
1Tsun)/km ~the disk is rotating in negative direction!, to obtain
the local stability properties of the equilibrium points forx3eq
,0.

The equilibrium points~set! for x2eq5x3eq50 exist only when
the input voltage satisfies the condition

2
Tsun1Tsl

km
<uc<

Tsup1Tsl

km
(25)

From ~18! it can be concluded that when~25! is satisfied, equilib-
rium pointsxeq5(x1eq,0,0) of the system are such thatxeqPE,
whereE represents the equilibrium set defined by

E5H xPR3Ux1PF2Tsl

ku
,
Tsl

ku
GùFkmuc2Tsup

ku
,
kmuc1Tsun

ku
G ,

x250,x350 J . (26)

Moreover, in the Appendix the stability properties of the equil
rium set~26! are discussed.

In Fig. 6 a sketch of the equilibrium branches for differe
constant input voltagesuc is plotted. Although we are interested i
the behavior of the velocity of the lower disk for different consta
input voltages@Fig. 6~b!#, in Fig. 6~a! x1eq (x15uu2u l) for dif-
ferentuc is shown. In Fig. 6 solid lines represent stable and dot
lines unstable equilibrium branches. If we use the results of
steady-state analysis of system~10! for u5uc>0 with uc constant
and take into account that the friction torque, present at the lo
disk, is of the type shown in Fig. 3~b!, then the following can be
concluded:

• For uc<uc1 , uc15(Tsup1Tsl)/km ~point A in Fig. 6!, the
system is in the stick phase in steady state@see ~25!#, i.e. the
system has locally asymptotically stable equilibrium set~see the

Fig. 6 Equilibrium branches of the drill-string setup
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Appendix! described by~26! ~equilibrium branche1 in Fig. 6!.
Namely, both the lower and the upper disks do not rotate~the
equilibrium set satisfiesx2eq5x3eq50) due to the fact that inpu
voltage is not big enough to drive the upper and lower disks.

• The system has one equilibrium point foruc.uc1 @see~21!#.
Given the fact that the friction torque at the lower disk is as sho
in Fig. 3~b!, it can be concluded that a stable equilibrium bran
e2 appears~see Fig. 6!. Namely, foruc5uc1 the system leaves the
stick phase, the steady-state velocity at the lower disk increa
the friction dampingdl of the friction torque at the lower disk is
positive and starts to decrease~see Fig. 7!. For a certain angular
velocity x3eq5v1 ~see Fig. 7!, the friction damping dl
520.00114 kg m/~rad s) and the equilibrium point becomes u
stable@see condition~23!#. From the second equation of~20! a
correspondinguc5uc2 can been found for givenx3eq5v1 ~point
B in Fig. 6!. Therefore, foruc1,uc,uc2 system has a locally
asymptotically stable equilibrium point~equilibrium branche2 in
Fig. 6!.

• If uc increases fromuc5uc2 , then the system has an unstab
equilibrium point and the correspondingx3eq increases as well.
Next, for a certain value ofx3eq the friction dampingdl ~which is
negative! starts to increase and forx3eq5v2 ~see Fig. 7!, and for
uc5uc3 ~point C in Fig. 6!, dl reaches the valuedl5
20.00114 kg m/~rad s) and the equilibrium point becomes asym
totically stable again. Therefore, foruc2,uc,uc3 the system has
an unstable equilibrium point~equilibrium branche3 in Fig. 6!.

• For u.uc3 , the system has a locally asymptotically stab
equilibrium point~equilibrium branche4 in Fig. 6!.

• For uc5uc1 ~point A in Fig. 6! no change of stability prop-
erties occurs. Moreover, the locally asymptotically stable equi
rium set ~26! becomes the locally asymptotically stable equili
rium point A.

• For uc5uc2 ~point B in Fig. 6! and for uc5uc3 ~point C in
Fig. 6! a change in stability properties occurs. Namely, a pair
complex conjugate eigenvalues, related to the linearization of
nonlinear dynamics of~10! around the equilibrium point, cross th
imaginary axis to the right-half complex plane. Therefore, Ho
bifurcations occur at these points.

3.2 Periodic Solutions. According to the previous analysis
Hopf bifurcation points occur foruc5uc2 and uc5uc3 . Next,
using a path-following technique in combination with a shooti
method @21,22#, limit cycles are computed numerically for th
estimated model of the system. The results are shown in a b
cation diagram in Fig. 8. In those figures, the maximal and m

Fig. 7 Friction damping for suggested friction torque present
at the lower disk of the drill-string setup
Transactions of the ASME
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mal values ofx3 are plotted when a limit cycle is found. Floque
multipliers, corresponding to these limit cycles, are computed
merically and used to determine the local stability properties
these limit cycles. Since the estimated friction torque at the lo
disk, when the brake is applied, is not considered to be accu
for higher angular velocities, where the viscous friction contrib
tion is dominant, the obtained bifurcation diagram for correspo
ing higher input voltages is not determined. However, in orde
understand the behavior of the setup for higher constant in
voltages, the bifurcation diagram is constructed for the mode
the system when no brake is applied. Then, the estimated fric
torque at the lower disk@Fig. 4~a!# is of the form of the friction
model in Fig. 3~b!. The bifurcation diagram is shown in Fig. 8~a!.
With respect to the obtained results the following remarks can
made:

• From bifurcation pointB for (uc.uc2), a locally unstable
equilibrium branche3 arises~as discussed in the previou
subsection! as well as a stable periodic branchp1 . Therefore,
point B represents a supercritical Hopf bifurcation point@23#.

• Close to the bifurcation points, the periodic branchp1 con-
sists of limit-cycles which represent torsional vibrations wit
out stick-slip. Therefore, bifurcation pointB represents a
smooth supercritical Hopf bifurcation point.

• At point D, torsional vibrations with stick-slip appear@branch
p2 in Fig. 8~a!#, due to the nonsmooth nonlinearities in th
friction torque at the lower disk. Moreover, the period
branchp2 is locally stable and pointD does not represent
bifurcation point.

Fig. 8 Bifurcation diagrams of the drill-string setup
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• For some higher constant input voltageuc @point E in Fig.
8~a!# torsional vibrations without stick-slip appear once mo
~locally stable periodic branchp3).

• Then, for even higheruc , the locally stable periodic branch
p3 loses its stability and an unstable periodic branch appe
@periodic branchp4 in Fig. 8~a!#. The appearance of an un
stable periodic solution in mechanical systems with a disc
tinuous friction force has already been analyzed in@3,24#.

• The point where the stable periodic branchp3 is connected to
the unstable branchp4 represents a fold bifurcation poin
@point F in Fig. 8~a!#.

• The unstable periodic branchp4 is connected to the equilib
rium branchese3 and e4 in the Hopf bifurcation pointC.
Moreover, in Fig. 8~a! point C represents a subcritical Hop
bifurcation point.

For the model of the system when the brake is applied,
obtained bifurcation diagram is shown in Fig. 8~b!. All equilib-
rium and periodic branches and bifurcation points, which are
termined in the bifurcation diagram, appear in the bifurcation d
gram of the system when no brake is applied. However, in
bifurcation diagram in Fig. 8~b!, compared to the one shown i
Fig. 8~a!, the Hopf bifurcation pointC, point E, fold bifurcation
point F, equilibrium branche4 , and periodic branchesp3 andp4
are not present. This is due to the fact that the maximal in
voltage, which can be applied to the setup, is limited to 5 V.
Fig. 9, the limit cycles are depicted foru51 V, when no stick-slip
is present, and foru52 V when stick-slip is present. Namely, i
that figure the projection of those limit cycle on planesx150
@Fig. 9~c!#, x250 @Fig. 9~b!#, andx350 @Fig. 9~a!# are shown.

4 Experimental Results
In order to check the validity of the obtained model of th

drill-string setup when the brake is applied, experimental res
are compared to the numerical results. As already mentioned
evidence about the predictive quality of the estimated mode
steady state is of great interest. Therefore, when a constant vo
is applied at the input of the setup, each experiment lasted l
enough in order for all transient effects to disappear and the
100 s of the angular velocity signal are recorded. Some of
obtained results are shown in Fig. 10. In this figure, the exp
mental angular velocity~solid line! and the angular velocity ob
tained using estimated model~dashed line! in steady state are
shown for different constant input voltages. From the compari
between simulation and experimental results in Fig. 10, it can
concluded that with the suggested model the steady-state beh
of the setup is modeled accurately.

Next, the same type of bifurcation diagram, as shown in F
8~b!, is constructed experimentally. In order to construct such
perimental bifurcation diagrams, different constant input voltag
are applied to the setup. When no torsional vibrations are
served@as in Fig. 10~a!#, the mean value of the recorded angul
velocity is computed. Next, when torsional vibrations are o
served at the lower disk@as in Figs. 10~b!–10~d!#, the mean value
of local maxima and minima are computed as well. Then,
experimentally obtained data for constant input voltages are p
ted using the symbolo in Fig. 11. Such experimental results
together with the bifurcation diagram obtained by numeri
analysis of the estimated model, are shown in Fig. 11~a!. More-
over, when torsional vibrations are observed in the setup, the
riod time T of the vibrations is determined as well. In Fig. 11~b!
such experimental results are compared to the period time of
numerically obtained limit cycles. The results shown in Fig.
illustrate the predictive quality of the obtained model.

Therefore, according to Figs. 11~a! and 11~b! it can be con-
cluded that the observed torsional vibrations are caused by
nonlinearity present in the friction at the lower disk and su
nonlinearity is modeled adequately using the friction mod
shown in Fig. 3~b!. Figure 11 shows that the amplitude of th
vibrations depends on the applied constant input voltage while
DECEMBER 2004, Vol. 126 Õ 715
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period time shows only small changes. Moreover, it can be s
that the period time of the observed vibrations is very close to
period time of the linear resonance frequencyTr of the setup
(Tr50.045 s).

4.1 Hopf Bifurcation Point. Both from the analysis of the
estimated model and from the experimental results, it can be
cluded that a supercritical Hopf bifurcation point@point B in Fig.
11~a!# exists. In the sequel, the experimental results, during
transition between the stable equilibrium branch@e2 in Fig. 11~a!#
and the locally stable periodic branch@p1 in Fig. 11~a!#, are ana-
lyzed.

From the results, shown in Figs. 10 and 11~a!, it is concluded
that for constant input voltageu50.5 V no torsional vibrations are
present, while foru51.0 V vibrations are present in the system.
Fig. 12, experimentally obtained angular velocities of the low
disk are shown during the transition along the supercritical H
bifurcation point. From this figure, it can be concluded that so
unmodeled behavior is present in the setup. In order to gain
proved insight into the behavior of the system in steady s
around the Hopf bifurcation point, the power spectral density
the experimentally obtained angular velocities is constructed
shown in Fig. 13. The resolution of the power spectrum is 0.01
and its frequency range is 500 Hz. In Fig. 13, the power spec
density of the obtained signals is shown up to the frequency
Hz, because for higher frequencies it drops to even lower val

Fig. 9 Two types of limit cycles in state-space: for uÄ1 V „no
stick-slip is present … and for uÄ2 V „stick-slip is present …. x 1

ÄuuÀu l , x 2Äu̇u , x 3Äu̇ l .
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Analyzing the results in Figs. 12 and 13, the following shou
be noted:

• For u50.2 V, in Fig. 12~a! some low frequency vibrations

Fig. 10 Experimental and simulated angular velocity response
of the lower disk in steady state for different constant input
voltages when the brake is applied
Transactions of the ASME
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can be recognized. The mean value of experimentally obtai
angular velocity isu̇ lmean50.0911 rad/s50.0145 Hz. Comparing
this result to the period time of the signal in Fig. 12~a! can lead to
the conclusion that position-dependent friction, which is not mo
eled, is present in the system~i.e., that the friction at the lower
disk is not the same at each angular position of the disc!. More-
over, the same conclusion can be derived from the correspon
power spectral density signal shown in Fig. 13~a!. Namely, some
very low frequency vibrations in a frequency range between 0
Hz and 0.02 Hz can be recognized in the system. However, a
from position-dependent friction, also other unmodeled behav
is present in the recorded results, such as measurement n
unmodeled friction dynamics, noise due to the fact that the an
lar velocity is obtained numerically, etc.

• For u50.5 V, some torsional vibrations can be noted that
not have a regular period time and amplitude compared to
results shown foru51.0 V @Fig. 10~b!#, u52.0 V @Fig. 10~c!# and
u54.5 V @Fig. 10~d!#. This leads to the conclusion that the cau
for those vibrations does not have the same nature as the caus
vibrations shown in Figs. 10~b!–10~d!. If we analyze the power
spectrum of the angular velocity@see Fig. 13~b!#, it can be noted
that the spectral content is considerably higher than the one sh
in Fig. 13~a!. Moreover, it can also be noted that some inporta
spectral components are present at the frequencies that are a
tiple of f 50.10 Hz. If we take into account that the mean value
the experimentally obtained angular velocity@shown in Fig.

Fig. 11 Simulated and experimental results „circles … of the
steady-state analysis of the drill-string setup
Journal of Dynamic Systems, Measurement, and Control
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12~b!# is u̇ lmean50.6411 rad/s50.1020 Hz, this can represen
more evidence of the presence of the position-dependent fric
at the lower disk.

• For u50.7 V the torsional vibrations@shown in Fig. 12~c!#
have a more regular period time although the amplitude of

Fig. 12 Angular velocity of the lower disk in steady state for
different constant input voltages when the brake is applied
DECEMBER 2004, Vol. 126 Õ 717
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vibrations varies significantly. In the power spectrum shown
Fig. 13~c!, a dominant spectral component at a frequency betw
0.21 Hz and 0.22 Hz appears. The observed period time is clo
that observed for the estimated model@see Fig. 11~b!# and has no

Fig. 13 Power spectral density of the angular velocities shown
in Fig. 12
718 Õ Vol. 126, DECEMBER 2004
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connection with the mean value of the angular velocity of t
lower disk (u̇ lmean51.0077 rad/s50.1604 Hz). Therefore, the
main cause for such a torsional vibration is the nonlinearity in
friction torque, which is modeled as shown in Fig. 3~b! and ana-
lyzed in the previous section. The fact that the amplitude of
observed vibrations significantly varies can be due to the la
influence of the observed unmodeled behavior of the setup. H
ever, this signal is considered to be a limit cycle caused by n
linear friction torque~14!.

• For u51.0 V, torsional vibrations in the velocity at the lowe
disk exhibit a regular period time. The amplitude of the vibratio
is reasonably constant, which is evident from Fig. 12~d!. In Fig.
13~d! a dominant spectral component at the frequency of 0.25
can be noted, but also the higher harmonic components at
frequencies that are multiples of this dominant frequency com
nent are observed. The existence of higher harmonics is an
cation that the torsional vibrations are caused by the nonlinea
in the system. Therefore, this signal is also recognized as a l
cycle.

This performed analysis allows us to estimate the Hopf bif
cation point in the considered setup experimentally and to g
improved understanding of the behavior of the system around
Hopf bifurcation point.

5 Conclusions
In this paper, the steady-state behavior of a drill-string setu

analyzed when torsional vibrations appear. First, the dyna
model of the setup is introduced and the parameters of the s
are estimated. In the setup, when no brake is applied at the lo
disk, torsional vibrations in steady state with and without stic
slip are observed. Torsional stick-slip vibrations in drill-string sy
tems can be predicted using a static friction model with
Stribeck effect @1–5,7#. However, torsional vibrations withou
stick-slip cannot be modeled using the same friction mod
Therefore, a humped discontinuous static friction model@10–13#
is used. The difference between the humped friction model an
friction model with only the Stribeck effect is that for very sma
angular velocities the proposed friction model has a posit
damping. With such a model, the observed torsional vibration
the experimental setup, both with and without stick-slip, are s
cessfully predicted.

Next, in order to gain insight into the causes for torsional
brations in drill-string systems, an additional brake is applied
the lower disk. It is noted that no torsional vibrations appear u
water has been added between the contact materials of the b
and the disk. When water is added torsional vibrations with a
without stick-slip are observed. Subsequently, the parameter
the suggested model for the friction torque, present at the lo
disk, are estimated and a steady-state analysis for the estim
model of the setup is performed. As a result of the steady-s
analysis, a bifurcation diagram, with constant input voltageuc as
a bifurcation parameter, is presented. Moreover, a comparison
tween the numerical and experimental bifurcation diagrams ill
trates the predictive quality of the suggested model.

As a result of the analysis and the obtained bifurcation d
grams, the following can be concluded:

• For very small constant input voltages, the lower disk can
move. Namely, such small voltages cannot drive the motor of
setup because the sticking phenomenon is present in the frictio
both the upper and lower disks. This effect is successfully m
eled using discontinuous friction models.

• For higher constant input voltages, the upper and lower di
start to move and no torsional vibrations are present at the lo
disk in steady state. When the constant input voltage is increa
at a certain level torsional vibrations without stick-slip appear
the lower disk. Moreover, for even higher levels of the const
input voltage the amplitude of the vibrations becomes higher
the torsional stick-slip vibrations appear.
Transactions of the ASME
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• If the input voltage is high enough, based on the results w
the brake is not applied, it is expected that the torsional vibrati
disappear. This is due to the fact that at higher angular veloc
the viscous friction becomes dominant in the friction at the low
disk. This effect is not observed in the setup when the brak
applied because the input voltage, which can be applied to
setup, is limited and the torsional deformations of the string m
become too high for such high input voltage.

When analyzing the behavior of the setup in the vicinity of t
supercritical Hopf bifurcation point, it is noted that not only th
negative damping in the friction force at the lower disk is t
cause for torsional vibrations. Namely, it has been observed
the friction force present in the setup is position dependent. S
a friction feature is not captured by the model. However, this
also cause the appearance of torsional vibrations. The period
of the vibrations caused by position-dependent friction charac
istic depends on the angular velocity of the disk. In the conside
setup, such vibrations were dominant until torsional vibratio
caused by the~modeled! nonlinearity in the friction appeared. Th
latter type of vibrations exhibits a period time that is not related
the angular velocity of the lower disk and is close to the per
time of the mechanical resonance.

Appendix: Local Asymptotic Stability of Equilibrium
Set E

When condition~25! is satisfied, it is concluded that syste
~10! exhibits an equilibrium setE, given by~26!, with uc constant.
In order to prove the local asymptotic stability of the equilibriu
set E, first it will be proven thatE is stable in the sense o
Lyapunov and, next, using LaSalle’s invariance principle, it w
be proven that the equilibrium set is locally attractive. Moreov
a region of attraction will be estimated. Finally, combining t
fact thatE is stable and locally attractive leads us to the conc
sion that the equilibrium set is locally asymptotically stable.

In order to prove the stability of the equilibrium set, the follow
ing Lyapunov candidate function is considered:

V~x,xeq!5
1
2ku~x12x1eq!

21
1
2Jux2

21
1
2Jlx3

2 (27)

wherexeq5(x1eq,0,0)PE. According to~10!, the time derivative
of V obeys

V̇~x,xeq!5x2@kmuc2kux1eq2Tf u~x2!#1x3@kux1eq2Tf l~x3!#.
(28)

Due to the fact that the friction torque at the upper discTf u is
estimated as shown in~12!, it follows that

x2@kmuc2kux1eq2Tf u~x2!#<0 (29)

for every xPR3. Next, knowing thatTl(13 rad/s)5Tsl @see Fig.
4~b!# it can be seen that for the estimated friction torque at
lower disk, it holds thatuTl(x3)u.Tsl for ux3u,13 rad/s. There-
fore, for everyxeqPE andxPB, with

B5$xPR3uux3u,13 rad/s% (30)

it holds that

x3@kux1eq2Tf l~x3!#<0 (31)

and consequently,V̇<0. Therefore, each equilibrium point inE is
stable in the sense of Lyapunov.

Next, in order to prove that the equilibrium setE is stable in the
sense of Lyapunov, setsAd , Ae , andS are introduced

Aa5$xPR2uix2proxE~x!i<a%,

proxE~x!5argmin
;x* PE

ix2x* i , aP$d,e% (32)

S5 ø
;xeqPE

Sxeq
, Sxeq

5$xPR3uV~x,xeq!,r %.
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According to the previous analysis, it can be seen that for alle.0,
we can chooser such thatr ,c, with c5Jl132/2, andS,Ae .
Then, for the chosenS ~andr!, d can be chosen such thatAd,S.
Consequently, for everyt0>0 it follows that

x~ t0!PAd⇒x~ t !PAe;t>t0 (33)

Namely, for everyr ,c it holds thatAd,S,B. Consequently,
V̇(x,xeq)<0 and, therefore, the equilibrium setE is stable in the
Lyapunov sense.

Let us now show that the equilibrium setE is locally attractive.
For that purpose, letV1(x)5V(x,0) and define the setC by

C5$xPR3uV1~x!<c% (34)

Then, the previous analysis yieldsV̇1<0 for all xPC. Next, for
the estimated friction torquesTf u(x2) and Tf l(x3), from ~28! it
can be concluded thatV̇150 for xPL, with

L5$xPR3ux250,x350% (35)

Consider the vector fieldf(x(t),uc), given by

f~x~ t !,uc!5F x22x3

km

Ju
uc2

ku

Ju
x12

1

Ju
Tf u~x2!

ku

Jl
x12

1

Jl
Tf l~x3!

G (36)

@see the equations of the system~10!#. Then,f(x(t),uc) on the set
L, is such thatf(x(t),uc)5f l(x(t),uc), with

f l~x~ t !,uc!5F 0
km

Ju
uc2

ku

Ju
x12

1

Ju
Tf u~0!

ku

Jl
x12

1

Jl
Tf l~0!

G (37)

When the upper disk is in stick (x250) thenẋ250 andTf u(x2)
5Tf u(0)P@2Tsun,Tsup# @see~12!#. Consequently, it holds tha
x1P@(kmuc2Tsup)/ku ,(kmuc1Tsun)/ku#. Similarly, when the
lower disk is in stick phase (x350), then ẋ350, Tf l(x3)
5Tf l(0)P@2Tsl ,Tsl# @see ~14!# and consequently x1
P@Tsl /ku ,Tsl /ku#. Therefore, for everyxPL, which is not inE
either the second or third component off l(x(t),uc) is always non-
zero. This leads us to the conclusion that the equilibrium seE
represents the largest invariant set onL when condition~25! is
satisfied.

Moreover, it can be shown that only attractive sliding modes
transversal intersections can occur at the switching surfacesS1
andS2 with

S15$xPR3ux250%, S25$xPR3ux350% (38)

and that repulsive sliding modes are not present. Uniquenes
solutions is, therefore, guaranteed@3#, which could also be in-
ferred from the fact that the set-valued friction laws~9! and ~14!
take values in minimal closed convex sets for zero relative ve
ity and are always dissipative.

The application of LaSalle’s invariance principle@23,25# now
proves that equilibrium setE is locally attractive. Moreover, the
set C represents an estimate for the region of attraction. Fina
since we proved that the equilibrium setE is stable and locally
attractive, then we can conclude thatE is locally asymptotically
stable.
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