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In this paper, we aim for an improved understanding of the causes for torsional vibrations
H. Nijmeijer that appear in rotary drilling systems used for the exploration of oil and gas. For this
purpose, an experimental drill-string setup is considered. In that system, torsional vibra-
tions with and without stick-slip are observed in steady state. In order to obtain a pre-
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1 Introduction the cause for torsional vibrations is the stick-slip phenomenon due

0 the friction force between the bit and the wdl-5]. Moreover,

fie cause for torsional vibrations can be the negative damping in
e friction force present due to the contact between the bit and

Deep wells for the exploration and production of oil and gas a%
drilled with a rotary drilling system, which creates a borehole b,
means of a rock-cutting tool called a bit. The torque driving the b{ e borehole(see, for example[6,7]). In order to gain an im-

IS generate_d atthe surfa_ce_by a motor with a mechanical trans"ﬂ?éved understanding of the causes for torsional vibrations, an
sion box. Via the transmission, the motor drives the rotary table.eg( erimental drill-string setup is built. The setup consists of a
large disk that acts as a kinetic energy storage unit. The medi “motor that is connected to the upper disk via a gear box. The
to transport the energy from the surface to the bit is a driII-stringj,pper and lower disks are connected via a low stiffness string and
mainly consisting of drill pipes_,: slender_ twbes, _about am Iongﬂ the lower disk, an additional brake is applied. In the setup,’
coupled with threaded connections, having a typical outside diagi;qjona) vibrations with and without stick-slip are observed and
eter of 127. mm and a wall thickness of 9 nith-5]. However, e henavior of the setup is analyzed. However, using existing
smaller(e.g., 89 mm and larger(e.g., 165 mmdrill pipe diam- icion models, which are used for modeling torsional vibrations
eters are also used. The drill-string can be up to 8 km long. THE yyjj\_string systemg1-5,7, not all steady-state phenomena ob-
lowest part of the drill-string is the bottom-hole assembly consisly ey in the experimental drill-string system can be modeled.
ing of drill collars and the bit. Dependent on the diameter of th§ing another discontinuous static friction model, those experi-
hole, these drill collars have an inner diameter of 64—-76 mm al ntally observed phenomena are successfully predicted. In such
an outer diameter of 120—-240 mm. The bottom-hole assembly C¥iction model, positive damping is present for very small angu-

be several hundred meters long. o _ lar velocities; for higher angular velocities, negative damping oc-
The d“”‘St“_”g undergoes various types of vibrations duringyrs and for even higher angular velocities, positive damping is
drilling [1,3-5: again present in the frictioisee[10—14). In [10,11], such a

« torsional(rotationa) vibrations, caused by nonlinear interac{fiction model s called a *humped friction model.” It follows that
tion between the bit and the rock or the drill-string and th80th in the model and the experiments the steady-state perfor-
borehole wall. The frequency of the vibrations is usuallj@nce undergoes various qualitative changes when the input volt-

somewhat below the first natural frequency of torsional vibr&29€ i changed. These qualitative changes are typically captured in
tions, i.e., of the order of 0.05-0.5 Hi,2]. a bifurcation diagram that features the changes of equilibrium

« bending(latera) vibrations, often caused by pipe eccentricityP2ints into limit cycling(vibrations. A comparison of numerical
leading to centripetal forces during rotation and experimental bifurcation diagrams illustrates the predictive

+ axial (longitudina) vibrations, due to bouncing of the drilling 9uality of the suggested model. Moreover, such a bifurcation dia-
bit on the rock during rotation gram provides improved insight into how torsional vibrations in

R L ihrati ; ; ; ; rill-string systems are created.
Bﬁﬁqr:upl)lﬁlg/;iirgggns inthe circulation system, stemming fronq In Sec. 2 the experimental driII-st_ring setup is described. Next,
the dynamic behavior of the setup is modeled, the parameters of
Drill-string vibrations are an important cause for premature failurdtne model are estimated, and the obtained model is validated. In
of drill-string components and drilling inefficiency. In this paperthe experimental system as well as in the estimated model both
torsional drill-string vibrations are investigated. Since the behaegquilibria (constant velocity and limit cycles (torsional vibra-
ior of the system when a constant torque is applied at the rotdrgns) are observed when a constant input torque is applied. There-
table of a drill-string system is of interest, the focus is on thtore, in Sec. 3, the equilibrium poirised is determined and re-
steady-state behavior of drill-string systems for such constdated stability properties are discussed. Next, periodic solutions
torques. and their stability properties are determined numerically. Subse-
Extensive research on the subject of torsional vibrations hggently, based on the proposed model and estimated parameters, a

already been conduct¢ii—9]. According to some of those results,bifurcation diagram is presented and compared to experimentally
obtained results in Sec. 4. In Sec. 5, conclusions are presented.
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Tonpl 6) for 6,>0
Tin(0) e [~ Tmn(0), Tmg(0)]  for 6,=0

DC ggggr
—Trn(6) for 6,<0 3)
Tm Upper disc . .
Tip(6h) for 6,>0
O . .
Ta() ey [=Tin(0),Tp,(0)]  for ;=0
~Tin(6)) for 6,<0
Strin In (2) J, andJ, are moments of inertia of the upper and lower disk
B with respect to the corresponding centers of mass, respectively,
andby, k, are the torsional damping and the stiffness parameters
of the string, respectively. I2) and (3) T, represents the fric-
tion torque of the motor caused by the friction in the gear box and
in the bearingsTy, is the friction torque present at the lower disk
Tt | Lower disc which is caused by the friction between lower disk and the brake

and the friction in the bearings at the lower disk. Nonlinear func-

6
ﬂ;ﬁ‘l tions Trmp(0u), Tmn(6u) represent complete friction torques

Brdke =" ' ~ present in the bearings and motor for positive and negative,
though nonzero, angular velocitiég , respectively, and’,(6,)

andT,(6,) represent complete friction torques which act on the
lower disk for positive and negative, though nonzero, angular ve-

locities 6, and for those nonlinear functions the following condi-

a DC motor, two rotational diskgupper and lower a low- tons hold:
stiffness string, and an additional brake applied to the lower disk.

The input voltage from the computer, which is betweeh V and

5V, is fed into the DC motor via the power amplifier. The DC . - S
motor, which represents the drive motor of a real drill rig, is Ton( 00, Tin(6,)>0, Vo,,6,<0
connected via the gear box to the upper steel dighkich repre- . . o
sents the rotary table of the jigrhe Sgper and lower dislfs areWhICh means that the friction torques are dissipative.

connected through a low-stiffness steel string. The string is 1.5 mcl):‘dqeul?Egr#fgtigﬁlgfttiéhuat Zit:r?éﬂi(\fvgtg)igcla'\ll'vi?earreeassgdfotrothis
long and the diameter of the string is 2 mm. The drill-string an PP :

the lower brass disk represent the drill-string with the bottom-holg 2\c€ 1S the fact that both at the upper and at the lower disc the

S . . icking phenomenon is observed.
assembly at the real drill-rig, and the additional brake |mplemen? . .
the friction force between the drill bit and borehole. The contact From (3), it can be noted that the friction torques are modeled

. . o ing a static friction model. This choice is based on the following
material of the brake is rubber. The angular positions of the upplé? soning: we are interested in the steady-state behavior of the

and lower disks are measured using incremental encoders. Th . ; . . -
angular velocities of both disks are obtained by numerical differs 1P ant?l not ml the dleta'l.Ed dynamic modeling of the friction for
entiation of the angular positions and filtering the resulting signaYglry shma anglu ar: V? c|>|0|t|¢s. . d a4

using a low-pass filter with a cutoff frequency of 200 ra(8%.8 n the sequel, the following assumptions are adopted:
Hz). In Fig. 1, as well as further on in the tex, and 6, are the ~ « L, =0: Since the electrical part of the system has much faster

Fig. 1 Experimental drill-string setup

Tmp( éu)lep(él)>0,Véu,é|>O and )

angular positions of the upper and lower disks, respectivigly; dynamics than the mechanical part, the inductance of the ro-
is the friction torque present at the upper disk; dqdrepresents tor circuit is neglected. Moreover, with this assumption the
the friction torque at the lower disk. model of the setup is of a lower order.

* kKme=Kkem: This is valid only when there is no loss of energy
in the magnetic field of the DC motdfor more information
see[15]). This loss of energy is expected to be very small.

* bp=0: The torsional damping of the string is very small
1) compared to the damping effects in the bearings and is there-
fore neglected.

2.2 Model of the Setup. The drill-string setup is an electro-
mechanical system. The model of the motor can be described by

au=L,i,+(Ri+R)t+NKepfy

Tm=nKpet;
If we combine these assumptions with) and (2), then the fol-

whereu is the input voltage to the power amplifiex;is the am- lowing model of the setup can be obtained:

plification factor of the power amplifieR; is the output resistance

of the amplifier,L, andR, are the inductance and the resistance of . N%Kg Ko - ) ank,
the rotor circuit, respectively;, represents the rotor curremt;is Jubu+ky(6,— 6)+ ﬁﬂﬁﬂm( 00 |= 5 Re u
reduction ratio of the geark.,, and k., are the electromotive i i (5)
force constant and the torque constant, respectivelyTand the . .
motor torque. In(1) and further in the text, a dot above a variable 316 —Ky(0y,— 6)+ Ty (6,)=0
indicates a time derivatiofe.g.,i,=d:, /dt). The model of the . ) .
mechanical part of the setup can be described by the followif¥gXt, by introduction ofT¢,(6,) as
pair of second-order differential equations: 2
. . . T (9):%"9 + T 6,) (6)
Ju0u+ba(0u_9I)+k0(0u_al)+Tfm(0u):Tm (2) o R+R; ! fmt
316~ by( 8y 0) — Ky 8y— )+ Ty (8)=0 andkn as
with the set-valued friction laws " with the se{a,b] we mean the intervalx e Rjas<x=<b}.
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_ankye . K kg 1
"TRIR (1) Xz—x u— xxr J_quu(XZ) (10)

the following model of the drill-string system can be obtained: .k 1
- ' X3=—=-X1— = T1i(X3)
Ju0utKe(0,— 6)+ Try(6y) =Kpu ® J) Ji
This model is used for further analysis of the dynamic behavior of
‘ the drill-string setup.
whereT;,(6,) represents the equivalent friction torque present at

the upper disk and, represents the‘ motor constant.. Fr@], i.t der to obtain a predictive model of the drill-string setup, the pa-
can be concluded thaf,(6,) consists of the bearing friction ., oo Km,» Ju. Ji, k, and nonlinear functionsT,,(6,),
torque T¢m(6,) at the upper disk and the additional termTun(('gu)’ Tlp(a|)1 andT|n(é,) need to be estimated.

(N*Kemkme 0u/(Ri+R;), which has the nature of a viscous fric- “First, in order to estimate the parameters concerning the upper

tion and is due to the electromagnetic characteristics of the %%rt of the setuppk,,, J,, andT;,(8,)] the upper disk is discon-
m» u? u u

motor. ; ot
. . “nected from the lower disk. The parameter estimation is based on
According to(3) and (6), Ty, can be characterized as follows: yojicated experiments involving responses of the system, when

30— Ky(0,— 0)+ T (6,)=0

2.3 Parameter Estimation and Friction Modeling. In or-

Tuo(6y) for 6.>0 constant and white-noise input voltagasare applied, and an
. upt ! identification procedure ensuring a close match between the
Teu(0) e [—Tun(0),Typ(0)] for 6,=0 (9) model predictions and experimental resulsee, for example,
T8y for 9,<0 [16]) and yields the following parameter values:
where T,, and — T, re i icti Nm kg m?
up un represent the equivalent friction torque km:3-5693V: J,=0.4765 5 (11)
ra

present at the upper disk for positive and negative nonzero angular
velocities, withT,,(0)=T,(0) and T,,(0)=T,(0). The dy- . - . .
namics of the fouurgﬁ-())rde;ngglsze(r&), caur:(be) desné?i(be)d by a th)i/rd- In order to determine friction torquey,, appropriate nonlinear
order state-space system because its dynamics is independerfti@§tionsT,,(6,) andT,(6,) in (9) need to be determined. Dur-
the angular positions of the disks, but depends on the differerig@ the parameter estimation of the friction torque at the upper
between these two angular positions. Therefore, by choosing sta@t of the setup, the following is noted:

coordinates defined by;=6,— 6, X,=6, andx3=6,, the fol-  « The Stribeck effect is not present in the friction torque at the
lowing state-space model can be obtained: upper disk. An explanation for this can be recognized(6h
= X X Namely, this equation expresses that the friction in the bearings of
177278 the upper diskT;,, may very well be small with respect to the
viscous friction term due to the electromagnetic forces in the DC
motor. Experiments show that this is indeed the case. Therefore,
Tru A
bupf g
upVu .
Tsup TSl Tl(al)
>
O
0,

Ty M(.él)/

. e Z
R S R R /N —Lal
:20 5 70‘4 70‘3 <0‘2 <0‘1' (I) 0'1 0'2 0'3 0'4 05
(b) 0. [rad/s| (b)
Fig. 2 Friction model at the upper disk Fig. 3 Friction model at the lower disk
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the friction torque at the upper disk;, is modeled as the Cou- tively, andTg,, and — T, represent the maximum and minimum

lomb friction with the viscous friction as shown in Fig(a2. value of the friction torque for zero angular velocities. The esti-
* The friction torque at the upper disk is asymmetric. Thignated frictionTy, is shown in Fig. 2).
means thafl¢,(6,) # — Tru(— 6,), i.e., Tup(6u) # Tun(— 64)- During the investigation of the steady-state behavior of the

. o whole drill-string setup when no brake is applied at the lower
Resuming, the friction torque at the upper part of the setup sk it is noted that for certain constant input voltagetrsional

modeled as vibrations appear. Moreover, those vibrations rdd always ex-
T. +b 8 for >0 hibit the stick-slip phenomenon. [1-5], it is stated that torsional
) sup® Fup”u o vibrations in drill-string systems can be modeled using the friction
Teu(0) ey [ Tsun: Tsupl for 6,=0 (12) model with the Stribeck effedisee Fig. 8a)]. However, using

T tbd for 6.<0 such model, only torsional vibrationsith stick-slip can been
sun® Fun¥u u modeled. Therefore, a humped friction mofiE),11], as shown in
with the following parameters: Fig. 3(b), is used. In Fig. 3, it can be seen that the difference

_ _ between the humped friction model and the friction model with
Tsup=0.3216 Nm, Tg,,=0.3026 Nm, (13) the Stribeck effect is evident for low angular velocities. Namely,

kg n? kg n? in the humped friction model, positive damping is present for very
b,p=1.966"———, b,,=2.0 small angular velocities which is not the case for the friction in
rad s rads Fig. 3a)

whereb,, andb,, are equivalent viscous coefficients present at Based on a neural network modédl6—1§, the friction torque
the upper disk for positive and negative angular velocities, respeag-Fig. 3b) can be expressed by

2 2 . . .
. Tt Ty 1= ——7 | +To| 1= ——| |sign(6,) + b, 0 for 6,#0,
Tu(6)= [ " 1( 1+eﬁ10"> 2( 1+eﬂz'0"” b | (14)

[—Ts. Tl for -9|=0,

whereTg, Ty, T2, B1. B2, by are the parameters of the frictionslip behavior appedr.Therefore, this is a motivation for using
model. Moreover, Ty represents the maximum static frictionfriction model (14) for modeling the contact force between the
level, andb; is the viscous friction coefficient. brake and the lower disk. Due to the fact that we are interested in
Using dedicated experiments involving both transient andvestigation of torsional vibrations of drill-string systems, we
steady-state behavior of the setup and an identification procedpreceed with the analysis of the system when water is added in a
ensuring a close match between the experimental results and ygroducible fashion.
corresponding model predictions, the remaining parameters of thé=or the estimation of the parameters of the friction mddd)
setup ky,J;) and the parameters of the friction modé&H) are for the friction torque at the lower disk with brake, the estimated
obtained parameterg11) and (13) of system(10) are used. Next, a quasi-
random signal is applied to the experimental setup. Then, using a
kg P Nm nonlinear least-square technique we tried to ensure a close match
91=0.0326-— k9=0~078@ (15) between the experimentally obtained angular veloéjtand the
corresponding model prediction. In such a way, the following es-
timates for the parameters of the friction mod&d) are obtained:

kg m?
T,=0.01663 Nm, b;=0.00459—, NP
T,=0.0940 Nm, b=0.0042——, T,=0.0826 Nm,
rads
T,=0.7016 Nm, T,=-0.7173 Nm,
! 2 (16) T,=—0.2910 Nm 17)
_ S _ S s s
B1=2.04275,  Bo=1.9205—4 B1=6.3598—, ,=0.0786—
rad rad
The estimated friction torque is shown in Figas The resulting estimated friction model at the lower disk with

A validation procedure is performed using different input sigbrake is shown in Fig. @). A validation procedure for different
nals such as quasi-random, harmonic, constant, ramp, and paiput signals provides evidence for the good quality of the esti-
bolic signals. For those signals, the comparison between the reated model.
sponses of the experimental setup and estimated model indicatel$ we compare the estimated friction torque shown in Figp) 4
the good quality of the obtained parameters. with the one shown in Fig. (4) and with the proposed friction

In order to gain an improved insight in the causes for torsiongrque [see Fig. 8)] it can be seen that the estimated friction
vibrations in real drilling systems, an additional brake is applierque, when the brake is applied at the lower disk, is qualitatively
to the lower disk of the experimental drill-string setup. The brakgie same as the proposed model. However, in the friction torque in
material is rubber. For several levels of the normal fosee Fig. Fig. 4(b) the part observed for higher angular velocities, when
5), no torsional vibrations in steady state are noted when a cofiscous friction phenomenon is dominant, cannot been seen be-
stant input voltage is applied. However, when water is added hgause:
tween the lower brass disk and the contact material of the brake,
torsional steady-state vibrations appear for constant input Volt-2yore about friction phenomenon due to a contact between two materials can be
ages. Moreover, both torsional vibrations with and without stickeund in[12,13,19,20
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g 1 Since the steady-state behavior of the drill-string setup is of
: 3 interest, in the sequel, such behavior of systegll), with the
friction torque at the upper diskl2) and friction torque at the
lower disk (14), is analyzed.

3 Analysis of Nonlinear Dynamic Behavior

Since both equilibrigconstant velocity at both the upper and
lower disK and limit cycles(torsional vibrations at the lower disk
: : : are observed in the experimental setup, in this section, both the
' : : : ‘ as the related stability properties are analyzed.

T4 [Nm]

‘ : : : ‘ 3.1 Equilibrium Points. In the equilibrium points it holds
DDABE e e that (X1,X2,X3) =(X1eq,X2eq:X3eq), fOr u=uc, with u; a con-
5 : stant, antkeq, Xzeq» X3eq Satisfy the equations

X2eq™ X3eq™ 0
kmuc_Tfu(XSeq)_TfI(XSeq):o (18)
kfixleq_ Ty (X3eq) =0

From (18), it can be noted that the following two cases should be
considered:

* equilibrium points forX,eq=Xz¢4# 0, i.€. both the lower and

005 oo ------------ N D ~~~~~~~~~~~~~~~ --------------- 1 the upper disk rotate with the same constant angular velocity
E) ? é : f * equilibrium points fork,e=X3e4=0, i.e. both the lower and
: : . _q q
= '] SR RHERE SR [ S TS o 4 the upper disk stand still
.: N N N i
[\1_0'05_. T R e For X3eq>0|_Tfu(X3eq):Tsup+ bupx3eq [See(lZ)] and TfI(X3eq)

=T(Xzeq) With

Ti(X3eq) =T+ T2

1 —2 +T, 1 —2
1+ eBllXSeq‘ 2 1+ eﬁz‘xaeq‘

ey -1;1 _5 i ; 1i0 15 + bIXBeq Sigr(XSeq) (19)

0
(b) 6, [rad/s| [see(14)]. Thus, such an equilibrium point should satisfy the fol-
lowing set of nonlinear algebraic equations:

s
N

Fig. 4 Estimated friction torques at the lower disk

X2eq™ X3eq
KmUe—DbypXzeq— Tsup™ T1(X3eg) =0 (20)
* The input voltagey, which is fed from the computer into the mre. Tuptseq Tsup TIAT3eq
power amplifier of the motor, is limiteduie[ —5 V,5V]). ~ Ti(X3eq)
Therefore, the maximal angular velocity, which can be X1eq= K,

achieved at both disks, is limited. . .

« During the parameter identification of the friction model E;Earom(4), (9), the second algebraic equation(@f) and due to the
the lower disk, the maximally achieved angular velocity ct thatxzeq>0, it can be concluded that the system only exhibits
the lower disk was around 12.6 rad/s. such an equilibrium point fou,> (T, ,+ Ts)/Kr . In general, the

second equation if20) can have more than one solution. For the
Therefore, the estimated friction model for even higher velocitiesstimated parametefd1), (13), and (15) of the system it holds
is less accurate. However, it is expected that for higher anguthaat
velocities the viscous friction phenomenon is dominant in the fric-
tion at the lower disk when the brake is applied. —b - ﬂ<0
YPodxg
3
which means that the considered system has only one equilibrium
String point for givenug for xg¢>0.
In a similar way, forxse,<0, it follows that(10) has one equi-
librium point that is a solution of

Vx>0 1)

Normal force

X2eq™ X3eq
Rubber
Lower disc kmuc_bunXBeq+ Tsun+TI(X3eq):o (22)
r N Ti(X3eq)
] X1eq= ~ T
Brake N 1 ,/ .
§ % With Ug< — (Tount Ts)/Ken -
7 N\ 7 In order to obtain local stability conditions for the equilibrium
“ point for Xz¢>0, the nonlinear systert0) is linearized around
the equilibrium point foruc> (T, + T)/Ky . According to the
Routh-Hurwitz criterion, the equilibrium point of systefh0) is
Fig. 5 Applied normal force at the brake of the lower disk locally asymptotically stable for
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Tleq

Ty,
: T (91)
TSl ; 3

Tiwn)/ha |5, .
: e
BQ’ 4
A : :
* e3 w1 wa! o
k : . : : el
Z:l/ ? 3 ¢ L4 . C H H 01
Ti(w (O S S - :
l( 2)/ 0 cl  Ue2 Ue3 'UJ(:>
(@ — sl/ka /—\J_ .
T2eq> T3eq :
di 4
/ :
C
Wa e ......... - ‘
. ?‘ * bl
w1 B : oy wo A~
: : > —0.00114 é'
(b) € Uea Ue3 Ue t
Fig. 6 Equilibrium branches of the drill-string setup Fig. 7 Friction damping for suggested friction torque present
at the lower disk of the drill-string setup
kam Appendi® described by(26) (equilibrium branche; in Fig. 6).
d>-0 001149_ (23) Namely, both the lower and the upper disks do not rotéte
' rad s

for the estimated system parametét$), (13), and(15), with

equilibrium set satisfie®,¢q=X3eq=0) due to the fact that input
voltage is not big enough to drive the upper and lower disks.
« The system has one equilibrium point foy>u., [see(21)].

_dT, Given the fact that the friction torque at the lower disk is as shown
d'_d_x3 4 in Fig. 3(b), it can be concluded that a stable equilibrium branch
*37*3eq e, appeargsee Fig. 6. Namely, foru.=uc, the system leaves the

whered, represent the friction damping present at the lower diskick phase, the steady-state velocity at the lower disk increases,

when angular velocity |59, X3eq-

The same analysis can be performed fo<— (T
+Tsun !k (the disk is rotating in negative directiprto obtain
the local stability properties of the equilibrium points fegeq
<0.

The equilibrium pointgse} for X,¢q=X3.4=0 exist only when
the input voltage satisfies the condition

Tsun+ Tsl Tsup+ Tsl
- <u.<
Km ¢ Km
From (18) it can be concluded that whé@5) is satisfied, equilib-
rium points Xgq= (X1¢¢,0,0) of the system are such thaf,e &,
where€ represents the equilibrium set defined by
—Tg Tsl}

ko 'Ky

(25)

I(muc_Tsup kmuc"’_Tsun
Ky ’ Ky ’

5={X6R3 X1 €

(26)

the friction dampingd, of the friction torque at the lower disk is
positive and starts to decreaee Fig. 7. For a certain angular
velocity Xgeq=w; (See Fig. 7, the friction damping d,
—0.00114 kg mkad s) and the equilibrium point becomes un-
stable[see condition(23)]. From the second equation @0) a
correspondingi.= u¢, can been found for giveRrze,= w; (point

B in Fig. 6). Therefore, foru,;<u.<u., system has a locally
asymptotically stable equilibrium poiriequilibrium branche, in
Fig. 6).

* If u; increases fronu,=uc,, then the system has an unstable
equilibrium point and the corresponding,, increases as well.
Next, for a certain value of3¢ the friction dampingd; (which is
negative starts to increase and fag.,= w, (see Fig. 7, and for
U.=Ug (point C in Fig. 6), d; reaches the valued,=
—0.00114 kg m(kad s) and the equilibrium point becomes asymp-
totically stable again. Therefore, fog,<u.<u.; the system has
an unstable equilibrium poirtequilibrium branche; in Fig. 6).

e For u>u.3, the system has a locally asymptotically stable
equilibrium point(equilibrium branche, in Fig. 6).

XZZO,XSZO ] :
e Foru,=u¢; (point A in Fig. 6) no change of stability prop-

Moreover, in the Appendix the stability properties of the equiliberties occurs. Moreover, the locally asymptotically stable equilib-

rium set(26) are discussed. rium set(26) becomes the locally asymptotically stable equilib-
In Fig. 6 a sketch of the equilibrium branches for differentium point A.

constant input voltages, is plotted. Although we are interested in ¢ For u.=uc, (point B in Fig. 6) and foru,=u.; (point C in

the behavior of the velocity of the lower disk for different constarfig. 6) a change in stability properties occurs. Namely, a pair of

input voltageg Fig. 6(b)], in Fig. @) X1eq(x,=6,— 6;) for dif-  complex conjugate eigenvalues, related to the linearization of the

ferentu, is shown. In Fig. 6 solid lines represent stable and dottetbnlinear dynamics dfL0) around the equilibrium point, cross the

lines unstable equilibrium branches. If we use the results of tireaginary axis to the right-half complex plane. Therefore, Hopf

steady-state analysis of systéh®) for u=u.=0 with u. constant bifurcations occur at these points.

and take into account that the friction torque, present at the lower,

disk, is of the type shown in Fig.(B), then the following can be
concluded:

* For ucsucy, U= (Tsupt Ts)/ky (point A in Fig. 6), the
system is in the stick phase in steady stigee (25)], i.e. the
system has locally asymptotically stable equilibrium @ste the
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3.2 Periodic Solutions. According to the previous analysis,
Hopf bifurcation points occur fou,=ug, and u.=ug;. Next,
using a path-following technique in combination with a shooting
method[21,22, limit cycles are computed numerically for the
estimated model of the system. The results are shown in a bifur-
cation diagram in Fig. 8. In those figures, the maximal and mini-
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Fig. 8 Bifurcation diagrams of the drill-string setup

mal values ofx; are plotted when a limit cycle is found. Floque

multipliers, corresponding to these limit cycles, are computed n

merically and used to determine the local stability properties

these limit cycles. Since the estimated friction torque at the low
disk, when the brake is applied, is not considered to be accurgtg;?an
for higher angular velocities, where the viscous friction contribl?
tion is dominant, the obtained bifurcation diagram for correspon

ing higher input voltages is not determined. However, in order
understand the behavior of the setup for higher constant in
voltages, the bifurcation diagram is constructed for the model

the system when no brake is applied. Then, the estimated fricti

torque at the lower diskFig. 4(a)] is of the form of the friction
model in Fig. 3b). The bifurcation diagram is shown in Fig(e.
With respect to the obtained results the following remarks can
made:

« From bifurcation pointB for (u;>uc,), a locally unstable

» For some higher constant input voltage [point E in Fig.
8(a)] torsional vibrations without stick-slip appear once more
(locally stable periodic brancpg).

Then, for even higheu,, the locally stable periodic branch
p3 loses its stability and an unstable periodic branch appears
[periodic branchp, in Fig. 8a)]. The appearance of an un-
stable periodic solution in mechanical systems with a discon-
tinuous friction force has already been analyze3ij24].

The point where the stable periodic brarghis connected to
the unstable branclp, represents a fold bifurcation point
[point F in Fig. 8a)].

The unstable periodic branghy, is connected to the equilib-
rium branchese; and e, in the Hopf bifurcation pointC.
Moreover, in Fig. 8) point C represents a subcritical Hopf
bifurcation point.

For the model of the system when the brake is applied, the
obtained bifurcation diagram is shown in Figbg All equilib-
rium and periodic branches and bifurcation points, which are de-
termined in the bifurcation diagram, appear in the bifurcation dia-
gram of the system when no brake is applied. However, in the
bifurcation diagram in Fig. @), compared to the one shown in
Fig. 8@a), the Hopf bifurcation poinC, point E, fold bifurcation
point F, equilibrium branche,, and periodic branchgs; andp,
are not present. This is due to the fact that the maximal input
voltage, which can be applied to the setup, is limited to 5 V. In
Fig. 9, the limit cycles are depicted far=1 V, when no stick-slip
is present, and fou=2 V when stick-slip is present. Namely, in
that figure the projection of those limit cycle on planes=0
[Fig. Ac)], x,=0 [Fig. 9b)], andx;=0 [Fig. 9a)] are shown.

4 Experimental Results

In order to check the validity of the obtained model of the
drill-string setup when the brake is applied, experimental results
are compared to the numerical results. As already mentioned, the
evidence about the predictive quality of the estimated model in
steady state is of great interest. Therefore, when a constant voltage
is applied at the input of the setup, each experiment lasted long
enough in order for all transient effects to disappear and the last
100 s of the angular velocity signal are recorded. Some of the
obtained results are shown in Fig. 10. In this figure, the experi-
tmental angular velocitysolid line) and the angular velocity ob-
@ined using estimated modédlashed ling in steady state are
hown for different constant input voltages. From the comparison

ptween simulation and experimental results in Fig. 10, it can be
cluded that with the suggested model the steady-state behavior
the setup is modeled accurately.
_Next, the same type of bifurcation diagram, as shown in Fig.
b), is constructed experimentally. In order to construct such ex-
&ﬁrimental bifurcation diagrams, different constant input voltages
gfe applied to the setup. When no torsional vibrations are ob-
8ﬂrved[as in Fig. 10a)], the mean value of the recorded angular
velocity is computed. Next, when torsional vibrations are ob-
served at the lower diglas in Figs. 1(h)—10(d)], the mean value
8& local maxima and minima are computed as well. Then, all
experimentally obtained data for constant input voltages are plot-
ted using the symbob in Fig. 11. Such experimental results,
together with the bifurcation diagram obtained by numerical

equilibrium branche; arises(as discussed in the previousanalysis of the estimated model, are shown in FigalIMore-

subsectiopas well as a stable periodic brangh. Therefore,
point B represents a supercritical Hopf bifurcation pdi28].
Close to the bifurcation points, the periodic brarghcon-

over, when torsional vibrations are observed in the setup, the pe-
riod time T of the vibrations is determined as well. In Fig.(fL
such experimental results are compared to the period time of the

sists of limit-cycles which represent torsional vibrations withaumerically obtained limit cycles. The results shown in Fig. 11
out stick-slip. Therefore, bifurcation poirB represents a illustrate the predictive quality of the obtained model.

smooth supercritical Hopf bifurcation point. Therefore, according to Figs. () and 11b) it can be con-

At point D, torsional vibrations with stick-slip appefsranch cluded that the observed torsional vibrations are caused by the
p, in Fig. 8@a)], due to the nonsmooth nonlinearities in thenonlinearity present in the friction at the lower disk and such
friction torque at the lower disk. Moreover, the periodimonlinearity is modeled adequately using the friction model
branchp, is locally stable and poinb does not represent a shown in Fig. 8b). Figure 11 shows that the amplitude of the
bifurcation point. vibrations depends on the applied constant input voltage while the

Journal of Dynamic Systems, Measurement, and Control DECEMBER 2004, Vol. 126 / 715



4 20 T T T T

: : : — experiment
3 16 ; : : : : : ; : 4
\mj 14
3
o =1V g
§18 i)
i - 8- B
05 8
. o
N
(a) 71 [rad) 2 :
ia A Ny
8 . (a) 00 10 20 30 40 5‘0 €0 70 E‘D 90 100
j time [s]
u=2V
7 P

-3

z3 [rad/s)
-
3
- w o
33
co
i | B
CE]
2
;

0.3 13 535 4

©) T2 [rad/s

Fig. 9 Two types of limit cycles in state-space: for u=1V (no
stick-slip is present ) and for u=2V (stick-slip is present ). x;
=0u_01, X2=0u, X3=0/.

period time shows only small changes. Moreover, it can be seen
that the period time of the observed vibrations is very close to the 2
period time of the linear resonance frequenty of the setup
(T,=0.0455s).

4.1 Hopf Bifurcation Point. Both from the analysis of the
estimated model and from the experimental results, it can be con-
cluded that a supercritical Hopf bifurcation po[mint B in Fig. =
11(a)] exists. In the sequel, the experimental results, during the Ew
transition between the stable equilibrium brafeh in Fig. 11(a)] <
and the locally stable periodic brangh; in Fig. 11(a)], are ana-
lyzed.

From the results, shown in Figs. 10 anddl it is concluded

— ==

___"f" ]

l
»
we s icsLock-ah.

Ty r T

that for constant input voltage= 0.5V no torsional vibrations are 2
present, while fou= 1.0 V vibrations are present in the system. In o
Fig. 12, experimentally obtained angular velocities of the lower (d)

disk are shown during the transition along the supercritical Hopf

bifurcation point. From this figure, it can be concluded that sonfég. 10 Experimental and simulated angular velocity response
unmodeled behavior is present in the setup. In order to gain i9f-the lower disk in steady state for different constant input
proved insight into the behavior of the system in steady statgltages when the brake is applied

around the Hopf bifurcation point, the power spectral density of

the experimentally obtained angular velocities is constructed and

shown in Fig. 13. The resolution of the power spectrum is 0.01 Hz
and its frequency range is 500 Hz. In Fig. 13, the power spects
density of the obtained signals is shown up to the frequency o
Hz, because for higher frequencies it drops to even lower valuess For u=0.2V, in Fig. 12a) some low frequency vibrations

Analyzing the results in Figs. 12 and 13, the following should
noted:
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Fig. 11 Simulated and experimental results (circles ) of the Ay
steady-state analysis of the drill-string setup v J

can be recognized. The mean value of experimentally obtained (© time [s]
angular velocity iS6)ean=0.0911 rad/s-0.0145 Hz. Comparing
this result to the period time of the signal in Fig.(4Rcan lead to : : : ;
the conclusion that position-dependent friction, which is not mod- AP N S S S ESUURPUL AU SO T S
eled, is present in the systetie., that the friction at the lower : ‘ : W :

disk is not the same at each angular position of the)dMdore- 2
over, the same conclusion can be derived from the corresponding _
power spectral density signal shown in Fig(d3 Namely, some =7
very low frequency vibrations in a frequency range between 0.01 A
Hz and 0.02 Hz can be recognized in the system. However, apart <
from position-dependent friction, also other unmodeled behavior ,
is present in the recorded results, such as measurement noise,
unmodeled friction dynamics, noise due to the fact that the angu- o5
lar velocity is obtained numerically, etc.

« Foru=0.5V, some torsional vibrations can be noted that do I T S S e
not have a regular period time and amplitude compared to the @ time [s]
results shown fou=1.0 V[Fig. 10b)], u=2.0V[Fig. 1Qc)]and ) o
u=4.5V [Fig. 10d)]. This leads to the conclusion that the causg.'g' 12  Angular velocity |°f the IO}‘:"er ?:skbmkste_ady Slt.atg for
for those vibrations does not have the same nature as the causé for ot constant input voltages when the brake is applie
vibrations shown in Figs. 18)-10(d). If we analyze the power
spectrum of the angular velocifgee Fig. 1&)], it can be noted .
that the spectral content is considerably higher than the one shob@ib)] is 6),ea=0.6411rad/ss0.1020 Hz, this can represent
in Fig. 13a). Moreover, it can also be noted that some inportamhore evidence of the presence of the position-dependent friction
spectral components are present at the frequencies that are a muthe lower disk.
tiple of f=0.10 Hz. If we take into account that the mean value of « For u=0.7V the torsional vibrationgshown in Fig. 12c)]
the experimentally obtained angular velocifghown in Fig. have a more regular period time although the amplitude of the
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Fig. 13 Power spectral density of the angular velocities shown
in Fig. 12

connection with the mean value of the angular velocity of the

lower disk (0mean=1.0077 rad/s0.1604 Hz). Therefore, the
main cause for such a torsional vibration is the nonlinearity in the
friction torque, which is modeled as shown in FigbBand ana-
lyzed in the previous section. The fact that the amplitude of the
observed vibrations significantly varies can be due to the large
influence of the observed unmodeled behavior of the setup. How-
ever, this signal is considered to be a limit cycle caused by non-
linear friction torque(14).

* Foru=1.0V, torsional vibrations in the velocity at the lower
disk exhibit a regular period time. The amplitude of the vibrations
is reasonably constant, which is evident from Fig(dl2In Fig.
13(d) a dominant spectral component at the frequency of 0.25 Hz
can be noted, but also the higher harmonic components at the
frequencies that are multiples of this dominant frequency compo-
nent are observed. The existence of higher harmonics is an indi-
cation that the torsional vibrations are caused by the nonlinearity
in the system. Therefore, this signal is also recognized as a limit
cycle.

This performed analysis allows us to estimate the Hopf bifur-
cation point in the considered setup experimentally and to gain
improved understanding of the behavior of the system around the
Hopf bifurcation point.

5 Conclusions

In this paper, the steady-state behavior of a drill-string setup is
analyzed when torsional vibrations appear. First, the dynamic
model of the setup is introduced and the parameters of the setup
are estimated. In the setup, when no brake is applied at the lower
disk, torsional vibrations in steady state with and without stick-
slip are observed. Torsional stick-slip vibrations in drill-string sys-
tems can be predicted using a static friction model with the
Stribeck effect[1-5,7. However, torsional vibrations without
stick-slip cannot be modeled using the same friction model.
Therefore, a humped discontinuous static friction mddé-13
is used. The difference between the humped friction model and a
friction model with only the Stribeck effect is that for very small
angular velocities the proposed friction model has a positive
damping. With such a model, the observed torsional vibrations in
the experimental setup, both with and without stick-slip, are suc-
cessfully predicted.

Next, in order to gain insight into the causes for torsional vi-
brations in drill-string systems, an additional brake is applied at
the lower disk. It is noted that no torsional vibrations appear until
water has been added between the contact materials of the brake
and the disk. When water is added torsional vibrations with and
without stick-slip are observed. Subsequently, the parameters of
the suggested model for the friction torque, present at the lower
disk, are estimated and a steady-state analysis for the estimated
model of the setup is performed. As a result of the steady-state
analysis, a bifurcation diagram, with constant input voltages
a bifurcation parameter, is presented. Moreover, a comparison be-
tween the numerical and experimental bifurcation diagrams illus-
trates the predictive quality of the suggested model.

As a result of the analysis and the obtained bifurcation dia-
grams, the following can be concluded:

» For very small constant input voltages, the lower disk cannot
move. Namely, such small voltages cannot drive the motor of the
setup because the sticking phenomenon is present in the friction at
both the upper and lower disks. This effect is successfully mod-
eled using discontinuous friction models.

 For higher constant input voltages, the upper and lower disks
start to move and no torsional vibrations are present at the lower
disk in steady state. When the constant input voltage is increased,

vibrations varies significantly. In the power spectrum shown iat a certain level torsional vibrations without stick-slip appear at
Fig. 13c), a dominant spectral component at a frequency betwetre lower disk. Moreover, for even higher levels of the constant
0.21 Hz and 0.22 Hz appears. The observed period time is closértput voltage the amplitude of the vibrations becomes higher and
that observed for the estimated mofiete Fig. 1(b)] and has no the torsional stick-slip vibrations appear.
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« If the input voltage is high enough, based on the results whétcording to the previous analysis, it can be seen that for=adl,
the brake is not applied, it is expected that the torsional vibratiomge can choose such thatr<c, with c=J,13%/2, andSC A, .
disappear. This is due to the fact that at higher angular velociti€aen, for the choses (andr), § can be chosen such thdt,C S.
the viscous friction becomes dominant in the friction at the low&Tonsequently, for everi=0 it follows that
disk. This effect is not observed in the setup when the brake is
applied because the input voltage, which can be applied to the X(to) € As=x(1) € A V=1, (33)
setup, is Iimite_d and the torgion_al deformations of the string mayamely, for everyr<c it holds that.4;CSCB. Consequently,
become too high for such high input voltage. V(X,Xeq) <0 and, therefore, the equilibrium s&tis stable in the

When analyzing the behavior of the setup in the vicinity of theyapunov sense. o _
supercritical Hopf bifurcation point, it is noted that not only the Let us now show that the equilibrium s€is locally attractive.
negative damping in the friction force at the lower disk is th&Or that purpose, lé¢;(x) =V(x,0) and define the set by
cause for torsional vibrations. Namely, it has been observed that C={xe R3|V,(x)=<c} (34)
the friction force present in the setup is position dependent. Such .

a friction feature is not captured by the model. However, this carhen, the previous analysis yieldg<0 for all xeC. Next, for
also cause the appearance of torsional vibrations. The period tithe estimated friction torques;,(x,) and T (x3), from (28) it
of the vibrations caused by position-dependent friction charact@izn be concluded thé}tlzo for x e £, with

istic depends on the angular velocity of the disk. In the considered

setup, such vibrations were dominant until torsional vibrations L£={xeR3|x,=0x3=0} (39)

caused by thémodeled nonlinearity in the friction appeared. The consider the vector fiel(x(t),u.), given by
latter type of vibrations exhibits a period time that is not related to e

the angular velocity of the lower disk and is close to the period X2~ X3
time of the mechanical resonance. Km Ko -
U~ 7 X~ 7 X
Fx(Uug) =] 3y 3,5 3, Tl 2) (36)
Appendix: Local Asymptotic Stability of Equilibrium ?xl_ Jil-rﬂ(xs)

Seté&

When condition(25) is satisfied, it is concluded that systenl.Se€ the equations of thf syst€n)]. Then,f(x(t),uc) on the set
(10) exhibits an equilibrium sef, given by(26), with u,, constant. £ IS such thaf(x(t),uc) =fi(x(t),uc), with

In order to prove the local asymptotic stability of the equilibrium 0 1

set &, first it will be proven that€ is stable in the sense of K K

Lyapunov and, next, using LaSalle’s invariance principle, it will —muc— _f’xl_ —T4,(0)

be proven that the equilibrium set is locally attractive. Moreover, fi(x(t),uo)=| Ju Ju Ju (37)
a region of attraction will be estimated. Finally, combining the )

fact that€ is stable and locally attractive leads us to the conclu- \]_lei J_lel(O)

sion that the equilibrium set is locally asymptotically stable. L .
In order to prove the stability of the equilibrium set, the follow-When the upper disk is in stick¢=0) thenx,=0 andT,(x,)

ing Lyapunov candidate function is considered: =T1u(0) €[~ Tsun, Tsupl [se€(12)]. Consequently, it holds that
. . L X1 € [(KmUc—Tsup /Ky, (KUc+ Tsy)/Ky].  Similarly, when the
V(X,Xeq) = 3Kg( X1 = X1¢) >+ 3,X5+ 3,%5 (27) lower disk is in stick phase x6=0), then X;=0, T (Xs)

=T4(0)e[—Tg,Tg] [see (14)] and consequently x;
e[Tsi/ky, T /Ky]. Therefore, for everyxe £, which is not in€
either the second or third componentf@i(t),u.) is always non-
V(X7Xeq):xz[kmuc_kﬁxleq_Tfu(XZ)]+X3[kgxleq—Tf|(X3)]_ zero. This leads us to the conclusion that the equilibriumé&set
(28) represents the largest invariant set rwhen condition(25) is

satisfied.

Moreover, it can be shown that only attractive sliding modes or
transversal intersections can occur at the switching surfages
Xz[kmucfkBXlequfu(Xz)]So (29) and22 with

for everyxe R3. Next, knowing thatT,(13 rad/s)= Ty, [see Fig. 3,={xeR3x,=0}, 3,={xeR3x;=0} (38)
4(b)] it can be seen that for the estimated friction torque at t
lower disk, it holds thaiT,(x3)|>Tg for |x5|<13rad/s. There-

whereXgq= (X1¢¢,0,0)e £. According to(10), the time derivative
of V obeys

Due to the fact that the friction torque at the upper disg is
estimated as shown if12), it follows that

Néhd that repulsive sliding modes are not present. Uniqueness of
solutions is, therefore, guaranteg8l], which could also be in-

fore, for everyxeqe £ andxe B, with ferred from the fact that the set-valued friction lay@ and (14)
B={xe R3||x3|<13 rad/} (30) take values in minimal closed convex sets for zero relative veloc-
) ity and are always dissipative.
it holds that The application of LaSalle’s invariance princidi23,25 now
XalKX1eq— Tri(X3)]1<0 (31) proves that equilibrium sef is locally attractive. Moreover, the

. setC represents an estimate for the region of attraction. Finally,
and consequently/<0. Therefore, each equilibrium point éhis  since we proved that the equilibrium sétis stable and locally
stable in the sense of Lyapunov. attractive, then we can conclude this locally asymptotically

Next, in order to prove that the equilibrium s&is stable in the stable.
sense of Lyapunov, setds, A., andS are introduced

Aa={xe R?|||x—prox«(x)|<a}, References
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