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e consider the disturbance attenuation problem for a class of
ontinuous piecewise affine systems. Hereto, observer-based
utput-feedback controllers are proposed that render the closed-
oop system uniformly convergent. The convergence property en-
ures, first, stability and, second, the existence of a unique,
ounded, globally asymptotically stable steady-state solution for
ach bounded disturbance. The latter property is key in uniquely
pecifying closed-loop performance in terms of disturbance at-
enuation. Because of its importance in engineering practice, the
lass of harmonic disturbances is studied in particular and per-
ormance measures for this class of disturbances are proposed
ased on so-called generalized frequency response functions for
onvergent systems. Additionally, the derived control strategy is
xtended by including conditions that guarantee the satisfaction of
bound on the control input. The effectiveness of the proposed

ontrol design strategy is illustrated by the application of the
esults to an experimental benchmark system being a piecewise
ffine beam system. �DOI: 10.1115/1.4001279�

Introduction
An important class of engineering systems that can be de-

cribed by nonsmooth models are mechanical systems with one-
ided structural flexibilities such as tower cranes, suspension
ridges, snubbers on solar panels on satellites, floating platforms
or oil exploration, safety stops in car suspensions, etc. In many
ases, the one-sided support can be modeled to exhibit linear re-
toring characteristics and, consequently, these systems can be
ffectively described by so-called piecewise affine �PWA� systems
1�. A PWA system consists of a number of affine subsystems,
hich all have their own individual region of operation. Very
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often these systems are subject to exogenous disturbances. For
mechanical systems, one can think of wind exciting bridges,
earthquakes exciting civil structures, road excitations of vehicle
suspensions, and many more. These disturbances induce undesir-
able vibrations, which in turn, may cause damage to the mechani-
cal structure and may lead to inferior system’s performance. As a
consequence, measures to reduce these vibrations, such as active
control, are of great importance.

Results related to control design for PWA systems aiming at
vibration suppression were given, among others, in Refs. �2–5�.
However, drawbacks of the methods in Refs. �2–5� are, first, the
fact that they adopt the assumption of zero initial conditions and,
second, that they provide input-output bounds for general distur-
bance classes, which might be very conservative for particular
disturbances of practical importance, such as periodic distur-
bances.

Some work is available to overcome the first drawback, see,
e.g., Refs. �6,7�, where an input-output stability approach is used.
However, results overcoming the second disadvantage are rare. As
in many applications the disturbances can be modeled as periodic
ones �e.g., unbalance phenomena in optical storage drives, engine-
induced periodic vibrations in vehicles, and many more� it is of
importance to provide a framework incorporating nonzero initial
states and specialized to periodic disturbances.

This paper presents such a systematic approach to tackle the
problem of disturbance attenuation for bounded periodic distur-
bances for a class of PWA systems. Within this approach we
present an output-feedback control design strategy based on the
notion of convergence �8,9�. Roughly speaking, a system with this
property has a unique globally asymptotically stable steady-state
solution, which is determined only by the system’s �bounded� in-
put and does not depend on the initial conditions. As a conse-
quence, the convergence property not only guarantees stability but
it is also beneficial in the scope of performance analysis of PWA
systems as it allows for a �unique� performance evaluation for
specific classes of disturbances �such as periodic disturbances�.
Actually, one can provide Bode-like plots �10� for uniformly con-
vergent systems, based on which one can introduce effective per-
formance evaluation techniques involving computed steady-state
responses. Using these Bode-like plots, we provide, in this paper,
performance measures of the system responses, e.g., the maxi-
mum “amplitude” or the maximum total energy of a response over
a relevant frequency range of the periodic disturbances. This al-
lows to design performance driven controllers for applications in
which periodic disturbances are dominant.

In order to support practical applicability, we propose an
output-feedback control design procedure that guarantees a bound
on the control input of the system. This bound guarantees that the
control action, required to render a system convergent within a
given class of disturbances, stays below a predefined value for a
given set of initial conditions of interest. Here, we build the re-
sults on upperbounding the control input as introduced in Ref.
�11� for linear systems, in Ref. �12� for discrete-time uncertain
linear systems and in Refs. �13–15� for PWA systems.

Resuming, the contribution of the paper is threefold. First, a
comprehensive approach towards the synthesis of feedback con-
trollers for the disturbance attenuation of continuous PWA sys-
tems with bounds on the control is presented. Second, the analysis
of the closed-loop performance is based on generalized frequency
response functions for nonlinear convergent systems. It is exactly
this approach, which makes the performance analysis both accu-
rate and computationally feasible at the same time, which is key in
making the approach suitable in the context of an application
study. Third, the proposed controller design and performance
analysis approach is applied to an experimental piecewise linear
beam system.

The structure of this paper is as follows. We first describe an
output-feedback control design strategy that is suitable for distur-

bance attenuation of continuous PWA systems in Sec. 2. More-
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ver, we propose techniques to include a bound on the control
nput. In Sec. 3.1, we provide performance measures based on
omputed steady-state responses for periodic disturbances. More-
ver, we combine the developed tools in a systematic approach
owards high-performance control designs in Sec. 3.2. Further-

ore, in Sec. 4 we implement the proposed approach on an ex-
erimental benchmark system for continuous PWA systems. Fi-
ally, a discussion of the results presented in this paper and
irections for future work are given in Sec. 5.

Convergence-Based Control Design With Control
nput Bounds

In this section, we propose a control design that renders the
losed-loop PWA system uniformly convergent. We start with pro-
iding a definition of convergence for general nonlinear systems
f the form

ẋ = f�x,w�t�� �1�

ith state x�Rn, t�R, and disturbance w�Rd, where f�x ,w�t��
s locally Lipschitz in x and continuous in w. In the sequel, we
ill consider the class PCd of piecewise continuous inputs
�t� :R→Rd, which are bounded on R.
DEFINITION 2.1. System �1� is said to be �9�

• Convergent if there exists a solution x̄w�t� satisfying the fol-
lowing conditions, for every input w�t��PCd:

�i� x̄w�t� is defined and bounded for all t�R
�ii� x̄w�t� is globally asymptotically stable

• Uniformly convergent if it is convergent and x̄w�t� is glo-
bally uniformly asymptotically stable, for every input w�t�
�PCd.

In order to emphasize the dependency on the disturbance w�t�,
he steady-state solution is denoted by x̄w�t�.

We consider the following class of PWA systems:

ẋ = Aix + bi + Bw�t� + B1u for x � �i, i = 1, . . . ,l �2a�

y = Cx , �2b�

here x�Rn, w�Rm, u�Rk, and y�Rp are the state, the distur-
ance, the control input and the output of the system, respectively,
epending on time t�R. The matrices Ai , bi , i=1, . . . , l, B, B1,
nd C are constant matrices of appropriate dimensions. The sets
i are polyhedral �i.e., given by a finite number of linear inequali-

ies� and form a partitioning of the state-space Rn in the sense that
he sets �i have disjoint interiors and �i�i=Rn. In the sequel, we
ill in particular deal with PWA systems that have continuous

ight-hand sides.
Consider an output-feedback control law as the input for the

ystem Eq. �2a� given by

u = − Kx̂ = − K�x − �x� �3�
nd the model-based observer

ẋ̂ = Aix̂ + bi + Bw�t� + B1u + L�y�t� − ŷ� �4a�

ŷ = Cx̂ �4b�

or x̂��i , i=1, . . . , l, where K�Rk�n is the control gain, x̂ the
stimated state of system �2a� using the observer �4a�, �xªx− x̂
he difference between the system and the estimated state �the
stimation error� and L�Rn�p the observer gain. The control goal
an now be stated as: determine, if possible, the control gain K in
q. �3� and observer gain L in Eq. �4� such that the closed-loop
ystems Eqs. �2a�, �2b�, �3�, �4a�, and �4b� is uniformly conver-

ent.
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This problem can be solved by using a result in Ref. �9�, which
states sufficient conditions under which a linear output-feedback
law as in Eqs. �3� and �4� renders a continuous PWA system as in
Eq. �2a� uniformly convergent.

THEOREM 2.1. [9] Consider the continuous PWA system (2). Sup-
pose that the linear matrix inequalities (LMIs)

Pc = Pc
T � 0 �5a�

PcAi
T + AiPc − B1Ps − Ps

TB1
T � 0, i = 1, . . . ,l �5b�

Po = Po
T � 0 �6a�

PoAi + Ai
TPo − XC − CTXT � 0, i = 1, . . . ,l �6b�

are feasible, i.e., there exist matrices Pc , Po , Ps and X that fulfill
(5) and (6). Let K= PsPc

−1 and L= Po
−1X be the controller gain in

Eq. (3) and the observer gain for the observer (4), respectively.
Then, the closed-loop systems (2a), (2b), (3), (4a), and (4b) is
uniformly convergent with respect to the disturbance w�t�.

Such a convergence-based control design can readily be ex-
tended to piecewise affine feedback laws and discontinuous PWA
systems, see Refs. �16,17�. Here, we will focus on applying such
control designs to tackle the disturbance attenuation problem for
an experimental continuous PWA system. In such an application
context it is important to guarantee that the control action required
to render a system convergent stays below a predefined value,
given a class of bounded disturbances and a compact set of initial
conditions. For the sake of simplicity, we focus on the case, where
the PWA system �2� is in closed-loop with the state-feedback law
u=−Kx, assuming �x=0 for the moment. The next result provides
conditions under which �i� the closed-loop systems �2a� and �3�
with �x=0, is rendered uniformly convergent; �ii� the controlled
input is guaranteed to satisfy the bound �u�t���umax for a given
bound on the disturbances and a bounded set of initial conditions.
Herein, we use the following notational conventions: ��ª �	
�Rn � �	�P

2 ���, where �	�P
2
ª	TP	 and 
max� · � represents the

maximum eigenvalue of a symmetric matrix.
THEOREM 2.2. [18] Consider system (2). Suppose there exist ma-

trices Ps�Rk�n and Pc�Rn�n that satisfy the matrix inequalities
(5) and

	umax
2 /�I Ps

Ps
T Pc


 � 0 �7�

for a given umax�0 and ��0 and define KªPsPc
−1. Then,

• the closed-loop system �2� with controller u=−Kx, is uni-
formly convergent

• the solution x�t� of the closed-loop system (2) with control-
ler u=−Kx and with initial state x0=x�t0���� , is asymp-
totically ultimately bounded to the positively invariant set
�� for a given bounded disturbance w�t� with ��

given by ��= �x�Rn � �x�P
2 ���, �= 1


2 �maxi��1,. . .,l���bi�P�
+ �B�Psupt�R�w�t��P�2 and 
=mini��1,. . .,l��− 1

2
max�P1/2�Ai

−B1K�P−1/2+ P−1/2�Ai−B1K�TP1/2�� with P= Pc
−1.

Suppose �� satisfies �����, then for any trajectory x�t� with
x�t0���� for some t0�0, it holds that �u�t��� �Kx�t���umax for
all t� t0 and the bounded disturbance w�t�.

Proof. For the sake of brevity, we refer to Ref. �18� for the
proof.

In the above theorem, we have developed bounds for the state
and the control input of the PWA system �2� in closed-loop with
the state-feedback law u=−Kx. In order to use these bounds in the
output-feedback case, one can activate first the observer and then,
after �x has converged �closely� to zero, switch on the controller.
In such a situation, we can still apply the control input bounds,

developed in this section, to the output-feedback case.
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Performance Measures for Periodic Disturbances
nd an Approach Towards Disturbance Attenuation

3.1 Performance Measures. In many engineering systems,
esponses with large amplitudes and high energy content are gen-
rally highly undesirable. Moreover, many disturbances are, or
an be approximated, as being periodic. Therefore, it is of interest
o study control designs for engineering systems excited by peri-
dic disturbances. This motivates the need for performance mea-
ures that reflect the magnitude and/or energy of such periodic
esponses. To obtain such performance measures, we utilize the
roperty that for uniformly convergent systems the steady-state
esponse to a given harmonic disturbance exists, is unique, glo-
ally asymptotically stable, and has the same period time as the
isturbance �9�. Using these unique periodic steady-state re-
ponses, we propose a performance measure that is based on the
aximum value of the Lp-norm �signal norm� of these steady-

tate responses ȳ�,R�t� for system �2�–�3� and disturbances w�t�
R sin �t over a relevant range of frequencies �� ��min,�max�
nd amplitudes R� �Rmin,Rmax�. The “worst case” performance
easure is denoted by �1

p, p�N� ���, and it is defined according
o

�1
p =

�1
p

�1,ref
p , 1 � p � � �8�

ith

�1
p = max

R��Rmin,Rmax�
� max

����min,�max�
�ȳ�,R�Lp

� �9�

nd

�1,ref
p = max

R��Rmin,Rmax�
� max

����min,�max�
�ȳref

�,R�Lp
� �10�

here ȳref
�,R is the steady-state output response of system �2�–�3�

or a certain reference controller. Note that, �1
� reflects the worst

ase output amplitude or peak value and that �1
2 reflects the worst

ase output energy. We also propose an “averaged” performance
easure over a range of excitation frequencies and amplitudes.
e denote this measure by �2

p and define it as

�2
p =

�Rmin

Rmax��min

�max�ȳ�,R�Lp
d�dR

�Rmin

Rmax��min

�max�ȳref
�,R�Lp

d�dR
for 1 � p � � �11�

imilar as �1
p, �2

p�R+ is also a relative measure with respect to a
eference controller.

3.2 An Approach for Attenuating Periodic Disturbances in
ontinuous PWA Systems. In this section, we consider the

onvergence-based controller and the input bound proposed in
ec. 2 and the performance measures proposed in Sec. 3.1, in
rder to develop a systematic approach for disturbance attenuation
f continuous PWA systems in the face of harmonic disturbances.

We propose the following stepwise procedure for controller de-
ign.

�1� Choose the upperbound for the control input umax, an up-
perbound �Rmaxªsupt�R�w�t��� for the disturbances w and
a value for � in Theorem 2.2.

�2� Compute Pc and Ps by solving the LMIs �5� and �7� and
compute the control gain by K= PsPc

−1. This guarantees that
the system �2� in closed-loop with the resulting control law
�3� with �x=0 is uniformly convergent.

�3� Compute � as defined in Theorem 2.2 using Rmax. As long
as ��� �in other words ������, then we know from
Theorem 2.2 that the control input u is bounded by umax for
any initial state in �� and all disturbances with
supt�R�w�t���Rmax. The size of �� should also be large
enough such that it contains the set of initial conditions of

interest, which we denote by X0.
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In the present work, we will exploit this procedure and will
construct a controller, of the form u=−Kx, satisfying �5� and �7�
for an experimental PWA beam system and evaluate its perfor-
mance in terms of disturbance attenuation using the measures in
Sec. 3.1. Of course, a more structured approach would be to use
the proposed performance measures as objective functions in an
optimization problem in which the LMIs �5� and �7� are con-
straints. Since �1

p and �2
p are not analytically available, this is not

a straightforward task at present and remains a topic for future
research.

4 Simulations and Experiments
In order to evaluate the proposed approach towards disturbance

attenuation in practice, we apply the proposed performance-based
control design to an experimental setup.

4.1 The PWA Beam System. The experimental setup �see
Figs. 1 and 2� consists of a steel beam supported at both ends by
two leaf springs. A second beam, that is clamped at both ends, is
located parallel to the first one and acts as a one-sided spring. This
one-sided spring represents a nonsmooth nonlinearity in the dy-
namics of the beam system. The beam is excited by a periodic
force w�t� generated by a rotating mass-unbalance, which is
mounted at the middle of the beam. A tacho-controlled motor, that
enables a constant rotational speed, drives the mass-unbalance. An
actuator is mounted on the beam in order to control the beam
dynamics. In the experimental setup, transversal beam displace-
ments are measured using linear voltage displacement transducers
�measuring qmid and yA, as in Fig. 2�.

Only when the beam moves from its rest point towards the
one-sided spring, the spring is active. Therefore, the system has
different dynamics on opposite sides. The switching boundary be-
tween the two dynamic regimes is present at zero displacement of
the middle of the beam. In case the one-sided spring has linear

Fig. 1 Photo of the experimental setup

Fig. 2 Experimental PWA beam system and its characteristic

lengths and variables
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estoring characteristics, the beam system can be described as a
ontinuous PWA system �2�.

The dynamics of the system is described by a four degree-of-
reedom �DOF� model that was constructed by a applying model
eduction technique to a finite element model of the flexible beam
hat consists of 111 DOF, see Ref. �19�. This reduced system is
iven by

Mrq̈ + Brq̇ + Krq + fnl�q� = h1w�t� + h2u �12�

here h1= �1 0 0 0�T, h2= �0 1 0 0�T, and q
�qmid qact q	,1 q	,3�T. Herein, qmid is the displacement of the
iddle of the beam and qact is the displacement of the point,
here the actuator is mounted at the beam, see Fig. 2. Moreover,

	,1 , q	,2 reflect the contribution of the first and third eigenmode
f the beam that occur at 21 Hz and 55 Hz, respectively. Mr, Br,
nd Kr are the mass, damping, and stiffness matrices of the re-
uced model, respectively. We apply a periodic excitation force
�t�=R���sin �t, which is generated by the rotating mass-
nbalance at the middle of the beam. Herein, � is the excitation
requency and R��� the amplitude of the excitation force. The
mplitude R��� has the form R���=ma�2, where ma=mere with

e and re the mass-unbalance and the distance of me with respect
o the center of mass of the mass-unbalance mechanism, respec-
ively. The frequency dependency of R��� is due to the rotating
ass-unbalance. The numerical values of ma, me, and re are

.014�10−3 kg m, 0.078 kg, 0.013 m, respectively. The range of
he excitation frequency � /2� is 10–60 Hz. Moreover, in
q. �12�, fnl is the restoring force of the one-sided spring:

fnl�q�=knlh1 min�0,h1
Tq�=knlh1 min�0,qmid�, where knl=1.6

105 N /m is the stiffness of the one-sided spring. In state-space
orm, the model of the PWA beam system can be written as in Eq.
2� for l=2, bi=0, i=1,2, �1= �x�Rn �HTx�0�, and �2= �x
Rn �HTx�0�. Herein, w is the disturbance and u is the control

nput, which will be generated by the output-based controller �3�–
4�, x= �qT q̇T�T�R8 and H= �h1

T 04�1
T �T,

A1 = 	 04�4 I4�4

− Mr
−1�Kr + knlh1h1

T� − Mr
−1Br


, B = 	 04�1

Mr
−1h1



�13�

A2 = 	 04�4 I4�4

− Mr
−1Kr − Mr

−1Br

, B1 = 	 04�1

Mr
−1h2



ote that this bimodal PWA system is indeed continuous as A1x
A2x when HTx=0. The numerical values of the matrices
r �kg�, Kr �N /m�, and Br �Ns /m� are

Mr = �
3.38062 1.2961 2.0957 − 0.4958

1.2961 38.6548 16.3153 − 14.6109

2.0957 16.3153 8.6864 − 6.2413

− 0.4958 − 14.6109 − 6.2413 6.5893



Kr = 106�
2.4151 0.0521 1.1445 − 0.0199

0.0521 6.3914 2.6420 − 2.4342

1.1445 2.6420 1.6270 − 1.0107

− 0.0199 − 2.4342 − 1.0107 1.0542



Br = �
109.3370 25.8569 61.4792 − 9.8913

25.8569 294.2009 128.7864 − 108.5757

61.4792 128.7864 85.1265 − 49.2662

− 9.8913 − 108.5757 − 49.2662 55.5620



he output of the model equation �12� is the transversal displace-
ent of the point A on the beam as depicted in Fig. 2, i.e., y

Cx with C= �−0.317 −0.334 −0.667 −0.3069 0 0 0 0�.

44502-4 / Vol. 132, JULY 2010
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4.2 Experimental Implementation of an Output-Feedback
Design on the PWA Beam System. First, we use the observer �4�
to estimate the state of the PWA beam system because we con-
sider the situation in which we can only measure the transversal
displacement of one point on the beam �i.e., the full state is not
available for feedback�. An observer based on the results of Theo-
rem 2.1 is designed and implemented on the PWA beam system.
This observer is able to estimate the system state adequately and
the observer error dynamics is globally exponentially stable �i.e.,
limt→� �x�t�=0�. The values of the observer gain L in Eq. �4� that
are used here are taken from Ref. �18�: L= �93.059 89.959
−225.506 −7.496 4510.783 5736.74613937.6 547.24�.

Next, we apply the approach presented in Sec. 3.2 to the PWA
beam system. We consider the cases in which the controller is
switched on either when the observer error dynamics has con-
verged to zero and the open-loop PWA beam system is in steady-
state �case I� or when the beam is at rest �case II�. This fact
implies that, in case I, the initial state x0 is on a steady-state
solution of the open-loop system �x̄ol� or, in case I, that x0=0.
Based on this reasoning, we select the set of initial conditions
X0= �x̄ol

� �t� � �� /2��� �10,60�Hz , t� �0, �� /2����� �0�. x̄ol
� repre-

sents open-loop steady-state periodic responses. Moreover, we
choose umax=650 N �the maximum force that the actuator can
provide�, Rmax=144 N �the maximum amplitude of the distur-
bances�, and �=74. The choice for this value for � depends on the
positively invariant set ��, the set of initial conditions X0 and the
matrix P and its validity needs an a posteriori check; see below.
Then, we compute a control gain K for the considered system by
using the LMI condition �5� together with the LMI condition �7�
that ensures the satisfaction of the bound on the control action u,
yielding: K= �−7524.4 4831.3 −16196.0 499.03 26.791
54.566−236.63 −0.2323�. Next, we compute � as defined in
Theorem 2.2: �=53.48. Furthermore, the set X0 is a subset of a
set �� that has the form ��= �x0�Rn �x0

TPx0��� with �
= �max���20�,120���maxt��0,2�/���x̄ol

� �t��P
2 ��. The numerical value of

� is 72.26.
Now, we will guarantee that the control input is smaller than

umax for all t and all � /2�� �10 60� Hz �for both cases I and II�.
More precisely, we will guarantee that if we activate the controller
while x0�X0���, then the control input constraint is satisfied.
Using Theorem 2.2, it indeed holds that �� contains �� and ��

���max�� ,��� for �=74. This guarantees that for initial states in
X0 and all � /2�� �10 60� Hz the control bound umax is satisfied.

Next, we will show that �i� the open-loop system is not uni-
formly convergent, �ii� the closed-loop system is uniformly con-
vergent, �iii� the controller attenuates the periodic disturbances
acting on the beam system, and �iv� the actuator bounds are sat-
isfied. In Fig. 3, we depict the measured and simulated steady-
state transversal displacement qmid for both the open- and closed-
loop systems �in the experiments a sampling frequency of 2570
Hz has been used for discrete-time implementation of the
observer-based controller�. In this figure, it is shown that the
open-loop system exhibits multiple steady-state solutions �both
harmonic and 1/2 subharmonic solutions� for � /2�
� �35,53� Hz while the closed-loop system exhibits unique
steady-state solutions for � /2�� �10,60� Hz. As a consequence,
the open-loop system is not uniformly convergent while the
closed-loop system is uniformly convergent. Moreover, the pic-
ture shows that the simulated and measured responses, in both
open-loop and closed-loop, match well.

The comparison of the plots for open- and closed-loop systems
�using both simulations and measurements�, depicted in Fig. 3,
shows that for the frequency ranges, where the open-loop exhibits
resonance peaks with high amplitudes, the closed-loop system re-
sponses are significantly smaller than those of the open-loop sys-

tem. Based on this comparison, it is concluded that the effect of
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Downloa
he disturbances w�t� to the PWA beam is attenuated due to the
ontrol force u. This can also be noticed in Fig. 4, where the time
esponse of qmid in steady-state is shown for excitation frequen-
ies of 20 Hz and 43 Hz, respectively. Note that, for the closed-
oop system, Fig. 3 displays a Bode-like plot characterizing the
nique steady-state response. It is exactly such a unique
requency-domain representation of the performance that is instru-
ental in designing high-performance controllers for disturbance

ttenuation. In Fig. 5, we depict maxt��0 T��u�t�� for all � /2�

�10 60� Hz for the closed-loop system together with the upper-
ound umax=650 N. In this figure, it is shown that indeed �u�t��
umax for all t� �0 T� , � /2�� �10 60� Hz as guaranteed by

heorem 2.2.
Finally, we will study the level of disturbance attenuation

chieved in the closed-loop system based on the performance
easures proposed in Sec. 3.1. Consider the performance mea-
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Fig. 3 Open- and closed-loop steady-state
ing simulations and measurements.
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R=16 N, � /2�=20 Hz and „b… R=74 N, � /2�=
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sures �1
p, �2

p, defined in Eqs. �8� and �11�, for p=� and output
y=qmid. We choose p=� as we are mainly interested in attenuat-
ing the peaks of qmid. As we have already mentioned in Sec. 4.1,
the amplitude of the disturbance is a function of � �R���
=ma�2�. Therefore, the steady-state output response ȳ�,R in Eq.
�8� and �11� only depends on � and therefore ȳ�,R can be denoted
as ȳ�. For the same reason, the maximization over the disturbance
amplitude R in �1

� and the integration over a range in R in �2
� can

be omitted. The values of �min and �max are 20� rad /s and
120� rad /s, respectively, �see also Sec. 4.1�.

For the computation of these measures we will consider the
experimental steady-state open-loop and closed-loop responses.
As a reference we choose the uncontrolled system. By computing
the values of the proposed performance measures, denoted here as
�1

� and �2
�, it is concluded that the periodic disturbances acting
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Downloa
n the PWA beam are considerably suppressed in the closed-loop
ystem since �1

�=0.071, �2
�=0.116.

The latter performance study has been performed for a range of
ifferent control gains satisfying the conditions of Theorem 2.2.
he control gain K discussed here proved to exhibit a superior
erformance in terms of the performance measures �1

�, �2
� and

as therefore the one chosen to be implemented.

Conclusions
We presented a novel output-feedback control design strategy

or a class of periodically perturbed and �input-�constrained PWA
ystems in order to achieve desirable disturbance attenuation
roperties. These output-feedback controllers consist of the inter-
onnection of a model-based observer and a state-feedback based
n the estimated state of the observer.

Core to our design was the uniform convergence property,
hich was exploited in several manners. First of all, uniform con-
ergence was utilized in the design of the observer. Second, the
utput-feedback controller was built such that it renders the
losed-loop system uniformly convergent. In the assessment of the
isturbance attenuation properties, we used the fact that a uni-
ormly convergent system has a unique globally asymptotically
table steady-state solution for bounded disturbance signals.
ased on this fact, we proposed performance measures to com-
are the disturbance attenuation properties of different control
aws. These performance measures consist of �i� frequency re-
ponse functions that provide Bode-like plots for the class of har-
onic disturbances and �ii� quantitative characterizations ��1

p and

2
p� that capture worst case or averaged performance behavior of

he steady-state responses.
To include the limitations of the control action into the design,

onditions based on LMIs are used to guarantee that the control
nput satisfies an a priori set upperbound for given bounds on both
he disturbances and the initial conditions. Such a guaranteed
ound on the control action is very important for the implemen-
ation of the proposed control design strategy on real engineering
ystems as we always have to deal with actuation limitations in
ractice.

To demonstrate the effectiveness of the proposed design meth-
ds, we implemented a convergence-based output-feedback con-
rol design on an experimental PWA system and evaluated the
erformance of this controller in terms of disturbance attenuation.
his performance evaluation is based on performance measures
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Fig. 5 The maximum absol
or the system’s �measured� periodic responses. The evaluation
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showed that the proposed design is able to significantly attenuate
the influence of periodic disturbance to the system.

An interesting extension of this work would be the formulation
of the presented performance-based control design strategy in
terms of an optimization problem. In such a problem setting, the
proposed performance measures ��1

p or �2
p� can be used as objec-

tive functions and the convergence property together with the con-
trol input saturation as LMI-based constraints for the optimization
problem. Such an approach may be more efficient in constructing
a high performance controller, although at the moment it is an
open problem on how to tackle such complex optimization prob-
lems due to the lack of analytical or numerically easily comput-
able expressions of the performance measures in terms of the
controller parameters.
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