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a b s t r a c t

Automation of Managed Pressure Drilling (MPD) allows for fast and accurate pressure control in drilling
operations. The achievable performance in automated MPD with model-based controllers is determined
by the controller and, indirectly, also by the hydraulics model used for controller synthesis. On the one
hand, such a hydraulics model should accurately capture essential flow dynamics of the system such
as, e.g., wave propagation effects, for which typically complex models are needed. On the other hand,
a suitable model should be simple enough to facilitate high-performance controller design as well as
to support fast simulation studies supporting well scenario analysis. This paper shows that low-order
models in terms of delay differential equations can effectively meet these requirements. Moreover,
we propose a data-based model reduction technique to construct these low-order delay models. Next,
based on this reduced-complexity model, a novel controller is designed to regulate the downhole
pressure. Simulation results confirm that this controller outperforms existing pressure controllers in
realistic drilling scenarios related to the mitigation of liquid kicks and mud losses encountered when
drilling into high- or low-pressure zones.

© 2022 Published by Elsevier Ltd.
1. Introduction

Energy resources such as oil and gas are often trapped within
eep layers of the earth’s crust. Deep wells need to be drilled
o access these resources. In the drilling process of a well, a
iquid, called drilling mud, is pumped in the wellbore to transport
rilling cuttings to the surface and to enable the adjustment
f the wellbore pressure. Specifically, the pressure at the bot-
om of the well should ideally be maintained at the pressure in
he formations/reservoir surrounding the wellbore. This crucial
equirement is related to the desire to prevent kicks, that is, un-
anted flow of gas and liquid from the formation/reservoir into
he wellbore, or to avoid fracturing the formation and prevent
ost mud circulation, which can potentially cause a pressure drop
f not addressed in time. Kicks can grow into catastrophic well
ontrol events [1] such as the Deepwater Horizon blowout [2] (for
list of other serious blowouts, see [3]).
Downhole pressure control is conventionally practiced by ad-

usting the mud density during drilling. However, this method
f pressure control is slow and inaccurate, while also lacking a
eans of compensating for transient pressure fluctuations caused
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ttps://doi.org/10.1016/j.jprocont.2022.11.012
959-1524/© 2022 Published by Elsevier Ltd.
by, for instance, drilling into a high pressure zone and heave
motions [4]. To overcome these shortcomings of the conven-
tional pressure control method, the method of managed pressure
drilling (MPD) has been introduced, see, e.g., [5,6]. In MPD, the
annulus is sealed off at the surface with a rotating control device
and the mud is circulated out of the well through a choke valve,
see Fig. 1. This combination provides a back-pressure that can be
actively controlled by changing the choke opening. Nowadays, the
use of automatic control solutions is becoming more common in
the automation of rotary drilling processes [7]. In particular in
automated MPD, the choke valve, thereby the back-pressure, is
controlled by an automatic pressure control system [6–8]. The
performance of this control system depends on the pressure
controller, which, in turn, is typically based on an underlying
hydraulics model. This model should be accurate enough to cap-
ture the essential hydraulic characteristics of the system. At the
same time, the complexity of the model should be restricted to
facilitate the application of established system-theoretic analysis
and controller design techniques.

Available low-complexity hydraulics models, such as the
model in [8,9], are, however, incapable of capturing essential
transient dynamics, such as the wave propagation effect (also
known as the waterhammer effect). Ignoring such phenomena in
modeling and controller design can bring about a failure in the
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Fig. 1. A simplified schematic diagram of a drilling system operated using MPD.
ccomplishment of pressure control objectives [10], such as guar-
nteeing that the downhole pressure remains within a safe bound
round its reference value. In particular, in the case of longer
ells (longer than 4000 m), the wave propagation effect becomes
o significant [11] that instability issues can arise [10] when
his effect is not properly taken into account during controller
ynthesis.
As discussed in [12], pressure control systems for MPD are

onventionally designed to be slow to, among other things, avoid
uch stability issues. As such, these controllers are also slow in
ick and mud loss attenuation. Furthermore, fast control action
y these controllers can initiate undesirable propagating pressure
aves which are harmful and can damage the drilling equip-
ent. The goal of this paper is to show that a pressure control
ystem designed based on a new low-complexity model which
aptures accurately the wave propagation effect can outperform
onventional pressure controllers.
For many drilling scenarios, the system hydraulics can be de-

cribed by linear hyperbolic partial differential equations (PDEs)
nd a set of boundary equations. The equations describing these
oundary conditions are nonlinear, but these nonlinearities act
nly locally, i.e., at the boundaries. However, system analysis
nd controller design techniques developed for this type of PDE
odels are still relatively elementary and mostly focus on sta-
ilization aspects rather than control performance. Namely, the
omplexity of these models currently hampers the design of
ontrollers that can meet more advanced performance criteria.
As an approach to address complexities associated to these

DE models, model reduction techniques have gained popularity
n MPD automation in the last two decades. In [8,13–15], low-

rder approximative models in terms of ordinary differential

70
equations (ODEs), obtained by ignoring the distributed nature
of the hydraulics of a drilling system, have been proposed and
used for pressure controller design. Low- to medium-resolution
spatial discretization is another model reduction approach which
has been pursued in drilling automation [10,14,16,17]. A recently
developed approach to constructing low-order, but accurate, hy-
draulics models is to apply automatic model order reduction
techniques to the models resulted from the high-resolution spa-
tial discretization [12,18,19]. A new perspective to this problem
has been presented in our recent preliminary work [20], the
rationale of which is explained next.

We known that the boundary input–output behavior of hyper-
bolic PDE systems without source terms can exactly be described
by models in terms of delay-difference equations [21], also known
as continuous-time difference equations (CTDEs). A well-known
example is D’Alembert’s formula which represents a transfor-
mation between the wave equation and delay-difference equa-
tions [22]. The presence of coupling source terms, however, leads
to integro-difference systems with complex kernel functions [23].
The complexity of these kernel functions brings into question the
potential of such models for controller synthesis. The work in [24]
ignored the coupling source terms to obtain a delay-difference
model. This model was used to design a pressure controller for
the rejection of heave-induced pressure fluctuations. Contrary
to [23], in [20], we have used approximations to avoid the occur-
rence of distributed delay terms and kernel functions. Namely,
we have shown that a special class of hyperbolic PDE systems
with coupling source terms can effectively be approximated by a
combination of low-order models in terms of CTDEs and ODEs.

In this paper, we exploit the fact that PDE models developed
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or single-phase flow drilling scenarios fall also into that class of
odels and propose to design pressure controllers on the basis
f such low-complexity models.
The main contributions of this paper are as follows. First, we

uild upon our previous results in [20] and construct a low-order
ydraulics time-delay model which is highly accurate in modeling
ingle-phase hydraulics in MPD systems in general and liquid
icks scenarios in particular. The latter aspect is the essential
ovelty with respect to [20]. Second, we exploit the properties of
his model and design a novel model-based pressure controller
n its basis. The controller uses only the surface pressure mea-
urements that are available in practice. To be able to design
his controller, we have extended existing controller design tech-
iques for singular time-delay system, which forms part of the
heoretical contribution of this paper. Given the fact that the
roposed model accurately captures the wave propagation effect,
he developed controller, as opposed to conventional pressure
ontrollers, comes with robustness against this effect. Thanks to
his robustness, the controller can be tuned for fast transient per-
ormance without encountering stability issues due to the wave
ropagation effect. Indeed, if tuned appropriately, the presented
ontroller can even attenuate pressure fluctuations generated due
o the wave propagation effect, by virtue of the internal model
rinciple. The effectiveness of the proposed reduced-complexity
odeling and controller design strategy is evidenced by means of
simulation-based study of real-life drilling scenarios.
Outline. Section 2 is devoted to the mathematical modeling

of single-phase flow (managed pressure) drilling systems. In Sec-
tion 3, the proposed model complexity reduction procedure is
described. The controller design technique is presented in Sec-
tion 4. Simulation results are presented in Section 5 and, finally,
conclusions in Section 6.

Notation. The notation R and C refer to the field of real
and complex numbers, respectively. The space of all absolutely
continuous functions that map the interval [a, b] into Rn is shown
by C([a, b],Rn). A block-diagonal matrix with A1, . . . , Am on the
diagonal is represented as blkdiag{A1, . . . , Am}, and Im is them×m
identity matrix.

2. Mathematical modeling for MPD

For many drilling scenarios, a drilling system with MPD can
be described by a system of linear PDEs with nonlinear bound-
ary conditions [25]. In particular, to model the hydraulics of a
drilling system, we use the so-called U-tube modeling approach.
In this approach, the drilling system is modeled as two connected
pipes which respectively model the drillstring and annulus of the
drilling system, see Fig. 1. The flow behavior in each of these pipes
is then modeled by a set of isothermal Euler equations [26], [8]
of the following form (see [12] and [8] and references therein):
∂ρi

∂t
+
∂ρiνi

∂ξ
= 0,

∂ρiνi

∂t
+
∂pi
∂ξ

= −ρig sin θi −
32µiρiνi

ρ0d2i
, i = a, d,

(1)

where subscripts a and d are used to distinguish between, respec-
tively, the annulus and drillstring and their respective variables
and parameters. Here, ξ ∈ [0, l] and t ≥ 0 are the spatial and
emporal variables, respectively, l [m] is the length of the well,
nd ρi(t, ξ ) [kg/m3], vi(t, ξ ) [m/s] and pi(t, ξ ) [Pa] represent the
luid density, velocity and pressure, respectively. Moreover, θi
[rad], µi [Pa s], di [m] and g [m/s2] represent the well inclination,
iscosity of mud, hydraulic diameter and gravitational accelera-
ion, respectively, and ρ0 is the density that is measured at the
eference pressure p0. For the drillstring, dd = din, where din is
the inner diameter of the drillstring. The hydraulic diameter of
71
the annulus is given by da = Din − do, where Din is the wellbore
diameter and do is the outer diameter of the drillstring. Moreover,
θa = −θd. In this formulation, the pressure is related to the
density through a linear equation of state as

pi = c2l (ρi − ρ0)+ p0, (2)

where cl is the speed of sound.
The boundary conditions of this system are given by the equa-

tions describing the bit model, mass conservation over the bit,
choke and pump, and read [27,28]

Adηd(t, l) − Anzcdcl
√
2ρd(t, l)(ρd(t, l) − ρdh(t)) = 0,

Adηd(t, l) − Aaηa(t, 0) + Jres(t) = 0,

Aaηa(t, l) − kcclG(zc(t))
√
2ρc(t) (ρc(t) − ρ0) = 0,
Adηd(t, 0) − Jp(t) = 0,

(3)

espectively. Herein, ηi := ρivi is the momentum, and ρdh(t) :=

a(t, 0) and ρc(t) := ρa(t, l) are the downhole and choke densi-
ies, respectively, whereas Ad [m2], Aa [m2], Anz [m2], cd [-] and
c [m2] are the area of the drillstring, area of the annulus, area of
he bit nozzles, discharge coefficient of the bit nozzles and the
low factor of the choke. Furthermore, Jp [kg/s], zc [-] and G(·)
re, respectively, the pump mass flow rate, the choke opening
nd the choke characteristic, which is a non-decreasing function.
oreover, Jres is the flow exchange between the reservoir and
ellore, and it is described by the reservoir model. In this paper,
e use the following reservoir model:

res(t) = kresc2l (ρres(t) − ρdh(t)) , (4)

where kres [ms] is the production index of the reservoir and ρres
is the density corresponding to the reservoir pressure pres. In this
formulation of the boundary conditions, a kick and lost circulation
take place when Jres > 0 and Jres < 0, respectively. In an MPD
configuration, the main control inputs are the pump flow rate
Jc and the choke opening zc , while ρres can be considered as a
disturbance input.

Remark 1. It is noted that the presented model is meant to
capture those dynamical aspects of a drilling system which play
a significant role, from a systems and control perspective, in the
overall dynamical behavior of the system for small variations in
the pump flow rate. Therefore, less significant effects such as
those related to rock cuttings, slow temperature transients and
the rotation of the drillstring have been ignored in the model.
Nonetheless, it should be mentioned that some of these effects
can to a good extent be lumped into the parameters of the current
model. For instance, the nonlinear behavior of the flow in the
drillstring, especially in the bottom hole assembly, can with a
good accuracy be included in the pressure drop across the bit [27].

Next, we write (1) in perturbation coordinates ρ̃i(t, ξ ) =

ρi(t, ξ ) − ρ∗

i (ξ ), η̃i(t, ξ ) = ηi(t, ξ ) − η∗

i (ξ ), i = a, d, with respect
to the steady-state solution ρ∗

i , η
∗

i , i = a, d, that corresponds to
the nominal (input and disturbance) values z∗

c , J
∗
p and ρ∗

res. This
change of coordinates leads to the following PDE model:
∂Q
∂t

+ Ψc
∂Q
∂ξ

+ FcQ = 0, Q (0, ξ ) = 0, (5)

where Q T (t, ξ ) = [qTd(t, ξ ), q
T
a (t, ξ )] is the vector of distributed

variables in the perturbation coordinates with qTd = [ρ̃d, η̃d] and
qTa = [ρ̃a, η̃a] being the vectors of the perturbed distributed
variables in the drillstring and annulus, respectively. Moreover,
we have Ψc = blkdiag{Ψ ,Ψ } and Fc = blkdiag{Fd, Fa}, where

Ψ =

[
0 1
c2 0

]
, Fi =

[
0 0

g sin θi
32µi

2

]
. (6)
l ρ0di
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In the perturbation coordinates, the boundary conditions (3)
an be written in a vector form as follows:

1

[
Q (t, 0)
Q (t, l)

]
−Π2ψ

(
Γ

[
Q (t, 0)
Q (t, l)

]
, ud(t)

)
= 0, (7)

where ud ∈ Rp is the vector of exogenous (perturbed) inputs,
including control input and disturbance, and ψ is in general a
nonlinear function. Moreover, Π1 ∈ R4×8, Γ ∈ Rm̄×8 and Π2 ∈

R4×p̄ are given matrices. Here, m̄ is the dimension of the first
argument of ψ and p̄ is the dimension of this function. For details,
see (47) and (48) in Appendix A. The elements of the input ud are
defined depending on the drilling scenario under consideration.
In this paper, we only consider scenarios where J̃p = 0 and,
thus, define uT

d (t) = [z̃c(t), ρ̃res(t)], where z̃c(t) = zc(t) − z∗
c and

ρ̃res(t) = ρres(t) − ρ∗
res. Furthermore, we assume that for some

matrix H ∈ Rm×m̄, the output is given by

y(t) = HΓ
[

Q (t, 0)
Q (t, l)

]
. (8)

In this paper, the output is a vector of the perturbed pump,
downhole and choke densities, ρ̃p, ρ̃dh and ρ̃c as defined below
(3), respectively. Note that ρ̃c(t) = ρc(t)−ρ∗

c , ρ̃dh(t) = ρdh(t)−ρ∗

dh
and ρ̃p(t) = ρp(t)−ρ∗

p , where ρp(t) = ρd(t, 0) is the mud density
at the pump.

Remark 2. In (5), the term FcQ models the in-domain interac-
tions among the components of Q and it is known as the coupling
source term. We also mention that the high accuracy of such a
model as in (1) and (3) has been validated in [12] by comparing
it with field data from real-life MPD operations.

To facilitate the model reduction procedure of the next section,
we first reformulate the model in the perturbation coordinates
described by (5), (7) and (8). This model can be decomposed
into a feedback interconnection of a linear subsystem and a
nonlinear mapping, where the latter represents the nonlinearities
in the boundary conditions. This decomposition is motivated by
the fact that the nonlinearities occur in the model only locally
(i.e., through the boundary conditions), and by the fact that it
enables us to reduce the model complexity by only reducing the
complexity of the linear PDE part and leaving the structure of the
static nonlinearities intact. In particular, the system described by
(5), (7) and (8) can be cast into a feedback interconnection of an
infinite-dimensional linear system Σ and a nonlinear mapping
ψ(·, ·) as

Σ :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Q
∂t

+ Ψc
∂Q
∂ξ

+ FcQ = 0,

Q (0, ξ ) = 0,

Π1

[
Q (t, 0)
Q (t, l)

]
= Π2v(t),

w(t) = Γ

[
Q (t, 0)
Q (t, l)

]
,

y(t) = Hw(t),

(9)

v(t) = ψ(w(t), ud(t)), (10)

where w(t) ∈ Rm̄ is the output of the infinite-dimensional part of
Σ and v(t) ∈ Rp̄ is its input, see Fig. 2.

Given the system in (9), (10), the objective is to approximate
the input–output behavior of this system from the input ud to
the output y with a model of a lower complexity, allowing for
faster yet accurate time-domain simulations. More importantly
in the scope of this paper, this model should possess a struc-
ture that facilitates the design of high-performance controllers,
while still capturing the wave-propagation effects, an essencial
 i
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Fig. 2. A block diagram of the reformulated model: (left) before reduction,
(right) after complexity reduction.

characteristic to such hyperbolic PDEs. Considering Fig. 2, the
model complexity reduction problem in this paper is pursued by
approximatingΣ by a model Σ̂ of desirable properties, which are
et to be introduced.

emark 3. It is noted that the model Σ is indeed obtained by
inearizing the nonlinear model (3) and (5) around an operating
rofile that corresponds to nominal inputs z∗

c , J
∗
p and ρ∗

res. Con-
tructing Σ in this way guarantees Σ to be asymptotically stable,
ecause the single-phase flow drilling systems have inherently
table hydraulics [29].

In view of our model reduction objectives, let us now present
he transfer function of Σ from v to w, i.e., of the linear, infinite-
imensional, part of the system in (9), (10).

emma 1. Consider the linear system Σ in (9). The matrix transfer
unction T (s) of this system from the input v to the output w in the
aplace domain is given by

(s) = Γ

[
I4

eΞ (s)l

](
Π1

[
I4

eΞ (s)l

])−1

Π2, (11)

here s ∈ C is the Laplace variable and Ξ (s) = blkdiag{Ξd, Ξa},
with the diagonal elements Ξi(s) = −Ψ −1 (sI2 + Fi), for i ∈ {a, d}.

roof 1. The proof of this lemma can be found in Appendix B.

emark 4. By exploiting an implication of the Cayley–Hamilton
heorem, we can obtain an explicit expression of exp(Ξi(s)ξ ),
i ∈ {a, d}, in Lemma 1 is given by

eΞi(s)ξ = e−αξ

[
m11(s, ξ ) −

s+f22
c2β

sinh (βξ)
−

s+f11
β

sinh (βξ) m22(s, ξ )

]
, (12)

ith

11(s, ξ ) = cosh (β(s)ξ)+

(
α −

f21
c2

)
sinh (β(s)ξ)

β(s)
, (13)

22(s, ξ ) = cosh (β(s)ξ)+ (α − f12)
sinh (β(s)ξ)

β(s)
, (14)

and β(s) =
√
α2 + (s + f22)(s + f11)/c2 − f12f21/c2 and α =

.5(f12 + f21/c2), for

i =

[
f11 f12
f21 f22

]
, i ∈ {a, d},

n (6) and where the subscript i has been dropped from the
lements of Fi for notational simplicity.

In the next section, we construct a model of reduced com-
lexity by replacing Σ in (9) by a system of an appropriate
elay structure. The latter system is constructed by matching its
ransfer function to that of Σ , as derived in Lemma 1.

. Reduced-complexity time delay model

In this section, we present a data-based method for construct-
ˆ
ng the reduced-complexity model Σ that should approximate Σ
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n (9). As a stepping stone towards this goal, we first motivate an
ppropriate structure for Σ̂ .

.1. Model structure

If we neglect the source term in (9), that is, if we assume
c = 0, the model reduces to a number of pure advection
quations. It is well-known that such an advection equation is
representation of a time delay of l/cl seconds. This implies that
in the absence of source terms can be modeled by a system

f continuous time difference equations (CTDEs), which repre-
ent transport phenomena in hyperbolic PDE systems. Source
erms, however, cause distributed in-domain couplings between
he traveling waves along the spatial domain. These interactions
specially affect the low-frequency behavior of the system Σ . We
an show that exp(Ξi(s)l), i = {a, d}, in (11), which determine the
transfer function T (s) of Σ , converges to a periodic behavior of a
period of 2πcl/l at high frequencies (see Appendix C for details).
The periodic behavior of exp(Ξi(jω)l), which is hence also induced
in T (jω), is a manifestation of the advective nature of the system.
Thus, we conclude that in the presence of these source terms, the
system behavior is composed of two dominating aspects:

• advection,
• dynamics governing the average shape of advective waves

at the boundaries, which have a slow and smooth nature.

As mentioned before, the (advection-induced) transport aspects
can be modeled by CTDEs. This is the dominating aspect at high
frequencies. Given the fact that the second aspect has the largest
contribution to the system response at low frequencies, this can
be accurately modeled using a system of ODEs.

Remark 5. The ODE part is also inspired by the fact that physics-
based model-complexity reduction of PDE models by ignoring
the wave propagation effects leads to low-order ODE models [8].
From a physical perspective, a careful observation reveals that
the output response of the PDE can be decomposed into a slow
and smooth response and an (damped) oscillatory response. The
CTDE is indeed responsible for capturing the oscillatory behavior
while the ODE part captures the slow, smooth response and the
damping effects in the oscillation.

This explanation motivates us to consider for Σ̂ a structure
which consists of an interconnection of a CTDE model Σctde and
an ODE model Σode. Here, we adopt a parallel interconnection
betweenΣctde andΣode, as illustrated in Fig. 3, with the following
state-space realizations:

Σode :

{
E1ẋ1(t) = A1x1(t) + B1v̂(t),
ŵ1(t) = C1x1(t) + D1v̂(t),

(15)

Σctde :

{
E2x2(t) = −A2x2(t − τ ) + B2v̂(t),
ŵ2(t) = C2x2(t),

(16)

where x1(t) ∈ Rn1 , x2(t) ∈ Rn2 and ŵ = ŵ1 + ŵ2. The state of
the CTDE is given by the function segment x2,t : [−τ , 0] → Rn2 ,
and its initial condition is indicated by x2,0 ∈ C([−τ , 0],Rn2 ). We
assume that the matrix E1 in (15) is invertible.

Now, the model Σ̂ can be rewritten in the following form:

Σ̂ :

{
Eẋ(t) = Ax(t) + Adx(t − τ ) + Bv̂(t),
ŵ(t) = Cx(t),

(17)

where x = [xT1, x
T
2]

T
∈ Rn, and

E = blkdiag{In1 , 0n2}, C = [C1, C2], B = [(E−1
1 B1)T , BT

2]
T

A = blkdiag{E−1
1 A1,−E2}, Ad = blkdiag{0n1 ,−A2}.

Next, we present a method for the construction of the realiza-
tions in (15) and (16).
 u
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Fig. 3. A block diagram of the proposed structure for Σ̂ .

3.2. Data-based model construction

In this section, we introduce a method that constructs an
approximating model based on an input–output description of
the original system in the Laplace domain. This approach is based
on the work [30,31]. It is applicable to a class of systems that can
be represented by a transfer function of the form

T̂ (s) = CK−1(s)B, (18)

where C ∈ Rm̄×n, B ∈ Rn×p̄, and K (s) comes with a general struc-
ture of the form K (s) =

∑N
k=1 hk(s)Ak. Here, {h1(s), . . . , hN (s)} is

a linearly independent set of functions such that hk : C → C
is meromorphic for k = 1, . . . ,N [30]. The structured transfer
function (18) represents a large class of systems. For example,
the transfer function of a CTDE system (as in (16)) can be written
in this form by taking h1(s) = 1 and h2(s) = exp(−τ s), and a
irst-order ODE structure (as in (15)) by h1(s) = s and h2(s) =

1, both for N = 2. The data-driven method proposed in [30]
upports constructing (approximate) system models with a trans-
er function of the form (18) that satisfy certain interpolation
onditions. To use this method, we first define which data of the
ransfer function T (s) (to be approximated by T̂ (s)) is available.
his data is obtained by evaluating T (s) at certain (interpolation)
oints in the complex plane. It is assume that the data sets
λi, ri, wi, µi, li, vi}ni=1, for which

(λi)ri = wi, lTi T (µi) = vTi , i = 1, 2, . . . , n, (19)

olds, are given. Here, n is the number of interpolation points,
i, µi ∈ C are the interpolation points, ri ∈ Cp̄, li ∈ Cm̄ are
he right and left tangential direction vectors and wi ∈ Cm̄, vi ∈
p̄ are the corresponding system responses. The data λi and µi
nd directions ri and li can be chosen arbitrarily provided T (s) is
ell-defined at these points.
The approach by [30] enables us to construct a realization

18), such that its transfer function satisfies the interpolation
onditions

T̂ (λi)ri = T (λi)ri = wi, (20)
T
i T̂ (µi) = lTi T (µi) = vTi , (21)

or all i = 1, 2, . . . , n. For convenience, we collect the interpola-
ion data in a matrix form as
Λ := diag(λ1, . . . , λn),
R := [r1, . . . , rn],

:= [w1, . . . , wn],

M := diag(µ1, . . . , µn),
L := [l1, . . . , ln],
V := [v1, . . . , vn].

(22)

ext, we present theorems which allow for the construction of re-
lizations forΣctde andΣode on the basis of the interpolation data.
he ODE part of the reduced realization Σ̂ can be constructed

sing following result.
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heorem 1. For the data in (22), let {λi}
n
i=1 ∩ {µi}

n
i=1 = ∅, and

suppose that T (s) is well-defined for every s ∈ {λi}
n
i=1 ∪ {µi}

n
i=1.

Moreover, let (E1, A1, B1, C1) be given by

[E1]i,j =
lTi wj − vTi rj
µi − λj

, i, j = 1, . . . , n,

[A1]i,j =
µiv

T
i rj − lTi wjλj

λj − µi
+ lTi D1rj, i, j = 1, . . . , n,

B1 = V T
− D1R,

C1 = W − LTD1,

(23)

or a given D1 ∈ Rm̄×p̄. Then, the realization of Σode given by (15)
ith transfer function

ode(s) = C1 (sE1 − A1)
−1 B1 + D1,

atisfies the interpolation conditions in (20) and (21).

roof 2. This theorem presents a specific case of results in [30],
here a detailed proof can be found.

Likewise, the result in the next theorem allows for the con-
truction of the CTDE part Σctde of the approximate model.

heorem 2. For the data in (22), let {λi}
n
i=1 ∩ {µi}

n
i=1 = ∅, and

uppose that T (s) is well-defined for every s ∈ {λi}
n
i=1 ∪ {µi}

n
i=1.

oreover, let (E2, A2, B2, C2) be given by

[E2]i,j =
e−τµivTi rj − lTi wje−τλj

e−τµi − e−τλj
, i, j = 1, . . . , n,

[A2]i,j =
vTi rj − lTi wj

e−τλj − e−τµi
, i, j = 1, . . . , n,

B2 = V T ,

C2 = W .

(24)

hen, the realization Σctde given by (16) with the transfer function

ctde(s) = C2
(
E2 + e−τ sA2

)−1 B2,

atisfies the interpolation conditions in (20) and (21).

roof 3. This theorem presents a special case of results in [30],
here a detailed proof can be found.

emark 6. The data matrices M , Λ, V , W , L, R and the order n
n Theorem 2 are not the same as those in Theorem 1, although
his may appear to be the case because of the abuse of notation.
ndeed, we have two distinct sets of data. In particular, M1, Λ1,
1, W 1, L1, R1 and n1 will denote the interpolation data that are
sed for the ODE part, and M2, Λ2, V 2, W 2, L2, R2 and n2 contain
he interpolation data used for the construction of Σctde using
heorem 2.

The procedure for constructing the reduced model Σ̂ is de-
ailed in Algorithm 1. This algorithm first constructs a realization
or Σctde from transfer function data of the original PDE model,
hile choosing the interpolation points in the high-frequency
ange. Namely, the PDE dynamics are well approximated by the
TDE in that range, see Section 3.1. Next, given Σctde, Σode is
onstructed such that it approximates the difference between T (s)
nd Tctde(s) in the low-frequency range.

emark 7. The feedthrough matrix D1 in Theorem 1 is set
o 0 in Algorithm 1. This makes it possible for the relation
imω→∞ T (jω) = Tctde(jω) to hold, following the fact that
im T (jω) = D .
ω→∞ ode 1

74
Algorithm 1: Construction of Σctde and Σode

Input: M1, Λ1, L1, R1, D1, M2, Λ2, V 2, W 2, L2, R2, and T (s) in
(11)

Output: Realizations (E1, A1, B1, C1,D1) and (E2, A2, B2, C2)
for Σode and Σctde

Construct (E2, A2, B2, C2) and Tctde(s) from M2, Λ2, V 2, W 2, L2

and R2 using Theorem 2.
For T (s) as in (11), compute the error transfer function
Te(s) := T (s) − Tctde(s).

Compute W 1 and V 1 based on Te(s) from M1, Λ1, R1 and L1.
Construct(E1, A1, B1, C1) and Tode(s) using Theorem 1 by
interpolating Te(s) for M1, Λ1, V 1, W 1, L1, R1 and D1.

Remark 8. Choosing the optimal location of the interpolation
points in Algorithm 1 is beyond the scope of this paper. Nonethe-
less, we employ Algorithm 1 itself inside another minimization
algorithm to optimally locate the interpolation points. The cost
function of this minimization problem is a weighted, frequency-
limited H2-norm, and the region of the complex plane where the
interpolation points can lay in is specified in that algorithm. The
algorithm also enforces the exponential stability of the reduced
system Σ̂ by constraints on the eigenvalues of E−1

1 A1 and −E−1
2 A2.

emark 9. Even though the interpolation points can take real
parts, we chose to restrict those to the imaginary axis only.
This keeps the possibility open to construct Σctde and Σode from
requency response data obtained from real-life measurements.

In summary, we have exploited properties of CTDE and ODE
odels to construct a low-order, accurate hydraulics model for
PD scenarios. In this model, the CTDE part is primarily respon-
ible for capturing the wave propagation effects, while the ODE
art improves the approximation accuracy in the low frequency
ange, by compensating for effects of the coupling source terms
nd capturing the slow dynamics of the system. The effectiveness
f this model approximation approach is illustrated in Section 5.1.
n the next section, we use this low-order delay model to design
pressure control system for drilling scenarios.

. Pressure controller design

In this section, we use the reduced-complexity delay model to
esign a pressure control system to prevent/attenuate liquid kicks
y appropriately controlling the downhole pressure pdh. Hereto,
Lyapunov–Krasovskii design approach for descriptor time-delay
ystems is taken.
Let us first rewrite Σ̂ in (17) in a more tractable form

ˆ :

⎧⎨⎩
Eẋ(t) = Ax(t) + Adx(t − τ ) + Buu(t) + Bdd(t),
ym(t) = Cmx(t),
yp(t) = Cpx(t),

(25)

here u = v̂1 is the control input and d = v̂2 is an unknown
isturbance to the system (with v̂T = [v̂1, v̂2] in (17)). We
ecall that d is the perturbed reservoir density ρ̃res. Moreover,
u and Bd are the relevant parts of B in (17). Furthermore, ym
s the measured output (measured at the surface), while the
nmeasured signal yp is the performance output, and Cm and Cp
re the relevant parts of C in (17). It is noted that ym contains the
erturbed (approximate) pump and choke densities whereas yp
s the perturbed downhole density.

The primary control objective is to design u such that
imt→∞(yp(t) − d(t)) = 0, while ensuring stability of the closed-
oop system. Moreover, the controller should satisfy some perfor-
ance energy measure. Following the linear reservoir model in
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4), this objective ensures the attenuation of liquid kicks and lost
ud circulations.

emark 10. We note that u = v̂1 is a virtual control input,
nd after designing it, we need to convert it into the physical
nput z̃c (related to choke actuation). For this, we use the fact
hat u = ψ1(ym, z̃c) to design z̃c (ψ1 is the first element of ψ).
ollowing the definition of ψ in Appendix A, we obtain

˜c(t) =

√
2ρ∗

c

(
ρ∗
c − ρ0

) (
u + z∗

c − T37ym,2(t)
)√

2
(
ym,2(t) + ρ∗

c

) (
ym,2(t) + ρ∗

c − ρ0
) − z∗

c ,

where it is recalled that ym,2 is the measured perturbed choke
density ρ̃c and T37 is as in (46). To simplify the controller design
procedure, we have discarded the effects of the bit-induced non-
linearities in ψ on Σ̂ , i.e., ψ3 and its corresponding inputs and
outputs have been omitted from the model. This is justified by
the assumption of fixed pump flow, which makes the effects of
this nonlinearity insignificant.

Now, we make the following realistic assumption resembling the
scenario of suddenly running into high- or low-pressure zones
while drilling ahead.

Assumption 1. The reservoir density d(t) is a piecewise constant
function of time.

4.1. Feedforward controller

Given the fact that the open-loop system is asymptotically
stable, we start with the design of a feedforward controller,
assuming momentarily that d(t) is known. This controller should
have the following structure:

u(t) = Kffd(t), (26)

where Kff is the feedforward control gain. To design this gain, we
consider the equilibrium equation (associated to (25)):

0 = (A + Ad)x∗
+ Buu∗

+ Bdd, (27)

where the star ∗ indicates the variables at the equilibrium point
for d(t) = d, with d constant (note that for d ̸= 0, the steady-state
solution of (25) is not zero anymore). If A+Ad is nonsingular, for
x∗, we obtain

x∗
= −(A + Ad)−1 (

Buu∗
+ Bdd

)
. (28)

The substitution of x∗ from (28) into the equation of the perfor-
mance output in (25) yields

y∗

p = −Cp(A + Ad)−1 (
Buu∗

+ Bdd
)
.

Given the control objective, which is y∗
p = d, we obtain

d = −Cp(A + Ad)−1 (
Buu∗

+ Bdd
)
.

Finally, we can solve this equation for u∗ to obtain u∗
= Kffd,

which leads to

Kff = −
1 + Cp(A + Ad)−1Bd

Cp(A + Ad)−1Bu
. (29)

Remark 11. The feedforward controller requires that the steady-
state gain Cp(A + Ad)−1Bu to be nonzero (note that this is a
scalar term). From a physical perspective, this requirement is met,
because any change in the input z∗

c leads to a change in p∗

dh in
practice. Moreover, the regularity of the matrix A + Ad is guaran-
teed by the asymptotic stability of the reduced system, which is
enforced by the model reduction algorithm, see Remark 8.
75
4.2. State-feedback control

In practice, we are interested in the transient response of the
system as well. For this reason, we extend the controller in (26)
with a state-feedback term, leading to a control law of the form

u(x̃) = −Ksfx̃(t) + Kffd, x̃ = x − x∗, (30)

where x∗ is given in (28) and Ksf is the state-feedback gain, yet to
be designed. Later, we will design an observer that reconstructs
x̃ from measured data.

Let us now study properties of the closed-loop system re-
sulting from the control law (30). The closed-loop dynamics are
obtained by substituting this control law into (25):

E ˙̃x(t) = Ac x̃(t) + Adx̃(t − τ ) + (A + Ad) x∗
+ (BuKff + Bd) d,

with Ac = A − BKsf. The use of (27) implies that

E ˙̃x(t) = Ac x̃(t) + Adx̃(t − τ ), (31)

hich represents the closed-loop (time-delay) dynamics. The
eedback gain Ksf should be designed such that the closed-loop
ynamics (31) have a desirable transient performance while it is
uaranteed to be asymptotically stable. Hereto, we present the
ollowing result.

heorem 3. Let there exist symmetric, positive definite matrices P1
nd U, and matrices P2 and K̄ , an invertible matrix P3, and a scalar
c such that⎡⎢⎢⎢⎣

Φ11 ∗ ∗ ∗ ∗

Φ21 Φ22 ∗ ∗ ∗

τΛ
(
AP − BK̄

)
τΛAdP −a−1

c P1 ∗ ∗

QhP 0 0 −Iq ∗

γ K̄ 0 0 0 −Ip

⎤⎥⎥⎥⎦ < 0, (32)

ith Φ11 = PTAT
+ AP + U − K̄ TBT

− BK̄ − αcΛ
TP1Λ, Φ21 =

TAT
d + αcΛ

TP1Λ and Φ22 = −U − αcΛ
TP1Λ, holds for a given

atrix Qh, a given scalar γ , Λ = [In1 , 0n1×n2 ] and

P =

[
P1 0
P2 P3

]
.

Then, for Ksf = K̄P−1, the closed-loop system dynamics (31) is
symptotically stable. Moreover, the inequality∫

∞

t

(
x̃T (t)Q T

h Qhx̃(t) + γ 2u2
sf(t)

)
dt < Vc(x̃t ), (33)

olds. Here, usf = −Ksfx̃, and the functional Vc reads

c(x̃t ) = x̃T (t)EP̄x̃(t) +

∫ t

t−τ
x̃T (s)Ū x̃(s)ds

+ ταc

∫ t

t−τ

∫ t

θ

˙̃xT1(s)P̄1 ˙̃x1(s) dsdθ,
(34)

ith P̄ = P−1, P̄1 = P−1
1 and Ū = P−TUP−1.

roof 4. The proof can be found in Appendix D.

Indeed, (33) is our performance measure for control. Here,
h and γ are design parameters that enable us to influence the
ransient response of the closed-loop system. In general, a larger
, being a weight on the control action, leads to a smaller control
ignal usf(t) while a large Qh, being a weight on the transient
esponse, makes the closed-loop system response faster. This
radeoff can be understood by realizing that the cost function in
he left-hand side of (33) is heuristically minimized by tightening
nd minimizing its upper bound Vc(x̃0). As a computationally
ractable heuristic for minimizing Vc(x̃0), we minimize the trace
f P−1.
1
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.3. Observer design

Clearly, the control law (30) is not implementable in practice
ecause the states x̃ are neither measurable nor have a clear phys-

ical meaning. For this reason, we next design an observer-based,
state-feedback controller, which only requires the output mea-
surements ym. The corresponding control law has the following
form:

u(t) = −Ksf(x̂(t) − x∗) + Kffd̂(t), (35)

where x̂(t) and d̂(t) are estimates for x(t) and d, respectively.
These estimates are obtained from the following observer:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

˙̂d(t) = L1
(
ym(t) − ŷm(t)

)
,

E ˙̂x(t) = Ax̂(t) + Adx̂(t − τ ) + Buu(t) + Bdd̂(t)
+ L2

(
ym(t) − ŷm(t)

)
,

ŷm(t) = Cmx̂(t),
ŷp(t) = Cpx̂(t),

(36)

where L1 and L2 are the observer gains to be designed.
Now, we study the closed-loop system dynamics (25), (35) and

(36). To this end, we define e := x− x̂ and ed := d− d̂, and obtain
the error dynamics

ėd(t) = −L1Cme(t),
Eė(t) = (A − L2Cm) e(t) + Ade(t − τ ) + Bded(t),

(37)

where we have used ḋ = 0 from Assumption 1. Now, we rewrite
the input as u = −Ksfx̃+ Kffd+ Ksfe− Kffed. Substituting this into
(25) and using (27) leads to

E ˙̃x(t) = (A − BuKsf)x̃(t) + Adx̃(t − τ )
+ BuKsfe(t) − BuKffed(t).

(38)

The (error) dynamics in (37) and (38) can be written as⎡⎣E ˙̃x(t)
Eė(t)
ėd(t)

⎤⎦ =

[A − BuKsf BuKsf −BdKff
0 A − L2Cm Bd
0 −L1Cm 0

][ x̃(t)
e(t)
ed(t)

]

+

[ Ad 0 0
0 Ad 0
0 0 0

][ x̃(t − τ )
e(t − τ )
ed(t − τ )

]
.

This formulation of the closed-loop dynamics clearly illustrates
a type of separation principle, implying that the exponential
stability of the error dynamics in (37) guarantees the exponential
stability of the closed-loop system. We exploit this fact to design
L1 and L2 independently of Ksf. By defining zT := [ed, eT ], (37) can
be written in the form

Ēż(t) =
(
Ā − LC̄

)
z(t) + Ādz(t − τ ), (39)

where Ē = blkdiag{1, E}, Ād = blkdiag{0, Ad} and

Ā =

[
0 0
Bd A

]
, L =

[
L1
L2

]
, C̄ =

[
0 Cm

]
.

We have the following statement on the stability of (39).

Theorem 4. Consider the error dynamics (39) of the observer. Let
there exist matrices Q2 and Q3, a nonsingular matrix S, and positive
definite, symmetric matrices H, M and Q1, and a scalar αo for which⎡⎣ Θ11 ∗ ∗

ĀT
dS

T
+ M̄ −H − M̄ ∗

Q − ST + αoSĀ − αoL̄C̄ αoSĀd Θ33

⎤⎦ < 0, (40)

with Θ11 = SĀ + ĀT ST + H − M̄ − L̄C̄ − C̄T L̄T + Qo, Θ33 =(
T
)

2 ¯ ¯ T

−αo S + S + τ M and M = Λ MΛ, holds for a given matrix

76
Fig. 4. A flow chart summarizing the design procedure from model reduction
to controller implementation.

Qo = Q T
o ≥ 0. Then, for L = S−1L̄, the error dynamics of the observer

are asymptotically stable. Additionally, the inequality∫
∞

t
zT (s)Qoz(s) ds < Vo(zt ), (41)

holds, where the functional Vo reads as

Vo(zt ) =zT (t)ĒQz(t) +

∫ t

t−τ
zT (s)Hz(s) ds

+ τ

∫ t

t−τ

∫ t

θ

żT1 (s)Mż1(s) dsdθ.
(42)

roof 5. The proof can be found in Appendix E.

Similar to results presented in Theorem 3, (41) functions as
performance measure of the observer. The weighting matrix
o can be considered as a parameter by means of which the
onvergence rate of the state z(t) in (39) can be influenced.

emark 12. The results in Theorems 3 and 4 are derived by
xploiting analysis and controller synthesis technique for delay
escriptor systems [32–34].

Summarizing, in this section, we have designed an (observer-
ased) state-feedback pressure controller for the attenuation of
iquid kicks and mud losses for single-phase flow MPD scenar-
os. This controller has been designed based on the reduced-
omplexity delay model proposed in Section 3. To implement
his controller, only the surface pressure measurements are re-
uired. Moreover, degrees of freedom have been provided to
nable the heuristic enforcement of a desirable transient control
erformance. A flow chart of the controller design procedure
rom the model reduction stage to implementation is presented
n Fig. 4. The next section presents illustrative simulation results
n realistic drilling scenarios.

. Simulation case studies

In this section, we study the performance of the proposed
ressure controller through numerical examples for a drilling
ystem with the parameters listed in Table 1. We first study
he accuracy of the reduced-complexity model by comparing it
gainst the original model in the frequency domain. Afterwards,
he controller designed on the basis of the reduced delay model
f Section 3 is applied to the original model in (9) and (10)
o evaluate its performance in comparison to an existing pres-
ure controller from [9] and an intuitive proportional–integral
PI) pressure controller. The former controller has been designed
ased on a variant of a commonly used, low-complexity model
hich does not capture the wave propagation effects [8]. This
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Table 1
Parameters of the drilling system.
Par. Value Unit Par. Value Unit

da 0.0953 m Aa 0.02613 m2

dd 0.1088 m Ad 0.0093 m2

l 2320 m θ 1.4455 rad
cl 980 m/s kres 6.3×10−6 ms
Anz 5.77 × 10−4 m2 cd 0.8 –
ρ0 1260 kg/m3 µ 0.035 Pa s
kc 0.002 m2 g 9.81 m/s2

comparison illustrates advantages of considering the wave prop-
agation effect in the model and controller design procedure for
MPD automation.

5.1. Model reduction

In this example, we use the proposed technique in Section 3
o obtain the reduced model Σ̂ for the considered drilling system
ynamics. It is recalled that the input toΣ is v, whereas its output
consists of the perturbed pump density ρ̃p, downhole density

˜dh and choke density ρ̃c . Here, the reformulated model Σ in (9)
s indeed that of the linearized model around an operating profile
hat corresponds to z∗

c = 0.3, J∗p = 51 kg/s and ρ∗
res = ρ∗

dh.
To construct the realization of Σctde, we take 6 pairs of com-

lex conjugate interpolation points on the imaginary axis in the
requency interval |ω| ∈ [−0.07π/τ, 2π/τ ] + 104, where we
an be confident that T (jω), the frequency response function of
, is almost completely periodic. This leads to n2 = 6. For
ode, by contrast, we select only 4 pairs of complex conjugate

nterpolations points on the imaginary axis in a low frequency
ange of |ω| ∈ (0, 1.5], leading the order of this subsystem to
e n1 = 4. As expected, see Remark 8, all the poles of Σode are

located in the open left-half complex plane and those of Σctde
are located inside the unit circle. This guarantees the exponential
stability of the reduced model Σ̂ for v̂ = 0.

A comparison between the frequency response function T̂ (jω)
of the reduced system Σ̂ and that of the original system Σ

is reported in Fig. 5. From this figure, a highly accurate model
approximation is observed in the high frequency range, while a
relatively less accurate approximation is achieved in the lower
frequency ranges. To improve the accuracy of the approximation
at the lower frequencies, one can increase the order n1 of Σode.
However, we here prefer to settle for a less accurate model in
exchange for an approximative model Σ̂ of a lower order because
lower n1 and n2 limit the computational burden of solving the
matrix inequalities in (32) and (40).

5.2. Closed-loop simulations

Now, let us compare in this section the performance of the
observed-based, state-feedback pressure controller presented in
Section 4 to the pressure controller presented in [9] and the PI
pressure controller. At the start of all simulations in this section,
the system is at its steady state. Following this, we take x̂0 = 0
and ŵ(0) = 0 in all simulations. The reservoir pressure, as a
disturbance input, is depicted in Fig. 6. This reservoir pressure
resembles the scenarios of suddenly running into a high-pressure
zone and into a low-pressure zone. It should be noted that these
two scenarios do not necessarily occur successively in practice.
The intention here is to study the performance of the controller
for a variety of scenarios in a single case study for the sake of
brevity. Such a scenario was also considered for the evaluation of
pressure controllers in, e.g., [35].

The controller in [9] has been designed on the basis of a simpli-

fied second-order model which only consists of the slow pressure
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dynamics of a drilling system. In this model, the fast dynamics
responsible for the wave propagation effects are compromised in
exchange for simplicity. This switching pressure controller con-
sists of three observers which estimate the bit flow, the reservoir
pressure and the flow exchange between the reservoir and well
bore. The control law of [9] in terms of the perturbed choke
volumetric flow rate ∆qc [m3/s] can be written in the following
form:

∆qc(t) = ksσ (t)
(
∆pdh(t) −∆p̂res(t)

)
+ q̂bit(t), (43)

here ∆ is used to indicate the variables of this control system
n their respective perturbed coordinates. Moreover, ks is a design
parameter and p̂res and q̂bit are the estimated reservoir pressure
nd the estimated flow exchange between the reservoir and
ellbore, respectively. Furthermore, σ (t) is a switching variable.
he estimated variables and the switching signal are solutions to

∆ ˙̂qbit(t) = −γ1(∆pp(t) −∆p̂p(t)),

∆ ˙̂pp(t) =
βd

Vd

(
∆q̂bit(t) + l1(∆pp(t) −∆p̂p(t))

)
,

˙̂qres(t) = γ2(∆p1(t) −∆p̂1(t)),

∆ ˙̂p1(t) = q̂res(t) −∆qc(t) + l2(∆p1(t) −∆p̂1(t)),
˙̂pres(t) = γ3(∆p1(t) −∆p̂2(t)),

∆ ˙̂p2(t) = k̄res
(
∆p̂res(t) −∆pdh(t)

)
−∆qc(t)

+ l3
(
∆p1(t) −∆p̂2(t)

)
,

σ (t) =

{
1,

⏐⏐q̂res⏐⏐ < q̄res,
0, otherwise.

(44)

In these dynamics, γ1, γ2, γ3 and l1, l2, l3 are design parameters,
hereas q̂res and p̂p are estimates of the reservoir flow and the
ump pressure, respectively. Moreover, pp is the measured pump
ressure and ∆p1 = Va/βa∆pc + Vd/βd∆pp, with Va and Vd
eing the volume of the annulus and drillstring, respectively.
ere, β = c2l ρ represents the bulk modulus. Finally, q̄res is a
hreshold parameter for the switching action, and the constant
¯res is an approximation of kres/ρdh(t). Note that in this controller
pdh = ∆pp for a fixed pump flow rate.

emark 13. To apply the controller (43) to the system, the
hoke volumetric flow rate ∆qc should be converted to the choke
pening z̃c . To this end, we use the choke equation in (3) to obtain

˜c(t) =

(
∆qc(t) + q∗

c

)√(
ym,2(t) + ρ∗

c

)√
2
(
ym,2(t) + ρ∗

c − ρ0
) − z∗

c .

e also consider a PI pressure controller in our comparative
tudies. This controller is given by [36]

˜c(t) = −kp
(
q̃p(t) − q̃c(t)

)
− ki

∫ t

0

(
q̃p(s) − q̃c(s)

)
ds, (45)

here qc is the measured choke volumetric flow rate and qp is
hat of the pump, and ki and kp are the integral and proportional
ains of the PI controller. This controller works based on the error
etween the pump and choke flow rates. Clearly, any error be-
ween qc and qp (at the same pressures) in the steady state is due
o a flux exchange between the reservoir and the wellbore, and
egulating this error to zero ensures that the downhole pressure
s tracking the reservoir pressure. It is recalled that in this study,
e have considered scenarios with a fixed pump flow rate and,
ubsequently, q̃p = 0. Nonetheless, it should be noted that even
hough the structure of the PI controller is quite elementary, the
I controller alone is rarely if ever used in practice because it
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Fig. 6. The reservoir pressure pres considered in the simulations.

equires accurate and instantaneous choke flow measurements.
low measurements are usually not accurate enough in practice
or this purpose.

In the first part of the closed-loop simulations, we study the
erformance of the presented controller by applying it to the
educed delay model Σ̂ , without considering the nonlinearities.
fter making sure that the performance of the controller is satis-
actory in this setting, we apply it to the original nonlinear model
escribed in (9) and (10).
Fig. 7 depicts the estimated reservoir pressure p̂res in compar-

son to the downhole pressure pdh response. The corresponding
ontrol input zc is illustrated in Fig. 8. We observe that not
nly does the downhole pressure track the reservoir pressure
ith zero steady-state error, but it also exhibits a relatively fast
ransient response (fast relative to existing results in, e.g., [9]).
ig. 7 also depicts that the estimated reservoir pressure converges
o its true value pres with zero steady-state error. In spite of
he fact that the reservoir pressure changes abruptly, initiating
ndesirable sharp propagating pressure waves in the flow path,
 b

78
Fig. 7. The time response of the closed-loop system with the proposed controller
for the downhole and estimated reservoir pressures applied to Σ̂ .

t is clear from Fig. 7 that the controller effectively attenuates
he subsequent fluctuations and provides a smooth downhole
ressure response during the transients. We attribute this desir-
ble performance of the controller to the fact that it has been
esigned based on a model in which the wave propagation effects
ave been preserved. A comparison between the (perturbed)
ump, downhole and choke pressure is reported in Fig. 9. One
an observe from this figure that the wave propagation-induced
ressure fluctuations have been attenuated also in the pump and
hoke pressure signals.

emark 14. We note that such fluctuations are undesirable
ecause those are detrimental to the drilling equipment and the
eservoir productivity. In particular, those can intensify wear and
ear in the drilling equipment such as the sensors installed in the

ottom-hole assembly and the choke manifold.
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Fig. 8. The choke opening for the closed-loop system with the reduced model
Σ̂ and the proposed controller .

Fig. 9. The time response of the closed-loop system with Σ̂ and the proposed
ontroller for the perturbed pump, downhole and choke pressures.

Table 2
Parameters used in the PI controller and the controller from [9].
Parameter Value Parameter Value

l1 7.3 × 10−7 γ1 0.075
l2 0.61 γ2 0.093 × 10−4

l3 0.57 γ3 1.24 × 107

ks 1.3 × 10−3 q̄res 0.5 [lit/s]
ki 1 kp 1.3 × 10−3

Next, we apply the proposed controller to the original nonlin-
ar PDE model in (9) and (10), expecting to observe a closed-loop
esponse similar to what we have observed for Σ̂ in the previous
art. We should expect this similarity because of the good accu-
acy of the approximate model. To implement the PDE model, we
ave discretized it using a staggered-grid discretization scheme,
ee, e.g., [37]. At the same time, we also apply the controllers
n (43) and (45) to Σ for the sake of a comparative study. The
arameters of these two controllers are listed in Table 2.
We have reported the downhole pressure response pdh in

ig. 10. From this figure, we can clearly deduce that in terms of
79
Fig. 10. Comparison in terms of the downhole pressure response between the
performance of the proposed controller, PI controller and that from [9] applied
to the original nonlinear model.

transient response, the proposed controller outperforms the other
two controllers, whereas all controllers provide similar steady-
state performance. In particular, the proposed controller has a
faster response in terms of the downhole pressure tracking the
reservoir pressure. A faster downhole pressure response is an
advantage because it reduces the size of kicks and mud losses.
Moreover, for the PI controller and the controller from [9], we
can clearly observe undesirable wave propagation-induced fluc-
tuations in the downhole pressure, while the pressure response
with the proposed controller is smoother. Indeed, not only are
these controllers incapable of attenuating these fluctuations, but
the resulting closed-loop system can also not be guaranteed to
maintain its stability in the presence of these fluctuations. Fig. 11
shows the choke opening signals for these three controllers. As
anticipated, we observe that the proposed controller has a faster
control action. The closed-loop responses for the choke and pump
pressures are depicted in Fig. 12. As expected, we can also observe
severe fluctuations in these pressure signals for the controllers
from the literature.

Remark 15. We mention that, in real-life drilling systems,
special pressure dampers are usually installed at the pump side
of the flow path to passively damp such pressure fluctuations
and protect the rig pumps from the resulting impacts. Clearly, the
possibility to damp such fluctuations in an active way by means of
a control system can have benefits such as lowering construction
and maintenance costs of a drilling rig.

6. Conclusions

In this paper, a data-based model reduction technique has
been presented for control-oriented modeling for managed pres-
sure drilling automation in single-phase flow scenarios. The new
structure proposed for the reduced model consists of a system of
continuous-time difference equations and a system of ordinary
differential equations. The former part is in a class of time delay
systems and it is responsible for accurately capturing the wave
propagation effect of the original PDE-based hydraulics model,
while the latter part of the reduced model ensures approximation
of the slow hydraulics in a drilling system. In view of its high
accuracy, yet low complexity, the reduced-complexity model has
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Fig. 11. The choke opening signal zc for the proposed controller, PI controller
nd that from Zhou, 2011 [9] applied to the original nonlinear model.

Fig. 12. Comparison in terms of the choke and pump pressure responses
between the performance of the proposed controller, the PI controller and that
from Zhou, 2011 [9] applied to the original nonlinear model.
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been used to design a new pressure control system for prevent-
ing/attenuating liquid kicks and mud losses. Results on synthesis
conditions for stability and performance have been presented.
This controller, which only requires the surface pressure mea-
surements, has been compared to existing pressure controllers
designed based on a model that does not capture the wave prop-
agation effect. By means of simulation studies, it has been shown
that the proposed controller outperforms existing controllers in
terms of the rise time for the downhole pressure, which leads to
smaller kicks and losses, and attenuation of undesirable pressure
fluctuations due to the wave propagation effects.
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Appendix A. Reformulation of the boundary conditions

We would like to transform the boundary conditions in (3) to
the perturbation coordinates and rewrite them in the form (7). It
is recalled that the origin of the new coordinates is the system
steady-state solution ρ∗

i and η∗

i , i = a, d, that corresponds to the
nominal inputs J∗p , z

∗
c and ρ∗

res. In the perturbation coordinates,
the first equation in (3) can be written as

Adη̃d(t, l) + T15ρ̃d(t, l) + T13ρ̃dh(t) + h1 (ρ̃d(t, l), ρ̃dh(t)) = 0,

where it is recalled that η̃d = ηd − η∗

d , ρ̃d = ρd − ρ∗

d and
ρ̃dh = ρdh − ρ∗

dh. Moreover, the nonlinearity in that equation
has been split into a linear part and a nonlinear part h1(·, ·). The
linear part is obtained by linearizing the nonlinear terms around
the steady-state solution, leading to

T13 =
Anzcdclρ∗

d (l)√
2ρ∗

d (l)
(
ρ∗

d (l) − ρ∗

dh

) , T15 =
−Anzcdcl

(
2ρ∗

d (l) − ρ∗

dh

)√
2ρ∗

d (l)
(
ρ∗

d (l) − ρ∗

dh

) .
imilarly, the third boundary condition in (3) can be written in
he perturbation coordinates as follows:

38η̃a(t, l) + T37ρ̃c(t) − z̃c(t) − h2
(
ρ̃c(t), z̃c(t)

)
= 0,

here η̃a = ηa − η∗
a , ρ̃c = ρc − ρ∗

c and z̃c = zc − z∗
c , and the

onstants T38 and T37 and the nonlinear term h2 are given by

37 =
−z∗

c

(
2ρ∗

c − ρ0
)

2ρ∗
c

(
ρ∗
c − ρ0

) , T38 =
Aa

kccl
√
2ρ∗

c

(
ρ∗
c − ρ0

) ,
h2 = T37ρc(t) + z̃c − z∗

c +
zc

√
2ρc(t) (ρc(t) − ρ0)√
2ρ∗

c

(
ρ∗
c − ρ0

) .

(46)

his finally leads to the formulation of the boundary conditions
n perturbation coordinates as in (7) with the matrix Π1 given by

1 =

⎡⎢⎣ 0 0 T13 0 T15 0 0 0
0 0 −krc2l −Aa 0 Ad 0 0
0 0 0 0 0 0 T37 T38

⎤⎥⎦ . (47)
0 Ad 0 0 0 0 0 0
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he function ψ is thus defined as ψ := [z̃c + h2, ρ̃res, h1]
T .

onsidering the order of the boundary conditions in (3) and the
efinition of ψ , we obtain

2 =

⎡⎢⎣ 0 0 1
0 −kresc2l 0
1 0 0
0 0 0

⎤⎥⎦ . (48)

he first argument of the function ψ(·, ·) is the vector [qd,1(t, l),
ρ̃dh(t), ρ̃c(t)]T , which should be extracted from [Q T (t, 0),
Q T (t, l)]T by Γ . Following the definition of Q in (5), we thus
obtain

Γ =

[ 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0

]
. (49)

Appendix B. Proof of Lemma 1

By applying a Laplace transformation to the PDE in (9), we
obtain

sQ (s, ξ ) + Ψc
∂

∂ξ
Q (s, ξ ) + FcQ (s, ξ ) = 0, (50)

where Q (s, ξ ) = L(Q (t, ξ )), with L(·) the Laplace operator. This
equation can also be written in the form
∂

∂ξ
Q (s, ξ ) = Ξ (s)Q (s, ξ ), (51)

ith Ξ (s) = −Ψ −1
c (sI4 + Fc). Note that for fixed s, (51) is a linear,

ordinary differential equation with the independent variable ξ .
hus, its general solution is given by

(s, ξ ) = eΞ (s)ξX(s), (52)

here X(s) is obtained from the boundary conditions. Specifically,
the evaluation of (52) for ξ = 0 and ξ = l together with the use
of the boundary conditions in (9) results in

Π1

[
eΞ (s)0

eΞ (s)l

]
X(s) = Π2V (s),

where V (s) = L(v(t)). Solving this equation leads to

X(s) =

(
Π1

[
I4

eΞ (s)l

])−1

Π2V (s).

Now, the use of this result, along with (52), in the output equation
in (9) yields (11).

Appendix C. Periodicity of exp(Ξi(s)ξ)

In this section, we provide an argument for the fact that
exp(Ξi(jω)ξ ) in Lemma 1 converges to a periodic behavior at
high frequencies. Here, we show this fact only for the upper-left
element of this matrix, that is, we show that m11(jω, ξ ) in (13)
converges to a periodic function for ω → ∞. To this end, we first
rewrite β(jω), defined below (14), as

β(jω) =

|ω|

√(
c2α2 + f11f22 − f12f21 − 1

)
+ j f11+f22

ω

cl
.

or this expression, we obtain

lim
→∞

β(jω) =
1
cl

|ω|ej
(
π
2 −

f11+f22
2ω

)
.

Now, using Euler’s formula, this limit can further be simplified as

lim β(jω) =
1

(
jω +

f11 + f22
)
. (53)
ω→+∞ cl 2
81
This clearly implies that limω→∞ |β| = ∞. Therefore, we can
gnore the second term on the right-hand side of (13) in the limit
f ω → +∞ and write

lim
ω→+∞

m11(jω, ξ ) = cosh
(
ξ

cl

(
jω +

f11 + f22
2

))
, (54)

where (53) has been substituted in (13). This limit can further be
written in the following form:

lim
ω→+∞

m11(jω, ξ ) = cosh
(
ξ

cl

f11 + f22
2

)
cos

(
ξ

cl
ω

)
+ j sinh

(
ξ

cl

f11 + f22
2

)
sin

(
ξ

cl
ω

)
.

he function on the right-hand side of this equality is clearly a
eriodic function of ω with a period of 2πcl/ξ . A similar argument

can be used to show that all other elements of exp(Ξiξ ) are
periodic functions with the same period.

Appendix D. Proof of Theorem 3

To prove this theorem, we first need to show that the delay-
difference part of the system (31), i.e., 0 = Ac,22x̃2(t)+Ad,22x̃2(t −
τ ) with Ac,22, Ad,22 respectively the lower-right n2 × n2 blocks
of Ac, Ad, is asymptotically stable. The satisfaction of (32) for a
nonsingular P3 implies that Φ11 < 0, which in turn implies

Ac,22P3 + PT
3 A

T
c,22 + U22 < 0, (55)

with U22 being the lower-right n2 × n2 block of U . Since U22 > 0
and P3 is full-rank, (55) implies that Ac,22 is non–singular. The
satisfaction of (32) also implies that[

AT
c,22P

−1
3 + P−T

3 Ac,22 + Ū22 P−T
3 Ad,22

AT
d,22P

−1
3 −Ū22

]
< 0,

with Ū22 the lower-right n2 × n2 blocks of Ū . This result further
implies that

AT
c,22P

−1
3 + P−T

3 Ac,22 + Ū22 + P−T
3 Ad,22Ū−1

22 AT
d,22P

−1
3 < 0,

where a Schur complement has been used. Multiplying this in-
equality from the right by a non-zero vector v ∈ Cn2 and from
the left by its conjugate transpose vH , we obtain

−2
⏐⏐vHAT

c,22P
−1
3 v

⏐⏐ +

⏐⏐⏐Ū1/2
22 v

⏐⏐⏐2
+

⏐⏐⏐Ū−1/2
22 AT

d,22A
−T
c,22A

T
c,22P

−1
3 v

⏐⏐⏐2 < 0.

Thus, it holds that

−
⏐⏐vHAT

c,22P
−1
3 v

⏐⏐ +
⏐⏐vHAT

d,22A
−T
c,22A

T
c,22P

−1
3 v

⏐⏐ < 0, (56)

where the inequality⏐⏐⏐Ū1/2
22 v

⏐⏐⏐2 +

⏐⏐⏐Ū−1/2
22 AT

d,22A
−T
c,22A

T
c,22P

−1
3 v

⏐⏐⏐2
≥ 2

⏐⏐vHAT
d,22A

−T
c,22A

T
c,22P

−1
3 v

⏐⏐ ,
has been used. Now, if we take v to be any eigenvector of
A−1
c,22Ad,22 with the corresponding eigenvalue λ = λ(A−1

c,22Ad,22),
then (56) implies that

−
⏐⏐vHAT

c,22P
−1
3 v

⏐⏐ + |λ|
⏐⏐vHAT

c,22P
−1
3 v

⏐⏐ < 0,

which implies that |λ| < 1, meaning that the delay-difference
part of the system (31) is asymptotically stable.

Next, we consider the functional in (34) as a candidate

Lyapunov–Krasovskii functional. For the time derivative of the
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⎡⎣ AT P̄ + P̄TA + Ū − αcΛ
T P̄1Λ− K T

sfB
T P̄ − P̄TBKsf + Q T

h Qh + γ 2K T
sfKsf ∗ ∗

AT
d P̄ + αcΛ

T P̄1Λ −Ū − αcΛ
T P̄1Λ ∗

τ P̄1Λ (A − BKsf) τ P̄1ΛAd α−1
c P̄1

⎤⎦ < 0. (60)

Box I.
yapunov–Krasovskii functional (34) along the solution of (31),
e obtain

˙c(x̃t ) = 2
(
Ac x̃(t) + Adx̃(t − τ )

)T P̄ x̃(t)
+ x̃T (t)Ū x̃(t) − x̃T (t − τ )Ū x̃(t − τ )

+ αcτ
2 ˙̃xT1(t)P̄1 ˙̃x1(t) − αcτ

∫ t

t−τ

˙̃xT1(s)P̄1 ˙̃x1(s)ds.

Given the fact that ˙̃x1(t) = ΛE ˙̃x(t), we can write the above in the
following form:

V̇c(x̃t ) = 2(Ac x̃(t) + Adx̃(t − τ ))T P̄ x̃(t)

+ x̃T (t)Ū x̃(t) − x̃T (t − τ )Ū x̃(t − τ )

+ αcτ
2 ˙̃xT (t)ETΛT P̄1ΛE ˙̃x(t)

− αcτ

∫ t

t−τ

˙̃xT1(s)P̄1 ˙̃x1(s)ds.

(57)

Applying Jensen’s inequality [38] to the last term in the right-
hand side of (57), we further obtain

V̇c(x̃t ) ≤ 2(Ac x̃(t) + Adx̃(t − τ ))T P̄ x̃(t)

+ x̃T (t)Ū x̃(t) − x̃T (t − τ )Ū x̃(t − τ )

+ αcτ
2 ˙̃xT (t)ETΛT P̄1ΛE ˙̃x(t)

− αc
(
x̃(t) − x̃(t − τ )

)T
ΛT P̄1Λ

(
x̃(t) − x̃(t − τ )

)
.

where x̃1 = Λx̃ has been used. Substituting (31) into this inequal-
ity leads to

V̇c(x̃t ) ≤ ζ Tc (t)
(
Mc + αcτ

2GTΛT P̄1ΛG
)
ζc(t), (58)

with ζ Tc (t) = [x̃T (t), x̃T (t − τ )] and G = [Ac, Ad] and some matrix
Mc .

Clearly, if

V̇c(x̃t ) + x̃T (t)Q T
h Qhx̃(t) + γ 2x̃T (t)K T

sfKsfx̃(t) < 0, (59)

holds, given the fact that |λ(A−1
c,22Ad,22)| < 1 also holds, it is guar-

anteed that (31) is asymptotically stable due to the Lyapunov–
Krasovskii stability theorems [34]. Note that always Q T

h Qh +

γ 2K T
sfKsf ≥ 0. We can show that the satisfaction of the ma-

trix inequity (60) (see Box I), guarantees the satisfaction of the
inequality (59). Applying Schur complements to (32), and then
left and right multiplication of the resulting inequality with
blkdiag{P̄T , P̄T , P̄T

1 } and blkdiag{P̄, P̄, P̄1}, reveals that (32) implies
(60). Therefore, the satisfaction of (32) implies the asymptotic
stability of (31). This completes the first part of the proof.

Next, we prove the validity of the inequality in (33). Integrat-
ing the inequality (59) over [t,∞) yields(
lim
t→∞

Vc(x̃t )
)

− Vc(x̃t )

+

∫
∞

t

(
x̃T (s)Q T

h Qhx̃(s) + γ 2u2
sf(s)

)
ds < 0.

The asymptotic stability of (31) implies that Vc(x̃∞) = 0. Thus,

(33) follows.
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Appendix E. Proof of Theorem 4

We first need to show that the delay-difference part of the
error dynamics in (39), i.e., 0 = Āo,22z2(t) + Ād,22z2(t − τ ), is
asymptotically stable. Here, Āo,22 and Ād,22 are the lower-right
n2×n2 blocks of Āo := Ā−LC̄ and Ād, respectively, and z2 = x2−x̂2
is the lower part of z that corresponds to these matrices. To this
end, we first eliminate the variables S and αo from the inequality
(40) by multiplying it from the left and right by[

I 0 ĀT
o

0 I ĀT
d

]
, and

[
I 0 ĀT

o
0 I ĀT

d

]T

,

respectively. Performing this multiplication and then applying a
Schur complement reveals that the satisfaction of (40) implies
that the following inequality holds:⎡⎣ ĀT

oQ + Q T Āo + H − M̄ + Qo ∗ ∗

ĀT
dQ + M̄ −H − M̄ ∗

τMΛ̄Āo τMΛ̄Ād −M

⎤⎦ < 0. (61)

Now, by following a similar procedure as in the proof of The-
orem 3 in Appendix C, (61) can be used to prove that Āo,22 is
non-singular. Moreover, it can be proved that all eigenvalues
of Ā−1

o,22Ād,22 are located within the unit circle, which implies
the asymptotic stability of the delay-difference part of the error
dynamics.

Next, following a procedure similar to the second part of the
proof of Theorem 3, we can show that

V̇o(zt ) ≤ 2żT (t)ĒTQz(t) + z(t)Hz(t) − z(t − τ )Hz(t − τ )

+ τ 2żT (t)ĒTΛTMΛĒż(t)

− (z(t) − z(t − τ ))ΛTMΛ (z(t) − z(t − τ )) .

Using the fact that (Ā − LC̄)z(t) + Ādz(t − τ ) − Ēż(t) = 0, we can
write this inequality in the following form:

V̇o(zt ) ≤ 2żT (t)ĒTQz(t) + z(t)Hz(t) − z(t − τ )Hz(t − τ )

+ τ 2żT (t)ĒTΛTMΛĒż(t)

− (z(t) − z(t − τ ))ΛTMΛ (z(t) − z(t − τ ))

+ 2
(
z(t) + αoĒż(t)

)T
S

(
(Ā − LC̄)z(t)

+ Ādz(t − τ ) − Ēż(t)
)
,

where the last term on the right-hand side is always zero. Now,
we add the term zT (t)Qoz(t) to both sides of this inequality and
obtain

V̇o(zt ) + zT (t)Qoz(t) ≤ ζ To (t)Nζo(t), (62)

where N is the matrix on the left-hand side of (40) with L̄ := SL.
Given results on the stability of time delay systems, V̇o(zt ) < 0,
along with the fact the delay-difference part of the error dynam-
ics is asymptotically stable, grantees the asymptotic stability of
the error dynamics of the observer. Clearly, the satisfaction of the
inequality (40) implies that N < 0 which guarantees V̇o(zt ) <
0, thereby the asymptotic stability of the error dynamics. Now,
integrating both sides of (62) over the interval [t,∞) reveals that

lim Vo(zt ) − Vo(zt ) +

∫
∞

zT (s)Qoz(s) ds ≤ 0.

t→∞ t
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D
l

R

ue to the asymptotic stability of the error dynamics, we have
imt→∞ Vo(zt ) = 0. This leads to (41) and completes the proof.
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