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a b s t r a c t

This paper involves the dynamic (stability) analysis of distributed drill-string systems. A min-

imal set of parameters characterizing the linearized, axial-torsional dynamics of a distributed

drill string coupled through the bit-rock interaction is derived. This is found to correspond

to five parameters for a simple drill string and eight parameters for a two-sectioned drill-

string (e.g., corresponding to the pipe and collar sections of a drilling system). These dynamic

characterizations are used to plot the inverse gain margin of the system, parametrized in the

non-dimensional parameters, effectively creating a stability map covering the full range of

realistic physical parameters. This analysis reveals a complex spectrum of dynamics not evi-

dent in stability analysis with lumped models, thus indicating the importance of analysis

using distributed models. Moreover, it reveals trends concerning stability properties depend-

ing on key system parameters useful in the context of system and control design aiming at

the mitigation of vibrations.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The performance of rotary drilling systems used to drill boreholes in the earth is often limited by the occurrence of self-

excited vibrations. Self-excited vibrations cause early fatigue of drill pipes and premature failure of bits and, therefore, should

be avoided. Through a combination of damage to equipment, and increased downtime, drill string vibrations have been reported

to account for 2–10% of well costs [1]. As fixed cutter bits (also known as PDC bits) are especially prone to self-excited vibrations,

drilling systems employing these bits have seen significant scrutiny and attempts at mitigation of these vibrations.

To explain the occurrence of self-excited (axial and torsional) drill-string vibrations, a model of the relevant torsional and

axial dynamics with an unstable equilibrium is needed. The implications of an equilibrium in this system being unstable is that a

small initial perturbation to the system will grow over time and will, in severe cases, manifest itself as an observable oscillatory

phenomena such as stick slip vibration or bit bouncing.

The cause of this instability in drilling systems with PDC bits have previously been explained by a rate-weakening effect1 in

the bit-rock interface law causing an instability in the torsional dynamics [2], and approaches to mitigating the oscillations by

dealing with this instability directly started in the 90’s [3,4]. Such approaches, although having been reasonably successful [5,6],
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1 Essentially a Stribeck-like effect.
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Nomenclature

Independent variables

s Laplace variable

t Time in seconds

x Axial position in meters

Independent variables

w Force

𝜏 Torque

v Axial velocity a delay differential equation which is in turn used to derive the minimal set of characteristic

parameters that can be used to specify the linearized system dynamics. Based on the Nyquist criterion, the

stability analysis is initiated in Section

𝜔 Angular velocity

Laplace transformed states The subscripts i ∈ {0, b, p} denotes ‘top-drive’, ‘bit’, and ‘pipe-collar interface’, respectively

Wi Weight

Ti Torque

Vi Axial velocity

Ωi Angular velocity

Drill string properties The superscripts p, c denotes the pipe and collar section respectively

A Cross sectional area

E Young’s modulus

J Polar moment of inertia

G Shear modulus

𝜌 Pipe density

ka, kt Axial/torsional viscous damping coefficient

Bit rock interaction (BRI) parameters

a Bit radius

𝜁 Cutting force inclination

𝜖 Intrinsic specific rock energy

N Number of cutters

Operational parameters

v Imposed steady-state axial velocity

𝜔 Imposed steady-state angular velocity

Non-dimensional characteristic quantities, for i ∈ {a, t} (axial,torsional)

𝜂i = −kd
i
kL

i
Pseudo reflection coefficient

Ki = t∗Ki Nominal loop gain

Ω = 1∕tN = t∗N

2𝜋
𝜔 Steady-state angular velocity

c = ca

ct
≈ 1.6 Relative wave speeds

𝜁 i =
𝜁 c

i

𝜁
p

i

Relative collar to pipe impedance

𝜂c
i
= 1−𝜁 i

1+𝜁 i

e
−kc

i
tc
i Collar section psuedo reflection coefficient

tp = t
p
t

t∗
= Lp

Lp+Lc Drill pipe travel time

Non-dimensional independent variables, with t∗ = ttL∕ct

s = st∗ = j𝜛 Dimensionless Laplace variable

𝜛 Dimensionless frequency variable
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Derived quantities, for i ∈ {a, t} (axial, torsional)

tN = v

N𝜔
Steady-state BRI delay

𝜁i =
AE

ca
,

JG

ct
Axial/torsional impedance

𝜁
p

i
= ApEp

ca
,

JpGp

ct
Pipe axial/torsional impedance

𝜁 c
i
= AcEc

ca
,

JcGc

ct
Pipe axial/torsional impedance

ci =
√

E

𝜌
,
√

G

𝜌
Axial/torsional, wave speed

ti =
L

ci
Axial, torsional, travel time

tc
i
= Lc

ci
Collar section Axial/torsional travel time

t
p

i
= Lp

ci
Pipe section Axial/torsional travel time

Ka = a𝜁𝜖N

𝜁a
,

a𝜁𝜖N

𝜁 c
a

Nominal axial loop gain single-section/two-section

Kt =
v

𝜔

a2𝜖N

2𝜁t
,

v

𝜔

a2𝜖N

2𝜁 c
t

Nominal torsional loop gain single-section/two-section

kd
i
= e−2kiti In-domain damping coefficient

kL
i
=

𝜁i−ZL
i

𝜁i+ZL
i

,
𝜁

p

i
−ZL

i

𝜁
p

i
+ZL

i

Reflection coefficient single-section/two-section

MG,i = max𝜛∈𝜛180

||||Gi(j𝜛)
Ki

|||| Normalized inverse gain margin

𝜛180 = {𝜛 ∈ ℝ ∶ ∠Gi(j𝜛) = 180◦} Set of frequencies Gi(s) crosses 180◦

Transfer functions, for i ∈ {a, t} (axial,torsional)

Zi(s) = 𝜁i

(
1 + ki

s

)1∕2

Characteristic line impedance

Z
p

i
(s) = 𝜁

p

i

(
1 + ki

s

)1∕2

Pipe section, characteristic line impedance

Zc
i
(s) = 𝜁 c

i

(
1 + ki

s

)1∕2

Collar section, characteristic line impedance

ZL
i
(s) = −W0

V0
(s),− T0

Ω0
(s) Load impedance

Γi(s) = sti

(
1 + ki

s

)1∕2

Propagation operator

Γp

i
(s) = st

p

i

(
1 + ki

s

)1∕2

Propagation operator, collar section

Γc
i
(s) = stc

i

(
1 + ki

s

)1∕2

Propagation operator, collar section

gi(s) = −𝜁a
Vb

Wb
,−𝜁t

Ωb

Tb
Drill-string transfer function, single-section case

g
p

i
(s) = −𝜁p

a

Vp

Wp
,−𝜁p

t

Ωp

Tp
Pipe-section transfer function

gc
i
(s) = −𝜁p

c
Vb

Wb
,−𝜁 c

t
Ωb

Tb
Drill-string transfer function, two-section case

D(s) = N

s

[
Vb(s)

(
1 − e−tN s

)
− v

𝜔
Ωb(s)

(
1 − e−tNs

)]
Combined depth of cut

G(s) = Ga(s) + Gt(s) Loop transfer function

Gi(s) Axial/torsional loop transfer function

Non-dimensional equivalents

Gi(st∗) = Gi(s) Axial/torsional loop transfer function

gi(st∗) = gi(s) Drill-string transfer function, single-section case

is still an active field of ongoing research [7–11].

At the same time, there has been continued research into the underlying causes of the instabilities, and recent results point to

a more nuanced explanation: Models with a rate-independent bit-rock interaction law have been found to predict self-excited

vibrations, including stick-slip, through the so-called regenerative effect [12], also well known in the literature on tool chatter

in metal machining [13,14]. This effect introduces a feedback in the system, as the current force on the bit, which is a function

of the instantaneous depth of cut, depends on the axial position of the bit at an earlier time [15,16]. This feedback may cause
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instability depending on the dynamic response of the drill string. Furthermore, experiments with single cutters does not reveal

any intrinsic velocity weakening effect [17], which seems to discount the explanation of the inherent rate weakening effect in

the bit-rock interaction as the root cause for stick-slip vibrations.

Instead, in Ref. [12], it is proposed that the observed decrease in torque on bit at increasing rotational speeds is, as stated by

Ref. [18], “likely to be the result of complex drill string dynamics rather than an intrinsic property of the bit-rock interaction”

and in Ref. [19] it is stated that “the apparent decrease of the mean torque with the angular velocity responsible for the growth

of the amplitude of the torsional vibrations is a consequence of the axial vibrations.”

That is to say, the rate-(or velocity-) weakening effect can still be viewed as the cause of the torsional stick-slip limit cycle,

but it is not an inherent property of the bit-rock interaction law, but rather a symptom of an axial limit-cycle caused by an axial

instability through the regenerative effect. Hence, the axial instability is intimately linked to the observable, and unwanted,

torsional stick-slip oscillations. In fact, previous publications, including [18,20,21], have posited that avoiding the axial instability

could effectively remove the rate-weakening effect causing the torsional stick slip oscillations as well. Whether, and how, the

axial instability can be removed is, however, as of yet undecided.

The current paper intends to present a structured investigation into the local stability properties of the axial and torsional

dynamics of a distributed drill string coupled with a rate-independent bit-rock interaction law. In particular, we investigate the

potential instability as caused by the regenerative effect of the bit rock interaction. We will consider linearized mathematical

models and perform stability analyses to characterize the local dynamics close to a nominal equilibrium; herewith, insights

are obtained into for which operating conditions drill-string vibrations are eminent. Consequently, as well as providing novel

dynamic analysis results, a key ‘stepping stone result’ of the present study is in parameterizing the distributed system with a

minimal set of parametric quantities, hereby providing, firstly, a suitable model for parameter stability analysis and, secondly, a

modeling framework for future simulation studies that will be required to investigate the non-local dynamics of the system.

This work builds on and extends the developments in Ref. [22], where the bit-rock interaction proposed in Ref. [12] is com-

bined with an infinite-dimensional (wave equation) description of the drill-string dynamics to arrive at a frequency-domain

stability analysis result. The main novel contributions of the current paper are:

• Firstly, the decomposition of the systems characteristic equation (determining stability) into scaled non-dimensional fac-

tors with clearly defined impact on the dynamics (formulated in the frequency domain), herein including the effect of the

parameters in the bit-rock interaction law and the geometry of the drill string. Using non-dimensional quantities, we obtain

a minimal set of parameters to describe the system dynamics of a single section and a one- and two-section drill string,

easing the subsequent analysis.

• Secondly, we introduce the inverse gain margin of the system. This enables determining the margin of stability or instability,

parametrized in the loop gain coefficient which is key in determining stability, and which is determined partly by uncertain

bit-rock interaction parameters.

• Thirdly, the inverse gain margin is plotted, parameterized in the previously obtained non-dimensional quantities, creating

stability maps covering all possible sets of parameters of a two-sectioned drill string.

• Finally, these stability maps are analyzed to extract key features of the dynamics. Specifically, our results confirms previous

observations that reducing the reflection of incoming waves at the top-drive, and increasing the top-drive RPM, both have

stabilizing effects. Additionally, for the two-section drill string, we observe a complex interaction between the drill-string

dynamics and the bit-rock interaction delay, which can significantly affect the severity of the axial instability (compared to

the case of a single-section drill-string).

By pin-pointing the key factors contributing to severity and existence of axial and torsional drill-string instabilities (as caused

by the regenerative effect), and providing a tool for quantifying the (lack of) stability properties, the proposed model and analysis

results have significant potential for improving the design of drilling systems.

The outline of the present work is as follows. First, in Section 2, we derive the full linearized model describing the distributed

drill string–bit-rock interaction system. Section 3 proposes an approximation of the system model in terms of a delay differential

equation which is in turn used to derive the minimal set of characteristic parameters that can be used to specify the linearized

system dynamics. Based on the Nyquist criterion, the stability analysis is initiated in Section 4 where we argue that the axial

and torsional dynamics can be considered in isolation and derive conservative sufficient conditions for stability. Then, in Section

5 presents the stability maps covering the full range realistic parameters for the drill string system, before a usage of these is

illustrated in Section 6. Finally, based on the preceding, conclusions are drawn in Section 7.

2. Model description

This section derives the mathematical description of the dynamics of the drilling system shown schematically in Fig. 1. We

start by introducing the wave equation, describing the axial and torsional dynamics of the drill string from first principles, and

then derive the corresponding transfer function using a transmission line description. The linearized Laplace transformed bit-

rock interaction law is also given, which together with the wave equation of the drill string gives a complete description of

model to be analyzed.
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Fig. 1. Schematic of the drill string.

2.1. Axial and torsional dynamics of the drill string

2.1.1. Wave equation model

The dynamics of interest can be derived by assuming elastic deformations and using equations of continuity and state and

the momentum balance acting on an infinitesimal drill string element. We refer to [22] for details of the derivation. Denoting

the axial velocity and force by v(t, x),w(t, x), respectively, where (t, x) ∈ [0,∞) × [0, L], with L the length of the drill-string, the

axial dynamics are given as

𝜕w(t, x)
𝜕t

+ AE
𝜕v(t, x)
𝜕x

= 0 (1)

A𝜌
𝜕v(t, x)
𝜕t

+ 𝜕w(t, x)
𝜕x

= −ka𝜌Av(t, x), (2)

where A is the cross sectional area of the element and E is the Young’s modulus and 𝜌 is the pipe mass density and ka is a

damping constant representing the shear stresses and structural damping. Equivalently, for the angular motion, we denote the

angular velocity and torque as 𝜔(t, x), 𝜏(t, x), respectively, with (t, x) ∈ [0,∞) × [0, L], the angular dynamics are given as

𝜕𝜏(t, x)
𝜕t

+ JG
𝜕𝜔(t, x)

𝜕x
= 0 (3)

J𝜌
𝜕𝜔(t, x)

𝜕t
+ 𝜕𝜏(t, x)

𝜕x
= −kt𝜌J𝜔(t, x), (4)

where J is the polar moment for inertia and G is the shear modulus and kt is a damping constant representing the combined

effect of shear stresses and structural damping.
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2.1.2. Transmission line model

The following derivation of a transmission line model formulation resembles what is known as the transfer matrix approach

[23–25], which is an effective way to capture the distributed dynamics inherent in a long drill-string [15,26].2

Define the axial and torsional wave velocities ca =
√

E∕𝜌, ct =
√

G∕𝜌; then, the characteristic line impedances Zi, i ∈ {a, t},

and propagation operators, Γi, i ∈ {a, t}, for (1)–(4), respectively, are given as

Za(s) = 𝜁a

(
1 + ka

s

)1∕2

, Γa(s) = sta

(
1 + ka

s

)1∕2

, with 𝜁a ≡
AE

ca

= A𝜌ca, ta = L

ca

, (5)

Zt(s) = 𝜁t

(
1 + kt

s

)1∕2

, Γt(s) = stt

(
1 + kt

s

)1∕2

, with 𝜁t ≡
JG

ct

= J𝜌ct, tt =
L

ct

. (6)

where ti, i ∈ {a, t}, is the transport delay of the wave equation, i.e., the time it takes the wave to travel one length of the drill-

string, and 𝜁i, i ∈ {a, t}, is a characteristic quantity determining the magnitude of the impedance of the drill string. Now the

axial and torsional distributed systems both satisfy the well-known closed form general solution of transmission lines which

can be given as a two-port configuration [27,28]:[
Wb(s)
Vb(s)

]
=
⎡⎢⎢⎣

cosh Γa −Za sinh Γa

− 1

Za

sinh Γa cosh Γa

⎤⎥⎥⎦
[

W0(s)
V0(s)

]
,

[
Tb(s)
Ωb(s)

]
=
⎡⎢⎢⎣

cosh Γt −Zt sinh Γt

− 1

Zt

sinh Γt cosh Γt

⎤⎥⎥⎦
[

T0(s)
Ω0(s)

]
, (7)

where the subscripts b, 0 denote the bit and topside locations, respectively, i.e., Wb(s) = W(s, x = L) and W0(s) = W(s, x = 0), see

Fig. 1.

As the topside boundary, we need expressions relating the axial velocity to force, and the angular velocity to torque. If such

relations can be specified as a Linear Time Invariant (LTI) system (e.g., a controller) mapping velocity to force/torque then these

can be described by their Laplace transforms and we will denote the resulting transfer functions as ZL
a(s), ZL

t
(s), respectively, for

the axial and torsional boundary conditions. That is, we can write

ZL
a(s) ≡ −W0(s)

V0(s)
, ZL

t (s) ≡ − T0(s)
Ω0(s)

. (8)

Note that the load impedance formulation of (8) is quite general and allows for any linear dynamic relation between the

forces/torques and velocities, including dynamic controller formulations such as [7,10,21], Soft Torque [6] and impedance

matching [29].

For cases when no active controllers are applied, the load impedance can typically be approximated with a constant, i.e.

ZL(s) = ZL, to ease analysis.

The linear axial and torsional drill string dynamics are described by the non-dimensional transfer functions ga(s), gt(s),
respectively. These transfer functions can be found by combining (7) and (8). For the axial dynamics, ga(s) relates weight on

bit Wb to axial bit velocity Vb as follows:

Vb

Wb

(s) ≡ − 1

𝜁a

ga(s), ga(s) =
𝜁a

Za

Za + ZL
a tanh Γa

ZL
a + Za tanh Γa

, (9)

while for the torsional dynamics gt(s) relates torque on bit Tb to angular bit velocity Ωb as follows:

Ωb

Tb

(s) ≡ − 1

𝜁t

gt(s), gt(s) =
𝜁t

Zt

Zt + ZL
t

tanh Γt

ZL
t
+ Zt tanh Γt

, (10)

where we have normalized the functions ga(s), gt(s) to make these dimensionless.

2.2. Two section drill-string

For a typical realistic drilling system the lower-most section of the drill-string consist of series of thick pipes called drill col-

lars. The resulting discontinuity in inertia causes reflections in the torsional and axial waves of the system which have significant

impact on the dynamics.

Considering a drill string with two sections, we will refer to the lower-most section as the drill collar and associated parame-

ters will be indicated with the superscript c. Correspondingly, the top-most section will be referred to as the drill pipe, connected

to the drill collar at the bottom and the load impedance ZL
i

at the top, and will be denoted with the superscript p, see Fig. 2.

2 Note that, although the notation is similar to that of [22], we use force and torque instead of axial and angular strain, resulting in different characteristic

line impedances. This change in model formulation is to simplify the later analysis when extending the model to incorporate multiple drill-string sections (e.g.,

such as the drill pipe section and the bottom-hole assembly section with distinct piping geometries).
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Fig. 2. Two-sectioned drill string schematic.

To derive the transfer function for this case, recall the two-port configuration of (7) which can now be applied to both the

drill collar and the drill pipe. For the axial dynamics, by combining two such transfer matrices we obtain

[
Wb(s)
Vb(s)

]
=
⎡⎢⎢⎣

cosh Γc
a −Zc

a sinh Γc
a

− 1

Zc
a

sinh Γc
a

cosh Γc
a

⎤⎥⎥⎦
⎡⎢⎢⎣

cosh Γp
a −Z

p
a sinh Γp

a

− 1

Z
p
a

sinh Γp
a cosh Γp

a

⎤⎥⎥⎦
[

W0(s)
V0(s)

]
. (11)

This relation can also be derived by first finding the relation between force and velocity at the transition, Wp(s),Vp(s), and using

this as the load impedance for the collar section. I.e., the load seen from the collar section is, using the definition (8):

−
Wp

Vp

≡
𝜁

p
a

g
p
a(s)

, g
p
a(s) =

𝜁
p
a

Z
p
a

Z
p
a + ZL

a tanh Γp
a

ZL
a + Z

p
a tanh Γp

a

, (12)

see Fig. 2 for notation. Then we can write the transfer function of the two section drill string as

Vb

Wb

= − 1

𝜁 c
a

gc
a
(s) = − 1

Zc
a

Zc
a
+ 𝜁

p
a

g
p
a (s)

tanh Γc
a

𝜁
p
a

g
p
a (s)

+ Zc
a tanh Γc

a

. (13)

A similar relation as in (11) and (13) can be obtained for the torsional dynamics, but is omitted here for the sake of brevity.

2.3. Bit-rock interaction law

We adopt the bit-rock interaction law of [30], which is a nonlinear relation that can include both cutting and frictional

effects [15]. Since we pursue a (local) stability analysis, however, we are only interested in perturbed displacements from a

nominal equilibrium and the resulting state-dependent (perturbed) forces, i.e., we use the first-order approximation of the bit-

rock interaction law valid close to the equilibrium corresponding to a constant and non-zero axial and torsional velocity. Hence

we discard the non-linear and static part of the bit-rock interaction equations and write perturbed weight and torque on bit as,

following (see Fig. 3) [12,15]:

Wb(s) = a𝜁𝜖D(s), Tb(s) =
1

2
a2𝜖D(s), (14)

where 𝜖 is the intrinsic specific energy of the rock, 𝜁 is a number characterizing the inclination of the cutting force and a is the

bit radius. Finally, D(s) is Laplace transform of the combined depth of cut which, when linearized (see e.g. Refs. [12,13,16]), can
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Fig. 3. Downhole bit-rock interaction. Adapted from Refs. [12,15].

be written as [22]:

D(s) = N

s

[
Vb(s)

(
1 − e−tNs

)
− v

𝜔
Ωb(s)

(
1 − e−tNs

)]
, (15)

where N is the number of blades on the PDC bit, the equilibrium rate-of-penetration (ROP) is denoted by v and the equilibrium

angular velocity (RPM) is denoted by 𝜔. Finally, tN = 2𝜋

N𝜔
is the (constant) time between two successive cutters passing the same

angular position at the equilibrium angular velocity 𝜔.

2.4. Full model

The complete Laplace transformed linear perturbation dynamics of the drill-string is given by (9), (10), (14), (15). This set of

equations are represented as a block diagram in Fig. 4. Considering Fig. 4, the two feedback loops, which can cause instability,

are clearly identified. As shown in Ref. [22], the stability of this feedback system can be assessed by employing a version of the

Nyquist stability criterion to check for the presence of right-half plane poles of the system. Specifically the occurrence of an

instability of system (9), (10), (14), (15) (where gt(s), ga(s) can denote any stable and proper transfer function) coincides with

the existence of zeros in the Right Half Plane (RHP) of the system’s characteristic equation:

G(s) + 1 = 0, (16)

where

G(s) = Ga(s) + Gt(s), (17)

Ga(s) = ga(s)
Ka

s

(
1 − e−tNs

)
, (18)

Gt(s) = −gt(s)
Kt

s

(
1 − e−tNs

)
. (19)

Ka = a𝜁𝜖N

𝜁a

, Kt =
v

𝜔

a2𝜖N

2𝜁t

. (20)

This characteristic equation can be found by solving for the system of Eqs. (9), (10), (14), (15), (also see Ref. [22]). This system is

depicted in block diagram form in Fig. 4. The characteristic equation will be explored in detail in the scope of stability analysis

in Section 4.1.

3. Parametric characterization of the drill-string dynamics

In this section, we parametrize the drill string transfer functions ga(s), gt(s) in terms of a set of characteristic quantities. A

step towards this goal is the approximation of the wave equation as a delay system, as presented in Section 3.1. This enables

an intuitive understanding of the dynamics and allows for simpler approximations of the involved transfer functions. The time-

domain version of these delay equations will not be used in the present note.

Subsequently, we use such model approximations to characterize the dynamics in gi(s), i ∈ {a, t}, in terms of a minimal set

of parameters in Section 3.2. This is done for a single section drill-string in Section 3.2.1 and for a two-sectioned drill-string

in Section 3.2.2. We also show in the latter two sections how these characteristic parameters determine key properties of the
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Fig. 4. Block diagram of ga(s) (left), and the full interconnected system (right). The block diagram gt(s) is equivalent to that of ga(s). The ‘Line’ block denotes a transformed

version of the 2 × 2 port system of (7). Adapted from Ref. [22].

drillstring dynamics characterized in gi(j𝜔), i ∈ {a, t}, such as the location of the resonances and anti-resonances in gi(j𝜔),
and the related magnitudes of gi(j𝜔) at these (anti-) resonances, and the related phase properties. The obtained insights will

prove to be instrumental in the analysis of stability properties performed in Sections 4 and 5.

Throughout this section, when the subscript i is used, it can be used to indicate a or t, for the axial or torsional derivation,

respectively. This is due to the fact that, since the torsional and axial dynamics have a similar structure, the results are equivalent

and hold for both cases.

3.1. Model approximation using delay equations

Define the Riemann invariants

𝛼a = v + 1

𝜁a

w, 𝛽a = v − 1

𝜁a

w, (21)

or, for the case of torsional dynamics,

𝛼t = 𝜔 + 1

𝜁t

𝜏, 𝛽t = 𝜔 − 1

𝜁t

𝜏 . (22)

Fig. 5. Bode plot of gi(j𝜔), for different topside loads characterized by 𝜂i , and with ki = 0. The interpretation of the influence of the characteristic parameters 𝜂i, ti on gi(s)
are indicated. Note how the magnitude of gi(j𝜔) is contained to a band around 1 (i.e., magnitude of 0 dB and phase of 0◦), where the resonances are located according to

the delay ti and with a magnitude characterized by 𝜂i .
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Using the coordinate transform (21), or (22) for the torsional case, the partial differential equations (1) and (2), or (3) and (4),

can be expressed with the variables 𝛼i, 𝛽i, i ∈ {a, t}, as the diagonalized partial differential equations

𝜕𝛼i

𝜕t
+ ci

𝜕𝛼i

𝜕x
= −ki(𝛽i + 𝛼i) (23)

𝜕𝛽i

𝜕t
− ci

𝜕𝛽i

𝜕x
= −ki(𝛽i + 𝛼i). (24)

To avoid the in-domain coupling between the Riemann invariants, and enable the solutions at the boundary to be expressed in

closed form as delay equations we approximate (23) and (24) as follows:

𝜕𝛼i

𝜕t
+ ci

𝜕𝛼i

𝜕x
= −ki𝛼i (25)

𝜕𝛽i

𝜕t
− ci

𝜕𝛽i

𝜕x
= −ki𝛽i. (26)

This is a reasonable approximation when the solutions of 𝛼i, 𝛽i, i ∈ {a, t}, does not have a significant static component, as can

be seen in Fig. A.27 in Appendix A. This is true in our case as we are concerned with perturbation dynamics. Now it is straight

forward to solve (25) and (26) (e.g., using the method of characteristics [31]) to arrive at the relations

𝛼i(t, x = L) =
√

kd
i
𝛼i(t − ti, x = 0) (27)

𝛽i(t, x = 0) =
√

kd
i
𝛽i(t − ti, x = L), (28)

where we have defined the variable kd
i
= e−2kiti representing the in-domain damping.

Assuming a static boundary condition at the top drive, i.e., of the form W0 = ZL
aV0, and writing:

𝛼i(t, x = 0) ≡ kL
i
𝛽i(t, x = 0) (29)

we can insert (21) or (22) into (29) to arrive at the reflection coefficient kL
i

given by

kL
i
=

𝜁i − ZL
i

𝜁i + ZL
i

. (30)

Here, we observe that there is no reflection when ZL
i
= 𝜁i, which is a well-known phenomenon of transmission lines [32] as this

correspond to impedance matching as seen from the approximation Zi(s) ≈ 𝜁i (see (5), (6)).

Now, by combining (28), (29) and (27) we arrive at the relation

𝛼(t, L) = −𝜂i𝛽(t − 2ti, L), (31)

where 𝜂i ≡ −kd
i
kL

i
is the product of the damping in the domain and at the topside boundary. Thus, by using the transformation

(21) we obtain the following approximative axial dynamics:

v(t, L) + 1

𝜁a

w(t, L) = 𝜂a

(
v
(

t − 2ta, L
)
− 1

𝜁a

w
(

t − 2ta, L
))

. (32)

Using the subscript b to denote the downhole location at the bit at x = L, we write the relation between axial force at bit and

velocity at bit in terms of a delay equation as follows:

vb(t) − 𝜂avb(t − 2ta) = − 1

𝜁a

[
wb(t) + 𝜂awb(t − 2ta)

]
, (33)

An evaluation of the accuracy of this approximation is given in Appendix A (see Fig. A.27). An equivalent expression for the

torsional dynamics can be derived but is omitted here for the sake of brevity.

3.2. Characteristic system parameters

Recall the characteristic equation for evaluating (in)stability, 1 + Ga(s) + Gt(s), see (17), with the axial and torsional terms,

respectively, given by

Ga(s) = ga(s)
Ka

s

(
1 − e−tNs

)
, Ka = a𝜁𝜖N

𝜁a

, (34)

Gt(s) = −gt(s)
Kt

s

(
1 − e−tNs

)
, Kt =

v

𝜔

a2𝜖N

2𝜁t

. (35)
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where a ∈ [0.1, 0.3](m) is the bit radius, 𝜁 ∈ [0.5, 0.8] is dependent on cutter sharpness [33], 𝜖 ∈ [20, 100] ∗ 106(Pa) is the

intrinsic specific energy [34], N is the number of blades on the bit,
v

𝜔
∈ [0.3, 3] ∗ 10−3

(
m

rad

)
is the ratio of axial to angular equi-

librium velocity and 𝜁a ∈ [0.1, 1] ∗ 106
(

N

m∕s

)
, 𝜁t ∈ [0.2, 2] ∗ 103

(
N

m∕s

)
, where typical parameter ranges have been indicated.

To ease stability analysis, we will reduce the number of parameters by introducing dimensionless parameters. Define the

characteristic quantity t∗ = tt =
L

ct
and correspondingly dimensionless time as t = t∕t∗. We use t∗ to make the transfer func-

tion dimensionless by defining the Laplace variable s = st∗. Note how this also implies the dimensionless steady-state angular

velocity Ω = t∗N

2𝜋
𝜔, such that the we can express the terms of the characteristic equations in (34) and (35) as

Ga(s) = ga(s)
Ka

s

(
1 − e−s∕Ω

)
, Ka = a𝜁𝜖Nt∗

𝜁a

, (36)

Gt(s) = −gt(s)
Kt

s

(
1 − e−s∕Ω

)
, Kt =

v

𝜔

a2𝜖Nt∗
2𝜁t

, (37)

where gi(st∗) ≡ gi(s).

3.2.1. Characteristic parameters for a single section drill string

Considering the approximations
Vb(s)
Wb(s)

≈ − 1

𝜁a
ĝa(s) and

Ωb(s)
Tb(s)

≈ − 1

𝜁t
ĝt(s), where

ĝi(s) =
1 − 𝜂ie

−s2ti

1 + 𝜂ie
−s2ti

, i ∈ {a, t}, (38)

(see Appendix A) it is clear that the distributed drill-string transfer function relating the bit velocity to the weight on bit is

determined by the following three parameters:

• 𝜁i – gives the nominal magnitude of the drill string response,

• ti – wave travel time in seconds, the inverse of which gives the frequency of the (anti-) resonances,

• 𝜂i =
ZL

i
− 𝜁i

ZL
i
+ 𝜁i

e−2kiti ∈ [−1, 1], a pseudo-reflection coefficient which gives an approximate supremum of the magnitude of the

transfer function (at the resonances), i.e.:

|gi(s)|∞ ≈ 1 + |𝜂i|
1 − |𝜂i| , (39)

and accounts for the damping at the boundary and the viscous damping in the domain. Note the singularity when 𝜂 = ±1,

which corresponds to cases without any damping in the system (similar to the transfer function of an oscillator without

damping).

The effect of these characteristic parameters are shown in Fig. 5. The scaling 𝜁i, which makes the transfer function gi(s)
non-dimensional, also ensure the normalization gi(s) ≈ 1 for 𝜂i = 0, see Fig. 5.

The complete (scaled) single-section drill-string–bit-rock interaction system, given by (37), (36), (9), (10) is specified by the

following dimensionless parameters:

• Ω = t∗N

2𝜋
𝜔 - Dimensionless top-drive RPM, given as angular velocity relative to the drill string travel time. Determines the

nominal delay in the bit rock interaction delay term.

• Ka = Kat∗ - Nominal axial loop gain coefficient, determined by bit-rock interaction and drill string parameters.

• Kt = Ktt∗ - Nominal torsional loop gain coefficient, determined by bit-rock interaction and drill string parameters, and the

axial to angular velocity ration.

• 𝜂a, 𝜂t - Pseudo reflection coefficient, given by the amount of damping in the system.

• c = ca

ct
= tt

ta
≈ 1.6 - Relative magnitude of the axial and torsional wave speeds.

3.2.2. Characteristic parameters for a two-section drill string

For the case of a drill string with two-sections the associated transfer function gi(s), derived in (11), shown in Fig. 6, is signif-

icantly more complex and the details of its analysis is relegated to Appendix C. There we characterize the resonance frequencies

and the associated magnitude by means of a key set of parameters in the spirit of Section 3.2.1.

Here, we summarize the set of characteristic quantities that can be used to parameterize a dimensionless model of a two

sectioned drill string system.

Define the characteristic quantity t∗ = t
p

t
+ tc

t
and correspondingly non-dimensional time as t = t∕t∗. For the two section

case, the drill string transfer function ga(s) in
Vb(s)
Wb(s)

= −1

𝜁a
ga(s), or gt(s) in

Ωb(s)
Tb(s)

= −1

𝜁t
gt(s), is obtained from (11), (8), and can be

characterized by four parameters:



387U.J.F. Aarsnes and N. van de Wouw / Journal of Sound and Vibration 417 (2018) 376–412

Fig. 6. Bode plot of gi(s) for a two sectioned pipe, showing gi(s) together with the case with matched load (gm(s)) and worst-case resonant gain limits. The limits are shown

with their inverses also plotted. Characteristic parameter used are Z
c

i
∗= 4, 𝜂i = 0.75, tp = 0.84 and the travel time is t∗ = 1 seconds.

• 𝜁 i =
𝜁 c

i

𝜁
p

i

∶ relative magnitude of collar and pipe impedance. This parameter determines the location of resonances and anti-

resonances, as given by (C.7)–(C.8) and determines the magnitude of the resonances of gm(s) as stated in the point below.

• 𝜂c
i
= 1−𝜁 i

1+𝜁 i

e
−kc

i
tc
i ∈ [−1, 1]: determines the magnitude of the resonances of gm(s). Note that this implies the bound

1 + |𝜂c
i
|

1 − |𝜂c
i
| = 1 +

|||| 1−𝜁 i

1+𝜁 i

e
−kc

i
tc
i
||||

1 −
|||| 1−𝜁 i

1+𝜁 i

e
−kc

i
tc
i
||||
< 𝜁 i. (40)

• 𝜂i =
ZL

i
−𝜁p

i

ZL
i
+𝜁p

i

e
−kc

i
tc
i
−k

p

i
t
p

i ∈ [−1, 1]: determines, together with 𝜂c
i
, the magnitude of the resonances of gi(s).

• tp = t
p
t

t∗
∈ [0, 1]: drill pipe travel time. Note that this implies t

c = 1 − tp.

Remark 1. In most realistic cases the in-domain dissipation term in 𝜂c
i

is insignificant compared to the effect of the change in

impedance, represented by Z
c

i , hence it is amenable to describe the two section drill string transfer functions, ga(s) and gt(s), by

only the five parameters 𝜁a, 𝜁 t, 𝜂a, 𝜂t, tp.

In summary, employing the previous remark and assuming c = 1.6 as set, by adding the parameters of the bit rock interaction

(summarized in Section 3.2.1), the complete two-section drill-string–bit-rock interaction system can be specified by the eight

dimensionless parameters: 𝜁 i, 𝜂i,Ki for i ∈ {a, t}, and tp,Ω.

3.3. Typical parameter ranges

The dimensionless loop gain coefficients Ka,Kt plays key roles in determining stability of the system. It should be noted that

Ka,Kt are proportional to the length of the well, L, through the characteristic time t∗, see (36). For the typical parameter ranges

given above, we find the range Ka ∈ [3, 1000]t∗, while Kt ∈ [0.05, 250]t∗.

Meanwhile, the dimensionless top-drive RPM have a typical range of Ω = [0.4, 4]t∗, for the pseudo reflection coefficient we

expect values in the range 𝜂i ∈ ±[0.6, 0.9], i ∈ {a, t}, relative impedance 𝜁
c

i
∈ [1, 10] i ∈ {a, t} and for the characteristic time

we obtain the range t∗ ∈ [0.1, 2](s).

3.4. Relation to lumped-parameter models in the literature

It is instructive to consider how the distributed model formulation compares to the lumped models of previous papers on

this topic. Retaining the notation where the drill string transfer function is denoted by gi(s), i ∈ {a, t}, some of the models

employed in previous literature is summarized in Table 1.

Of particular interest is the relation to the seminal RGD model due to [12]. In Appendix B it is shown that the RGD model can

be obtained as an approximation of a system with a collar section that is infinitely dense and short and with a relatively short
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Table 1

Table of some axial and torsional Transfer Functions used in the literature.

Literature reference
Vb

Wb
= − 1

𝜁a
ga(s)

Ωb

Tb
= − 1

𝜁t
gt(s)

Two-section distributed
1

𝜁c
a

g
p
a (s)𝜁

c
a+𝜁

p
a tanh s

tc

c

𝜁
p
a +𝜁c

a g
p
a (s) tanh s

tc

c

1

𝜁c
t

g
p
t
(s)𝜁c

t
+𝜁p

t
tanh stc

𝜁
p
t
+𝜁

c
t g

p
t
(s) tanh stc

[16]
1

M

s

s2+ska+
Ca
M

1

I

s

s2+skt+
Ct
I

[18]
1

M

s

s2+ska+
Ca
M

1

I

s

s2+ Ct
I

[12,35]
1

M

1

s

1

I

s

s2+ Ct
I

pipe section. That is, the RGD model is an amenable approximation when:

tc 𝜛

t∗
≪ 1, for lumping the collar section. (41)

𝜁
p
a𝜛

t∗M
≪

1 + |𝜂a|
1 − |𝜂a| , for discarding the pipe section. (42)

The above considerations also highlight when the RGD model is not a suitable approximation of the drill-string dynamics.

4. Simplifying heuristics and remarks on the stability result

In this section, we restate the stability result of [22] and investigate its implications. Our main approach is to develop heuris-

tics which approximately correspond to the stability result of Theorem 1, below, but which are easier to grasp the practical

ramifications of, as pertaining to a physical drilling system.

4.1. The Nyquist stability criterion

Recall the characteristic equation stated in (17), which we now consider in non-dimensional form

G(s) + 1 = 0, G(s) = Ga(s) + Gt(s), (43)

where

Ga(s) = ga(s)
Ka

s

(
1 − e−s∕Ω

)
, Gt(s) = −gt(s)

Kt

s

(
1 − e−s∕Ω

)
. (44)

This characteristic equation can be found by solving for the system of Eqs. (9), (10), (14), (15), (also see Ref. [22]). This system is

depicted in block-diagram form in Fig. 4.

G(s) consists of two terms due to the two feedback loops seen in Fig. 4: an axial term Ga(s) and a torsional term Gt(s), which

correspond to the axial and torsional loop transfer functions, respectively. Each of the terms can be split up into three non-

dimensional factors. For the axial term, these three factors are: ga(s) which represents the response of the drill string, Ka∕s a

gain factor, and finally the delay factor 1 − e−s∕Ω due to the bit-rock interaction. A similar decomposition holds for Gt(s), see

(19).

Stability can be assessed by application of the Nyquist criterion, which is based on Cauchy’s integral theorem [36], as sum-

marized in the following theorem.

Theorem 1. Suppose that ga(s) and gt(s) are stable transfer functions and denote the Nyquist contour of G(s) by Γ
G(s). Then, the

system given by the equations (9)–(15) is

• Unstable if Γ
G(s) encircles −1.

• Asymptotically stable if Γ
G(s) does not encircle and does not cross −1.

In the limiting case that Γ
G(s) does not encircle but crosses −1, the stability is undetermined.

Proof. The proof is given in [22]. □

By Nyquist contour, Γ
G(s), we mean the line that is created as G(s) is evaluated along the imaginary axis: s = j𝜛, 𝜛 ∈

(−∞,∞), and this criterion is typically checked graphically through the use of a Nyquist or Nichols diagram.

Remark 2. Parallels of this theorem can clearly be drawn to classical usage of the Nyquist stability criterion applied to a systems’

loop transfer function. Indeed, by inspecting the considered systems block diagram, shown in Fig. 4, G(s) can be seen to be the

loop transfer function obtained by opening the loops at the input ports to the bit-rock interaction.
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Fig. 7. Bode diagram of the “open loop” axial and torsional subsystems Ga(s),Gt(s). The torsional, respectively axial, term can only cross 180◦ (and cause instability) when

the delay phase contribution is positive, respectively, negative (indicated in gray). Parameters Ka = 20,Kt = 1,Ω = 1.5, 𝜂a = 𝜂t = 0.82, c = 1.4.

Fig. 8. Bode diagram of the delay term (right). The regions where the delay factor has a negative phase contribution is indicated in gray. Parameter Ω = 1.5.

A slightly conservative restatement of the result in Theorem 1 is the following: If there does not exist a 𝜛 ∈ ℝ such that both

conditions 1 and 2:

𝐂𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧 1∶ | arg G(j𝜛)| = 180◦ (45)

𝐂𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧 2∶ |G(j𝜛)| > 1, (46)

are satisfied, then asymptotic stability is guaranteed.

The conservatism of this reformulation comes from the particular case where the Nyquist contour Γ
G(s) passes |arg G(j𝜛)| =

180◦ at |G(j𝜛)| > 1 twice without passing |arg G(j𝜛)| = 180◦, |G(j𝜛)| < 1 in between and consequently not encircling −1.

Recall the two terms Ga(s),Gt(s) of the characteristic equation, as given in (36), (37). The Bode diagram of these loop transfer

functions, for a particular parameter setting, is shown in Fig. 7, while the sum, the loop transfer function G(s), is shown in Fig. 9.

As is noted in Section 3.3, Ka is typically quite large, and it has been noted in previous literature that the axial dynamics

is unstable for realistic parameter values [18], and dominating with respect to the torsional term with gain Kt by a factor of

102–103 [15]. The axial term being the dominating term in the characteristic equation, the first term Ga in G = Ga + Gt should be

analyzed when assessing stability, and the torsional term Gt can in many cases be considered small in this regard, see Fig. 9. If,

however, we would succeed in attenuating the axial term, it may happen that the torsional term becomes significant, in relation

to stability properties. In such a case, a full stability analysis using Theorem 1 is needed and additional measures on the torsional
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Fig. 9. Bode diagram comparing the magnitudes of the axial and torsional terms, Ga(s),Gt (s), and their influence on the total loop transfer function G(s), here illustrated for a

one-section case with Ka = 20,Kt = 1, 𝜂a = 𝜂t = 0.82, c = 1.4,Ω = 1.5.

dynamics may have to be taken as well to guarantee stability.

We note again that considering each of the axial and torsional terms Ga(s),Gt(s) in isolation is formally not sufficient for

determining stability, as this must be evaluated by employing the stability criterion on G(s). But, developing heuristics using

Ga(s),Gt(s) is helpful since it provides physics-based insight as to how the stability properties of the drill string can be associated

to the axial and torsional dynamics and to drill-string and bit rock interaction properties. Considering G(s) directly is difficult

due to the complexity and richness of the related dynamics. Consequently, we will, in the following Sections 4.2 and 4.3, analyze

the axial and torsional feedback loops separately.

4.2. Axial dynamics

For the axial dynamics, we will check the conditions:

𝐂𝐨𝐧𝐝. 𝐀1∶ | arg Ga(j𝜛)| = 180◦. (47)

𝐂𝐨𝐧𝐝. 𝐀2∶ |Ga(j𝜛)| > 1. (48)

Considering condition A1, we note from Fig. 5 that we have

−90◦ ≤ arg ga(j𝜛) ≤ 90◦, (49)

that is, the drill string transfer function is passive. The same can be shown to hold for the delay term. Thus, considering the

phase contribution of each of the factors in the axial term Ga(s) = ga(s)
Ka

s

(
1 − e−s∕Ω

)
, we have that:

arg
1

j𝜛
= −90◦ (50)

|arg ga(j𝜛)| < 90◦ (51)

|arg(1 − e−j𝜛∕Ω)| ≤ 90◦. (52)

Adding up the phase contributions we obtain from A1:

−90◦ = arg(1 − e−j𝜛∕Ω) + arg ga(s), (53)

and consequently condition A1 can only be satisfied when the phase contributions of the delay factor and ga(s) are both negative.

For the delay factor this equates to

arg(1 − e−j𝜛∕Ω) < 0◦, (54)

which occurs (see also Fig. 8) for frequencies satisfying

𝜋Ω(2n − 1) < 𝜛 < 𝜋Ω(2n), n = 1, 2… . (55)
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which express the frequency ranges where the axial term Ga(s) may cause instabilities, as given by condition A1. In this fre-

quency range, the phase of Ga(s) may cross the 180◦, at which point condition A2 must be checked.

Consider again Fig. 7, in the frequency range 𝜛 ∈ [0.75, 1.5], indicated in gray, there is the possibility of an axial instability.

The phase of Ga(s) crosses the 180◦ line at the frequency 1.07, at which point we see that the axial magnitude is also above 0 dB,

indicating instability cf. condition A2. The same conditions for instability are also satisfied at frequency 𝜛 = 2.48, meaning that

for the considered parameter set there are multiple unstable axial modes.

It can be difficult to draw general conclusions from the graphical Nyquist criterion. Hence, toward the goal of quantifying the

effect of the model parameters on the system stability, conservative stability conditions, explicit in the system parameters, are

stated below.

Proposition 1. Adopt the approximation in (39), for i = a. A sufficient stability condition for the characteristic equation Ga(s) + 1 = 0

for the single section drill-string is:

2
1 + |𝜂a|
1 − |𝜂a| Ka

Ω𝜋
< 1, (56)

which is equivalent with

1 + |𝜂a|
1 − |𝜂a| 4

𝜔

a𝜁𝜖

𝜁a

< 1. (57)

Proof The proof can be found in Appendix D. □

Proposition 2. Assume that the following bound, derived in (C.12) in Appendix C.2, holds:

|gi(s)| ≤ |gm(s)|1 + |𝜂i|
1 − |𝜂i| ≤ 1 + |𝜂c

i
|

1 − |𝜂c
i
| 1 + |𝜂i|

1 − |𝜂i| , (58)

a sufficient stability condition for the characteristic equation Ga(s) + 1 = 0 for the two section drill-string is:

1 + |𝜂a|
1 − |𝜂a| 4

𝜔

a𝜁𝜖

𝜁
p
a

< 1. (59)

Proof The proof can be found in Appendix D. □

Remark 3. It is worth noting that (57) is independent of the drill string length and the number of cutters on the bit, both of

which one would expect to have an influence on the axial stability. This means that, according to this conservative heuristic, axial

stability is dependent only on: a relative magnitude between the bit rock interaction and the drill string parameters, the RPM

and the amount of damping in the system. For the case of axial impedance matching, 𝜂a = 0, we have the sufficient condition

for axial stability

4

𝜔

a𝜁𝜖

𝜁a

< 1, (60)

which still might be hard to achieve in practice, given the typical parameter ranges given in Section 3.2.

Remark 4. Condition (59) is slightly more conservative than (56) due to the fact that worst-case gain, as given by the bound

(C.12), occurs much more rarely (in the frequency domain), and not necessarily within the frequency range expressed by (55),

as will be discussed in Section 5.2. Note that (57) is equivalent with (59) if 𝜁a in the single section drill string is taken to be equal

to the pipe impedance 𝜁
p
a in the two-section case.

4.3. Torsional dynamics

Similar to the analysis of the axial term, we can consider the effect of the torsional term Gt(s). We have the torsional

“conditions for instability”:

𝐂𝐨𝐧𝐝. 𝐁1∶ | arg Gt(j𝜛)| = 180◦ (61)

𝐂𝐨𝐧𝐝. 𝐁2∶ |Gt(j𝜛)| > 1. (62)

Note the difference in sign of the axial term and the torsional term, cf. (36) and (37). This difference is the cause of axial and

torsional instability frequency regions indicated in Fig. 7. Furthermore, for typical values of Kt , we have|||||
(

1 − e−s∕Ω
)

Kt

s

||||| < 1. (63)



U.J.F. Aarsnes and N. van de Wouw / Journal of Sound and Vibration 417 (2018) 376–412392

Recall that gt(s) varies around 1 with the resonances and anti-resonances whose amplitudes depends on the parameter 𝜂t .

Hence, the points where condition B2 is satisfied tend to be due to resonances in gt(s), see also Fig. 7.

In particular we note from Fig. 5 that the resonances can be avoided in the one-section case, and, from Fig. 6, significantly

reduced in the two section case, by impedance matching, i.e. setting the load impedance ZL
t
≈ 𝜁

p

t
to obtain gt(s) ≈ 1. Due to the

fact that the torsional loop gain, Kt , tends to be small, applying such impedance matching can remove the torsional instability

by ensuring that condition B2 is never satisfied. The following sufficient condition for stability is derived in Appendix D.

Proposition 3. Adopt the approximation in (39). A sufficient stability condition for the characteristic equation Gt(s) + 1 = 0 for the

single section drill-string is, for 𝜂t > 0:

4Kt
1

𝜋

1 + |𝜂t|
1 − |𝜂t| < 1. (64)

For 𝜂t < 0, a sufficient stability condition is:

2Kt
1

𝜋

1 + |𝜂t|
1 − |𝜂t| < 1. (65)

Proof The proof can be found in Appendix D. □

Proposition 4. Adopt the bound (58). A sufficient stability condition for the characteristic equation Gt(s) + 1 = 0 for the two section

drill-string is, for 𝜂t > 0:

4Kt
1

𝜋
𝜁 t

1 + |𝜂t|
1 − |𝜂t| < 1. (66)

For 𝜂t < 0 a sufficient condition is:

2Kt
1

𝜋
𝜁 t

1 + |𝜂t|
1 − |𝜂t| < 1. (67)

Proof The proof can be found in Appendix D. □

The only difference between (64) and (66) is the appearance of 𝜁 t (the relative impedance between the pipe and the collar

section), which increases the worst-case gain of the two-section drill string. However, Kt also contains 𝜁 c
t

in stead of 𝜁t in the

two-section case, as noted for the axial case.

Remark 5. We note that from the sufficient condition (64), that there are two apparent ways of stabilizing the torsional loop:

increasing damping, o.e. lowering 𝜂t , (to reduce magnitude of the resonance) and lowering the torsional loop gain Kt . We note

that the latter is proportional to ROP and length of the drill string, and inversely proportional to RPM. Further note the conser-

vatism of the bound
(

1 − e−s∕Ω
)
≤ 2 in (D.7), in that the magnitude of this delay term decreases towards zero as Ω is increased

(by increasing RPM or the length of the drill-string). This effect comes in addition to the decrease in Kt for an increase in RPM,

while when increasing the length of the drill-string these two effects will counteract each other.

Remark 6. Using topside impedance matching of the torsional dynamics to avoid resonances, as used above, is the approach

used by Shells Z-Torque system [29]. The physical constraints of the actuation, however, limits the frequency range over which

effective impedance matching can be achieved. Noting that the loop gain rolls of at higher frequencies due to the integration

term, the main concern is addressing the resonances of the first couple of low frequency modes. This observation has also been

the key driver behind the work in [8,10,37] on other control strategies for stick-slip mitigation specifically targeting the damping

of the lowest resonance modes in the torsional dynamics.

Remark 7. We care to stress that even when the torsional instability could be resolved, e.g. by impedance matching, the axial

instability may still perceivably lead to torsional (stick-slip) vibrations. Previous works [18–21,37] have shown that the limit

cycle caused by an axial instability (i.e., the non-local axial dynamics) can invoke a velocity-weakening effect in the torque on bit,

which, in turn, may cause torsional stick-slip limit cycling, even when the isolated torsional dynamics is localy asymptotically

stable. Therefore, it is interesting to study measures to also target the axial instability, and use the linear stability analysis as a

starting point to analyze the rather complex non-linear distributed dynamics, also in a non-local sense. For now the results in

Section 5 will focus on addressing the local stability properties of the system in the parametric space introduced in Section 3.

Remark 8. For the RGD model the conditions B1 and B2 can be used to derive the well known criteria from Eqs. (34) and (44)

in [35] (see Appendix D.1 for details):

Ω <

√
8𝜁𝜖a

NM
, (68)

The right-hand side of (68), however, can be compared with (57), (noting that (57) is a conservative condition):

Ω <
1 + |𝜂a|
1 − |𝜂a| 4𝜁𝜖a

Ac𝜌ca

. (69)
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The difference between (68) and (69) is due to a combination of the approximation inherent in the lumped model of (68), and

the conservatism in (69). Key differences to note are the appearance of N and resonance magnitude term, respectively.

5. Stability maps

In the preceding section, we argued for analyzing the axial and torsional loop transfer function in isolation in pursuit of a less

complex interpretation of the stability result. We also showed that the axial and torsional loop transfer functions, Ga(s),Gt(s), are

specified by the five non-dimensional parameters:Ω,Ki, 𝜂i, for i ∈ {a, t}, in the single-section case (assuming c = 1.6 fixed), with

the additional three tp, Z
c

i for i ∈ [a, t], for the two-section case. Finally, we have argued that analyzing the axial and torsional

loop transfer functions Ga(s),Gt(s) in isolation yields insight into the overall behavior of G(s).
When using the Nyquist stability criterion, the robustness of the stability of a system, can be gaged by its gain margin [38]. We

will in the following refer to the inverse of the gain margin where a positive decibel value of the inverse gain margin (indicating

an inverse gain margin larger than 1) indicates instability. Since the inverse gain margin is proportional to the nominal loop

gain coefficient Ka, and given the fact that we would like to use a minimal set of parameters to parametrize the stability of the

system, we define a normalized inverse gain margin, MG,i, i ∈ {a, t}, as

MG,i ≡ max
𝜛∈𝜛180

|||||Gi(j𝜛)
Ki

||||| , with 𝜛180 = {𝜛 ∈ ℝ ∶ ∠Gi(j𝜛) = 180◦}. (70)

This means that KiMG,i > 1 (i.e. exceeds 0 dB) indicates instability, with the severity of the instability given by this product

KiMG,i. Conversely, KiMG,i < 1 means that the system is stable with the robustness of the system given by the same product.

5.1. Single section drill string

For the single section drill string, the stability of the axial and the torsional loop, is respectively determined by the three

parameters Ω,Ki, 𝜂i , for i ∈ {a, t}. We recall the physical interpretation of these parameters as discussed in Section 3.2:

• Ki, i ∈ {a, t}, is determined dy bit-rock interaction and drill-string parameters. Kt additionally includes the RPM to ROP ratio.

• 𝜂i, i ∈ {a, t}: related to boundary condition, where small |𝜂i| means that there is a large amount of damping in the system.

𝜂i > 0 denotes a stiff top-drive where speed is kept relatively constant, while 𝜂i < 0 denotes a softer top-drive where the

torque applied on the drill string is mostly constant.

• Ω∶ RPM relative to drill string length.

5.1.1. Stability analysis for the axial dynamics

For the axial loop, stability is determined by the three parameters Ω,Ka, 𝜂a. That is, specifying a value for Ka a two-

dimensional stability map can be made parametrized in Ω, 𝜂a. This is done for the case of Ka = 20 in Fig. 10. In this figure,

the frequency response functions, on which the Nyquist criterion has been applied, are also shown for two specific parameter

sets corresponding to a stable and an unstable axial loop. For the frequency response function drawn from the stable parameter

set the magnitude, it can be verified that the magnitude is below 0 dB at the frequencies when the phase crosses 180◦, and above

0 dB for the unstable set of parameters.

The line giving the boundary between the stable and unstable regions in Fig. 10 is given by

MG,aKa = 1. (71)

We see in Fig. 10 (and also in Fig. 11, to be introduced) an decrease in MG,a with increases in Ω (faster drill bit rotation

rates). This is caused by the fact that a smaller delay, tN = 1∕Ω, increases the frequency at which the delay factor 1 − e−s∕Ω

has a negative phase contribution, which is required for axial instability, cf. Cond. A1 in Section 4.2. The magnitude of the

characteristic equation decays at higher frequencies due to the integrator factor (the s in the denominator, see (36)). These two

main trends are consistent with the sufficient condition of Proposition 1.

Fig. 10 shows clearly so-called stability lobes characteristic to delay systems and also shows that high RPM Ω and low reflec-

tion coefficient 𝜂a are beneficial for stability.

Given (71) as the stability boundary, since Ka is a scaling of the axial term of the characteristic equation, Ga(s), plotting the

normalized inverse gain margin, MG,a , parametrized in Ω and 𝜂a gives a complete parametrization of the stability of the axial

loop of the single section drill string. This is shown in Fig. 11.

Fig. 11, shows that the damping in the system, corresponding to a small pseudo reflection coefficient 𝜂a, is beneficial for

stability. For the axial term, typical values of Ka ∼ 40 − 60 dB, imply that, in order to guarantee that MG,aKa < 1, almost perfect

impedance matching would be required to avoid instability: i.e. 𝜂a ≈ 0.
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Fig. 10. a) Axial stability map for Ka = 20 (i.e., 26 dB) parametrized in the dimensionless angular velocity Ω and pseudo reflection coefficient 𝜂a , for the single section drill

string. Example frequency response functions are also shown for b) Ω = 3.33, 𝜂a = 0.2 and c) Ω = 3.33, 𝜂a = 0.6.

5.1.2. Stability analysis for the torsional dynamics

For the torsional loop, the stability is determined by the three parameters Ω,Kt, 𝜂t . Again, specifying a value for Kt a two-

dimensional stability map can be made parametrized in Ω, 𝜂t . This is done for the case of Kt = 1 in Fig. 12.

Plotting the normalized inverse gain margin, MG,t , parametrized in Ω and 𝜂t gives a complete parametrization of the stability

of the axial loop of the single section drill string. This is shown in Fig. 13. Again, in Figs. 12 and 13, we note that the damping

in the system, corresponding to a small pseudo reflection coefficient 𝜂i, i ∈ {a, t}, is beneficial for stability. In the region Ω > 1,

increasing Ω also has an almost uniformly stabilizing effect (see Fig. 14).

A noticeable difference from the axial stability map is the absence of the lobes in the region 𝜂t > 0, Ω > 1, which is due to

the first resonance mode of gt being located in the frequency range where the delay term has a positive phase contribution,

required for Cond. B1, and consequently this is consistently the dominating unstable mode. This is different from the axial

term in the 𝜂t > 0, Ω > 1 region, where the most unstable mode changes as the angular velocity is increased, see Fig. 11. Note

that increasing the angular velocity 𝜔, in addition to increasing Ω, also decreases the torsional nominal loop gain Kt , both of

which contributes to stability. Comparing with the sufficient condition of Proposition 3, we observe that Ω does not appear in

(64), meaning that the effect of increasing Ω is not captured, and that this specific sufficient condition can entail a significant

conservatism.

Finally, to enable easier comparison with stability analysis on lumped-parameter models that have been performed in the

literature, stability maps parametrized in imposed axial and angular velocities is given in Fig. 15.

From Fig. 15, the following observations can be made:
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Fig. 11. Axial loop normalized inverse gain margin in dB, MG,a = max
𝜛∈𝜛180

|||| Ga (j𝜛)
Ka

||||, parametrized in the dimensionless angular velocity, Ω, and pseudo reflection coefficient

𝜂a , for the single section drill string.

Fig. 12. Torsional stability map for Kt = 1 (i.e. 0 dB) parametrized in the dimensionless angular velocity Ω and pseudo reflection coefficient 𝜂t , for the single section drill

string.

• 𝜂a < 0 (i.e. a soft top-drive) leads to larger stability areas than 𝜂t > 0 (i.e. a stiff top-drive);

• A low reflection coefficient enlarge the stability area;

• Increasing RPM, Ω is beneficial for stability;

• High ROP is disadvantageous for stability.

5.2. Two-section drill string

We now turn to the case of a drill string with two sections. For this case we need the additional three parameters tp and Z
c

i ,

for i ∈ [a, t], to fully describe the characteristic function. Here we recall from Section 3.2.2 that tp ∈ [0, 1] gives travel time of

the lower drill-string section relative to the travel time of the full drill string (effectively giving the relative length of the lower

section) and Z
c

i denotes the impedance of the lower section relative to the impedance of the upper section.
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Fig. 13. Torsional loop normalized inverse gain margin, MG,t = max
𝜛∈𝜛180

|||| Gt (j𝜛)
Kt

||||, parametrized in the dimensionless angular velocity Ω and pseudo reflection coefficient 𝜂t ,

for the single section drill string. Note that the increasing the angular velocity 𝜔, in addition to increasing Ω, also decreases the torsional nominal loop gain Kt .

Fig. 14. Torsional stability boundaries parametrized in non-dimensional angular, Ω, and axial, V = v
N2 t2

∗ a2𝜖

𝜁t 4𝜋
= ΩKt , velocities for positive pseudo reflection coefficients 𝜂t .

5.2.1. Stability analysis of the axial dynamics

Initially we consider a comparison with the single section case by specifying the parameters Ka = 20, tp = 0.9, 𝜁 a = 3, and

plotting the two-dimensional stability map parametrized in Ω, 𝜂a. This is shown in Fig. 16.

By comparing Figs. 10 and 16 we observe that for the considered, typical, values for the lower drill-string section the stable

region is significantly decreased for low RPMs Ω.

To obtain a complete a more complete visualization of the effect of all the five parameters on the stability, we fix 𝜂a, and

instead use tp along the horizontal-axis. The normalized inverse gain margin, MG,a, for a two-section drill-string parametrized

in tp and 𝜁 a for the axial loop transfer function is shown in Figs. 17 and 18. The four figures correspond to high (left, 𝜂a = ±0.5)

and low (right, 𝜂a = ±0.8) damping and small (top, 𝜁 a = 3) and large (bottom, 𝜁 a = 9) relative impedance between the pipe and

collar sections.

As for the single section case, the damping, as represented by the reflection coefficient 𝜂a is important. A smaller |𝜂a| tends to

decrease MG,a uniformly, while retaining the shape of the parametrized stability map. The 𝜁 a parameter indicates how important

the collar section is to the overall dynamics, where 𝜁 a = 1 reduces the system to the single section case. A large 𝜁 a exaggerates

the features of the map, increasing the prominence of peaks and troughs. Consequently, the addition of drill collars to the drill

string can increase or decrease the inverse gain margin, compared to the single section case, depending on the specific operating
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Fig. 15. Torsional stability boundaries parametrized in non-dimensional angular, Ω, and axial, V = v
N2 t2

∗ a2𝜖

𝜁t 4𝜋
= ΩKt , velocities for negative pseudo reflection coefficients 𝜂t .

Fig. 16. Axial stability map for two section drill-string with parameters Ka = 20, tp = 0.9, 𝜁 a = 3 parametrized in the dimensionless angular velocityΩ and pseudo reflection

coefficient 𝜂a , cf. Fig. 11.

parameters.

As a general trend, observe again that, as for the single section drill string, the inverse gain margin becomes smaller for

larger RPM (Ω). Furthermore, a prominent feature of Fig. 17 is a valley of significantly reduced values of MG,a compared to

the neighboring regions. This feature can is made more explicit in Fig. 19 which shows the stability of axial loop parametrized

with the parameters Ka = 20, 𝜂p = 0.5, 𝜁 a = 3 fixed. We find this to be due to the anti-resonance of the collar section, which

effectively creates a lower loop gain in a frequency area (cf. Fig. 6), coinciding with the area of negative phase contribution of

the delay term (necessary for instability cf. Cond. A1 in Section 4.2). This effect is illustrated in Fig. 20, where axial frequency

response functions corresponding to angular velocities above, in and below the valley is shown. Note how the gain of Ga(s) tends

to be suppressed when the phase crosses −180◦ for the middle Bode diagram. Observe that the resonance frequencies of the

collar section are given by

𝜛r =
𝜋nr

tc

, nr = 0, 1, 2… , (72)

while the areas with positive phase contribution of the delay term correspond to

Ω𝜋(2np) < 𝜛 < Ω𝜋(2np + 1), np = 0, 1, 2… . (73)
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Fig. 17. Axial loop transfer function normalized inverse gain margin, MG,a in dB, maps for two section pipe with a positive pseudo reflection coefficient and parameter sets:

a) 𝜁 a = 3, 𝜂a = 0.5, b) 𝜁 a = 3, 𝜂a = 0.8, c) 𝜁 a = 9, 𝜂a = 0.5, d) 𝜁 a = 9, 𝜂a = 0.8.

The most prominent valley in the inverse gain margin is obtained for np = nr; in this case, we have:

𝜋Ω(2np) < 𝜛r < 𝜋Ω(2np + 1) (74)

⇒ 2tc <
1

Ω
< 2tc +

1

nr

tc. (75)

This is a quite coarse simplification as, perhaps the most important part of the dynamics, the resonance modes of the full drill

string are not directly accounted for. However, a lower inverse gain margin seems to be achieved just above Ω2tc = 2, that is,

the region where (75) is satisfied for nr > 1. The range
1

Ω
∈ [2tc, 2.5tc] (where nr = 2 has been taken for purpose of illustration

of the region), is indicated by red lines in Fig. 20, which indicates the value of the above approximative analysis.

5.2.2. Stability analysis of the torsional dynamics

Again, we consider a comparison with the single section case by specifying the parameters Kt = 1, tp = 0.9, 𝜁 t = 3, and plot-

ting the two-dimensional stability map parametrized in Ω, 𝜂a. This is shown in Fig. 21. By comparing Figs. 12 and 21 we observe

that for the torsional loop, and the considered case of typical values, the lower drill-string section does not have a very large

effect on stability.
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Fig. 18. Axial loop transfer function normalized inverse gain margin, MG,a in dB, maps for two section pipe with a negative pseudo reflection coefficient and parameter sets:

a) 𝜁 a = 3, 𝜂a = −0.5, b) 𝜁 a = 3, 𝜂a = −0.8, c) 𝜁 a = 9, 𝜂a = −0.5, d) 𝜁 a = 9, 𝜂a = −0.8.

For a more complete visualization, we again fix 𝜂t, and instead use tp along the horizontal-axis and plot the normalized

inverse gain margin, MG,t , for a two-section drill-string parametrized in tp and 𝜁 t for the torsional loop transfer function. This

is shown in Figs. 22 and 23. The four figures correspond to high (left, 𝜂t = ±0.5) and low (right, 𝜂t = ±0.8) damping and small

(top, 𝜁 t = 3) and large (bottom, 𝜁 t = 9) relative impedance between the pipe and collar sections.

Due to the first resonance mode being the dominating unstable mode in most instances for the torsional loop, the shape of

the features of the map is significantly simpler than for the axial term. Note that typical drilling parameters are Ω ∈ [0.4, 4] and

tp ∈ [0.7, 0.95]. In this range, the maps indicate that instability is associated with

1. Increasing tp – shorter collar section.

2. Increasing 𝜂t – A high reflection at the top-drive and little damping in the domain. Also note that negative 𝜂t tends to be

preferable to positive.

3. Increasing 𝜁 t – Increasing the polar moment of inertia of the drill collar section relative to that of the drill pipes.

4. Decreasing Ω – lower RPM.

For the combination of low |𝜂t| (in particular for 𝜂t < 0), Ω and tp a region of significantly reduced inverse gain margin

appears which occurs when Cond. B1, in Section 4.3, is not satisfied in the first region of positive phase contribution by the
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Fig. 19. Axial stability map for two section drill-string with parameters Ka = 20, 𝜂p = 0.5, 𝜁 a = 3.

delay term. As points 1 and 3 are related to drill string geometry, reducing th tendency to torsional instability is best addressed

through point 2 (i.e. reducing the reflection coefficient through attempting impedance matching) and 4. Point 2 and 3 are also

represented in (66), while point 1 and 4 are not captured by this sufficient condition. These effects are the result of more

complex interactions of phase and gain contributions of the torsional factors and not easily captured by a simple heuristic such

as Proposition 4. This illustrates the merit of pursuing the detailed stability maps in this section.

5.3. Discussion of the stability maps

As we have seen in this section, the stability maps for the drill string system are complex, and the effect of varying one

parameter is seldom uniform in the other parameters, in particular for the case of a two-section drill string. The main trend that

we have identified, however, is that increasing RPM and decreasing the reflection coefficient tend to decreases the inverse gain

margin, thereby increasing the tendency for stability, for typical parameter values.

For the torsional case, negative reflection coefficient, 𝜂t , tend to be preferable to a positive one, when reflections of the same

magnitude are compared. We iterate the fact that the high gain of the axial loop coefficient, Ka, can make avoiding the axial

instability infeasible.

6. Exemplary case study

In this section, we illustrate some of the results of the paper by considering an example well with realistic parameters.

6.1. Case description and derivation of characteristic quantities

We consider a well being drilled with a two-section drill string with pipe properties given by length Lp = 1000 m, cross

sectional area Ap = 0.0035 m2 and polar moment of inertia Jp = 1.2e-5 m4, and collar properties given by length Lc = 200 m,

cross sectional area Ac = 0.015 m2 and polar moment of inertia Jc = 5.2e-5 m4. We assume that both pipe and collars are

made of steel with modulus’: E = 200e9 Pascal, G = 77e9 Pascal, and density 𝜌 = 8000 kg∕m3. This means we have the following

impedances

𝜁
p
a = ApEp

ca

≈ 140 270 [kg/s], 𝜁
p

t
= JpGp

ct

≈ 302 [m2kg∕s], (76)

𝜁 c
a
= AcEc

ca

≈ 626870 [kg/s], 𝜁 c
t
= JcGc

ct

≈ 1 288 [m2kg∕s]. (77)

Finally, we assume the viscous damping coefficients are given by ka = kt = 0.4, and constant imposed axial and angular velocities

such that the load impedances are infinite ZL
a
= ZL

t
= ∞. From these physical parameters, we find the characteristic time t∗ =

tt ≈ 0.38 s.
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Fig. 20. a) Inverse gain margin map of MG,a showing the computed valley
1

Ω
∈ [2tc, 2.5tc]. Bode plots of Ga(s) inside and outside the valley for parameter sets

b) 𝜁 a = 6, 𝜂a = 0.5, tp = 0.82, Ω = 5.20, c) 𝜁 a = 6, 𝜂a = 0.5, tp = 0.82, Ω = 3.46, d) 𝜁 a = 6, 𝜂a = 0.5, tp = 0.82, Ω = 2.17.

Now, we derive the corresponding non-dimensional quantities characterizing the drill-string:

c = ca

ct

=
√

E

G
≈ 1.61, (78)

𝜂a = −kd
a
kL

a
= −e−2kata

𝜁
p
a − ZL

a

𝜁
p
a + ZL

a

≈ 0.83 (79)

𝜂t = −kd
t kL

t = −e−2kttt
𝜁

p

t
− ZL

t

𝜁
p

t
+ ZL

t

≈ 0.73 (80)

𝜁 a = AC

Ap
≈ 4.47 (81)

𝜁 t =
Jc

Jp
≈ 4.26 (82)

tp =
Lp

Lp + Lc

≈ 0.83. (83)
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Fig. 21. Torsional stability map for two section drill-string with parameters Kt = 1, tp = 0.9, 𝜁 a = 3 parametrized in the dimensionless angular velocity Ω and pseudo

reflection coefficient 𝜂t , for the single section drill string.

Next, we consider the following bit-rock interaction parameters: a = 0.0762 m, 𝜁 = 0.6, 𝜖 = 60e6 Pascal and N = 4, and, the

operational parameters: axial velocity v = 20 meter/hour, 𝜔0 = 90 RPM. This yields the non-dimensional nominal loop gains as

follows:

Ka = t∗
a𝜁𝜖N

𝜁a

= 6.77, (84)

Kt = t∗
v

𝜔

a2𝜖N

2𝜁t

= 0.12, (85)

while the non-dimensional angular velocity is given by

Ω = t∗N

2𝜋
𝜔 = 2.32. (86)

6.2. Qualitative analysis using the stability maps

Now, to obtain an impression of the stability of the axial loop, consider the stability map of Fig. 17. We have the axial

characteristic quantities 𝜂a = 0.83, 𝜁 a = 4.47, so consider subplot b) as the closest case. In this subplot we consider the point

tp = 0.83, Ω = 2.32, where we find the axial loop to have a normalized inverse gain margin MG,a ≈ −5 dB, while nominal axial

loop gain is Ka = 16.6 dB, and hence we expect an axial instability of about 10 dB severity. We also note from the stability map

that, in this case, we expect a stabilizing effect from increasing the RPM up until about Ω = 3.5.

For the torsional loop we consider the stability map of Fig. 22. We have the torsional characteristic quantities 𝜂t = 0.73, 𝜁t =
4.26, and hence again consider subplot b) as the closest case and the point tp = 0.83, Ω = 2.32. Here we find the torsional loop

to have a normalized inverse gain margin MG,t ≈ 15 dB (we would expect the actual MG,t to be slightly lower due to the pseudo

reflection coefficient 𝜂t = 0.73 being slightly lower than the 𝜂t = 0.80 of the stability map). The nominal torsional loop gain is

Kt = −18.2 dB, and hence we do not expect any instability to be caused by the torsional loop.

6.3. Quantitative analysis

We now check these qualitative conclusions against a quantitative stability result. We derive the axial and torsional drill

string transfer functions gi(s), i ∈ {a, t}, by using (13). Since ZL
a
= ZL

t
= ∞, the relations simplify slightly to

g
p

i
(s) = 1√

1 + ki

st∗

tanh

(
stp

√
1 + ki

st∗

)
, (87)
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Fig. 22. Torsional loop transfer function normalized inverse gain margin, MG,t in dB, maps for two section pipe with a positive pseudo reflection coefficient and parameter

sets: a) 𝜁 t = 3, 𝜂t = 0.5, b) 𝜁 t = 3, 𝜂t = 0.5, c) 𝜁 t = 9, 𝜂t = 0.8, d) 𝜁 t = 9, 𝜂t = 0.8.

gi(s) =
1√

1 + ki

st∗

g
p

i
(s)

√
1 + ki

st∗
+ tanh

(
stp

√
1 + ki

st∗

)
1 + g

p

i
(s)

√
1 + ki

st∗
tanh

(
stp

√
1 + ki

st∗

) . (88)

These transfer functions are shown in Fig. 24, with s = j𝜛. With these drill string transfer functions, we derive the characteristic

function G(s) of (43):

G(s) = ga(s)
Ka

s

(
1 − e−s∕Ω

)
− gt(s)

Kt

s

(
1 − e−s∕Ω

)
. (89)

We can now graphically evaluate the stability of the system by using the Nyquist criterion, see Theorem 1. The considered case

is shown in a logarithmic Nyquist diagram in Fig. 25, where the original case considered was with 90 RPM as imposed angular

velocity. We see that this system is unstable with a gain margin violation of ∼12 dB, which is very close to the 10 dB which

was concluded from the axial stability map. This instability is hence clearly due to a resonance in the axial loop. Furthermore,

we see that the severity of the instability can be reduced by increasing the rotation-rate to 135 RPM, corresponding to Ω ≈ 3.5,

as can also bee seen from the axial stability map. However, increasing the RPM even further (to 225 RPM) does not help but

exacerbates the instability, as can also be seen in the axial stability map.
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Fig. 23. Torsional loop transfer function normalized inverse gain margin, MG,t in dB, maps for two section pipe with a negative pseudo reflection coefficient and parameter

sets: a) 𝜁 t = 3, 𝜂t = −0.5, b) 𝜁 t = 3, 𝜂t = −0.5, c) 𝜁 t = 9, 𝜂t = −0.8, d) 𝜁 t = 9, 𝜂t = −0.8.

6.4. Comparison with lumped model

Using the same example, we can also derive the transfer functions of the lumped RGD model [12,35]. Using the model from

Table 1 in non-dimensional form:

ga(s) =
𝜁 c

a

M

t∗
s

(90)

gt(s) =
𝜁 c

t

I

s∕t∗
s
2

t2
∗
+ Ct

I

, (91)

where M = AcLc𝜌, I = IcLc𝜌, and the spring constant was fitted to match the first torsional resonance: Ct = 650. This yields the

lumped transfer functions shown in Fig. 26. From this figure it is clear that the lumped RGD model is not an amenable represen-

tation for the considered example parameter set. In particular, the model only captures one of the drill string resonances, which

are critical for determining system stability.
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Fig. 24. Drill string transfer functions for the example case.

Fig. 25. Logarithmic Nyquist diagram for the characteristic function G(s) for the example case.

Fig. 26. Drill string transfer functions compared to with the lumped transfer functions for the example case.
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7. Conclusions

In this paper we have characterized the linearized axial–torsional dynamics of a distributed drill string system in a minimal

set of 5 parameters for the single section drill string and 8 parameters for the two-section drill string. For the single section

drill-string these parameters are

1. Ω = t∗N

2𝜋
𝜔 - Dimensionless top-drive RPM, given as angular velocity relative to the drill string travel time. Determines the

nominal delay in the bit rock interaction delay term.

2. Ka = Kat∗ - Nominal axial loop gain coefficient, determined by bit-rock interaction and drill string parameters.

3. Kt = Ktt∗ - Nominal torsional loop gain coefficient, determined by bit-rock interaction and drill string parameters, and the

axial to angular velocity ratio.

4. 𝜂a - Pseudo reflection coefficient, given by the amount of damping of the axial dynamics.

5. 𝜂t - Pseudo reflection coefficient, given by the amount of damping of the torsional dynamics.

For a two-section drill string, the following parameters are required in addition.

1. 𝜁 a = 𝜁 c
a

𝜁
p
a

∶ Approximately equals relative size of collar to pipe cross sectional area.

2. 𝜁 t =
𝜁 c

t

𝜁
p
t

∶ Approximately equals relative size of collar to pipe polar moment of inertia.

3. tp = t
p
t

t
p
t
+tc

t

∈ [0, 1]: drill pipe travel time relative to total drill string travel time.

Using these parameters we obtained sufficient conditions for stability of the isolated axial and torsional loop (note that this

does not necessarily entail stability for the complete system).

The exact limit of stability is given by a significantly more complex relation and, as such, has been presented by a series of

stability maps spanning the range of realistic physical parameters for the system. This analysis reveals complex dynamics for

the distributed system. The main trends that emerges, however, is that a decrease in the inverse gain margin (leading to a more

stable system) is obtained by decreasing the reflection coefficient and increasing RPM. These effect are also recognized in stated

sufficient conditions for stability. A negative reflection coefficient (corresponding to a soft top-drive) is in many cases preferable

to a positive reflection coefficient (corresponding to a stiff top-drive). Still, in particular for the axial dynamics, achieving stability

can be difficult to achieve in practice due to the restrictions on RPM and the challenges of reducing the reflection coefficient

through impedance matching.

We stress that the presented results illustrate the limitations of a low-order lumped-parameter model approach, in that

multiple axial and torsional modes can be unstable and contribute to the overall system behavior.

The presented results also enable a more structured approach to analyzing non-local (non-linear) dynamics through the

derivation of the minimal set of characteristic parameters. Moreover, the stability maps enables an effective test of accuracy of

a transient simulation model. Using the developments in the present paper, a comprehensive simulation study of the non-local

dynamics will be pursued in future work.
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Appendix A. Accuracy of the delay model approximation

To evaluate the accuracy of the approximation utilized in Section 3.1 we compare the transfer function of the original wave

equation with that of the approximation.

We assume that ZL
i
= ∞ ⇒ kL

i
= −1 (which corresponds to a stiff top-drive with a velocity not affected by the force acting

on it), which corresponds to a worst case for the approximation as in this case all the damping is in the domain where the

approximation was performed, cf. (25), (26). The Laplace transform of the approximation model in (33) yields the transfer

function ĝi(s) given as

ĝi(s) =
1 − e−2kiti e−s2ti

1 + e−2kiti e−s2ti
= 1 − 𝜂ie

−s2ti

1 + 𝜂ie
−s2ti

, i ∈ {a, t}. (A.1)

Recalling that we have also defined the relation
Vb

Wb
(s) = − 1

𝜁a
ga(s), for the original model, we can compare with the exact solution
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from (9):

gi(s) =
1√

1 + ki

s

1 − e
−s2ti

√
1+ ki

s

1 + e
−s2ti

√
1+ ki

s

. (A.2)

The transfer functions ĝi(s) and gi(s) are compared in a Bode plot in Fig. A.27. This figure confirms the high accuracy of the

delay-based model approximation of the distributed drill string dynamics and yields some interesting insights. In particular, we

can obtain the magnitude of the (anti-) resonances by noting that these occur when denominator (numerator) of the transfer

function is close to zero, i.e., when s = j𝜔 = j𝜋

2ti
k, k = 1, 2…, at which point, we have gi(s =

j𝜋

2ti
) ≈ 1±𝜂i

1∓𝜂i
, and are hence only

determined by 𝜂i = −kd
i
kL

i
, i.e., by the in-domain damping and the coupling at the top-side boundary condition.

Fig. A.27. Bode plot showing the comparison of gi(s), in (A.2), with the approximation ĝi(s), in (A.1), and the resulting additive error. Parameter values used are

ki = 0.3 s−1 and ti = 1 s. The comparison is valid for both i = t, a.

Appendix B. RGD axial model as a limiting case of the distributed model

Consider the distributed model of a two-section drill string with the axial transfer function

Vb

Wb

= − 1

𝜁 c
a

gc
a(s) = − 1

𝜁 c
a

g
p
a(s)𝜁 c

a
+ 𝜁

p
a tanh s

tc

c

𝜁
p
a + 𝜁 c

a g
p
a(s) tanh s

tc

c

, (B.1)

where, see Fig. 2 for notation,

− 1

𝜁
p
a

g
p
a(s) =

Vp

Wp

= − 1

Z
p
a

Z
p
a + ZL

a
tanh s

tp

c

ZL
a + Z

p
a tanh s

tp

c

. (B.2)

Denote the mass of the collar section by M, which entails

M = Lc𝜌Ac = Lc 𝜁
c
a

ca

. (B.3)

Assume that the collar section is infinitely dense and short, that is, we write Lc = Mca

𝜁 c
a

≡ 𝜉, and consider the limit

lim
𝜉→0

Vb

Wb

= lim
𝜉→0

− 𝜉

Mca

g
p
a(s)

Mca

𝜉
+ 𝜁

p
a tanh s𝜉∕ca

𝜁
p
a + Mca

𝜉
g

p
a(s) tanh s𝜉∕ca

= − 1

𝜁
p
a

1
1

g
p
a (s)

+ M

𝜁
p
a

s
, (B.4)

where we have used the identity (easily obtained from a series expansion)

lim
𝜉→0

tanh 𝜉s∕ca

𝜉
= s∕ca. (B.5)
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The magnitude of the drill pipe transfer function can be assumed to be bounded away from zero: |gp
a(s)| > 𝜖 > 0 (corresponds

to |𝜂a| < 1 which will always be true for realistic drill strings). Consequently, as the collar mass M becomes large, and collar

length Lc becomes short, we obtain the limit

lim
𝜉→0,M→∞

Vb

Wb

→
1

Ms
, (B.6)

which is equivalent with the axial dynamics of the RGD model.

Summarizing the distributed two sectioned model corresponds to the RGD model only in the limit for a very large, but very

short, collar section.

A similar analysis can be performed for the torsional dynamics of the RGD model, as well as for the axial and torsional

dynamics of [16,18], see the Appendix of [22] for details.

Appendix C. Derivation of resonance characteristics of the two section drill string

Appendix C.1. Resonance frequencies

In this section, we will derive relations for the locations of the resonances and anti-resonances of the two-section drill-string

derived in Section 2.2. Since the location the resonances are independent of the amount of dissipation in the system, we assume

ki = 0 and ZL
i
= ∞ to simplify the derivation. Recall from Section 3.1 that this means that the delay approximation is valid and

from (5), (6), that:

Γc
i
= tc

i
s, Γp

i
= t

p

i
s, Zc

i
= 𝜁 c

i
, Z

p

i
= 𝜁

p

i
, (C.1)

where tc
i
, t

p

i
, i ∈ {a, t}, are the wave travel times for the two sections and 𝜁 c

i
, 𝜁

p

i
are given by the physical properties of the

string. Denoting the response relation at location p, see Fig. 2, as
1

𝜁
p

i

g
p

i
(s), where with infinite load we have g

p

i
(s) = tanh Γp

i
=

tanh t
p

i
s, this enters in a two-port series configuration as the inverse load of the collar section such that the complete drill string

response function is given by

Vb

Wb

(s) ≡ −1

𝜁 c
a

ga(s),
Ωb

Tb

(s) ≡ −1

𝜁 c
t

gt(s), where gi(s) =

𝜁 c
i

𝜁 c
i

g
p

i
(s) + tanh tc

i
s

1 +
𝜁 c

i

𝜁
p

i

g
p

i
(s) tanh tc

i
s

, i ∈ {t, a}. (C.2)

Denote the relative magnitude of the characteristic impedances as 𝜁 i =
𝜁 c

i

𝜁
p

i

and insert for g
p

i
(s) = tanh t

p

i
s to obtain:

gi(s) =
𝜁 i tanh t

p

i
s + tanh tc

i
s

1 + 𝜁 i tanh t
p

i
s tanh tc

i
s

. (C.3)

Evaluating g
p

i
(s) at s = j𝜔, we obtain

gi(j𝜔) =
tanh(j𝜔t

p

i
)𝜁 i + tanh(j𝜔tc

i
)

1 + 𝜁 i tanh(j𝜔t
p

i
) tanh(j𝜔tc

i
)

(C.4)

=
j tan(𝜔t

p

i
)𝜁 i + j tan(𝜔tc

i
)

1 − 𝜁 i tan(𝜔t
p

i
) tan(𝜔tc

i
)

(C.5)

=
−j𝜁 i sin(𝜔t

p

i
) cos(𝜔tc

i
) − j cos(𝜔t

p

i
) sin(𝜔tc

i
)

𝜁 i sin(𝜔t
p

i
) sin(𝜔tc

i
) − cos(𝜔t

p

i
) cos(𝜔tc

i
)

, (C.6)

where resonances and anti-resonances occur when the undamped denominator and numerator equals zero, respectively, i.e.,

with resonances at 𝜔 such that

cos(tp

i
𝜔) cos(tc

i
𝜔) − 𝜁 i sin(tp

i
𝜔) sin(tc

i
𝜔) = 0, (C.7)

and anti-resonances at 𝜔 such that

cos(tp

i
𝜔) sin(tc

i
𝜔) + 𝜁 i sin(tp

i
𝜔) cos(tc

i
𝜔) = 0. (C.8)

Example 1. Consider the case of Lp = Lc, i.e. tc
i
= t

p

i
. Then, resonance frequencies are located at

sin (tp

i
𝜔)2 − 𝜁 i cos (tp

i
𝜔)2 = 0 ⇒ 𝜔 = 1

t
p

i

(
n𝜋 ± arctan(

√
𝜁 i)

)
, n = 0, 1, 2… , (C.9)
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and the anti-resonance frequencies

sin(tp

i
𝜔) cos(tp

i
𝜔) = 0 ⇒ 𝜔 = n𝜋

2t
p

i

, n = 0, 1, 2… . (C.10)

Appendix C.2. Resonance magnitude

Next, we study the magnitude of the resonances in the two-section drill string. We will study two cases: first the case

of impedance matching at the top-drive resulting in a rather agreeable expression, and then the more involved case of an

unmatched load. These two can be considered as limiting cases where a real drilling system would be somewhere in between.

For the case of a matched load at the top of the pipe section p, we have ZL
i
= Z

p

i
. For this case, the transfer function of this

section reduces to g
p

i
(s) =

𝜁
p

i

Z
p

i

≈ 1, and the full transfer function can be approximated by

gi ≈ gm(s), gm(s) =
Zc

i
+ Z

p

i
tanh Γc

i

Z
p

i
+ Zc

i
tanh Γc

i

. (C.11)

Note that (C.11) equals the response of only the lowermost section, c, with a load equal to the characteristic impedance of the

top-most section p. Hence, the result for the single section drill string given in Section 2.1.2 can be used, meaning that gm(s) is

characterized by the travel time tc
i

and the reflection coefficient 𝜂c
i
=

𝜁
p

i
−𝜁 c

i

𝜁
p

i
+𝜁 c

i

e
−kc

i
tc
i , with bounds as given in (39).

For cases where the load at the top-drive is not matched to pipe impedance, the resonance frequencies are dependent on

a more complex interaction between the two sections, as was shown in Section Appendix C.1. However, by studying the Bode

plots of a wide range of parameter sets, the gain at the resonant peaks of the full drill string transfer function seems to satisfy

the bound3:

|gi(s)| ≤ |gm(s)|1 + |𝜂i|
1 − |𝜂i| ≤ 1 + |𝜂c

i
|

1 − |𝜂c
i
| 1 + |𝜂i|

1 − |𝜂i| . (C.12)

The first inequality comes from heuristically assuming that the magnitude of the response is a product of that of the two sections,

and observing that it follows the general response of gm(s). The second inequality follows from the first and (39), which holds

for |gm(s)|. These bounds are illustrated in Fig. 6.

Appendix D. Derivation of explicit sufficient stability conditions

Proof of Proposition 1. Consider the case of a single section drill string. The magnitude of the axial term Ga(s), as in (36), of the

characteristic equation can be bounded according to

|Ga(s)| = |||||ga(s)
Ka

s

(
1 − e−s∕Ω

)||||| ≤
|||||1 + |𝜂a|

1 − |𝜂a| Ka

s
2
||||| , (D.1)

where we have used (39) for i = a and the fact that
|||(1 − e−s∕Ω)||| ≤ 2. The bound (D.1) decreases for higher frequencies, due to the

s in the denominator The lowest frequency at which Cond. A1 (see (47) in Section 4.2) can be satisfied (cf. (55)) is 𝜛 = 𝜋Ω. At this

frequency, we can obtain a bound on the magnitude, and hence a sufficient condition for stability, using Cond. A2:

2
1 + |𝜂a|
1 − |𝜂a| Ka

Ω𝜋
< 1 (D.2)

Detailing the characteristic quantities,

Ka = a𝜁𝜖Nt∗
𝜁a

, Ω = t∗
tN

= N𝜔

2𝜋
t∗, (D.3)

(D.2) is equivalent with

1 + |𝜂a|
1 − |𝜂a| 4

𝜔

a𝜁𝜖

𝜁a

< 1. (D.4)

Proof of Proposition 2. Consider a two sectioned drill-string. We use the bound from (40) 𝜁a >
1+|𝜂c

a|
1−|𝜂c

a| , combined with (C.12):

|gi| ≤ 1 + 𝜂i

1 − 𝜂i

𝜁 a (D.5)

3 We have not been able show this relation rigorously but have not yet observed cases where it has been incorrect.



U.J.F. Aarsnes and N. van de Wouw / Journal of Sound and Vibration 417 (2018) 376–412410

then noting that
𝜁a

𝜁 c
a

= 1

𝜁
p
a

, and that the the two section loop gain is Ka = a𝜁𝜖Nt∗
𝜁 c

a

, we follow the same procedure as in

Proof of Proposition 1 and obtain the sufficient condition for stability:

1 + |𝜂a|
1 − |𝜂a| 4

𝜔

a𝜁𝜖

𝜁
p
a

< 1. (D.6)

Proof of Proposition 3. Consider the case of a single section drill string. With 𝜂t ≥ 0 the first torsional resonance is located at

𝜛r,1 = 𝜋

2
, while with 𝜂t < 0 the first torsional resonance is located at 𝜛r,1 = 𝜋, see e.g. (38).

At resonance, the drill string transfer function takes the magnitude |gt(j𝜛r,1)| ≈ 1+𝜂t

1−𝜂t
, while the magnitude of the full torsional

term of the characteristic equation is bounded by, for 𝜂t ≥ 0:

|Gt(s)|s=j
𝜋
2
=
|||||gt(s)

Kt

s

(
1 − e−s∕Ω

)|||||s=j
𝜋
2

≤ 4Kt
1

𝜋

1 + |𝜂t|
1 − |𝜂t| , (D.7)

where we again used the bound
|||(1 − e−s∕Ω)||| ≤ 2, and hence a sufficient condition for stability of the torsional dynamics is, from B2:

4Kt
1

𝜋

1 + |𝜂t|
1 − |𝜂t| < 1. (D.8)

Equivalently, for 𝜂t < 0 the dimensionless Laplace variable is evaluated at s = j𝜋 and we obtain the sufficient conditions

2Kt
1

𝜋

1 + |𝜂t|
1 − |𝜂t| < 1. (D.9)

Proof of Proposition 4. Consider a two sectioned drill-string. We use the bound from (40) for i = t: 𝜁 t >
1+|𝜂c

t
|

1−|𝜂c
t
| . Combining with

(C.12), as was done in Proof of Proposition 2, we obtain for the two-sectioned case with 𝜂t ≥ 0 the modified bound

|Gt(s)|s=j
2𝜋
4

=
|||||gt(s)

Kt

s

(
1 − e−s∕Ω

)|||||s=j
2𝜋
4

≤ 4Kt
1

𝜋
𝜁 t

1 + |𝜂t|
1 − |𝜂t| . (D.10)

Hence, a sufficient condition for stability is, from B2:

4Kt
1

𝜋
𝜁 t

1 + |𝜂t|
1 − |𝜂t| < 1. (D.11)

Equivalently, for 𝜂t < 0 the resonance occurs at s = j𝜋 and we obtain the stability bound

2Kt
1

𝜋
𝜁 t

1 + |𝜂t|
1 − |𝜂t| < 1. (D.12)

Appendix D.1. Stability conditions as pertaining to the RGD model

It may be instructive to consider how the stability conditions derived in this paper relates to previous stability analyses for

lumped-parameter models.

For the RGD model [12] we have that Ka = NΨ (as stated in the non-dimensional formulation in Ref. [35]), and for the axial

drill string transfer function, it holds that ga(s) =
1

s
. From A1 in (47):

|arg
Ka

s2

(
1 − e−j𝜛∕Ω

)| = 180 (D.13)

⇒ |arg
(

1 − e−j𝜛∕Ω
)| = 0 (D.14)

⇒ 𝜛 = 𝜋Ω (D.15)

From A2, in (48):|||||Ka

s2

(
1 − e−j𝜋

)|||||s=j𝜋Ω
> 1 (D.16)

⇒
2Ka

Ω
2
𝜋2

> 1, (D.17)
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and consequently, inserting for Ka = NΨ, we obtain instability when

1

Ω
>

𝜋√
2NΨ

, (D.18)

which is equivalent with

Ω <

√
8𝜁𝜖a

NM
. (D.19)
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