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ARTICLE INFO ABSTRACT

Keywords: Mathematical models play an increasing role in understanding and predicting machining
Milling processes, in particular milling. However, despite the considerable efforts that have been
Tool/machine dynamics dedicated to this problem, a majority of milling models still rely on simplifying assumptions
Chip thickness

to calculate the chip thickness. In this paper, the chip thickness is determined without these
simplifications, based on a surface function that describes the milled surface and on information
about the workpiece boundary. By combining the partial differential equation (PDE) governing
the evolution of this surface function with the ordinary differential equations (ODE) governing
the tool/machine dynamics, a mixed PDE-ODE formulation is proposed to describe the dynamics
of the milling process. The coupled system of differential equations is solved using an algorithm
that combines finite difference (ODE) and finite volume (PDE) methods. A case study is
presented to compare the proposed approach with the classical delay differential equations
(DDE) model formulation for milling processes based on a simplified chip thickness model. The
PDE-ODE formulation represents an explicit mathematical model for milling process dynamics;
it yields a theoretically exact chip thickness and offers a means to assess the validity of
models based on DDE formulation. Moreover, the proposed formulation is capable of simulating
transient tool behaviors when the tool is milling the outer region of the workpiece, which is in
general neglected by the DDE-based models.

Modeling and numerical simulation
PDE-ODE formulation

1. Introduction

Milling is a basic manufacturing process in various fields of engineering [1], including aeronautics [2], bio-medicine [3], and
automobiles [4]. Motivated by the need to mitigate chatter [5,6] — a self-excited vibration of the tool which affects the surface finish
of the workpiece — research on milling dynamics began in the 1950s [7]. According to [8], the dynamic models of milling can be
classified into Class I models that only consider the movement of the tool and Class II models that simulate both the tool dynamics
and the evolution of the machined surface.

Class I models compute the chip thickness using the current and previous positions of the tool. Specifically, the chip thickness is
divided into a static chip thickness created by the prescribed motion of the tool and a dynamic one caused by parasitic vibrations [9].
The static chip thickness is determined by assuming either a simplified circular tooth path [10,11] or a realistic trochoidal tooth
path [9,12]. On the other hand, the dynamic chip thickness is computed using the current (at time ¢) and one or more preceding (at
time 7 — At;) positions of the tool center, where 4, is referred to as the time delay. A single constant time delay is used in [13,14],
but other models rely on a variable time delay [9,15], or two discrete ones [16], or even multiple ones [17,18] to improve
accuracy. Mathematically, all proposed Class I models are governed by a system of delay differential equations (DDE) [13,19].
Taking advantage of this explicit mathematical formulation, DDE-based models have been widely used to conduct stability analysis
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in both frequency [20,21] and time [22,23] domains, for both normal [20,24] and low radial immersion [25,26] milling processes.
Furthermore, these models have been adopted to identify cutting force coefficients [27] and to predict milling accuracy [14].
However, DDE-based models can lead, in some cases, to less reliable predictions because of errors resulting from their approximated
chip thickness and time delay models. Although a subclass of Class I models [28,29] allows to compute the chip thickness without
relying on the usual approximations of DDE-based models, it lacks a clear and explicit mathematical formulation of the model.

On the other hand, Class II models can determine the chip thickness directly because the milled surface around the tool is fully
constructed. This milled surface is updated according to the tool motion and, in turn, brings a feedback to the tool movement via
its force interactions with the cutters. From this perspective, Class II models couple a representation of the milled surface with the
tool dynamics model to describe the milling process.

Multiple discrete surface models have been proposed in the literature. The concept of a “surface array” is introduced in [30] ,
which provides a discrete description of the evolution of the milled surface around the tool. A similar concept is adopted in [31] for
low radial immersion milling and in [32] to account for the effect of tool run-out. In [8], the surface is approximated by discrete
points connected by straight-lines and is updated through a material removal model. For micro-milling, a surface consisting of a set
of discrete surface points is introduced in [33] to describe the surface evolution, taking into account the elastic recovery after the
passage of the cutter. Although the Class II models provide a straight-forward way to compute the chip thickness from the evolution
of the milled surface, the published Class II models focus on the numerical discretization of the surface without the benefit of a
systematic mathematical framework, unlike DDE-based Class I models.

The core contribution of this paper is formulating the mathematical underpinning of the Class II models. Theoretically, this
mathematical model enables an exact determination of the chip thickness, and thus provides a means to assess the validity of DDE-
based Class I models that rely on simplified chip thickness calculations. In this paper, a partial differential equation (PDE) governing
the evolution of the machined surface [34]’ is combined with a system of ordinary differential equations (ODE) governing the tool
dynamics. This leads to a mixed PDE-ODE formulation for Class II models. Based on this mathematical framework, an algorithm
combining the finite difference method (FDM) and the finite volume method (FVM) is developed to solve the model numerically.
Simulation results show that the PDE-ODE formulation agrees generally well with the DDE formulation but is more accurate when
the ratio of the stiffness of the cutting interface to that of the milling system is relatively large. Besides, the proposed PDE-ODE
formulation can accurately describe the transient tool behavior when the tool is milling the outer regions of the workpiece, which
often cannot be accurately described in the DDE-based models.

The rest of the article is organized as follows. In Section 2, the mixed system of PDE-ODE governing the tool dynamics is
formulated, and the boundary conditions and conditions at the cutters are also articulated. In Section 3, a dimensionless form of
the mathematical model is derived. The algorithm to solve the PDE-ODE formulation is introduced in Section 4, and a case study
is conducted in Section 5 to compare the proposed model with the conventional DDE formulation. Finally, conclusions are drawn
in Section 6.

2. Mathematical model
2.1. Tool dynamics

Following [9], the dynamics of the milling tool/machine is reduced to the mass—spring—damper system illustrated in Fig. 1(a).
The governing equations read

My X7 + Cx(Xy = Vo) + Ky (Xy = V1) = Fy

. . 1)
MyYy +CyYy + Ky Yy = Fy,

where X (r) and Y7 (r) are the coordinates of the tool center measured in a frame (X,Y) fixed to the workpiece.? The prescribed
movement of the tool is a uniform linear motion along the X-axis with a velocity V;,. The parameters M;, C;, and K; denote the
equivalent mass, damper, and stiffness in the I (I = X, Y) direction. The total cutting forces in X- and Y- directions, Fy and Fy,
are the sum of the cutting force components on all the cutters

N N
FX:ZFXi’ FY:ZFYi’ 2
i=1 i=1

where N is the total number of cutters. The cutting force components for cutter i, Fy; and Fy;, along the X- and Y-axes are
determined through a coordinate transformation from the cutter frame to the global frame (X, Y) (see Fig. 1 (b)).

Fy;| _|-cos¢; () —sing; ()| [F; @
Fy;| | sing;t) —cosep; )| |F.i|°

where ¢, (t) = 0, + Qt + O, is the instantaneous angle between the Y -axis and the cutter i. Here 6; is the orientation of the cutter
measured in the tool frame (x, y), 2 is the constant spindle speed of the tool and @, is the initial angular difference between the

1 The research in [34] is partly inspired from [35,36], where a partial differential equation (PDE) formulation has been developed to describe the evolution
of the machined surface in the turning process.

2 For the sake of simplicity, we focus on the second-order tool/machine dynamics in X- and Y- directions in (1). However, the model can readily be extended
to include high-order (multi-modal) tool/machine dynamics.
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Fig. 1. (a) The mass-spring—damper model of the milling tool/machine dynamics. (b) Coordinate transformation of the cutting force at the cutter.

(x, y) and (X, Y) frames. Without loss of generality, the y-axis of the (x, y) frame is aligned with an arbitrary cutter of the tool. This
cutter is numbered as Cutter 1 and the other cutters are sequentially numbered clockwise, see Fig. 1 (a). This numbering order of
the cutters is used throughout the paper.

The tangential and radial cutting force components on the cutter i, F,; and F,; in (3), can be described by the so-called exponential
model [9,37]:

Fy=Kah' (), F,=Kah' @), i=12..N, “

where K;, K,, and 0 < § < | are cutting parameters, a, is the axial depth of cut and &; denotes the chip thickness faced by cutter .
2.2. Surface function

Determination of the cutting force based on (4) requires an accurate computation of the chip thickness. This can be achieved
using the concept of surface function introduced in [34]. As shown in Fig. 1(a), the distance between the tool center and the milled
surface can be viewed as a function of orientation # and time #: r (6, r), which is defined as the surface function. Physically, this
surface function describes the geometry of the machined surface viewed from the moving tool center; it is thus updated according
to the movement of the tool center, see Section 2.2.1. From the known surface function, the chip thickness is readily computed
through

hy=max{0, R—r(6F,1)}, =12 ..., N, 5)

where R is the radius of the tool from tool center to tip of the cutter, and r (6", 1) represents the distance between the tool center
and the surface just ahead of cutter i (at orientation 6;). For example, Cutter 1 in Fig. 1(a) is removing material from the workpiece.
Mathematically, this is described by R > r (19?r t), where 6, = 0 is the orientation of Cutter 1 measured in the tool frame (x, y). The
chip thickness at Cutter 1 is then given by hy = R—r (19;r 1). As for Cutter 2 at the orientation 6,, there is no material removal in
the scenario in Fig. 1(a) and thus the chip thickness is zero. The concept of virtual surface [34] is introduced to account for the
absence of material to be machined by setting r (9;r , 1) > R.* According to (5), the chip thickness in this case is h, = 0, reflecting
that there is no contact interaction between the workpiece and the cutter.

The surface function enables the detection of the loss of contact between an arbitrary cutter i and the workpiece, by comparing
r (67, 1) and R. The cutter loses contact with the workpiece when r ((;ﬁr 1) > R, and the chip thickness h; on the cutter is consequently
set to zero through (5), thus causing the cutting forces on the cutter also drop to zero according to (4). This model aspect is later
verified through a case study in Section 5.2.

3 Strictly following the definition of the surface function, it should be defined as r (6, t) = +co if there is no material at orientation 6,. In order to avoid the
mathematical and numerical difficulties caused by positive infinity, a number sufficient larger than R is artificially defined instead, which can be viewed as a
virtual surface r (6,, 1) > R.
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2.2.1. Evolution of the surface function
According to [34], the evolution of the surface function around the tool is governed by a PDE in the form of a conservation law:

or  of _

o o0 " 6)
where

f@r0.0==-Qr=Vnr, w(r, 0,0)=V,(or—1) @
with

Vi=Vecos(0+Qt+60,+®), V,=Vsin(0+Q2t+6,+d). (®

In the above equation, V is the magnitude of velocity of the tool center and @ is the inclination of the velocity with respect to the
X-axis of the global frame (X, Y)

V=\/X%+YT2, tan® = Y. /X7, ©)

Here the condition, stated in [34], that the (x, y) and (X, Y) frames initially coincide, is relaxed; as a result, the term ¢ in the
original PDE derived in [34] is replaced by Q¢ + 6.

Physically, function f is associated with the relative rotation of the tool with respect to the workpiece, while function y is related
to the relative radial movement of the tool with respect to the workpiece. These relative movements govern the evolution of the
surface function, see Appendix A for more detailed explanations.

2.2.2. Conditions at cutters

Consider an arbitrary cutter i at orientation 6;, and let r (9,.‘, t) and r (9,+ t) represent the instantaneous distances between the
tool center and the machined surface just behind and in front of the cutter, respectively. Since Cutter 1 is removing material and
creating a new surface (see Fig. 1(a)), the discontinuous condition

r(67.1)=R> r(é);', 1), (10)

at 0, reflects that the cutter is creating a new machined surface. In contrast, Cutter 2 is not in contact with the workpiece:
r (9;’ , 1) > R, thus the surface function is continuous at 6,:

r(6y.1) =r(63.1). an
In summary, the conditions accounting for possible material removal process at the cutters are

r (67,

1)=max{r(6}.1),R}, i=12,...,N. (12)

2.2.3. Boundary condition of the PDE
By introducing a virtual surface, the surface function is defined for 6 € [0, 2z]. Given that # = 0 and 6 = 2x refer to the same
direction, the following periodic boundary condition holds

rQm t)y=r(0,1). (13)

In particular, when a cutter is exactly positioned at # = 0/6 = 2z, the possibility of material removal is considered and the boundary
condition becomes

rQx, t)=max {r(0,1), R} . 14)

2.2.4. Initial boundary of the workpiece
Until now, it has been assumed that the tool is fully immersed into the workpiece, see Fig. 2(a). However, the initial boundary
of the workpiece, abbreviated as IBW in below, can also affect the chip thickness computation when the cutter is close to the outer
edge of the workpiece, see Fig. 2(b). Accordingly, the chip thickness model in (5) needs to be modified, which is discussed in below.
To begin with, the following assumptions are made:

1. The initial shape of the workpiece is known, i.e., the information of the IBW is known.
2. The initial shape of the workpiece is convex, and the IBW is continuous and closed.
3. The cutter can intersect with at most two points of the IBW.

Similarly to the surface function for the milled surface, the IBW can be described by an IBW function 7 (6, 1), see Fig. 3. Depending
on whether the tool center is inside the IBW or not, the IBW function can be either single-valued or double-valued. As we have
assumed, mathematically the initial shape of the workpiece can be viewed as a convex set C,, in the global (X, Y) frame (see
Fig. 3(a)), which is used to distinguish the single-valued case in Fig. 3(b) and the double-valued one in Fig. 3(c). The distance from
the tool center Z; = (Xy, Yr) to the convex set C,, is defined as

distcw (ZT) = ”ZT — Proxc, (ZT)

E (15)
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Fig. 2. The influence of the workpiece boundary on the chip thickness when the tool center is inside the IBW: (a) the cutter does not reach the boundary; (b)
the cutter reaches the boundary. (c) Zoomed cutting details of figure (b).
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Fig. 3. IBW function, describing (a) the initial boundary of the workpiece (IBW), measured from the tool center: (b) single-valued case and (c) double-valued
case.

with

proxc, (Zr) = argmin||Zy - X|| := {X* € C,, : ||Zy = X*|| < ||Zy - X]| forallX € C,, } . (16)
. XeC,,

Mathematically, Z; € C,, when dist¢, (1) = 0 [38]; physically this reflects that the tool center is inside the IBW and the IBW
function 7(0, 1) is single-valued, see Fig. 3(b). In contrast, Zy ¢ C,, when dist¢ (Zr) > 0, reflecting that the tool center is outside
the IBW and the IBW function 7 (0, r) is double-valued, see Fig. 3(c). The case when the tool center is exactly on the IBW is not
considered here. Given that the initial shape of the workpiece is assumed known, we only need to determine the position of the
tool center in the global frame and then 7 (6, 1) is readily determined for both single-valued and double-valued cases. When the tool
center is outside the IBW, the IBW function 7 (6, ¢) is defined only in a range of orientations around the tool center (0 € [9;‘ 9;]),
see Fig. 3(c). For orientations where there is no workpiece, 7(9, ¢) is artificially set to large enough values 7, > 7| > R to ensure
that the computation of the chip thickness is not influenced by 7 (9, 1) for 6 ¢ [9*, 6‘;]

When the IBW function is single-valued (see Fig. 3(b)), we can directly determine whether or not the cutter has reached the
IBW by comparing the tool radius R and the boundary information just ahead of the cutter 7 (67, t). If the cutter does not reach the
IBW (R < 7(67, 1)), (5) holds. In contrast, if the cutter reaches this boundary (R > 7 (6, t)), computation of the chip thickness in
(5) needs to be modified. When the IBW function is double-valued (see Fig. 3(c)), the two values 7; and 7, (F| < 7,) both need to
be compared with R to determine the possible intersection(s) between the cutter and the IBW. The cutter does not reach the IBW
when R < 7}; the cutter intersects with the IBW at one single point when 7, < R < 7,; the cutter intersects with the IBW at two
different points when R > 7,.

Fig. 2(a—c) illustrates the modified chip thickness model when the tool center is inside the initial workpiece boundary
(distcw (ZT) = 0). When the cutter does not reach the initial workpiece boundary (R < 7(9?, t)) , the original chip thickness
h? computed by (5) is still the correct chip thickness, see Fig. 2(a). In contrast, an extra subtraction of 71,~ =R- 7(9‘*, 1) to hf’ is
required when the cutter reaches the boundary (R > 7(9;', t)), see Fig. 2(b—c). The modified chip thickness model for these two
cases can be summarized as

h; = max {0, ho - %,.} . whendiste, (Z7) =0 a7)
with

RO =max {0, R—r(6F.1)} .,  hy=max{0, R-F(6}.1)} ., i=12 ... N. (18)
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Fig. 4. The influence of the workpiece boundary on the chip thickness when the tool center is outside the IBW: (a) the cutter does not reach the boundary;
(b) the cutter intersects with the IBW at one single point; (c) the cutter intersects with the IBW at two different points. (d—e) Zoomed cutting details of figure
(b—c), respectively.

It is noted that (17) degenerates to (5) when R < 7(01*, t), reflecting that the initial boundary of the workpiece does not influence
the chip thickness ahead of the cutter when the cutter does not reach the boundary.

Fig. 4(a—e) illustrates the modified chip thickness model when the tool center is outside the IBW (distcw (ZT) > 0). As illustrated
in Fig. 4(a), the chip thickness is zero when the cutter does not reach the boundary (R < 7}). When the cutter intersects with the
IBW at one single point (7} < R < 7,), the realistic chip thickness is the minimum value between h[.o and Zf.l) = R-TF, see Fig. 4(b)
and (d). When the cutter intersects with the IBW at two different points (R > 7,, see Fig. 4(c) and (e)), an extra subtraction of
ﬁl@ = R -7, is required. In summary, the modified chip thickness model when the tool center is outside the IBW is:

h; = max {0, min {h?, Z’Q)} - 711(_2>} ) whendistc (Zr) >0 19
with

AV =max {0, R-F ()}, AP =max{0, R-F ()}, i=1,2 ...N, (20)

S

where 7| (i) and 7, (i) denote the two values of the IBW function just ahead of cutter i. In summary, the comprehensive expression
for the chip thickness is

max {0, h? =T, } . diste, (Z7) =0
h: =

i

o i=1,2 .., N. 1)
max {0, min { n0, 5 } =B}, diste, (Z7) >0,

Eq. (21) is an exact expression for computing the chip thickness, unlike the simplified chip thickness models used in the DDE
formulation.

2.3. Mixed PDE-ODE formulation for the milling process dynamics

In Sections 2.1 and 2.2, we have respectively introduced the system of ODEs governing the movement of the tool and the PDE
describing the evolution of the milled surface around the tool. These two systems are coupled via the tool center velocity and the
cutting force. On the one hand, the magnitude and the direction of the tool center velocity (governed by the ODE system) are the
controlling parameters in the PDE system. On the other hand, the surface function (determined by the PDE system) directly affects
the chip thickness and thus the cutting force, which serves as an input to the ODE system. Therefore, a mixed PDE-ODE formulation
has been established to describe the milling dynamics (see Fig. 5).
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V=X +Y}

tan® =Y,/ X,

S (r0.t)=—Qr—Vsin(0+Qt+©,+d)In(r)
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max {0, min {hlo,h,(”} - h,(z)} dist,, (Z,)>0

Fig. 5. The mixed PDE-ODE formulation describing the milling dynamics.

3. Scaling

In order to identify the key parameters of the system, a scaling analysis is conducted in this section.

3.1. Scaled parameters

Now we introduce a time scale 7., a length scale 7, and a force scale F, to rewrite the PDE-ODE system in a dimensionless form

MX
z*:le—X, to=f.. F.=Kadll, (22)

where 271, is the period of the resonant vibration of the discrete milling system in X-direction, 7, = f, = 2;;20 is the feed per

tooth [9], and F, is the tangential component of the cutting force when the chip thickness is #, = f,, the maximum chip thickness
when the tool moves rigidly under the prescribed motion without vibrations [9,34].
The scaled tool center coordinates then become
(XT = Vot ) Yr
X= ———, ==, 23
Z y a (23)
where V|t is the prescribed motion of the tool. Therefore, X describes the perturbation along the X-axis with respect to the prescribed
movement of the tool. The dimensionless surface function, IBW function, tool radius, chip thickness, and the dimensionless depth
of cut are respectively defined as

r, 1) - ) R ho
0,71)= ——, 0,7)= , R=—, ==, i=12,...,N. 24
p0.7) z. p(0,7) z, ‘. nj z. i (24)
where 7 = t/t, is the scaled time.
The scaled forces on the ith cutter are defined as
F,; F,
PtizF::r]iﬂ, PrizF:j:fr]iﬂ, (25)

where ¢ = K, /K, is the ratio of the cutting force coefficients. Moreover, the scaled lumped parameters describing the characteristics
of the milling rig are
Cy 2 My Cy _ Ky

s = , = s = s 26
Ky 14% M, Yc Cy Yk Ky (26)

Cx:

where { is the scaled damping factor in X-direction and y,,, y¢, yx are respectively the ratios of mass, damper, and stiffness in X-
and Y-directions.
Finally, two dimensionless control parameters are introduced

p—1
My P K,apf*

Ky 27)
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where w is the scaled spindle speed and P is the scaled axial depth of cut. From another perspective, w can be viewed as the ratio
of two time scales o =1, /t,, where t, = 1/ is the time when the mill rotates by 1rad. Similarly, 7 can also be viewed as the ratio
of two length scales P = ¢y /Z,. Here ¢y is the static tool center displacement in the X-direction under the force scale F,:
-1
Cx K,apcff

KXfX =F*=K,apf£;"73=7 T (28)

*

According to (28), P reflects the ratio of the stiffness of the cutting interface to the stiffness of the milling rig. The typical range
of wis 0 ~ 1 [9,39] and that of P is 0 ~ 4 [9,37].

3.2. Scaled mathematical models

Using the scales 7, t,, and F,, the ODE governing the tool dynamics can be rewritten in a dimensionless form as

X+ X+ X =Ty

. . (29)
YMy+7nggy+}’Ky=7:‘y .
The PDE describing the evolution of the surface around the tool becomes
op  Of
9L g 30
2t =V (30)
with
F(p. 0, 7)=—wp—Vcos (0 +wr+6+®)Inp 31)
W(p, 0, 7)=Vsin(0+wr+60;+®)(np-1).
The dimensionless boundary condition of the PDE is
p (2. ) = max {p(0,7), R}, when t}?ere isacutteratf =0 , 32)
p0, 7), otherwise .
The material removal process at the cutters can be described by
p (67, 7)=max{p(6}.z), R}, i=12,...,N. (33)

It is noted that the tool is first assumed to be 100% immersed while updating the PDE; then the modification considering the IBW
is introduced in the computation of the chip thickness (see (36) below).

The ODE in (29) and the PDE in (30) and (31) are coupled via the tool center velocity {V, @} and the cutting forces {FX, Fy}
given by

_ ., oN\2 o 5, oN
V= (x+g) + )2, tan®—y/(2€+§). (34)
F il cos ¢; (1) sing; (r) | |1
X - i - i b
= _ P! (35)
[T’y] Z:i [ sin ¢; (7) —cos ¢; (r)] [é] "l
with ¢; (1) = 6; + ot + O and
max {0, n% =7} , distz, (Zr) =0
m= v i=1,2, ..., N, (36)
max {0, min {#?, 7" } =77} disiz, (Z7r) >0,
where
n®=max{0,R—p(67,1)}, i=1,2 .., N. (37)
When distz (Zr) =0,
7 =max {0, R -7 (6}, 1)}, i=1,2,...,N, (38)
and when distz (ZT) >0,
AV =max {0, R-7 ()}, A7 =max{0,R-5®}. i=12 .., N (39)

with p, (i) =7, (i) /¢, and p, (i) =7, (i) /£ ... Here Ew denotes the scaled convex set describing the initial shape of the workpiece and
7 oN
Zr=(x+ 20 ).
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4. Numerical algorithm for the mixed PDE-ODE model
4.1. Finite difference method for the ODE

In order to solve the ODE system (29) numerically, the motion of the tool center is discretized in time with the coordinates of
the tool center denoted as X, = [&X,, yn]T at each time step 7,. Using the central difference method [40], coordinates X, at time
7,41 are calculated using the known coordinates X, and X,,_; at time 7, and 7,_;, respectively.

-1
Xn+l = C() (Fn - Can - CZXn—l) s (40)

where F, is the total cutting force at time step 7,, which will be introduced later in Section 4.3, see (50). Matrices Cy, C;, and C,
are determined through

1 1 2 1 1
=—M+— =I- —M =— M- — 1
C Y + ZATC’ C, oM C, s 2ATC’ (41)
where Ar =7, — 7, is the time step and
1 0 0 1 0
M= Cc=|™ , 1= : (42)
0 7m 0 relx 0 g

A special starting procedure should be used while computing X,, given the known initial conditions X;, and X,,. According to (40),
we still need to determine X_, in order to compute X,. To begin with, X, can be calculated through (29) with known X,, and X,,.
Then the tool center coordinate X_, are obtained through [40]

. Ar2 ..
X_p =Xy - 4Xp + =-Xp. (43)

The central difference method is conditionally stable and the stability condition on the time step is given by [40]

At Smin{\/4+§§,—¢’x, ,l};—M <\/4+ (yCCX)Z—}’C{X)} ' (44)
K

4.2. Finite volume method for the PDE

Following the finite volume method introduced in [34], the machined surface around the tool is discretized into K = M x N
cells. Here M is the number of cells between two neighboring cutters and it is assumed that the N cutters are uniformly distributed
around the axis of revolution. The range of the kth cell C, (k = 1,2, ..., K) is C;, = ((k — 1) 40, kA0), where 40 = 2z /K is the
constant angular interval of each cell. As mentioned earlier, the y-axis (¢ = 0) is aligned along one of the cutters; this cutter is
numbered as the first cutter (cutter 1) and the other cutters are sequentially numbered clockwise. Following this procedure, the
cutter i is always at the boundary between cell C;_ 5, and C;_jyp4q (= 1,2, ..., N). When i = 1, the cell C; is defined as the last
cell Cy. The average surface function p} is used to approximate the milled surface around the tool at each time step z,

kAo
" 1

pl=— p(6.7,)do, k=1,2,..,K, (45)
40 Jk-1)40
which is updated following an upwind scheme [34,41] to describe the evolution of the machined surface.
1_ At ( = _

P =k - 20 (f1:'+1/2 ~feap AHV’:) ’ (46)
with

B T (max {pZ_H, R}, Oers 7) » Whenk =iM,i=1,2, .., N

e =3 . _ (47)

f (pZH, Ors1s 1,,) s otherwise .
Fap=T e 0em) o W= (6 b m) - (48)

where 0,,, = (k+ 1/2) 40, 0, = (k —1/2) 40, and f and ¥ are defined latter in (55). The material removal process is accounted for
in (47) for cells C, with k =iM,i=1,2, ..., N.
The following CFL condition is required to ensure the convergence of the scheme [42]:

CFL=max {|5]} % <1, (49)

where 5 = —w — £ cos (6 + wr + Oy + @). The number of cells K should be large enough to accurately describe the surface function;
K subsequently éetermines A0. Then the suitable time step is selected to satisfy both (44) and (49).

Finally, the last cell Cy is updated by taking advantage of the periodic nature of the surface function. A ghost cell Cy,, is set
behind Cy with p%_, = p} at the beginning of each time step, then p’I’<+1 is readily computed through (46).

9
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4.3. Combined FDM-FVM algorithm

As mentioned in Section 2.3, the ODE and PDE systems are coupled via the cutting force and the tool center velocity. This
coupling is reflected in the FDM and FVM algorithms used to solve the PDE-ODE system. While updating the tool center coordinate

T
through FDM in (40), the term F, = [Pxn’ Fy"] is calculated using the surface function p, at time 7, as follows:

Fu, | —cos¢; (z,) —sing; (z,) | [1 s 50)
T’yn_ =1 | sing; (7, ( ,,) —cos @; (r,,) I3 n

with ¢; (z,) =6, + oz, + 0, and

Mz

max{O, nfj—ﬁ,ﬂ} , distg‘(z;)=0
no= Y i=1,2, .., N, (61
! max {O min {110 ﬁf:)} ﬁf)} R diStEw (Z;) >0,
where
n=max {0, R—pr . i=12 . N (52)
with w (i) = (i = 1) M + 1. When distz (ZT) =0,
ﬁ,-n:max{o R - pw(,)} i=1,2,...,N, (53)
and when distgw (i;) >0,
Al =ma{0,R-7L,}, B =max{0,R-Fl,}, i=12..N. (54)
Here 57 . refers to the average of the scaled IBW function 7 (0. 7,) in cell C,), which is calculated in a similar way as

(45). When the scaled IBW function is double-valued, the two average values are denoted as p wl and p" ny (ﬁf’m < ch) In (51),

n
7, (X + £ rﬂ, Y, ) is the discrete tool center vector after scaling.

As for the PDE system, the terms /), /2 Vi P

velocity X, = [X,, ,,] at time step 7,. Namely,

, and ;' in the FVM algorithm (46) are also computed using the tool center

f(p.6.1,)=—wp="V,cos (0 +wr,+ 6 +®,)Inp

(55)
¥ (p. 0. 7,) =V,sin (0 +wr, + O+ @,)(Inp—1),
where
oN 2 and. =y /(% + 2N
v, = <X + 2 ) +372, tdnd),,—)?n/<2€n+ = ) (56)

The tool center velocity can be approximated as X, ~ (X, —X,_;) /At at each time step.

In summary, the mixed PDE-ODE system is solved by combining the FDM and FVM algorithms. The computational flowchart of
the coupled algorithm is illustrated in Fig. 6.

5. Numerical results

An up-milling process illustrated in Fig. 7 is analyzed using both the proposed PDE-ODE formulation and the conventional DDE
formulation [9]. The parameters used for the simulation of the two formulations are summarized in Table 1 [9,37]. The illustrative
figure of the axial (a,) and radial (a,) depth of cut is given in Fig. 7(a). Mimicking the actual milling process, the tool does not
touch the workpiece initially and is at a distance of D, = 5.2mm. For the sake of simplicity, it is assumed that the two cutters are
initially parallel to the Y-axis (see Fig. 7(b)).

To begin with, a convergence test of the proposed algorithm in Section 4 is conducted in Section 5.1. Then in Sections 5.2 and
5.3, the time domain simulation results and the steady-state tool vibrations predicted by the DDE and PDE-ODE formulations are
compared, respectively. These comparison studies highlight the difference in the predicted behavior between the approximate DDE
formulation and the proposed PDE-ODE model formulation. Moreover, the scenarios that cannot naturally be assessed using the
DDE approach are investigated.

10
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Start

Determine initial conditions X,, X,, p;, 7, =0

!

Compute X , using (43)

n=0

Calculate F, using (50) ~ (54)
Calculate 7", ,, f",,, 7! using (47), (48), (55), and (56)

v
FDM: Update X,,, using (40) ":’EI
FVM: Update p;*' using (46)
i T.,=T7,+AT

n+

n+1<N,?
Yes

No
End

Fig. 6. The computational flowchart of solving the PDE-ODE system. N, is the total number of time steps.

a ! b :
@) : Mill (b) Workpiece
: I ~~. Machined
| Initial — . Surface
[ Surface ¢ N
y @X }
a \
P l \
Nz 1 \\ Y
1 ! I
a, !
Mill l’ 0 ¥
Workpiece

Fig. 7. Up-milling process: (a) side view and (b) top view. This is an illustrative figure where the lengths of a,, a,, and D, do not represent their physical
lengths.

5.1. Convergence test of the numerical algorithm

Here we analyze the influence of the number of cells and of the CFL number on the simulation results obtained with the numerical
algorithm introduced in Section 4. As illustrated in Fig. 8, the simulation results converge and become more accurate as these two
numbers increase® However, the CFL number still needs to be less than 1 to guarantee convergence of the algorithm.

4 The CFL number is in general only viewed as a criterion on convergence. However, according to [42], the first-order upwind scheme is more accurate
when the CFL number is closer to 1.
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Table 1
Parameters used for the simulation of the milling process.
Quantities Parameters Value Unit
Lumped mass My (My) 0.02 kg
Lumped damper Cy (Cy) 27.62 N s/m
Lumped stiffness Ky (Ky) 3184.57 N/mm
Cutting coefficient B 0.744 _
Cutting coefficient K, 462 N/mm'+#
Cutting coefficient K, 38.6 N/mm!+?
Radius of the mill R 5 mm
Number of cutters N 2 -
Feed per tooth A 0.2 mm/tooth
Spindle speed Q 3x10* rpm
Axial depth of cut a, 1~20 mm
Radial depth of cut a, 0.5/1/9/10 mm
3 _— = —
(@) <10 - - = - = -
- r— - - - - - - - - - — — /1
CFL = 0.956 (b) x10°
CFL ~0.883 I A I
CFL~0.735 |4 |
CFL ~ 0.588 | |
3.8
I I
= =36
=)
Eo I £ |
N
= |~ 34 I
-1
| |
2 3.2
I I
-3 | st I
-4 > | 002 0019 0018 -0017 0016 -0015 |
-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 X [mm]
X [mm] L - - - — — = - - = 4
© x10® - - == = = - = - _ _ _ _ _ _ __ _ ____q
x10°3
1500 Cells | @ A |
1000 Cells
500 Cells I 4 |
300 Cells | . |
I s I
—_ g 3.
g | £ I
& =
N 3.8
I I
-1
| 3.7 I
2 | 36 |
-3 (Y I
> | > |
.0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 -0.02 -0.0195 -0.019 -0.0185 -0.018 -0.0175 -0.017
X [mm] L — — — _ X [mm] - — — 4

Fig. 8. Simulation results of the numerical algorithm under: (a-b) different CFL number and (c-d) different number of finite volumes.

5.2. Time-domain simulation results

As shown in Fig. 9(a), the tool center vibration along the X-axis, in the case of a, = 10 mm, is simulated from ¢t =0 to t = 0.14s.
Other parameters used for the simulations are given in Table 1. A remarkable difference between the response of the PDE-ODE

12
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(a) A
0.08 PDE-ODE Formulation rTTTTo K
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Fig. 9. (a) Tool center vibration in the X-direction when 2 =30000rpm, a, = 1 mm, and a, = 10mm (100% radial immersion): (b) simulation results from =0
to t =0.01s, and (c) simulation results from 7 =0.12s to t = 0.13s.

model and the conventional DDE model occurs at the “early stage” (+ € [0, 0.01 s]) of the simulation, see Fig. 9(b). This difference
occurs because the boundary of the workpiece significantly affects the chip thickness when the tool is milling the outer part of the
workpiece [34], see Fig. 10. This “early stage” is not considered in the classical DDE formulation while it is naturally captured with
the proposed PDE-ODE scheme. However, the influence of the boundary vanishes when the tool advances deep enough into the
workpiece (r € [0.12, 0.13 s]); after the “early stage” the two methods agree very well with each other, see Fig. 9(c). One advantage
of the PDE-ODE formulation is demonstrated through this case: it is capable of simulating the tool dynamics throughout the milling
process, especially when the tool is cutting the outer region of the workpiece and the chip thickness is strongly influenced by the
initial shape of the workpiece.

In this example, only one of the two cutters is engaged with the workpiece, causing the cutting force F,; on the other cutter to
drop to zero, see Fig. 11.

5.3. Steady-state tool vibration

In this section, steady-state tool vibration characterized by limit cycles, reflecting the periodic motions of the tool center, are
predicted by both methods and these results are compared. Fig. 12 illustrates the limit cycles at a small axial depth of cut a, = 1 mm,
and at the following four different radial depths of cut: (a) a, = 10 mm, 100% radial immersion, (b) a, = 9 mm, 90% radial immersion,
(¢) a, = 1mm, 10% radial immersion, and (d) 4, = 0.5mm, 5% radial immersion. It is shown that the radial depth of cut has a
strong influence on the shapes of the limit cycles. Under this small axial depth of cut (a, = 1 mm), the difference between the two
formulations (i.e., the error E of the DDE-based model with respect to the PDE-ODE model) is small, see Table 2. However, the
limit cycle is very small at the radial depth of cut a, = 0.5mm, and thus the relative error E, in this case becomes large (10.4%).
As a result, the difference between the two formulations looks more remarkable in Fig. 12(d).

Here the error E and the relative error E, are respectively defined as:

£ 5 3V ()X (1) + (0 (1) =70 (1) 57)
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Tooth Path of
Cutter |

Tooth Path of
Cutter Il

Workpiece

Fig. 10. The initial shape of the workpiece can significantly affect the chip thickness when the tool is milling the outer region of the workpiece.

Source: Adopted from [34].
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ts]
Fig. 11. Cutting forces F,; on the two cutters as functions of time.
Table 2
The errors and relative errors of the DDE-based model with respect to the PDE-ODE model under different radial depth of cut.
a, = 10mm a, = 9mm a, = 1 mm a, =0.5mm
Error E of the DDE-based model [mm] 1.87 x 107 1.30 x 1073 5.02x 107 6.35x 107
Relative Error E, of the DDE-based model [-] 0.83% 7.0% 5.0% 10.4%

4

q \/(XD (n)-Xp (ti))z +(Yp (1) = Yp (ti))z

1
Er: F N
= Xp () + 5 (1)

r

Journal of Sound and Vibration 569 (2024) 117940

(58)

where [X, (1;).Yp (1;)] and [Xp (1), Yp (1;)] are tool center positions predicted by the DDE formulation and the PDE-ODE

formulation at each time step ¢;, and N, is the total number of time steps evaluated.

When the axial depth of cut increases to a, = 20 mm (radial depth of cut a, = 0.5 mm), the difference between the two formulations

becomes substantial (E = 0.0231 mm), see Fig. 13. Under the same radial depth of cut a, = 0.5 mm, the limit cycle is similar to that

in Fig. 12(d) but of a larger size.

14



K. Chen et al. Journal of Sound and Vibration 569 (2024) 117940
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Fig. 12. Limit cycles of tool center under different radial depth of cut: (a) a, = 10mm, 100% radial immersion, (b) a, = 9mm, 90% radial immersion, (c)
a, = 1mm, 10% radial immersion, and (d) a, = 0.5mm, 5% radial immersion. The spindle speed is £ =30000rpm, and the axial depth of cut is a, = I mm.
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0.1 PDE-ODE Formulation
DDE Formulation
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Fig. 13. Comparison of the limit cycles computed using the PDE-ODE formulation and a conventional DDE formulation [9]. The spindle speed £ = 30000rpm,
axial depth of cut a, =20mm, and radial depth of cut a, = 0.5mm (5% radial immersion).
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Let us now investigate the underlying reason for these differences — the simplified chip thickness model used in the DDE
formulation. First, the approximated chip thickness model in the DDE formulation in [9] can be written as®

h; (1) =sing; (1) [X7 () = X (1 = 7;)] + cos ; (1) [V (1) = Yy (1 — 7;)] + R— Rcos (27, - 0) (59)
with
=— R 2 ,_ 0 (60)
f.cosg; (1) +06R N Q

In contrast, the exact chip thickness should be the minimum non-negative value of a series of “possible chip thickness” values
h; (1) =max{0, mjin{h{ (z)}} , 61)
where the “possible chip thickness” h{ (¢) is determined by assuming the milled surface is left by a previous cutter j and is given by
Kl (1) = sin g (1) [XT ") - Xy (t - T{)] +cos ¢, (1) [YT 0 -Y; (x - T/)] + R— Rcos (.QTij - j0> , (62)
where the time delay rl.j is determined implicitly through the nonlinear equation

cos ¢, (f) [XT " - Xy (t - r{)] —sing, (1) [YT " -Yy (t - r{)] + Rsin (Qrij - j0> =0. (63)

Comparing with the simplified chip thickness model in (59), the exact chip thickness model in (61) considers more previous cutters
because of the fact that the chip thickness is not always determined by the position difference between two subsequent cutters.
Moreover, the exact chip thickness model uses the exact time delay rij determined by (63) to compute the chip thickness, rather
than using the approximate one in (60). Correspondingly, this exact chip thickness model degenerates to the simplified one in by
considering only one non-negative chip thickness (j = 1) and using the estimated time delay in (60) as an approximate solution of
(63). More details of the proposed exact chip thickness model is provided in Appendix C.

Second, the DDE formulation in [9] introduces entry (¢,) and exist (¢,) angles and modify the cutting force model (4) to

Fy=Kah g (4 0). Fu=Kah 0Og(d;0). i=12 ...N, (64)

with

(65)
0, otherwise.

1, ¢, <¢; ()< AN 0
g,-<¢,-(r>)={ b < b ()< b Ay (1) >

This is done because the non-negative requirement of the chip thickness is not guaranteed in the simplified model (59), which can
result in an unrealistic cutting force. In [9], this problem is solved by predetermining a specific range of orientations — the chip
thickness is positive when the cutters align to these directions. The chip thickness computed by (59) is adopted only when it is
positive and when the cutter is within the proposed range of orientations; otherwise the chip thickness (cutting force) is set to zero.
This procedure is mathematically conducted through the discontinuous function g; (¢; (r)) and thus the non-negative characteristic
of the chip thickness is satisfied. As illustrated in Fig. 14, the range is defined from ¢, to ¢,, with

_—Hfz
2(f.+06R)’

< R-a, >

¢ = ¢, = arccos > (66)
R

where a, is the radial depth of cut.

However, this procedure introduces errors when the cutter reaches Region A in Fig. 14: the cutter is still removing material but
the cutting force is artificially set to zero according to (65) in the DDE model formulation. From another perspective, this error can
be interpreted as the chip thickness being set to zero too early.

As illustrated in Fig. 15, the above two errors of the DDE-based model are small (and potentially negligible) when the scaled
depth of cut P is relatively small (P < P,). However, when P is larger than the threshold number P, ~ 1.65 for the particular
problem considered here, the error of the DDE-based model increases with P.

Physically, this reflects that when the depth of cut a, increases, even a small error in the chip thickness is amplified while
computing the cutting force (see (4)), which can result in increasing errors on the limit cycle characterizing the actual tool vibration.
Moreover, when we eliminate the errors in the DDE-based model by using the exact chip thickness model in (61) to (63) and the
cutting force model in (4), the improved model agrees very well with the PDE-ODE formulation. More details are provided in
Appendix C.

In summary, the PDE-ODE formulation provides an accurate prediction of tool dynamics and can be viewed as a reference
solution for the DDE formulation. The approximate DDE formulation is computationally more efficient in general. However, the
PDE-ODE formulation is more reliable in some extreme scenarios and is more computationally efficient than the DDE model, if the
latter is extended with the exact chip thickness model (see Appendix C).

5 Here the chip thickness model used in the DDE formulation is rewritten in a new form for a better illustration of its connection with the proposed exact
formulation in (62). More details are provided in Appendix B.
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Fig. 15. Errors of a DDE-based model at different scaled depth of cut P.

6. Conclusions

In this article, a mathematical formulation is established for a class of milling models that consider both the motion of the
tool and the evolution of the machined surface. In this formulation, the chip thickness is defined exactly using a surface function
that describes the milled surface around the tool and the information about the workpiece boundary. Coupling of the partial
differential equation (PDE) governing the evolution of the surface function with the ordinary differential equations (ODE) describing
tool/machine dynamics results in a system of PDE-ODE. The scaled PDE-ODE is solved using an algorithm combining the finite
volume method and the finite difference method. A case study illustrates two advantages of the proposed model formulation: (i) it has
a theoretically exact chip thickness model and can help delimit the range of validity of the conventional delay differential equations
(DDE) formulation; (ii) it is capable of simulating the transient tool dynamics while milling the outer region of the workpiece, which
is often neglected by the DDE formulation. This formulation serves as the mathematical background of a class of milling models
and provides a novel perspective of analyzing the milling process. Future research will focus on the possible applications of the
proposed PDE-ODE model formulation, in particular stability analysis, surface finish evaluation, and controller design.
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Appendix A. Brief physical explanations on the evolution of the surface function

This appendix provides a brief physical interpretation of the PDE [34] governing the evolution of the surface function, introduced
in Section 2.2.1:

or Odf

AR Al

o T =V A1)
where

f(r,0,0)==Qr—Vcos (0+Qt+6,+®)Inr .

w(r,0,1)=Vsin(0+Qt+6,+®)[lnr—1].

As illustrated in Fig. A.1, the surface function (6, t,) describes the shape of the surface of the workpiece around the tool at time #,
defined with respect to the center of the tool. Let us now focus on the surface function in a specific direction 0; its value changes
when the tool center moves laterally and when the mill rotates around its axis. Specifically, this process is governed by the following
two categories of relative movements.

First, the surface function evolves when the tool rotates relatively with respect to the workpiece. This relative rotation is caused
by the self-rotation of the mill (€2) as well as by the tangential motion of the tool center, see Fig. A.1(b). The tangential component
of the velocity of the tool center is V, = V sin(0 + Qt + Oy + @ — z/2) = —V cos(0 + 2t + O + ®). Here V = || V|| is the magnitude of
velocity of the tool center V. From this perspective, function f in (A.2) can be rewritten as: f = —Qr + V; Inr, which describes the
relative rotation of the tool with respect to the workpiece.

Second, the radial movement between the tool and the workpiece also influences the value of the surface function, see Fig. A.1(c).
The radial component of the velocity of the tool center is V, = V cos(§ + Q1 + Oy + @ — /2) = V sin(0 + Qt + Oy + ®). Similarly, y in
(A.2) can be rewritten as: y = V,(Inr — 1), which is associated with the radial movement of the tool with respect to the workpiece.

In summary, (A.1) reflects that the evolution of the surface function is governed by the rotation of the tool and by the motion
of its center relative to the workpiece.

In above analysis, the term 6 + Qr + 6, + @ — z/2 is the angle between the velocity of the tool center and the orientation 0
measured in the (x, y) frame. As illustrated in Fig. A.1(d), two frames are considered in our research: (i) the global frame (X,Y) and
the local frame (x, y) rotating with the mill at a constant spindle speed of . At time 7, the angle between the two frames is Q1+ 0,
where 0, is the initial angle. The velocity of the tool center V is measured in the global frame (X,Y), and its angle with respect
to the X-axis is @. In contrast, the orientation ¢ is defined in the local frame (x,y), and its angle with respect to the y-axis is 6.
Through Fig. A.1(d), the angle between the velocity of the tool center and the orientation 6 is obtained as 6 + Qf + 6y + @ — x /2.

Appendix B. The approximated chip thickness model in the DDE model formulation

In [9], the chip thickness model reads

h=h,+h, (B.1)
with
hy = R— Rcos (Qr;, — 0) + f—fri sing; (f),  hy =sing; (1) [Xy ()= X4 (t—17;)] +cosep, (1) [V, ) =Y, (1 —7,)] . (B.2)
T
=— R g 2r 0 ,_0 12 ..N. (B.3)
f,cosg; (1) +6R N Q0

Here [X (D, Yy, (t)] describes the (perturbed) vibration of the tool center with respect to the prescribed movement of the tool:

X, [XT O} [Vof]
= - ) (B.4)
[Yd Q) Yr@® 0
Given the fact that f, = 2;—2’, the last term of i, can be rewritten as

f—fr,. sing; (1) = Vyr; sing, (1) = [Vor =V, (1 — 7;)] singy; (1) . (B.5)
T
By substituting (B.2), (B.4), and (B.5) into (B.1), the chip thickness model is rewritten as

h=sing; () [Xy () — Xp (1 —7;)] +cos,; (1) [V () = Y7 (t = 7;)] + R— Rcos (Qr, — ) . (B.6)
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Fig. A.1. Illustrative figure of the physical explanation on the PDE governing the evolution of the surface function. (a) Original surface function. (b) Surface
function evolution caused by the relative rotation of the mill with respect to the workpiece. (¢) Surface function evolution caused by the radial movement of
the mill with respect to the workpiece. (d) The angle between the velocity of the tool center V and orientation ¢ defined in the (x, y) frame.

Appendix C. An exact chip thickness model for Class I models

In this appendix, we determine the chip thickness in milling from the perspective of Class I models without any simplifications.
As illustrated in Fig. C.1, Class I models assume that the current material ahead of cutter i is left by a specific preceding cutter j.
With given cutter i and given index j, the orientation of cutter j is specified through

6;= mod (6, +j6,2x) . (c1

where 6; and 6 ; are the orientations of cutters i and j measured in (x, y) frame fixed to the mill, and § = %” is the angle between

two neighboring cutters. The modulus function m (x) = mod (x, 2) is defined as follows:
y=m(x)=mod(x,27r) & y=x—-2kr, yel0,2n), k€. (C.2)

After considering all the possible j =1, 2, 3 ..., the minimum non-negative chip thickness is the true value
b, (1) = max {o, min {h{ (z)} } ; (C.3)
J

where h{ (1) is the possible chip thickness corresponding to the difference in the positions of cutter i and cutter j.

The following describes the procedure to determine h{ (#). As illustrated in Fig. C.1, the position of point J is the sum of the
position of point C; and the relative position of point J with respect to C;. C; is the position of tool center at time #; and the distance
between point C; and point J is C;J = R. Therefore, the coordinates of point J in the global frame are given by:

. [XJ] _ [Xc,-] . [Rsinaﬁj] _ [XT (fj)+Rsi“¢J] . c4
Y, Y, Rcos¢; Yy (1;) + Reos ¢,
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Fig. C.1. Geometric illustration for the formation of the chip thickness.

On the other hand, the position of point J can also be viewed as the sum of the position of point C; and the relative position of point
J with respect to C;. C; is the position of tool center at current time ¢ and the distance between point C; and point J is C;J = R—h.
As such, the following expression for the coordinates of point J can be given:

x,] [xe <R - h{) sing, | [xr 0+ (R - h{) sin ¢,
X, = =79+ _ = _ . (C.5)
Y, Ye, (R - h{) cos ¢; Y () + (R - hf) cos ¢;
By equating (C.4) and (C.5), we have
X, (tj)+Rsin¢j=XT(t)+<R—h{>sindJ,. o

Yr (tj) + Rcosp; =Y (1) + (R— h{) cos ¢; ,
from which the chip thickness can be solved as

r =sing, [X7 (1) = X (1;)] +cos ; [Yr () = Y (¢;)] + R— Reos (¢; — ¢;) (€.7)
where ¢; (¢ ;) is the angle between cutter i (j) and the Y-axis:

¢ =Q2t+0,+6,, ¢ =Q1t;+0,+0;. (C.8)
Substitute (C.8) and (C.1) into (C.7), and introduce time delay rij =t—t j,6 the chip thickness model becomes

h! = sin ¢, [XT ®-Xr (1~ r{)] +cos ¢, [YT =Y (- r{)] + R= Reos (1] = j6) . (C.9)

In order to determine the time delay Tl.j , we eliminate term (R - h{ ) in (C.6)

cos; [Xr () — Xr (1;)] —sing; [Yr () = Y7 (t;)] + Rsin (¢, — ;) =0 (C.10)
Again substitute (C.8) and (C.1) into (C.10); then we have
cos ¢; [XT 0 - Xy (r - r{)] — sin ¢, [YT 0 =Yy (t - r{)] + Rsin (.Qrij - j9> =0, (C.11)

which is an implicit equation through which the time delay r,.j can be solved

In summary, the chip thickness model is determined without any simplifications in the form
— : J
h; —max{O, Injm{h,.}} s (C.12)
h! = sin ¢, [XT ") - Xy (r - T{)] +cosg; [YT " -Y; (z - r{)] + R— Rcos (.QTij —j0) , (C.13)
and the time delay r,.j is determined implicitly through

cos [XT " - Xy (t - T{)] —sing; [YT " - Yy (r - T{)] + Rsin (.Qrij - j0> -0. (C.14)

6 Here 7/ depends on i in the sense that time 1 refers to the instance when a given cutter i is engaged with the workpiece.
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Fig. C.2. Limit cycles computed by the PDE-ODE formulation and the DDE formulation [9] using simplified and improved chip thickness models. The spindle
speed £ =30000rpm, axial depth of cut a, = 20mm, and radial immersion a, = 0.5mm (5%).

Table C.1
CPU times of the PDE-ODE formulation and the improved DDE model for tools with different numbers of cutters. The spindle
speed Q =30000rpm, axial depth of cut a, = 20mm, and radial immersion a, = 0.5 mm (5%).

2 Cutters 3 Cutters 4 Cutters
CPU time of the PDE-ODE formulation [s] 13.1 13.0 13.0
CPU time of the improved DDE model [s] 18.9 28.2 36.0

Finally, the possible influence from the boundary of the workpiece is considered following the same procedure in Section 2.2.4. The
chip thickness in (C.12) is further modified to

max {o, h =T, } , diste, (Z7) =0

h. =

i

iy - (C.15)
max {o, min {h,., hf,“} - hjz)} . diste, (Z7) > 0.

As illustrated in Fig. C.2, replacing the simplified chip thickness model in [9] with the improved chip thickness model (C.15) results
in an excellent agreement with the PDE-ODE formulation.

However, this improved DDE-based model can be computationally intensive because the nonlinear equation (C.14) need to
be solved at each time step. Moreover, the suitable number of preceding cutters to be considered remains an open problem. While
simulating the proposed case for 50 000 time steps, the CPU time of the PDE-ODE formulation and the improved model (considering
two preceding cutters) are respectively 13.1s and 18.9s. When the number of cutters increases, the computational load of the
improved DDE model increases significantly while the PDE-ODE formulation is not affected, see Table C.1.
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