
Journal of Sound and Vibration 569 (2024) 117940

A
0

A
K
a

b

A

K
M
T
C
M
P

1

a
o
c
a

d
T
p
t
b
a
T

h
R

Contents lists available at ScienceDirect

Journal of Sound and Vibration

journal homepage: www.elsevier.com/locate/jsvi

n alternative approach to model the dynamics of a milling tool
aidong Chen a,b, He Zhang a, Nathan van de Wouw b, Emmanuel Detournay a,∗

Department of Civil, Environmental and Geo-Engineering, University of Minnesota, Minneapolis, MN 55455, USA
Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands

R T I C L E I N F O

eywords:
illing
ool/machine dynamics
hip thickness
odeling and numerical simulation

DE–ODE formulation

A B S T R A C T

Mathematical models play an increasing role in understanding and predicting machining
processes, in particular milling. However, despite the considerable efforts that have been
dedicated to this problem, a majority of milling models still rely on simplifying assumptions
to calculate the chip thickness. In this paper, the chip thickness is determined without these
simplifications, based on a surface function that describes the milled surface and on information
about the workpiece boundary. By combining the partial differential equation (PDE) governing
the evolution of this surface function with the ordinary differential equations (ODE) governing
the tool/machine dynamics, a mixed PDE–ODE formulation is proposed to describe the dynamics
of the milling process. The coupled system of differential equations is solved using an algorithm
that combines finite difference (ODE) and finite volume (PDE) methods. A case study is
presented to compare the proposed approach with the classical delay differential equations
(DDE) model formulation for milling processes based on a simplified chip thickness model. The
PDE–ODE formulation represents an explicit mathematical model for milling process dynamics;
it yields a theoretically exact chip thickness and offers a means to assess the validity of
models based on DDE formulation. Moreover, the proposed formulation is capable of simulating
transient tool behaviors when the tool is milling the outer region of the workpiece, which is in
general neglected by the DDE-based models.

. Introduction

Milling is a basic manufacturing process in various fields of engineering [1], including aeronautics [2], bio-medicine [3], and
utomobiles [4]. Motivated by the need to mitigate chatter [5,6] – a self-excited vibration of the tool which affects the surface finish
f the workpiece – research on milling dynamics began in the 1950s [7]. According to [8], the dynamic models of milling can be
lassified into Class I models that only consider the movement of the tool and Class II models that simulate both the tool dynamics
nd the evolution of the machined surface.

Class I models compute the chip thickness using the current and previous positions of the tool. Specifically, the chip thickness is
ivided into a static chip thickness created by the prescribed motion of the tool and a dynamic one caused by parasitic vibrations [9].
he static chip thickness is determined by assuming either a simplified circular tooth path [10,11] or a realistic trochoidal tooth
ath [9,12]. On the other hand, the dynamic chip thickness is computed using the current (at time 𝑡) and one or more preceding (at
ime 𝑡 − 𝛥𝑡𝑖) positions of the tool center, where 𝛥𝑡𝑖 is referred to as the time delay. A single constant time delay is used in [13,14],
ut other models rely on a variable time delay [9,15], or two discrete ones [16], or even multiple ones [17,18] to improve
ccuracy. Mathematically, all proposed Class I models are governed by a system of delay differential equations (DDE) [13,19].
aking advantage of this explicit mathematical formulation, DDE-based models have been widely used to conduct stability analysis
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in both frequency [20,21] and time [22,23] domains, for both normal [20,24] and low radial immersion [25,26] milling processes.
Furthermore, these models have been adopted to identify cutting force coefficients [27] and to predict milling accuracy [14].
However, DDE-based models can lead, in some cases, to less reliable predictions because of errors resulting from their approximated
chip thickness and time delay models. Although a subclass of Class I models [28,29] allows to compute the chip thickness without
relying on the usual approximations of DDE-based models, it lacks a clear and explicit mathematical formulation of the model.

On the other hand, Class II models can determine the chip thickness directly because the milled surface around the tool is fully
onstructed. This milled surface is updated according to the tool motion and, in turn, brings a feedback to the tool movement via
ts force interactions with the cutters. From this perspective, Class II models couple a representation of the milled surface with the
ool dynamics model to describe the milling process.

Multiple discrete surface models have been proposed in the literature. The concept of a ‘‘surface array’’ is introduced in [30] ,
hich provides a discrete description of the evolution of the milled surface around the tool. A similar concept is adopted in [31] for

ow radial immersion milling and in [32] to account for the effect of tool run-out. In [8], the surface is approximated by discrete
oints connected by straight-lines and is updated through a material removal model. For micro-milling, a surface consisting of a set
f discrete surface points is introduced in [33] to describe the surface evolution, taking into account the elastic recovery after the
assage of the cutter. Although the Class II models provide a straight-forward way to compute the chip thickness from the evolution
f the milled surface, the published Class II models focus on the numerical discretization of the surface without the benefit of a
ystematic mathematical framework, unlike DDE-based Class I models.

The core contribution of this paper is formulating the mathematical underpinning of the Class II models. Theoretically, this
athematical model enables an exact determination of the chip thickness, and thus provides a means to assess the validity of DDE-

ased Class I models that rely on simplified chip thickness calculations. In this paper, a partial differential equation (PDE) governing
he evolution of the machined surface [34]1 is combined with a system of ordinary differential equations (ODE) governing the tool

dynamics. This leads to a mixed PDE–ODE formulation for Class II models. Based on this mathematical framework, an algorithm
combining the finite difference method (FDM) and the finite volume method (FVM) is developed to solve the model numerically.
Simulation results show that the PDE–ODE formulation agrees generally well with the DDE formulation but is more accurate when
the ratio of the stiffness of the cutting interface to that of the milling system is relatively large. Besides, the proposed PDE–ODE
formulation can accurately describe the transient tool behavior when the tool is milling the outer regions of the workpiece, which
often cannot be accurately described in the DDE-based models.

The rest of the article is organized as follows. In Section 2, the mixed system of PDE–ODE governing the tool dynamics is
formulated, and the boundary conditions and conditions at the cutters are also articulated. In Section 3, a dimensionless form of
the mathematical model is derived. The algorithm to solve the PDE–ODE formulation is introduced in Section 4, and a case study
is conducted in Section 5 to compare the proposed model with the conventional DDE formulation. Finally, conclusions are drawn
in Section 6.

2. Mathematical model

2.1. Tool dynamics

Following [9], the dynamics of the milling tool/machine is reduced to the mass–spring–damper system illustrated in Fig. 1(a).
The governing equations read

𝑀𝑋�̈�𝑇 + 𝐶𝑋 (�̇�𝑇 − 𝑉0) +𝐾𝑋 (𝑋𝑇 − 𝑉0𝑡) = 𝐹𝑋
𝑀𝑌 𝑌𝑇 + 𝐶𝑌 �̇�𝑇 +𝐾𝑌 𝑌𝑇 = 𝐹𝑌 ,

(1)

where 𝑋𝑇 (𝑡) and 𝑌𝑇 (𝑡) are the coordinates of the tool center measured in a frame (𝑋, 𝑌 ) fixed to the workpiece.2 The prescribed
movement of the tool is a uniform linear motion along the 𝑋-axis with a velocity 𝑉0. The parameters 𝑀𝐼 , 𝐶𝐼 , and 𝐾𝐼 denote the
equivalent mass, damper, and stiffness in the 𝐼 (𝐼 = 𝑋, 𝑌 ) direction. The total cutting forces in 𝑋- and 𝑌 - directions, 𝐹𝑋 and 𝐹𝑌 ,
re the sum of the cutting force components on all the cutters

𝐹𝑋 =
𝑁
∑

𝑖=1
𝐹𝑋𝑖 , 𝐹𝑌 =

𝑁
∑

𝑖=1
𝐹𝑌 𝑖 , (2)

here 𝑁 is the total number of cutters. The cutting force components for cutter 𝑖, 𝐹𝑋𝑖 and 𝐹𝑌 𝑖, along the 𝑋- and 𝑌 -axes are
etermined through a coordinate transformation from the cutter frame to the global frame (𝑋, 𝑌 ) (see Fig. 1 (b)).

[

𝐹𝑋𝑖
𝐹𝑌 𝑖

]

=
[

−cos𝜙𝑖 (𝑡) − sin𝜙𝑖 (𝑡)
sin𝜙𝑖 (𝑡) − cos𝜙𝑖 (𝑡)

] [

𝐹𝑡𝑖
𝐹𝑟𝑖

]

, (3)

here 𝜙𝑖 (𝑡) = 𝜃𝑖 + 𝛺𝑡 + 𝛩0 is the instantaneous angle between the Y -axis and the cutter 𝑖. Here 𝜃𝑖 is the orientation of the cutter
easured in the tool frame (𝑥, 𝑦), 𝛺 is the constant spindle speed of the tool and 𝛩0 is the initial angular difference between the

1 The research in [34] is partly inspired from [35,36], where a partial differential equation (PDE) formulation has been developed to describe the evolution
f the machined surface in the turning process.

2 For the sake of simplicity, we focus on the second-order tool/machine dynamics in 𝑋- and 𝑌 - directions in (1). However, the model can readily be extended
2

to include high-order (multi-modal) tool/machine dynamics.
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Fig. 1. (a) The mass–spring–damper model of the milling tool/machine dynamics. (b) Coordinate transformation of the cutting force at the cutter.

(𝑥, 𝑦) and (𝑋, 𝑌 ) frames. Without loss of generality, the 𝑦-axis of the (𝑥, 𝑦) frame is aligned with an arbitrary cutter of the tool. This
utter is numbered as Cutter 1 and the other cutters are sequentially numbered clockwise, see Fig. 1 (a). This numbering order of
he cutters is used throughout the paper.

The tangential and radial cutting force components on the cutter 𝑖, 𝐹𝑡𝑖 and 𝐹𝑟𝑖 in (3), can be described by the so-called exponential
odel [9,37]:

𝐹𝑡𝑖 = 𝐾𝑡𝑎𝑝ℎ
𝛽
𝑖 (𝑡) , 𝐹𝑟𝑖 = 𝐾𝑟𝑎𝑝ℎ

𝛽
𝑖 (𝑡) , 𝑖 = 1, 2, … , 𝑁 , (4)

here 𝐾𝑡, 𝐾𝑟, and 0 ≤ 𝛽 ≤ 1 are cutting parameters, 𝑎𝑝 is the axial depth of cut and ℎ𝑖 denotes the chip thickness faced by cutter 𝑖.

.2. Surface function

Determination of the cutting force based on (4) requires an accurate computation of the chip thickness. This can be achieved
sing the concept of surface function introduced in [34]. As shown in Fig. 1(a), the distance between the tool center and the milled
urface can be viewed as a function of orientation 𝜃 and time 𝑡: 𝑟 (𝜃, 𝑡), which is defined as the surface function. Physically, this
urface function describes the geometry of the machined surface viewed from the moving tool center; it is thus updated according
o the movement of the tool center, see Section 2.2.1. From the known surface function, the chip thickness is readily computed
hrough

ℎ𝑖 = max
{

0, 𝑅 − 𝑟
(

𝜃+𝑖 , 𝑡
)}

, 𝑖 = 1, 2, … , 𝑁 , (5)

here 𝑅 is the radius of the tool from tool center to tip of the cutter, and 𝑟
(

𝜃+𝑖 , 𝑡
)

represents the distance between the tool center
nd the surface just ahead of cutter 𝑖 (at orientation 𝜃𝑖). For example, Cutter 1 in Fig. 1(a) is removing material from the workpiece.
athematically, this is described by 𝑅 > 𝑟

(

𝜃+1 , 𝑡
)

, where 𝜃1 = 0 is the orientation of Cutter 1 measured in the tool frame (𝑥, 𝑦). The
hip thickness at Cutter 1 is then given by ℎ1 = 𝑅 − 𝑟

(

𝜃+1 , 𝑡
)

. As for Cutter 2 at the orientation 𝜃2, there is no material removal in
he scenario in Fig. 1(a) and thus the chip thickness is zero. The concept of virtual surface [34] is introduced to account for the
bsence of material to be machined by setting 𝑟

(

𝜃+2 , 𝑡
)

> 𝑅.3 According to (5), the chip thickness in this case is ℎ2 = 0, reflecting
hat there is no contact interaction between the workpiece and the cutter.

The surface function enables the detection of the loss of contact between an arbitrary cutter 𝑖 and the workpiece, by comparing
(

𝜃+𝑖 , 𝑡
)

and 𝑅. The cutter loses contact with the workpiece when 𝑟
(

𝜃+1 , 𝑡
)

> 𝑅, and the chip thickness ℎ𝑖 on the cutter is consequently
et to zero through (5), thus causing the cutting forces on the cutter also drop to zero according to (4). This model aspect is later
erified through a case study in Section 5.2.

3 Strictly following the definition of the surface function, it should be defined as 𝑟
(

𝜃𝑖 , 𝑡
)

= +∞ if there is no material at orientation 𝜃𝑖. In order to avoid the
mathematical and numerical difficulties caused by positive infinity, a number sufficient larger than 𝑅 is artificially defined instead, which can be viewed as a

( )
3

virtual surface 𝑟 𝜃𝑖 , 𝑡 > 𝑅.
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2.2.1. Evolution of the surface function
According to [34], the evolution of the surface function around the tool is governed by a PDE in the form of a conservation law:

𝜕𝑟
𝜕𝑡

+
𝜕𝑓
𝜕𝜃

= 𝜓 , (6)

where

𝑓 (𝑟, 𝜃, 𝑡) = −𝛺𝑟 − 𝑉𝑡ln𝑟 , 𝜓 (𝑟, 𝜃, 𝑡) = 𝑉𝑟 (ln𝑟 − 1) (7)

with

𝑉𝑡 = 𝑉 cos
(

𝜃 +𝛺𝑡 + 𝛩0 +𝛷
)

, 𝑉𝑟 = 𝑉 sin
(

𝜃 +𝛺𝑡 + 𝛩0 +𝛷
)

. (8)

n the above equation, 𝑉 is the magnitude of velocity of the tool center and 𝛷 is the inclination of the velocity with respect to the
-axis of the global frame (𝑋, 𝑌 )

𝑉 =
√

�̇�2
𝑇 + �̇� 2

𝑇 , tan𝛷 = �̇�𝑇 ∕�̇�𝑇 , (9)

Here the condition, stated in [34], that the (𝑥, 𝑦) and (𝑋, 𝑌 ) frames initially coincide, is relaxed; as a result, the term 𝛺𝑡 in the
original PDE derived in [34] is replaced by 𝛺𝑡 + 𝛩0.

Physically, function 𝑓 is associated with the relative rotation of the tool with respect to the workpiece, while function 𝜓 is related
to the relative radial movement of the tool with respect to the workpiece. These relative movements govern the evolution of the
surface function, see Appendix A for more detailed explanations.

2.2.2. Conditions at cutters
Consider an arbitrary cutter 𝑖 at orientation 𝜃𝑖, and let 𝑟

(

𝜃−𝑖 , 𝑡
)

and 𝑟
(

𝜃+𝑖 , 𝑡
)

represent the instantaneous distances between the
tool center and the machined surface just behind and in front of the cutter, respectively. Since Cutter 1 is removing material and
creating a new surface (see Fig. 1(a)), the discontinuous condition

𝑟
(

𝜃−1 , 𝑡
)

= 𝑅 > 𝑟
(

𝜃+1 , 𝑡
)

, (10)

at 𝜃1 reflects that the cutter is creating a new machined surface. In contrast, Cutter 2 is not in contact with the workpiece:
𝑟
(

𝜃+2 , 𝑡
)

> 𝑅, thus the surface function is continuous at 𝜃2:

𝑟
(

𝜃−2 , 𝑡
)

= 𝑟
(

𝜃+2 , 𝑡
)

. (11)

In summary, the conditions accounting for possible material removal process at the cutters are

𝑟
(

𝜃−𝑖 , 𝑡
)

= max
{

𝑟
(

𝜃+𝑖 , 𝑡
)

, 𝑅
}

, 𝑖 = 1, 2 ,… , 𝑁 . (12)

2.2.3. Boundary condition of the PDE
By introducing a virtual surface, the surface function is defined for 𝜃 ∈ [0, 2𝜋]. Given that 𝜃 = 0 and 𝜃 = 2𝜋 refer to the same

direction, the following periodic boundary condition holds

𝑟 (2𝜋, 𝑡) = 𝑟 (0, 𝑡) . (13)

In particular, when a cutter is exactly positioned at 𝜃 = 0/𝜃 = 2𝜋, the possibility of material removal is considered and the boundary
condition becomes

𝑟 (2𝜋, 𝑡) = max {𝑟 (0 , 𝑡) , 𝑅} . (14)

2.2.4. Initial boundary of the workpiece
Until now, it has been assumed that the tool is fully immersed into the workpiece, see Fig. 2(a). However, the initial boundary

of the workpiece, abbreviated as IBW in below, can also affect the chip thickness computation when the cutter is close to the outer
edge of the workpiece, see Fig. 2(b). Accordingly, the chip thickness model in (5) needs to be modified, which is discussed in below.

To begin with, the following assumptions are made:

1. The initial shape of the workpiece is known, i.e., the information of the IBW is known.
2. The initial shape of the workpiece is convex, and the IBW is continuous and closed.
3. The cutter can intersect with at most two points of the IBW.

Similarly to the surface function for the milled surface, the IBW can be described by an IBW function �̃� (𝜃, 𝑡), see Fig. 3. Depending
on whether the tool center is inside the IBW or not, the IBW function can be either single-valued or double-valued. As we have
assumed, mathematically the initial shape of the workpiece can be viewed as a convex set 𝐶𝑤 in the global (𝑋, 𝑌 ) frame (see
Fig. 3(a)), which is used to distinguish the single-valued case in Fig. 3(b) and the double-valued one in Fig. 3(c). The distance from
the tool center 𝐙𝑇 =

(

𝑋𝑇 , 𝑌𝑇
)

to the convex set 𝐶𝑤 is defined as

dist
(

𝐙
)

= ‖𝐙 − prox
(

𝐙
)

‖ , (15)
4

𝐶𝑤 𝑇 ‖

‖

𝑇 𝐶𝑤 𝑇 ‖

‖
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Fig. 2. The influence of the workpiece boundary on the chip thickness when the tool center is inside the IBW: (a) the cutter does not reach the boundary; (b)
the cutter reaches the boundary. (c) Zoomed cutting details of figure (b).

Fig. 3. IBW function, describing (a) the initial boundary of the workpiece (IBW), measured from the tool center: (b) single-valued case and (c) double-valued
case.

with

prox𝐶𝑤
(

𝐙𝑇
)

= argmin
𝐗∈𝐶𝑤

‖

‖

𝐙𝑇 − 𝐗‖
‖

∶=
{

𝐗∗ ∈ 𝐶𝑤 ∶ ‖

‖

𝐙𝑇 − 𝐗∗
‖

‖

≤ ‖

‖

𝐙𝑇 − 𝐗‖
‖

for all𝐗 ∈ 𝐶𝑤
}

. (16)

Mathematically, 𝐙𝑇 ∈ 𝐶𝑤 when dist𝐶𝑤
(

𝐙𝑇
)

= 0 [38]; physically this reflects that the tool center is inside the IBW and the IBW
function �̃� (𝜃, 𝑡) is single-valued, see Fig. 3(b). In contrast, 𝐙𝑇 ∉ 𝐶𝑤 when dist𝐶𝑤

(

𝐙𝑇
)

> 0, reflecting that the tool center is outside
the IBW and the IBW function �̃� (𝜃, 𝑡) is double-valued, see Fig. 3(c). The case when the tool center is exactly on the IBW is not
considered here. Given that the initial shape of the workpiece is assumed known, we only need to determine the position of the
tool center in the global frame and then �̃� (𝜃, 𝑡) is readily determined for both single-valued and double-valued cases. When the tool
center is outside the IBW, the IBW function �̃� (𝜃, 𝑡) is defined only in a range of orientations around the tool center (𝜃 ∈

[

𝜃∗1 , 𝜃
∗
2
]

),
see Fig. 3(c). For orientations where there is no workpiece, �̃� (𝜃, 𝑡) is artificially set to large enough values �̃�2 > �̃�1 > 𝑅 to ensure
that the computation of the chip thickness is not influenced by �̃� (𝜃, 𝑡) for 𝜃 ∉

[

𝜃∗1 , 𝜃
∗
2
]

.
When the IBW function is single-valued (see Fig. 3(b)), we can directly determine whether or not the cutter has reached the

IBW by comparing the tool radius 𝑅 and the boundary information just ahead of the cutter �̃�
(

𝜃+𝑖 , 𝑡
)

. If the cutter does not reach the
IBW (𝑅 < �̃�

(

𝜃+𝑖 , 𝑡
)

), (5) holds. In contrast, if the cutter reaches this boundary (𝑅 > �̃�
(

𝜃+𝑖 , 𝑡
)

), computation of the chip thickness in
(5) needs to be modified. When the IBW function is double-valued (see Fig. 3(c)), the two values �̃�1 and �̃�2 (�̃�1 < �̃�2) both need to
be compared with 𝑅 to determine the possible intersection(s) between the cutter and the IBW. The cutter does not reach the IBW
when 𝑅 < �̃�1; the cutter intersects with the IBW at one single point when �̃�1 < 𝑅 < �̃�2; the cutter intersects with the IBW at two
different points when 𝑅 > �̃�2.

Fig. 2(a–c) illustrates the modified chip thickness model when the tool center is inside the initial workpiece boundary
(dist𝐶𝑤

(

𝐙𝑇
)

= 0). When the cutter does not reach the initial workpiece boundary (𝑅 < �̃�
(

𝜃+𝑖 , 𝑡
)

) , the original chip thickness
ℎ𝑂𝑖 computed by (5) is still the correct chip thickness, see Fig. 2(a). In contrast, an extra subtraction of ℎ̃𝑖 = 𝑅 − �̃�

(

𝜃+𝑖 , 𝑡
)

to ℎ𝑂𝑖 is
required when the cutter reaches the boundary (𝑅 > �̃�

(

𝜃+𝑖 , 𝑡
)

), see Fig. 2(b–c). The modified chip thickness model for these two
cases can be summarized as

ℎ𝑖 = max
{

0, ℎ𝑂𝑖 − ℎ̃𝑖
}

, when dist𝐶𝑤
(

𝐙𝑇
)

= 0 (17)

with
𝑂 { ( + )} ̃ { ( + )}
5

ℎ𝑖 = max 0, 𝑅 − 𝑟 𝜃𝑖 , 𝑡 , ℎ𝑖 = max 0, 𝑅 − �̃� 𝜃𝑖 , 𝑡 , 𝑖 = 1, 2, … , 𝑁 . (18)
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t

̃

Fig. 4. The influence of the workpiece boundary on the chip thickness when the tool center is outside the IBW: (a) the cutter does not reach the boundary;
(b) the cutter intersects with the IBW at one single point; (c) the cutter intersects with the IBW at two different points. (d–e) Zoomed cutting details of figure
(b–c), respectively.

It is noted that (17) degenerates to (5) when 𝑅 < �̃�
(

𝜃+𝑖 , 𝑡
)

, reflecting that the initial boundary of the workpiece does not influence
he chip thickness ahead of the cutter when the cutter does not reach the boundary.

Fig. 4(a–e) illustrates the modified chip thickness model when the tool center is outside the IBW (dist𝐶𝑤
(

𝐙𝑇
)

> 0). As illustrated
in Fig. 4(a), the chip thickness is zero when the cutter does not reach the boundary (𝑅 < �̃�1). When the cutter intersects with the
IBW at one single point (�̃�1 < 𝑅 < �̃�2), the realistic chip thickness is the minimum value between ℎ𝑂𝑖 and ℎ̃(1)𝑖 = 𝑅− �̃�1, see Fig. 4(b)
and (d). When the cutter intersects with the IBW at two different points (𝑅 > �̃�2, see Fig. 4(c) and (e)), an extra subtraction of
ℎ(2)𝑖 = 𝑅 − �̃�2 is required. In summary, the modified chip thickness model when the tool center is outside the IBW is:

ℎ𝑖 = max
{

0, min
{

ℎ𝑂𝑖 , ℎ̃
(1)
𝑖

}

− ℎ̃(2)𝑖
}

, when dist𝐶𝑤
(

𝐙𝑇
)

> 0 (19)

with

ℎ̃(1)𝑖 = max
{

0, 𝑅 − �̃�1 (𝑖)
}

, ℎ̃(2)𝑖 = max
{

0, 𝑅 − �̃�2 (𝑖)
}

, 𝑖 = 1, 2, … , 𝑁 , (20)

where �̃�1 (𝑖) and �̃�2 (𝑖) denote the two values of the IBW function just ahead of cutter 𝑖. In summary, the comprehensive expression
for the chip thickness is

ℎ𝑖 =

⎧

⎪

⎨

⎪

⎩

max
{

0, ℎ𝑂𝑖 − ℎ̃𝑖
}

, dist𝐶𝑤
(

𝐙𝑇
)

= 0

max
{

0, min
{

ℎ𝑂𝑖 , ℎ̃
(1)
𝑖

}

− ℎ̃(2)𝑖
}

, dist𝐶𝑤
(

𝐙𝑇
)

> 0 ,
𝑖 = 1, 2, … , 𝑁 . (21)

Eq. (21) is an exact expression for computing the chip thickness, unlike the simplified chip thickness models used in the DDE
formulation.

2.3. Mixed PDE-ODE formulation for the milling process dynamics

In Sections 2.1 and 2.2, we have respectively introduced the system of ODEs governing the movement of the tool and the PDE
describing the evolution of the milled surface around the tool. These two systems are coupled via the tool center velocity and the
cutting force. On the one hand, the magnitude and the direction of the tool center velocity (governed by the ODE system) are the
controlling parameters in the PDE system. On the other hand, the surface function (determined by the PDE system) directly affects
the chip thickness and thus the cutting force, which serves as an input to the ODE system. Therefore, a mixed PDE–ODE formulation
6

has been established to describe the milling dynamics (see Fig. 5).



Journal of Sound and Vibration 569 (2024) 117940K. Chen et al.

3

3

o

Fig. 5. The mixed PDE–ODE formulation describing the milling dynamics.

. Scaling

In order to identify the key parameters of the system, a scaling analysis is conducted in this section.

.1. Scaled parameters

Now we introduce a time scale 𝑡∗, a length scale 𝓁∗, and a force scale 𝐹∗ to rewrite the PDE–ODE system in a dimensionless form

𝑡∗ =

√

𝑀𝑋
𝐾𝑋

, 𝓁∗ = 𝑓𝑧 , 𝐹∗ = 𝐾𝑡𝑎𝑝𝓁
𝛽
∗ , (22)

where 2𝜋𝑡∗ is the period of the resonant vibration of the discrete milling system in 𝑋-direction, 𝓁∗ = 𝑓𝑧 = 2𝜋𝑉0
𝑁𝛺 is the feed per

tooth [9], and 𝐹∗ is the tangential component of the cutting force when the chip thickness is 𝓁∗ = 𝑓𝑧, the maximum chip thickness
when the tool moves rigidly under the prescribed motion without vibrations [9,34].

The scaled tool center coordinates then become

 =

(

𝑋𝑇 − 𝑉0𝑡
)

𝓁∗
,  =

𝑌𝑇
𝓁∗

, (23)

where 𝑉0𝑡 is the prescribed motion of the tool. Therefore,  describes the perturbation along the 𝑋-axis with respect to the prescribed
movement of the tool. The dimensionless surface function, IBW function, tool radius, chip thickness, and the dimensionless depth
of cut are respectively defined as

𝜌 (𝜃 , 𝜏) =
𝑟 (𝜃, 𝑡)
𝓁∗

, 𝜌 (𝜃 , 𝜏) =
�̃� (𝜃, 𝑡)
𝓁∗

,  = 𝑅
𝓁∗

, 𝜂𝑖 =
ℎ𝑖
𝓁∗

, 𝑖 = 1, 2 ,… , 𝑁 . (24)

where 𝜏 = 𝑡∕𝑡∗ is the scaled time.
The scaled forces on the 𝑖th cutter are defined as

𝑡𝑖 =
𝐹𝑡𝑖
𝐹∗

= 𝜂𝛽𝑖 , 𝑟𝑖 =
𝐹𝑟𝑖
𝐹∗

= 𝜉𝜂𝛽𝑖 , (25)

where 𝜉 = 𝐾𝑟∕𝐾𝑡 is the ratio of the cutting force coefficients. Moreover, the scaled lumped parameters describing the characteristics
f the milling rig are

𝜁 =
𝐶𝑋𝛺
𝐾𝑋

, 𝛾𝑀 =
𝑀𝑋
𝑀𝑌

, 𝛾𝐶 =
𝐶𝑋
𝐶𝑌

, 𝛾𝐾 =
𝐾𝑋
𝐾𝑌

, (26)

where 𝜁 is the scaled damping factor in 𝑋-direction and 𝛾𝑀 , 𝛾𝐶 , 𝛾𝐾 are respectively the ratios of mass, damper, and stiffness in 𝑋-
and 𝑌 -directions.

Finally, two dimensionless control parameters are introduced

𝜔 = 𝛺

√

𝑀𝑋 ,  =
𝐾𝑡𝑎𝑝𝓁

𝛽−1
∗ , (27)
7

𝐾𝑋 𝐾𝑋
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where 𝜔 is the scaled spindle speed and  is the scaled axial depth of cut. From another perspective, 𝜔 can be viewed as the ratio
of two time scales 𝜔 = 𝑡∗∕𝑡0, where 𝑡0 = 1∕𝛺 is the time when the mill rotates by 1 rad. Similarly,  can also be viewed as the ratio
of two length scales  = 𝓁𝑋∕𝓁∗. Here 𝓁𝑋 is the static tool center displacement in the 𝑋-direction under the force scale 𝐹∗:

𝐾𝑋𝓁𝑋 = 𝐹∗ = 𝐾𝑡𝑎𝑝𝓁
𝛽
∗ ⇒  =

𝓁𝑋
𝓁∗

=
𝐾𝑡𝑎𝑝𝓁

𝛽−1
∗

𝐾𝑋
. (28)

According to (28),  reflects the ratio of the stiffness of the cutting interface to the stiffness of the milling rig. The typical range
f 𝜔 is 0 ∼ 1 [9,39] and that of  is 0 ∼ 4 [9,37].

.2. Scaled mathematical models

Using the scales 𝓁∗, 𝑡∗, and 𝐹∗, the ODE governing the tool dynamics can be rewritten in a dimensionless form as

̈ + 𝜁 ̇ +  = 

𝛾𝑀 ̈+𝛾𝐶𝜁 ̇+𝛾𝐾= .
(29)

he PDE describing the evolution of the surface around the tool becomes

𝜕𝜌
𝜕𝜏

+
𝜕𝑓
𝜕𝜃

= �̄� , (30)

with

𝑓 (𝜌, 𝜃, 𝜏) = −𝜔𝜌 −  cos
(

𝜃 + 𝜔𝜏 + 𝛩0 +𝛷
)

ln 𝜌
�̄� (𝜌, 𝜃, 𝜏) =  sin

(

𝜃 + 𝜔𝜏 + 𝛩0 +𝛷
)

(ln 𝜌 − 1) .
(31)

he dimensionless boundary condition of the PDE is

𝜌 (2𝜋, 𝜏) =

{

max {𝜌 (0 , 𝜏) , } , when there is a cutter at 𝜃 = 0
𝜌 (0, 𝜏) , otherwise .

, (32)

he material removal process at the cutters can be described by

𝜌
(

𝜃−𝑖 , 𝜏
)

= max
{

𝜌
(

𝜃+𝑖 , 𝜏
)

, 
}

, 𝑖 = 1, 2 ,… , 𝑁 . (33)

t is noted that the tool is first assumed to be 100% immersed while updating the PDE; then the modification considering the IBW
s introduced in the computation of the chip thickness (see (36) below).

The ODE in (29) and the PDE in (30) and (31) are coupled via the tool center velocity { , 𝛷} and the cutting forces
{

 , 
}

iven by

 =

√

(

̇ + 𝜔𝑁
2𝜋

)2
+ ̇2 , tan𝛷 = ̇∕

(

̇ + 𝜔𝑁
2𝜋

)

. (34)

[




]

=
𝑁
∑

𝑖=1

[

−cos𝜙𝑖 (𝜏) − sin𝜙𝑖 (𝜏)
sin𝜙𝑖 (𝜏) − cos𝜙𝑖 (𝜏)

] [

1
𝜉

]

𝜂𝛽𝑖 (35)

with 𝜙𝑖 (𝜏) = 𝜃𝑖 + 𝜔𝜏 + 𝛩0 and

𝜂𝑖 =

⎧

⎪

⎨

⎪

⎩

max
{

0, 𝜂𝑂𝑖 − 𝜂𝑖
}

, dist𝐶𝑤

(

𝐙𝑇
)

= 0

max
{

0, min
{

𝜂𝑂𝑖 , 𝜂
(1)
𝑖

}

− 𝜂(2)𝑖
}

, dist𝐶𝑤

(

𝐙𝑇
)

> 0 ,
𝑖 = 1, 2, … , 𝑁 , (36)

here

𝜂𝑂𝑖 = max
{

0,  − 𝜌
(

𝜃+𝑖 , 𝑡
)}

, 𝑖 = 1, 2, … , 𝑁 . (37)

hen dist𝐶𝑤

(

𝐙𝑇
)

= 0,

𝜂𝑖 = max
{

0,  − 𝜌
(

𝜃+𝑖 , 𝑡
)}

, 𝑖 = 1, 2, … , 𝑁 , (38)

nd when dist𝐶𝑤

(

𝐙𝑇
)

> 0,

𝜂(1)𝑖 = max
{

0,  − 𝜌1 (𝑖)
}

, 𝜂(2)𝑖 = max
{

0,  − 𝜌2 (𝑖)
}

, 𝑖 = 1, 2, … , 𝑁 (39)

with 𝜌1 (𝑖) = �̃�1 (𝑖) ∕𝓁∗ and 𝜌2 (𝑖) = �̃�2 (𝑖) ∕𝓁∗. Here 𝐶𝑤 denotes the scaled convex set describing the initial shape of the workpiece and
𝐙 =

(

 + 𝜔𝑁 𝜏, 
)

.

8
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4. Numerical algorithm for the mixed PDE-ODE model

4.1. Finite difference method for the ODE

In order to solve the ODE system (29) numerically, the motion of the tool center is discretized in time with the coordinates of
he tool center denoted as 𝐗𝑛 =

[

𝑛, 𝑛
]T at each time step 𝜏𝑛. Using the central difference method [40], coordinates 𝐗𝑛+1 at time

𝜏𝑛+1 are calculated using the known coordinates 𝐗𝑛 and 𝐗𝑛−1 at time 𝜏𝑛 and 𝜏𝑛−1, respectively.

𝐗𝑛+1 = 𝐂−1
0

(

𝐅𝑛 − 𝐂1𝐗𝑛 − 𝐂2𝐗𝑛−1
)

, (40)

where 𝐅𝑛 is the total cutting force at time step 𝜏𝑛, which will be introduced later in Section 4.3, see (50). Matrices 𝐂0, 𝐂1, and 𝐂2
are determined through

𝐂0 =
1
𝛥𝜏2

𝐌 + 1
2𝛥𝜏

𝐂 , 𝐂1 = 𝐈 − 2
𝛥𝜏2

𝐌 , 𝐂2 =
1
𝛥𝜏2

𝐌 − 1
2𝛥𝜏

𝐂 , (41)

where 𝛥𝜏 = 𝜏𝑛+1 − 𝜏𝑛 is the time step and

𝐌 =

[

1 0

0 𝛾𝑀

]

, 𝐂 =

[

𝜁 0

0 𝛾𝐶𝜁

]

, 𝐈 =
[

1 0

0 𝛾𝐾

]

. (42)

A special starting procedure should be used while computing 𝐗1, given the known initial conditions 𝐗0 and �̇�0. According to (40),
we still need to determine 𝐗−1 in order to compute 𝐗1. To begin with, �̈�0 can be calculated through (29) with known 𝐗0 and �̇�0.
Then the tool center coordinate 𝐗−1 are obtained through [40]

𝐗−1 = 𝐗0 − 𝛥𝜏�̇�0 +
𝛥𝜏2

2
�̈�0 . (43)

The central difference method is conditionally stable and the stability condition on the time step is given by [40]

𝛥𝜏 ≤ min
{

√

4 + 𝜁2 − 𝜁 ,
√

𝛾𝑀
𝛾𝐾

(√

4 +
(

𝛾𝐶𝜁
)2 − 𝛾𝐶𝜁

)}

. (44)

.2. Finite volume method for the PDE

Following the finite volume method introduced in [34], the machined surface around the tool is discretized into 𝐾 = 𝑀 × 𝑁
ells. Here 𝑀 is the number of cells between two neighboring cutters and it is assumed that the 𝑁 cutters are uniformly distributed
round the axis of revolution. The range of the 𝑘th cell 𝐶𝑘 (𝑘 = 1, 2, … , 𝐾) is 𝐶𝑘 = ((𝑘 − 1)𝛥𝜃, 𝑘𝛥𝜃), where 𝛥𝜃 = 2𝜋∕𝐾 is the
onstant angular interval of each cell. As mentioned earlier, the 𝑦-axis (𝜃 = 0) is aligned along one of the cutters; this cutter is
umbered as the first cutter (cutter 1) and the other cutters are sequentially numbered clockwise. Following this procedure, the
utter 𝑖 is always at the boundary between cell 𝐶(𝑖−1)𝑀 and 𝐶(𝑖−1)𝑀+1 (𝑖 = 1, 2, … , 𝑁). When 𝑖 = 1, the cell 𝐶0 is defined as the last
ell 𝐶𝐾 . The average surface function 𝜌𝑛𝑘 is used to approximate the milled surface around the tool at each time step 𝜏𝑛

𝜌𝑛𝑘 =
1
𝛥𝜃 ∫

𝑘𝛥𝜃

(𝑘−1)𝛥𝜃
𝜌
(

𝜃, 𝜏𝑛
)

d𝜃 , 𝑘 = 1, 2, … , 𝐾 , (45)

hich is updated following an upwind scheme [34,41] to describe the evolution of the machined surface.

𝜌𝑛+1𝑘 = 𝜌𝑛𝑘 −
𝛥𝜏
𝛥𝜃

(

𝑓 𝑛𝑘+1∕2 − 𝑓
𝑛
𝑘−1∕2 − 𝛥𝜃�̄�

𝑛
𝑘

)

, (46)

with

𝑓 𝑛𝑘+1∕2 =

⎧

⎪

⎨

⎪

⎩

𝑓
(

max
{

𝜌𝑛𝑘+1, 
}

, 𝜃𝑘+1, 𝜏𝑛
)

, when 𝑘 = 𝑖𝑀, 𝑖 = 1, 2, … , 𝑁

𝑓
(

𝜌𝑛𝑘+1, �̄�𝑘+1, 𝜏𝑛
)

, otherwise .
(47)

𝑓 𝑛𝑘−1∕2 = 𝑓
(

𝜌𝑛𝑘, �̄�𝑘, 𝜏𝑛
)

, �̄�𝑛𝑘 = �̄�
(

𝜌𝑛𝑘, �̄�𝑘, 𝜏𝑛
)

, (48)

here �̄�𝑘+1 = (𝑘 + 1∕2)𝛥𝜃, �̄�𝑘 = (𝑘 − 1∕2)𝛥𝜃, and 𝑓 and �̄� are defined latter in (55). The material removal process is accounted for
n (47) for cells 𝐶𝑘 with 𝑘 = 𝑖𝑀, 𝑖 = 1, 2, … , 𝑁 .

The following CFL condition is required to ensure the convergence of the scheme [42]:

CFL=max {|�̄�|} 𝛥𝜏
𝛥𝜃

≤ 1 , (49)

where �̄� = −𝜔− 
𝜌 cos

(

𝜃 + 𝜔𝜏 + 𝛩0 +𝛷
)

. The number of cells 𝐾 should be large enough to accurately describe the surface function;
subsequently determines 𝛥𝜃. Then the suitable time step is selected to satisfy both (44) and (49).
Finally, the last cell 𝐶𝐾 is updated by taking advantage of the periodic nature of the surface function. A ghost cell 𝐶𝐾+1 is set

ehind 𝐶 with 𝜌𝑛 = 𝜌𝑛 𝑛+1
9

𝐾 𝐾+1 1 at the beginning of each time step, then 𝜌𝐾 is readily computed through (46).
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4.3. Combined FDM-FVM algorithm

As mentioned in Section 2.3, the ODE and PDE systems are coupled via the cutting force and the tool center velocity. This
oupling is reflected in the FDM and FVM algorithms used to solve the PDE–ODE system. While updating the tool center coordinate
hrough FDM in (40), the term 𝐅𝑛 =

[

𝑛 , 𝑛

]T
is calculated using the surface function 𝜌𝑛𝑘 at time 𝜏𝑛 as follows:

[

𝑛

𝑛

]

=
𝑁
∑

𝑖=1

[

−cos𝜙𝑖
(

𝜏𝑛
)

− sin𝜙𝑖
(

𝜏𝑛
)

sin𝜙𝑖
(

𝜏𝑛
)

−cos𝜙𝑖
(

𝜏𝑛
)

][

1

𝜉

]

𝜂𝛽𝑖𝑛 . (50)

ith 𝜙𝑖
(

𝜏𝑛
)

= 𝜃𝑖 + 𝜔𝜏𝑛 + 𝛩0 and

𝜂𝑖𝑛 =

⎧

⎪

⎨

⎪

⎩

max
{

0, 𝜂𝑂𝑖𝑛 − 𝜂𝑖𝑛
}

, dist𝐶𝑤

(

𝐙
𝑛
𝑇

)

= 0

max
{

0, min
{

𝜂𝑂𝑖𝑛 , 𝜂
(1)
𝑖𝑛

}

− 𝜂(2)𝑖𝑛

}

, dist𝐶𝑤

(

𝐙
𝑛
𝑇

)

> 0 ,
𝑖 = 1, 2, … , 𝑁 , (51)

here

𝜂𝑂𝑖𝑛 = max
{

0,  − 𝜌𝑛𝑤(𝑖)
}

, 𝑖 = 1, 2, … , 𝑁 (52)

ith 𝑤 (𝑖) = (𝑖 − 1)𝑀 + 1. When dist𝐶𝑤

(

𝐙
𝑛
𝑇

)

= 0,

𝜂𝑖𝑛 = max
{

0,  − 𝜌𝑛𝑤(𝑖)
}

, 𝑖 = 1, 2, … , 𝑁 , (53)

and when dist𝐶𝑤

(

𝐙
𝑛
𝑇

)

> 0,

𝜂(1)𝑖𝑛 = max
{

0,  − 𝜌𝑛𝑤1
}

, 𝜂(2)𝑖𝑛 = max
{

0,  − 𝜌𝑛𝑤2
}

, 𝑖 = 1, 2, … , 𝑁 . (54)

Here 𝜌𝑛𝑤(𝑖) refers to the average of the scaled IBW function 𝜌
(

𝜃, 𝜏𝑛
)

in cell 𝐶𝑤(𝑖), which is calculated in a similar way as
(45). When the scaled IBW function is double-valued, the two average values are denoted as 𝜌𝑛𝑤1 and 𝜌𝑛𝑤2

(

𝜌𝑛𝑤1 < 𝜌
𝑛
𝑤2

)

. In (51),
𝐙
𝑛
𝑇 =

(

𝑛 +
𝜔𝑁
2𝜋 𝜏𝑛, 𝑛

)

is the discrete tool center vector after scaling.
As for the PDE system, the terms 𝑓 𝑛𝑘+1∕2, 𝑓

𝑛
𝑘−1∕2, and �̄�𝑛𝑘 in the FVM algorithm (46) are also computed using the tool center

velocity �̇�𝑛 =
[

̇𝑛, ̇𝑛
]T at time step 𝜏𝑛. Namely,

𝑓
(

𝜌, 𝜃, 𝜏𝑛
)

= −𝜔𝜌 − 𝑛 cos
(

𝜃 + 𝜔𝜏𝑛 + 𝛩0 +𝛷𝑛
)

ln 𝜌

�̄�
(

𝜌, 𝜃, 𝜏𝑛
)

= 𝑛 sin
(

𝜃 + 𝜔𝜏𝑛 + 𝛩0 +𝛷𝑛
)

(ln 𝜌 − 1) ,
(55)

where

𝑛 =
√

(

̇𝑛 +
𝜔𝑁
2𝜋

)2
+ ̇2

𝑛 , tan𝛷𝑛 = ̇𝑛∕
(

̇𝑛 +
𝜔𝑁
2𝜋

)

. (56)

The tool center velocity can be approximated as �̇�𝑛 ≈
(

𝐗𝑛 − 𝐗𝑛−1
)

∕𝛥𝜏 at each time step.
In summary, the mixed PDE–ODE system is solved by combining the FDM and FVM algorithms. The computational flowchart of

the coupled algorithm is illustrated in Fig. 6.

5. Numerical results

An up-milling process illustrated in Fig. 7 is analyzed using both the proposed PDE–ODE formulation and the conventional DDE
formulation [9]. The parameters used for the simulation of the two formulations are summarized in Table 1 [9,37]. The illustrative
figure of the axial (𝑎𝑝) and radial (𝑎𝑒) depth of cut is given in Fig. 7(a). Mimicking the actual milling process, the tool does not
touch the workpiece initially and is at a distance of 𝐷0 = 5.2mm. For the sake of simplicity, it is assumed that the two cutters are
initially parallel to the 𝑌 -axis (see Fig. 7(b)).

To begin with, a convergence test of the proposed algorithm in Section 4 is conducted in Section 5.1. Then in Sections 5.2 and
5.3, the time domain simulation results and the steady-state tool vibrations predicted by the DDE and PDE–ODE formulations are
compared, respectively. These comparison studies highlight the difference in the predicted behavior between the approximate DDE
formulation and the proposed PDE–ODE model formulation. Moreover, the scenarios that cannot naturally be assessed using the
DDE approach are investigated.
10
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w

Fig. 6. The computational flowchart of solving the PDE–ODE system. 𝑁𝑡 is the total number of time steps.

Fig. 7. Up-milling process: (a) side view and (b) top view. This is an illustrative figure where the lengths of 𝑎𝑒, 𝑎𝑝, and 𝐷0 do not represent their physical
lengths.

5.1. Convergence test of the numerical algorithm

Here we analyze the influence of the number of cells and of the CFL number on the simulation results obtained with the numerical
algorithm introduced in Section 4. As illustrated in Fig. 8, the simulation results converge and become more accurate as these two
numbers increase4 However, the CFL number still needs to be less than 1 to guarantee convergence of the algorithm.

4 The CFL number is in general only viewed as a criterion on convergence. However, according to [42], the first-order upwind scheme is more accurate
11

hen the CFL number is closer to 1.
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Table 1
Parameters used for the simulation of the milling process.

Quantities Parameters Value Unit

Lumped mass 𝑀𝑋 (𝑀𝑌 ) 0.02 kg
Lumped damper 𝐶𝑋 (𝐶𝑌 ) 27.62 N s∕m
Lumped stiffness 𝐾𝑋 (𝐾𝑌 ) 3184.57 N∕mm
Cutting coefficient 𝛽 0.744 –
Cutting coefficient 𝐾𝑡 462 N∕mm1+𝛽

Cutting coefficient 𝐾𝑟 38.6 N∕mm1+𝛽

Radius of the mill 𝑅 5 mm
Number of cutters 𝑁 2 –
Feed per tooth 𝑓𝑧 0.2 mm∕tooth
Spindle speed 𝛺 3 × 104 rpm
Axial depth of cut 𝑎𝑝 1∼20 mm
Radial depth of cut 𝑎𝑒 0.5∕1∕9∕10 mm

Fig. 8. Simulation results of the numerical algorithm under: (a–b) different CFL number and (c–d) different number of finite volumes.

.2. Time-domain simulation results

As shown in Fig. 9(a), the tool center vibration along the 𝑋-axis, in the case of 𝑎𝑒 = 10mm, is simulated from 𝑡 = 0 to 𝑡 = 0.14 s.
Other parameters used for the simulations are given in Table 1. A remarkable difference between the response of the PDE–ODE
12
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Fig. 9. (a) Tool center vibration in the 𝑋-direction when 𝛺 = 30 000 rpm, 𝑎𝑝 = 1mm, and 𝑎𝑒 = 10mm (100% radial immersion): (b) simulation results from 𝑡 = 0
to 𝑡 = 0.01 s, and (c) simulation results from 𝑡 = 0.12 s to 𝑡 = 0.13 s.

odel and the conventional DDE model occurs at the ‘‘early stage’’ (𝑡 ∈ [0, 0.01 s]) of the simulation, see Fig. 9(b). This difference
ccurs because the boundary of the workpiece significantly affects the chip thickness when the tool is milling the outer part of the
orkpiece [34], see Fig. 10. This ‘‘early stage’’ is not considered in the classical DDE formulation while it is naturally captured with

he proposed PDE–ODE scheme. However, the influence of the boundary vanishes when the tool advances deep enough into the
orkpiece (𝑡 ∈ [0.12, 0.13 s]); after the ‘‘early stage’’ the two methods agree very well with each other, see Fig. 9(c). One advantage
f the PDE–ODE formulation is demonstrated through this case: it is capable of simulating the tool dynamics throughout the milling
rocess, especially when the tool is cutting the outer region of the workpiece and the chip thickness is strongly influenced by the
nitial shape of the workpiece.

In this example, only one of the two cutters is engaged with the workpiece, causing the cutting force 𝐹𝑡𝑖 on the other cutter to
rop to zero, see Fig. 11.

.3. Steady-state tool vibration

In this section, steady-state tool vibration characterized by limit cycles, reflecting the periodic motions of the tool center, are
redicted by both methods and these results are compared. Fig. 12 illustrates the limit cycles at a small axial depth of cut 𝑎𝑝 = 1mm,
nd at the following four different radial depths of cut: (a) 𝑎𝑒 = 10mm, 100% radial immersion, (b) 𝑎𝑒 = 9mm, 90% radial immersion,
c) 𝑎𝑒 = 1mm, 10% radial immersion, and (d) 𝑎𝑒 = 0.5mm, 5% radial immersion. It is shown that the radial depth of cut has a
trong influence on the shapes of the limit cycles. Under this small axial depth of cut (𝑎𝑝 = 1mm), the difference between the two
ormulations (i.e., the error 𝐸 of the DDE-based model with respect to the PDE–ODE model) is small, see Table 2. However, the
imit cycle is very small at the radial depth of cut 𝑎𝑒 = 0.5mm, and thus the relative error 𝐸𝑟 in this case becomes large (10.4%).
s a result, the difference between the two formulations looks more remarkable in Fig. 12(d).

Here the error 𝐸 and the relative error 𝐸𝑟 are respectively defined as:

𝐸 = 1
𝑁𝑟
∑

√

(

𝑋𝐷
(

𝑡𝑖
)

−𝑋𝑃
(

𝑡𝑖
))2 +

(

𝑌𝐷
(

𝑡𝑖
)

− 𝑌𝑃
(

𝑡𝑖
))2 , (57)
13
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Fig. 10. The initial shape of the workpiece can significantly affect the chip thickness when the tool is milling the outer region of the workpiece.
Source: Adopted from [34].

Fig. 11. Cutting forces 𝐹𝑡𝑖 on the two cutters as functions of time.

Table 2
The errors and relative errors of the DDE-based model with respect to the PDE–ODE model under different radial depth of cut.

𝑎𝑒 = 10mm 𝑎𝑒 = 9mm 𝑎𝑒 = 1mm 𝑎𝑒 = 0.5mm

Error 𝐸 of the DDE-based model [mm] 1.87 × 10−4 1.30 × 10−3 5.02 × 10−4 6.35 × 10−4

Relative Error 𝐸𝑟 of the DDE-based model [–] 0.83% 7.0% 5.0% 10.4%

𝐸𝑟 =
1
𝑁𝑟

𝑁𝑟
∑

𝑖=1

√

(

𝑋𝐷
(

𝑡𝑖
)

−𝑋𝑃
(

𝑡𝑖
))2 +

(

𝑌𝐷
(

𝑡𝑖
)

− 𝑌𝑃
(

𝑡𝑖
))2

√

𝑋2
𝑃
(

𝑡𝑖
)

+ 𝑌 2
𝑃
(

𝑡𝑖
)

, (58)

here
[

𝑋𝐷
(

𝑡𝑖
)

, 𝑌𝐷
(

𝑡𝑖
)]

and
[

𝑋𝑃
(

𝑡𝑖
)

, 𝑌𝑃
(

𝑡𝑖
)]

are tool center positions predicted by the DDE formulation and the PDE–ODE
ormulation at each time step 𝑡𝑖, and 𝑁𝑟 is the total number of time steps evaluated.

When the axial depth of cut increases to 𝑎𝑝 = 20mm (radial depth of cut 𝑎𝑒 = 0.5mm), the difference between the two formulations
ecomes substantial (𝐸 = 0.0231mm), see Fig. 13. Under the same radial depth of cut 𝑎𝑒 = 0.5mm, the limit cycle is similar to that
n Fig. 12(d) but of a larger size.
14
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𝑎

Fig. 12. Limit cycles of tool center under different radial depth of cut: (a) 𝑎𝑒 = 10mm, 100% radial immersion, (b) 𝑎𝑒 = 9mm, 90% radial immersion, (c)
𝑒 = 1mm, 10% radial immersion, and (d) 𝑎𝑒 = 0.5mm, 5% radial immersion. The spindle speed is 𝛺 = 30 000 rpm, and the axial depth of cut is 𝑎𝑝 = 1mm.

Fig. 13. Comparison of the limit cycles computed using the PDE–ODE formulation and a conventional DDE formulation [9]. The spindle speed 𝛺 = 30 000 rpm,
axial depth of cut 𝑎𝑝 = 20mm, and radial depth of cut 𝑎𝑒 = 0.5mm (5% radial immersion).
15
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Let us now investigate the underlying reason for these differences — the simplified chip thickness model used in the DDE
ormulation. First, the approximated chip thickness model in the DDE formulation in [9] can be written as5

ℎ𝑖 (𝑡) = sin𝜙𝑖 (𝑡)
[

𝑋𝑇 (𝑡) −𝑋𝑇
(

𝑡 − 𝜏𝑖
)]

+ cos𝜙𝑖 (𝑡)
[

𝑌𝑇 (𝑡) − 𝑌𝑇
(

𝑡 − 𝜏𝑖
)]

+ 𝑅 − 𝑅 cos
(

𝛺𝜏𝑖 − 𝜃
)

(59)

with

𝜏𝑖 =
𝜏𝜃𝑅

𝑓𝑧 cos𝜙𝑖 (𝑡) + 𝜃𝑅
, 𝜃 = 2𝜋

𝑁
, 𝜏 = 𝜃

𝛺
. (60)

In contrast, the exact chip thickness should be the minimum non-negative value of a series of ‘‘possible chip thickness’’ values

ℎ𝑖 (𝑡) = max
{

0, min
𝑗

{

ℎ𝑗𝑖 (𝑡)
}

}

, (61)

where the ‘‘possible chip thickness’’ ℎ𝑗𝑖 (𝑡) is determined by assuming the milled surface is left by a previous cutter 𝑗 and is given by

ℎ𝑗𝑖 (𝑡) = sin𝜙𝑖 (𝑡)
[

𝑋𝑇 (𝑡) −𝑋𝑇

(

𝑡 − 𝜏𝑗𝑖
)]

+ cos𝜙𝑖 (𝑡)
[

𝑌𝑇 (𝑡) − 𝑌𝑇
(

𝑡 − 𝜏𝑗𝑖
)]

+ 𝑅 − 𝑅 cos
(

𝛺𝜏𝑗𝑖 − 𝑗𝜃
)

, (62)

where the time delay 𝜏𝑗𝑖 is determined implicitly through the nonlinear equation

cos𝜙𝑖 (𝑡)
[

𝑋𝑇 (𝑡) −𝑋𝑇

(

𝑡 − 𝜏𝑗𝑖
)]

− sin𝜙𝑖 (𝑡)
[

𝑌𝑇 (𝑡) − 𝑌𝑇
(

𝑡 − 𝜏𝑗𝑖
)]

+ 𝑅 sin
(

𝛺𝜏𝑗𝑖 − 𝑗𝜃
)

= 0 . (63)

Comparing with the simplified chip thickness model in (59), the exact chip thickness model in (61) considers more previous cutters
because of the fact that the chip thickness is not always determined by the position difference between two subsequent cutters.
Moreover, the exact chip thickness model uses the exact time delay 𝜏𝑗𝑖 determined by (63) to compute the chip thickness, rather
than using the approximate one in (60). Correspondingly, this exact chip thickness model degenerates to the simplified one in by
considering only one non-negative chip thickness (𝑗 = 1) and using the estimated time delay in (60) as an approximate solution of
(63). More details of the proposed exact chip thickness model is provided in Appendix C.

Second, the DDE formulation in [9] introduces entry (𝜙𝑠) and exist (𝜙𝑒) angles and modify the cutting force model (4) to

𝐹𝑡𝑖 = 𝐾𝑡𝑎𝑝ℎ
𝛽
𝑖 (𝑡) 𝑔

(

𝜙𝑖 (𝑡)
)

, 𝐹𝑟𝑖 = 𝐾𝑟𝑎𝑝ℎ
𝛽
𝑖 (𝑡) 𝑔

(

𝜙𝑖 (𝑡)
)

, 𝑖 = 1, 2, … , 𝑁 , (64)

with

𝑔𝑖
(

𝜙𝑖 (𝑡)
)

=

{

1 , 𝜙𝑠 ≤ 𝜙𝑖 (𝑡) ≤ 𝜙𝑒 ∧ ℎ𝑖 (𝑡) > 0
0 , otherwise .

(65)

This is done because the non-negative requirement of the chip thickness is not guaranteed in the simplified model (59), which can
result in an unrealistic cutting force. In [9], this problem is solved by predetermining a specific range of orientations — the chip
thickness is positive when the cutters align to these directions. The chip thickness computed by (59) is adopted only when it is
positive and when the cutter is within the proposed range of orientations; otherwise the chip thickness (cutting force) is set to zero.
This procedure is mathematically conducted through the discontinuous function 𝑔𝑖

(

𝜙𝑖 (𝑡)
)

and thus the non-negative characteristic
of the chip thickness is satisfied. As illustrated in Fig. 14, the range is defined from 𝜙𝑠 to 𝜙𝑒, with

𝜙𝑠 = −
𝜃𝑓𝑧

2
(

𝑓𝑧 + 𝜃𝑅
) , 𝜙𝑒 = arccos

(

𝑅 − 𝑎𝑒
𝑅

)

, (66)

where 𝑎𝑒 is the radial depth of cut.
However, this procedure introduces errors when the cutter reaches Region A in Fig. 14: the cutter is still removing material but

the cutting force is artificially set to zero according to (65) in the DDE model formulation. From another perspective, this error can
be interpreted as the chip thickness being set to zero too early.

As illustrated in Fig. 15, the above two errors of the DDE-based model are small (and potentially negligible) when the scaled
depth of cut  is relatively small ( < ∗). However, when  is larger than the threshold number ∗ ≈ 1.65 for the particular
problem considered here, the error of the DDE-based model increases with  .

Physically, this reflects that when the depth of cut 𝑎𝑝 increases, even a small error in the chip thickness is amplified while
computing the cutting force (see (4)), which can result in increasing errors on the limit cycle characterizing the actual tool vibration.
Moreover, when we eliminate the errors in the DDE-based model by using the exact chip thickness model in (61) to (63) and the
cutting force model in (4), the improved model agrees very well with the PDE–ODE formulation. More details are provided in
Appendix C.

In summary, the PDE–ODE formulation provides an accurate prediction of tool dynamics and can be viewed as a reference
solution for the DDE formulation. The approximate DDE formulation is computationally more efficient in general. However, the
PDE–ODE formulation is more reliable in some extreme scenarios and is more computationally efficient than the DDE model, if the
latter is extended with the exact chip thickness model (see Appendix C).

5 Here the chip thickness model used in the DDE formulation is rewritten in a new form for a better illustration of its connection with the proposed exact
16

ormulation in (62). More details are provided in Appendix B.
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Fig. 14. Entry and exit angles in an up-milling process. The cutter is still removing materials in Region A.

Fig. 15. Errors of a DDE-based model at different scaled depth of cut  .

. Conclusions

In this article, a mathematical formulation is established for a class of milling models that consider both the motion of the
ool and the evolution of the machined surface. In this formulation, the chip thickness is defined exactly using a surface function
hat describes the milled surface around the tool and the information about the workpiece boundary. Coupling of the partial
ifferential equation (PDE) governing the evolution of the surface function with the ordinary differential equations (ODE) describing
ool/machine dynamics results in a system of PDE–ODE. The scaled PDE–ODE is solved using an algorithm combining the finite
olume method and the finite difference method. A case study illustrates two advantages of the proposed model formulation: (i) it has
theoretically exact chip thickness model and can help delimit the range of validity of the conventional delay differential equations

DDE) formulation; (ii) it is capable of simulating the transient tool dynamics while milling the outer region of the workpiece, which
s often neglected by the DDE formulation. This formulation serves as the mathematical background of a class of milling models
nd provides a novel perspective of analyzing the milling process. Future research will focus on the possible applications of the
roposed PDE–ODE model formulation, in particular stability analysis, surface finish evaluation, and controller design.
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ppendix A. Brief physical explanations on the evolution of the surface function

This appendix provides a brief physical interpretation of the PDE [34] governing the evolution of the surface function, introduced
n Section 2.2.1:

𝜕𝑟
𝜕𝑡

+
𝜕𝑓
𝜕𝜃

= 𝜓 , (A.1)

where
𝑓 (𝑟, 𝜃, 𝑡) = −𝛺𝑟 − 𝑉 cos

(

𝜃 +𝛺𝑡 + 𝛩0 +𝛷
)

ln𝑟
𝜓 (𝑟, 𝜃, 𝑡) = 𝑉 sin

(

𝜃 +𝛺𝑡 + 𝛩0 +𝛷
)

[ln𝑟 − 1] .
(A.2)

As illustrated in Fig. A.1, the surface function 𝑟(𝜃, 𝑡0) describes the shape of the surface of the workpiece around the tool at time 𝑡0,
defined with respect to the center of the tool. Let us now focus on the surface function in a specific direction 𝜃; its value changes

hen the tool center moves laterally and when the mill rotates around its axis. Specifically, this process is governed by the following
wo categories of relative movements.

First, the surface function evolves when the tool rotates relatively with respect to the workpiece. This relative rotation is caused
y the self-rotation of the mill (Ω) as well as by the tangential motion of the tool center, see Fig. A.1(b). The tangential component
f the velocity of the tool center is 𝑉𝑡 = 𝑉 sin(𝜃 +𝛺𝑡 + 𝛩0 +𝛷 − 𝜋∕2) = −𝑉 cos(𝜃 +𝛺𝑡 + 𝛩0 +𝛷). Here 𝑉 = ‖𝐕‖ is the magnitude of
elocity of the tool center 𝐕. From this perspective, function 𝑓 in (A.2) can be rewritten as: 𝑓 = −𝛺𝑟 + 𝑉𝑡 ln 𝑟, which describes the
elative rotation of the tool with respect to the workpiece.

Second, the radial movement between the tool and the workpiece also influences the value of the surface function, see Fig. A.1(c).
he radial component of the velocity of the tool center is 𝑉𝑟 = 𝑉 cos(𝜃 +𝛺𝑡+𝛩0 +𝛷− 𝜋∕2) = 𝑉 sin(𝜃 +𝛺𝑡+𝛩0 +𝛷). Similarly, 𝜓 in
A.2) can be rewritten as: 𝜓 = 𝑉𝑟(ln 𝑟 − 1), which is associated with the radial movement of the tool with respect to the workpiece.

In summary, (A.1) reflects that the evolution of the surface function is governed by the rotation of the tool and by the motion
f its center relative to the workpiece.

In above analysis, the term 𝜃 + 𝛺𝑡 + 𝛩0 + 𝛷 − 𝜋∕2 is the angle between the velocity of the tool center and the orientation 𝜃
easured in the (𝑥, 𝑦) frame. As illustrated in Fig. A.1(d), two frames are considered in our research: (i) the global frame (𝑋, 𝑌 ) and

he local frame (𝑥, 𝑦) rotating with the mill at a constant spindle speed of 𝛺. At time 𝑡, the angle between the two frames is 𝛺𝑡+𝛩0,
here 𝛩0 is the initial angle. The velocity of the tool center 𝐕 is measured in the global frame (𝑋, 𝑌 ), and its angle with respect

o the 𝑋-axis is 𝛷. In contrast, the orientation 𝜃 is defined in the local frame (𝑥, 𝑦), and its angle with respect to the 𝑦-axis is 𝜃.
hrough Fig. A.1(d), the angle between the velocity of the tool center and the orientation 𝜃 is obtained as 𝜃 +𝛺𝑡 + 𝛩0 +𝛷 − 𝜋∕2.

ppendix B. The approximated chip thickness model in the DDE model formulation

In [9], the chip thickness model reads

ℎ = ℎ𝑠 + ℎ𝑑 (B.1)

ith

ℎ𝑠 = 𝑅 − 𝑅 cos
(

𝛺𝜏𝑖 − 𝜃
)

+
𝑓𝑧
𝜏
𝜏𝑖 sin𝜙𝑖 (𝑡) , ℎ𝑑 = sin𝜙𝑖 (𝑡)

[

𝑋𝑑 (𝑡) −𝑋𝑑
(

𝑡 − 𝜏𝑖
)]

+ cos𝜙𝑖 (𝑡)
[

𝑌𝑑 (𝑡) − 𝑌𝑑
(

𝑡 − 𝜏𝑖
)]

. (B.2)

𝜏𝑖 =
𝜏𝜃𝑅

𝑓𝑧 cos𝜙𝑖 (𝑡) + 𝜃𝑅
, 𝜃 = 2𝜋

𝑁
, 𝜏 = 𝜃

𝛺
, 𝑖 = 1, 2, … , 𝑁 . (B.3)

ere
[

𝑋𝑑 (𝑡) , 𝑌𝑑 (𝑡)
]

describes the (perturbed) vibration of the tool center with respect to the prescribed movement of the tool:
[

𝑋𝑑 (𝑡)
𝑌𝑑 (𝑡)

]

=
[

𝑋𝑇 (𝑡)
𝑌𝑇 (𝑡)

]

−
[

𝑉0𝑡
0

]

. (B.4)

iven the fact that 𝑓𝑧 =
2𝜋𝑉0
𝑁𝛺 , the last term of ℎ𝑠 can be rewritten as

𝑓𝑧
𝜏
𝜏𝑖 sin𝜙𝑖 (𝑡) = 𝑉0𝜏𝑖 sin𝜙𝑖 (𝑡) =

[

𝑉0𝑡 − 𝑉0
(

𝑡 − 𝜏𝑖
)]

sin𝜙𝑖 (𝑡) . (B.5)

By substituting (B.2), (B.4), and (B.5) into (B.1), the chip thickness model is rewritten as

ℎ = sin𝜙 𝑡
[

𝑋 𝑡 −𝑋
(

𝑡 − 𝜏
)]

+ cos𝜙 𝑡
[

𝑌 𝑡 − 𝑌
(

𝑡 − 𝜏
)]

+ 𝑅 − 𝑅 cos
(

𝛺𝜏 − 𝜃
)

. (B.6)
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w

Fig. A.1. Illustrative figure of the physical explanation on the PDE governing the evolution of the surface function. (a) Original surface function. (b) Surface
function evolution caused by the relative rotation of the mill with respect to the workpiece. (c) Surface function evolution caused by the radial movement of
the mill with respect to the workpiece. (d) The angle between the velocity of the tool center 𝐕 and orientation 𝜃 defined in the (𝑥, 𝑦) frame.

Appendix C. An exact chip thickness model for Class I models

In this appendix, we determine the chip thickness in milling from the perspective of Class I models without any simplifications.
As illustrated in Fig. C.1, Class I models assume that the current material ahead of cutter 𝑖 is left by a specific preceding cutter 𝑗.
With given cutter 𝑖 and given index 𝑗, the orientation of cutter 𝑗 is specified through

𝜃𝑗 = mod
(

𝜃𝑖 + 𝑗𝜃, 2𝜋
)

, (C.1)

here 𝜃𝑖 and 𝜃𝑗 are the orientations of cutters 𝑖 and 𝑗 measured in (𝑥, 𝑦) frame fixed to the mill, and 𝜃 = 2𝜋
𝑁 is the angle between

two neighboring cutters. The modulus function 𝑚 (𝑥) = mod (𝑥, 2𝜋) is defined as follows:

𝑦 = 𝑚 (𝑥) = mod (𝑥, 2𝜋) ⇔ 𝑦 = 𝑥 − 2𝑘𝜋 , 𝑦 ∈ [0, 2𝜋) , 𝑘 ∈ Z . (C.2)

fter considering all the possible 𝑗 = 1, 2, 3…, the minimum non-negative chip thickness is the true value

ℎ𝑖 (𝑡) = max
{

0, min
𝑗

{

ℎ𝑗𝑖 (𝑡)
}

}

, (C.3)

here ℎ𝑗𝑖 (𝑡) is the possible chip thickness corresponding to the difference in the positions of cutter 𝑖 and cutter 𝑗.
The following describes the procedure to determine ℎ𝑗𝑖 (𝑡). As illustrated in Fig. C.1, the position of point 𝐽 is the sum of the

position of point 𝐶𝑗 and the relative position of point 𝐽 with respect to 𝐶𝑗 . 𝐶𝑗 is the position of tool center at time 𝑡𝑗 and the distance
between point 𝐶𝑗 and point 𝐽 is 𝐶𝑗𝐽 = 𝑅. Therefore, the coordinates of point 𝐽 in the global frame are given by:

𝐗𝐽 =

[

𝑋𝐽
]

=

[

𝑋𝐶𝑗
]

+

[

𝑅 sin𝜙𝑗
]

=

[

𝑋𝑇
(

𝑡𝑗
)

+ 𝑅 sin𝜙𝑗
( )

]

. (C.4)
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Fig. C.1. Geometric illustration for the formation of the chip thickness.

On the other hand, the position of point 𝐽 can also be viewed as the sum of the position of point 𝐶𝑖 and the relative position of point
𝐽 with respect to 𝐶𝑖. 𝐶𝑖 is the position of tool center at current time 𝑡 and the distance between point 𝐶𝑖 and point 𝐽 is 𝐶𝑖𝐽 = 𝑅−ℎ𝑗𝑖 .
As such, the following expression for the coordinates of point 𝐽 can be given:

𝐗𝐽 =

[

𝑋𝐽

𝑌𝐽

]

=

[

𝑋𝐶𝑖

𝑌𝐶𝑖

]

+
⎡

⎢

⎢

⎣

(

𝑅 − ℎ𝑗𝑖
)

sin𝜙𝑖
(

𝑅 − ℎ𝑗𝑖
)

cos𝜙𝑖

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑋𝑇 (𝑡) +
(

𝑅 − ℎ𝑗𝑖
)

sin𝜙𝑖

𝑌𝑇 (𝑡) +
(

𝑅 − ℎ𝑗𝑖
)

cos𝜙𝑖

⎤

⎥

⎥

⎦

. (C.5)

y equating (C.4) and (C.5), we have

𝑋𝑇
(

𝑡𝑗
)

+ 𝑅 sin𝜙𝑗 = 𝑋𝑇 (𝑡) +
(

𝑅 − ℎ𝑗𝑖
)

sin𝜙𝑖
𝑌𝑇

(

𝑡𝑗
)

+ 𝑅 cos𝜙𝑗 = 𝑌𝑇 (𝑡) +
(

𝑅 − ℎ𝑗𝑖
)

cos𝜙𝑖 ,
(C.6)

from which the chip thickness can be solved as

ℎ𝑗𝑖 = sin𝜙𝑖
[

𝑋𝑇 (𝑡) −𝑋𝑇
(

𝑡𝑗
)]

+ cos𝜙𝑖
[

𝑌𝑇 (𝑡) − 𝑌𝑇
(

𝑡𝑗
)]

+ 𝑅 − 𝑅 cos
(

𝜙𝑖 − 𝜙𝑗
)

, (C.7)

where 𝜙𝑖 (𝜙𝑗) is the angle between cutter 𝑖 (𝑗) and the 𝑌 -axis:

𝜙𝑖 = 𝛺𝑡 + 𝛩0 + 𝜃𝑖 , 𝜙𝑗 = 𝛺𝑡𝑗 + 𝛩0 + 𝜃𝑗 . (C.8)

Substitute (C.8) and (C.1) into (C.7), and introduce time delay 𝜏𝑗𝑖 = 𝑡 − 𝑡𝑗 ,6 the chip thickness model becomes

ℎ𝑗𝑖 = sin𝜙𝑖
[

𝑋𝑇 (𝑡) −𝑋𝑇

(

𝑡 − 𝜏𝑗𝑖
)]

+ cos𝜙𝑖
[

𝑌𝑇 (𝑡) − 𝑌𝑇
(

𝑡 − 𝜏𝑗𝑖
)]

+ 𝑅 − 𝑅 cos
(

𝛺𝜏𝑗𝑖 − 𝑗𝜃
)

. (C.9)

n order to determine the time delay 𝜏𝑗𝑖 , we eliminate term
(

𝑅 − ℎ𝑗𝑖
)

in (C.6)

cos𝜙𝑖
[

𝑋𝑇 (𝑡) −𝑋𝑇
(

𝑡𝑗
)]

− sin𝜙𝑖
[

𝑌𝑇 (𝑡) − 𝑌𝑇
(

𝑡𝑗
)]

+ 𝑅 sin
(

𝜙𝑖 − 𝜙𝑗
)

= 0 (C.10)

gain substitute (C.8) and (C.1) into (C.10); then we have

cos𝜙𝑖
[

𝑋𝑇 (𝑡) −𝑋𝑇

(

𝑡 − 𝜏𝑗𝑖
)]

− sin𝜙𝑖
[

𝑌𝑇 (𝑡) − 𝑌𝑇
(

𝑡 − 𝜏𝑗𝑖
)]

+ 𝑅 sin
(

𝛺𝜏𝑗𝑖 − 𝑗𝜃
)

= 0 , (C.11)

hich is an implicit equation through which the time delay 𝜏𝑗𝑖 can be solved
In summary, the chip thickness model is determined without any simplifications in the form

ℎ𝑖 = max
{

0, min
𝑗

{

ℎ𝑗𝑖
}

}

, (C.12)

ℎ𝑗𝑖 = sin𝜙𝑖
[

𝑋𝑇 (𝑡) −𝑋𝑇

(

𝑡 − 𝜏𝑗𝑖
)]

+ cos𝜙𝑖
[

𝑌𝑇 (𝑡) − 𝑌𝑇
(

𝑡 − 𝜏𝑗𝑖
)]

+ 𝑅 − 𝑅 cos
(

𝛺𝜏𝑗𝑖 − 𝑗𝜃
)

, (C.13)

nd the time delay 𝜏𝑗𝑖 is determined implicitly through

cos𝜙𝑖
[

𝑋𝑇 (𝑡) −𝑋𝑇

(

𝑡 − 𝜏𝑗𝑖
)]

− sin𝜙𝑖
[

𝑌𝑇 (𝑡) − 𝑌𝑇
(

𝑡 − 𝜏𝑗𝑖
)]

+ 𝑅 sin
(

𝛺𝜏𝑗𝑖 − 𝑗𝜃
)

= 0 . (C.14)

6 Here 𝜏𝑗 depends on 𝑖 in the sense that time 𝑡 refers to the instance when a given cutter 𝑖 is engaged with the workpiece.
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s

Fig. C.2. Limit cycles computed by the PDE–ODE formulation and the DDE formulation [9] using simplified and improved chip thickness models. The spindle
peed 𝛺 = 30 000 rpm, axial depth of cut 𝑎𝑝 = 20mm, and radial immersion 𝑎𝑒 = 0.5mm (5%).

Table C.1
CPU times of the PDE–ODE formulation and the improved DDE model for tools with different numbers of cutters. The spindle
speed 𝛺 = 30 000 rpm, axial depth of cut 𝑎𝑝 = 20mm, and radial immersion 𝑎𝑒 = 0.5mm (5%).

2 Cutters 3 Cutters 4 Cutters

CPU time of the PDE–ODE formulation [s] 13.1 13.0 13.0
CPU time of the improved DDE model [s] 18.9 28.2 36.0

Finally, the possible influence from the boundary of the workpiece is considered following the same procedure in Section 2.2.4. The
chip thickness in (C.12) is further modified to

ℎ𝑖 =

⎧

⎪

⎨

⎪

⎩

max
{

0, ℎ𝑖 − ℎ̃𝑖
}

, dist𝐶𝑤
(

𝐙𝑇
)

= 0

max
{

0, min
{

ℎ𝑖, ℎ̃
(1)
𝑖

}

− ℎ̃(2)𝑖
}

, dist𝐶𝑤
(

𝐙𝑇
)

> 0 .
(C.15)

As illustrated in Fig. C.2, replacing the simplified chip thickness model in [9] with the improved chip thickness model (C.15) results
in an excellent agreement with the PDE–ODE formulation.

However, this improved DDE-based model can be computationally intensive because the nonlinear equation (C.14) need to
be solved at each time step. Moreover, the suitable number of preceding cutters to be considered remains an open problem. While
simulating the proposed case for 50 000 time steps, the CPU time of the PDE–ODE formulation and the improved model (considering
two preceding cutters) are respectively 13.1 s and 18.9 s. When the number of cutters increases, the computational load of the
improved DDE model increases significantly while the PDE–ODE formulation is not affected, see Table C.1.
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