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Nonlinear Dynamics and Control
of a Pneumatic Vibration Isolator
The nonlinear dynamics of a single-degree-of-freedom pneumatic vibration isolator are
studied. Based on a physical model, a nonsymmetric stiffness nonlinearity is derived to
describe the stiffness property of the isolator. For a full nonlinear pneumatic isolator
model, the response to two different types of disturbances is studied: forces applied to the
isolated payload and base vibrations. The dynamic behavior of the isolator in case of a
disturbance applied to the payload is studied using the generalized force-mobility func-
tion and features coexisting steady-state responses and a superharmonic resonance. Base
vibrations transmitted via the isolator are studied on the basis of the generalized trans-
missibility function again showing rich nonlinear dynamic behavior. The presence of a
nonsymmetric nonlinearity also induces high-energy low-frequency response to multiple
high-frequency excitation. For both types of excitation, the nonlinear behavior is seri-
ously compromising the performance of the isolator. To avoid any expression of nonlin-
earity whatsoever and, at the same time, to enhance the performance of the passive
isolator, an overall nonlinear control design is proposed. It consists of a linear PID-
based controller together with a nonlinear computed torque controller (CTC). For either
linear or nonlinear control, the isolator performance is quantified in terms of generalized
force mobility and transmissibility. The latter with a special focus on multiple high-
frequency excitation. �DOI: 10.1115/1.2128642�

Keywords: active vibration isolation, feedback linearization, generalized force-mobility
function, generalized transmissibility function, nonlinear dynamics, pneumatics
Introduction
Pneumatic vibration isolators are used to isolate machinery

rom vibrations �1�, e.g., in wafer scanners used to fabricate inte-
rated circuits �2� or in electron microscopes used for submicron
maging. Compared to mechanical or electromechanical devices,
neumatic isolators combine the ability to support large masses
ith a small stiffness characteristic. Apart from isolating machin-

ry from base vibrations, reducing the sensitivity to vibrations
nduced by the machinery itself is of major importance. The iso-
ation of machinery from base vibrations is usually characterized
y the transmissibility function, i.e., the transfer between base and
achine vibrations. Traditionally, the sensitivity to vibrations in-

uced by the machinery itself is characterized by the force-
obility function, i.e., the transfer between machinery-induced

orces and the machine’s response. Within the framework of linear
ystem theory, both transfer functions provide insight into isolator
erformance and can be used to express inherent design limita-
ions encountered within the vibration isolation concept �3�.

The usage of linear models as a means to describe the behavior
f pneumatic vibration isolators is often justified given the range
f parameter settings of characteristic system properties, e.g., the
solator effective area for pressure or the payload mass. Outside
his range, the nonlinear behavior may quickly prevail over the
inear behavior. In �4,5�, the nonlinear behavior of vibration iso-
ators is studied. The nonlinear restoring forces are modeled as
eing symmetric, polynomial �cubic� nonlinearities. In �6�, also
he effect of nonsymmetric restoring forces is studied, but still
hese nonlinearities are of a polynomial form. Physical modeling
f pneumatic isolators is discussed in �7�. We will show that mod-
ling based on physical reasoning results in a nonsymmetric non-
inearity due to the combined hardening and softening stiffness
haracteristics inherent to pneumatic isolators. If the isolator vol-
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ume is decreased under constant pressure, then the resulting stiff-
ness increases, i.e., the system shows hardening behavior on this
side of the static equilibrium state. If, however, the isolator vol-
ume is increased, then the resulting stiffness decreases and the
system shows softening behavior on the opposite side of the static
equilibrium state.

For a nonsymmetric nonlinearity, high-frequency disturbance
rejection is no longer described by the linear vibration isolation
concept. Typically, high-frequency floor vibrations can yield large
low-frequency responses of the machine, which is obviously un-
desirable. As a result, the passive vibration isolation properties are
not satisfactory making active vibration isolation a necessary step.
In literature, active vibration isolation is often based on linear
control techniques �see, for example, �8–10��. In �11�, an optimi-
zation technique for designing both active and passive nonlinear
vibration isolators is proposed. The application of nonlinear con-
trol techniques seems rare. In attaining desired performance, we
adopt a control strategy combining feedback linearization tech-
niques �12� with a linear loop-shaping controller. The robustness
of this partially model-based control design in the face of model
parameter uncertainty and measurement noise is studied.

The paper is organized as follows. In Sec. 2, a nonlinear model
for a pneumatic isolator is discussed. Its isolation performance
with respect to both force excitations �on the machine� and base
vibrations is assessed in Sec. 3 in case of harmonic excitations as
well as excitations consisting of multiple frequencies. In Sec. 4,
the controller design and performance of the active vibration iso-
lator are discussed. Finally, in Sec. 5, conclusions are presented.

2 Pneumatic Vibration Isolator Model
Pneumatic vibration isolators are generally modeled using stan-

dard mechanical components, such as masses, springs, and damp-
ers. In this regard, the simplified mass-spring-damper model, such
as depicted in Fig. 1 via conventional and block-form representa-
tion, is often considered. It consists of a payload mass m, a
damper describing the linear relation between input velocity and

output force via the constant b, and a spring describing the linear
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elation between input displacement and output force via the con-
tant k. The model is subjected to a base disturbance x and a force
isturbance F. In this way, we discriminate between disturbances
cting indirectly on the payload mass, e.g., floor vibrations, and
isturbances acting directly on the payload mass, e.g., parasitic
ynamics and pneumatic or acoustic noise. The absolute displace-
ent of the payload mass is given by y, which often represents the

ariable to be controlled.
The objective in vibration isolation is to isolate the payload
ass m from both base and force disturbances. To quantify the

bility of the isolator to do so, two performance measures are
onsidered: the so-called transmissibility function, or

T�s� =
Y�s�
X�s�

=
bs + k

ms2 + bs + k
�1�

nd, traditionally, the force-mobility function,

Tf�s� =
sY�s�
F�s�

=
s

ms2 + bs + k
�2�

here Y�s�=L(y�t�), X�s�=L(x�t�), and F�s�=L(F�t�) are the
aplace transforms of y�t�, x�t�, and F�t�, respectively. Both trans-

er functions can be used to illustrate fundamental trade-offs in the
inear vibration isolation concept. For example, to isolate the pay-
oad mass from high-frequency base motion, the natural frequency

n=�k /m should be chosen as small as possible. Given a payload
ass m, this implies that k should be chosen as small as possible.

n terms of force mobility, however, k should be chosen as large as
ossible as to improve low-frequency disturbance rejection. This
epresents a trade-off, which, mathematically, is illustrated by

T�s� +
Tf�s�
sH�s�

= 1 �3�

.e., given H�s� performance improvement in T�s� may imply per-
ormance deterioration in Tf�s� or vice versa. The vibration isola-
ion concept offers the possibility of choosing passive or active
ibration isolator properties in a straightforward and comprehen-

Fig. 1 Conventional „a… and block-for
main… of a vibration isolator model un
ive way given the fundamental performance limitations.
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To study the consequences of nonlinear isolator dynamics
within this concept, a nonlinear relation between input displace-
ment and output force is derived on the basis of Poisson’s law for
adiabatic processes, or

pV� = PoVo
�, � =

cp

cV
� 1.402 �4�

with p the isolator pressure, V the isolator volume, Po the static
isolator pressure, and Vo its corresponding volume. The constants
Po and Vo are given by

Po = po +
mg

Ap
and Vo = LoAv �5�

where po represents the atmospheric pressure, g the gravitational
acceleration, Ap the effective area for pressure, Lo the static cham-
ber length, and Av the effective area for volume. The ratio be-
tween the constant pressure specific heat cp and the constant vol-
ume specific heat cV is represented by �. From Eq. �4�, it follows
that a nonlinear relation between isolator pressure p and isolator
length L�x ,y� is given by

p = �po +
mg

Ap
�� Lo

L�x,y��
�

�6�

with L�x ,y�=Lo+y−x. Differentiation of Eq. �4� with respect to V
yields

dp

dV
= − �

p

V
�7�

which after substitution of Eq. �6�, dpAp=−dF, and dV=AVdL,
gives the following nonlinear stiffness characteristic of the isola-
tor:

dF

dL
= ��x,y� =

��Appo + mg�
Lo

� Lo

L�x,y��
�+1

�8�

It follows that k�x ,y� depends on the volume, i.e., it only repre-
sents a constant if the volume is assumed to be constant, in which

„b… representation „in the Laplace do-
base and force excitation
m
der
case it is determined by the static equilibrium state, i.e.,

Transactions of the ASME
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k =
��Appo + mg�

Lo
�9�

his volume dependency forms the basis of a nonlinear restoring
orce: increasing the volume decreases k�x ,y�, whereas decreasing
he volume increases k�x ,y�, see also �13�.

Nonlinear Isolator Performance Assessment
To assess the nonlinear isolator performance within the vibra-

ion isolation concept, performance of the passive pneumatic iso-
ator in the presence of force excitation �Sec. 3.1� and base vibra-
ions �Sec. 3.2� is studied. Under harmonic-force excitation,
haracteristic nonlinear dynamic behavior will be discussed. In
ddition—under base vibrations—also high-frequency excitation
ith multiple frequency components will be considered. Such vi-
rations are assumed to be realizations of stochastic processes
ontaining energy in a high-frequency band.

3.1 Force Excitation. For the considered pneumatic vibration
solator that is merely subjected to harmonic-force excitation, see
ig. 1 with x=0 and the nonlinear restoring characteristic as dis-
ussed in Sec. 2, the following equation of motion can be derived:

m
d2y

dt2 + b
dy

dt
+ k�y�y = F̂ cos�2�ft� �10�

ith F̂ the amplitude of harmonic excitation and f the excitation
requency. The nonlinear stiffness function k�y�, defined by Eq.
8�, can be written as

k�y� = k�1 −
y

y + Lo
��+1

�11�

y itself k�y� consists of a constant and a state-dependent part
learly representing a nonsymmetric nonlinearity. By introducing
he following set of dimensionless variables � and � for displace-
ent and time, respectively, and the dimensionless parameter �

or damping according to

� =
k

F̂
y, � =� k

m
t, and � =

b

2�mk
�12�

he equation of motion Eq. �10� can be written in the dimension-
ess form,

d2�

d�2 + 2�
d�

d�
+ K���� = cos���� �13�

ith

K��� = � �

� + �
��+1

, � =
Lok

F̂
, and � = 2�f�m

k
�14�

rom Eqs. �13� and �14�, it can be concluded that the degree of
onlinearity strongly depends on the parameter �. It does not
eem to depend on the static chamber length Lo because with Eq.
9� � can be written as

� =
Lok

F̂
=

��Appo + mg�

F̂
�15�

Via numerical simulation with Eq. �13�, the vibration isolation
erformance in case of harmonic-force excitation is quantified;
orce excitation typically concerns pneumatic disturbances, such
s dither applied to valves, acoustic excitation resulting from air
onditioning systems, but also the vibrational influence of addi-
ional dynamics acting on the payload mass. So-called period-1
olutions for which the period time equals the period time of
xcitation are computed for different values of the dimensionless
xcitation frequency � using a combination of a finite-difference
ethod and a path-following technique �14�. The graphical repre-
entation of these solutions is given by the generalized force-

ournal of Vibration and Acoustics
mobility function. Different from its linear equivalent, see Eq. �2�,
the generalized force-mobility function is obtained by computing
the maximum absolute value of the periodic velocity of the pay-
load mass—in dimensionless form d�p−1 /d�—after subjecting the
system to a harmonic �period-1� force excitation at specific values
of �. It expresses the sensitivity of the vibration isolator to dis-
turbances acting on the system itself, whereas, in the absence of
nonlinearity, it equals the amplitude characteristic of the force-
mobility function. For the considered pneumatic vibration isolator,
the generalized force-mobility function is depicted in Fig. 2.

For the linear case, it can be seen that the generalized force-
mobility function has its peak value at resonance, i.e., �=1. This
peak value can be influenced by the damping coefficient �. For
high values of �, i.e., �=103 corresponding to a small degree of
nonlinearity, the generalized force-mobility function resembles
the linear force-mobility function. For �=102, an additional reso-
nance appears near half the linear resonance frequency, �=1/2,
hence, a second superharmonic resonance. For �=10, excessive
nonlinear dynamic behavior is found in the form of multiple su-
perharmonic resonances, a low-frequency offset value, and a reso-
nance peak bending to the left. The latter results in a frequency
region where multiple �stable and unstable� periodic solutions co-
exist. It demonstrates that vibration isolation in the presence of
nonlinearity can be seriously compromised in the frequency range
just below the linear resonance frequency.

3.2 Base Excitation. For the pneumatic vibration isolator that
is subjected to harmonic base excitation �see Fig. 1 with F=0
combined with the nonlinear restoring characteristic as discussed
in Sec. 2�, the following equation of motion can be derived:

m
d2y

dt2 + b
dy

dt
+ k�x,y�y = b

dx

dt
+ k�x,y�x, x = x̂ cos�2�ft�

�16�

with x̂ the amplitude of harmonic excitation and f the excitation
frequency. The nonlinear force characteristic k�x ,y� follows from
Eq. �8�, or

k�x,y� = k�1 −
�y − x�

�y − x� + Lo
��+1

�17�

and, similar to the case of force excitation, represents a nonsym-
metric stiffness nonlinearity. By introducing the following dimen-

Fig. 2 Generalized force-mobility function „amplitude
characteristic…
sionless variables:

AUGUST 2006, Vol. 128 / 441
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� =
y

x̂
, � =� k

m
t, and � =

b

2�mk
�18�

his equation of motion can be written in the dimensionless form,

d2�

d�2 + 2�
d�

d�
+ K��,��� = − 2�� sin���� + K��,��cos����

�19�
ith

K��,�� = � 	

	 + � − cos�����
�+1

, 	 =
Lo

x̂
, and � = 2�f�m

k

�20�
wo major conclusions can be drawn: �i� the degree of nonlinear-

ty �related to K�� ,��� strongly depends on the parameter 	 �i.e.,
he static equilibrium chamber length Lo and the level of distur-
ance x̂� and �ii� the degree of nonlinearity increases for larger
alues of � typically occurring near resonance �see also �6��.

Using the same numerical tools as were used in Sec. 3.1, peri-
dic solutions of Eq. �19� are computed. The graphical represen-
ation of such solutions in a frequency range of interest is pro-
ided by the generalized transmissibility function. Different from
ts linear equivalent, see Eq. �1�, the generalized transmissibility
unction is obtained by depicting the maximum absolute values of
he computed periodic solutions—in dimensionless form repre-
ented by max�abs��p��—within a frequency range of interest. For
his frequency range, it expresses isolation performance and
quals the amplitude characteristic of the linear transmissibility
requency response function in the absence of nonlinearity. For
he considered pneumatic vibration isolator, the generalized trans-

issibility function is depicted in Fig. 3 at various values of 	.
For the low-frequency range, i.e., below �=1, it can be seen

hat the maximum absolute value of the period-1 response equals
he amplitude of the base excitation; hence, no vibration isolation
s obtained. For the high-frequency range, i.e., beyond �=1, the

aximum absolute value of the period-1 response will become
maller than the amplitude of base excitation, i.e., vibration isola-
ion is obtained. The amount of amplification of base vibrations
ear resonance depends on the amount of damping �. Clearly for

Fig. 3 Generalized transmissibilit
arge values of 	, corresponding to a small degree of nonlinearity,

42 / Vol. 128, AUGUST 2006
the nonlinear transmissibility function resembles its linear equiva-
lent. For smaller values of 	, corresponding to a larger degree of
nonlinearity, distinct nonlinear effects appear: bending of the reso-
nance peak, multiple coexisting solutions, and both period-2 and
period-3 behavior. Figure 3 also shows an offset value present in
the nonlinear system response; see the horizontal dashed lines. By
itself, such an offset value should not compromise isolation per-
formance. However, it results from the nonsymmetric stiffness
characteristic, which also has the potential of having high-
frequency excitations �consisting of multiple frequency compo-
nents� induce large low-frequency responses, the type of excita-
tions for which the isolator is designed to deliver a high level of
disturbance attenuation.

To study the nonsymmetric stiffness characteristic, or, more
specifically, its effect on the system response, a Taylor series ex-
pansion of the nonlinearity is employed via a second-order ap-
proximation of the nonlinear terms in Eq. �19�

K��,���� − cos����� = � 	

	 + � − cos�����
�+1

�� − cos�����

� � − cos���� −
� + 1

	
�� − cos�����2

�21�

With this approximation, Eq. �19� is written as

d2�

d�2 + 2�
d�

d�
+ � −

� + 1

	
�2 = − 2�� sin���� +

� + 1

	
cos2����

+ �1 −
2�� + 1��

	
�cos���� �22�

which for 	
1 and 	� 	 �1 can be further approximated by

d2�

d�2 + 2�
d�

d�
+ � = − 2�� sin���� + cos���� +

� + 1

	
cos2����

�23�

The steady-state solution of the resulting linear differential equa-

nction „amplitude characteristic…
tion is given by
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���� =
� + 1

2	
+

�1 − �2� + �2���2

�1 − �2�2 + �2���2 cos����

+
2�3�

�1 − �2�2 + �2���2 sin����

+
�� + 1��1 − 4�2�

2	��1 − 4�2�2 + �4���2�
cos�2���

+
4�� + 1���

2	��1 − 4�2�2 + �4���2�
sin�2��� �24�

wo characteristics appear: �i� an offset value, and �ii� an addi-
ional resonance at �=1/2. Both features are present �even within

certain degree of accuracy� in the computations with the full
onlinear model, such as shown in Fig. 3.

At this point in the analysis of the nonlinear vibration isolator
e will shift our focus from harmonic to nonharmonic vibrations,

or example, floor vibrations that exhibit energy in a certain
high-�frequency range �15�. As mentioned before under nonhar-
onic vibration, the nonsymmetric nature of the nonlinearity can

ause severe changes in performance. Often the response of a
ystem with a nonsymmetric nonlinearity exposed to a multiple
requency excitation �ultimately stochastic excitation� will not
nly contain the individual frequency components of the excita-
ion signal—possibly with higher harmonics—but also contains
nergy at frequency components that are defined by the difference
etween the frequency components of excitation �see, for ex-
mple, �16,17�. As a consequence, low-frequency contributions
an result from a purely high-frequency excitation, which—via
esonance—can induce a significant deterioration in system per-
ormance. For purposes of illustration, time-series computations
re performed with the nonlinear isolator model, see Eq. �16�, and
dual frequency excitation, i.e.,

x = x̂1 cos�2�f1t� + x̂2 cos�2�f2t� �25�

n Eq. �25�, x̂1= x̂2=�1/2x̂ to ensure a comparable excitation level
ith the previous case of harmonic excitation. Furthermore, x̂
1.0�10−4 m and Lo=2.0�10−3 m, which corresponds to a situ-
tion with 	=20. For the case that f1=200 Hz and f2=202.5 Hz,
he simulation results for both the nonlinear model as well as the
inear model �k�x ,y�=k in Eq. �16�� are depicted in the left part of
ig. 4.
This figure clearly illustrates the low-frequency high-amplitude

onlinear response; the difference between the maximum and
inimum value of the response is �1.3�10−5 m in the nonlinear

ase as opposed to �1.6�10−6 m in the linear case. The response
s dominated by the difference in frequency components f2− f1

Fig. 4 Response of the linear and nonlinea
excitation: x̂=10−4 m, f1=200 Hz, f2=202.5 Hz
part…
2.5 Hz. Obviously, this difference in frequency is not present in

ournal of Vibration and Acoustics
the applied excitation signal, see Eq. �25�, nor in the linear re-
sponse. Moreover, the nonlinear response shows an offset value,
whereas the linear response does not. For the case that f1
=200 Hz and f2=214.75 Hz, the simulation results are depicted in
the right part of Fig. 4. The excitation frequencies are chosen such
that the difference in frequency components is close to the reso-
nance frequency of the isolator. This yields a difference in maxi-
mum and minimum value of the response equal to �1.5
�10−4 m in the nonlinear case as opposed to 1.8�10−6 m in the
linear case, hence a performance deterioration by a factor of
eighty which is completely due to the presence of nonlinearity.
For high-frequency broadband excitation, it is likely that there
exist differences in frequency contributions that are close to the
resonance frequency, and, thereby, have the potential of inducing
a large low-frequency response. Consequently, disturbance attenu-
ation in view of nonlinear pneumatic isolator dynamics may seri-
ously be compromised and passive isolation, in general, may not
suffice. This offers a sufficient basis for the application of active
control to improve performance.

4 Active Vibration Isolation
Active vibration isolation often refers to a combination of an

active and a passive vibration isolation design. Given the consid-
ered nonsymmetric passive isolator characteristic, a PID controller
�Sec. 4.1� with a second-order low-pass filter is used to shape the
isolation properties. In addition to the linear control design, a
nonlinear computed torque part �Sec. 4.2� is added as to compen-
sate for nonlinearity in the system. Either for harmonic force ex-
citation or harmonic base excitation, the controlled isolator design
is studied with respect to isolation performance in terms of gen-
eralized force mobility or generalized transmissibility. In the case
of base excitation also high-frequency excitation with multiple
frequency components is considered.

4.1 Linear Vibration Control. Often the goal in vibration
control is to reduce the sensitivity of the controlled variable to
disturbances acting upon the underlying process. Strictly speak-
ing, this poses a problem: the controlled variable cannot be mea-
sured because it is represented by the absolute displacement of the
payload �see also Sec. 2�. In practice, this problem is dealt with by
considering two alternatives: �i� measure time derivatives �e.g.,
absolute velocity or absolute acceleration� or �ii� measure relative
displacement. Based on linear control, a combined active-passive
vibration isolation design is presented for the second alternative.

In Fig. 5, a control design is shown via block-diagram repre-
sentation. Here Ca represents a PID controller with an additional
second-order low-pass filter, which is given in frequency domain

olator model under multiple frequency base
the left part…, and f2=214.75 Hz „in the right
r is
„in
by the transfer function
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Ca�s� =
ka�lp

2 �s2 + ��d + �i�s + �d�i�
�d�s2 + 2�lps2 + �lp

2 s�
�26�

ith ka the controller gain, �i the break point of the lag filter, �d
he break point of the lead filter, �lp the break point of the low-
ass filter, and  the corresponding damping coefficient. The
hoice for this controller structure together with its parameter val-
es reflects the general idea in vibration isolation practice: active
ontrol is used as an additive means to shape isolation properties.
he isolation function itself is primarily obtained via passive con-
truction elements. To this extent, the lag filter accounts for addi-
ional low-frequency disturbance rejection, the lead filter induces
ctive damping near resonance, and the low-pass filter assures
ontroller roll-off in the �high-�frequency range. In Fig. 5, the
onlinear isolator characteristic Cp is given in time domain by

Cp�t� = b
dx

dt
− b

dy

dt
+ k�x,y�x − k�x,y�y �27�

ith b and k the damping and stiffness coefficient, respectively,
nd with the nonlinear nonsymmetric stiffness characteristic

k�x,y� = k�1 −
y − x

y − x + Lo
��+1

�28�

here Lo represents the isolator static chamber length, � the ratio
etween constant pressure- and volume-specific heat, x the refer-
nce displacement, and y the displacement of the payload mass
see also Sec. 2�. The payload is represented in frequency domain
y the transfer function of a double integrator

H�s� =
1

ms2 �29�

ith coefficient m representing the payload mass. The perfor-
ance of the combined active-passive isolator design is studied

nder disturbances F or x, i.e., the case of force excitation �x
0� and the case of base excitation �F=0�.

4.1.1 Force Excitation. For the linear controlled nonlinear
neumatic vibration isolator model that is subjected to harmonic

orce excitation F= F̂ cos�2�ft� with excitation amplitude F̂ and
xcitation frequency f �see Fig. 5 with x=0�, the following dimen-
ionless equations of motion can be derived in matrix notation:

d�

d�
= A���� + Bu, u = cos���� �30�

Fig. 5 Block-from representation of a
lation design under base and force ex
ith

44 / Vol. 128, AUGUST 2006
A��� = 

0 1 0 0 0

0 0 1 0 0

0 − �lp
2 − 2�lp �lp

2 0

0 0 0 0 1

− �
�i

�n
− ��1 +

�i

�d
� − �

�n

�d

− K��4� − 2�
�

and B = 

0

0

0

0

1
�

The vector �= ��1 �2 �3 �4 �5�T contains the dimensionless
displacement and velocity of the payload: �4=� and �5=d� /d�,
respectively. The dimensionless variables: � and � for payload
displacement and time, respectively, � representing the dimen-
sionless excitation frequency, and � representing the dimension-
less damping coefficient, are given by

� =
k

F̂
y, 0 =� k

m
t, � = 2�f�m

k
, and � =

b

2�mk
�31�

Furthermore, the dimensionless parameters and/or variables in
A��� are defined as

� =
ka

k
, �lp =

�lp

�n
, and K��4� = � �

�4 + �
��+1

�32�

with �n=�k /m and �=Lok / F̂. Note that the degree of nonlinear-
ity in K��4� is largely determined by �, i.e., the characteristic
isolator length Lo, the stiffness coefficient k, and the amplitude of

force excitation F̂. For purposes of numerical analysis, the param-
eter values in A��� are given by �i=�d=�n /5, �lp=5�n, �
=1/10, �=0.04, ��1.402, and =1. Similar values are found in
the photolithographic industry for active vibration isolation of me-
trology frames.

With Eq. �30� a numerical analysis is performed of which the
results are shown in Fig. 6 in generalized force-mobility represen-
tation. Four curves are depicted of period-1 solutions computed
for varying dimensionless excitation frequency �. The degree of
nonlinearity is expressed by �. Additionally, the passive linear
isolator characteristic is depicted. The advantage in system perfor-
mance by applying additional linear vibration control is shown by
comparing the passive linear isolator characteristic with the curve
based on �=103. This curve corresponds to an active, almost
linear, isolator characteristic. It can be seen that: �i� the lead filter,
i.e., the differentiator part in Eq. �26�, induces additional distur-
bance suppression near resonance, �ii� the lag filter, i.e., the inte-

mbined passive-active vibration iso-
tion
co
cita
grator part in Eq. �26�, induces additional low-frequency distur-
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ance rejection, and �iii� the low-pass filter guarantees the desired
art of the passive isolator characteristic, i.e., the payload mass
haracteristic, to be fully restored beyond the filter’s cutoff fre-
uency. By attending active control based on relative displace-
ent, a small inherent performance deterioration is shown beyond

esonance. Unlike the passive isolator design �see Fig. 2�, the
esults obtained with an active design show no severe perfor-
ance deterioration for small values of �, i.e., for a highly non-

inear isolator characteristic. Even for the degree of nonlinearity
=5, linear vibration control seems reasonably effective in deal-

ng with the nonlinear isolator characteristic.

4.1.2 Base Excitation. For the controlled vibration isolator
odel that is subjected to harmonic base excitation x
x̂ cos�2�ft� with excitation amplitude x̂ and excitation frequency

f �see Fig. 5 with F=0� the dimensionless equations of motion in
atrix notation are given by

d�

d�
= A��,��� + K��4,��Bu + 2�B

du

d�
, u = cos���� �33�

ith

A��,�� = 

0 1 0 0 0

0 0 1 0 0

0 − �lp
2 − 2�lp �lp

2 0

0 0 0 0 1

− �
�i

�n
− ��1 +

�i

�d
� − �

�n

�d

− K��4,�� − 2�
�

and B = 

0

0

0

0

1
�

he vector �= ��1 �2 �3 �4 �5�T—comparable to the previous
ase of force excitation—contains the dimensionless displacement
nd velocity of the payload: �4=� and �5=d� /d�, respectively.
ifferent from the previous case of force excitation, the dimen-

ionless payload displacement � is given by �=y / x̂, whereas

ig. 6 Generalized force-mobility function „amplitude
haracteristic…
��4 ,�� yields

ournal of Vibration and Acoustics
K��4,�� = � 	

	 + �4 − cos�����
�+1

�34�

with 	=Lo / x̂. Note that the degree of nonlinearity in K��4 ,�� is
largely determined by 	, i.e., the characteristic isolator length Lo
and the amplitude of base excitation x̂. For purposes of numerical
analysis, the parameter values in A�� ,�� are given by �i=�d

=�n /5, �lp=5�n, �=1/10, �=0.04, ��1.402, and =1 �see also
Sec. 4.1.1�.

With Eq. �33�, the results of a generalized transmissibility
analysis are shown in Fig. 7. Again four curves of period-1 solu-
tions are depicted, each computed for varying dimensionless ex-
citation frequency �. The degree of nonlinearity is expressed by
	. Additionally, the passive linear isolator characteristic is de-
picted. By comparing the passive linear isolator characteristic
with the curve based on 	=2�103, which corresponds to an ac-
tive, approximately linear, isolator characteristic, it follows that:
�i� the lead filter induces additional damping near resonance, �ii�
the low-pass filter guarantees the desired part of the passive iso-
lator characteristic to be restored beyond the filter’s roll-off, and
�iii� an inherent performance trade-off—related to the choice for
relative instead of absolute damping—is shown beyond reso-
nance. In principle, the lag filter does not show its influence in the
low-frequency range. It does, however, affect the high-frequency
response. Namely, the offset value in the response of the passive
nonlinear isolator model, such as studied in Sec. 3.2, is no longer
present. In Fig. 7, a severe expression of nonlinearity is shown for
	=10. Here the bending resonance peak implies the coexistence
of unstable period-1 solutions embedded in a mainly nonperiodic
large-amplitude response. Apart from this severe case of nonlin-
earity, the linear control design seems capable of avoiding large
expressions of nonlinearity. A feature that merely results from
considering harmonic excitations only. For nonharmonic excita-
tions, this conclusion is less apparent. This is shown in Sec. 4.2
where additive nonlinear control is proposed as a means to over-
come isolation performance deterioration caused by the nonsym-
metric isolator characteristic.

4.2 Nonlinear Vibration Control. To avoid any expression
of nonlinearity in the active vibration isolation system whatsoever,
a model-based nonlinear part is added to the linear control design.
Based on the concept of feedback linearization �12�, an additive
control force is proposed that compensates for the nonlinear part
of the passive isolator characteristic. Ideally, the nonlinear terms

Fig. 7 Generalized transmissibility function „amplitude
characteristic…
resulting from both the isolator and the controller cancel out;
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ence, performance can be quantified on the basis of the linear
ibration isolation concept. In practice, however, a residual non-
inear term is likely to remain, for example, due to model uncer-
ainty or actuator-sensor limitations. The effect of this term on the
ystem response is studied: �i� by assuming parameter uncertainty
n the isolator stiffness characteristic and �ii� by limiting the com-
uted torque output using dynamic filtering.

For the case of force excitation, an additive so-called computed
orque part is defined as

dṽ
d�

= − �lpṽ + ��lpv and v = K��4��4 − �4 �35�

ith �= k̃ /k accounting for uncertainty in the passive isolator

tiffness coefficient, k̃ an estimation of the stiffness coefficient k,
nd �lp the cutoff frequency of a first-order low-pass filter; �lp
5�n with �n the resonance frequency resulting from a compa-

able but linear isolator �K��4�=1�. The computed torque part
ompensates for the nonlinear spring force characteristic

K��4� = � �

�4 + �
��+1

�36�

ith �4 the dimensionless displacement of the payload mass
�4=�� and � expressing the degree of nonlinearity in the isolator
esign. Apart from nonlinear force cancellation, the computed
orque controller also features a linear spring force contribution.
he overall nonlinear control force transforms Eq. �30� into

d�

d�
= A���� + Bu + Bṽ, u = cos���� �37�

ith � the dimensionless excitation frequency.
For the case of base excitation, the computed torque part is

iven by

dṽ
d�

= − �lpṽ + ��lpv and v = K��4,���4 − K��4,��u − �4 + u

�38�

imilar to the previous case of force excitation, � represents a
easure for the amount of parameter uncertainty in the passive

solator stiffness characteristic whereas �lp represents the cutoff
requency of a first-order low-pass filter. The nonlinear spring
orce characteristic K��4 ,�� for which the computed torque con-

Fig. 8 Generalized force-mob
roller is designed to account for is given by

46 / Vol. 128, AUGUST 2006
K��4,�� = � 	

	 + �4 − cos�����
�+1

�39�

with �4 the dimensionless displacement of the payload mass
��4=��, � the dimensionless time, � the dimensionless excitation
frequency, and 	 expressing the degree of nonlinearity in the pas-
sive vibration isolator. The proposed nonlinear controller consists
of a part that claims nonlinear spring force cancellation and a part
that, in return, induces a linear relation between input displace-
ment and output force. The overall nonlinear controller transforms
Eq. �33� into

d�

d�
= A��,��� + K��4,��Bu + 2�B

du

d�
+ Bṽ, u = cos����

�40�
With �37� and �40�, the controlled vibration isolator model sub-

jected to harmonic excitation is studied in Fig. 8 via a generalized
force-mobility analysis �the left part� and a generalized transmis-
sibility analysis �the right part�.

Note that the effect of additional computed torque control fol-
lows from comparing Fig. 8 with Figs. 6 and 7, respectively. In
Fig. 8, three situations are considered: �i� noncorrupted computed
torque control, i.e., Eqs. �37� and �40�, respectively, with ṽªv
�dashed lines�, �ii� low-pass filtered computed torque control, i.e.,
Eqs. �37� and �40�, respectively, with �=1 �solid lines�, and �iii�
computed torque control with uncertainty in the isolator stiffness
characteristic, i.e., Eqs. �37� and �40�, respectively, with ṽª�
�v and �=1.1 �dotted lines�. The characteristics corresponding to
noncorrupted computed torque control perfectly match with the
amplitude characteristics of the linear force mobility and transmis-
sibility function. The considered filtered computed torque
signal—as a means to account for actuator limitations—does not
seem to influence this result much. In more detail, this is shown in
the exploded views at the bottom of Fig. 8 at �=5 for the case of
force excitation and at 	=10 for the case of base excitation. At
these parameter settings, the previously considered linear control
design demonstrated a severe expression of nonlinearity, recall the
results shown in Figs. 6 and 7, respectively. Also an uncertainty
�labeled in Fig. 8 with residual ctc� in the isolator stiffness coef-
ficient of 10% ��=1.1� does not imply a significant deterioration
of the controlled isolator performance. Therefore, it is concluded
that nonlinear control seems able to avoid large expressions of

and transmissibility analysis
nonlinearity in the system response. These expressions, however,

Transactions of the ASME



o
a
l

t
t
m
l
c
t
o

w
9
s
t
=
l
m
f
r
E
t

wit

J

nly appeared at small values for � and 	. For large values of �
nd 	, nonlinear control shows little additional improvement, at
east, for the considered case of harmonic excitation.

For nonharmonic excitation �such as multiple frequency excita-
ions, possibly stochastic�, the nonsymmetric nature of the vibra-
ion isolator characteristic can cause severe changes in perfor-

ance, which may no longer be handled merely by the considered
inear control design. This is illustrated in Fig. 9 by a time-series
omputation of the motion y of the isolator payload mass. Herein
he case of dual base excitation is considered �see also the last part
f Sec. 3.2� i.e., the system is subjected to base motion defined by

x = x̂1 cos�2�f1t� + x̂2 cos�2�f2t� �41�

ith x̂1= x̂2=�1/210−4 m, f i=200 Hz, and f2=214.75 Hz. Figure
can be divided into three parts. In the first part from 0 to 1 s, the

ystem response is shown for the case of passive nonlinear isola-
ion, i.e., Eq. �16� combined with Eq. �41�, where t�0�=0,y�0�
0, and ẏ�0�=0. For 	=Lo / x̂1=20 with Lo the characteristic iso-

ator chamber length, it can be seen that dual excitation with
erely high-frequency content induces a large-amplitude low-

requency response. In the second part from 1 to 2 s, the system
esponse is shown under linear control, Eq. �33� combined with
q. �41�. Although decreased in amplitude, the response still fea-

ures the characteristic large-amplitude low-frequency behavior.

Fig. 9 Time-series computation

Fig. 10 Time-series computation with

tered „upper part… and with parameter un

ournal of Vibration and Acoustics
This illustrates the limitations of a single harmonic excitation
analysis because an indication for the occurrence of such behavior
could not be deduced from Fig. 7. In the last part from 2 to 3 s,
the response is depicted under overall nonlinear control. Here the
characteristic small-amplitude high-frequency behavior is shown,
which is typical of a linear isolator model subjected to a multiple
high-frequency excitation. The reduction in vibration amplitude
during the transition from uncontrolled to linear controlled by a
factor of �6.5 is comparable to the reduction obtained during the
transition from linear controlled to nonlinear controlled by a fac-
tor of �6.2; hence, the need for nonlinear control is far more
apparent from the case of multiple frequency excitation than from
the earlier case of harmonic excitation.

The influence of corrupted computed torque control under mul-
tiple excitation is depicted in Fig. 10, which shows both the influ-
ence of the previously considered filtered computed torque force
�the upper part� and the computed torque force based on uncer-
tainty in the isolator stiffness coefficient of 10% �the lower part�.
By comparison to the case of uncorrupted computed torque con-
trol, it can be seen that the considered degree of corruption,
though significant in either case, has only a limited influence on
the overall characteristic system performance. Therefore, it is con-
cluded that computed torque control, possibly corrupted, can sig-
nificantly improve the vibration isolation properties. Note that

h dual-frequency base excitation

mputed torque control: low-pass fil-
co

certainty of �=1.1 „lower part…
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hen the computed torque controller is corrupted �thick lines�, a
onsymmetric response remains due to residual nonlinearity in the
ystem.

Conclusions
To study the behavior of nonlinear pneumatic vibration isola-

ors within the vibration isolation context, a single-degree-of-
reedom nonlinear model based on a physical nonsymmetric stiff-
ess nonlinearity is derived.

With this model, the sensitivity of a payload mass to harmonic-
orce excitation is studied on the basis of the generalized force-
obility function. Depending on the system properties, the non-

ymmetric nonlinearity is shown to seriously compromise the
ow-frequency vibration isolation characteristics either by bending
f the resonance peak yielding the coexistence of steady-state so-
utions, or by the occurrence of a superharmonic resonance.

The sensitivity of the payload mass to harmonic base excitation
s studied on the basis of the generalized transmissibility function.
gain, the effect of the nonsymmetric nonlinearity on the isola-

ion performance is shown via a bending resonance peak, but also
y the occurrence of a subharmonic response. Moreover, the non-
ymmetric nonlinearity is shown to have the potential of inducing
igh-energy low-frequency response to high-frequency excitation
onsisting of multiple frequencies. To avoid such behavior, or,
ore importantly, its deteriorating impact on the vibration isolator

erformance, a nonlinear feedback control design is proposed.
his design consists of two parts: a linear PID-based controller
nd a model-based nonlinear computed torque controller. The
ID-based controller is used to shape the passive linear isolator
haracteristics. The computed torque controller is used to achieve
onlinear force cancellation giving overall linear isolator dynam-
cs.

Both for the case of harmonic-force and base excitation, it is
hown that active vibration isolation based on linear control seems
easonably effective in dealing with isolator nonlinearity. For the
ase of multiple-frequency base excitation, however, it is shown
hat active vibration isolation primarily based on linear control
till enables a significant expression of nonlinearity in the system
esponse.

The combined linear and nonlinear control design results in the

esired low-amplitude �possibly high-frequency� response, thus

48 / Vol. 128, AUGUST 2006
attaining a higher isolator performance. A brief robustness study
of this control design against model uncertainty and sensor-
actuator limitations shows that nonlinear control can significantly
improve the isolator performance.
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