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Abstract: The subject of this paper is the development of a nonlinear parametric identification method using
chaotic data. In former research, the main problem in using chaotic data in parameter estimation appeared
to be the numerical computation of the chaotic trajectories. This computational problem is due to the highly
unstable character of the chaotic orbits. The method proposed in this paper is based on assumed physical
models and has two important components. First, the chaotic time series is characterized by a “skeleton” of
unstable periodic orbits. Second, these unstable periodic orbits are used as the input information for a nonlinear
parametric identification method using periodic data. As a consequence, problems concerning the numerical
computation of chaotic trajectories are avoided. The identifiability of the system is optimized by using the
structure of the phase space instead of a single physical trajectory in the estimation process. Furthermore,
before starting the estimation process, a huge data reduction has been accomplished by extracting the unstable
periodic orbits from the long chaotic time series. The method is validated by application to a parametrically
excited pendulum, which is an experimental nonlinear dynamical system in which transient chaos occurs.
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NOTATION

2 total derivative of z with respect to time t

2 estimate of z
Zexp value of z in the experiment
2~ initial estimate of z

a parameters
Aexc amplitude of excitation
A~ Jacobian matrix for a cycle with period p (local linear approximation of the

nonlinear dynamics around the periodic point xo)
A~ Jacobian matrix for a cycle with period p over a single time step t, t + 1
F functional form
g gravitational acceleration
k1 friction parameters corresponding to friction effect i
1 length of the pendulum
m mass of the pendulum
p period of the cycle
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degrees of freedom on discrete time instant k
time
period time of the excitation
estimated periodic point (position in phase space)
reference point in the local linear approximation A~
neighbors of xf

ratio of the lengths of the two arms of the driving crank mechanism
~ linear box size in periodic orbit analysis
6,, measurement noise level
~ angular position
w angular frequency of the excitation
w0 angular eigenfrequency of the pendulum

1. INTRODUCTION

For the identification of nonlinear dynamical systems, often transient trajectories or peri
odic equilibrium trajectories are used as input information (Verbeek, 1993; Verbeek, de
Kraker, and van Campen, 1995). The deterministic character of chaos implies the theo
retical possibility of using chaotic data in parameter estimation methods. The following
describes a nonlinear parametric identification method using chaotic data. The assump
tion is made that the deterministic mathematical model—in this case a set of differential
equations—can be derived using physical laws. As a consequence, the identification goal
is reduced to estimating the unknown parameters in the differential equation. Fitting the
parameters to a chaotic time series has the advantage that the phase-space is filled better
by a chaotic time series than, for example, by just one periodic orbit. The better the data
covers the phase space, the smaller the probability that essential parts of the dynamical be
havior of the system are missed. This means that the identifiability of the dynamic system
gets better and the accuracy of the obtained model will be higher.

Earlier attempts in modeling nonlinear dynamical systems using chaotic data can be
roughly divided into two classes:

1. The first class consists of the parameter estimation in nonlinear maps (Abarbanel,
Brown, Sidorowich, and Tsimring, 1992). It is assumed that information on the tempo
ral evolution of orbits q(k)—that lie on a compact attractor—and their neighborhoods
in the phase space is available. This information can be used to estimate parameters
a in nonlinear maps: q —~ F(q, a), which evolve each q(k) —~ q(k + 1). After a met
ric, which measures the quality of the fit, has been defined, the problem is reduced to
determining the parameters a in the map given a class of functional forms F (chosen
from physical reasoning). The nonlinear maps are discrete and often local models. For
an obvious reason, continuous global models, for example differential equations, are
preferred above discrete local maps.

2. The second class deals with a method that fits ordinary differential equations to chaotic
data (Baake, Baake, Bock, and Briggs, 1992). The main problem of this approach is
the numerical computation of the chaotic trajectory. To tackle this problem, the time

Figure 1. Estimation strategy in Baake et al. (1992).

interval is split into small subintervals. On each subinterval, an initial value problem
is defined. The numerical solution of the corresponding initial value problems, com
puted by integration, should be spoiled by error-propagation, due to positive Lyapunov
exponents. In Baake et al. (1992) it is stated that this error-propagation problem can be
adequately tackled by the boundary-value-problem methods for parameter estimation in
ordinary differential equations—see Bock and Schlöder (1986) and Bock (1987)—by
choosing the subintervals sufficiently small.

In Figure 1, the method is illustrated by means of a flowchart. This flowchart
makes clear that the estimation process consists of minimizing the discontinuities in
the numerical solution (of the multiple initial value problem) as well as the difference
between the measurements and the continuous numerical solution simultaneously.

Some problems that remained are the applicability to real-world systems with di
mensions higher than three, the treatment of very long time series, and the applicability
to real experimental data.

In the following, a different approach will be presented and discussed. In this app
roach, chaos is described by a skeleton of unstable periodic orbits (see Van de Water,
Hoppenbrouwers, and Christiansen, 1991). These unstable periodic orbits are used as the
input information for the estimation of the parameters of the differential equation describ
ing the system. The developed methodology will be illuminated through application to a
specific system, that is, a parametrically excited pendulum.

2. CHAOS AND UNSTABLE PERIODIC ORBITS

2.1. Introductory Remarks

In Cvitanovié (1988) and Van de Water et al. (1991), it is stated that low-dimensional
chaos can be described by its underlying skeleton of unstable periodic orbits. A chaotic
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time series will contain many points that are close to an unstable periodic orbit. After
some time, these points will return close to themselves in the phase space and can be used
to estimate the position of the periodic orbit. The evolution of the neighborhoods of the
points that almost return can be used to estimate the stable and unstable eigenvalues of
the unstable periodic orbits. In systems for which a one- or two-dimensional mapping
exists, the skeleton of periodic points can be constructed hierarchically and then provides
a complete description of chaos (see Cvitanovié, 1988). An obstacle in the application of
the periodic orbit analysis is the necessity of finding unstable periodic orbits with arbitrary
long periods. With a finite number of data points, this is virtually impossible. However, it
has been shown that in many cases long cycles are shadowed by nearby short ones. This
shadowing means that the orbit of a period p cycle is very close to orbits of cycles with
lower periods. So, by determining only the short cycles in an experiment, the dynamics
can be characterized at much longer times. The error made by leaving out the true long
cycles is expected to diminish rapidly with the increasing length of included orbits (see
Cvitanovid, 1988, and Artuso, Aurell, and Cvitanovi~, 1990).

Summarizing the preceding, it can be said that for deterministic dynamical systems of
low dimension and smooth dynamics, the cycles provide a detailed invariant characteri
zation, whose virtues are the following:

1. Cycle symbol sequences are topological invariants: They give the spatial layout of a
strange set.

2. Cycle eigenvalues are metric invariants: They give the scale of each piece of a strange
set.

3. Cycles are ordered hierarchically: Short cycles give good approximations to a strange
set, and the errors due to neglecting long cycles can be bounded.

4. Periodic points are skeletal in the sense that even though they are determined at finite
times, they remain there forever.

5. Cycles are robust: Eigenvalues of short cycles vary slowly with smooth parameter
changes.

6. Short cycles can be extracted accurately from experimental data.

Two kinds of information concerning the unstable periodic orbits can be distinguished:
(a) information on the position of the unstable periodic orbits in the phase space and
(b) information on the stability of the unstable periodic orbits. Both could be used as
input information for an estimation process. In the research covered by this paper, only
the position of the periodic orbits in the phase space was used.

2.2. Parametrically Excited Pendulum

To illustrate the principal line of thought, the periodic orbit analysis from chaotic data will
be demonstrated for the parametrically excited pendulum developed by Van de Water et al.
(1991). In Figure 2, the pendulum is drawn schematically. The support of the pendulum is
driven by a crank mechanism. This allows for a stable and simple construction. An optical
encoder with an angular resolution of ~6 rad gives information about the instantaneous
angular position q5 of the pendulum. It is interfaced by a logical circuit to a computer
that reads ~ each time the support is in its highest position. A second reading, 15.08 ms
later, is used to obtain the angular velocity coordinate ~ of the point (q5, q~) in the Poincaré

section; phase space points are thus obtained with time intervals of ~ s. The noise ~,, in
the (qS, qS) measurement was estimated from the accuracy of measured returns in the phase
plane when the pendulum was in a state of periodic motion: ~,, = 5.0 x 1 o—~ (relative to
the attractor size).

In the following, a suitable mathematical model for the parametrically excited pendu
lum, in the form of a differential equation, will be discussed.

Ideally, a pendulum, whose mass is concentrated at its end and whose support is lifted
periodically, would be described by the well-known differential equation:

AexcW2
— cos(wt)] sin(~) =0.

1

However, accurate modeling of the actual experiment introduces extra terms in equation
(1) that reflect the presence of other damping forces and allow for the noticed peculiarity
of the excitation. Besides the friction force represented by the term proportional to q~, air
resistance introduces a term proportional to (q~)2sgn(75), and the bearings will counteract the
motion through a Coulomb friction term that only depends on the sign of q~. In summary,

I

m

Figure 2. The parametrically driven pendulum drawn schematically.

(1)
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of the hysteretic friction term k1 sgn(~). The effect of this term is that the pendulum,
after being in a chaotic state for some time, may come to a standstill. To avoid this
and to create the longer time series in the simulation, the simulation was performed with
k1 = 0.0 Nm. So, in Van de Water et al. (1991) the simulations are performed with the
following parameter values:

Pexe Fg AexcW2 cos(2c~#) + ~2 sin4(wt)1 1= [cos(wt) + e I sin~
1 [1 — e2 sjn(wt)13/2 jj

where ~ (e < 1) is the ratio of the lengths of the two rods that make up the driving crank
mechanism. Van de Water et al. (1991) estimated the damping constants k1, k2, and k3 by
measuring ~ in an unexcited, freely swinging pendulum released at q~ = ~r at t = 0 and
adjusting k1 , k2, and k3 to obtain the best agreement between measurement and simulation,
with equation (2), as far as the maximum values of the excursion are concerned.

At w = 13 ~, where w is the angular frequency of the excitation, the pendulum is
in a rotating motion whose frequency is locked to the excitation. When lowering w, we
encounter a series of period-doubling bifurcations that finally lead to a large chaotic
attractor at ~ = 9.09 ~, which extends over the full angular range.

Both experiment and simulation exhibit clear fractal behavior. In Figure 3, a simulated
time series (± 5000 points) is shown. For a picture of an experimental time series, see Van
de Water et al. (1991). The time step between successive points in Figure 3 is T = s.
The actual simulated time series used in the periodic orbit analysis is much longer: about
106 points. It is impossible to realize such a long time series in an experiment because the
chaotic attractor is in fact transient. It engulfs the origin that is stable due to the presence

0
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Figure 3. Poincaré section of a simulated time series.

m= 0.0858 kg
k1 =0.0 Nm
k3=1.90x 10~Nms2
w=9.09~
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2.3. Periodic Orbit Analysis

For the parametrically excited pendulum, an attempt is made to characterize the structure
of the chaotic attractor by a set of unstable periodic orbits (see Van de Water et al., 1991).
These periodic orbits are solutions of the differential equation describing the system. Then
the nonlinear parametric identification method can be based on these unstable periodic
orbits.

In this subsection we describe the way in which the unstable periodic orbits are found
from an experimental chaotic time series, for the example of the parametrically excited
pendulum. The phase space is partitioned into small boxes of linear size r (1% of the
attractor size). By sorting the points of the chaotic time series with respect to the location
of the box to which they belong, neighboring points can be determined. A point that
returns to either its own box or to one of the neighboring boxes is called a recurrent point.
The time it takes a recurrent point to return gives the length of the candidate cycles. The list
of candidate cycles, obtained in this way, may be further reduced by requiring that a box
contains at least a few points that E-return as a p cycle. These points are used to determine
a local linear approximation A~ of the dynamical system. In this approximation, the point
xf that returns closest is selected as a reference point. A minimum of 32 neighboring
points y~, which were taken from a 2~ neighborhood of xf, is included in the fit.

An estimate of the periodic point is now found in the following way:

1. A least squares fit is used to estimate the Jacobian matrix A’~’ over a single time step
t,t+ 1:

296 N. VAN DE WOUW, G. VERBEEK, and D. H. VAN CAMPEN

the original equation of motion has to be augmented to

+ -~-sgn(~) + + ~2sgn(~) + ~exc 0
m12 ml m12

with

(2)

(3)

l=0.317m
k2=4.85 x lO4Nms
w0=5.57~

Aexc = 0.131 m
(4)

API P_ ~l— P —~ Ytj — X,~1 Yt+i.

2. The cycle Jacobian A~ is then composed out of p single-step Jacobians:

A~=Ac÷~_1Ac÷~_2...Ac. (6)

3. Let x0 be the estimated periodic point. Then the elements of x0 can be estimated from

(5)

A1’(x~—xo) = (x/~,—xo). (7)
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Figure 4. Simulated attractor overlayed with its low-order periodic points.

= 4’ + (I — A~’ (xj.~ xP)

The estimated stable and unstable eigenvalues of the periodic orbits are the eigenvalues of
A~. Figure 4 shows the periodic points belonging to the cycles with period times up to length
5 that were found from a simulated time series of 1,048,576 data points. Similar results are
obtained by applying the periodic orbit analysis to an experimental time series of 42,754
points (see Van de Water et al., 1991). Note that a huge reduction of data has been obtained,
extracting a few periodic points and their eigenvalues from a long chaotic time series. The
order of magnitude of the error in the estimated periodic points, computed from the
simulated time series, is 0(1.0 x 10—v). However, the experimental data are contaminated
by noise. The order of magnitude of this noise level (5.0 x i0~ relative to the size of the
attractor) gives a good indication for the order of magnitude of the relative error that is
made in estimating the periodic points for the experimental time series; see equation (8).

In the following section, it will be shown how the unstable periodic points can be
utilized to estimate parameters in the differential equation (2) by means of the method of
nonlinear parametric identification using periodic data, developed by Verbeek (1993) and
Verbeek et al. (1995). Besides the mentioned data reduction, this parameter estimation
routine has another advantage.

When the chaotic time series has to be used directly in the parameter estimation (see
Baake et al., 1992), the numerical solution, computed by integration, will be spoiled by
error propagation, due to positive Lyapunov exponents. In computing periodic solutions

The unstable periodic orbits extracted from the chaotic time series are the input for the
nonlinear parametric identification using periodic data developed by Verbeek (1993) and
Verbeek et al. (1995). In principle, each unstable periodic orbit can be used separately
because each of them is a solution of the differential equation that describes the system
exactly. Therefore, a limited set of unstable periodic orbits, which will be able to represent
the chaotic attractor (although not completely), will be used in the parameter estimation
program. It seems to be obvious to use as many unstable periodic orbits as is necessary
to accomplish a good covering of the phase plane to increase the identifiability of the
dynamical system.

In the following, the method of Verbeek et al. (1995) will briefly be discussed. It is
assumed that the deterministic mathematical models for structural systems can be derived
by using physical laws. Characteristic to estimation is that the problem can be reduced to
an optimization problem, depending on a deterministic prediction model for the measured
outputs, the measured data, and the amount of prior knowledge available. The parameters
of the differential equation are estimated by minimizing the difference between the pre
dicted outputs, computed from the deterministic prediction model, and the measurements
in a well-chosen estimator. Verbeek et al. have selected a modified off-line Bayesian esti
mator as the point estimator, as this parametric estimator is capable of estimating not only
the unknown model parameters from the measurement data but the unknown distribution
parameters of the errors as well. The method is represented schematically in Figure 5.

The Bayesian estimator is solved by a modified Gauss-Newton iterative solution tech
nique. Further, predicted outputs of the deterministic system for estimated model parameters
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by the method described in Verbeek (1993) and Verbeek et al. (1995), no such problems
occur.
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3. NONLINEAR PARAMETRIC IDENTIFICATION USING PERIODIC DATA

4. This results in

(8)

Figure 5. Estimation strategy in Verbeek (1993) and Verbeek at al. (1995).
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have to be computed. The stable and unstable periodic solutions are calculated by solving
a two-point boundary value problem with the finite difference method (see Fey, 1992;
Verbeek, 1993; and Verbeek et al., 1995). The local stability of these periodic solutions
can be investigated using Floquet theory.

4. NONLINEAR PARAMETRIC IDENTIFICATION USING CHAOTIC DATA

The periodic orbit analysis and the nonlinear parametric identification method using
periodic data are coupled to form a nonlinear parametric identification method using
chaotic data. The estimation strategy is shown in Figure 6. The measured outputs in
Figure 6 consist of the simulated or experimental chaotic time series. These chaotic
time series (see Figure 3) form the input for the periodic orbit analysis. This analysis
returns the periodic points and their eigenvalues (see Figure 4). For each period p orbit
(p = 1, 2, 3,. . . , n), there are 2p values (ç& and ~ for each periodic phase space point)
available for use in the parameter estimation program. In this way, a huge reduction of
data is realized, On the other input side of the parameter estimation program, the periodic
solver returns the predicted periodic points of the deterministic system for given estimates
of the model parameters. In the parameter estimation program, the difference between the
periodic points estimated in the periodic orbit analysis and the periodic points computed
by the periodic solver is minimized to obtain good estimates of the model parameters.

Two important remarks have to be made concerning the described estimation strategy:

1. The computation of a periodic solution demands a discrete initial guess for that so
lution. In section 3, it was stated that the different unstable periodic orbits are very
close to each other in the phase space. The shadowing mechanism implies that the
closeness of the different periodic orbits in the phase space is not a specific property
of the parametrically excited pendulum. It is therefore clear that the starting solution
for the periodic solver has to be a very good guess. Otherwise, the iterative modified
Newton procedure will just converge to another periodic solution than the one that

was searched for. So far, only a trial-and-error strategy succeeded in finding suitable
starting solutions. This trial-and-error strategy consisted of integrating the differential
equation as described, varying the model parameters until a solution was found that
did not diverge or lead to a p times period 1 solution. The preceding observation is a
widely known difficulty in computing higher period solutions of dynamical systems.
Of course, this is a disadvantage of the method.

2. In the current implementation of the described estimation strategy, only the place in the
phase space (~ and q~ values) of the periodic points is used in the object function that
is to be minimized in the parameter estimation program. However, the output of the
periodic orbit analysis also contains information on the stability of the periodic points.
Information on the local stability of the numerically computed periodic solutions can be
obtained using Floquet theory. The object function, defined in the parameter estimation
routine, could be augmented with the difference between the eigenvalues estimated in
the periodic orbit analysis and eigenvalues computed using Floquet theory. Then not
only the position in the phase space but also the eigenvalues of the periodic points form
the criteria that measure the quality of a set of given estimates of the model parameters.

5. RESULTS

The estimation strategy visualized by Figure 6 was followed, using a simulated and an
experimental chaotic time series as the measured outputs. The results will be discussed
in the following subsections.

5.1. Using a Simulated Time Series

The simulation data were produced by integrating equation (2), using the parameters given
in subsection 2.2. This resulted in the time series depicted in Figure 3. No noise was added
to the data. From this equation, it is clear that the parameters m, 1, k2, and k3 cannot be
estimated simultaneously, because these parameters do not represent independent terms
in the differential equation. The parameters Aexc, w, and g are supposed to be known.
Furthermore, it is expected that the estimation of the mass m and the friction parameters
k~ (i = 2, 3) is more difficult than the estimation of 1, which is the most characteristic feature
of the pendulum. The different goals of the estimation process therefore are (a) to obtain
quantitative knowledge of the physical paramaters m, 1, k1, k2, and k3 and (b) to obtain
quantitative knowledge of the mathematical parameters in the differential equation to be
able to compute trajectories of the system. Then knowledge on each physical parameter
is not so important. In this case 1, ~, and 4~i- are estimated.

5.1.1. Estimating the physical parameters. The estimation of the physical parameters
was separated into two parts:

1. Estimation of m and 1 with given values fork2 and k3 (used in the simulation): Using all
the periodic points depicted in Figure 4, corresponding to the unstable periodic orbits
up to period 5, resulted in the estimates given in Table I. The result that m and 1 can be
estimated accurately implies that the periodic orbits contain necessary and sufficient

periodic

points

Figure 6. Estimation strategy in Van do Wouw (1994).
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Initial deviation Final deviation
from exact values from exact values

!!~ = 50% 0.76%

1°-1H20% ‘-‘H028%

Initial deviation Final deviation
from exact values from exact values

Ii~—k2~ — 100% = 11.3%
j I— j j
1k30—k31 — 100% I13~3I = 3.2%
~ I— I

information on the nonlinear dynamics of the system in a compact form. Information
concerning the influence of using different sets of periodic orbits in the estimation
routine is discussed in Van de Wouw (1994).

2. Estimation of k2 and k3 with given values for m and 1 (used in the simulation): The
results of estimating the friction parameters k2 and k3, using all the periodic orbits up
to period 5, are given in Table II. The friction parameters are estimated reasonably
well, regarding the fact that initially there was assumed to be no friction at all. But
the relative errors on the estimates of k2 and k3 are larger than those on the estimates
of m and 1. Furthermore, the error on k2 is also much larger than the error on k3. This
could be explained by the fact that the order of magnitude of the term in the differential
equation (2) that contains k2 is lower than the order of magnitude of the term that
contains k3 (O(q.c) vs. O(q52)). Therefore, k2 can be adjusted rather easily (in comparison
with k3) in the estimation process, without having much effect on the periodic points
that will be estimated by the periodic solver. So, errors in the data (that refer to periodic
points from the periodic orbit analysis) are likely to be compensated by the adjustment
of L2 in the estimation program.

5.1.2. Estimating the mathematical parameters. In this case ~ 4~i-, and 1 were estimated
simultaneously. The results of estimating these parameters, using all periodic orbits up
to period 5, are given in Table III. These results correspond very well with the results in
Table II.

5.2. Using an Experimental Time Series

Again, the estimation strategy of Figure 6 was followed, taking the experimental chaotic
time series (see Van de Water et al., 1991) as the measured output.

For the experimental system, values for the friction parameters (kiexp~ k2exp~ and k30~~)
were estimated by Van de Water et al. (1991), see section 2.2. The values for m and
1 were simply calculated from geometrical data (mexp and lexp). For the estimation of
these parameters, unstable periodic orbits up to period 5, extracted from the experimental
time series, were used. For a reason to be explained, only the physical parameters were
estimated. The estimation of the physical parameters again was separated into two parts,
because it is impossible to estimate m, 1, k~ , k2, and k3 simultaneously.

Initial deviation Final deviation
from exact values from exact values

Ih1ZLI_189% IbiI_00%
I I Ill

I k20/m_k~/m I = 33.6% I k2/tfl_k2/fl~ = 11.3%
~ k~/rn J J k2/rn I
I k30/mk3/m = ki/rnk3/tfl I
~ k3/rn k3/m

Initial deviation Final deviation
from mexp and lexp from mexp and lexp

I ?flo~~fl?exp I 51% ?itflcxp = 9.6%
~ 1flexp I “~~r I
~ = 18.9% I~Z.!~xI 0.3%
I I I I

5.2.1. Estimation of the parameters m and 1. In the estimation process, fixed values for
the friction parameters ~ k2,xp~ and ~ measured by Van de Water et al. (1991), are
used. The results of the estimation of m and 1, using all periodic orbits up to period 5,
are ordered in Table IV. From this table, it can be concluded that 1 can be estimated very
accurately, using the experimental data. However, the estimation of m is less accurate.
The result that the estimate th is less accurate than it was using the simulated data has
several causes:

1. The experimental time series is contaminated by noise.
2. The experimental time series is substantially shorter than the simulated time series.
3. The two previous points obviously lead to less accurate periodic point estimates by the

periodic orbit analysis, see subsection 2.3.
4. The measured periodic points were picked from a figure such as Figure 4, as the periodic

points belonging to the simulation were obtained in numerical form.

In spite of these sources of errors, the estimates of m and I can be considered relatively
accurate.

5.2.2. Estimation of the friction parameters k1, k2, and k3. In the estimation process,
the measured values mexp and iexp are used. The attempt to estimate k1 , k2, and k3 simulta
neously failed. The reason for this failure is that the terms of the differential equation (2)
concerning k1 and k2 (k1 sgn(~), k2~) are relatively small compared to the term k3~2sgn(~)
and the other terms in the differential equation. So, as explained before, the estimates
L~ and k2 can be adapted almost arbitrarily. For this reason, it will of course also be
impossible to estimate ~, 1~, ~, and I or even k3 and m simultaneously. Therefore, only k3
was estimated, using the estimates on k1 and k2 presented by Van de Water et al. (1991)
in their experiment (see subsection 2.2). The results are ordered in Table V. Note that the
accuracy of the estimate L3 is about the same as the accuracy of th. The accuracy of the
estimates is very acceptable given the level of measurement noise on the data. Note that
k3exp—estimated value for k3 of Van de Water et al. (1991)—is only another estimate for
the value of k3 in the experiment; see section 2.2.

Table I. Estimates of m and I using all peri
odic orbits up to period 5 found in the sim
ulated time series.

Table Il. Estimates of k2 and k3 using all
periodic orbits up to period 5 found in the
simulated time series.

Table Ill. Estimates of I, ~ and ~ using all
periodic orbits up to period 5 found in the
simulated time series.

Table IV. Estimates of m and I using all pe
riodic orbits up to period 5 found in the ex
perimental time series.
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Table V. Estimates of k3 using all periodic orbits up to period 5 found in the experimental
time series.

Initial deviation Final deviation
from k3e,p from k3,,,,

k30—k3,,,,~ = 100% k3_k3,,,~ = 11.6%
k3,,,,1, k3,,,,5

6. DISCUSSION

A nonlinear parametric identification method using chaotic data has been developed. It
consists of the coupling of aperiodic orbit analysis and a nonlinear parametric identification
method using periodic data. The method has been validated by estimating the parameters
of the differential equation that describes a parametrically excited pendulum. The accuracy
of these estimates appeared to be very high in the case of data generated by simulation.
The estimation of the model parameters using the experimental data was more difficult,
because these data were less accurate than those from the simulation. Still, the accuracy
of the estimates is very acceptable.

Some advantages of the method, especially compared to the method of fitting ordinary
differential equations directly to chaotic data (see Baake et al., 1992) are important to
note:

1. The problem of the error propagation in the numerical solution during integration, due
to positive Lyapunov exponents, is avoided.

2. Before the estimation routine is used a huge data reduction has been accomplished,
without losing essential information on the nonlinear dynamics of the system.

3. Instead of a set of trajectories, the structure of the phase space is used in the estimation
routine as essential information on the nonlinear dynamics of the system.

4. The use of very long chaotic time series does not give rise to any problems. Long time
series are even required to ensure a certain accuracy of the computed periodic points.

Besides the requirement for long chaotic time series, a second disadvantage should be
mentioned: The use of the periodic solver that provides the computation of the periodic
solutions requires very good starting solutions as initial guesses on the periodic orbits,
because the unstable periodic orbits that characterize the chaotic attractor are so close in
phase space. So far only a trial-and-error strategy has been used to find suitable starting
solutions. Therefore, a better and more comprehensive method in finding suitable starting
solutions is desirable. Furthermore, the use of the eigenvalues of the unstable periodic
orbits in the estimation of the model parameters should be incorporated to improve the
quality of the estimations.
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