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ABSTRACT
In this paper, we aim for an improved understanding of the
causes for torsional vibrations in rotary drilling systems
that are used for the exploration of oil and gas. For this
purpose, an experimental drill-string set-up is considered.
In that system, torsional vibrations with and without stick-
slip are observed in steady-state. In order to obtain a pre-
dictive model, a discontinuous static friction model is used.
The parameters of the suggested model are estimated and
the steady-state behaviour of the drill-string system is anal-
ysed both numerically and experimentally. A comparison
of numerical and experimental bifurcation diagrams indi-
cates the predictive quality of the model. Moreover, spe-
cific friction model characteristics can be linked to the ex-
istence of torsional vibrations with and without stick-slip.
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1 Introduction

Deep wells for the exploration and production of oil and gas
are drilled with a rotary drilling system. A rotary drilling
system creates a borehole by means of a rock-cutting tool,
called a bit. The torque driving the bit is generated at the
surface by a motor with a mechanical transmission box. Via
the transmission, the motor drives the rotary table: a large
disc that acts as a kinetic energy storage unit. The medium
to transport the energy from the surface to the bit is a drill-
string, mainly consisting of drill pipes. The lowest part of
the drill-string is the Bottom-Hole-Assembly consisting of
drill collars and the bit. The drill-string undergoes various
types of vibrations during drilling: torsional (rotational) vi-
brations, caused by nonlinear interaction between the bit
and the rock or the drill-string and the borehole wall; bend-
ing (lateral) vibrations, often caused by pipe eccentricity,
leading to centripetal forces during rotation; axial (longitu-
dinal) vibrations, due to bouncing of the drilling bit on the
rock during rotation; hydraulic vibrations in the circulation

system, stemming from pump pulsations.

Drill-string vibrations are an important cause for pre-
mature failure of drill-string components and drilling in-
efficiency. In this paper, torsional drill-string vibrations
are investigated. Since the behaviour of the system when
a constant torque is applied at the rotary table of a drill-
string system is of interest, the focus is on the steady-state
behaviour of drill-string systems for such constant torques.

Extensive research on the subject of torsional vibra-
tions has already been conducted [2, 5, 10, 11, 12, 13, 14,
18]. According to some of those results, the cause for tor-
sional vibrations is the stick-slip phenomenon due to the
friction force between the bit and the well [10, 12, 13].
Moreover, the cause for torsional vibrations can be the
negative damping in the friction force present due to the
contact between the bit and the borehole, see for exam-
ple [2, 11]. In order to gain an improved understanding of
the causes for torsional vibrations, an experimental drill-
string set-up is built. The set-up consists of a DC-motor
which is connected to the upper disc via a gear box. The
upper and lower disc are connected via a low stiffness
string and at the lower disc an additional brake is applied.
In the set-up, torsional vibrations with and without stick-
slip are observed and the behaviour of the set-up is anal-
ysed. However, using existing friction models which are
used for modelling torsional vibrations in drill-string sys-
tems [10, 11, 12, 13] not all steady-state phenomena, ob-
served in the experimental drill-string system, can be mod-
elled. Using another discontinuous static friction model,
those experimentally observed phenomena are successfully
predicted. In such a friction model, positive damping is
present for very small angular velocities, for higher angu-
lar velocities, negative damping occurs and for even higher
angular velocities positive damping is again present in the
friction [3, 4, 8, 9]. In [3, 4], such a friction model is
called “humped friction model”. It follows that both in the
model and the experiments the steady-state behaviour un-
dergoes various qualitative changes when the input voltage
is changed. These changes are typically captured in a bi-
furcation diagram that features the changes of equilibrium
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points into limit cycling (vibrations). A comparison of the
numerical and experimental bifurcation diagram illustrates
the predictive quality of the suggested model. Moreover,
such a bifurcation diagram provides improved insight in
how torsional vibrations in drill-string systems are created.

In Section 2, the experimental drill-string set-up is de-
scribed. Next, the dynamic behaviour of the set-up is mod-
elled and the parameters of the model are estimated. In the
experimental system as well as in the estimated model both
equilibria (constant velocity) and limit cycles (torsional vi-
brations) are observed when a constant input torque is ap-
plied. Therefore, in Section 3, the equilibrium point (set)
is determined and related stability properties are discussed.
Next, periodic solutions and their stability properties are
determined numerically. Subsequently, based on the pro-
posed model and estimated parameters, a bifurcation dia-
gram is presented and compared to experimentally obtained
results. In Section 4, conclusions are presented.

2 Drill-String Set-Up

2.1 Experimental Set-Up

The experimental drill-string set-up is shown in Figure 1.
The input voltage from the computer, which is between
−5V and 5V, is fed into the DC-motor via the power am-
plifier. The DC-motor, which represents the drive motor of
a real drill rig, is connected, via the gear box, to the upper
steel disc (which represents the rotary table of the rig). The
upper and lower disc are connected through a low stiffness
steel string. The drill-string and the lower brass disc repre-
sent the drill-string with the Bottom-Hole-Assembly at the
real drill-rig and the additional brake represents the friction
force between the drill bit and borehole. The contact ma-
terial of the brake is rubber. The angular positions of the
upper and lower disc are measured using incremental en-
coders. The angular velocities of both discs are obtained
by numerical differentiation of the angular positions and
filtering the resulting signals using a low-pass filter. In Fig-
ure 1, as well as further on in the text, θu and θl are the
angular positions of the upper and lower disc, respectively,
Tfu is the friction torque present in the motor and in the
bearings at the upper disc and Tfl represents the friction
torque at the lower disc which is caused by the friction be-
tween lower disc and the brake and by the friction in the
bearings.

2.2 Model of the Set-Up

The drill-string set-up is an electro-mechanical system and
it can be described by:

Juθ̈u + kθ(θu − θl) + Tfu(θ̇u) = km u

Jlθ̈l − kθ(θu − θl) + Tfl(θ̇l) = 0,
(1)

where u is the input voltage to the power amplifier of the
motor, Ju and Jl are moments of inertia of the upper and
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Figure 1. Experimental drill-string set-up.

lower disc with respect to the center of the mass, respec-
tively, kθ is the torsional stiffness of the string and km is
the motor constant. In (1), friction torques Tfu and Tfl are
modelled by

Tfu(θ̇u) ∈

{

Tu(θ̇u)sign(θ̇u) for θ̇u 6= 0,

[−Tu(0), Tu(0)] for θ̇u = 0,

Tfl(θ̇l) ∈

{

Tl(θ̇l)sign(θ̇l) for θ̇l 6= 0,

[−Tl(0), Tl(0)] for θ̇l = 0,

(2)

which represent set-valued friction laws1. The nonlin-
ear functions Tu(θ̇u) and Tl(θ̇l) represent friction torques
present at the upper and lower disc for non-zero angular
velocities and for those nonlinear functions the following
holds:

Tu(θ̇u), Tl(θ̇l) ≥ 0, ∀ θ̇u, θ̇l ∈ R, (3)

which means that the friction torques in (2) are dissipative.
The reason for using a set-valued function to model

the friction at the upper and lower disc is the fact that both
at the upper and at the lower disc the stiction phenomenon
is observed experimentally. Moreover, (2) indicates that the
friction torques are modelled using a static friction model.
This choice is based on the following reasoning: we are
interested in the steady-state behaviour of the set-up and
we are not interested in a detailed dynamic modelling of
the friction for very small angular velocities.

The dynamics of the fourth-order system (1), can be
described by a third-order state-space system since its dy-
namics is independent of the angular positions of the discs
but only depends on the difference between these two an-
gular positions. Therefore, by choosing state coordinates
x1 = θu − θl, x2 = θ̇u and x3 = θ̇l, the following state-

1With the set [a, b] we mean the interval {x ∈ R | a ≤ x ≤ b}.
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space model can be obtained

ẋ1 = x2 − x3,

ẋ2 = km
Ju

u− kθ
Ju

x1 −
1
Ju

Tfu(x2),

ẋ3 = kθ
Jl
x1 −

1
Jl
Tfl(x3).

(4)

This model is used for further analysis of the dynamic be-
haviour of the drill-string set-up.

2.3 Parameter Estimation and Friction
Modelling

In order to obtain a predictive model of the drill-string set-
up, the parameters km, Ju, Jl, kθ and nonlinear functions
Tu(θ̇u) and Tl(θ̇l) need to be estimated.

First, the upper disc is disconnected from the lower
disc and the parameters concerning the motor and the up-
per disc (km, Ju and Tu(θ̇u)) are estimated. The estima-
tion process is based on dedicated experiments involving
responses of the system, when constant input voltages u are
applied, and an identification procedure ensuring a close
match between the model predictions and experimental re-
sults (see for example [7]). The estimated parameters indi-
cate that the friction torque at the upper disc is asymmetric
(Tfu(θ̇u) 6= −Tfu(−θ̇u)) and that no Stribeck effect is
present. Therefore, the friction torque Tfu in (2) is mod-
elled with

Tu(θ̇u) = Tsu +4Tsusign(θ̇u) + bu|θ̇u|+4buθ̇u, (5)

where Tsu +4Tsu and −Tsu +4Tsu represent the max-
imum and minimum value of the friction torque for zero
angular velocities and bu +4bu and bu −4bu are viscous
friction coefficients present for positive and negative veloc-
ities, respectively. The identification porcedure yields the
following parameter values:

Ju = 0.4765 kg m2

rad , km = 3.5693 Nm
V ,

Tsu = 0.3212Nm4Tsu = 0.0095Nm,

bu = 1.9833kg m2

rad s , 4bu = −0.0167kg m2

rad s .

(6)

In order to gain improved insight in the causes for
torsional vibrations in real drilling systems, an additional
brake is applied to the lower disc of the experimental drill-
string set-up. The brake material is rubber. For several
levels of the normal force applied to the brake, no torsional
vibrations in steady-state are observed when a constant in-
put voltage is applied. However, when water is added be-
tween the lower brass disc and the contact material of the
brake, torsional steady-state vibrations appear for constant
input voltages. Moreover, both torsional vibrations with
and without stick-slip behaviour appear2. In [10, 12, 13], it
is stated that torsional vibrations in drill-string systems can
be modelled using the friction model with the Stribeck ef-
fect. However, using such model, only torsional vibrations

2More about friction phenomenon due to a contact between two mate-
rials can be found in [1, 3, 8, 9].

with stick-slip can been modelled. Therefore, a humped
friction model, as shown in figure 2, is used. The difference
between the humped friction model and the friction model
with only the Stribeck effect is evident for low angular ve-
locities. Namely, in the humped friction model, positive
damping is present for very small angular velocities which
is not the case for friction with only the Stribeck effect.
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Figure 2. Humped friction model.

Based on a Neural Network model [6, 7, 15] the fric-
tion torque Tfl, as in figure 2, can be expressed by friction
model (2) with:

Tl(θ̇l) = Tsl + T1

(

1− 2

1+eβ1|θ̇l|

)

+T2

(

1− 2

1+eβ2|θ̇l|

)

+ bl|θ̇l|,
(7)

where Tsl, T1, T2, β1, β2, bl are parameters of the friction
model. Moreover, −Tsl and Tsl represent the minimum
and the maximum static friction level, respectively and bl
is the viscous friction coefficient.

In order to estimate the remaining parameters of the
set-up (kθ, Jl, Tsl, T1, T2, β1, β2, bl), a quasi-random volt-
age signal is applied to the motor. Next, using nonlinear
least-square algorithm, the parameters are estimated by en-
suring a close match between the measured and simulated
angular position of the lower disc θ̇l. The obtained esti-
mates are:

Jl = 0.0326 kg m2

rad , kθ = 0.078 Nm
rad ,

Tsl = 0.00940Nm, bl = 0.0042 kg m2

rad s ,
T1 = 0.0826Nm, T2 = −0.291Nm,
β1 = 6.3598 s

rad , β2 = 0.0768 s
rad .

(8)

A validation procedure is performed using different input
signals such as a quasi-random (see figure 3), harmonic,
constant, ramp and parabolic signals. For those signals,
the comparison between the responses of the experimental
set-up and estimated model indicates the accuracy of the
obtained parameters and the predictive quality of the re-
sulting model (see also Section 3).
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position at the lower disc for a quasi-random input
signal.

Figure 3. Validation signals for the drill-string set-up.

3 The Steady-State Behaviour of the Set-Up

Both equilibria (constant velocity at both the upper and
lower disc) and limit cycles (torsional vibrations at the
lower disc) are observed in the experimental set-up. In this
section, the stability of both the equilibrium points (sets)
and the limit cycles of the model are investigated. More-
over, the model results are compared with the experimental
results.

3.1 Equilibrium points

In the equilibrium points it holds that (x1, x2, x3) =
(x1eq, x2eq, x3eq), for u = uc, with uc a constant, and
x1eq , x2eq , x3eq satisfy

x2eq − x3eq = 0,
kmuc − Tfu(x3eq)− Tfl(x3eq) = 0,
kθx1eq − Tfl(x3eq) = 0.

(9)

According to the analysis of the equilibrium points of the
model of the set-up (equations (1), (2), (5) and (7)) with the
estimated parameters (6) and (8), the bifurcation diagram
shown in figure 4 is constructed3.

First, for uc ≤ uc1, uc1 = (Tsu +4Tsu + Tsl)/km
(point A in figure 4), the system is in the stiction phase and
the equilibrium points xeq = (x1eq, 0, 0) of the system are
such that xeq ∈ E , where E represents the equilibrium set
defined by:

E =
{

x ∈ R
3
∣

∣

∣
x1 ∈

[

−Tsl
kθ

, Tsl
kθ

]

∩
[

kmuc−Tsu−4Tsu
kθ

, kmuc+Tsu−4Tsu
kθ

]

,

x2 = 0, x3 = 0
}

.

(10)

Both the lower and the upper disc do not rotate (the equilib-
rium set satisfies x2eq = x3eq = 0) due to the fact that input

3For the simplicity, the steady-state analysis is performed only for
uc > 0.

voltage is not big enough to drive the upper and lower disc.
Moreover, using Lyapunov stability theory it is possible to
prove that the equilibrium set (10) is locally asymptotically
stable (see [14, 19]). Those equilibrium sets are denoted
as equilibrium branch e1 in the constructed bifurcation di-
agram in figure 4. Next, for uc > uc1 system has a unique
equilibrium point, such that x2eq = x3eq > 0, which is the
solution of the following nonlinear algebraic equation:

x2eq = x3eq,
kmuc − (bu +4bu)x3eq − Tsu −4Tsu
−Tl(x3eq) = 0,

x1eq =
Tl(x3eq)

kθ
.

(11)

In order to obtain local stability conditions for this equi-
librium point, the nonlinear system (4) is linearized around
the equilibrium point. According to the Routh-Hurwitz cri-
terion, the equilibrium point of system (4) is locally asymp-
totically stable for

dl > −0.00114
kgm

rad s
, (12)

with

dl =
dTl
dx3

|x3=x3eq
(13)

the (linearized) friction damping present at the lower disc
when angular velocity is θ̇l = x3eq and the estimated sys-
tem parameters (6) and (8). Given the fact that for very low
but non-zero velocities positive damping is present in the
friction torque at the lower disc (see figure 2), it can be con-
cluded that an asymptotically stable equilibrium branch e2

exists (see figure 4). If uc increases, the corresponding so-
lution x3eq increases as well. For uc large enough, the fric-
tion damping dl does not satisfy condition (12) any more
and the system has an unstable equilibrium point (equilib-
rium branch e3 in figure 4). For even larger uc, the system
has a locally asymptotically stable equilibrium point (equi-
librium branch e4 in figure 4). In point A of the bifurcation

231



diagram in figure 4 no change of stability properties occurs.
Moreover, the locally asymptotically stable equilibrium set
e1, defined by (10), merges into the locally asymptotically
stable equilibrium branch e2. In points B and D a change
in stability properties occurs. Namely, a pair of complex
conjugate eigenvalues, related to the linearisation of the
nonlinear dynamics of (4) around the equilibrium point,
cross the imaginary axis to the right-half complex plane.
Therefore, Hopf bifurcations occur at these points [17].
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Figure 4. Bifurcation diagram of the drill-string set-up.

3.2 Periodic Solutions

Next, using a path following technique in combination with
a shooting method [16], limit cycles are computed numeri-
cally for the estimated model of the system and the results
are shown in the bifurcation diagram in figure 4. In that fig-
ure, the maximal and minimal values of x3 are plotted when
a limit cycle is found. Floquet multipliers, corresponding
to these limit cycles, are computed numerically and used
to determine the local stability properties of these limit cy-
cles. Although the estimated friction torque at the lower
disc, when the brake is used, is not considered to be accu-
rate for uc > 5V, the bifurcation diagram is determined as
well in order to understand the behaviour of the set-up for
higher constant input voltages. With respect to the obtained
results the following remarks can be made:

From bifurcation point B, a stable periodic branch p1

arises. Moreover, close to the bifurcation point, the peri-
odic branch p1 consists of limit-cycles which represent tor-
sional vibrations without stick-slip. Therefore, bifurcation
point B represents a smooth supercritical Hopf bifurcation
point. If we analyse the bifurcation diagram in figure 4, it
can be noticed that the periodic branch p1 consists of limit-
cycles which represents torsional vibrations without stick-
slip when min(x3) > 0 and with stick-slip (min(x3) = 0).
For even higher uc, the locally stable periodic branch p1

looses its stability and an unstable periodic branch appears

(periodic branch p2 in figure 4). The point where the sta-
ble periodic branch p1 is connected to the unstable branch
p2 represents a fold bifurcation point (point C in figure 4).
The unstable periodic branch p2 is connected to the equi-
librium branches e3 and e4 in a subcritical Hopf bifurcation
point D.

3.3 Experimental Results

In order to check the validity of the obtained model of
the drill-string set-up, experimental results are compared
with the numerical results. As already mentioned, the ev-
idence about the predictive quality of the estimated model
in steady-state is of great interest. Therefore, the same type
of bifurcation diagram, as shown in figure 4, is constructed
experimentally. In order to construct such an experimental
bifurcation diagram, different constant input voltages are
applied to the set-up. When no torsional vibrations are
observed, the mean value of the recorded angular veloc-
ity is computed. Next, when torsional vibrations are ob-
served at the lower disc, the mean value of local maxima
and minima are computed as well. Then, all experimen-
tally obtained data for constant input voltages are plotted
using the symbol ”o” in figure 5. Since the input volt-
age is limited to 5V, the experimental data are available
only up to uc = 5V. According to the results, shown in
figures 3 and 5, it can be concluded that: the equilibrium
sets (equilibrium branch e1), the equilibrium points (equi-
librium branche e2), a Hopf bifurcation point (point B) the
magnitude of the limit cycles (periodic branch p1) and the
dynamic behaviour of the set-up (see figure 3) are well pre-
dicted.

Consequently it can be concluded that the observed
torsional vibrations are caused by the nonlinearity present
in the friction at the lower disc and such nonlinearity is
modelled adequately using the friction model shown in fig-
ure 2. Figure 5 shows that the amplitude of the vibrations
depends on the applied constant input voltage while the pe-
riod time shows only small changes. Moreover, when the
period time of the the vibrations is analysed, it is noticed
that the observed vibrations is very close to the period time
of the linear resonance frequency of the set-up.

4 Conclusions

In this paper, the dynamic model of the set-up is intro-
duced, the parameters of the set-up are estimated and the
steady state-behaviour of a drill-string set-up is analysed
in order to investigate the cause for torsional vibrations.
In the set-up, when brake is used at the lower disc, tor-
sional vibrations with and without stick-slip are observed
in steady-state. Torsional stick-slip vibrations in drill-string
systems can be predicted using a static friction model with
the Stribeck effect [10, 11, 12, 13]. However, torsional vi-
brations without stick-slip cannot be modelled using the
same friction model. Therefore, a humped discontinuous
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static friction model [3, 4, 8, 9] is used. The difference
between the humped friction model and a friction model
with only the Stribeck effect is that for very small angular
velocities the proposed friction model has a positive damp-
ing. With such model, the observed torsional vibrations in
the experimental set-up, both with and without stick-slip,
are successfully predicted. As a result of the steady-state
analysis, a bifurcation diagram, with constant input volt-
age uc as a bifurcation parameter, is presented. Moreover,
a comparison between the numerical and experimental bi-
furcation diagrams illustrates the predictive quality of the
suggested model.
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