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To circumvent performance-limiting trade-offs encountered in the control of linear motion systems, we
introduce a method for designing performance-optimal piecewise affine variable-gain feedback control-
lers. Variable-gain controllers are known to improve upon the performance trade-off between
low-frequency tracking on the one hand and sensitivity to high-frequency disturbances on the other
hand. However, the performance-based tuning of such variable-gain controllers is far from trivial. In this
paper, we consider a class of variable gain controllers comprising a loop-shaped linear controller and a
generic add-on piecewise affine variable gain element. This structure warrants both an intuitive design
procedure of the linear part of the control design and a high level of versatility in the design of the
nonlinear control part. The add-on piecewise affine control structure introduced in this paper allows
for synthesizing the shape of the variable-gain controller by means of either a full model-based optimi-
zation approach of a certain L2 performance indicator or by extending this approach with data-based ele-
ments. As a result, the controller design can be tuned for the disturbance situation at hand while
optimizing performance. To illustrate the effectiveness of the approach, the proposed performance-based
controller synthesis strategy is demonstrated on an industrial wafer scanner.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The control of industrial motion systems is mostly done using
linear controllers of the proportional-integral-derivative (PID) type
[1,2]. However, it is well-known that many linear control loops
suffer from certain inherent performance trade-offs such as the
waterbed effect [3,4]: an increase of low-frequency (below the
bandwidth) disturbance suppression automatically yields an
increase of noise amplification at high frequencies (above the
bandwidth). Given this trade-off, linear motion controllers are de-
signed to balance between low-frequency tracking and sensitivity
to high-frequency disturbances. In the control design, this is often
obtained by frequency-domain loop shaping [5].

To balance this trade-off in a more desirable manner, it has been
shown that variable-gain control (also called N-PID control) can be
effective [6–12]. In these references, it has been shown that the
variable-gain controllers have the capability of outperforming lin-
ear controllers. This might seem contradictory to the well-known
result that for a linear plant, in an H1-framework, see [13], a linear
controller is optimal and cannot be outperformed by nonlinear or
time-varying controllers. However, this result relies on linearity
and time-invariance of the plant, the disturbance characterization
and the performance specification. In many industrial (motion con-
trol) applications, non-stationary disturbances are present and
time-varying (and other than L2) performance specifications are
relevant. In these situations, nonlinear or time-varying controllers
may yield superior performance over linear controllers.

In [8,10], the underlying linear controller part of a variable-gain
controller can be designed based on well-known performance-
based loop-shaping arguments, and stability of the nonlinear
closed-loop system can be guaranteed by frequency-domain eval-
uation through the circle criterion [8,14]. Performance of the
closed-loop system, however, very much depends on the design
of the add-on variable-gain control part, which, in turn, is far from
trivial. Typically, the design of this variable-gain control part is
based on heuristic rules and depends on the specific application
and (often unknown) disturbances at hand. Moreover, the type of
nonlinearity is typically chosen a priori, e.g. a dead-zone character-
istic [8,10] or a saturation characteristic.

This paper explicitly deals with the performance-based design
of the variable-gain nonlinearity. This problem has, to a certain
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Fig. 1. Closed-loop variable-gain control scheme.

Fig. 2. Piecewise affine variable-gain element uðeÞ.
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extent, also been addressed in [15], where a more constructive tun-
ing method has been used to tune the parameters of an a priori
fixed dead-zone characteristic. However, an a priori selection of a
fixed nonlinear structure, e.g. based on a dead-zone characteristic,
is not likely to induce the best time-domain performance in gen-
eral as an ideal structure largely relates to the disturbance situa-
tion at hand.

In this paper, we develop a synthesis approach for a more gen-
eral class of piecewise affine variable-gain controllers, as opposed
to the tuning procedure for a particular variable-gain controller
in [15]. This means that the controller design and tuning tailors
the shape of the variable-gain element to the particular distur-
bance situation at hand. By increasing the number of segments of
the piecewise affine structure, arbitrarily shaped characteristics
can be constructed, thereby ensuring a high level of versatility of
the performance-based nonlinear control design.

Using an L2 performance criterion related to the tracking error,
an iterative gradient-based quasi-Newton optimization scheme
[16] is used for optimal performance-based controller synthesis.
Two different approaches are presented in the synthesis of the
piecewise affine variable-gain controllers: (1) a purely model-
based approach and (2) a data-based approach, both of which will
be studied and compared in this paper. First, we present a compu-
tationally efficient model-based approach to synthesize the control-
lers, which is beneficial in a design-phase where no machine
hardware is available yet, in situations where performing many
experiments on a machine becomes prohibitive, or when perform-
ing (large-scale) parameter studies of the closed-loop system. Sec-
ond, a data-based approach will be presented, which is especially
suitable for situations where machine measurements are available
and when accurate modeling of the disturbances acting on the sys-
tem is challenging if not impossible. This paper extends the preli-
minary results in [17,18] by (1) comparing the model-based
optimization approach and the data-based approach and applying
both to an experimental motion control system, and (2) applying
the data-based piecewise affine variable gain controller synthesis
approach to an industrial wafer scanner.

The efficiency of the proposed model-based optimization
approach stems from the computationally efficient Mixed-Time–
Frequency algorithm [19], which can be used to compute the
steady-state response of the closed-loop system with a piecewise
affine variable gain controller. Typically, the computation of this
steady-state response can be performed orders of magnitude faster
than with regular forward integration of the closed-loop model.
This makes the model-based method especially suitable for
large-scale parameter studies, which generally require extensive
simulations, or in a design-phase where no machine hardware is
available yet.

The data-based method will adopt the iterative approach from
[15], where measured closed-loop error-signals are used in combi-
nation with model knowledge in order to compute the gradients of
the closed-loop error signals with respect to the variable-gain con-
troller parameters, using a single experiment. The model knowl-
edge, employed in this approach, consists of a controller model
(which is exactly known) and a plant model of the system. A plant
model is obtained by frequency response measurements. The ef-
fects of (unknown) machine-specific disturbances and perturba-
tions are accounted for by the measured closed-loop error signals.

The paper has two main contributions. Firstly, two piecewise
affine variable-gain controller synthesis methods are applied to
and compared on an experimental motion system: an efficient
model-based approach and a data-based machine-in-the-loop ap-
proach, which both allow for performance-optimal tuning of the
nonlinear controller. This is achieved without making an a priori
heuristic choice for the type of nonlinearity, allowing for the syn-
thesis of controllers tailored to the disturbance situation at hand.
Additionally, the data-based approach is used to synthesize a per-
formance-optimal piecewise affine variable-gain controller on an
industrial wafer scanner.

The remainder of the paper is organized as follows. In Section 2,
we introduce the piecewise affine variable-gain control strategy
and present conditions for guaranteed closed loop stability. These
stability conditions will be used as constraints in the subsequent
performance optimization. The model-based and data-based con-
troller synthesis approach, will be presented in Section 3. The
effectiveness of the two controller approaches will be assessed
on an experimental motion control setup in Section 4. In Section 5,
the data-based approach will be applied to one of the motion sys-
tems of an industrial wafer scanner. Conclusions are presented in
Section 6.

2. Piecewise affine variable-gain control structure

Consider the variable-gain control structure depicted in Fig. 1.
The nominal (linear) closed loop consists of the linear plant with
transfer function PðsÞ; s 2 C, and linear feedback controller with
transfer function CðsÞ. The add-on variable-gain part of the control-
ler consists of a linear shaping-filter FðsÞ and a nonlinearity uðeÞ,
which is a continuous piecewise affine function on the tracking er-
ror e in the time domain.

Usually, the form of the nonlinearity u is chosen heuristically
based on a certain specific disturbance situation. For example, in
the wafer scanning example considered in [8], a typical dead-zone
characteristic is chosen for the nonlinearity uðeÞ. As such, high-fre-
quency small-amplitude disturbances during scanning are not
amplified since they stay within the dead-zone length. Contrarily,
low-frequency large-amplitude disturbances prior to scanning
are additionally suppressed by the extra gain of the dead-zone
nonlinearity for large errors.

It is known that other disturbance situations may require other
shapes for the nonlinearity u. To overcome this problem, we
present an approach that avoids making such a heuristic a priori
choice for the shape of the nonlinearity u and enables to synthe-
size a nonlinearity that is tailor-made for the particular distur-
bance situation at hand. To facilitate such a general controller
synthesis approach, we do not a priori specify a particular type
of nonlinearity u, but construct it on the basis of piecewise affine
segments as depicted in Fig. 2. The odd continuous nonlinearity
uðeÞ with switching lengths di consists of N segments with slopes
ai, which are defined as
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ai ¼
@u
@e

8di�1 < jej < di; ð1Þ

with i 2 f1;2; . . . ;Ng; d0 ¼ 0 and dN ¼ 1. The nonlinearity may be
parameterized as follows:

uðeÞ¼

aNðeþdN�1Þ�a1d1��� ��aN�1ðdN�1�dN�2Þ if e6�dN�1

..

.

a2ðeþd1Þ�a1d1 if �d26 e6�d1

a1e if �d16 e6 d1

a2ðe�d1Þþa1d1 if d16 e6 d2

..

.

aNðe�dN�1Þþa1d1þ�� �þaN�1ðdN�1�dN�2Þ if e P dN�1:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð2Þ

The maximum slope amax is defined as

amax :¼ max
i2f1;2;... ;Ng

ai: ð3Þ

Note that with this type of piecewise affine construction of the
variable-gain element, by choosing N large enough, it is possible to
generate (approximately) arbitrary continuous nonlinearities. Of
course, part of the structure of the nonlinearity is still fixed by
choosing the nonlinearity point-symmetric, an assumption that
can easily be relaxed at the expense of having to tune additional
parameters.

Let us now present conditions for the stability of the closed-
loop system as in Fig. 1 with piecewise affine variable gain ele-
ments as in (2) (see also Fig. 2). These stability conditions will ulti-
mately be employed as constraints in the performance
optimization strategies in Section 3. Input-to-state stability [20]
of the closed-loop system, with respect to time-varying inputs r
and d, see Fig. 1, can be assessed through circle-criterion argu-
ments [14]. Hereto, the closed-loop dynamics in Fig. 1 can be writ-
ten as a Lur’e-type system, see Fig. 3, of the following state-space
form:

_x ¼ Axþ Buþ Bww ð4aÞ

e ¼ Cxþ Dww ð4bÞ

u ¼ �uðeÞ ð4cÞ

with state x 2 Rnx and external inputs wðtÞ 2 Rnw , which typically
consist of wðtÞ ¼ ½rðtÞ;dðtÞ�T , with reference input rðtÞ 2 R and force
disturbance dðtÞ 2 R, see Fig. 1. The linear dynamics from input
u 2 R to output e 2 R is characterized by the transfer function
GeuðsÞ, which can be expressed as

GeuðsÞ ¼ CðsI � AÞ�1B ¼ PðsÞCðsÞFðsÞ
1þ PðsÞCðsÞ : ð5Þ

For a linear system, stability, which can be assessed through the
Nyquist criterion, guarantees a bounded state-response under
bounded inputs acting on the system. For a nonlinear system, this
property of a bounded state-response under bounded inputs, is not
Fig. 3. Lur’e-type description of piecewise affine variable-gain control system.
trivial, and is captured in the notion of input-to-state stability. The
following theorem provides sufficient conditions under which sys-
tem (4) is input-to-state stable (ISS) with respect to the distur-
bance input w.

Theorem 2.1. Consider system (4). Suppose

A1. The matrix A is Hurwitz;
A2. The continuous nonlinearity uðeÞ satisfies the sector condition:
0 6
uðeÞ

e
6 amax; ð6Þ
for all e 2 R; e – 0;
A3 The transfer function GeuðsÞ given by (5) satisfies
ReðGeuðjxÞÞ > �
1

amax
8x 2 R: ð7Þ
Then system (4) is ISS with respect to input w.

The proof follows from circle-criterion-type arguments
[14,21,15].

Remark 2.2. Under a slightly stronger condition on the nonlin-
earity uðeÞ, namely:

A2� The nonlinearity uðeÞ satisfies the incremental sector
condition:
0 6
uðe2Þ �uðe1Þ

e2 � e1
6 amax; ð8Þ
for all errors e1; e2 2 R; e1 – e2

system (4) excited by a bounded piecewise continuous disturbance
input w, will have a unique steady-state solution �x which is
globally exponentially stable, and bounded for all t 2 R [10,22].
Systems with such a uniquely defined globally exponentially stable
steady-state solution (for arbitrary bounded inputs w) are called
exponentially convergent, see e.g. [23,24]. Moreover, if the distur-
bance input w is T-periodic, the unique steady-state solution �x will
be T-periodic as well.
Remark 2.3. Considering the conditions in Theorem 2.1, the fol-
lowing remarks are in place:

� By design of a stabilizing feedback controller CðsÞ and stable
shaping-filter FðsÞ, which may be designed using loop-shaping
arguments, the system matrix A in (4) will be Hurwitz, or equiv-
alently the transfer function GeuðsÞ in (5) will have all poles in
the open left-half complex plane.
� Note that the odd, continuous, piecewise affine nonlinearities u

that we consider in this paper, see Fig. 2 and (2), obey the sector
condition (3) in A2 and also the (more strict) incremental sector
condition (8) in A2⁄.
� The frequency-domain circle-criterion condition (7) can be ver-

ified graphically using (e.g. measured) frequency response data.
The shaping-filter FðsÞ can be used to shape GeuðsÞ (see (5)) in
order to satisfy this condition, which will be illustrated by
examples in Sections 4 and 5.

Note that the stability result in Theorem 2.1 does not depend on
the switching lengths di of the nonlinearity u. Moreover, if the con-
ditions of Theorem 2.1 are satisfied, the gains ai; i 2 f1; . . . ;Ng, can
also be chosen freely in the range ½0;amax�. Note, however, that
these parameters are in fact very important for the performance
of the closed-loop system. The freedom in the choice of the
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switching lengths di and additional gains ai will be used to design
the performance-optimal piecewise affine variable-gain controller
for the disturbance situation at hand. For this purpose, we propose
an iterative L2-based optimization approach in Section 3.

3. Controller synthesis for performance optimization

Typically, in motion control systems, the performance of the
system relates to the tracking error e, see Fig. 1. Therefore, we pro-
pose the following type of tracking error based L2 performance
indicator:

J ¼
Z T

0
e2ðtÞdt; ð9Þ

where the interval ½0; T� is an application-specific performance win-
dow. The goal of the controller synthesis method is to find, possibly
in an iterative way, the optimal parameters of the piecewise affine
characteristic uðeÞ, see Fig. 2, in order to minimize the performance
indicator J in (9). To this end, we constructively shape the nonlin-
earity uðeÞ for the particular disturbances w at hand. Recall that
the linear feedback controller CðsÞ and shaping-filter FðsÞ may be
designed using loop-shaping arguments.

Let the to-be-optimized switching lengths di and gains ai of the
nonlinearity u at an iteration j be collected in a vector hj 2 R2N�1

as

hj ¼ ½a1; . . . ;aN; d1; . . . ; dN�1�T ; ð10Þ

for which we search the performance optimal values

hopt ¼ argmin
hj

J: ð11Þ

The optimization method we consider in this paper is a second-
order gradient-based Quasi-Newton algorithm, see Fig. 4, which is
used to minimize the performance indicator J in (9). Depending on
whether we employ the model-based or data-based approach,
which will be discussed in Sections 3.1 and 3.2 respectively, we
will either:

� Compute the error eðtÞ using the model (4) of the system and
disturbances, with the advantage that this can be done in a
computationally efficient manner,
� Perform an experiment to measure the error signal eðtÞ, with

the advantage that both the effect of model uncertainty and dis-
turbances is directly incorporated in the measurements,

see step 1 in Fig. 4. With the obtained error signal eðtÞ, the perfor-
mance indicator J can be computed in step 2, see Fig. 4.

Only if Jðhjþ1Þ is smaller than JðhjÞ and hjþ1 lies within a region
satisfying the constraints (e.g. induced by the stability conditions
in Section 2), see step 3 in Fig. 4, the point hjþ1 is accepted as
Fig. 4. Schematic of the gradient-based Quasi-Newton optimization algorithm.
the new point, the iteration index j is incrementally increased
by 1, and we proceed to step 5. Otherwise, we proceed to step 4
and perform a line search (looping through steps 1–2–3) until
the new point does satisfy these conditions. More detailed infor-
mation on the constraints on hj (i.e. on the ai’s and the di’s) will
be given in Section 3.3.

If a successful iteration is performed, the iteration index j is
raised by 1 and the new point hjþ1 is accepted, see step 5 in
Fig. 4 (note that not each simulation/experiment in step 1 raises
the iteration index, but only successful iterations raise the iteration
index j by 1). In step 6, The gradients @J

@h
ðhjÞ are either:

� Computed using finite-difference approximations in the model-
based approach.
� Computed using a model of the plant and controller and the

measured tracking error data in the data-based approach.
Details will be given in Section 3.2.

The Hessian estimate Hj is obtained by using subsequent gradi-
ent information in a Broyden–Fletcher–Goldfarb–Shanno (BFGS)
update:

Hjþ1 ¼ Hj þ
qT q
qT p
� HT

jpT pHj

pT Hjp
; ð12Þ

where q ¼ @J=@hðhjþ1Þ � @J=@hðhjÞ;p ¼ hjþ1 � hj, and the initial
Hessian estimate H0 is the identity matrix, see [16] for more details.

The following update is used in step 7 in the Quasi-Newton
algorithm [16] to update the parameters hj of the piecewise affine
nonlinearity:

hjþ1 ¼ hj � H�1
j

@J
@h
ðhjÞ

� �T

; ð13Þ

where h0 is the initial parameter setting. Using the new parameters
hjþ1 we return to step 1.
3.1. Model-based controller synthesis

A model-based approach towards piecewise affine variable-gain
controller synthesis can be valuable in a design-phase of a motion
system, if no machine is yet available. Moreover, if (large-scale)
parameter studies are to be conducted, an experimental approach
can be prohibitive on an industrial machine, and, hence, a model-
based approach in such a case is more suitable.

When using a model-based approach, a model of the plant PðsÞ
and the external disturbances wðtÞ (e.g. a reference rðtÞ and/or a
force disturbance dðtÞ) is needed, see Fig. 1. Typically, a sufficiently
accurate (non-parametric) plant model can be obtained for motion
systems using frequency response function measurements. The
feedback controller CðsÞ and shaping filter FðsÞ are designed by
the control engineer such that these are exactly known.

If we focus on T-periodic disturbances wðtÞ for the model-based
approach, it is known that for a convergent system (4), see Remark
2.2, the steady-state output eðtÞ will also be T-periodic. Practically,
T-periodic inputs will often occur due to the periodicity of the set-
points rðtÞ, while external disturbances such as dðtÞ are often of a
much higher frequency than the set-point such that these can be
modeled (approximated) as being periodic. Given a T-periodic dis-
turbance, and if conditions A1, A3 in Theorem 2.1 and condition
A2⁄ in Remark 2.2 hold, the computationally efficient Mixed-
Time–Frequency (MTF) algorithm [19] can be used to compute
the T-periodic steady-state error eðhjÞ at iteration j, see step 1 in
Fig. 4, and the corresponding performance JðhjÞ in (9), see step 2
in Fig. 4. The main steps of the MTF algorithm can be summarized
as follows (more details can be found in [19]):
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1. Set MTF iteration index l ¼ 0, set �E > �reltol, with �reltol a termi-
nation parameter.

2. Compute the Fourier coefficients W of w using the Fast Fourier
Transform (FFT).

3. Choose an arbitrary initial guess for the Fourier coefficients E0

of the steady-state solution e0ðtÞ (e.g. all zeroes).
4. Compute the time-domain signal e0ðtÞ from E0 using the Inverse

Fast Fourier Transform (IFFT).
5. While �E > �reltol:

(a) Evaluate the nonlinearity ulþ1ðtÞ ¼ �uðelðtÞÞ as in (4c) in
time-domain.

(b) Compute the Fourier coefficients Ulþ1 of ulþ1ðtÞ using the
FFT.

(c) Evaluate the linear dynamics (4a) and (4b) in frequency
domain: Elþ1 ¼ GewW þ GeuUlþ1.

(d) Compute elþ1ðtÞ from Elþ1 using the IFFT.
(e) Check convergence of MTF algorithm, if
�E ¼
kElþ1 � Elk
kElk

> �reltol; ð14Þ
then continue, otherwise terminate the while loop and go to
step 6.

(f) Raise MTF iteration index: l ¼ lþ 1, and go back to step 5a.
6. Set eðhjÞ ¼ elþ1,

where Gew ¼ CðsI � AÞ�1Bw þ Dw and Geu in (5) are the transfer
functions from w to e and u to e, respectively, and �reltol a parameter
to determine sufficient convergence of the algorithm (e.g.
�reltol ¼ 1e� 8). The efficiency of the MTF algorithm hinges on the
fact that the linear dynamics, see step (5c) and the upper part in
Fig. 3, can be evaluated very efficiently in frequency domain, and
the nonlinearity can be computed very efficiently in time-domain,
see step (5a) and the bottom part in Fig. 3, hence the name Mixed-
Time–Frequency algorithm. The algorithm converges to the unique
steady-state solution for any initial guess and can be made as accu-
rate as desired by increasing the number of Fourier coefficients
considered.

In the model-based approach the gradients @J=@h, see step 6 in
Fig. 4, can be efficiently and accurately obtained by finite-differ-
ence approximations. For example, the gradient of J with respect
to parameter d1 can be simply obtained as

@J
@d1
� Jðd1 þ DÞ � Jðd1Þ

D
; ð15Þ

for some finite difference D, which in a model-based approach can
be chosen small in order to obtain an accurate gradient estimate.

3.2. Data-based controller synthesis

In case machine measurements are available, the data-based
machine-in-the-loop method discussed in this section can prove
useful. This method in particular avoids the need to model distur-
bances wðtÞ acting on the system, which otherwise may be a chal-
lenging task in practice on an industrial machine, as for example on
the industrial wafer scanner which will be considered in Section 5.

In order to arrive at a model formulation tailored for a data-
based machine-in-the-loop method, consider the following dis-
crete-time representation of system (4) (with inputs wðtÞ consisting
of a reference input rðtÞ and a force disturbance dðtÞ, see Fig. 1):

xðjþ 1Þ ¼ bAxðjÞ þ bBuðjÞ þ bBrrðjÞ þ bBddðjÞ; ð16aÞ
eðjÞ ¼ bCxðjÞ þ bDrrðjÞ þ bDddðjÞ; ð16bÞ
uðjÞ ¼ �uðeðjÞÞ; ð16cÞ

where j 2 f1; . . . ; kg denotes the discrete time-counter, i.e.
eðj ¼ 1Þ ¼ eðt ¼ 0Þ and eðj ¼ kÞ ¼ eðt ¼ TÞ denotes the relation
between the sampled-data signal and continuous-time signal. Note
that the system matrices in (16) depend on the discretization
scheme and sampling rate ts ¼ T=ðk� 1Þ used. The linear part of
(16) can be put in lifted form, see [18]:

ej ¼ Geuuj þ Gerr þ Gedd; ð17aÞ

uj ¼ �uðejÞ; ð17bÞ

where Geu;Ger ;Ged 2 Rk�k are Toeplitz matrices containing the im-
pulse responses of the relevant transfer functions between u; r;d
and error e respectively, see (5) for transfer function GeuðsÞ, and

where r ¼ ½rð1Þ; . . . ; rðkÞ�T and d ¼ ½dð1Þ; . . . ;dðkÞ�T . At each iteration
j the sampled-data error signals are given by ej 2 Rk, which can be
measured on the machine with the current parameter setting hj

and can straightforwardly be used to compute the sampled-data
equivalent to the L2 performance measure (9):

J ¼ eT
jej: ð18Þ

We will use (17) in the determination of the gradients @J=@hðhjÞ.
Particularly, we will determine the gradients using a combined
model/data based approach using, on the one hand, a model of
the motion system PðsÞ (which is the same model as which is used
in the model-based approach of Section 3.1), CðsÞ;FðsÞ and, on the
other hand, the measured error signals ej, which account for the
(unknown) external disturbances acting on the system. Note that
non-parametric plant models of sufficient accuracy are often avail-
able from model fitting on measured FRF data, and that the mea-
sured error signals ej are part of the iterative procedure, such
that essentially no additional experiments are required for gradi-
ent estimation.

Note that the gradient of an L2 performance measure as in (18)
is given by

@J
@h
¼ 2eT

j
@ej

@h
; ð19Þ

from which it follows that we need the gradients of the error signal
ej with respect to the parameters h:

@ej

@h
¼ @ej

@a1
; . . . ;

@ej

@aN
;

@ej

@d1
; . . . ;

@ej

@dN�1

� �
: ð20Þ

Using (17), we can write the gradients with respect to the
switching lengths di and ai as (see [18])

@ej

@di
¼ � I þ Geu

@u
@ej
ðejÞ

� ��1

Geu
@u
@di
ðejÞ; ð21aÞ

@ej

@ai
¼ � I þ Geu

@u
@ej
ðejÞ

� ��1

Geu
@u
@ai
ðejÞ; ð21bÞ

where @u=@diðejÞ ¼ @u=@diðeð1ÞÞ; . . . ; @u=@diðeðkÞÞ½ �T 2 Rk and the
diagonal matrix @u=@ejðejÞ 2 Rk�k with diagonal entries @u=@e½
ðeð1ÞÞ; . . . ; @u=@eðeðkÞÞ�, and where the gradients @u=@e; @u=@di

8i 2 f1; . . . ;N � 1g and @u=@ai 8i 2 f1; . . . ;Ng are depicted in
Fig. 5. The gradients as in Fig. 5 can easily be derived by considering
the explicit formulas for the line segments of the piecewise affine
function in (2).

The expressions for the gradients @ej=@di and @ej=@ai in (21)
are clearly both model and data based. The model-part comes from
the Toeplitz matrix Geu, based on the sampled-data model (16),
which is obtained through a model of the plant PðsÞ and the ex-
actly known controller CðsÞ and shaping filter FðsÞ. The data-part
comes from the measured error signals ej which are obtained from
the experiments and accounts for the unknown external distur-
bances acting on the system.



Fig. 5. Piecewise affine nonlinearity and the gradients
@u
@e

;
@u
@di

and
@u
@ai

.
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With the estimated gradient @ej=@h, the gradient @J=@h in (19)
can be computed, which can be used in the Quasi-Newton
optimization scheme, see step 6 in Fig. 4. As such, a machine-in-
the-loop optimization approach is developed that optimizes for
the best performance in terms of (18).

Remark 3.1. Of course, also other optimization methods can be
used to find the optimal parameters minimizing the performance
indicator J. In particular, any gradient-based optimization routine,
such as e.g. Gauss–Newton [15], can directly be employed in
combination with the estimated gradients in (19).
Remark 3.2. Although no rigorous results are posed on (local) con-
vexity of the optimization problem, from simulations and experi-
ments it follows that this is the case. In this paper, 3 parameters
are being optimized, which does not allow for the visualization
of the objective function as a function of these parameters. In
[19], 2 parameters of a fixed dead-zone structure are being opti-
mized, which can be visualized, and where it is clear that the opti-
mization problem considered there is locally convex. On the basis
of the results in this paper, we expect such property to remain
valid in case of higher dimensions as considered in this paper.
3.3. Optimization constraints

The parameter vector hj of the piecewise affine variable-gain
controller that will be optimized contains the switching lengths
di and the gains ai. The frequency-domain condition A3 in
Theorem 2.1 gives an upper-bound for the maximum gain amax that
can be used such that input-to-state stability of the closed-loop
system can be guaranteed. Hence, the parameters ai should be
constrained to

0 6 ai 6 amax 8i 2 f1; . . . ;Ng: ð22Þ
Also for the di parameters, we formulate certain constraints
(although not needed from a stability point of view). In order to ex-
plain the rationale behind these constraints, consider the case that
we have N ¼ 2 segments, see Fig. 2, such that we have only one
switching length, namely d1, and two gains a1 and a2. If d1 ¼ 0,
the gain a1 is completely irrelevant, and hence, the gradient
@J=@a1 ¼ 0. As a consequence, a1 will not be altered, most likely
preventing the optimization from finding the optimal piecewise af-
fine variable-gain controller. Similarly, if the measured error signal
does not exceed d1, i.e. d1 P maxj2f1;... ;kgjeðjÞj, the gain a2 will be
completely irrelevant, again preventing a2 from being adapted.
To circumvent these difficulties, the following constraints are for-
mulated for the optimization:

d1 P �1; ð23aÞ
d1 6 �2 max

j2f1;... ;kg
jeðjÞj; ð23bÞ

for some parameters �1 > 0 and 0 6 �2 6 1, e.g. �2 ¼ 0:9. Under
these constraints, a1 and a2 will always influence the response,
which will increase the possibility of finding the optimal variable-
gain controller parameters. An explicit illustration of the positive ef-
fect of including these constraints can be found in [17].

In the general case of N � 1 different di parameters, the con-
straints can be formulated as

di � di�1 P �1 8i 2 f1; . . . ;N � 1g; ð24aÞ

dN�1 6 �2 max
j2f1;... ;kg

jeðjÞj: ð24bÞ

Remark 3.3. Since the performance optimization approach is a
gradient-based one, and the optimization problem is in general not
convex, there will of course be no straightforward guarantees that
a global optimum of the performance map will be found, as with
any gradient-based optimization scheme. Starting the optimization
for different initial parameter sets, as we will do in Sections 4 and
5, can increase the likelihood of finding the global optimum.
Additionally, as mentioned, the constraints (22) and (24) further
support finding the global optimum, see also [17]. Furthermore, if
the problem exhibits an increasingly large number of local optima,
it can be worthwhile to investigate optimization strategies which
are specifically tailored towards finding global optima, such as for
example simulated annealing or ideas from the artificial intelli-
gence community such as particle swarm optimization.
4. Comparative analysis for a motor–load motion system

In this section, we apply and compare both the model-based
and the data-based piecewise affine variable-gain controller syn-
thesis approach to a 4th-order motion (motor–load) system con-
sisting of two rotating inertias interconnected by a flexible shaft,
see Fig. 6. We consider non-collocated actuation, i.e. the case in
which the measurement by the encoder (at the left side) will be
separated from the actuation by the motor (at the right side).

4.1. Modeling and controller design of the motor–load system

Consider the measured frequency response function of the plant
PðjxÞ in Fig. 7, obtained by closed-measurements with a sample
frequency of 4 kHz. From this frequency response data, a 4th-order
plant model PðsÞ is estimated:

PðsÞ ¼ 5:173e8
s4 þ 5:484s3 þ 1361e5s2 : ð25Þ



Fig. 6. Experimental motor–load setup consisting of two interconnected rotating
inertias.
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Fig. 7. Measured frequency response function and 4th-order model fit.
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Fig. 8. Circle criterion condition ReðGeuðjxÞÞ > �1=amax 8x 2 R with amax ¼ 3.
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This plant model is used in the simulations of the model-based
approach, see Section 3.1, and is used in the determination of the
gradients in the data-based approach, see Section 3.2.

A nominal linear low-gain controller CðsÞ (corresponding to
uðeÞ ¼ 0, see Fig. 1) has been designed, using loop-shaping argu-
ments [5], consisting of a lead-filter, notch-filter, integrator, and
a 2nd-order low-pass filter:

CðsÞ ¼ 1:216e� 7s4 þ 3:942e� 6s3

8:510e� 15s6 þ 2:727e� 11s5

� � � þ1:674s2 þ 0:4551sþ 2:199
þ4:045e� 8s4 þ 2:951e� 5s3 þ 9:602e� 3s2 þ s

: ð26Þ

Stability of the linear system can easily be checked by verify-
ing the Nyquist criterion. (Input-to-state) stability of the nonlin-
ear system, however, needs to be assessed through the
conditions of Theorem 2.1. Condition A3 of Theorem 2.1 is
important for the design of the shaping filter FðsÞ, see Fig. 1.
Tuning of FðsÞ aims at adding a significant amount of allowable
additional gain amax while satisfying the circle-criterion condition
(7). Consider Fig. 8, where GeuðjxÞ, see (5), is plotted for the
case without shaping filter FðsÞ (i.e. FðsÞ ¼ 1). If no shaping filter
FðsÞ is used, the maximum additional gain that can be put on
the system is amax ¼ �1=� 0:75 ¼ 1:3. By using a notch filter
FðsÞ ¼ ðxp=xzÞ2 s2 þ 2bzxzsþx2
z

� �
= s2 þ 2bpxpsþx2

p

� 	
, where

xp ¼ xz ¼ 17 � 2p rad/s, bp ¼ 2, and bz ¼ 0:4, a higher additional
gain amax ¼ 3 is allowed as indicated by the dashed vertical line
in the circle criterion plot of Fig. 8. Considering piecewise affine
nonlinearities as in Fig. 2 with ai 6 amax 8i 2 f1; . . . ;Ng, see also
Remark 2.3, guarantees that condition A2 (and also A2⁄, see
Remark 2.2) is satisfied. Lastly, since CðsÞ has been designed to
be a stabilizing controller, and FðsÞ is a stable filter, condition
A1 of Theorem 2.1 is satisfied, see also Remark 2.3. As a result,
conditions A1–A3 are satisfied, which guarantees the closed-loop
system with piecewise affine variable-gain controller is input-
to-state stable.

Remark 4.1. A possible extension to the piecewise affine variable-
gain controller synthesis could be to optimize the parameters of
the filter FðsÞ for performance as well. However, through the
circle-criterion condition (7) this would also directly influence
stability conditions. Whereas now, stability guarantees and per-
formance optimization are separated, such an extension would
destroy such separation and render the optimization problem
more complex (even more so since more parameters would have to
be optimized for).

The nominal linear low-gain controller, see Fig. 1 with uðeÞ ¼ 0,
is given by CðsÞ. The linear high-gain controller, see Fig. 1 with
uðeÞ ¼ amaxe, is given by CðsÞð1þ amaxFðsÞÞ. The high-gain control-
ler induces better low-frequency tracking properties, but due to
the waterbed effect, this also induces a (high) frequency region
in which the tracking properties degrade. This waterbed effect is
clearly visible in the sensitivity characteristics of the closed-loop
system,

SðjxÞ ¼ 1
1þ PðjxÞCðjxÞ ; ð27Þ

SðjxÞ ¼ 1
1þ PðjxÞCðjxÞð1þ amaxFðjxÞÞ

; ð28Þ

for the low-gain and high-gain setting, respectively, see Fig. 9.

4.2. Disturbance specification

In this section, we will specify two illustrative disturbance situ-
ations. We will consider these particular disturbance situations in
order to clearly illustrate that the optimal piecewise affine nonlin-
earity u depends on the disturbance situation at hand, and that
this optimal u can be designed using the model-based and data-
based optimization approaches. We consider two T-periodic refer-
ence signals rðtÞ, with T ¼ 2, that should be tracked (and set
dðtÞ ¼ 0 here, see Fig. 1), both of which are shown in Fig. 10. Both
non-stationary disturbances have low-frequency (below the band-
width) contents of 5 Hz at the start, and high-frequency (above the
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bandwidth) contents of 15 Hz at the end, see Figs. 9 and 10. In Sec-
tion 5, an industrial wafer scanner will be considered in which the
disturbances acting on the system are unknown (and typically
more complex).

4.3. Performance measure

The performance measure we use to quantify the performance
of the nonlinear controllers is of the integral squared error type
(9). However, in order to quantify the effect of low-frequency
(i.e. below the bandwidth) performance improvement and high-
frequency (i.e. above the bandwidth) performance degradation
when increasing the controller gain, we propose to use the follow-
ing L2 steady-state performance indicator:

J ¼ clf Jlf þ chf Jhf ; ð29Þ

where

Jlf ¼
Z T

0
e2

lf ðtÞdt; Jhf ¼
Z T

0
e2

hf ðtÞdt; ð30Þ

where T ¼ 2 s is the period of the reference rðtÞ in Fig. 10, and
eðtÞ ¼ elf ðtÞ þ ehf ðtÞ. The low-frequency part of the steady-state er-
ror elf ðtÞ is obtained by low-pass filtering1 the error signal eðtÞ with

a 2nd-order low-pass filter ClpðsÞ ¼ x2
lp= s2 þ 2blpxlpsþx2

lp

� 	
, where

xlp ¼ 10 � 2p rad/s (around the bandwidth), and blp ¼ 0:7. The
high-frequency part is given by ehf ðtÞ ¼ eðtÞ � elf ðtÞ. The coefficients
clf P 0 and chf P 0 in (29) allow to balance the importance of both
the low-frequency and high-frequency part of the error. In this sec-
tion, the nominal linear low-gain controller is normalized to yield
J ¼ 1. This is achieved by selecting clf and chf in such a way that
1 Since we do this off-line in-between simulations/experiments, the filtering can be
applied in both forward and recursive direction, to avoid phase distortion [25].
clf Jlf ¼ chf Jhf ¼ 0:5, i.e. the low-frequency and high-frequency part of
the error signal are considered equally important.

Remark 4.2. Note that since the low-pass filtering operation is
linear, the gradients @elf =@h can simply be obtained by computing
the low-pass filtered version of @e=@h in (20). The high-frequency
part simply follows from @ehf =@h ¼ @e=@h� @elf =@h.

The piecewise affine nonlinearity uðeÞwe will consider in the fol-
lowing subsections consists of N ¼ 2 segments, see Fig. 2. In general,
it is recommended to start with a small value of N in order to keep
the computational burden of the optimization problem low. Espe-
cially in situations where two distinct controllers can be preferred
at different times, it is expected that a piecewise affine variable-gain
controller with N ¼ 2 can already yield improved performance. For
more complex disturbance situations, nonlinearities with N > 2
can possibly yield improved performance, but at the expense of
computational complexity of the optimization problem.

The constraint in (22) is used for the gains a1 and a2 and the
constraints (23) are used for the parameter d1 in both the model-
based and data-based approach. We use �2 ¼ 0:8 to prevent d1

from exceeding the maximum absolute error and �1 ¼ 0:05 rad
for disturbance situation 1, and �1 ¼ 0:02 for disturbance situation
2, to prevent d1 from becoming zero, see Section 3.3. First we will
discuss the experimental results with the data-based approach in
Section 4.4 after which we will compare the result with the mod-
el-based approach in Section 4.5.
4.4. Data-based results

The results of the tuning of the piecewise affine variable-gain
controllers, using data-based optimization, see Section 3.2, are
shown in Fig. 11. The optimizations are done for 5 different sets

of initial parameters h0 ¼ a1;0;a2;0; d1;0½ �T . The upper-plots show
the error-response for the linear low-gain controller
(CðsÞ;uðeÞ ¼ 0), the linear high-gain controller (CðsÞð1þ aFðsÞÞ;
uðeÞ ¼ amaxe), and the optimal piecewise affine variable-gain con-
troller synthesized for the disturbance situation at hand. The other
plots show the iteration history as a function of the iteration index
j and the optimal nonlinearity uðeÞ found for the disturbance sit-
uation at hand. A fixed number of 25 experiments was used in the
optimizations (note that only successful iterations, see Fig. 4, lead
to a raise by 1 of the iteration index j).

For disturbance situation 1, see the left part in Fig. 11, the opti-
mal piecewise affine variable-gain controller synthesized (for all
different starting points) is a dead-zone variable-gain controller
with a1 ¼ 0;a2 ¼ 3 and d1 ¼ 0:19 rad with corresponding perfor-
mance indicator J ¼ 0:72. The variable-gain controller outperforms
the linear low-gain controller with J ¼ 1 and high-gain controller
with J ¼ 2:42. The reason for the fact that the dead-zone for u is
now optimal is as follows. When comparing to the low- and
high-gain controller in Fig. 11, the variable-gain controller does
not induce any additional gain if a high-frequency small-amplitude
disturbance is present, thereby performing equally well as the low-
gain controller. However, when only a low-frequency large-ampli-
tude disturbance is present, additional gain is induced such that
the low-frequency disturbance suppression is improved compared
to the case of low-gain linear control.

Remark 4.3. For the considered disturbance situations, an increase
to N ¼ 3 segments, see Fig. 2, still yields for optimal nonlinearities
a dead-zone characteristic and a saturation characteristic. This
confirms that for the illustrative disturbance situations considered,
N ¼ 2 is sufficient in order to improve the performance of the
system. More complex disturbance situations however may benefit
from nonlinearities with N > 2.



Fig. 11. Experimental data-based results of the iteration history of piecewise affine variable-gain controller synthesis for N ¼ 2 segments and five different initial parameter
sets. Results for disturbance situation 1 (left) leading to an optimal dead-zone characteristic and results for disturbance situation 2 (right) leading to an optimal saturation
characteristic. The measured error signals are used to compute the performance J.
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The optimal piecewise affine variable-gain controller for distur-
bance situation 2, see the right part in Fig. 11, consists of a satura-
tion nonlinearity with a1 ¼ 3;a2 ¼ 0 and d1 ¼ 0:028 rad with
corresponding performance indicator J ¼ 0:756. The variable-gain
controller outperforms the linear low-gain controller with J ¼ 1
and high-gain controller with J ¼ 1:55. The additional gain within
the saturation band achieves equal low-frequency disturbance
suppression to the high-gain controller. However, by limiting the
amount of additional gain for jej > d1, the high-frequency distur-
bance amplification is kept to a minimum, being almost equal to
that of the low-gain controller.

Note that, depending on the disturbance situation that is pres-
ent for the experimental setup, the data-based controller synthe-
sis method automatically finds the best suitable piecewise affine
characteristics. Moreover, the shapes of the nonlinearities uðeÞ
being optimized (dead-zone and saturation) correspond well to
our intuition, considering the two different disturbance situa-
tions. This makes the data based method a valuable tool for auto-
mated tuning of the piecewise affine variable gain controller. In
Section 4.5, we compare the results to the model-based approach
from Section 3.1.

4.5. Model-based vs. data-based

In order to compare the data-based results to the model-based
optimization approach from Section 3.1 (without repeating
iteration history plots as in Fig. 11), consider the comparison in
Fig. 12 for disturbance situation 1. Here, we plot the iteration
history of both optimization approaches (with experiments for
the data-based method, and simulations using the MTF algorithm
for the model-based method) for the same initial parameter set
h0 used to initialize both optimizations (for the model-based
method, a stopping criteria related to the norm of the difference
between two subsequent evaluations of J has been used). In the
lower-plots the optimization history is shown as a function of
the iterations j. Clearly, both methods converge to the same type
of optimal variable-gain controller, namely a dead-zone character-
istic for u, with a1 ¼ 0;a2 ¼ 3 and d1 � 0:2 rad. The time-domain
response is shown in the upper-plot of Fig. 12, from which it can
be concluded that the match between simulation and experiment
is fairly good.

To further compare the model-based approach with the data-
based approach, consider the results in Table 1, which show the
parameters of the optimal variable-gain controllers found and
the related optimal performance indicators for both performance
situations. Clearly, the model-based approach gives similar results
for the optimal variable-gain controller parameters and associated
optimal performance indicator J, which is also visualized in Fig. 12.
Of course this match between experiments and simulations hinges
on the fact that the references rðtÞ that are supplied to the system
are well-known in the situation considered in this section. Never-
theless, the model-based optimizations are computationally very



Fig. 12. Comparison of the data-based optimization approach (measured error signals) and model-based optimization approach (simulated error signals) for disturbance
situation 1.
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efficient with the MTF algorithm (matter of seconds vs. several
minutes for the experiments) which makes it a good method for
(large-scale) parameter studies or situations where no machine is
available yet.

In this section, the model-based and data-based controller syn-
thesis method have been applied to a motor–load motion system
in order to synthesize performance-optimal piecewise affine vari-
able-gain controllers tuned for illustrative disturbance situations.
Both methods have been successfully applied, in order to automat-
ically shape the nonlinearity u depending on the disturbance situ-
ation at hand.

A prerequisite for using the model-based method is that a
reasonable model of the disturbances acting on the system is
available, since these are crucial for the model-based performance
evaluation of the closed-loop system. If such a model of the distur-
bances is not readily available, but a machine is available for
measurements, one can still utilize the data-based machine-in-
the-loop method, see Section 3.2. This will be the case in the next
section where we will consider an industrial wafer scanner as
being representative for a class of nowadays nano-positioning mo-
tion systems.
Table 1
Comparison of optimal piecewise affine variable-gain controllers synthesized using
model-based approach (using simulations) and data-based approach (using
experiments).

Disturbance 1 Disturbance 2

Model-based Data-based Model-based Data-based

a1 0 0 3 3
a2 3 3 0 0
d1 0.179 rad 0.19 rad 0.025 rad 0.028 rad
J 0.698 0.720 0.729 0.756
5. Application to an industrial wafer scanner

The piecewise affine variable-gain control strategy and data-
based performance optimization strategy will be applied in this
section to a high-precision wafer scanner [26]. A wafer scanner is
a system used to produce integrated circuits (IC’s), see Fig. 13.
Light, emitted from a laser, falls on a reticle (mounted on a reticle
stage), which contains an image of the chip to be processed. The
light is projected onto a wafer (mounted on a wafer stage) by
passing through a lens system. The effect of this illumination, in
combination with a photo-resist process results in the desired IC
Fig. 13. Schematic representation of the scanning process in a wafer scanner with
the reticle stage (top) containing the pattern and wafer stage (bottom) with wafer
containing the IC’s.
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Fig. 15. Circle criterion condition ReðGeuðjxÞÞ > �1=amax 8x 2 R with amax ¼ 4 for
the wafer scanner.
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pattern being produced. The reticle-stage and wafer-stage both
perform high-speed scanning motions in order to efficiently pro-
cess the wafers.

The smallest features that can be manufactured on IC’s nowa-
days are in the order of 10 nm [26]. The positioning of the wafer
scanner needs to be accurate enough in order to produce such
small features; therefore, the allowable tracking error during expo-
sure of the wafer is only a few nanometers. In this section, we will
focus on the wafer stage, see Fig. 13, in particular on the y-direction
of the wafer stage. Typically, for a wafer stage application, as stated
in [26], ‘‘the lithographic tools design needs to be robust, avoiding
elaborate manual adjustments on a machine-to-machine basis’’.
Therefore, to facilitate an automated performance-based tuning
of the piecewise affine variable gain controller, we will use the
data-based optimization in this section.

5.1. Stability conditions

Stability of the nonlinear variable-gain controlled wafer scanner
can be guaranteed by applying Theorem 2.1. A stabilizing nominal
linear low-gain controller CðsÞ for the y-direction is present (by
default) on the machine, see Fig. 14 for the resulting (measured)
low-gain open-loop frequency response function PðjxÞCðjxÞ and
high-gain open-loop frequency response function PðjxÞCðjxÞ
ð1þ amaxFðjxÞÞ. The feedback controller CðsÞ, together with the de-
sign of a stable shaping filter FðsÞ, guarantees that condition A1 of
Theorem 2.1 is satisfied.

The shaping filter FðsÞ is again designed using the graphical fre-
quency-domain circle-criterion condition (7) as shown in Fig. 15
(based on experimental data), in order to obtain a significant
amount of allowable additional gain amax. The current design of
FðsÞ uses a notch filter and a low-pass filter, allowing a maximum
gain of amax ¼ 4 to be used in the variable-gain controller, see
Fig. 15. As a consequence, conditions A2 and A3 of Theorem 2.1
are also satisfied, hence, the closed-loop system is guaranteed to
be input-to-state stable. Note that by restricting amax to even smal-
ler values, robustness can be added to the nonlinear control design.

5.2. Performance specification

The illumination process on the wafer scanner takes place dur-
ing the constant velocity part of the wafer stage setpoint during the
time-interval t 2 ½0:01;0:04� s. An acceleration part precedes this
constant velocity part of the setpoint during the time-interval
t 2 ½0;0:01� s. The aim of the piecewise affine variable-gain control-
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Fig. 14. Open-loop characteristic PðjxÞCðjxÞ of the wafer scanner for the low-gain
controller and high-gain controller.
ler is to obtain smaller errors prior to scanning (during accelera-
tion) without deteriorating the performance during scanning,
since this allows for an improvement in the speed of the scanning
process, which, in turn, yields more throughput (i.e. higher
machine-productivity). Therefore, we will use the following spe-
cific non-stationary performance indicator for the wafer scanner
application:

J ¼ c c1

Z 0:01

0
eðtÞ2 dt þ c2

Z 0:04

0:01
eðtÞ2 dt

� �
; ð31Þ

and use c1 ¼ 1 and c2 ¼ 4 to emphasize the importance of the error
during the scanning process. Since the measured error signals are of
nm order of magnitude, we use c ¼ 1e19 to scale J up to values with
unitary order of magnitude. For optimizing the variable-gain
element with N ¼ 2 segments, we use constraints (22) with
amax ¼ 4 and constraints (23) with �1 ¼ 1 nm and �2 ¼ 0:8. We
choose N ¼ 2, in order to limit the computational burden of the
optimization problem, and investigate whether this provides en-
ough freedom in the design of the nonlinearity to improve perfor-
mance. From practical experience with the control of wafer stages
it is known that two distinctive non-stationary disturbance effects
are visible in closed-loop error measurements, as we will see in
the following section, which further motivates our choice for
N ¼ 2 segments.

5.3. Data-based optimization results

The y-direction of the wafer stage is only a small part of the
complete machine in which many different movements and
sources of disturbances can be present that, due to cross-talk for
example, disturb the y-direction. Therefore, we will rely in this sec-
tion on the data-based optimization approach in order to optimize
the piecewise affine variable gain controller. This machine-in-the
loop approach will incorporate the effects of the disturbances act-
ing on the system through the measured tracking-error responses,
see Section 3.2, that will serve as input for deriving the gradients,
see (21).

Three optimizations of the piecewise affine function u have
been carried out using the data-based approach for three different
initial parameter sets h0 ¼ ½a1;0;a2;0; d1;0�T . The measured time-
domain tracking-error responses of the low-gain, high-gain and
the optimal piecewise affine variable-gain controller synthesized
(from measurement set 3) are shown in Fig. 16. We care to stress
here that a well-tuned feed-forward has been designed for the
system, resulting in the nm-scale tracking errors as depicted in
the figure. However, the feed-forward design is not perfect; here,
the remaining performance improvement is achieved by means
of (nonlinear) feedback. In this scope, we also note that the track-
ing errors shown in Fig. 16 show limited recurrence (since this part



Fig. 17. Experimental results of iteration history for three different initial param-
eter sets (measurement set 1, 2, 3) as a function of the iterations j.
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is already compensated for by the feed-forward controller), but
feature the following similar characteristics from experiment to
experiment: during the acceleration phase from t 2 ½0;0:01� s, a
low-frequency contribution in the error is present which can be
well suppressed by additional gain of the controller. In the scan-
ning phase, however, from t 2 ½0:01; 0:04� s, the error signal is
mostly dominated by high-frequency contents, which is amplified
under additional controller gain. This is clearly visible from the
measured linear low-gain and high-gain controller responses. The
optimal piecewise affine variable-gain controller induces some
additional gain (a1 ¼ 1:2) for small errors jej 6 d1 ¼ 3:3 nm and
large additional gain a2 ¼ 3:9 for errors exceeding d1, see Fig. 18
(for measurement set 3).

The optimization history obtained is shown in Fig. 17. The opti-
mizations were terminated manually, in case improvement in the
performance J was no longer observed (with 9, 11 and 12 experi-
ments respectively for set 1, 2 and 3). The fact that only 3 success-
ful iterations were needed for set 1, is due to the fact that the
optimization parameters (apparently) have starting values close
to the optimal values. Note once more that the amount of success-
ful iterations j (resulting in a lower J), see Fig. 4, can be lower than
the amount of experiments performed. All three optimizations
converged to the same qualitative shape of the nonlinearity, see
Fig. 18, where small additional gain is used for small errors, but
large additional gain is used for large errors exceeding d1. The
quantitative discrepancy between the three optimal nonlinearities
may be caused by the fact that real measurements on an industrial
machine are performed, where the disturbances acting on the sys-
tem differ slightly from trial to trial, as was the case for example
with the experiments in Section 4. However, the three controllers
obtained for the three different series of optimizations do yield
very similar performance in terms of the performance indicator J,
namely J ¼ 2:93; J ¼ 3 and J ¼ 2:92, for measurement sets 1, 2,
and 3, respectively (the optimal response in set 3 is shown in
Fig. 16). The nonlinear controllers clearly outperform the linear
controller limits for the low-gain controller with J ¼ 5:04 and
high-gain controller with J ¼ 10:23. From a robustness point of
view, it is beneficial that the three quantitatively different piece-
wise affine variable gain controllers give similar performance,
since this indicates that the performance is not highly sensitive
to the optimization parameters near the optimum (albeit for a
slightly different disturbance situation).
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Fig. 16. Measured time-domain error response of low-gain controller, high-gain
controller and optimal piecewise affine variable-gain controller (from measurement
set 3 in Fig. 17).
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Fig. 18. Optimal piecewise affine nonlinearities uðeÞ for the three different
measurement sets.
Although the disturbance situation changes from experiment to
experiment for the wafer stage application, the error-response has
similar (non-repetitive) characteristics for every experiment
(a low-frequency contribution during the acceleration phase of
the reference, and a high-frequency contribution afterwards). If
the disturbance situation changes significantly over time, then
employing a single variable-gain controller setting will likely be
sub-optimal. In such a case, a re-tuning of the parameters, or an
optimization strategy that stays operational during the operation
of the machine, can be two viable options to achieve increased
performance.

Remark 5.1. In case stochastic components are present in the
measured error profiles, as in the wafer stage application for
example, a possible extension to the presented deterministic
optimization approach can be to apply optimization methods that
take into account such stochasticity. In general, this will require
additional measurements that can be used to filter out the
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stochastic components, to give unbiased estimates of the perfor-
mance measure and gradients. Iterative feedback tuning concepts,
see e.g. [27–30], can possibly be used in this context, although it
should be investigated whether these concepts apply to the
nonlinear piecewise affine variable-gain control feedback configu-
ration as considered in this paper.

In this section, the data-based approach has been applied suc-
cessfully to the performance-based tuning of a piecewise affine
variable gain controller for a wafer stage of an industrial wafer
scanner. The disturbance modeling in such a nano-positioning
industrial machine can be very challenging. The data-based meth-
od therefore uses measured error-signals each iteration in order to
account for the disturbances acting on the system. By the use of
readily available models of the plant and (exactly known) control-
ler, no additional experiments are needed to determine the
gradients needed in the optimization, keeping the number of
experiments needed for the optimization small. The results show
that an automated performance-based synthesis of the piece-
wise-affine structure of the variable-gain is possible, and adapts
to the disturbance situation at hand. This is crucial for perfor-
mance-based machine-specific tuning of the industrial machines
in the field.

6. Conclusions

In this paper, we have proposed a generic piecewise affine non-
linearity in a variable-gain motion control context with the aim to
improve the performance compared to linear motion controllers.
By not fixing the shape of the nonlinearity a priori, we developed
a strategy to synthesize a variable-gain controller that optimizes
the performance for the particular disturbance situation at hand.
We proposed a computationally efficient model-based approach
and a data-based machine-in-the loop approach, giving a ma-
chine-dedicated calibration procedure. We have illustrated the
controller synthesis approach on an experimental setup, where a
good match between the model-based and the data-based method
was obtained. The data-based method was also applied to an
industrial wafer scanner, where improved scanning stage perfor-
mance is demonstrated using piecewise affine variable-gain con-
trol, compared to the linear controllers. Two piecewise affine
segments appeared to be sufficient to improve the performance
in the considered applications. The piecewise affine description
of the variable-gain element allows for a generic class of nonlinear-
ities to be synthesized, paving the way to general performance-
based nonlinear controller design. In this respect, we consider an
extension in the line of general linear-parameter-varying control-
lers for linear motion systems an interesting research topic for
future work.
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