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Abstract. A response approximation method for stochastically excited, nonlinear, dynamic systems is presented.
Herein, the output of the nonlinear system is approximated by a finite-order Volterra series. The original nonlinear
system is replaced by a bilinear system in order to determine the kernels of this series. The parameters of the
bilinear system are determined by minimizing, in a statistical sense, the difference between the original system
and the bilinear system. Application to a piecewise linear model of a beam with a nonlinear one-sided support
illustrates the effectiveness of this approach in approximating truly nonlinear, stochastic response phenomena in
both the statistical moments and the power spectral density of the response of this system in case of a white noise
excitation.
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1. Introduction

Stochastically excited nonlinear dynamic systems are often encountered in practice. Examples
are nonlinear suspensions in vehicles on random road surfaces, high-rise buildings forced by
wind or earthquakes, and offshore structures excited by wave motions at sea.

The simulation of the stochastic response of such systems [1] is, in general, very time-
consuming since accurate estimates of the response statistics require the simulation of long
(or many) time-series. Therefore, response approximation methods are needed. For strongly
nonlinear systems the statistical linearization technique [2] generally fails to provide accurate
results.

To overcome these problems, here a nonlinear approximation method, called statistical
bilinearization, is presented. Herein, the input-output relation of the nonlinear system is de-
scribed using a Volterra series [3]. Of course, the computational efficiency using this de-
scription should be significantly larger than that of the simulation of the response of the
original nonlinear system. Therefore, a finite-order Volterra series will be used to describe
the input-output relation of the nonlinear system. Finite-order Volterra systems are systems
with polynomial nonlinearities. Such a nonlinear approximation technique using polynomial
nonlinearities can be seen as a natural extension of linearization. In order to determine the
Volterra kernels in the Volterra series, the original, nonlinear system is replaced by a bilinear
system which has the same Volterra kernels up to a certain order [4]. The parameters of this
bilinear system are determined to ensure that it describes the original system optimally in a
statistical sense. Besides the fact that the replacement of the original system by a finite-order
Volterra model gives us the advantage of computational efficiency, the gradual extension of
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the replacing models from linear towards polynomial will enhance our understanding of the
nonlinear response phenomena of the original system.

The method of statistical bilinearization is applied to a piecewise linear model of a beam
with a nonlinear one-sided support. The piecewise linear model can represent many systems
with one-sided stiffness phenomena. Practical examples are elastic stops in vehicle suspen-
sions, snubbers on solar arrays connected to satellites [5], suspension bridges or models used
in the offshore industry [6].

The basic ideas behind the use of an input-output description for the nonlinear system
based on Volterra series are briefly described in Section 2. In Section 3, a technique called
bilinearization (or Carleman linearization) is used to construct a finite-order Volterra model.
In Section 4, the statistical bilinearization technique is proposed and applied to the piecewise
linear system. In Section 5, some results of the application of the statistical bilinearization
technique to the piecewise linear model of a beam with a nonlinear one-sided support are
discussed and compared to those of simulation and statistical linearization. Conclusions will
be presented in Section 6.

2. Problem Definition

Consider an affine, nonlinear system with the following state equations:

ẋ(t) = a(t, x(t)) + b(t, x(t)) u(t),

y(t) = c(t) x(t), t ≥ 0, x(0) = 0, (1)

where x(t) is an n-dimensional state column-vector, while u(t) is a scalar input and y(t) a
scalar output. Furthermore, a(t, x(t)) and b(t, x(t)) are time-dependent vectorfields on R

n,
with a(t, 0) = 0 ∀ t , and c(t) is an n-dimensional row-vector. It is assumed that a, b and c are
analytic functions in x and continuous in t .

In [4], it is stated that, when a solution of the state Equation (1) exists for u(t) = 0
(t ∈ [0, T ]) and initial condition x(0) = 0, there is a Volterra system representation [3]
for (1):

y(t) =
t∫

0

h1(t − τ1) u(τ1) dτ1 +
t∫

0

τ1∫
0

h2(t − τ1, t − τ2) u(τ1) u(τ2) dτ1 dτ2 + · · ·

+
t∫

0

. . .

τk−1∫
0

hk(t − τ1, . . . , t − τk) u(τ1) . . . u(τk) dτ1 . . . dτk + · · · . (2)

Herein, hk(t − τ1, t − τ2, . . . , t − τk), k = 1, 2, . . ., is called the kth-order Volterra kernel.
The first term in (2) corresponds to the well-known convolution representation of linear input-
output systems. The subsequent terms in (2), for k = 2, 3, . . ., represent natural extensions of
the linear system using polynomial, nonlinear terms. Note that the polynomial nature of this
representation enters through the polynomial structure in inputs in the integrand. The Volterra
series (2) converges on some interval t ∈ [0, T ] when |u(t)| < ε for some sufficiently small
ε > 0. So, this means that the convergence of the Volterra representation, which is in general
not exponential, is only guaranteed on a bounded time interval and for an input signal which is
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sufficiently small. Note that causality is implied through the integration limits of the multiple
integrals in (2); for each t , y(t) merely depends on {u(ν), ν ∈ [0, t]}.

Since in general solving (1) for a given arbitrary input function u(t) is a difficult or even
impossible task, many people have tried some kind of approximation technique to describe
the input-output behaviour of this system in an approximate way. In this perspective, we will
aim to determine a polynomial input-output expression for (1) up to order p by truncating the
series in (2):

y(t) =
t∫

0

h1(t − τ1)u(τ1) dτ1

+
p∑

k=2

t∫
0

. . .

τk−1∫
0

hk(t − τ1, . . . , t − τk)u(τ1) . . . u(τk) dτ1 . . . dτk, (3)

which should approximate (1) sufficiently close at least on a finite time interval and for small
enough inputs. Of course, in general, the accuracy of the approximation using (3) depending
on a specific choice for the order of the approximation p is very difficult to determine due to
the fact that one has little insight into the rate of convergence of the Volterra series. The main
issue in the characterization of such system is the determination of hk(t−τ1, t−τ2, . . . , t−τk),
k = 1, 2, . . . , p. Hereto, the bilinearization procedure, as described in Section 3, will be used.

3. Bilinearization

In this section, a method called bilinearization or Carleman linearization [4] is described.
The idea is that an affine, nonlinear system with analytic nonlinearities, as in (1), can be
approximated, on a finite time interval and for small inputs, by a system with bilinear state
equations of the form [7]:

ẋ(t) = A(t) x(t) + D(t) x(t) u(t) + e(t) u(t),

y(t) = C(t) x(t), t ≥ 0, x(0) = 0, (4)

where x(t) is an nb-dimensional column-vector with state variables (nb = ∑p

l=1 n
l), while

u(t) and y(t) are scalar inputs and outputs, respectively. Furthermore, A(t) and D(t) are
nb×nb matrices, e(t) is an nb-dimensional column-vector and C(t) is an nb-dimensional row-
vector. Moreover, it is important to note that analytical expressions for the Volterra kernels of
such a bilinear system are available [8]. One can truncate the resulting Volterra system at
a specific order to obtain a finite-order Volterra system description as in (3). This system
description can then be used to approximate the response statistics of the bilinear system and,
thus, to approximate the response statistics of the original, nonlinear system (1).

3.1. THE BILINEARIZATION TECHNIQUE

Here, the bilinearization technique will be described briefly. We aim to determine a poly-
nomial input-output expression for (1) up to order p, as in (3), which approximates (1)
sufficiently close. To do so, first, bilinear state equations, as in (4), have to be constructed
in such a way that these can be represented by the same Volterra kernels (up to order p) as
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the system in (1). Next, the input-output relation for that bilinear system can be determined.
Then, an approximation for the input-output relation of (1) is available and can be used to
approximate the response statistics of this system.

In order to find an approximate description of (1) in terms of a system with bilinear state
equations, the right-hand side of (1) can be replaced by a power series representation:

a(t, x(t)) = A1(t) x(t) + A2(t) x(2)(t) + · · · + Ap(t) x(p)(t) + · · · ,
b(t, x(t)) = B0(t) + B1(t) x(t) + · · · + Bp−1(t) x(p−1)(t) + · · · , (5)

where the superscript notation (p) refers to the repetitive application of the Kronecker product:

x(2)(t) = x(t) ⊗ x(t). (6)

For matrices P and Q with dimensions np × mp and nq × mq , respectively, the Kronecker
product is defined as a (npnq) × (mpmq) matrix:

P ⊗ Q =



P11Q . . . P1mp
Q

...
...

...

Pnp1Q . . . Pnpmp
Q


 . (7)

Using (7), (6) can be expressed as

x(2) =




x1x

x2x
...

xnx


 = [

x2
1 x1x2 . . . x1xn x2x1 x2

2 . . . x2xn . . . xnx1 . . . x2
n

]T
(8)

for an n-dimensional column-vector x. Note that x(p)(t) is an np-dimensional column-vector
and Ap(t) is an n × np matrix. Using (5), (1) can be rewritten as

ẋ(t) =
p∑

k=1

Ak(t) x(k)(t) +
p−1∑
k=0

Bk(t) x(k)(t) u(t) + · · · ,

y(t) = c(t) x(t), x(k)(0) = 0, t ≥ 0. (9)

In order to determine the first p kernels corresponding to (9), differential equations are de-
veloped for x(j)(t) [4]:

d

dt
[x(j)(t)] =

p−j+1∑
k=1

Aj,k(t) x(k+j−1)(t) +
p−j∑
k=0

Bj,k(t) x(k+j−1)(t) + · · · , (10)

with x(j)(0) = 0 (for j = 1, . . . , p), A1,k = Ak and, for j > 1,

Aj,k(t) = Ak(t) ⊗ I n ⊗ · · · ⊗ In + I n ⊗ Ak(t) ⊗ · · · ⊗ In

+ · · · + I n ⊗ · · · ⊗ In ⊗ Ak(t). (11)
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It should be noted that there are j − 1 Kronecker products in each term and j terms. The
notation for Bj,k(t) is likewise. Note that I n represents an n × n identity matrix. Now, by
setting

x⊗(t) =




x(1)(t)

x(2)(t)
...

x(p)(t)


 , (12)

(10) can be written as a bilinear state equation neglecting terms of order larger than p, i.e.
x(p+i)(t), i > 0:

d

dt
x⊗(t) =




A11 A12 . . . A1p
0 A21 . . . A2,p−1
0 0 . . . A3,p−1
...

...
...

...

0 0 . . . Ap1




x⊗(t)

+




B11 B12 . . . B1,p−1 0
B20 B21 . . . B2,p−2 0
0 B30 . . . B3,p−3 0
...

...
...

...

0 0 . . . Bp0 0




x⊗(t)u(t) +




B10
0
0
...

0




u(t),

y(t) = [
c(t) 0 . . . 0

]
x⊗(t), x⊗(0) = 0, (13)

where x⊗(t) is an nb-dimensional column-vector of state variables (nb = ∑p

l=1 n
l). This

equation is called a Carleman linearization or the bilinearization of the linear-analytic state
equation (1).

3.2. INPUT-OUTPUT RELATION FOR BILINEAR STATE EQUATIONS

Here, the Volterra representation of (13) will be described. Since the Volterra representation of
(13) coincides with that of (1) up to order p, we can now use (13) to evaluate the input-output
behaviour of (1). Note that (13) is a bilinear system as in (4).

It can be shown that the input-output relation of the bilinear state equations (4) can be
written as [4]:

y(t) =
∞∑
k=1

t∫
0

τ1∫
0

. . .

τk−1∫
0

C(t) #(t, τ1) D(τ1) #(τ1, τ2) D(τ2)

. . . D(τk−1) #(τk−1, τk) e(τk) u(τ1) . . . u(τk) dτk . . . dτ1, (14)

where #(t, τ ) is the transition matrix of A(t) defined by the Peano–Baker series:

#(t, τ ) = I +
t∫

τ

A(τ1) dτ1 +
t∫

τ

A(τ1)

τ1∫
τ

A(τ2) dτ2 dτ1
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Figure 1. Beam system with a one-sided elastic support.

+ · · · +
t∫

τ

A(τ1)

τ1∫
τ

A(τ2) . . .

τk−1∫
τ

A(τk) dτk . . . dτ1 + · · · . (15)

Note that in (14) there is no contribution coming from the initial condition x(0) since in (4) it
was assumed that x(0) = 0. For a stationary system A(t) is a constant matrix. Consequently,
it can be shown that in that case

#(t1, t2) := #(t1 − t2) = eA(t1−t2). (16)

Combining (14), (13), (4) and (3) gives the Volterra kernels of the bilinear system (13). The
kernels up to order p also represent the kernels of (1).

4. Statistical Bilinearization: Application to the Piecewise Linear System

In this section, the bilinearization technique will be used within a technique that will be termed
statistical bilinearization. The statistical bilinearization technique will be applied to a beam
with a nonlinear (one-sided) support, as described in [9] and [10] and depicted in Figure 1.
Here, a single-degree-of-freedom, piecewise linear model for this system will be used. In a
dimensionless form, this model can be described by the following piecewise linear differential
equation:

ẍ + 2ζ ẋ + x + α ε(x) x = u, where ε(x) =
{

0 if x ≥ 0,
1 if x < 0,

(17)

x is a dimensionless measure for the displacement at the end of the beam, and u is a stationary,
random, Gaussian, zero-mean process representing the force on the beam. Moreover, ζ rep-
resents a dimensionless damping parameter representing material damping of the beam and α

is a nonlinearity parameter, which is the ratio of the stiffness of the one-sided spring and the
stiffness of the beam. This model will be approximated using polynomial nonlinearities. Here,
only terms up to order two (p = 2) will be used. The approximating system can, therefore, be
written as

ẍ + 2ζ ẋ + β1 xE + β2 x2
E − β2 E{x2

E} = u, (18)

where xE = x − E{x} and ẍE = ẍ, ẋE = ẋ due to stationarity. Equivalent to the procedure
followed in statistical linearization [2], in which the approximating system is described by (18)
with β2 = 0, an error is defined and minimized in the mean-square sense in order to find the
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optimal parameters β1 and β2 of the replacing system. This error embodies the difference
between the piecewise linear system and the quadratic system (18):

εbilin = (x + α ε(x) x) − β1 xE − β2 x2
E + β2 E{x2

E}, (19)

for given β1 and β2. Subsequently, our goal is to minimize E{ε2
bilin} with respect to β1 and β2.

This results in the following equations:

β1 = E{xE(x + α ε(x) x)}
σ 2
x

; β2 = E{x2
E(x + α ε(x) x)} − E{x + α ε(x) x}σ 2

x

E{x4
E} − σ 4

x

. (20)

At this point we have four unknown quantities (µx , σx , β1 and β2) and two equations. A third
equation can be found through the averaging of Equation (17):

E{x + α ε(x) x} = 0. (21)

In order to find a necessary fourth equation to solve for the unknowns, the bilinearization
procedure will be applied. This will yield an expression for σ 2

x for given values of β1 and β2.
By choosing an approximating Volterra system as in (18), the power series representa-

tion of the original, nonlinear system as required in (5) is readily defined. Consequently, the
matrices in Equation (13) can be determined. Since this equation is a bilinear state equation
of the form of (4), the matrices of (4) are also known:

A =




0 1 0 0 0 0
−β1 −2ζ −β2 0 0 0

0 0 0 1 1 0
0 0 −β1 −2ζ 0 1
0 0 −β1 0 −2ζ 1
0 0 0 −β1 −β1 −4ζ




, (22)

D =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 2 0 0 0 0




, e =




0
1
0
0
0
0




, C =




1
0
0
0
0
0




T

. (23)

Next, (14) can be used to compute the kernels of this bilinear system. However, first #(t−τ) =
eA(t−τ ) is computed. This can be done using the relation

eAt = L−1
{(

sI 6 − A
)−1

}
, (24)

where L is the Laplace operator and s ∈ C. This expression is very lengthy due to the fact
that the matrix entries are functions of the parameters ζ , β1 and β2. Therefore, it is not given
here and the elements of #(t − τ) will be denoted by #jk(t − τ), j, k = 1, . . . , 6. Now, the
Volterra kernels of the bilinear system can be evaluated. Firstly, the first-order (linear) kernel
can be determined from (14):

h1(t, τ1) = c #(t, τ1)e = #12(t, τ1) = h1(t − τ1). (25)
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Clearly, due to the stationarity of A(t), h1(t, τ1) can be written as h1(t − τ1) = #12(t − τ1).
Secondly, the observation of (14) admits the determination of the second-order kernel:

h2t ri(t, τ1, τ2) = [#12(τ1 − τ2) (#14(t − τ1) + #15(t − τ1))

+ 2 #16(t − τ1) #22(τ1 − τ2)] θ(t − τ1) θ(τ1 − τ2), (26)

where

θ(t) =
{

1 if t ≥ 0,
0 if t < 0.

(27)

The presence of the θ terms in (26) implies that t > τ1 > τ2, which means that h2tri is a
triangular kernel, indicated by the subscript tri. The fact that h2tri is a triangular kernel follows
from the integration limits in (14). Since h2tri(t, τ1, τ2) = h2tri(t +.t, τ1 +.t, τ2 +.t), h2tri

is a stationary kernel. In case of stationarity, the kernel h2tri can be written as

h2tri(τ1, τ2) := h2tri(0,−τ1,−τ2)

= [#12(τ2 − τ1) (#14(τ1) + #15(τ1))

+ 2#16(τ1) #22(τ2 − τ1)] θ(τ1) θ(τ2 − τ1). (28)

At this point, we have information on the first-order and second-order Volterra kernels of the
bilinear system.

This information can be used to compute the variance of the output of the bilinear system
σ 2
y (= σ 2

x ) using

σ 2
y =

∞∫
−∞

Syy(ω) dω. (29)

For a second-order Volterra system, such as (18), the power spectral density Syy(ω) obeys

Syy(ω) = |H1(iω)|2 Suu(ω) + 2

∞∫
−∞

H2symm(i(ω − γ ), iγ )

× H2symm(i(−ω + γ ),−iγ ) Suu(γ ) Suu(ω − γ ) dγ, (30)

where H1(s), s ∈ C is the first-order transfer function, which can be determined by taking the
one-dimensional Laplace transform of h1(t). Moreover, H2(s1, s2), with s1 ∈ C and s2 ∈ C,
is the second-order, symmetric transfer function, which can be found by, firstly, performing a
two-dimensional Laplace transform on h2tri(τ1, τ2) and, secondly, performing a symmetrizing
operation on the result. It should be noted that a term with a Dirac delta pulse at ω = 0 is
omitted in expression (30) for Syy(ω), since that term does not contribute to σ 2

y but relates to
µ2

y . Now, using (30), the power spectral density of the output can be computed. Consequently,
the variance of the output can be evaluated through (29) for specific values of β1 and β2 and,
thus, we have defined the fourth equation needed in the statistical bilinearization technique.

Since σ 2
y = σ 2

x is now known, a new estimate for the mean of the response of the piecewise
linear system can be determined using (21). New values for β1 and β2 can be computed by
solving the equations in (20). In order to be able to evaluate the expected values in these
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Figure 2. Estimation of the standard deviation σx for ζ = 0.01.

equations, a functional form for the probability density function of the response has to be
chosen. Here, for the sake of efficiency, a Gaussian probability density function is used.

The procedure, described before, has to be applied recursively in an optimization loop,
which consists of the following steps:

1. choose initial values for β1 and β2;
2. use Equations (21), (29) and (30) to compute estimates for µx and σx , given β1 and β2;
3. compute new values for β1 and β2 using the information gained in step 2 and the equations

in (20);
4. return to step 2 until both β1 and β2 have converged.

For the example described in the next section, the convergence of the parameters β1 and β2 was
attained by performing the optimization loop, as described above, up to a maximum number
of 5 times while the demanded relative convergence (defined by

∑2
j=1 |(βj k+1 − βj k

)/βj k
|

for the kth optimization step) of these parameters was set at 0.1%. In general, no predictions
can be made on the rate of convergence of these parameters for different inputs or different
parameter values of the original, nonlinear system.

5. Results

The statistical bilinearization technique is applied to the piecewise linear system. Hereby, we
investigate the white-noise excited case with Suu(ω) = 1/2π . Of course, cases involving
non-white excitations can be investigated as well.

In Figure 2, the estimates for the standard deviation of the response of the piecewise linear
system, obtained by application of the statistical bilinearization technique, are displayed. In
this figure, these results are compared to the results of the statistical linearization technique
and simulation (using numerical integration techniques for stochastic differential equations
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Figure 3. Estimation of the power spectral density Sxx(ω) for α = 6 and ζ = 0.01.

[1, 11]) for varying nonlinearity α and ζ = 0.01. It should be noted that the statistical linear-
ization technique is equivalent to the statistical bilinearization technique when the quadratic
terms in (18) are omitted. Note that, due to the fact that the piecewise linear system only
exhibits a stiffness nonlinearity, the determination of an equivalent damping parameter is not
required in the statistical linearization technique nor in the statistical bilinearization tech-
nique. Clearly, the statistical bilinearization technique estimates the standard deviation of the
response very accurately, in contradiction to the statistical linearization technique. The source
of this accurate approximation can be found by observing the frequency domain information
(see Figure 3). This figure shows that two important nonlinear frequency domain phenomena,
namely, the multiple resonance peaks (two in this case) and the high-energy, low-frequency
spectral content, are modeled very well by the bilinearization procedure, whereas the statistical
linearization technique fails to model these specifically nonlinear response phenomena. These
phenomena represent important contributions to the energy in the response. As a consequence,
the variance of the response can only be estimated accurately when these phenomena are
modeled. Clearly, only the second resonance frequency appears, whereas higher resonances
are absent in the output of the Volterra model. This is a consequence of the fact that we only in-
corporated a second-order polynomial nonlinearity in our nonlinear model. Higher resonances
could be approximated by including higher-order polynomial terms in our Volterra model.
It should be noted that the high-energy, spectral content of the response is due to the stiff-
ness asymmetry in the piecewise linear system. The presence of the (asymmetric) quadratic
nonlinearity of the bilinear system ensures accurate approximation of the phenomenon.

In this form, the statistical bilinearization technique is computationally very efficient (for
this specific example the computation times are even comparable to those of the statistical
linearization technique). Moreover, the bilinearization approach provides much more accurate
results than the statistical linearization technique (in the application to the piecewise linear
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system). This is a consequence of the fact that in the statistical bilinearization technique the
most important, nonlinear, frequency-domain response phenomena are modeled. The statist-
ical bilinearization procedure is so efficient because it can provide very accurate results using
only a second-order Volterra system. In this respect it distincts itself from the bilinearization
procedure as proposed in [7]. Namely, in the bilinearization procedure a bilinear system is
pursued, whose output yb(t) converges to the output of the original, nonlinear system y(t).
The system parameters of the bilinear system are determined by minimizing the error on the
output through |yb(t)− y(t)| for all t in the time interval of interest. In the statistical bilinear-
ization procedure the parameters of the bilinear system are determined by minimizing an error
that represents a weighted closeness of the original, nonlinear system and the approximating
bilinear system; namely, the parameters are determined by minimizing E{ε2

bilin} with εbilin

given in (19). As a consequence, accurate results can be obtained using a low-order Volterra
model.

The method of statistical bilinearization could be extended by choosing another form
of the probability density function of the response. In [12], a method called quadratiza-
tion is proposed. In [13], the method was generalized to multi-degree-of-freedom systems.
The statistical quadratization method is in essence the same as the statistical bilinearization
technique, when a second-order polynomial model is used in the bilinearization procedure.
Application of this technique to a tension leg platform is discussed in [14, 15]. In [12, 13], a
non-Gaussian, truncated Gram–Charlier expansion is used for the probability density function
of the response. In such a model, higher-order statistical moments play a role. Non-Gaussian
characteristics of the response, such as the skewness, can then be approximated. More recently,
in [16] Volterra series up to second order were used to model the non-Gaussian features of
the response of wind-excited structures. In the application to the piecewise linear system,
the statistical bilinearization technique was also extended using such a non-Gaussian form
for the probability density function. However, the variance estimates were not improved due
to this extension and the skewness was not estimated accurately. Another drawback of this
extension is the fact that the estimation of the third-order moment of the output of the bilinear
system involves the numerical evaluation of triple integrals. This dramatically reduces the
computational efficiency of the method.

Moreover, the third resonance peak could be predicted by extending the polynomial model
(18) with a third-order nonlinearity (in this case a cubic stiffness nonlinearity). However,
this would result in an expression for the power spectral density of the output (see (30) for
the second-order system), which includes double integrals. The computation of the variance
would then include the numerical evaluation of triple integrals and would, therefore, be very
laborious. Consequently, the computational efficiency of the method would be seriously com-
promised. Furthermore, due to the fact that the second-order model already provides highly
accurate variance estimates for the response of the piecewise linear system, these variance
estimates can hardly be improved by this extension. Moreover, an extension of the model with
one order does not automatically lead to an improvement of the prediction of all response
characteristics. This is due to the fact that one has little insight into the rate of convergence of
the Volterra series of the bilinear system [4, 17]. Furthermore, when the statistical bilineariza-
tion procedure would be applied to the piecewise linear system using a third-order polynomial
model, the resulting parameter estimates β1 and β2 will (most likely) differ from those of the
second-order model. Predictions on accuracy improvements of response characteristics related
to model extensions to higher orders are, therefore, difficult to make. However, it should be
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noted that these extensions can be made and that the computational efficiency of the resulting
response approximation will still exceed that of simulation considerably.

In this context, it should also be remarked that the piecewise linear system is not analytic
everywhere. Therefore, the Volterra series (up to any order) of the bilinear system will not
exactly represent that of the piecewise linear system. However, it will represent the best finite-
order, polynomial model in some statistical sense (as defined before).

Finally, it should be noted that the statistical quadratization method was extended to in-
corporate a third-order term in the approximation of the original nonlinearity. Application of
this so-called statistical cubicization method to offshore structures is discussed in [18, 19],
where it can provide superior results over the quadratization approach. Moreover, in [20] is
stated that the statistical quadratization approach provides an accurate response approximation
for systems with asymmetrical nonlinearities, whereas the statistical cubicization approach is
better suited for application in case of symmetrical nonlinearities.

6. Conclusions

In this paper, a method called statistical bilinearization was developed. The strength of the
method can be recognized in the combination of two features. Firstly, the response statistics
of the bilinear model can be computed very efficiently (as long as the order of the polynomial
model is low). Secondly, a truly nonlinear approximation approach is followed, which makes
it possible to accurately approximate typically nonlinear phenomena in the original, nonlinear
system in accordance to (the nonlinear) reality.

The statistical bilinearization technique was applied successfully to the piecewise linear
system. This application resulted in very accurate variance estimates for the response. Further-
more, typically nonlinear, frequency-domain response phenomena, such as multiple resonance
peaks and high-energy, low-frequency spectral content, are modeled correctly. Moreover, it
should be noted that the method is numerically far more efficient than simulation and can even
compete with the statistical linearization technique in this respect, as long as the polynomial
model used in the bilinearization technique is of a low order. Such a low-order Volterra model
can provide accurate results because its parameters are determined according to a statistical
criterion.
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