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Abstract This paper investigates the effects of a
down-hole anti-stall tool (AST) in deviated wells
on the drilling performance of a rotary drilling sys-
tem. Deviated wells typically induce frictional con-
tact between the drill-string and the borehole, which
affects the drill-string dynamics. In order to study the
influence of such frictional effects on the effective-
ness of the AST in improving the rate-of-penetration
and drilling efficiency, a model-based approach is pro-
posed. A dynamic model with coupled axial and tor-
sional dynamics of a drilling system including the
down-hole tool in an inclined well is constructed. Fur-
thermore, the frictional contact between the drill-string
and the borehole is modelled by a set-valued spatial
Coulomb friction law affecting both the axial and tor-
sional dynamics. These dynamics are described by
state-dependent delay differential inclusions. Numer-
ical analysis of this model shows that the rate-of-
penetration and drilling efficiency increases by inclu-
sion of the AST, both in the case with and without spa-
tialCoulomb friction. Furthermore, a parametric design
study of the AST in different inclined drilling scenarios
is performed. This study reveals a design for the AST,
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which gives optimal drilling efficiency, robustly over a
broad range of inclined drilling scenarios.
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1 Introduction

Drilling is used for the exploration of oil, gas, min-
erals and increasingly for geothermal energy. Current
drilling operations are challenging as often complex,
deviated wells need to be drilled, for oil and gas explo-
ration, while, for geothermal applications, drilling into
hard rock is required. Improving the efficiency of these
drilling operations will significantly reduce the costs.
Particularly in geothermal drilling operations, where
30–50%of the total development costs are fromdrilling
[4,6,14]. Therefore, the development of new technolo-
gies to improve drilling performance is key to increase
the economic feasibility of geothermal drilling opera-
tions.

Rotary drilling with polycrystalline diamond com-
pact (PDC) bits is widely accepted as most efficient
for exploration and production drilling operations.
Figure 1 depicts the major components of a rotary
drilling system: rig, drill-string, bottom hole assembly
(BHA), including stabilizers and down-hole tools, and
drill-bit. In a rotary drilling system, a key indicator of
its efficiency is the rate-of-penetration (ROP), which is
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Fig. 1 Schematic overview of a drilling system in an inclined
well. (Adapted from Marck [26])

the speed at which the bit is drilling into the sub-surface
formation. In order to optimize theROP, suitable values
of the hook-load, which translates into an axial force on
the bit referred to as weight-on-bit (WOB), and rota-
tion speed (RPM) imposed at the surface (rig) must
be set by drilling operators. For this ROP optimiza-
tion purpose, the Bourgoyne and Young ROP model is
widely used in industry [8,30]. This model takes into
account different aspects, such as formation strength,
WOB, angular velocity and bit wear, which influence
the ROP. Based on the optimal operational parameters,
the ROP is then optimized by using various controllers
[7]. However, the dynamics of the drill-string, the bit–
rock interaction and the (frictional) contact along the
drill-string in a deviated well are not taken into account
in this modelling approach. A different approach for
ROP improvement is the selection of drill-string com-
ponents, such as drill-bits or down-hole tools located at
the BHA of the drill-string [4,5,15]. Down-hole tools
can be either active [5,15] or passive [4,31,37]. Active
tools typically provide axial excitation during drilling,
which can alter the effect of axial friction and con-
sequently improve the drilling efficiency. The current
paper aims to model and analyse the effect of a passive

down-hole tool on the drilling efficiency in presence of
friction between the drill-string and boreholewall. This
work is motivated by field data that show evidence that
the AST can increase the drilling efficiency in terms of
ROP, also in deviated wells [31,33].

In particular, this paper focuses on themodelling and
analysis of the couplingof axial and torsional vibrations
in drill-string dynamics, and studies how a down-hole
tool, called the anti-stall tool (AST) [31], affects the
drilling performance (in terms of ROP) in a deviated
borehole. Previous works, e.g., [9,10,32] have shown
that a rate-independent bit–rock interactionmodel [11],
including both cutting and frictional contact processes,
is essential in the coupling between the axial and tor-
sional dynamics. In the current paper, we also pursue
such type of modelling approach, further motivated by
the fact that the AST also operates by coupling the
axial and torsional dynamics [31,37]. The dynamics of
drill-string systems, including such rate-independent
bit–rock interaction model, has been described by a
variety of dynamical models. In [9,10,17,19,20,23–
25,28,29,32] lumped-parameter models for the axial-
torsional drill-string dynamics have been proposed,
while in [2,3,13,16] both finite-element based and dis-
tributed models have been developed. These models
have been employed to study instabilities and axial and
torsional vibrations of drill-string systems, and recently
to investigate the effect of the AST on the ROP [37].
However, the effect of friction between the drill-string
and the borehole due to deviated well scenarios has not
yet been taken into account.

The modelling of the frictional contact along the
drill-string has been considered extensively in the scope
of so-called torque and drag models [1,21,34]. The
magnitude of the frictional forces mainly depends on
the normal force acting between the drill-string and
the borehole wall. Hence, in highly deviated wells the
effects of this friction indeed becomes more promi-
nent, because the drill-string is resting under its own
weight on the borehole wall. However, in these models
no vibrational dynamics and down-hole tooling have
been taken into account, while it has been shown that
the functioning of the AST is intrinsically related to the
drill-string dynamics [37].

Thiswork builds on and extends the developments in
[37] by modelling and analysis of the (frictional) con-
tact between the BHA and the borehole wall, thereby
broadening its applicability to deviated well scenarios.
The main contributions of this paper are as follows:
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– Firstly, a benchmark model of the drill-string
dynamics (without AST) and a drill-string model
including AST, both with spatial friction between
the borehole and drill-string, are developed.Herein,
both unilateral contact and frictional characteris-
tics of the bit–rock interaction and the spatial fric-
tion between the borehole and drill-string have been
modelled by set-valued force laws. This allows for
a unified treatment of these nonlinear model fea-
tures in a time-stepping-based simulation tool for
the resulting delay differential inclusion model;

– Secondly, a model-based analysis of the effect of
frictional contact between BHA and borehole wall
on the drilling performance (in terms of ROP and
drilling efficiency) is performed;

– Finally, a parametric performance study on theAST
design is performed leading to an optimal design to
maintain a high drilling efficiency, which is robust
for a wide range of deviated wells.

The outline of this paper is as follows. In Sect. 2, the
dynamic models of a drill-string system without and
with AST for drilling in a deviated well are derived. In
Sect. 3, a dynamic analysis is performedwith a focus on
the effect of the spatial frictional contact on drilling per-
formance (ROP and drilling efficiency; for both cases
without and with AST). Subsequently, a parametric
design study on the AST design is presented in Sect. 4.
Finally, conclusions are drawn in Sect. 5.

2 Dynamic modelling

In this section, two models of a drill-string including
spatial friction between the BHA and the borehole are
presented. In Sect. 2.1, two drill-string models, with
and without AST, are introduced, enabling the com-
parative analysis of systems with and without the AST.
In Sect. 2.2, the bit–rock interactionmodel is discussed.
In Sect. 2.3, the model that describes the frictional con-
tact between the borehole and the BHA is presented.
Finally, in Sect. 2.4 the two dynamic models, with and
without AST, are expressed in dimensionless perturba-
tion coordinates around their nominal solutions in order
to identify a minimum set of parameters characterizing
the dynamics.

A total overview of a drilling system in a deviated
well is depicted in Fig. 1. A typical drilling system
is operated from the rig located at the surface, where
the top-drive equipment sets the angular speed and

adjusts the weight by regulating the hook-load. These
operational conditions are transmitted via slender drill-
pipes and a BHA to the drill-bit. The BHA is specifi-
cally designed to fulfil a particular drilling objective(s)
based on the sub-surface geological conditions and can
be composed by several down-hole components, such
as stabilizer(s), rotary steerable system (RSS), logging
tools, mud motor(s), etc. Due to the larger diameter of
the stabilizers compared to the rest of the BHA com-
ponents, the stabilizers are in contact with the bore-
hole wall, which consequently results in additional
friction affecting the drill-string dynamics. The phys-
ical aspects to be considered in the modelling are the
boundary conditions at the rig, the drill-string dynam-
ics including the AST, the bit–rock interaction as the
down-hole boundary conditions and the frictional con-
tact between the stabilizers and the borehole.

2.1 Drill-string dynamics

In this section, the dynamic models of the drill-string
systems are presented. First the benchmark model,
excluding AST, is discussed. Thereafter, the model
including AST is discussed.

2.1.1 Benchmark drill-string dynamics

In Fig. 2, the lumped-parameter benchmarkmodel (i.e.,
without AST) is schematically depicted. The axial and
torsional dynamics are described by this model, which
consists of two degrees-of-freedom (DOFs), namely
the axial displacement of the bit Ub and the angular
displacement of the bit Φb.

At the rig, the boundary conditions are given by an
imposed constant angular velocity Ω0 and a constant
upward force H0, the so-called hook-load. The total
mass and inertia of the drill-string including the BHA
are lumped in the discrete mass M and inertia I . The
torsional stiffness of the drill-pipes is modelled as a
torsional spring with stiffness Cp. The viscous friction
along the drill-string and BHA in axial and angular
directions are characterized by the parameters D and
DΦ , respectively. The parameters λTa and λTt are asso-
ciated with the spatial Coulomb friction between the
stabilizers and the borehole in axial and torsional direc-
tion, respectively, which is discussed in more detail in
Sect. 2.3. The weight acting on the bit is denoted byW
and the torque acting on the bit is denoted by T .
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Fig. 2 Schematic representation of the benchmark model

The bit–rock interaction model, which is discussed
in more detail in Sect. 2.2, relates the weight-on-bit
(WOB) W and the torque-on-bit (TOB) T to the axial
and angular motion of the bit. This bit–rock law con-
siders two independent processes, namely a pure cut-
ting process and a frictional contact. Hence, the force
and torque can be decomposed in a cutting and fric-
tional component, denoted by the superscripts c and f ,
respectively, i.e., for the total WOB W = Wc + W f ,
and for the total TOB T = T c + T f . The force and
torque contributions associated with the wearflat will
from now on be denoted as follows

W f = −λba , T f = −λbt . (1)

By using a Lagrangian approach, the equations of
motion (EOMs) for this model are obtained. In general,
these can be written in the following form:

Mq̈ − h(t,q, q̇) = Wλ, (2)

where q represent the column with generalized coordi-
nates. M is the mass matrix and the column h(t,q, q̇)

contains all generalized forces except the friction forces
(both due to frictional contacts at the bit and between
the borehole and the stabilizers at the BHA). The vec-
tor λ contains the generalized forces associated with
the set-valued force laws, characterizing both due to
frictional contacts at the bit and between the borehole
and the stabilizers at the BHA, see Sects. 2.2 and 2.3,
and the matrix W contains the associated generalized
force directions. In case of the benchmark model with

Fig. 3 The working principle of the anti-stall tool (AST): an
increase in torque (M2) will cause a contraction (S) to off-load
the weight from the cutters (F2) [4]

the generalized coordinates q = [Ub Φb]T, this results
in the following matrices and columns in (2):

M =
[
M 0
0 I

]

h(t,q, q̇) =
[ − DU̇b − H0 + Ws − Wc

− DΦΦ̇b + Cp(Ω0t − Φb) − T c

]
(3)

W =
[
1 0 1 0
0 1 0 R

]

λ = [
λba λbt λTa λTt

]T
where Wc and T c satisfying (6), (7) and (8) and λ sat-
isfying (9), (12) and (25) and Ws represents the sub-
merged weight of the drill-string. A detailed derivation
of the equations of motion can be found in [38].

2.1.2 Drill-string dynamics including AST

TheAST is designed to influence the coupling between
the axial and torsional displacement. The AST consists
of two tool bodies connected by a helical spline and an
axial internal spring, as viewed in Fig. 3. According to
Selnes et al. [33], the working principle of the tool is
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Fig. 4 Schematic representation of the drill-stringmodel includ-
ing AST

that a torsional load with sufficient magnitude to over-
come the compressed spring will make the upper tool
body, with the internal helical spline, rotate on the mat-
ing lower body. When the upper and lower part screw
together in this manner, the tool telescopically con-
tracts. Consequently, this results in an adjustment of the
axial and torsional loading acting on the bit. Hence, the
tool prevents dynamic forces from reaching destructive
levels.

In Fig. 4, the lumped-parameter model including
AST is schematically depicted. The AST separates the
drill-string in two parts, where the coordinates U and
Φ are related to the displacement of the top part andUb

and Φb to displacement of the part below the tool. The
mass and inertia of the drill-string including the part
of the BHA above the tool are lumped into a discrete
massMa and inertia Ia , while themass and inertia of the
part of the BHA below the tool are lumped into a dis-
crete mass Mb and inertia Ib. The torsional stiffness of
the drill-pipes and the viscous friction components are
identical to the benchmark model. However, the axial
viscous friction only acts on the part above the tool.
The viscous friction in the angular direction is mod-

elled by two dampers characterized by DΦ and DΦb .
The spatial friction acts both on the DOFs above the
tool and on the DOF at the bit, and the distribution of
the friction between the two parts of the drill-string is
denoted by Δ ∈ [0, 1], as introduced in (22) and (23).
The radius of the stabilizer below the tool is assumed to
be the same as above the tool. Let us now introduce the
model of the AST, which introduces an additional axial
spring Kb and damper Db, see Fig. 4. Furthermore, the
helical spline in the tool introduces a kinematic con-
straint, which is characterized by the lead p, lead angle
β and the radius rspline of the helical spline, and can be
written as

U −Ub = p

2πrspline
(Φrspline − Φbrspline)

= p

2π
(Φ − Φb) =: α(Φ − Φb).

(4)

HereinU (Φ) andUb (Φb) represent the axial (angular)
positions above the tool and at the bit, respectively (see
Fig. 4). The lead is given by p = 2πrspline tan β.

The generalized coordinates of the model including
AST are given by qc = [U Φ Ub Φb]T. However, due
to the kinematic, holonomic constraint of the AST, this
model can be alternatively formulated in terms of three
independent generalized coordinatesq = [U Ub Φb]T.
This coordinate transformation is discussed in detail in
“Appendix A”. Using a Lagrangian approach for sys-
tems with constraints and after eliminating the DOFΦ,
the obtained EOMs can be written in the general form
of (2), with the following matrices and columns:

M =

⎡
⎢⎢⎣
Ma + 1

α2 Ia − 1
α2 Ia

1
α Ia

− 1
α2 Ia

1
α2 Ia + Mb − 1

α Ia
1
α Ia − 1

α Ia Ia + Ib

⎤
⎥⎥⎦

h(t,q, q̇) =

⎡
⎢⎢⎣

− Kb(U −Ub) − 1
αCpY − 1

α DΦ Ẏ − DU̇

Kb(U −Ub) + 1
αCpY + 1

α DΦ Ẏ

−CpY − DΦ Ẏ − DΦb Φ̇b

− Db(U̇ − U̇b) + 1
αCpΩ0t + Ws − H0

+ Db(U̇ − U̇b) − Wc − 1
αCpΩ0t + Wbs

− T c + CpΩ0t

⎤
⎥⎥⎦ (5)

W =
⎡
⎢⎣
0 0 1 R

α 0 0

1 0 0 − R
α 1 0

0 1 0 R 0 R

⎤
⎥⎦

λ = [
λba λbt λTa λTt λTba λTbt

]T
with the auxiliary variables Y = Φb + 1

α
(U −Ub) and

Ẏ = Φ̇b + 1
α
(U̇ − U̇b) in the expression for h(t,q, q̇),
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whileWc and T c satisfy (6), (7) and (8), λ satisfies (9),
(12) and (25). The parameters Ws and Wbs denote the
submerged weights of the drill-string parts above and
below the tool, respectively. A detailed derivation of
the equations of motion can be found in [38].

2.2 Bit–rock interaction model

In this paper, the rate-independent bit–rock interac-
tion law as introduced in [11,12] is adopted, which
relates the WOB and the TOB to the axial and angular
motions of the bit. The bit–rock interaction involves
two independent processes: a pure cutting process tak-
ing place at the front of the cutters and a frictional
contact between the rock and the so-called wearflat
underneath the cutters. According to Detournay et al.
[11,12], the cutting contributions for a bit consisting
of n identical and symmetrically distributed blades of
cutters around the axis of revolution and a bit radius of
a, can be written as

Wc = naεζdn, T c = 1

2
na2εdn, (6)

where ε is the intrinsic specific energy related to the
rock strength and ζ is related to the orientation of the
cutting face. The cutting force and torque are propor-
tional to the depth-of-cut (DOC) dn produced by a sin-
gle blade, which is in general not constant. The DOC
depends on the axial position of the bit and the rock
surface generated by the previous blade according to

dn = Ub(t) −Ub(t − tn(t)), (7)

whereUb(t) is the axial bit position and t denotes time,
see Fig. 5. Furthermore, tn(t) is the time required for
the bit to rotate by an angle of 2π/n, which is the angle
between two successive blades. This time-dependent
delay tn(t) (actually state-dependent) is characterized
by the implicit equation:∫ t

t−tn(t)

dΦb(s)

ds
ds = Φb(t) − Φb

(t − tn(t)) = 2π

n
, (8)

where Φb(t) denotes the angular position of the bit at
time t .

In the contributions associated with the wearflat
as introduced in (1), the wearflat reaction force λba
is essentially discontinuous in terms of the bit axial
velocity. When the bit moves downwards, the contact

Fig. 5 Bottom hole profile between two successive blades [9]

between the wearflat and the rock is fully mobilized.
However, when the bit moves upwards, the contact
is lost and consequently the reaction force vanishes.
Hence, the wearflat reaction force can be described in
a set-valued force law by the following inclusion:

λba ∈ −naσ̄ ln
1 + Sign(U̇b)

2
, (9)

where σ̄ is the maximum contact stress and ln is the
wearflat length per blade. The axial velocity of the bit
is denoted by U̇b and the set-valued sign-function in
(9) is defined as

Sign(y) =

⎧⎪⎨
⎪⎩
1, y > 0,

[ − 1, 1], y = 0,

− 1, y < 0.

(10)

As a consequence of the set-valued nature of the law in
(9), the admissible values of the wearflat reaction force
form a convex set Ca given by

Ca = {λba | − naσ̄ ln ≤ λba ≤ 0}. (11)

The force acting on thewearflat also induces a frictional
torque λbt . Since the friction always acts in opposite
direction compared to the bit rotational velocity, this
frictional torque is discontinuous with respect to the
rotational velocity and can be modelled by the follow-
ing inclusion:

λbt ∈ 1

2
aμξλbaSign(Φ̇b). (12)

Herein, μ is a rate-independent friction coefficient and
ξ characterizes the orientation and spatial distribution
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of the frictional contact of the surfaces along the bit
blade(s). The angular velocity of the bit is denoted by
Φ̇b. The admissible values of the frictional torque forms
a convex setCt , which depends on thewearflat (normal)
reaction force λba . This set is given by

Ct (λba ) =
{
λbt |

1

2
aμξλba ≤ λbt ≤ −1

2
aμξλba

}
.

(13)

The set-valued force laws for reaction force λba and
frictional torque λbt can be formulated by using normal
cones of the convex sets (11) and (13), respectively
[18,22]:

− U̇b ∈ NCa (λba ), (14)

− Φ̇b ∈ NCt (λbt ). (15)

From convex analysis, these inclusions are equiv-
alent to implicit proximal point formulations [22].
Hence, these formulations transform the associated
inclusions into nonlinear implicit equations, which are
ultimately used in the (time-stepping-based) numeri-
cal solver which is developed in this work. These read
as

λba = proxCa
(λba − r1U̇b), (16)

λbt = proxCt
(λbt − r2Φ̇b), (17)

for r1, r2 > 0 arbitrary, positive constants.

Remark During a torsional slip phase, the cutting edge
is in full contact with the rock. However, during tor-
sional stick, this contact is not necessarily fully mobi-
lized,which results in an unknowndistribution between
torque associated with cutting and friction in this case.
To include torsional stick in the model, it is assumed
that during torsional stick the contact between the cut-
ting edge of the bit blade and the rock remains fully
mobilized. Therefore, this assumption has conditioned
that the cutting component of the model in (6) is only
valid under the conditions of a nonnegative angular
motion of the bit (Φ̇b ≥ 0) and with nonnegative DOC
(dn ≥ 0). Furthermore, a negative DOC is associated
with bouncing of the bit, which indicates total loss
of contact between the bit and the rock. Hence, bit-
bouncing is not analysed in this work.

2.3 Spatial Coulomb friction model

In drilling operations in inclined wells, the drill-string
rests on the boreholewall with its ownweight, resulting
in additional frictional contact between the drill-string
and borehole. This contact is mainly generated by a
specific BHA component, the stabilizers, due to their
larger diameter compared to the rest of the BHA com-
ponents (see Fig. 6). The frictional contact between the
drill-string and borehole has been modelled by torque
and drag models [21,34]. In these models, the fric-
tional contact forces depend on the normal force and
the frictional coefficient between contact surfaces. In
a drilling operation, the drill-string rotates and trans-
lates in axial direction. Hence, the sliding velocity of
the contact point has two components, both in axial and
tangential direction. Due to this spatial contact, the spa-
tial Coulomb’s friction law involves a two-dimensional
force λT = [λTa λTt ]T. In Fig. 6 a schematic repre-
sentation of the forces acting on the BHA is depicted.
Figure 6 also depicts the AST located in between the
top and bottom stabilizer of the BHA. In this case, the
normal force FN is distributed over the two stabilizers.
In the benchmark model (excluding AST), all friction
force acts on a single stabilizer, because in the bench-
mark model both stabilizers related to the same DOF.
Furthermore, homogeneous rock formations are con-
sidered in this study, such that the spatial friction law

Fig. 6 The BHA resting on its own weight in an inclined
well with the axial (λTa , λTba ) and tangential (λTt , λTbt , point-
ing out the plane) components of the spatial friction acting
on the stabilizers and the distributed normal force FN with
distribution Δ
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is assumed to be isotropic and its force reservoir is rep-
resented by a disc. The admissible values of the spatial
Coulomb friction force for a single frictional contact
point (i.e., as in the benchmark model) are given by the
convex set CT :

CT =
{
λT ∈ R

2 | ‖λT ‖ ≤ μwFN

}
, (18)

whereμw is the friction coefficient and FN denotes the
normal force between the stabilizer in the BHA and the
borehole wall.

Low-order lumped-parameter models for the drill-
string dynamics are used in this study, such that only
the gravitational effect (represented by the drill-string
weight) is considered to contribute to the normal force.
Thus, the possible force contributions due to the cur-
vature of the borehole are neglected. Furthermore, it
is assumed that the stabilizers are always in contact
with the borehole wall. However, when the geometrical
structure of the borehole is perfectly vertical (Θ = 0◦),
the spatial friction force vanishes. As the normal force
presumptively depends on the buoyed weight of the
BHA and the inclination of the borehole structure Θ ,
as depicted in Fig. 6, this normal force is defined as

FN = BFMBH Ag sinΘ, (19)

where MBHA denotes the total mass of the BHA, g
the gravitational acceleration and BF is the buoyancy
factor given by

BF = ρ − ρm

ρ
. (20)

Herein, ρ is the density of the BHA and ρm is the den-
sity of the mud in which the BHA is submerged below
the surface. Hence, the magnitude of the normal force
increases as the borehole inclination (Θ) increases.

In the benchmarkmodel without the tool, the sliding
velocity γ T at the frictional contact between borehole
and BHA is given by

γ T =
[
U̇b

Φ̇bR

]
, (21)

where the first component is associated with the axial
and the second with the tangential velocity component.
In this definition, R is the outer radius of the stabilizers.

In the drill-string model with the tool, the BHA is
separated in two parts, such that the spatial friction can
act partly above and partly below the tool as shown in
Fig. 6. Essentially, the normal force FN is distributed
between the two locations, namely above and below
the AST. As a consequence, the force reservoir CT can

be segregated into two smaller isotropic reservoirs. In
order to enable the analysis of the cases where all the
friction acts only above or below the tool, a linear distri-
bution parameter Δ ∈ [0 1] is introduced. The admis-
sible friction force reservoirs associated to the friction
forces above and below the tool are, respectively, given
by the following convex sets:

CT =
{
λT ∈ R

2 | ‖λT ‖ ≤ ΔμwFN

}
, (22)

CTb =
{
λTb ∈ R

2 | ‖λTb‖ ≤ (1 − Δ)μwFN

}
. (23)

The index b denotes the contributions, which are
lumped at the bit. Note that for a straightforward com-
parison between the model with and without the tool,
the sum of maximal allowable friction forces are equal.
When Δ = 1 holds, the spatial friction only acts above
the AST; when Δ = 0 holds, all spatial friction acts
below the tool. The corresponding sliding velocities
are given by

γ T =
[
U̇

Φ̇R

]
and γ Tb =

[
U̇b

Φ̇bR

]
. (24)

The relation between the sliding velocity and the spa-
tial friction force can be expressed by the following
inclusion, using the normal cone formulation of the
set-valued spatial Coulomb friction law [22]

− γ T ∈ NCT (λT ). (25)

This inclusion can equivalently bewritten as an implicit
proximal point formulation:

λT = proxCT
(λT − rγ T ), (26)

where r > 0 is an arbitrary positive constant.

2.4 Dimensionless perturbation models

The EOMs, given by (2), are scaled in order to reduce
the number of parameters. Furthermore, the dynamics
are expressed around its nominal solution (reflected by
a constant angular velocity and ROP) by introducing
perturbation coordinates. Following [32], a timescale
t∗ and a characteristic length L∗ are introduced, which
are defined by

t∗ =
√

Itot
Cp

and L∗ = 2Cp

εa2
, (27)

with the total inertia in the benchmark model Itot = I
and in the model including AST Itot = Ia + Ib. Since
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the total inertia is equal in both models, the timescale is
the same in bothmodels. By using these scaling param-
eters, the following dimensionless perturbation coordi-
nates are introduced

u(τ ) = U −U0

L∗
, ub(τ ) = Ub −Ub0

L∗
,

φb(τ ) = Φb − Φb0,

(28)

which are functions of the dimensionless time

τ = t

t∗
. (29)

These coordinates represent the dimensionless axial
and torsional perturbations with respect to its nomi-
nal responses, where the coordinates denoted with sub-
script b are associated with the bit. Explicit expressions
for the nominal displacementsU0,Ub0 andΦb0 in both
models are given in the subsequent sections.

The generalized forces associated with set-valued
force laws are scaled by a characteristic cutting force
corresponding to a DOC equal to the characteristic
length L∗. This results in the following dimensionless
perturbation forces and torque associated to the set-
valued force laws introduced in Sects. 2.2 and 2.3:

λ̂ba = a

2ζCp
(λba − λba0), λ̂bt = 1

Cp
(λbt − λbt0),

λ̂T = a

2ζCp
(λT − λT0).

(30)

Note that λ̂T is a column containing the dimensionless
axial and tangential components of the spatial Coulomb
friction. Furthermore, in the model including the tool,
the spatial Coulomb friction acting above and below
the tool both satisfy the same dimensionless perturbed
form as above for λ̂T . However, the values of each asso-
ciated friction forces can be different as these are scaled
by the parameter Δ in (22) and (23). Furthermore, the
nominal values of the frictional contact component in
the bit–rock interaction law are λba0 = −naσ̄ ln and
λbt0 = − 1

2na
2μξσ̄ ln . Expressions for λT0 for both

models are given in the subsequent sections.
The dimensionless form of the time delay, depth-of-

cut and axial and torsional nominal velocities are given
by

τn = tn
t∗

, δ = d

L∗
,

v0 = V0t∗
L∗

, ω0 = Ω0t∗. (31)

The nominal axial velocity V0 (in original coordinates)
in both models is given by

V0 = 1

D

(− H0 + Msg − aεζd0 + λba0 + λTa0

)
. (32)

The nominal DOC d0 and the axial component of the
nominal spatial friction λTa0 are both functions of the
nominal velocity V0 and given by

d0 = V0tn0 (33)

λTa0 = − V0
Ω0R

√√√√√ μ2
wF2

N

1 +
(

V0
Ω0R

)2 , (34)

with tn0 = 2π/(nΩ0). Substitution of these expres-
sions results in a fourth-order polynomial in V0, which
is monotone for positive values of V0. Hence, (32)
exhibits a unique solution for normal drilling opera-
tions (reflected by a positive nominal axial velocity V0).

Moreover, the dimensionless nominal time delay is
defined as τn0 = tn0/t∗ = 2π/(nω0). The dimension-
less depth-of-cut (δ) can be expressed in terms of a
perturbation δ̂ from the nominal depth-of-cut per rev-
olution (δ0 = 2πv0/ω0):

δ = δ̂ + δ0. (35)

The dimensionless perturbed DOC δ̂ is given by

δ̂ = n (ub(τ ) − ub(τ − τn)) + nv0τ̂n . (36)

Herein, τn is the dimensionless time delay τn = τ̂n +
τn0, where τ̂n is its perturbation from the nominal time
delay τn0. This time delay is obtained with the implicit
delay equation, given in (8), which reads in a dimen-
sionless formulation:

φb(τ ) − φb(τ − τn) + ω0τ̂n = 0. (37)

2.4.1 Benchmark drill-string model

The column with the dimensionless perturbation coor-
dinates in the benchmark model is given by z =
[ub φb]T. In the case of a nominal drilling operation,
there are no vibrations; thus, the axial and torsional
velocities are constant and positive. Due to the con-
stant velocities, the accelerations are equal to zero. By
substitution of the constant velocities and zero acceler-
ations in the dynamic models, expressions for the nom-
inal values of the displacements, velocities and forces
are obtained. The nominal values of the axial and angu-
lar bit displacement, Ub0 and Φb0 (see (28)), are given
by
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Ub0 = V0t, (38)

Φb0 = Ω0t + 1

Cp

(
−DΦΩ0 − 1

2
na2εd0

+ λbt0 + RλTt0

)
. (39)

The nominal values of the spatial Coulomb friction
(λT0 = [λTa0 λTt0 ]T) are given by

λTa0 = − V0
Ω0R

√√√√√ μ2
wF2

N

1 +
(

V0
Ω0R

)2 , (40)

λTt0 = −
√√√√√ μ2

wF2
N

1 +
(

V0
Ω0R

)2 . (41)

The scaling and introduction of the perturbation coor-
dinates leads to the dimensionless EOMs in general
form:

M z′′ − H (τ, z, z′) = W λ̂. (42)

Then, the corresponding matrices and columns in the
benchmark are given by

M =
[
1 0
0 1

]
H (τ, z, z′) =

[
− γ u′

b − ψδ̂

− γφφ′
b − φb − δ̂

]

W =
[
ψ 0 ψ 0
0 1 0 χ

]
λ̂ = [

λ̂ba λ̂bt λ̂Ta λ̂Tt

]T(43)

2.4.2 Drill-string model including AST

The column with the dimensionless perturbation coor-
dinates in the model including AST is given by z =
[u ub φb]T. The nominal values of the axial and angu-
lar displacements, U0, Ub0 and Φb0, are given by

U0 = V0t+ 1

αKb

(
1

2
na2εdn0+αnaεζdn0 + DΦbΩ0

− αMbsg − αλba0 − λbt0 − αλTba0 − RλTbt0

)
,

(44)

Ub0 = V0t, (45)

Φb0 = 1

αKb

(
− naεζdn0 + Mbsg + 1

α
DΦΩ0

+ λba0 + λTba0

)

+
(

1

Cp
+ 1

α2Kb

)(
−1

2
na2εdn0 − (DΦ + DΦb )Ω0

+ λbt0 + RλTbt0

)
+ R

Cp
λTt0 + Ω0t. (46)

The nominal values of the spatial Coulomb fric-
tion located above and below the AST (λT0 =
[λTa0 λTt0 λTba0 λTbt0 ]T) are given by

λTa0 = − V0
Ω0R

√√√√√ Δ2μ2
wF2

N

1 +
(

V0
Ω0R

)2 , (47)

λTt0 = −
√√√√√ Δ2μ2

wF2
N

1 +
(

V0
Ω0R

)2 , (48)

λTba0 = − V0
Ω0R

√√√√√ (1 − Δ)2μ2
wF2

N

1 +
(

V0
Ω0R

)2 , (49)

λTbt0 = −
√√√√√ (1 − Δ)2μ2

wF2
N

1 +
(

V0
Ω0R

)2 . (50)

Then, the scaled EOMs in dimensionless perturbation
coordinates for themodel includingAST can bewritten
in the general formof (42). The correspondingmatrices
and columns are given by

M =
⎡
⎣m∗ + κι − κι νι

− κι −m∗ + κι + 1 − νι
κ
ν
ι − κ

ν
ι 1

⎤
⎦

H (τ, z, z′) =
⎡
⎣ − η2b(u − ub) − γ u′ − γb(u′ − u′

b) − νφb
νφb + κ(u − ub) + νγφ1φ

′
b + κγφ1 (u

′ − u′
b)− φb − κ

ν
(u − ub) − γφ1φ

′
b

− κ(u − ub) − νγφ1φ
′
b − κγφ1 (u

′ − u′
b)

+ η2b(u − ub) + γb(u′ − u′
b) − ψδ̂

− γφ1
κ
ν
(u′ − u′

b) − γφ2φ
′
b − δ̂

⎤
⎦

W =
⎡
⎣0 0 ψ νχ 0 0

ψ 0 0 − νχ ψ 0
0 1 0 χ 0 χ

⎤
⎦

λ̂ = [
λ̂ba λ̂bt λ̂Ta λ̂Tt λ̂Tba λ̂Tbt

]T
.

(51)

The definitions of the characterizing dimensionless
parameters in (43) and (51) are given in Table 1, along
with their values used in Sect. 3. The models presented
in this section will now be used to analyse their dynam-
ics, in particular to study the effect of the AST and
spatial frictional on the drilling performance.

3 Drilling performance analysis

In this section, the effect of spatial Coulomb friction
on the drilling performance is investigated. The drilling
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Table 1 Characteristic
system parameters

Parameter Symbol Value

Characteristic length L∗ = 2Cp

εa2
7.13 × 10−4

Characteristic time t∗ =
√

Itot
Cp

0.45

Mass ratio m∗ = Ma
Mtot

0.92

Inertia ratio ι = Ia
Itot

0.86

Scaled axial damping γ = D
Mtot

√
Itot
Cp

6.43 × 10−3

Torsional damping above tool γφ1 = DΦ√
Itot Cp

2.05 × 10−4

Torsional damping below tool γφ2 = DΦb√
Itot Cp

7.39 × 10−6

Drill-string design ψ = Itot aεζ
MtotCp

37.5

Arm Coulomb friction force χ = 2ζ R
a 0.96

Wearflat friction λ = a2 σ̄ l
2ζCp

16.15

Drill-bit design β = μξζ 0.81

Inertia mass ratio κ = Itot
α2Mtot

0.56

Scaled lead of tool ν = ακ
L∗ 50.64

Scaled axial stiffness of tool ηb =
√

Kb Itot
MtotCp

2.06

Scaled axial damping of tool γb = Db
Mtot

√
Itot
Cp

0.45

performance is characterized by the drilling efficiency
and ROP. This paper focuses on the effect of friction
on the drilling performance under different operational
conditions, namely the prescribed angular speed and
the hook-load at the surface. The characterizing param-
eters are introduced in Sect. 3.1. Next, in Sect. 3.2 the
drilling performance of the benchmark model is inves-
tigated. In Sect. 3.3, the drilling performance of the
model including AST is investigated and these results
are compared to the benchmarkmodel in order to inves-
tigate the effectiveness of the AST.

3.1 Drilling performance variables

From stability analyses of the benchmark model in
the absence of spatial Coulomb friction, it is observed
that the nominal solution is typically unstable for
realistic operating conditions [10,32,36]. As a conse-
quence, solutions diverge away from the unstable nom-
inal response and result in a time-varying steady-state
response from the nonlinear dynamics, where the non-
linearities are related to the set-valued nonlinearities in
the bit–rock interaction law, the set-valued spatial fric-

tion law and the state-dependent delay effect. The drill-
string system exhibits both axial and torsional vibra-
tions, where the torsional vibrations typically evolve
over a significantly slower timescale compared to the
axial vibrations. Since the torsional vibrations typically
converge to a steady-state torsional limit cycle, in this
section, the performance characterization variables are
averaged over a torsional limit cycle.

The performance of a drilling operation is mainly
characterized by the drilling efficiency [27]. The
drilling efficiency reflects howmuch of the total torque
provided to the bit is used for cutting.

Remark Note that the torque provided at the bit is in
general not equal to the torque applied at the surface
due to frictional losses along the drill-string.

In line with previous studies [32,37], this efficiency
is defined as the ratio between the energy devoted to
the cutting process and the total energy dissipated at the
bit (i.e., by cutting and frictional forces). The average
drilling efficiency η is given by

η = 〈T c〉
〈T c〉 + 〈T f 〉 . (52)
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Herein T c represents the cutting torque and T f denotes
the frictional torque at the bit. The brackets 〈.〉 denote
the average over a torsional limit cycle. However, the
averaged frictional torque at the bit, 〈T f 〉, is not directly
obtained from the numerical simulation, since the fric-
tional torque at the wearflat, T f , acts on the same DOF
as the tangential component of the set-valued Coulomb
friction force below the AST, λTbt (see (3) and Fig. 2
for the benchmark model and (5) and Fig. 4 for the
model including AST). Besides, both torques are gov-
erned by a similar set-valued force law, see (15) and
(25). As a consequence, it is not possible to distinguish
between the wearflat torque and the set-valued fric-
tional torque below the AST in numerical simulations
with the model.

Let us now explain how we obtain an accurate mea-
sure for the frictional losses acting at the bit in order
to assess the efficiency in (52). According to (12), the
frictional torque at the bit is proportional to the wearflat
reaction force W f with a factor 1/2aμξ . From the
model including the tool, as depicted in Fig. 4, the aver-
age of the sum of the wearflat force and the axial set-
valued friction force below the AST, 〈W f +λTba 〉, can
directly be computed. Since the averaged axial velocity
is much smaller compared to the averaged tangential
velocity (i.e., 〈U̇b〉/〈RΦ̇b〉 = O(10−4 − 10−2)), the
frictional contact basically only produces a frictional
torque and thus the axial component λTba is negligi-
ble. Hence, the average wearflat force 〈W f 〉 is approx-
imated by 〈W f + λTba 〉 and can be used to calculate
the average frictional torque at the bit 〈T f 〉.

A higher drilling efficiency will result in more effi-
cient drilling and consequently in saving drilling costs.
Moreover, a higher drilling efficiency, as defined in
(52), implies less frictional dissipation at the bit, which
is generally favourable from a bit wear perspective (i.e.,
longer bit life-time or maintaining bit sharpness).

A control parameter in both models is the hook-
load H0 at the surface (an upward force). It can be
deduced that an increase in the hook-load is causing
a decrease in the total weight applied to the bit, and
this consequently will decrease the ROP. However, the
total weight applied on the bit is not only defined by the
hook-load, but also by the gravitational forces acting on
the submerged drill-string. Therefore, instead of vary-
ing the hook-load, the total nominal weight applied on
the bit W0 is varied as a control parameter in the sim-
ulations. The total weight applied on the bit is defined
as

W0 = Ws − H0, (53)

with Ws the submerged weight of the drill-string.

Remark In general, the WOB depends on the incli-
nation of the well, since the submerged weight of a
drill-string decreases when the inclination increases.
However, it is beyond the scope of this paper to study
howall individual force components varywith the incli-
nation. Therefore, it is assumed that the hook-load is
adjusted when the inclination changes such that the
WOB remains constant.

3.2 Drilling performance of the benchmark model

The performance analysis pursued in this section
focuses on the axial bit velocity, because this ultimately
determines the ROP. The dynamic models as presented
in Sect. 2 are simulated with a time-stepping-based
numerical simulator. The structure of the numerical
simulator is based on [35].

Time-domain responses of the axial bit velocity of
the benchmark model with and without spatial friction
between the BHA and the borehole wall are depicted in
Fig. 7. In both simulations, the same boundary condi-
tions are applied (the total weight applied on the bit
W0 = 171 kN and the angular velocity at the top-
drive Ω0 = 80 RPM). The initial conditions in both
simulations are chosen close to the desired nominal
operating conditions (ub(0) = φb(0) = 1 × 10−4 and
u̇b(0) = φ̇b(0) = 0), such that the initial perturbations
are small with respect to the nominal solution. Fig-
ure 7a, b shows the axial bit velocity without and with
spatial friction, respectively. Both cases show unstable
transient behaviour where the oscillations grow until
the bit experiences an axial (and a torsional) stick-slip
limit cycle. Furthermore, the transient phase in the case
with friction is longer, i.e., it requiresmore time to reach
the axial (and torsional) limit cycle. This implies that
the friction has a stabilizing effect on the drill-string
dynamics, which reduces the growth rate of the axial
(and torsional) vibrations. The spatial Coulomb fric-
tion does not qualitatively change the drill-string sys-
tem response of the benchmark model for this specific
set of operation conditions.

Next, the effect of the spatial friction is investi-
gated for a broad range of operation conditions. The
range of the nominal WOB (W0) corresponds with the
range of hook-load forces of H0 = 370 − 440 kN.
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Fig. 7 a The axial bit
velocity for the benchmark
model without friction
between the BHA and
borehole wall (Θ = 0) and
b with Coulomb friction
(Θ = 90◦) (W0 = 171 kN
and Ω0 = 80 RPM)

(a) (b)

This range is chosen such that lower values result in
bit-bouncing and higher values in a negative nominal
axial velocity (see (32) for the relation between H0 and
V0). The range of angular velocities corresponds with
Ω0 = 30 − 150 RPM. The drilling efficiency η and
averaged ROP for this range of operation conditions
are depicted in Figs. 8, 9 and 10 for different inclined
scenarioswithΘ = 0◦,Θ = 45◦ andΘ = 90◦, respec-
tively.

In Figs. 8a, b, 9a, b and 10a, b, it can be observed
that the ROP increases with increasing nominal WOB
and prescribed angular velocity. An increase in W0,
under a prescribed constant angular velocity, results in
an increased ratio between the cutting and frictional
forces. Also with faster rotation (higher values of Ω0)
more volume of rock is cut in a given time window.
Furthermore, the spatial Coulomb friction has a small
effect on the ROP, implying that the portion of the total
force used for the cutting process is not affected sig-
nificantly by the spatial friction between the BHA and
borehole.

The drilling efficiency for different operation con-
ditions is shown in Figs. 8c, d, 9c, d and 10c, d. An
increase in the nominalWOB results in a higher drilling
efficiency. This indicates that for a higher W0 more
energy is used for the cutting process, which is in
line with the results in Figs. 8a, 9a and 10a. However,
an increasing prescribed angular velocity results in a
decreasing drilling efficiency, which indicates that less
energy is used for cutting. This implies a decrease in
DOC. Even with the decrease in DOC, an increased
ROP is still maintained. This consequently happens
since with a higher angular velocity more volume of
rock is removed by cutting in a given amount of time.
From these results, it can be concluded that the spatial
Coulomb friction mainly acts in tangential direction.

This is a direct consequence of the large angular veloc-
ity compared to the axial velocity of the drill-string,
which results in a sliding velocity (between stabilizer
and borehole) with a relative small axial component
compared to the tangential component. Consequently,
this is reflected by the ratio between the axial and tan-
gential components of the spatial Coulomb friction
(λT = λTa/λTt ), which is of O(10−4 − 10−2). This
observation indicates that the spatial Coulomb friction
basically only produces a torsional friction and conse-
quently hardly influences the axial motion of the bit, as
reflected in the ROP observations.

3.3 Drilling performance of the model including AST

In this section, we analyse the drilling performance of
the system with AST in the presence of spatial friction
between borehole and stabilizers.

Steady-state time-domain responses of the axial bit
velocity for the drill-string model including the AST
with andwithout spatial friction are depicted in Fig. 11.
These responses are obtained with the same boundary
conditions as used in benchmark model (W0 = 171 kN
and Ω0 = 80 RPM). The initial conditions are cho-
sen close to the nominal operating conditions (u(0) =
ub(0) = φb(0) = 1 × 10−4 and u̇(0) = u̇b(0) =
φ̇b(0) = 0). In the absence of spatial Coulomb friction,
the axial vibrations have a larger amplitude compared to
the cases with spatial Coulomb friction. Furthermore,
the axial bit velocity exhibits stick-slip transitions in
case with and without spatial friction. Comparing the
response of the model including AST with response of
the benchmark shows a significant difference between
the axial responses. In particular, the amplitude of the
axial bit velocity (U̇b) increases by including the AST
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Fig. 8 Drilling
performance without and
with AST in a vertical well
with inclination angle
Θ = 0◦. The
rate-of-penetration as
function of a applied WOB
W0 and b rotational velocity
Ω0 and drilling efficiency as
a function of c applied
WOB W0 and d rotational
velocity Ω0 (W0 = 184 kN
and Ω0 = 80 RPM, unless
parameter is varied)

(a) (b)

(c) (d)

up to two times the amplitude of the axial bit velocity
obtained with the benchmark model.

The drilling performance for a range of operational
conditions is depicted in Figs. 8, 9 and 10 for differ-
ent inclined scenarios with Θ = 0◦, Θ = 45◦ and
Θ = 90◦, respectively. The trends are comparable with
the benchmark model, since the increase of the nomi-
nal WOB and prescribed angular velocity result in an
increasing ROP, while the drilling efficiency increases
with W0 and decreases with increasing Ω0. These fig-
ures also indicate that the spatial friction hardly affects
the ROP. However, Fig. 10 shows that it makes a dif-
ference if the spatial Coulomb friction fully acts below
(Δ = 0) or above (Δ = 1) the AST. In the simulations,
it is observed that the axial vibrations above the tool
(U̇ ) decreases when the spatial friction acts fully above
the tool (Δ = 1). This indicates that smaller vibrations
above the AST have a positive effect on the effective-
ness of the tool, since it results in a slight improvement
of ROP. When the friction fully acts below the tool
(Δ = 0), the ROP is slightly lower compared to the
case without spatial friction. Furthermore, the influ-

ence of the location where the spatial friction acts is
also observed in the drilling efficiency, which is lower
in the case when all spatial friction acts below the tool.
Hence, it can be concluded that the effect of the spatial
friction on the axial vibrations, which are related to the
improved drilling performance, depends on the loca-
tion where the spatial friction acts. For various oper-
ational conditions (W0 and Ω0), the drilling perfor-
mance is higher for the case where all the additional
friction acts above the tool. This insight reveals that it
is more beneficial in practice to place the AST closer
to the bit, such that the friction acts mainly above the
tool.

A comparison between the ROP and drilling effi-
ciency obtained with the benchmark model and with
the model including AST shows that incorporating the
AST significantly improves the ROP and the drilling
efficiency for a broad range of spatial friction levels.
For example, in the case of a prescribed angular veloc-
ity Ω0 = 80 RPM and a nominal WOB of W0 = 192
kN, the benchmark model results in the absence of spa-
tial friction in a ROP of 〈U̇b〉 = 3.94× 10−3 m/s and a
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Fig. 9 Drilling
performance without and
with AST in an inclined
well with inclination angle
Θ = 45◦. The
rate-of-penetration as
function of a applied WOB
W0 and b rotational velocity
Ω0 and drilling efficiency as
a function of c applied
WOB W0 and d rotational
velocity Ω0 (W0 = 184 kN
and Ω0 = 80 RPM, unless
parameter is varied)
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drilling efficiency η = 0.28, see Fig. 8. Under the same
operational condition, a ROP of 〈U̇b〉 = 6.08 × 10−3

m/s and a drilling efficiency η = 0.37 is obtained
with the model including AST. In this specific case,
an increase of more than 50% in ROP and more than
30% in drilling efficiency is achieved by incorporating
the AST. In the presence of spatial friction, the increase
in ROP and drilling efficiency are comparable.

3.4 Discussion

From the performance analysis, it is concluded that the
spatial friction hardly affects the ROP, since the axial
component of the friction is relatively small compared
to the tangential component. Furthermore, simulation
results have revealed that incorporating the AST in the
drill-string results in an improved drilling efficiency
and ROP for a broad range of deviated wells. In case
when the spatial friction acts fully above the AST, a
slight improvement of drilling performance is observed
compared to the case without spatial friction and when
all friction acts below the tool.

4 Parametric design study AST

Based on the analysis performed in the previous sec-
tion, incorporating the AST can provide a solution to
improve the drilling efficiency, also in inclined drilling
scenarios with increased frictional contact. From this
point of view, the question arises how to find the opti-
mal tool settings that provide the highest drilling effi-
ciency. A parametric design study is performed in order
to investigate the optimal tool design and to understand
whether the optimality of this design is influenced by
the frictional contacts between the BHA and the bore-
hole wall (i.e., whether optimal tool settings can be
found that robustly optimize performance for a broad
range of deviated wells).

In practical field cases, the tool is placed in the bot-
tom part of the BHA [33], which results in more mass
of the BHA above the tool than below the tool. Since
the largest contribution to the spatial friction comes
from the heaviest part of the BHA, all simulations in
this section are performed under the assumption that
all spatial Coulomb friction forces fully act above the
tool (Δ = 1).
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Fig. 10 Drilling
performance without and
with AST in an inclined
well with inclination angle
Θ = 90◦. The
rate-of-penetration as
function of a applied WOB
W0 and b rotational velocity
Ω0 and drilling efficiency as
a function of c applied
WOB W0 and d rotational
velocity Ω0 (W0 = 184 kN
and Ω0 = 80 RPM, unless
parameter is varied)
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Fig. 11 a The steady-state axial bit velocity for the model including ASTwithout friction between the BHA and borehole wall (Θ = 0),
b with Coulomb friction (Θ = 90◦) acting fully above the tool Δ = 1 and c with Coulomb friction (Θ = 90◦) acting fully below the
tool Δ = 0 (W0 = 171 kN and Ω0 = 80 RPM)

The tool design is mainly reflected by two param-
eters, namely the lead of the helical spline β and
the spring stiffness Kb. In the current design of the
AST, a lead angle of β = 45◦ and a spring stiffness
Kb = 1522.5 kN/m are used. The investigated range
of the lead angle is in between β = 10 − 70◦ and the
spring stiffness range is in between 50− 11133 kN/m.
Higher values of spring stiffness results in bit-bouncing

in absence of spatial friction. Two different operational
scenarios are investigated, namely with a low angular
velocity, where Ω0 = 50 RPM, and a high angular
velocity, where Ω0 = 120 RPM. By considering these
twooperation scenarios, it can be investigated if the tool
design is robust for different operational conditions. In
all simulations W0 = 171 kN.
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Fig. 12 Drilling efficiency for different tool settings at a Θ = 0, b Θ = 45◦ and c Θ = 90◦ with Ω0 = 50 RPM and W0 = 201 kN.
The highest drilling efficiency is denoted by the red dots. (Color figure online)

Fig. 13 Drilling efficiency for different tool settings at a Θ = 0, b Θ = 45◦ and c Θ = 90◦ with Ω0 = 120 RPM and W0 = 201 kN.
The highest drilling efficiency is denoted by the red dots. (Color figure online)

From the resulting parametric study, it is observed
that a higher spring stiffness results in a higher fre-
quency of the vibrations induced by the tool contrac-
tion. Furthermore, a smaller value of the leadwill result
in less contraction at a certain torsional displacement.

In Fig. 12, the drilling efficiency is plotted against
the lead angle and the spring stiffness for different well
inclination angles, and for the low angular velocity case
(Ω0 = 50 RPM). The shape of the surfaces charac-
terizing the drilling efficiency have similar trends for
different values of Θ , indicating that the influence of
the spring stiffness and the lead on the drilling effi-
ciency is comparable under various levels of spatial
Coulomb friction. Figure 12 shows that for various spa-
tial Coulomb frictions, the optimal value for the lead
angle is around 30◦. Since in the current designs a lead
angle of 45◦ is used, between 2 and 7% in drilling effi-
ciency can be gained by changing the lead angle to 30◦
in this specific case with the above-mentioned opera-
tional conditions. Furthermore, it is observed that for
lower values of the spring stiffness, the tool provides
a higher drilling efficiency. However, the influence of

the spring stiffness is relatively small compared to the
influence of the lead angle.

In Fig. 13, the drilling efficiency for the high angular
velocity case (Ω0 = 120 RPM) is depicted for various
values of the lead angle and spring stiffness and for
different values of Θ . The shapes in these figures are
slightly different compared to the low angular velocity
case. The dependency of the drilling efficiency η on the
spring stiffness Kb reveals a less clear trend compared
to the low angular velocity case. The optimal lead angle
in this case is also aroundβ = 30◦, which is equal to the
low angular velocity case. However, it is observed that
in the high angular velocity case the drilling efficiency
is less sensitive for an increase in lead angle compared
to the low angular velocity case.

Based on these results, the general conclusion is that
the optimal values of the tool design are robust for dif-
ferent friction levels and a range of angular velocities
imposed at the surface (rig). Hence, an optimal design
for the AST that gives optimal drilling efficiency over
a broad range of inclined scenarios is feasible.
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5 Conclusions

In this paper, the effect of a passive down-hole anti-stall
tool on the drilling performance of rotary drilling sys-
tems has been investigated for deviated well scenarios.
A model including the coupled axial-torsional drill-
string dynamics, the bit–rock interaction, the tool and
the frictional effects of the stabilizers, due to borehole
inclination, has been developed. A set-valued mod-
elling approach for all contact and frictional effects
has been pursued leading to a model in terms of a
delay differential inclusion for which a time-stepping
method is employed for simulation purposes. Numer-
ical analysis results revealed that the down-hole tool
significantly improves drilling efficiency and ROP for
a broad range of deviated wells. Moreover, based on a
parametric design study it is concluded that an optimal
tool design, in terms of drilling efficiency, can be found
that is robust for a large range of borehole inclinations
and operational conditions.
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A Coordinate transformation

The drill-string dynamics including AST are expressed
in a set of dependent coordinatesqc = [U, Φ, Ub, Φb]T
combined with the following holonomic constraint:

hAST = α (Φ − Φb) − (U −Ub) = 0. (54)

The dynamics of the constrained system can also be
given in variational form:

(δqc)T
(
Mcq̈c − hc(t,qc, q̇c) − Wcλ

) = 0, (55)

which holds for all the virtual displacements δqc that
satisfy the variational holonomic constraint given by

WT
cδq

c = 0, (56)

where WT
c is the constraint Jacobian:

WT
c = ∂hAST

∂qc
=

⎡
⎢⎢⎣

− 1
α

1
−α

⎤
⎥⎥⎦ . (57)

Expressions for Mc and hc(t,qc, q̇c) can be found
in [38]. The set of independent coordinates q =
[U Ub Φb]T is introduced, such that it uniquely deter-
mines qc = qc(q). The relation between the set of
dependent and independent coordinates is explicitly
given by a constant transformation matrix T. Hence,
the following relations hold:

qc = Tq, q̇c = Tq̇, q̈c = Tq̈, (58)

with

T =

⎡
⎢⎢⎢⎢⎣

1 0 0
1
α

− 1
α

1

0 1 0

0 0 1

⎤
⎥⎥⎥⎥⎦ . (59)

Moreover, the virtual displacement in terms of the inde-
pendent coordinates can be written as follows:

δqc = Tδq. (60)

Substitution of Eqs. (58) and (60) into (55) results in
the following equation

δqT
(
TTMcTq̈ − TThc(t,Tq,Tq̇)

−TTWcλ
)

= 0, ∀δq. (61)

Since the generalized coordinatesq are independent, all
virtual displacements δq are admissible and therefore
the dynamics in independent coordinates can bewritten
as follows:

TTMcTq̈ − TThc(t,Tq,Tq̇) = TTWcλ. (62)

The new system matrices, explicitly given in (5), are
now given by

M := TTMcT,

h(t,q, q̇) := TThc(t,Tq, Tq̇), W := TTWc. (63)
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