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Abstract: Friction compensation in a controlled one-link robot using a reduced-
order observer is studied. Since friction is generally velocity-dependent and
controlled mechanical systems are often only equipped with position sensors,
friction compensation requires velocity estimation. Here, a reduced-order linear
observer is used for this purpose. For exact friction compensation, design criteria
in terms of the controller and observer parameter settings guaranteeing global
exponential stability of the set-point are proposed. Moreover, for non-exact friction
compensation it is shown that undercompensation leads to the existence of an
equilibrium set and overcompensation leads to limit cycling. These results are
obtained both numerically and experimentally.
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1. INTRODUCTION

The positioning performance of many controlled
mechanical systems, such as robots and opti-
cal disc drives, is limited by the presence of
dry friction (Armstrong-Hélouvry, 1991; Olsson
et al., 1998). For example friction-induced limit
cycling is observed by many authors in con-
trolled mechanical systems (Armstrong-Hélouvry
et al., 1994; Armstrong-Hélouvry and Amin, 1996;
Hensen, 2002). One possible strategy to tackle
this problem is model-based friction compen-
sation. In the literature, friction compensation
is investigated in both a feedforward (the fric-
tion compensation is based on desired variables)
and a feedback manner (the friction compensa-
tion is based on actual variables) (Armstrong-
Hélouvry, 1991; Johnson and Lorenz, 1991; Olsson

et al., 1998; Armstrong-Hélouvry et al., 1994).
Here, we will apply a feedback friction compen-
sation strategy to a controlled one-link robot in
order to enhance its positioning performance.

In order to implement such a strategy, a model
of the friction and knowledge on the variables
on which the friction model depends is needed.
Based on experiments, a friction model depend-
ing on velocity is adopted here. Furthermore, a
linear proportional-derivative controller is used.
Since only position measurements are available
for the one-link robot (and for mechanical sys-
tems in general), some form of velocity estima-
tion is required. To this end, numerical differen-
tiation of the position measurements (Wang et

al., 2000) or an observer can be used (Friedland
and Mentzelopoulou, 1992; Putra and Nijmei-



jer, 2004). Here, we opt for an observer, since
numerical differentiation is very sensitive to mea-
surement noise.

The combination of dry friction, friction com-
pensation and the observer dynamics can give
rise to undesired phenomena, such as limit cy-
cling (Putra and Nijmeijer, 2004) and the exis-
tence of equilibrium sets. The existence of equilib-
rium sets are due to discontinuities in the friction
and friction compensation and can cause a non-
zero steady-state positioning error. Consequently,
improved insight into the influence of controller
and observer design parameters on the existence
of these unwanted phenomena is needed. Here,
a combination of a reduced-order linear observer
and a PD-controller will be used. This combina-
tion exhibits only three design parameters (two
controller gains and one observer gain), which
allows for a simplified analysis of the effect of these
parameters on the behaviour of the closed-loop
system.

This analysis provides design criteria for the pa-
rameters of the controller and observer, which
ensure the avoidance of unwanted behaviour such
as limit cycling and equilibrium sets, in the case
of exact friction compensation. These criteria are
based on a stability analysis of the set-point. The
approach proposed here can be extended towards
multi-degree-of-freedom systems. Moreover, the
influence of non-exact friction compensation on
the positioning performance is investigated nu-
merically as well as experimentally.

The paper is organized as follows. In Section 2, the
experimental setup and a corresponding model is
introduced, based on experiments. The controller
design, observer design and the adopted friction
compensation strategy are discussed in Section 3.
In Section 4, the dynamic behaviour of the system
in case of exact friction compensation is investi-
gated and design criteria for the controller and ob-
server are proposed such that the set-point is glob-
ally exponentially stable. Moreover, in Section 5,
the effect of non-exact friction compensation on
the positioning performance is investigated both
numerically and experimentally. Finally, in Sec-
tion 6 conclusions are presented.

2. EXPERIMENTAL SET-UP AND
MODELLING

The experimental setup involving the one-link
robot is depicted schematically in figure 1. The
link is driven by a (control)-torque u supplied
by an induction motor. The angular position q
is measured by a position encoder.

The robot is modelled as a single inertia J (mod-
elling the inertia of the link and the driveline)
subject to a viscous friction torque −bq̇, a dry

Figure 1: The Experimental Setup.

friction torque −Ff (q̇) and a control torque u,
which leads to the following model:

Jq̈ + bq̇ = u − Ff (q̇). (1)

Using a frequency-domain identification tech-
nique, the total inertia of the system is identified
to be J = 0.026 kgm2/rad.

In order to identify the dry friction model, break-
away experiments are performed to measure the
static friction torque and constant velocity ex-
periments are performed to measure the friction
torque at non-zero (constant) velocities. A set-
valued force law expressed by the following alge-
braic inclusion is used:

Ff (q̇) ∈ g(q̇)Sign(q̇), (2)

in which g(q̇)Sign(q̇) represents the Stribeck curve
including the modelling of stiction, with

g(q̇) = Fc + δFe
−
(

|q̇|
vs

)β

(3)

and Sign(x) the set-valued sign-function:

Sign(x) =











{−1} x < 0

[−1, 1] x = 0

{1} x > 0

. (4)

Herein, Fc is the Coulomb friction force, δF the
difference between the static and Coulomb fric-
tion force (δF = Fs − Fc), vs the Stribeck ve-
locity and β the Stribeck shape parameter. The
measurement results and the friction model (in-
cluding both viscous and dry friction) fitted to
these data are displayed in figure 2. The resulting
friction parameter estimates are given in table 1,
where different parameter estimates are obtained
for positive and negative velocities indicating an
asymmetric friction model. For the remainder of
this paper a symmetric friction model will be
used, since the asymmetry is not essential in the
analysis. The friction parameters used in this sym-
metric model are the mean values of those for
positive and negative velocity, see table 1.
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Figure 2: Friction measurements (dots) and friction model
(solid line).

parameter q̇ > 0 q̇ < 0 mean value

β [-] 1 1 1

Fs [Nm] 0.5735 0.5123 0.5429
Fc [Nm] 0.3990 0.3887 0.3939

vs [rad/s] 0.0688 0.0817 0.0753
b [Nms/rad] 0.0828 0.0790 0.0809

Table 1: Friction parameter estimates.

3. CONTROLLER DESIGN, OBSERVER
DESIGN AND FRICTION COMPENSATION

STRATEGY

In figure 3, the friction compensation strategy in-
corporating the reduced-order linear observer and
a proportional-derivative controller is depicted
schematically. The total control action u is com-
posed by the feedback control uc and the friction
compensation ufc: u = uc + ufc. Herein,

uc = n1(qr − q) − n2
ˆ̇q, (5)

where n1, n2 > 0 are the proportional gain and the
derivative gain, respectively, and ˆ̇q is the velocity
estimate provided by the observer. Moreover, qr

is the desired reference position, which will be
assumed to equal zero (without loss of general-
ity). Furthermore, the following set-valued friction
compensation law is adopted

ufc = rFf (ˆ̇q) ∈ rg(ˆ̇q)Sign(ˆ̇q), (6)

where r is a scaling factor of the friction compen-
sation. Clearly, it reflects a feedback compensation
strategy where the estimated velocity is provided
by an observer. When r = 1, exact friction com-
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Figure 3: Friction compensation strategy.

pensation is attained and, when r 6= 1, non-exact
friction compensation is attained.

The reduced-order observer is designed as

˙̂
q̇ = −

b

J
ˆ̇q +

1

J
(u − ufc) + L

(

q̇ − ˆ̇q
)

, (7)

where ˆ̇q is the observer state (the velocity es-
timate) and L > 0 is the observer gain. The
observer error is defined as e = q̇ − ˆ̇q.

From now on, we will adopt the state coordinates

x =
[

q ˆ̇q e
]T

. The dynamics of the closed-loop
system, displayed in figure 3, can be formulated in
terms of these states by the following differential
inclusion:

ẋ1 = x2 + x3

ẋ2 =−
n1

J
x1 −

b + n2

J
x2 + Lx3 (8)

ẋ3 ∈ −
b + LJ

J
x3 +

1

J
[rFf (x2) − Ff (x2 + x3)] .

The differential inclusion (8) is of Filippov-
type and thus obeys Filippov’s solution con-
cept (Filippov, 1988). Consequently, the existence
of solutions of system (8) is guaranteed.

4. EXACT FRICTION COMPENSATION

In this section, the behaviour of the closed-loop
system is investigated for the case of exact friction
compensation. i.e. r = 1 in (6). First, the existence
of an equilibrium set depending on the system
(and control) parameters is discussed. Second, the
stability of the set-point (the origin) is investi-
gated.

4.1 Equilibria

The equilibria of (8) satisfy the following equa-
tions and inclusion:

x2 = −x3

x1 = −
LJ + b + n2

n1

x2,

G(x2) ∈ [−Fs, Fs]

(9)

where

G(x) = (b + LJ)x + Ff (x). (10)

Let us denote these equilibria by x
∗. The origin

is always an equilibrium. However, depending on
the observer gain L an equilibrium set exists. In
figure 4, the equilibria of the system with exact
friction compensation are compared to those of
the system with no compensation. In this figure,
the effect of the existence the equilibrium set on
the steady-state positioning error x1 is depicted,
for n1 = 0.4 and n2 = 0.02 and for varying L.
Clearly, the equilibrium set can induce a non-zero
steady-state positioning error. However, friction
compensation ensures a large decrease in the size
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Figure 4: Extrema for steady-state error in x1 for n1 = 0.4
and n2 = 0.02.

of the equilibrium set. Moreover, in case of ex-
act compensation the equilibrium set shrinks to
an isolated equilibrium point for increasing ob-
server gain at some critical value of the observer
gain. In order to derive the condition for L such
that a single equilibrium point exist we note that
limx↓0 G(x) = Fs and limx↑0 G(x) = −Fs. Tak-
ing into account the strictly decreasing nature of
Ff (x) for x 6= 0, a sufficient and necessary con-
dition, under which no equilibrium set can exist,
is that the function G(x) is strictly increasing for
all x 6= 0 (see inclusion in (9)). This is attained if
∂
∂x

G(x) > 0 ∀x 6= 0 and, consequently, if L > Lc

where

Lc =
1

J
(−λ − b) , (11)

λ = −
ηδF

vs

= min
x∈R\{0}

(

∂g(x)

∂x

)

, (12)

and

η =















1 if β = 1

(β − 1)e−
β−1

β

β

√

β−1

β

if β > 1 . (13)

For the parameters of the model of the one-link
robot (using mean values for the friction param-
eters) the critical observer gain is Lc = 73.07.
Note that this value corresponds to the value for
which the equilibrium set merges into an isolated
equilibrium point in figure 4. The size of the
equilibrium set (and thus the maximum steady-
state positioning error) can also be influenced by
the controller parameters; if n1 is increased the
size of the equilibrium set decreases and if n2 is
increased the size of the equilibrium set increases,
see the second equation of (9).

4.2 Stability of the set-point

In order to investigate the stability of the origin
of (8), let us study the system in the form of
a cascade of a subsystem SI and a subsystem
SII as depicted in figure 5. In this figure, x12 =

-

SI SII

x12

x2

x3w
ẋ3 = AIx3 + BIw ẋ12 = AIIx12 + BIIx3

Ff (x2 + x3) − Ff (x2)

Figure 5: Cascade representation of the closed-loop system.

[

x1 x2

]T
and the system and input matrices of

these subsystems are given by

AI = −(
b

J
+ L), BI =

1

J

AII =

[

0 1

−
−n1

J
−

b + n2

J

]

, BII =

[

1
L

]

.
(14)

Note that SI describes the observer error dy-
namics. In order to prove the global exponential
stability (GES) of the origin of (8) we adopt the
following reasoning. If the following three condi-
tions are fulfilled:

(a) x3 = 0 is a globally exponentially stable
equilibrium point of system SI for all x2;

(b) x12 = 0 is a globally exponentially stable
equilibrium point of system SII for zero input
x3;

(c) System SII is input-to-state stable (ISS),

then x = 0 is a globally exponentially stable
equilibrium point of (8). Let us now check whether
these conditions are fulfilled.

Firstly, in order to check condition (a), we use
a candidate Lyapunov function V = 1

2
Jx2

3
(see

(Filippov, 1988) and (Shevitz and Paden, 1994)
for details on Lyapunov analysis for differential
inclusions). Its time-derivative V̇ = Jẋ3x3 obeys

V̇ ∈−(b+LJ)x2

3
+(Ff (x2)−Ff (x2+x3)) x3. (15)

In the second term of V̇ the discontinuities of
both the dry friction torque and the friction
compensation design are present. Here, we will
estimate this term by realising that the function
Ff (·) satisfies the following incremental sector
condition:

(Ff (x2) − Ff (x2 + x3)) x3 ≤ −λx2

3
, ∀x2, x3 (16)

with λ defined by (12). Using (16) in (15) yields

V̇ ≤ −
2

J
(LJ + b + λ)V. (17)

Clearly, for an observer gain satisfying L > Lc,
with the critical observer gain Lc given by (11),
e = 0 is a globally exponentially stable equilib-
rium point of system SI (independent of x2).

Secondly, conditions (b) and (c) are satisfied
since system SII is a LTI-system with a Hurwitz
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system matrix AII (AII is Hurwitz given the fact
that n1, n2 > 0).

Resuming we can conclude that if L > Lc, x = 0 is
a globally exponentially stable equilibrium point
of (8). If L < Lc, unwanted behaviour in the
form of a non-zero steady-state positioning error,
see figure 4, or limit cycling, see figure 6, can
occur. The latter figure indicates that e = 0 is
not stable, which causes a non-zero observer error.
This non-zero observer error induces overcompen-
sation leading to limit cycling. For L > Lc, the
observer error converges fast to zero and stays
equal to zero, see figure 7. The observer based fric-
tion compensation now performs as desired. Note
that we used a switch-model (Leine, 2000) for the
numerical integration of (8) to avoid numerical
instability at zero velocity.

5. NON-EXACT-FRICTION
COMPENSATION

In practice, or in an experimental setup such as
that of the one-link robot discussed in this pa-
per, the friction model will never be exact, due
to inevitable modelling errors. To study this we
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introduce a scaled friction compensation law, see
figure 3 and equation (6) with r 6= 1. Obviously, in
practice modelling errors will not be of this form
but this type of scaling of the friction compensa-
tion law allows to investigate the effects of both
undercompensation and overcompensation of the
friction. In figure 8, the equilibrium set (in terms
of x1) is shown for different values of r. In the case
of undercompensation (r < 1), an equilibrium set
will exist irrespective of the value of L. The value
of L, however, influences the magnitude of the
equilibrium set. This figure indicates that friction
compensation (even in the case of undercompen-
sation) ensures a smaller equilibrium set than
exists without compensation, see also figure 4.
In the case of the overcompensation (r > 1), an
equilibrium set only exists for r very close to one;
the equilibrium set rapidly shrinks to an isolated
(unstable) equilibrium point for increasing r.

In figure 9, a bifurcation diagram with bifurcation
parameter r is depicted in terms of x1 for a super-
critical observer gain L = 73.5 > Lc. For the
limit cycle, max(abs(x1)) over a period of the
limit cycle is plotted. This bifurcation diagram
clearly shows that an equilibrium set exists when
the friction is undercompensated and a stable
limit cycle exists in case of overcompensation. A
corresponding bifurcation diagram involving ex-
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perimental results is depicted in figure 10. Herein,
the stars (∗) indicated equilibria and the circles
(◦) indicate limit cycles. Comparison of figures 9
and 10 reveals a clear qualitative correspondence.
Of course, in figure 10 the bifurcation point is
not located exactly at r = 1 since not only the
friction compensation law is scaled but the real
friction deviates from the friction model as well.
Moreover, the difference between the real fric-
tion and the friction model is not of the form
of a mere scaling. Nevertheless, the theoretical
and experimental results agree to the extent that
undercompensation leads to non-zero steady-state
errors (due to the existence of an equilibrium set)
and overcompensation leads to limit cycling.

6. CONCLUSIONS

A friction compensation strategy for a controlled
one-link robot using a reduced-order observer is
proposed. Based on experiments, a set-valued fric-
tion model is identified to support a model-based
friction compensation approach. Since only posi-
tion measurements are available and the friction
model depends on velocity, a reduced-order ob-
server is used to provide velocity estimates. The
combination of the reduced-order observer and a
PD-controller exhibits only three design parame-
ters (two controller gains and one observer gain).
This allows for a simplified analysis of the effect of
these parameters on the behaviour of the closed-
loop system.

Both the case of exact friction compensation and
non-exact friction compensation are studied. In
the case of exact friction compensation, it is shown
that the observer gain is critical for the stability of
the set-point. If the observer gain is taken larger
than this critical value, it is shown the set-point
is globally exponentially stable. Moreover, for an
observer gain lower than this critical value, an
equilibrium set can exist and limit cycling can
occur both deteriorating the positioning perfor-
mance. In the case of non-exact friction compen-
sation, it is shown that undercompensation of the
friction leads to the existence of an equilibrium set
and that overcompensation leads to limit cycling.

These results are obtained both in simulation and
experiments. Since the size of the equilibrium set
can be influenced by the choice of the controller
parameters, it is advisable to opt for undercom-
pensation when exact friction compensation is not
possible.
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M. Gäfvert and P. Lischinsky (1998). Friction
models and friction compensations. European

Journal of Control 4(3), 176–195.
Putra, D. and H. Nijmeijer (2004). Limit cycling

in an observer-based controlled system with
friction: Numerical analysis and experimental
validation. Int. J. of Bifurcation and Chaos

14(9), to appear.
Shevitz, D. and B. Paden (1994). Lyapunov sta-

bility theory of nonsmooth systems. IEEE

Trans. on Automatic Control 39(9), 1910–
1914.

Wang, Z., H. Melkote and F. Khorrami (2000).
Robust adaptive friction compensation in
servo-drives using position measurements
only. In: Proc. of the int. conf. on control ap-

plications. Achorage. pp. 178–183.


