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Abstract: Directional drilling systems generate complex curved boreholes in the earth’s crust
for the exploration and harvesting of oil, gas and geothermal energy. In practice, boreholes
drilled with such systems often show instability-induced borehole spiraling, which negatively
affects the borehole quality and increases drag losses while drilling. This paper presents a
dynamic state-feedback controller design approach for the stable generation of complex, three-
dimensional borehole geometries, while avoiding undesired borehole spiraling. The design is
based on a model for three-dimensional borehole propagation in terms of nonlinear delay
differential equations. After casting the problem of borehole propagation into a tracking problem,
it is shown that complex, three-dimensional borehole geometries can be asymptotically stabilized
with the proposed controller. The effectiveness of the proposed approach is evidenced in an
illustrative benchmark study.
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1. INTRODUCTION

The exploration and harvesting of hard-to-reach under-
ground energy resources (such as oil, gas and geother-
mal energy) requires drilling complex curved boreholes.
Directional drilling systems, including down-hole robotic
systems known as rotary steerable systems (RSS), are used
for this purpose. This work aims at the development of
novel strategies for the control enabling three-dimensional
borehole generation using such an RSS actuation mecha-
nism.

Experimental evidence has shown that state-of-practice di-
rectional drilling (control) techniques can induce borehole
oscillations, see e.g Marck et al. (2014). These oscillations
in the borehole geometry are undesirable as they 1) com-
promise borehole stability, 2) reduce drilling efficiency),
3) reduce target accuracy, 4) make it more difficult to
insert the borehole casing to prepare for production, and 5)
reduce the rate-of-penetration (i.e. the speed of the drilling
process). In this work, we aim to develop a model-based
controller synthesis approach, which enables the drilling of
complex three-dimensional (3D) borehole geometries while
preventing borehole spiraling.

Several works exist on the topic of the control of directional
drilling processes. In Panchal et al. (2012), controllers
are developed based on empirical models of the borehole
propagation process, in which a direct link between the
force applied by the RSS and the curvature of the borehole

is assumed. This approach ignores (physically relevant)
transient behavior of the borehole propagation, which
is essential in preventing borehole spiraling. In Bayliss
and Matheus (2009), a state-space model for borehole
propagation is derived and on the basis of this model, a
controller is designed. However, the essential delay nature
of the borehole propagation dynamics (see Neubert and
Heisig (1996); Downton (2007); Perneder (2013)) is not
captured in this model. In Sun et al. (2011), an L1

adaptive controller is designed, based on the directional
drilling model of Downton (2007). In Kremers et al.
(2015), a robust output-feedback approach for inclination
control is proposed based on the model in Perneder (2013);
Detournay and Perneder (2011).

All of the above control approaches focus on two-
dimensional directional models, in which only the in-
clination dynamics is investigated. However, in practice
complex three-dimensional borehole geometries need to be
generated. Hence, control strategies applicable to three-
dimensional directional drilling models are required that
avoid undesired borehole spiraling effects. Compared to
the two-dimensional case studied in the literature above,
this is challenging due to the fact that existing three-
dimensional models for directional drilling are described
in terms of rather complex, multi-variable, nonlinear delay
differential equations (DDEs).

The main contribution of this work is the development of a
design strategy for controllers for three-dimensional direc-
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Fig. 1. Geometric description of the directional drilling
system (left), borehole (top right), Bottom-Hole-
Assembly (right middle) and bit (bottom right)
(Perneder (2013)).

tional drilling systems. More detailed contributions are as
follows. Firstly, the proposed method is based on a closed-
form model description for three-dimensional borehole
propagation, as proposed in Perneder (2013); Perneder and
Detournay (2013b,a), which captures the essential, physi-
cally relevant, behavior of a three-dimensional directional
drilling system. Secondly, unlike existing control methods,
with Kremers et al. (2015) as an exception, the goal of
the controller synthesis method is to design a controller
which reduces borehole spiraling and prevents oscillations
in the transient closed-loop response (both of which are
detrimental to borehole quality). Thirdly, the proposed
controller effectively deals with the nonlinear coupling be-
tween the inclination and azimuth dynamics characteristic
to the dynamics of three-dimensional borehole propaga-
tion. Fourthly, a control strategy is proposed in which two
identical and decoupled controllers for the inclination and
azimuth dynamics are used, which simplifies the design
and alleviates the burden of practical implementation.

2. 3D DIRECTIONAL DRILLING MODEL

As a basis for controller synthesis, we employ a three-
dimensional, nonlinear model for directional drilling as
developed in Perneder (2013); Perneder and Detournay
(2013b,a). The schematic in Figure 1 (left figure) reflects
that the directional borehole propagation process is pri-
marily determined by the Bottom-Hole-Assembly (BHA),
being the lowest part of the drill-string, which is laterally
stabilized in the borehole by so-called stabilizers, and
by the bit and rock properties. Figure 2 illustrates that
the model comprises three main components. Firstly, the
forces and moments acting on the bit are obtained by
modeling the deformation of the BHA inside the borehole.
Since the BHA is constrained in the borehole by the stabi-
lizers in contact with the borehole wall, see Figure 1, the

Fig. 2. Three components of the model and their interac-
tion (Perneder and Detournay (2013b)).

existing borehole geometry affects the forces and moments
on the bit in a spatially delayed manner. Secondly, the
bit-rock interface law determines how these forces and
moments on the bit are related to the penetration of the
bit into the rock. Finally, the bit motion is related to the
propagation of the borehole geometry through kinematic
relationships.

2.1 Borehole evolution equations

This nonlinear model involves evolution equations for two
angles fully describing the 3D borehole geometry: the
borehole inclination Θ and the borehole azimuth Φ, as
defined in Figure 1:

ηΠ
(

(θ −Θ) cos$ + sin Θ sin$ (φ− Φ)
)

= Fb (θ − 〈Θ〉1)

+FwΥ sin 〈Θ〉1 + FrΓΘ +

n−1∑

i=1

Fi
(
〈Θ〉i − 〈Θ〉i+1

)
, (1a)

−χΠθ′ =Mb (θ − 〈Θ〉1) +MwΥ sin 〈Θ〉1 +MrΓΘ

+

n−1∑

i=1

Mi

(
〈Θ〉i − 〈Θ〉i+1

)
, (1b)

ηΠ

(
− (θ −Θ) sin$

sin Θ
+ cos$ (φ− Φ)

)
= Fb (φ− 〈Φ〉1)

+Fr
ΓΦ

sin Θ
+

n−1∑

i=1

Fi
(
〈Φ〉i − 〈Φ〉i+1

)
, (1c)

−χΠφ′ =Mb (φ− 〈Φ〉1) +Mr
ΓΦ

sin Θ

+

n−1∑

i=1

Mi

(
〈Φ〉i − 〈Φ〉i+1

)
. (1d)

In (1), (·)′ indicates a derivative with respect to the
(dimensionless) length of the borehole ξ := L/l1 with L
the length of the borehole and l1 the distance between
the bit and the first stabilizer, see Figure 1. Note that
the independent variable in the model in (1) is the dimen-
sionless spatial variable ξ. The variables θ and φ indicate
the inclination and azimuth of the BHA, which differ from
that of the borehole due to deformation of the BHA, see
Figure 1. All angle variables in (1) are evaluated at the bit
(in Figure 1 such variables are indicated with theˆ symbol,
which is omitted here for the sake of transparency). In (1),
the average inclination and azimuth of the borehole in the
i-th BHA segment (the segment between the i− 1-th and
i-th stabilizer, with i = 0 indicating the bit) are given
respectively as:

〈Θ〉i :=
1

λi

∫ ξi−1

ξi

Θ(σ)dσ, 〈Φ〉i :=
1

λi

∫ ξi−1

ξi

Φ(σ)dσ, (2)
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which induces terms with distributed delays in (1). Herein,

ξi := ξ −∑i
j=1 λj and λj := lj/l1 is the dimensionless

length of the j-th BHA segment.

Let us now introduce the key model parameters. Π =
Wact/F∗ denotes the dimensionless active weight-on-bit
(which is assumed to be constant), with Wact the active
weight on bit and F∗ := 3EI/l21 with EI denoting the
BHA’s bending stiffness. Moreover, $ is the so-called bit
walk, the meaning of which is explained in Figure 3. Both
the weight on bit Π and the bit walk angle $ are key
parameters in the sense that these parameters strongly
influence the dynamics (and determine whether borehole
spiraling occurs) and in the sense that both parameters
are subject to significant uncertainty in practice. The
parameters η, χ are respectively the lateral and angular
steering resistance of the bit. The number of stabilizers is
given by n. The factors F andM in (1) (with appropriate
indices) only depend on the specific configuration of the
BHA, see Perneder (2013).

The term involving Υ sin〈Θ〉1 in (1), with Υ a scaled
measure of the BHA weight, is related to the influence of
gravity on the BHA. We consider this term to be a (quasi-)
constant perturbation, since the average inclination only
changes slowly with the distance drilled. Finally, Γi :=
Frss,i

F∗
, i = Θ,Φ, are the (scaled) RSS forces, i.e. the control

inputs, where the RSS force vector ~Frss is measured by

the components Frss,Θ and Frss,Φ along the axes ~I2 and
~I3 respectively, see Figure 1.

The model in (1) consists of two nonlinear (delay) differ-
ential equations and two nonlinear (algebraic) constraint
equations. To facilitate controller synthesis and given the
fact that we are primarily interested in the borehole evolu-
tion (rather than in the BHA deformation), we eliminate
the two constraint equations (and the BHA-related angles
θ and φ) and arrive at a model in terms of two nonlinear
delay differential equations in terms of the borehole-related
variables Θ and Φ of the form:

Θ′ (ξ) = fΘ(Θξ,Φξ,ΓΘ,ΓΦ,ΓΘ
′,ΓΦ

′),

Φ′ (ξ) = fΦ(Θξ,Φξ,ΓΘ,ΓΦ,ΓΘ
′,ΓΦ

′),
(3)

where Θξ(σ) := Θ(ξ + σ), Φξ(σ) := Φ(ξ + σ), for all
σ ∈ [λtot, 0] with λtot =

∑n
i=1 λi.

The expressions for fΘ and fΦ in (3) are rather complex
and for details we refer to Monsieurs (2015).

2.2 Neutral bit walk model

The model significantly simplifies for the neutral bit walk
case (i.e. $ = 0◦). This parametric case will be employed
for the purpose of the design of the structure of the

Fig. 3. The bit walk angle $: the angle between the lateral

force ~Fs and lateral penetration ~ds.

controller in Section 4 and in this case the model in (3)
reads as

χΠΘ′ =−Mb(Θ− 〈Θ〉1) +
χ

η
Fb (Θ−Θ1)

−
n−1∑

i=1

MbFi +Mi (ηΠ−Fb)
ηΠ

(〈Θ〉i − 〈Θ〉i+1)

− χ

η

n−1∑

i=1

Fi
(

Θi−1 −Θi

λi
− Θi −Θi+1

λi+1

)

− MbFr + (ηΠ− Fb)Mr

ηΠ
ΓΘ −

χ

η
FrΓΘ

′ +W,

(4)

withW := −MbFw+(ηΠ−Fb)Mw

ηΠ Υ sin 〈Θ〉1− χ
ηFw (Θ−Θ1)

Υ cos 〈Θ〉1 reflecting the effect of gravity, which is consid-
ered as a (quasi-) constant disturbance, and

χΠΦ′ =−Mb (Φ− 〈Φ〉1) +
χ

η
Fb (Φ− Φ1)

−
n−1∑

i=1

MbFi +Mi (ηΠ− Fb)
ηΠ

(〈Φ〉i − 〈Φ〉i+1)

− χ

η

n−1∑

i=1

Fi
(

Φi−1 − Φi
λi

− Φi − Φi+1

λi+1

)

+

(
χ

η

FrΘ′ cos Θ

(sin Θ)
2 − MbFr +Mr (ηΠ−Fb)

ηΠ sin Θ

)
ΓΦ

− χ

η

Fr
sin Θ

ΓΦ
′.

(5)

Observe that the first three lines in the right-hand sides
in (4) and (5) are identical and relate to the BHA being
constrained in the borehole drilled in the past. The key
differences between the inclination and azimuth dynamics,
in (4) and (5), respectively, are twofold: 1) only the
inclination dynamics is affected (nonlinearly) by gravity
(W term) and 2) the inclination dynamics is decoupled
from the azimuth dynamics; in contrast, the azimuth
dynamics is influenced by the inclination dynamics in a
nonlinear fashion through the terms involving the control
input ΓΦ and its spatial derivative.

3. CONTROL PROBLEM FORMULATION

The main goal of directional drilling is the generation of
a borehole with some desired complex 3D geometry. In
terms of the model in (4), (5) (or (3) in the non-neutral bit
walk case), this objective can be formulated as a tracking
problem. More specifically, we aim to track the inclina-
tion and azimuth reference trajectory (Θr(ξ),Φr(ξ)), for
ξ ∈ [−λtot,∞]. We assume that Θr(ξ) and Φr(ξ) are
continuously differentiable, which is reasonable at the scale
at which the problem is treated as it avoids curvature
discontinuities. We aim to design a dynamic state-feedback
controller such that the control inputs Γi(ξ), i = Θ,Φ,
render (Θr(ξ),Φr(ξ)) the asymptotically stable solution of
the closed-loop system.

In addition, certain additional control objectives stem
from the fact that the spiraling behavior in the bore-
hole, which is often observed in practice, needs to be
reduced/eliminated. Such borehole spiraling can either
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be caused by poles in the right-half complex plane (i.e.
instability), which is avoided if the state tracking problem
is solved, or by undesired transient behavior. For this
reason, we also focus on achieving improved transient
behaviour in order to reduce/eliminate transient borehole
spiraling. Another control objective is related to the fact
that robustness to slowly changing gravity-induced forces
is required.

4. CONTROLLER DESIGN

The structural design of the controller introduced next is
based on the neutral bit walk model in (4) and (5). Later,
also the performance of this controller will be considered
for both the neutral and non-neutral bit walk cases.
Without loss of generality, we focus on a two-stabiliser
case here (i.e. n = 2).

4.1 Controller structure

The structure of the proposed controller strategy is
schematically depicted in Figure 4, which consists of the
following components: 1) Decoupling input transforma-
tion, 2) Input filters, 3) Combined feedforward and dy-
namic state-feedback tracking controller, which are subse-
quently discussed in more detail.

Decoupling input transformation The borehole propaga-
tion dynamics in (4) and (5) (i.e. for neutral (zero) bit
walk) is coupled (from inclination to azimuth dynamics)
in a nonlinear fashion through the input (i.e. RSS force)
related terms. We introduce new control inputs Γ∗Θ and
Γ∗Φ, defined through the following input transformation:[

ΓΘ

ΓΦ

]
=

[
1 0
0 sin Θ

] [
Γ∗Θ
Γ∗Φ

]
, (6)

for Θ ∈ (0, π), such that[
Γ′Θ
Γ′Φ

]
=

[
Γ∗Θ
′

Γ∗Φ
′ sin Θ + Γ∗ΦΘ′ cos Θ

]
, (7)

This input transformation achieves decoupling of the in-
clination and azimuth dynamics, which, after the in-
put transformation, satisfy the following first-order linear
DDEs:

z′i(ξ) =Az0zi(ξ) +Az1zi(ξ1) +Az2zi(ξ2)

+Bz0Γ∗i +Bz1Γ∗i
′ +Wi,

(8)

for i = {Θ, Φ}, where WΘ = W, WΦ = 0, and where the
system matrices (Az0,Az1 andAz2) and the input matrices
(Bz0 and Bz1) are defined by (9). In fact, the inclination
and azimuth dynamics are now not only decoupled but also
identical (apart from the gravity related disturbance term
W), which simplifies the controller design (and practical
implementation) in the sense that inclination and azimuth
controllers for ΓΘ and ΓΦ can be the same. In (8), the state
vectors zi, i ∈ {Θ,Φ}, are given by zΘ = [Θ, 〈Θ〉1, 〈Θ〉2]T

Θ

Decoupling
input 

transformation

ΦInput
filter

Feedforward
+ feedback 
controller

ΓΦ
∗ ΓΦ

Φr uΦ

Input
filter

Feedforward
+ feedback 
controller

Θr  
uΘ  

Θ

Θ 

Φ 

ΓΘ
∗ ΓΘ

  Borehole 
propagation

dynamics

Fig. 4. Schematic overview of the control structure.

and zΦ = [Φ, 〈Φ〉1, 〈Φ〉2]T . Extending the state with the
average inclinations and azimuths supports the description
of the dynamics with DDE involving point-wise delays (as
opposed to distributed delays).

Input filters In support of the tracking controller design,
discussed in the next section, input filters, see Figure 4, are
included in the design:

Γ∗i
′ = −bz0

bz1
Γ∗i +

1

bz1
ui, (10)

where bz0 and bz1 are the first entries of the vectors Bz0
and Bz1 (i.e. Bz0 = [bz0, 0, 0]T and Bz1 = [bz1, 0, 0]T ).
Applying these input filters to (8) yields

z′i(ξ) = Az0zi(ξ)+Az1zi(ξ1)+Az2zi(ξ2)+Bzui+Wi, (11)

for i = {Θ, Φ} and with Bz = [1 0 0]
T

.

Tracking controller The tracking controller proposed
here consists of a feedforward part ur,i and feedback part
ufb,i, i.e. ui = ur,i+ufb,i, where the feedforward controller
is given by

ur,i = B+
z

(
z′r,i(ξ)−Az0zr,i(ξ)−Az1zr,i(ξ1)−Az2zr,i(ξ2)

)
,

(12)
where B+

z (= [1, 0, 0]) denotes the pseudoinverse of the
vector Bz, zr,Θ(ξ) = [Θr(ξ), 〈Θr〉1(ξ), 〈Θr〉2(ξ)]T and
zr,Φ(ξ) defined similarly 1 . The dynamic state-feedback
tracking controller is designed as follows:

p′i = Ac,ipi +Bc,i(zi − zr,i),
ufb,i = Cc,ipi,

(13)

where

Ac,i =

[
0 0
γi −γi

]
, Bc,i =

[
ζi[k1,i, 0, 0]
γiKp,i

]
, Cc,i = [0, 1] ,

(14)
for i = {Θ, Φ}. The proportional feedback gain matrices
are defined by Kp,i := [k1,i, k2,i, k3,i] for i = {Θ, Φ}.
Integral action is added to the controller to eliminate the
effects of (quasi-)constant (gravity-induced) disturbances
(i.e. to remove steady-state errors), where the parameter ζi
determines the cut-off frequency of the integral action. In
order to reduce/avoid oscillations on the short range length
scale (ξ = O(10−1)), the controller contains also a low-
pass filter. The dynamics on the short-range can be excited
when the reference trajectory quickly changes (for instance
a transition from straight to curved borehole section)
or when the controller instantly reacts to an (initial)
error between the states and reference, thereby inducing
undesired borehole kinking. A second reason to include a
low-pass filter in the controller is to be less sensitive for
measurement noise in practice. The cut-off frequency of
this low-pass filter is determined by the parameter γi.

4.2 Controller tuning

To support controller gain tuning, the following closed-
loop error dynamics is obtained, with ei = zi − zr,i:[
e′i(ξ)
p′i(ξ)

]
=

[
Az0 BzCc,i
Bc,i Ac,i

] [
ei(ξ)
pi(ξ)

]
+

[
Az1 0
0 0

] [
ei(ξ1)
pi(ξ1)

]

+

[
Az2 0
0 0

] [
ei(ξ2)
pi(ξ2)

]
.

(15)

1 The gravity effect is not accounted for in the feedforward design;
integral action in the feedback design effectively deals with the
(quasi-) constant gravity-related disturbance.
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Az0 =
1

χΠ

[
−Mb +

χ

η
(Fb − F1) Mb −M1 +

FbM1 − F1Mb

ηΠ
M1 +

(−FbM1 + F1Mb)

ηΠ
χΠ 0 0
0 0 0

]
,

Az1 =
1

χΠ



χ

η
(F1 +

F1

λ2

− Fb) 0 0

−χΠ 0 0
χΠ

λ2

0 0


 , Az2 =

1

χΠ



−
χF1

ηλ2

0 0

0 0 0

−
χΠ

λ2

0 0


 ,

Bz0 =
1

χΠ

[
−Mr +

1

ηΠ
(FbMr − FrMb), 0, 0

]T
, Bz1 =

1

χΠ

[
−
χ

η
Fr, 0, 0

]T
.

(9)

These error dynamics is globally asymptotically stable
(thereby achieving the tracking control objective) if and
only if the right-most closed-loop pole is located in the left-
half complex plane. The convergence rate of the transient
response towards the desired borehole trajectory will be
largely determined by the (maximum) real part of the
closed-loop poles. Therefore, the controller gains are de-
signed by solving the following minimization problem

min
Kp,i, i∈{Θ,Φ}

α(Kp,Θ,Kp,Φ), (16)

with

α(Kp,Θ,Kp,Φ) = max
j∈[1,2,...,∞]

{<(sj(Kp,Θ,Kp,Φ))}, (17)

and sj(Kp,Θ,Kp,Φ) the (infinitely many) closed-loop poles
of the tracking error dynamics (15) induced by the con-
troller gains Kp,Θ, Kp,Φ. Herewith, we pursue a pole
placement technique (for DDEs) towards stabilization, see
Michiels and Niculescu (2007). Note that because the
tracking error dynamics associated with the inclination
and azimuth dynamics are identical and decoupled, we can
choose Kp,Θ = Kp,Φ =: Kp, which simplifies the above
optimization problem. The problem of finding the gain
matrix Kp is a non-smooth optimization problem. This
problem can be solved using a gradient sample algorithm,
see Burke et al. (2005). Prior to performing this optimiza-
tion process, the parameters for the low-pass filter and
integral action (γi and ζi) are fixed. These parameters are
not designed together with the gain matrix Kp,i through
the above optimization-based approach, because the input
filter and the integral action pursue control objectives on
other length scales than the feedback controller (the short
and long length scales, respectively); the tracking goal
objective should be achieved on the medium-range length
scale.

5. ILLUSTRATIVE BENCHMARK STUDY

5.1 Benchmark problem definition

The BHA in this benchmark system is equipped with
two stabilizers (n = 2), illustrated in Figure 5. Table 1
specifies the complete BHA geometry of the benchmark
system. The BHA consists of pipes with an inner and outer
radius Ir and Or given in this table, and the area moment
of inertia of the BHA is I = π/4 · (O4

r − I4
r ) = 3.6 ·

10−5 m4. The BHA’s is made of steel with a Young’s
modulus Ey = 2 · 1011 N/m2; hence, the characteristic
force F∗ in this benchmark system is equal to 1.6 · 106 N.
The dimensionless parameters of the BHA configuration

(λ1, λ2, Λ) corresponding to benchmark system described
above are given in Table 2, where Λ characterizes the
location of the RSS, see Figure 5. The dimensionless lateral
and angular steering resistance η and χ of the benchmark

system, see Table 2, are chosen corresponding to a bit
with a rather long passive gauge. Given the material
density of the BHA pipes (ρ = 7800 kg/m3 for steel), the
distributed weight w of the BHA is w = 1.08 · 103 N/m,
which corresponds to a dimensionless distributed weight
Υ as given in Table 2. We consider a desired 3D borehole
geometry consisting of three sections: a vertical section
without curvature (so a straight line), followed by a curved
section and a straight horizontal section, see Figure 6.

5.2 A neutral bit walk case study

Let us first consider the nominal case for $ = 0◦ (i.e.
zero (neutral) bit walk) and Π = 0.0087. Using the
controller design and tuning strategy described in Sec-
tion 4, we arrive at the following controller gains: Kp =
[2654 1256; 289], and ζi = 0.5, γi = 0.8, for i ∈ {Θ,Φ}.
In doing so, the optimization-based tuning strategy was
terminated when α(Kp,Kp) ≤ 0.5. In Figure 7, the closed-
loop poles (and the open-loop poles) are displayed, which
shows that this controller indeed stabilizes the desired tra-
jectory. Note that the open-loop system has a real pole in
zero. The latter fact is further evidenced by the simulation
results involving the tracking errors in Figure 8, for initial
borehole inclination and azimuth given by Θξ(0) = 2.5◦

and Φξ(0) = 100.5◦. The simulations are carried out
with the nonlinear directional drilling model in (4), (5)
including the influence of gravity. This figure shows that
the closed-loop tracking errors asymptotically converge to
zero within a length scale of ξ = 10 and that the tracking
control objective is achieved without undesirable transient
effects such as borehole spiraling and kinks. The integral
action of the controller indeed ensures zero steady-state
error (although the gravity-induced force disturbance is
present). This figure also depicts an open-loop response
for which the feedforward (and the decoupling law) are
still employed. In contrast to the closed-loop response, the
open-loop inclination error response shows a drift caused
by gravity-induced disturbance (which does not affect the
azimuth dynamics). In the absence of gravity-related dis-
turbances, both the open-loop inclination and azimuth
error would remain constant (and typically non-zero) due
to the presence of the pole at zero in the open-loop dy-

Table 1. The BHA geometry of the benchmark
system.

`1 `2 Λ`1 Ir Or
3.66 m 6.10 m 0.61 m 0.0533 m 0.0857 m

CHAPTER 4. OPEN-LOOP DYNAMICS

Figure 4.1: General setup of the (two-stabilizer) BHA.

delay differential equation for Γ = Γ
′

= 0. Unlike an ordinary differential equation, a DDE possesses
an infinite number of poles due to the infinite dimension of a DDE (as can be seen in the definition
of the initial condition xd(0)). The poles, λk for k ∈ [1,∞], of the open-loop system are given by the
characteristic roots of the following equation [12]:

det∆(λ) = 0, (4.2)

where

∆ = λI −A0 −
n∑

i=1

Aie
−λ∑i

j=1 κj , (4.3)

is the characteristic matrix. Although for the system under consideration there exist an infinite num-
ber of poles, since the DDE (4.1) is of retarded type it can be shown that [12]:

limk→∞|λk| → +∞, (4.4)

and

limk→∞R(λk)→ −∞. (4.5)

This leads to the conclusion that there only exist a finite number of poles in a vertical strip of the
complex plane [12]. As long as all poles are located in the open left-half complex plane, the origin
(x = 0) is the globally asymptotically stable equilibrium point of the system (4.1) (for Γ ≡ 0). The
poles of the DDE are computed using a Matlab toolbox developed by Wu and Michiels [36], publicly
available at http://twr.cs.kuleuven.be/research/software/delay-control/roots/. This toolbox allows the
computation of the (finite number of) poles of a DDE with real value exceeding some value α,R(λk) >
α, where α defines a vertical line in the complex plane.

Let us consider the poles of the BHA with two stabilisers (which we will call the benchmark BHA)
shown in Figure 4.1. This BHA has two stabilizers (n = 2) and thus the borehole propagation is given
by the model (3.28). The BHA has the geometry as specified in Table 4.1.

λ1 κ1 λ2 κ2 Λ Ir Or
3.6576 [m] 1 [-] 6.0960 [m] 2

1.2 [-] 1
6 0.0533 [m] 0.0857 [m]

Table 4.1: Geometry of the benchmark BHA.

Note that the inner radius Ir and the outer radius Or are needed to calculate the weight and the
second moment of area of the BHA I . Furthermore, the BHA is made of a steel withE = 2e11 [N/m2]
and density ρ = 7800 [kg/m3]. The coefficients for this BHA can be calculated using Appendix B and
are given in Table 4.2.

29

Fig. 5. The BHA configuration of the benchmark system.
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Table 2. Parameters of the benchmark system.

λ1 λ2 Λ χ η Υ
1 1.667 0.167 0.1 30 0.0024
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Fig. 6. The reference trajectory expressed in the borehole
inclination and azimuth (figures on the left), and
visualized in Cartesian coordinates (right figure).
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Fig. 7. Open and closed-loop poles for Π = 0.0087 and
$ = 0◦ controlled by the neutral bit walk control
strategy.
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Fig. 8. Error response using the neutral bit walk control
strategy and for the open-loop system including de-
coupling law, input filter and feedforward, for $ = 0◦
and Π = 0.0087.

namics (in combination with the perfect feedforward still
employed in the open-loop simulation)

6. CONCLUSIONS

This paper has proposed a dynamic state feedback con-
trol strategy for three-dimensional borehole propagation
in directional drilling. The problem of generating a de-
sired three-dimensional borehole geometry is recast into

a tracking problem in terms of inclination and azimuth
(angle) variables describing the (desired) borehole geom-
etry. Based on a model in terms of nonlinear delay dif-
ferential equations, as developed in Perneder (2013), we
have proposed to design the controller solving this tracking
problem based on a neutral bit walk model, which allows to
fully decouple the inclination and azimuth dynamics. The
latter approach simplifies the tracking controller design
and tuning and alleviates the burden of implementation
of such controllers. An illustrative benchmark study has
evidenced the effectiveness of the proposed approach.
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