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Abstract: This paper presents an extremum-seeking approach for accurate setpoint control of
motion systems with friction, performing a repetitive motion. The classical PID controller, often
used in industry for frictional motion systems, suffers from severe performance limitations. In
particular, friction-induced limit cycling (hunting) is observed when integral control is employed
on systems with unknown Stribeck friction, thereby compromising stability. Moreover, even
if stability is warranted, transient performance highly depends on the particular frictional
characteristic, which is typically uncertain. To deal with such uncertainty and to warrant
optimal setpoint performance for the actual frictional properties, we propose a PID-based
learning controller that achieves improved transient performance. Hereto, we consider a PID-
type controller with a time-varying integral controller gain, which is adaptively obtained by
employing a sampled-data extremum-seeking approach, resembling iterative learning control.
The proposed approach does not require any knowledge on the friction characteristic. The
working principle is illustrated by means of a representative simulation example.
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1. INTRODUCTION

Many industrial motion systems perform repetitive tasks,
such as, e.g., repetitive motion profiles in pick-and-place
machines, large-scale transferring of circuit topology to
silicon wafers in lithography systems, and automated scan-
ning procedures in electron microscopes. Due to hard-
ware cost reduction in the design phase or wear in the
operational phase, friction is commonly present in such
high-precision positioning systems, thereby limiting the
achievable positioning accuracy.

Various control solutions have been presented throughout
the literature to cope with frictional effects. Model-based
methods, such as, e.g., model-based friction compensation
(see, e.g., Makkar (2007), Freidovich (2010)), exploit para-
metric models in the control loop to compensate for fric-
tion. However, as friction characteristics are commonly un-
known, uncertain, and (slowly) time-varying, model-based
methods are prone to modeling errors, ultimately compro-
mising positioning performance. Non-model-based meth-
ods, e.g., impulsive control (see, e.g., van de Wouw (2012))
and sliding-mode control (see, e.g., Bartolini (2003)), can
result in stabilization of the setpoint, but may be challeng-
ing to implement and to tune due to the lack of intuitive
tooling for control practitioners.

Despite several applications of these control techniques in
literature, the vast majority of the high-precision industry
employs classical PID control due to its intuitive and easy-
to-use design and tuning tools, and knowledge and expe-
rience of control practitioners. Moreover, it is well-known
that integrator action in PID control is capable of com-
⋆ This research is part of the research programme High Tech Systems
and Material (HTSM), which is supported by NWO domain Applied
and Engineering sciences and partly funded by the Ministry of
Economic Affairs.

pensating for unknown static friction in motion systems.
However, PID control is prone to performance limitations
as well. For example, friction-induced limit cycling (i.e.,
hunting, see Hensen (2003)), is observed when integral
control is employed on systems where the friction charac-
teristic includes the velocity-weakening (Stribeck) effect,
destabilizing the setpoint. Even if stability is warranted,
transient performance depends on the particular friction
characteristic, which is highly uncertain in practice.

In this work, we propose a PID-based learning controller
to guarantee a high positioning accuracy. The controller
effectively deals with unknown and uncertain frictional
effects in motion systems that perform a repetitive mo-
tion. The learning controller consist of a PID term, and
a learning mechanism that iteratively improves transient
performance by adaptive tuning of a time-varying inte-
grator gain. The learning mechanism resembles iterative
learning control (ILC, see, e.g., Bristow (2006) and Wang
(2009)). However, the optimization problem is formulated
in terms of a model-free sampled-data extremum-seeking
control problem (ESC, see, e.g., Teel (2001), Kvaternik
(2011), Khong (2013), Khong (2016)) by using an appro-
priate set of basis functions to parameterize the time-
varying integrator gain. Parametrization of the to-be-
designed input signal is similar to the one in Khong (2016),
where the input signal is parametrized by using a so-called
de-multiplexer. However, in this work, the parametriza-
tion of inputs is not necessarily limited to step-like basis
functions. Moreover, opposed to classical iterative learning
control approaches, employing a sampled-data extremum-
seeking approach is beneficial, as it is able to deal with
unknown, uncertain, and time-varying dynamical systems,
while optimizing system performance (see, e.g., Krstić
(2000), Haring (2013), Cao (2017)).
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seeking approach is beneficial, as it is able to deal with
unknown, uncertain, and time-varying dynamical systems,
while optimizing system performance (see, e.g., Krstić
(2000), Haring (2013), Cao (2017)).
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Fig. 1. Schematic representation of the motion system
subject to friction.

The main contributions of this paper are as follows. First,
we design a PID-based controller with a time-varying inte-
grator gain, which facilitates a high setpoint accuracy and
improved transient response, compared to classical P(I)D
control, despite the presence of unknown friction. Second,
we present a basis function parametrization of the time-
varying integrator gain, which allows the setpoint control
problem to be formulated as an extremum-seeking con-
trol problem. Third, we employ a sampled-data extremum
seeking controller design, to iteratively find the values for
the parameterized time-varying integrator gain that result
in optimal setpoint accuracy and transient behavior.

The remainder of this paper is organized as follows.
We formalize the control problem in Section 2, and we
present the PID-based learning controller in Section 3. The
working principle of the proposed controller is illustrated
by means of a numerical example in Section 4, and
conclusions are presented in Section 5.

Notation: Sign(·) (with an upper-case S) denotes the
set-valued sign function, i.e., Sign(y) := 1 for y > 0,
Sign(y) := −1 for y < 0, and Sign(y) := [−1, 1] for y = 0.

2. SETPOINT CONTROL PROBLEM
FORMULATION

Consider a single-degree-of-freedom motion system, con-
sisting of a mass m sliding on a horizontal plane with
position x1 and control input uc, as schematically depicted
in Fig. 1. The goal is to control the system to the reference
r repetitively, with the same initial conditions in each
setpoint operation. We denote the measurable position as
x1, and the velocity of the mass is denoted by x2. The
mass is subject to a friction force, taking values according
to the set-valued mapping of the velocity x2 ⇒ Φ(x2),
resulting in dynamics governed by the following differential
inclusion:

ẋ1 = x2,

ẋ2 ∈
1

m
(Φ(x2) + uc) .

(1)

The set-valued friction characteristic Φ consists of a
Coulomb friction component with (unknown) static fric-
tion Fs, and a velocity-dependent friction component f ,
encompassing the Stribeck effect, and a viscous friction
contribution, i.e.,

Φ(x2) := −FsSign(x2) + f(x2), (2)

which we assume to satisfy x2Φ(x2) ≤ 0, for all x2.
Before presenting the proposed time-varying controller in
Section 3, we first consider a classical PID controller for
input uc in (1), i.e.,

uc = kpe+ kdė+ kix3,
ẋ3 = e,

(3)

where e := r − x1 denotes the setpoint error, x3 denotes
the integrator state, and kp, kd, and ki the proportional,
derivative, and integral controller gains, respectively.

Integrator action allows the system to escape a stick phase,
induced by the set-valued Coulomb friction effect, by inte-

grating the position error. The control force that is built up
in this way eventually compensates for the unknown static
friction. In the slip phase that follows, however, friction
is overcompensated due to the velocity-weakening effect
typically present in f . This process repeats and results
in stick-slip limit cycling, compromising setpoint stability,
see Fig. 2. Omission of the integrator action (i.e., only
employing PD control) results in a non-zero steady-state
position error, whose magnitude depends inversely on the
proportional gain kp (Putra (2007)), see Fig. 2. Respecting
the popularity of PID control in industry, and taking into
account the advantages of integrator action, in this paper
we address the following setpoint control problem.

Problem 1. Design a PID-based controller for input uc

in (1), that achieves 1) optimal setpoint accuracy, and 2)
optimal transient behavior, for a repetitive motion profile
characterized by r, with respect to any unknown friction
characteristic Φ in (2).

3. PID-BASED LEARNING CONTROLLER

In this section, we first present a PID-type controller
with time-varying integrator gain ki(t) to solve Prob-
lem 1. We then formulate the design of ki(t) as a model-
free extremum-seeking control problem. To this end, we
formalize the objective to-be-optimized, and we propose
a parametrization of ki(t) by means of step-like basis
functions. Finally, we present a sampled-data extremum
seeking approach that solves Problem 1 by adaptive tuning
of the parameterized time-varying integrator gain ki(t).

3.1 PID controller with time-varying integrator gain

The limit-cycling present in the case of PID control, with
constant integrator gain, is caused by the build-up of
integrator action (during transients and the stick phase) in
interplay with the friction characteristic. This observation
motivates the design of a time-varying integrator gain
ki(t), such that 1) the presence of integrator action still
allows the system to escape a stick phase, and 2) overcom-
pensation of friction is avoided, by altering ki during the
slip phase. Intuitively speaking, a relatively high integrator
gain ki is desired to quickly escape the stick phase, whereas
a reduced (or even negative) ki may be desired in the
slip phase to avoid overcompensation of friction. Finally,
zero integral action is desired at the setpoint to achieve
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Fig. 2. Example of a position error response (top) and cor-
responding control force (bottom) for a PD controller
( ), and a PID controller with fixed integrator gain
( ). kp = 18, kd = 2.5, ki = 35. Friction parameters
in f and Fs are given in Section 4.

2019 IFAC NOLCOS
Vienna, Austria, Sept. 4-6, 2019

1416

a standstill of the system. The resulting controller is then
given by

uc = kpe+ kdė+ ki(t)x3,
ẋ3 = e.

(4)

Since the friction characteristic Φ in (1) is generally
unknown or uncertain, the optimal model-based design
of ki(t) is challenging, or even impossible. It is therefore
determined by a learning algorithm to adaptively tune
ki(t), as presented in Section 3.2 below. The proposed
learning controller embeds the above engineering intuition
on ki(t), and is formulated as a model-free, sampled-data
extremum-seeking control problem to avoid the need of
a plant model (which is generally unavailable due to the
unknown friction characteristic).

Remark 1. We choose here to employ a time-varying in-
tegrator gain (and learn its characteristic), instead of an
appropriate feedforward control signal in combination with
a constant integrator gain (required to compensate for
unknown static friction). With the former approach, we are
able to create robustness close to the setpoint, by realizing
ki = 0 during the desired standstill of the system. Indeed,
when ki = 0, the system remains in standstill since build
up of control force is prevented, so that the system cannot
escape the stick phase any more. Moreover, robustness to
other force disturbances is then obtained as the propor-
tional action is low, compared to the static friction (due
to the small position error close to the setpoint).

3.2 Model-free adaptive tuning mechanism

Setpoint performance metric: We consider a desired
repetitive motion profile defined on the time interval t ∈
[0, T ], where the system starts and ends at rest. The time
window [0, T ] can be separated into two particular parts,
specified by the so-called standstill time instant TB (i.e.,
the time instant where the mass is required to arrive at
the setpoint) as follows:

i) t ∈ [0, TB); the so-called transient during which the
system moves from 0 to the constant setpoint r;

ii) t ∈ [TB, T ], the window during which standstill is
required with e = 0. The time interval [TB, T ] is
typically used by the machine, of which the motion
system is part, to perform a certain operation, for
which accurate positioning is necessary.

The desired performance, i.e., an optimal transient on
[0, TB], and an optimal setpoint accuracy on [TB, T ], can
be captured by the following objective function Lp:

Lp(e) := w1

TB
∫

0

|e(t)|2dt+ w2

T
∫

TB

|e(t)|2dt, (5)

with e := r−x1, and w1 and w2 suitable weighting factors,
trading off the emphasis on transient performance versus
setpoint accuracy. Other (transient) performance relevant
variables such as, e.g., the control effort uc generated by
(4), or the velocity x2 of the mass if accurate velocity
measurements are available, can be taken into account
in (5) as well. We will show in Section 4 below that
the objective function in (5) indeed captures the desired
performance.

Parametrization of time-varying integrator gain ki(t):
We propose a design for ki(t), parameterized by a finite
set of basis functions Ψ, and a parameter vector u ∈ R

p to
be designed, as follows:

sampler
zk = z(kT )

ZOH
u(t) = uk

t 2 [kT; (k + 1)T )

PID-controlled
system with friction

extremum-seeking
algorithm Σ

ki

z

zkuk−1

user-defined
basis functions

u

Q

Lp

e

Fig. 3. The sampled-data extremum-seeking framework
based on sampled-data control law with periodic
sampling time T , and sampler and zero-order hold
elements.

ki(t) :=

p
∑

j=1

u(j)Ψ(j)(t), (6)

where u(j) denotes the jth element of the vector u, and p
are the number of elements in u. One possible choice for
the basis functions are step basis functions, i.e.,

Ψ(j)(t) :=

{

1, t ∈ [(j − 1)ts, jts)
0, t /∈ [(j − 1)ts, jts)

for j = 1, 2, . . . , p,

(7)
where ts satisfies T = pts. Without loss of generality, this
choice is adopted in the paper.

Remark 2. Other types of basis function designs can be
adopted from the iterative learning control literature. For
example, polynomial bases (see, e.g., van de Wijdeven
(2010), van der Meulen (2008)) and rational bases (see,
e.g., Bolder (2015)) can similarly be exploited, which
can potentially reduce the number of parameters to be
optimized.

The number of elements p is to be chosen by the user.
Taking p = 1 results in a constant integrator gain ki,
see (6). Taking p > 1 allows for more freedom in the
design of ki(t), facilitating its time-varying design. The
parametrization in (6), (7), for example, allows to generate
a relatively high integrator gain ki in stick (to escape such
a phase), and a reduced integrator gain ki in the slip
phase (to avoid overcompensation of friction). Increasing
p, however, results in a larger vector u in (7) and increases
the complexity of the controller, in the sense that an
increased number of parameters in u need to be found.
The precise realization of the vector u that minimizes (5) is
typically unknown, especially due to the uncertainty in the
friction characteristic. To deal with these complications,
we present an adaptive mechanism to design the vector u.

Sampled-data extremum-seeking framework: We pro-
pose an iterative learning algorithm to adaptively tune
u. Specifically, given the objective function in (5) and
parametrization of the integrator gain in (6), we formulate
the setpoint control problem as a model-free sampled-data
extremum seeking problem (see, e.g., Khong (2013) and
Khong (2016)). In particular, the cascade connection of
the PID-controlled motion system given by (1)-(3), with
ki parameterized by (6), and Lp in (5), yields the following
unknown input-output map Q : Rp → R:

Q(u) := Lp(e) = w1

TB
∫

0

|e(t)|2dt+ w2

T
∫

TB

|e(t)|2dt. (8)

Based solely on output measurements, extremum-seeking
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a standstill of the system. The resulting controller is then
given by

uc = kpe+ kdė+ ki(t)x3,
ẋ3 = e.

(4)

Since the friction characteristic Φ in (1) is generally
unknown or uncertain, the optimal model-based design
of ki(t) is challenging, or even impossible. It is therefore
determined by a learning algorithm to adaptively tune
ki(t), as presented in Section 3.2 below. The proposed
learning controller embeds the above engineering intuition
on ki(t), and is formulated as a model-free, sampled-data
extremum-seeking control problem to avoid the need of
a plant model (which is generally unavailable due to the
unknown friction characteristic).

Remark 1. We choose here to employ a time-varying in-
tegrator gain (and learn its characteristic), instead of an
appropriate feedforward control signal in combination with
a constant integrator gain (required to compensate for
unknown static friction). With the former approach, we are
able to create robustness close to the setpoint, by realizing
ki = 0 during the desired standstill of the system. Indeed,
when ki = 0, the system remains in standstill since build
up of control force is prevented, so that the system cannot
escape the stick phase any more. Moreover, robustness to
other force disturbances is then obtained as the propor-
tional action is low, compared to the static friction (due
to the small position error close to the setpoint).

3.2 Model-free adaptive tuning mechanism

Setpoint performance metric: We consider a desired
repetitive motion profile defined on the time interval t ∈
[0, T ], where the system starts and ends at rest. The time
window [0, T ] can be separated into two particular parts,
specified by the so-called standstill time instant TB (i.e.,
the time instant where the mass is required to arrive at
the setpoint) as follows:

i) t ∈ [0, TB); the so-called transient during which the
system moves from 0 to the constant setpoint r;

ii) t ∈ [TB, T ], the window during which standstill is
required with e = 0. The time interval [TB, T ] is
typically used by the machine, of which the motion
system is part, to perform a certain operation, for
which accurate positioning is necessary.

The desired performance, i.e., an optimal transient on
[0, TB], and an optimal setpoint accuracy on [TB, T ], can
be captured by the following objective function Lp:

Lp(e) := w1

TB
∫

0

|e(t)|2dt+ w2

T
∫

TB

|e(t)|2dt, (5)

with e := r−x1, and w1 and w2 suitable weighting factors,
trading off the emphasis on transient performance versus
setpoint accuracy. Other (transient) performance relevant
variables such as, e.g., the control effort uc generated by
(4), or the velocity x2 of the mass if accurate velocity
measurements are available, can be taken into account
in (5) as well. We will show in Section 4 below that
the objective function in (5) indeed captures the desired
performance.

Parametrization of time-varying integrator gain ki(t):
We propose a design for ki(t), parameterized by a finite
set of basis functions Ψ, and a parameter vector u ∈ R

p to
be designed, as follows:

sampler
zk = z(kT )

ZOH
u(t) = uk

t 2 [kT; (k + 1)T )

PID-controlled
system with friction

extremum-seeking
algorithm Σ
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zkuk−1

user-defined
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u
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Lp
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Fig. 3. The sampled-data extremum-seeking framework
based on sampled-data control law with periodic
sampling time T , and sampler and zero-order hold
elements.

ki(t) :=

p
∑

j=1

u(j)Ψ(j)(t), (6)

where u(j) denotes the jth element of the vector u, and p
are the number of elements in u. One possible choice for
the basis functions are step basis functions, i.e.,

Ψ(j)(t) :=

{

1, t ∈ [(j − 1)ts, jts)
0, t /∈ [(j − 1)ts, jts)

for j = 1, 2, . . . , p,

(7)
where ts satisfies T = pts. Without loss of generality, this
choice is adopted in the paper.

Remark 2. Other types of basis function designs can be
adopted from the iterative learning control literature. For
example, polynomial bases (see, e.g., van de Wijdeven
(2010), van der Meulen (2008)) and rational bases (see,
e.g., Bolder (2015)) can similarly be exploited, which
can potentially reduce the number of parameters to be
optimized.

The number of elements p is to be chosen by the user.
Taking p = 1 results in a constant integrator gain ki,
see (6). Taking p > 1 allows for more freedom in the
design of ki(t), facilitating its time-varying design. The
parametrization in (6), (7), for example, allows to generate
a relatively high integrator gain ki in stick (to escape such
a phase), and a reduced integrator gain ki in the slip
phase (to avoid overcompensation of friction). Increasing
p, however, results in a larger vector u in (7) and increases
the complexity of the controller, in the sense that an
increased number of parameters in u need to be found.
The precise realization of the vector u that minimizes (5) is
typically unknown, especially due to the uncertainty in the
friction characteristic. To deal with these complications,
we present an adaptive mechanism to design the vector u.

Sampled-data extremum-seeking framework: We pro-
pose an iterative learning algorithm to adaptively tune
u. Specifically, given the objective function in (5) and
parametrization of the integrator gain in (6), we formulate
the setpoint control problem as a model-free sampled-data
extremum seeking problem (see, e.g., Khong (2013) and
Khong (2016)). In particular, the cascade connection of
the PID-controlled motion system given by (1)-(3), with
ki parameterized by (6), and Lp in (5), yields the following
unknown input-output map Q : Rp → R:

Q(u) := Lp(e) = w1

TB
∫

0

|e(t)|2dt+ w2

T
∫

TB

|e(t)|2dt. (8)

Based solely on output measurements, extremum-seeking
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control is able to adaptively find a vector u that min-
imizes (8). Fig. 3 shows the sampled-data extremum-
seeking framework, i.e., the interconnection of the dynami-
cal system (1)-(3), (6), (7) and objective function Lp in (5)
implemented as follows:

z(t) := Lp(e(t)) = w1

t−t∗
�

t−T

|e(s)|2ds+w2

t
�

t−t∗

|e(s)|2ds, (9)

where t∗ = T − TB and e(s) = 0 for s ∈ [−T, 0), with
a T -periodic sampler, a discrete-time extremum-seeking
algorithm Σ, and a zero-order hold (ZOH) element. Let
{uk}

∞

k=0 be a sequence of vectors generated by Σ based on
collected measurements, and define the ZOH operation as
follows:

u(t) := uk ∀t ∈ [kT, (k + 1)T ), (10)

with k = 0, 1, 2, . . . , and sampling period T > 0 with
uk ∈ R

p, for all k. Let us define the ideal periodic sampling
operation:

zk := z(kT ), k = 1, 2, . . . , (11)

where zk = Q(uk−1) are the collected measurements as
used by the extremum-seeking algorithm Σ, see Fig. 3.
We care to stress that T is the sampling period of the
extremum-seeking controller, which conforms to the period
time of the motion profile, and T is not the sampling
period of the underlying motion system. Moreover, it must
be noted that periodic re-initialization of the states to fixed
values is needed, i.e., x(kT ) = x0 for all k = 1, 2, . . . , for
Q in (8) to be uniquely defined (see also Remark 4 below).

Remark 3. In most (sampled-data) extremum-seeking lit-
erature, Q reflects the steady-state behavior of the dynam-
ical system. In those cases, the sampling period T , or so-
called waiting time T , see, e.g., Teel (2001), Khong (2013),
Kvaternik (2011), needs to be chosen sufficiently large
by the user such that the closed-loop extremum-seeking
scheme is robust against inexact measurements of the cost
Q due to the transient behavior of the system. Here, Q
in (8) actually incorporates the transient behavior of the
system, which ultimately determines positioning accuracy.
As such, the role of the waiting time T is different here,
and is conveniently chosen equal to the period time T of
the repetitive motion profile.

Remark 4. A common requirement in the extremum-
seeking literature is that the input-output mapping Q
is independent of initial conditions. Here, the transient
behavior is partly determined by the initial conditions,
and re-initialization after each setpoint operation is theo-
retically required for an input-output mapping Q as in (8)
to be uniquely defined. Re-initialization for transient per-
formance optimization is also a well-known requirement in
the iterative learning control literature, see, e.g., Nörrlof
(2002, Sec. 4) and Bristow (2006).

Let Σ be any algorithm that solves the optimization
problem of finding the minimum of Q(u):

z∗ := min
u

Q(u). (12)

Within this periodic sampled-data framework, and de-
pending on the nature of the input-output mapping Q,
many algorithms from the optimization literature can be
employed to solve (12). For example, in Khong (2013)
the so-called DIRECT and Shubert algorithms (see Jones
(1993) and Shubert (1972), respectively) are employed to
find the global extremum of Q. If finding a local minimum
suffices or if Q possesses only a single (global) extremum,
the classical gradient descent or Newton method can be
used (see, e.g., Boyd (2004)).

Extremum-seeking controller design Without loss of gen-
erality, we employ here the following gradient descent
algorithm to optimize the vector u in (6):

uk = uk−1 − λ∇Q(uk−1), (13)
with λ the optimizer gain. Since Q is unknown, its gradient
is unknown. As such, the gradient of Q will be estimated
based on finite differences as follows:

∇Q(u) ≈
1

τ





Q(u+ τd1)−Q(u)
...

Q(u+ τdp)−Q(u)



 , (14)

where τ is the step size of the gradient estimator, and dj
with j = 1, . . . , p are dither signals, i.e., vectors where the
jth element is equal to one, and all other elements are
zero. Dithering needs to be done in a sequential manner
to acquire the elements in (14). In particular, the gradient
descent algorithm in (13) and the sequence of dithers to
obtain the approximate gradient in (14) is implemented
through the following extremum-seeking algorithm:

uk =

�

uk−n + τdn if n �= 0
uk−(p+1) − λ∇Q(uk−(p+1)) if n = 0 , (15)

for all k = 1, 2, . . ., with n = mod(k, p + 1) ∈ N, initial
input u0, and

∇Q(uk−(p+1)) =
1

τ







Q(uk−p)−Q(uk−(p+1))
...

Q(uk−1)−Q(uk−(p+1))






. (16)

Note that the case n = 0 in (15) implements an update of
the control signal u.

4. SIMULATION EXAMPLE

In this section, the working principle and effectiveness of
the proposed PID-based learning controller in Section 3
are illustrated by means of a numerical example.

In order to correctly deal with the set-valued dynamics,
a numerical time-stepping scheme is used Acary (2008,
Chap. 10). Consider a PID-controlled motion system given
by (1)-(3), and illustrated by Fig. 1. The integrator gain
ki is either constant, or time-varying in accordance with
the proposed learning controller. We adopt the following
numerical values: m = 1 kg, g = 9.81 m/s2, kp = 18,
and kd = 2.5. The friction characteristic (2) satisfies
Fs = 0.981 N, and the velocity-dependent part of the
friction f contains the velocity-weakening (Stribeck) effect,
and is given by

f(x2) = ((Fs − Fc)ηx2)(1 + η|x2|)
−1 − αx2, (17)

with Fc the Coulomb friction force, α the viscous friction
coefficient, and η the Stribeck shape parameter. We il-
lustrate the effectiveness of the controller by considering
two cases in the simulation study, in the form of different
friction characteristics (see also Fig. 4):
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Fig. 4. Friction characteristics a) ( ), and b) ( ).
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Fig. 5. Setpoint error e and control force uc with a fixed
ki = 10 ( ), and no integral action ki = 0 ( ) for
case a), and for a time-varying ki(t) for case a) ( )
and case b) ( ).

case a) Fc = Fs/2, α = 0 and η = 20;
case b) Fc = Fs/3, α = 0.5, and η = 60.

We consider a desired repetitive motion profile on the
interval [0, T ], with T = 1.5, and a constant setpoint
reference r = 0.1 m. We require the system to arrive at
the setpoint at t = 0.75 s, i.e., the standstill time instance
TB = 0.75. The integrator gain ki is parameterized as
in (6), and we employ step basis functions (cf. (7)) with
p = 15. The optimizer gain is chosen as λ = 8000, and the
step size of the gradient estimator in (14) yields τ = 10−8.
Finally, the weighting factors for the objective function
in (5) are w1 = 10−10 and w2 = 1. As the results below
illustrate, in this example a weight on the transient term
in the objective function may be chosen very low, while
still achieving minimization of overshoot.

4.1 Simulation results

Let us first discuss the simulation results with a fixed
integrator gain ki. Consider Fig. 5, showing the position
error and control force for case a) (cf. Fig. 4), for ki = 0
(i.e., a PD controller), and for ki = 10. The former results
in a constant steady-state error, and the latter results in
overshoot of the setpoint and eventually in limit cycling,
both compromising setpoint accuracy. A similar behavior
holds for case b), but this case is omitted from the figure
for the sake of brevity.

We now employ the learning controller presented in Sec-
tion 3, to adaptively find a time-varying gain ki(t) to
improve setpoint accuracy. We choose the initialization of
ki(t) (i.e., the initial input vector u0 of the gradient descent
algorithm, see (10)), as u⊤

0 := [10 8 6 4 2 0 . . . 0]. This
particular choice for u0 embeds the engineering intuition
of integrator gain reduction to counteract the reduced
friction with increasing velocity, as a result of the Stribeck
effect. Consider Fig. 5. Application of the learning con-
troller to both case a) and b) reveals that the resulting
position error at the setpoint has decreased significantly,
and overshoot is minimized, after convergence of the ex-
tremum seeking controller.

Let us now discuss the evolution of ki(t) and the system’s
response during the iterative learning process of the con-
troller for friction characteristics a) and b) in more detail.
The position error e is reduced for each iteration, see
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Fig. 6. The setpoint error e and time-varying integrator
gain ki(t) at different iterations for case a).

Fig. 6 and 7 for cases a) and b), respectively. Overshoot is
avoided in case a), and minimized in case b), despite the
presence of a severe Stribeck effect. The cost function Lp

in (5) is effectively minimized by the extremum seeking
controller, see Fig. 8. The accuracy of the time-stepping
simulator at the setpoint is reached after 180 iterations,
but we emphasize that the setpoint accuracy already im-
proved 92% and 86% after only 20 iterations, for cases a)
and b), respectively, compared to the first trial.

Consider now Fig. 6 and 7 for cases a) and b), respectively.
For case a), the initialization of ki(t) appears to be
a good initial guess, since the optimized ki(t) takes a
similar decaying shape, which results in a high setpoint
accuracy. Case b), however, suffers from a significant
Stribeck effect. The integrator gain ki(t) is reduced further
during the transient phase, and even takes negative values
in order to counteract the rapid reduction in friction
force due to the severe Stribeck effect. Nonetheless, a
high setpoint accuracy is reached for this case as well,
illustrating the achievable performance benefits of the
proposed learning controller. Moreover, note that ki(t) is
zero at the setpoint, so that the total control force at
this point is significantly lower than the level of static
friction. As a result, robustness to force disturbances is
automatically obtained.

Remark 5. The resulting ki(t), as determined by the learn-
ing algorithm, depends on the initialization of ki(t), since
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Fig. 5. Setpoint error e and control force uc with a fixed
ki = 10 ( ), and no integral action ki = 0 ( ) for
case a), and for a time-varying ki(t) for case a) ( )
and case b) ( ).

case a) Fc = Fs/2, α = 0 and η = 20;
case b) Fc = Fs/3, α = 0.5, and η = 60.

We consider a desired repetitive motion profile on the
interval [0, T ], with T = 1.5, and a constant setpoint
reference r = 0.1 m. We require the system to arrive at
the setpoint at t = 0.75 s, i.e., the standstill time instance
TB = 0.75. The integrator gain ki is parameterized as
in (6), and we employ step basis functions (cf. (7)) with
p = 15. The optimizer gain is chosen as λ = 8000, and the
step size of the gradient estimator in (14) yields τ = 10−8.
Finally, the weighting factors for the objective function
in (5) are w1 = 10−10 and w2 = 1. As the results below
illustrate, in this example a weight on the transient term
in the objective function may be chosen very low, while
still achieving minimization of overshoot.

4.1 Simulation results

Let us first discuss the simulation results with a fixed
integrator gain ki. Consider Fig. 5, showing the position
error and control force for case a) (cf. Fig. 4), for ki = 0
(i.e., a PD controller), and for ki = 10. The former results
in a constant steady-state error, and the latter results in
overshoot of the setpoint and eventually in limit cycling,
both compromising setpoint accuracy. A similar behavior
holds for case b), but this case is omitted from the figure
for the sake of brevity.

We now employ the learning controller presented in Sec-
tion 3, to adaptively find a time-varying gain ki(t) to
improve setpoint accuracy. We choose the initialization of
ki(t) (i.e., the initial input vector u0 of the gradient descent
algorithm, see (10)), as u⊤

0 := [10 8 6 4 2 0 . . . 0]. This
particular choice for u0 embeds the engineering intuition
of integrator gain reduction to counteract the reduced
friction with increasing velocity, as a result of the Stribeck
effect. Consider Fig. 5. Application of the learning con-
troller to both case a) and b) reveals that the resulting
position error at the setpoint has decreased significantly,
and overshoot is minimized, after convergence of the ex-
tremum seeking controller.

Let us now discuss the evolution of ki(t) and the system’s
response during the iterative learning process of the con-
troller for friction characteristics a) and b) in more detail.
The position error e is reduced for each iteration, see
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Fig. 6. The setpoint error e and time-varying integrator
gain ki(t) at different iterations for case a).

Fig. 6 and 7 for cases a) and b), respectively. Overshoot is
avoided in case a), and minimized in case b), despite the
presence of a severe Stribeck effect. The cost function Lp

in (5) is effectively minimized by the extremum seeking
controller, see Fig. 8. The accuracy of the time-stepping
simulator at the setpoint is reached after 180 iterations,
but we emphasize that the setpoint accuracy already im-
proved 92% and 86% after only 20 iterations, for cases a)
and b), respectively, compared to the first trial.

Consider now Fig. 6 and 7 for cases a) and b), respectively.
For case a), the initialization of ki(t) appears to be
a good initial guess, since the optimized ki(t) takes a
similar decaying shape, which results in a high setpoint
accuracy. Case b), however, suffers from a significant
Stribeck effect. The integrator gain ki(t) is reduced further
during the transient phase, and even takes negative values
in order to counteract the rapid reduction in friction
force due to the severe Stribeck effect. Nonetheless, a
high setpoint accuracy is reached for this case as well,
illustrating the achievable performance benefits of the
proposed learning controller. Moreover, note that ki(t) is
zero at the setpoint, so that the total control force at
this point is significantly lower than the level of static
friction. As a result, robustness to force disturbances is
automatically obtained.

Remark 5. The resulting ki(t), as determined by the learn-
ing algorithm, depends on the initialization of ki(t), since
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Fig. 7. The setpoint error e and time-varying integrator
gain ki(t) at different iterations for case b).
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the gradient descent algorithm only finds local optima.
Although a high setpoint accuracy can be obtained (see
Fig. 5), global optimization methods (e.g., DIRECT and
Shubert, see Khong (2013)), are able to find the global
optimum and may therefore improve performance even
further.

Remark 6. Given p = 15 in this example, it is hard to
infer the amount of minimizers that the unknown map
Q possesses. Many simulations or experiments would be
needed to constructQ and investigate its minimizers. Still,
we opted for a gradient descent algorithm as opposed to
a global optimization algorithm for i) ease of implemen-
tation, and ii) the fact that convergence speed of global
optimization algorithms can be slow. If one chooses p ≤ 3,
significantly less simulations or experiments are required
to construct Q, and it allows visualization of the map Q.
This can be helpful to infer the amount of minimizers, and
to decide on an appropriate extremum seeking algorithm.

5. CONCLUSION

We have presented a sampled-data extremum-seeking ap-
proach for setpoint control of motion systems with fric-
tion, performing a repetitive motion. In particular, a PID-
based learning controller with a time-varying integrator
gain is proposed to deal with unknown or uncertain
friction during a setpoint control operation. The time-
varying integrator gain is parameterized by using step
basis functions, effectively formulating the setpoint control
problem as a model-free sampled-data extremum seeking
problem. The specific time-varying integrator gain of the
learning controller is adaptively obtained by employing a
sampled-data extremum-seeking approach. The proposed
approach does not require any knowledge of the friction
characteristic. The effectiveness of the proposed method
is demonstrated by means of a numerical example. The
results illustrate that the proposed controller achieves 1)
a significantly improved setpoint accuracy for different
friction characteristics, and 2) optimizes the transient
response by minimizing overshoot. Future work includes
a stability analysis of PID-controlled frictional motion
systems with a time-varying integrator gain, and study
different parametrizations of ki with less parameters to
achieve faster convergence.
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M. Nörrlof, S. Gunnarsson, Time and frequency domain
convergence properties in iterative learning control. Int.
J. Control, 75(14):1114–1126, 2002.

S. Boyd, L. Vandenberghe, Convex optimization. Cam-
bridge University Press, 2004.

D.R. Jones, C.D. Perttunen, B.E. Stuckman, Lipschitzian
optimization without the Lipschitz constant. J. Optim.
Theory Appl., 79(1):157–181, 1993.

B.O. Shubert, A sequential method seeking the global
maximum of a function Siam J. Numer. Anal. Vol.
9(3):379–388, 1972.

K. Kvaternik, L. Pavel, Interconnection conditions for the
stability of nonlinear sampled-data extremum-seeking
schemes. 50th Conf. on Dec. Control and European
Control Conf., 4448–4454, 2011.

2019 IFAC NOLCOS
Vienna, Austria, Sept. 4-6, 2019

1420


