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Abstract: In this paper, we propose an approach for parametric system identification for a class
of continuous-time Lur’e-type systems using only steady-state input and output data. Employing
a quasi-Newton optimization scheme, we minimize an output error criterion constrained to
the set of convergent models, which enforces a stability certificate on the identified model.
To compute the steady-state model response efficiently, we adopt the Mixed-Time-Frequency
(MTF) algorithm. Furthermore, using the MTF algorithm, we present a method to efficiently
compute the gradient of the objective function with any user-defined accuracy. Starting with an
initial convergent model estimate, the developed identification algorithm optimizes parameter
estimates. The effectiveness of the proposed approach is illustrated in a simulation example.
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1. INTRODUCTION

System identification deals with the construction of dy-
namic models from observed input and output data. Such
models are required in model-based controller design or
are used to understand the dynamic behavior of complex
systems. The identification problem for linear systems has
received extensive attention and well-established powerful
methods exist, Ljung (1987), together with user-friendly
software, e.g., Ljung (1995); Garnier and Gilson (2018).
However, many (physical) systems exhibit some form of
nonlinearity, motivating the development of identification
methods for classes of nonlinear systems.

A practically relevant class of nonlinear systems is the
class of Lur’e-type systems, see Khalil (1996). These
systems are block structured in the sense that all the
linear time-invariant (LTI) dynamics are captured in a
LTI block and all the nonlinearities are captured in a
static nonlinear block placed in feedback with the LTI
block. Both parametric and non-parametric identification
methods exist for Lur’e-type systems, e.g., Schoukens and
Tiels (2017); Mulders et al. (2014); Vanbeylen (2013);
Palanthandalam-Madapusi et al. (2005); Vandersteen and
Schoukens (1999).

A common difficulty is the non-convexity of the formu-
lated objective function, where a two step approach is
often taken in an attempt to find its global minimum,
see Schoukens and Tiels (2017). As a first step, the static
nonlinear block is neglected and a Best Linear Approxi-
mation (BLA) of the nonlinear system is obtained. As a
second step, the non-convex objective function, where all
model parameters are involved, is locally minimized using
gradient-based optimization techniques starting at the pa-
rameter estimates obtained in the first step. In general,

no guarantee can be given that this method reaches the
global minimum of the objective function.

The second optimization step involves a non-convex ob-
jective function, where at each iteration the computation
of the response of the nonlinear model with the current
parameter estimates is inevitable. For discrete-time sys-
tems, the response is obtained in a computationally cheap
way by a series of algebraic operations. However, in the
case of continuous-time systems, the model response is
usually obtained by numerical forward integration of the
model dynamics, which is a computationally expensive and
time-consuming task. Although the previous references are
generally not restricted to discrete-time systems, these do
not provide tools to obtain the model response efficiently in
the continuous-time case. Furthermore, additional model
responses are required to provide numerical estimates for
the gradient (and Hessian) of the objective function with
respect to the model parameters, see Papalambros and
Wilde (2000).

Another challenge is that nonlinear systems can exhibit
multiple stable solutions, being attractive for different sets
of initial conditions, see Khalil (1996). This is undesired
in many situations (Ljung (2010)), e.g., when the model
is used for different inputs than those used to fit it. To
overcome this problem, Tobenkin et al. (2010, 2017) devel-
oped a method imposing incremental stability for a general
class of identified nonlinear models. However, the proposed
approach is computationally expensive, as it solves a high-
dimensional semidefinite programming (SDP) problem. To
reduce the computational burden of this method, Umen-
berger and Manchester (2018) developed a specialized inte-
rior point algorithm to solve the formulated SDP problem
in a more efficient manner. These approaches perform best
if an accurate estimate of the state sequence of the un-

11th IFAC Symposium on Nonlinear Control Systems
Vienna, Austria, Sept. 4-6, 2019

Copyright © 2019 IFAC 307

Fast Identification of Continuous-Time
Lur’e-type Systems with Stability

Certification

M.F. Shakib ∗ A.Y. Pogromsky ∗ A. Pavlov ∗∗

N. van de Wouw ∗,∗∗∗

∗ Department of Mechanical Engineering, Eindhoven University of
Technology, Eindhoven, The Netherlands

(e-mail: {m.f.shakib; a.pogromski; n.v.d.wouw}@tue.nl).
∗∗ Department of Geoscience and Petroleum, NTNU, Trondheim,

Norway (e-mail: alexey.pavlov@ntnu.no).
∗∗∗ Department of Civil, Environmental & Geo- Engineering,

University of Minnesota, Minneapolis, U.S.A.
(e-mail: nvandewo@umn.edu).

Abstract: In this paper, we propose an approach for parametric system identification for a class
of continuous-time Lur’e-type systems using only steady-state input and output data. Employing
a quasi-Newton optimization scheme, we minimize an output error criterion constrained to
the set of convergent models, which enforces a stability certificate on the identified model.
To compute the steady-state model response efficiently, we adopt the Mixed-Time-Frequency
(MTF) algorithm. Furthermore, using the MTF algorithm, we present a method to efficiently
compute the gradient of the objective function with any user-defined accuracy. Starting with an
initial convergent model estimate, the developed identification algorithm optimizes parameter
estimates. The effectiveness of the proposed approach is illustrated in a simulation example.

Keywords: Nonlinear System Identification, Stability Certification.

1. INTRODUCTION

System identification deals with the construction of dy-
namic models from observed input and output data. Such
models are required in model-based controller design or
are used to understand the dynamic behavior of complex
systems. The identification problem for linear systems has
received extensive attention and well-established powerful
methods exist, Ljung (1987), together with user-friendly
software, e.g., Ljung (1995); Garnier and Gilson (2018).
However, many (physical) systems exhibit some form of
nonlinearity, motivating the development of identification
methods for classes of nonlinear systems.

A practically relevant class of nonlinear systems is the
class of Lur’e-type systems, see Khalil (1996). These
systems are block structured in the sense that all the
linear time-invariant (LTI) dynamics are captured in a
LTI block and all the nonlinearities are captured in a
static nonlinear block placed in feedback with the LTI
block. Both parametric and non-parametric identification
methods exist for Lur’e-type systems, e.g., Schoukens and
Tiels (2017); Mulders et al. (2014); Vanbeylen (2013);
Palanthandalam-Madapusi et al. (2005); Vandersteen and
Schoukens (1999).

A common difficulty is the non-convexity of the formu-
lated objective function, where a two step approach is
often taken in an attempt to find its global minimum,
see Schoukens and Tiels (2017). As a first step, the static
nonlinear block is neglected and a Best Linear Approxi-
mation (BLA) of the nonlinear system is obtained. As a
second step, the non-convex objective function, where all
model parameters are involved, is locally minimized using
gradient-based optimization techniques starting at the pa-
rameter estimates obtained in the first step. In general,

no guarantee can be given that this method reaches the
global minimum of the objective function.

The second optimization step involves a non-convex ob-
jective function, where at each iteration the computation
of the response of the nonlinear model with the current
parameter estimates is inevitable. For discrete-time sys-
tems, the response is obtained in a computationally cheap
way by a series of algebraic operations. However, in the
case of continuous-time systems, the model response is
usually obtained by numerical forward integration of the
model dynamics, which is a computationally expensive and
time-consuming task. Although the previous references are
generally not restricted to discrete-time systems, these do
not provide tools to obtain the model response efficiently in
the continuous-time case. Furthermore, additional model
responses are required to provide numerical estimates for
the gradient (and Hessian) of the objective function with
respect to the model parameters, see Papalambros and
Wilde (2000).

Another challenge is that nonlinear systems can exhibit
multiple stable solutions, being attractive for different sets
of initial conditions, see Khalil (1996). This is undesired
in many situations (Ljung (2010)), e.g., when the model
is used for different inputs than those used to fit it. To
overcome this problem, Tobenkin et al. (2010, 2017) devel-
oped a method imposing incremental stability for a general
class of identified nonlinear models. However, the proposed
approach is computationally expensive, as it solves a high-
dimensional semidefinite programming (SDP) problem. To
reduce the computational burden of this method, Umen-
berger and Manchester (2018) developed a specialized inte-
rior point algorithm to solve the formulated SDP problem
in a more efficient manner. These approaches perform best
if an accurate estimate of the state sequence of the un-

11th IFAC Symposium on Nonlinear Control Systems
Vienna, Austria, Sept. 4-6, 2019

Copyright © 2019 IFAC 307

Fast Identification of Continuous-Time
Lur’e-type Systems with Stability

Certification

M.F. Shakib ∗ A.Y. Pogromsky ∗ A. Pavlov ∗∗

N. van de Wouw ∗,∗∗∗

∗ Department of Mechanical Engineering, Eindhoven University of
Technology, Eindhoven, The Netherlands

(e-mail: {m.f.shakib; a.pogromski; n.v.d.wouw}@tue.nl).
∗∗ Department of Geoscience and Petroleum, NTNU, Trondheim,

Norway (e-mail: alexey.pavlov@ntnu.no).
∗∗∗ Department of Civil, Environmental & Geo- Engineering,

University of Minnesota, Minneapolis, U.S.A.
(e-mail: nvandewo@umn.edu).

Abstract: In this paper, we propose an approach for parametric system identification for a class
of continuous-time Lur’e-type systems using only steady-state input and output data. Employing
a quasi-Newton optimization scheme, we minimize an output error criterion constrained to
the set of convergent models, which enforces a stability certificate on the identified model.
To compute the steady-state model response efficiently, we adopt the Mixed-Time-Frequency
(MTF) algorithm. Furthermore, using the MTF algorithm, we present a method to efficiently
compute the gradient of the objective function with any user-defined accuracy. Starting with an
initial convergent model estimate, the developed identification algorithm optimizes parameter
estimates. The effectiveness of the proposed approach is illustrated in a simulation example.

Keywords: Nonlinear System Identification, Stability Certification.

1. INTRODUCTION

System identification deals with the construction of dy-
namic models from observed input and output data. Such
models are required in model-based controller design or
are used to understand the dynamic behavior of complex
systems. The identification problem for linear systems has
received extensive attention and well-established powerful
methods exist, Ljung (1987), together with user-friendly
software, e.g., Ljung (1995); Garnier and Gilson (2018).
However, many (physical) systems exhibit some form of
nonlinearity, motivating the development of identification
methods for classes of nonlinear systems.

A practically relevant class of nonlinear systems is the
class of Lur’e-type systems, see Khalil (1996). These
systems are block structured in the sense that all the
linear time-invariant (LTI) dynamics are captured in a
LTI block and all the nonlinearities are captured in a
static nonlinear block placed in feedback with the LTI
block. Both parametric and non-parametric identification
methods exist for Lur’e-type systems, e.g., Schoukens and
Tiels (2017); Mulders et al. (2014); Vanbeylen (2013);
Palanthandalam-Madapusi et al. (2005); Vandersteen and
Schoukens (1999).

A common difficulty is the non-convexity of the formu-
lated objective function, where a two step approach is
often taken in an attempt to find its global minimum,
see Schoukens and Tiels (2017). As a first step, the static
nonlinear block is neglected and a Best Linear Approxi-
mation (BLA) of the nonlinear system is obtained. As a
second step, the non-convex objective function, where all
model parameters are involved, is locally minimized using
gradient-based optimization techniques starting at the pa-
rameter estimates obtained in the first step. In general,

no guarantee can be given that this method reaches the
global minimum of the objective function.

The second optimization step involves a non-convex ob-
jective function, where at each iteration the computation
of the response of the nonlinear model with the current
parameter estimates is inevitable. For discrete-time sys-
tems, the response is obtained in a computationally cheap
way by a series of algebraic operations. However, in the
case of continuous-time systems, the model response is
usually obtained by numerical forward integration of the
model dynamics, which is a computationally expensive and
time-consuming task. Although the previous references are
generally not restricted to discrete-time systems, these do
not provide tools to obtain the model response efficiently in
the continuous-time case. Furthermore, additional model
responses are required to provide numerical estimates for
the gradient (and Hessian) of the objective function with
respect to the model parameters, see Papalambros and
Wilde (2000).

Another challenge is that nonlinear systems can exhibit
multiple stable solutions, being attractive for different sets
of initial conditions, see Khalil (1996). This is undesired
in many situations (Ljung (2010)), e.g., when the model
is used for different inputs than those used to fit it. To
overcome this problem, Tobenkin et al. (2010, 2017) devel-
oped a method imposing incremental stability for a general
class of identified nonlinear models. However, the proposed
approach is computationally expensive, as it solves a high-
dimensional semidefinite programming (SDP) problem. To
reduce the computational burden of this method, Umen-
berger and Manchester (2018) developed a specialized inte-
rior point algorithm to solve the formulated SDP problem
in a more efficient manner. These approaches perform best
if an accurate estimate of the state sequence of the un-

11th IFAC Symposium on Nonlinear Control Systems
Vienna, Austria, Sept. 4-6, 2019

Copyright © 2019 IFAC 307

Fast Identification of Continuous-Time
Lur’e-type Systems with Stability

Certification

M.F. Shakib ∗ A.Y. Pogromsky ∗ A. Pavlov ∗∗

N. van de Wouw ∗,∗∗∗

∗ Department of Mechanical Engineering, Eindhoven University of
Technology, Eindhoven, The Netherlands

(e-mail: {m.f.shakib; a.pogromski; n.v.d.wouw}@tue.nl).
∗∗ Department of Geoscience and Petroleum, NTNU, Trondheim,

Norway (e-mail: alexey.pavlov@ntnu.no).
∗∗∗ Department of Civil, Environmental & Geo- Engineering,

University of Minnesota, Minneapolis, U.S.A.
(e-mail: nvandewo@umn.edu).

Abstract: In this paper, we propose an approach for parametric system identification for a class
of continuous-time Lur’e-type systems using only steady-state input and output data. Employing
a quasi-Newton optimization scheme, we minimize an output error criterion constrained to
the set of convergent models, which enforces a stability certificate on the identified model.
To compute the steady-state model response efficiently, we adopt the Mixed-Time-Frequency
(MTF) algorithm. Furthermore, using the MTF algorithm, we present a method to efficiently
compute the gradient of the objective function with any user-defined accuracy. Starting with an
initial convergent model estimate, the developed identification algorithm optimizes parameter
estimates. The effectiveness of the proposed approach is illustrated in a simulation example.

Keywords: Nonlinear System Identification, Stability Certification.

1. INTRODUCTION

System identification deals with the construction of dy-
namic models from observed input and output data. Such
models are required in model-based controller design or
are used to understand the dynamic behavior of complex
systems. The identification problem for linear systems has
received extensive attention and well-established powerful
methods exist, Ljung (1987), together with user-friendly
software, e.g., Ljung (1995); Garnier and Gilson (2018).
However, many (physical) systems exhibit some form of
nonlinearity, motivating the development of identification
methods for classes of nonlinear systems.

A practically relevant class of nonlinear systems is the
class of Lur’e-type systems, see Khalil (1996). These
systems are block structured in the sense that all the
linear time-invariant (LTI) dynamics are captured in a
LTI block and all the nonlinearities are captured in a
static nonlinear block placed in feedback with the LTI
block. Both parametric and non-parametric identification
methods exist for Lur’e-type systems, e.g., Schoukens and
Tiels (2017); Mulders et al. (2014); Vanbeylen (2013);
Palanthandalam-Madapusi et al. (2005); Vandersteen and
Schoukens (1999).

A common difficulty is the non-convexity of the formu-
lated objective function, where a two step approach is
often taken in an attempt to find its global minimum,
see Schoukens and Tiels (2017). As a first step, the static
nonlinear block is neglected and a Best Linear Approxi-
mation (BLA) of the nonlinear system is obtained. As a
second step, the non-convex objective function, where all
model parameters are involved, is locally minimized using
gradient-based optimization techniques starting at the pa-
rameter estimates obtained in the first step. In general,

no guarantee can be given that this method reaches the
global minimum of the objective function.

The second optimization step involves a non-convex ob-
jective function, where at each iteration the computation
of the response of the nonlinear model with the current
parameter estimates is inevitable. For discrete-time sys-
tems, the response is obtained in a computationally cheap
way by a series of algebraic operations. However, in the
case of continuous-time systems, the model response is
usually obtained by numerical forward integration of the
model dynamics, which is a computationally expensive and
time-consuming task. Although the previous references are
generally not restricted to discrete-time systems, these do
not provide tools to obtain the model response efficiently in
the continuous-time case. Furthermore, additional model
responses are required to provide numerical estimates for
the gradient (and Hessian) of the objective function with
respect to the model parameters, see Papalambros and
Wilde (2000).

Another challenge is that nonlinear systems can exhibit
multiple stable solutions, being attractive for different sets
of initial conditions, see Khalil (1996). This is undesired
in many situations (Ljung (2010)), e.g., when the model
is used for different inputs than those used to fit it. To
overcome this problem, Tobenkin et al. (2010, 2017) devel-
oped a method imposing incremental stability for a general
class of identified nonlinear models. However, the proposed
approach is computationally expensive, as it solves a high-
dimensional semidefinite programming (SDP) problem. To
reduce the computational burden of this method, Umen-
berger and Manchester (2018) developed a specialized inte-
rior point algorithm to solve the formulated SDP problem
in a more efficient manner. These approaches perform best
if an accurate estimate of the state sequence of the un-

11th IFAC Symposium on Nonlinear Control Systems
Vienna, Austria, Sept. 4-6, 2019

Copyright © 2019 IFAC 307

Fast Identification of Continuous-Time
Lur’e-type Systems with Stability

Certification

M.F. Shakib ∗ A.Y. Pogromsky ∗ A. Pavlov ∗∗

N. van de Wouw ∗,∗∗∗

∗ Department of Mechanical Engineering, Eindhoven University of
Technology, Eindhoven, The Netherlands

(e-mail: {m.f.shakib; a.pogromski; n.v.d.wouw}@tue.nl).
∗∗ Department of Geoscience and Petroleum, NTNU, Trondheim,

Norway (e-mail: alexey.pavlov@ntnu.no).
∗∗∗ Department of Civil, Environmental & Geo- Engineering,

University of Minnesota, Minneapolis, U.S.A.
(e-mail: nvandewo@umn.edu).

Abstract: In this paper, we propose an approach for parametric system identification for a class
of continuous-time Lur’e-type systems using only steady-state input and output data. Employing
a quasi-Newton optimization scheme, we minimize an output error criterion constrained to
the set of convergent models, which enforces a stability certificate on the identified model.
To compute the steady-state model response efficiently, we adopt the Mixed-Time-Frequency
(MTF) algorithm. Furthermore, using the MTF algorithm, we present a method to efficiently
compute the gradient of the objective function with any user-defined accuracy. Starting with an
initial convergent model estimate, the developed identification algorithm optimizes parameter
estimates. The effectiveness of the proposed approach is illustrated in a simulation example.

Keywords: Nonlinear System Identification, Stability Certification.

1. INTRODUCTION

System identification deals with the construction of dy-
namic models from observed input and output data. Such
models are required in model-based controller design or
are used to understand the dynamic behavior of complex
systems. The identification problem for linear systems has
received extensive attention and well-established powerful
methods exist, Ljung (1987), together with user-friendly
software, e.g., Ljung (1995); Garnier and Gilson (2018).
However, many (physical) systems exhibit some form of
nonlinearity, motivating the development of identification
methods for classes of nonlinear systems.

A practically relevant class of nonlinear systems is the
class of Lur’e-type systems, see Khalil (1996). These
systems are block structured in the sense that all the
linear time-invariant (LTI) dynamics are captured in a
LTI block and all the nonlinearities are captured in a
static nonlinear block placed in feedback with the LTI
block. Both parametric and non-parametric identification
methods exist for Lur’e-type systems, e.g., Schoukens and
Tiels (2017); Mulders et al. (2014); Vanbeylen (2013);
Palanthandalam-Madapusi et al. (2005); Vandersteen and
Schoukens (1999).

A common difficulty is the non-convexity of the formu-
lated objective function, where a two step approach is
often taken in an attempt to find its global minimum,
see Schoukens and Tiels (2017). As a first step, the static
nonlinear block is neglected and a Best Linear Approxi-
mation (BLA) of the nonlinear system is obtained. As a
second step, the non-convex objective function, where all
model parameters are involved, is locally minimized using
gradient-based optimization techniques starting at the pa-
rameter estimates obtained in the first step. In general,

no guarantee can be given that this method reaches the
global minimum of the objective function.

The second optimization step involves a non-convex ob-
jective function, where at each iteration the computation
of the response of the nonlinear model with the current
parameter estimates is inevitable. For discrete-time sys-
tems, the response is obtained in a computationally cheap
way by a series of algebraic operations. However, in the
case of continuous-time systems, the model response is
usually obtained by numerical forward integration of the
model dynamics, which is a computationally expensive and
time-consuming task. Although the previous references are
generally not restricted to discrete-time systems, these do
not provide tools to obtain the model response efficiently in
the continuous-time case. Furthermore, additional model
responses are required to provide numerical estimates for
the gradient (and Hessian) of the objective function with
respect to the model parameters, see Papalambros and
Wilde (2000).

Another challenge is that nonlinear systems can exhibit
multiple stable solutions, being attractive for different sets
of initial conditions, see Khalil (1996). This is undesired
in many situations (Ljung (2010)), e.g., when the model
is used for different inputs than those used to fit it. To
overcome this problem, Tobenkin et al. (2010, 2017) devel-
oped a method imposing incremental stability for a general
class of identified nonlinear models. However, the proposed
approach is computationally expensive, as it solves a high-
dimensional semidefinite programming (SDP) problem. To
reduce the computational burden of this method, Umen-
berger and Manchester (2018) developed a specialized inte-
rior point algorithm to solve the formulated SDP problem
in a more efficient manner. These approaches perform best
if an accurate estimate of the state sequence of the un-

11th IFAC Symposium on Nonlinear Control Systems
Vienna, Austria, Sept. 4-6, 2019

Copyright © 2019 IFAC 307

Fast Identification of Continuous-Time
Lur’e-type Systems with Stability

Certification

M.F. Shakib ∗ A.Y. Pogromsky ∗ A. Pavlov ∗∗

N. van de Wouw ∗,∗∗∗

∗ Department of Mechanical Engineering, Eindhoven University of
Technology, Eindhoven, The Netherlands

(e-mail: {m.f.shakib; a.pogromski; n.v.d.wouw}@tue.nl).
∗∗ Department of Geoscience and Petroleum, NTNU, Trondheim,

Norway (e-mail: alexey.pavlov@ntnu.no).
∗∗∗ Department of Civil, Environmental & Geo- Engineering,

University of Minnesota, Minneapolis, U.S.A.
(e-mail: nvandewo@umn.edu).

Abstract: In this paper, we propose an approach for parametric system identification for a class
of continuous-time Lur’e-type systems using only steady-state input and output data. Employing
a quasi-Newton optimization scheme, we minimize an output error criterion constrained to
the set of convergent models, which enforces a stability certificate on the identified model.
To compute the steady-state model response efficiently, we adopt the Mixed-Time-Frequency
(MTF) algorithm. Furthermore, using the MTF algorithm, we present a method to efficiently
compute the gradient of the objective function with any user-defined accuracy. Starting with an
initial convergent model estimate, the developed identification algorithm optimizes parameter
estimates. The effectiveness of the proposed approach is illustrated in a simulation example.

Keywords: Nonlinear System Identification, Stability Certification.

1. INTRODUCTION

System identification deals with the construction of dy-
namic models from observed input and output data. Such
models are required in model-based controller design or
are used to understand the dynamic behavior of complex
systems. The identification problem for linear systems has
received extensive attention and well-established powerful
methods exist, Ljung (1987), together with user-friendly
software, e.g., Ljung (1995); Garnier and Gilson (2018).
However, many (physical) systems exhibit some form of
nonlinearity, motivating the development of identification
methods for classes of nonlinear systems.

A practically relevant class of nonlinear systems is the
class of Lur’e-type systems, see Khalil (1996). These
systems are block structured in the sense that all the
linear time-invariant (LTI) dynamics are captured in a
LTI block and all the nonlinearities are captured in a
static nonlinear block placed in feedback with the LTI
block. Both parametric and non-parametric identification
methods exist for Lur’e-type systems, e.g., Schoukens and
Tiels (2017); Mulders et al. (2014); Vanbeylen (2013);
Palanthandalam-Madapusi et al. (2005); Vandersteen and
Schoukens (1999).

A common difficulty is the non-convexity of the formu-
lated objective function, where a two step approach is
often taken in an attempt to find its global minimum,
see Schoukens and Tiels (2017). As a first step, the static
nonlinear block is neglected and a Best Linear Approxi-
mation (BLA) of the nonlinear system is obtained. As a
second step, the non-convex objective function, where all
model parameters are involved, is locally minimized using
gradient-based optimization techniques starting at the pa-
rameter estimates obtained in the first step. In general,

no guarantee can be given that this method reaches the
global minimum of the objective function.

The second optimization step involves a non-convex ob-
jective function, where at each iteration the computation
of the response of the nonlinear model with the current
parameter estimates is inevitable. For discrete-time sys-
tems, the response is obtained in a computationally cheap
way by a series of algebraic operations. However, in the
case of continuous-time systems, the model response is
usually obtained by numerical forward integration of the
model dynamics, which is a computationally expensive and
time-consuming task. Although the previous references are
generally not restricted to discrete-time systems, these do
not provide tools to obtain the model response efficiently in
the continuous-time case. Furthermore, additional model
responses are required to provide numerical estimates for
the gradient (and Hessian) of the objective function with
respect to the model parameters, see Papalambros and
Wilde (2000).

Another challenge is that nonlinear systems can exhibit
multiple stable solutions, being attractive for different sets
of initial conditions, see Khalil (1996). This is undesired
in many situations (Ljung (2010)), e.g., when the model
is used for different inputs than those used to fit it. To
overcome this problem, Tobenkin et al. (2010, 2017) devel-
oped a method imposing incremental stability for a general
class of identified nonlinear models. However, the proposed
approach is computationally expensive, as it solves a high-
dimensional semidefinite programming (SDP) problem. To
reduce the computational burden of this method, Umen-
berger and Manchester (2018) developed a specialized inte-
rior point algorithm to solve the formulated SDP problem
in a more efficient manner. These approaches perform best
if an accurate estimate of the state sequence of the un-

11th IFAC Symposium on Nonlinear Control Systems
Vienna, Austria, Sept. 4-6, 2019

Copyright © 2019 IFAC 307



228 M.F. Shakib  et al. / IFAC PapersOnLine 52-16 (2019) 227–232

derlying system generating the observed data is available.
Obtaining the state sequence is generally a hard problem
for continuous-time systems and rather case specific for
nonlinear systems, both in continuous- and discrete-time.

In this paper, we present a computationally efficient para-
metric identification algorithm for a class of continuous-
time single-input single-output (SISO) Lur’e-type systems.
The proposed approach guarantees that the identified
model is exponentially convergent, which is a property
of (non)linear systems that guarantees global exponential
stability and uniqueness of the steady-state solution, see
Pavlov et al. (2004). For continuous-time convergent Lur’e-
type systems, the mixed-time-frequency (MTF) algorithm
enables fast computation of steady-state solutions under
periodic excitations, see Pavlov and van de Wouw (2008).
The proposed identification algorithm, therefore, only re-
quires the measured steady-state response of the system to
be compared with the steady-state output of the paramet-
ric model in an objective function to be minimized. We
further present a method, using the MTF algorithm, to
compute the gradient of this objective function efficiently
and with any user-defined accuracy. This gradient informa-
tion is required in the gradient-based optimization scheme
used to minimize the objective function. The effectiveness
of the proposed method is shown in a simulation example.
The main benefits of this approach are the computational
efficiency of the proposed identification algorithm and the
guaranteed stability of the obtained model.

The remainder of this paper is structured as follows.
Section 2 introduces the considered class of Lur’e-type
systems and recalls sufficient conditions for convergence.
Section 3 formulates the identification problem. Section 4
presents the MTF algorithm and also shows its applica-
tion in the computation of the gradient of the objective
function central in the identification problem. Section 5
describes the proposed identification algorithm. Section
6 presents a simulation example. Section 7 closes with
concluding remarks and recommendations for future work.

2. CONVERGENT LUR’E-TYPE SYSTEMS

We consider SISO Lur’e-type systems described by

ẋ(t) = Ax(t) + Bu(t) +Hw(t),

y0(t) = Cx(t),
y(t) = y0(t) + e(t)

u(t) = −φ(y0(t)),

(1)

where x(t) ∈ Rn is the state vector, y0(t) ∈ R is the
noiseless output, y(t) ∈ R is the measured output, w(t) ∈
R is the user-defined external input, φ(y0(t)) : R → R
is a static nonlinear function and e(t) ∈ R is additive
(sensor) noise. It is assumed that there is no feedthrough
from w(t) to y(t), implying that the transfer function
Gwy(s) = C(sI −A)−1H is strictly proper, where s ∈ C is
the Laplace variable. Fig. 1 depicts the considered Lur’e-
type system schematically.

Stability of forced LTI systems is well-understood; namely,
global exponential stability of the origin of the unforced
system is sufficient and necessary for globally exponential
stability of solutions of the forced system. However, for
nonlinear systems, conditions are required to certify the
global exponential stability of the solutions of forced
nonlinear systems. To this end, we use the notion of
convergent dynamics defined as follows.

Definition 1. (Pavlov et al. (2004)). System (1) is said to
be globally exponentially convergent if for every input

ẋ= Ax+ Bu+Hw
y0 = Cx

φ(y0)

y0

e
y

u

w

Fig. 1. Schematic representation of Lur’e-type system (1).

w(t) there exists a solution x̄(t) satisfying the following
conditions:

• x̄(t) is defined and bounded for all t ∈ R,
• x̄(t) is globally exponentially stable.

The following theorem provides sufficient conditions for
global exponential convergence for system (1).

Theorem 2. (Pavlov et al. (2004); Yakubovich (1964)).
Consider system (1). Suppose

C1 The matrix A is Hurwitz;
C2 There exists a K > 0 such that the nonlinearity φ(·)

satisfies 0 ≤ φ(y2)−φ(y1)
y2−y1

≤ K for all y1, y2 ∈ R;
C3 Re(C(jωI −A)−1B) > − 1

K .

Then, system (1) is globally exponentially convergent
according to Definition 1.

Global exponential convergence implies that the effect of
initial conditions vanishes and all solutions x(t) converge
to the unique globally exponentially stable steady-state
solution x̄(t). Furthermore, convergent systems have the
property that if the excitation signal w(t) is periodic with
period-time T , then the steady-state solution x̄(t) is also
periodic with the same period-time T , see Pavlov et al.
(2004). In the scope of system identification, this property
implies that the (noiseless) steady-state output ȳ0(t) can
only contain the same frequencies of the input w(t) and,
additionally, higher harmonics of these frequencies. Fur-
thermore, we care to stress that the convergence property
formally guarantees the PISPO (periodic input, the same
period output) property commonly assumed in literature,
e.g., in Schoukens and Tiels (2017).

3. IDENTIFICATION PROBLEM SETTING

The identification problem considered is to estimate the
parameters θ ∈ Rnθ of a Lur’e-type model, that produces
the output y(t, θ) under excitation w(t), which is close
to the measured output y(t) quantified by an objective
function J(θ). The available data is the measured steady-
state output ȳ(t) and the exactly known applied input
w(t). We assume that the underlying data-generating
system is convergent.

Assumption 1. System (1) satisfies conditions C1 - C3 of
Theorem 2.

Since we only consider steady-state data, being indepen-
dent of the unobservable and uncontrollable part of the
LTI dynamics, we can parametrize the LTI block in the
Observability Canonical Form as follows:

ẋ(t, θ) = A(θ)x(t, θ) +B(θ)u(t, θ) +H(θ)w(t),

y(t, θ) = Cx(t, θ),

u(t, θ) = −ϕ(y(t, θ), θ).

(2)

The corresponding matrices are
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A(θ) =




−a1 1 0 . . . 0
−a2 0 1 . . . 0
...

...
...
. . .

...
−an 0 0 . . . 0


 , B(θ) =




b1
b2
...
bn


 , H(θ) =




h1
h2
...
hn


 ,

C = [1 0 0 . . . 0] .

The total number of parameters nθ is 3 × n + nNL
with n the known state dimension and nNL the num-
ber of parameters used to parametrize the nonlinearity
ϕ. The parameters are collected in the vector θ� =[
a1 . . . an b1 . . . bn h1 . . . hn θ�NL

]
with θNL the param-

eters defining the static nonlinearity ϕ. The set Θ ⊂ Rnθ

is defined as the set of parameter vectors θ for which
model (2) satisfies conditions C1 - C3 in Theorem 2
(with A,B, C, φ(y) replaced by A(θ), B(θ), C, ϕ(y, θ), re-
spectively).

The parametrization of the static nonlinear block is a
non-trivial task (Schoukens and Tiels (2017)) where case-
specific a priori knowledge can also be employed. One
common approach is to parametrize the nonlinearity using
basis functions as ϕ(y(t, θ), θ) =

∑3n+nNL

k=3n+1 θkfk(y(t, θ)),
where the basis functions fk(y(t, θ)) are provided by the
user and the coefficients θk are the parameters. Such basis
functions can be defined in terms of polynomials and
trigonometric functions. However, both are unsuitable here
since these can not satisfy condition C2 in Theorem 2, i.e.,
the nonlinearity will typically not satisfy this incremental
sector bound globally. Nonlinearities that are suitable
are, e.g., piecewise linear maps, sigmoids, the arctangens
function and the hyperbolic tangens function.

Under the assumption of convergence, a periodic excita-
tion w(t) results in a periodic steady-state output ȳ(t)
with the same period-time T . The steady-state error signal
over one such period can then be defined as

ε(t, θ) := ȳ(t, θ)− ȳ(t), for t ∈ [t0, t0 + T ), (3)

where ȳ(t, θ) is the steady-state output of model (2).
However, in practice, only a discrete version of the mea-
sured ȳ(t) is available. Therefore, ε(t, θ) is only defined
for tk := t0 + kts with k = 0, 1, . . . , N − 1, where ts is
the sampling interval and N is the number of samples in
the period. The squared output error is taken as objective
function, which is defined as

J(θ) :=
1

N

N−1∑
k=0

ε(tk, θ)
2. (4)

The identification objective is to find the parameter vector
θ� ∈ Θ, which globally minimizes J(θ) constrained to the
set of convergent models characterized by the parameter
set Θ, i.e., θ� = argminθ∈Θ J(θ). Since the objective func-
tion J(θ) is highly nonlinear (Schoukens and Tiels (2017)),
we employ a gradient-based optimization algorithm to
reach a local minimum. In this algorithm, the gradient
of the objective function with respect to the parameter
vector θ is required, which for (4) reads as

∂J(θ)

∂θ
=

2

N

N−1∑
k=0

ε(tk, θ)
∂ε(tk, θ)

∂θ
. (5)

In (5), the steady-state error ε(tk, θ), defined in (3), as well
as the gradient of this error ∂ε(tk, θ)/∂θ = ∂ȳ(tk, θ)/∂θ,
are required. We will show in the next section that for the
considered model structure, we can compute ε(tk, θ) and
∂ε(tk, θ)/∂θ in a computationally efficient and accurate
way.

4. COMPUTATION OF STEADY-STATE RESPONSES
& GRADIENT INFORMATION

As discussed above, the steady-state output ȳ(t, θ) of
model (2) is required at sampling instances tk in the evalu-
ation of the objective function (4) and the computation of
its gradient (5). First, we introduce the MTF algorithm,
which enables computation of the steady-state response
of convergent Lur’e-type models in a computationally at-
tractive manner. After that, we will show how the MTF
algorithm can also be used to compute the gradient of the
objective function.

4.1 Mixed-Time-Frequency Algorithm

Pavlov and van de Wouw (2008) developed the MTF algo-
rithm to efficiently compute the steady-state response of
convergent Lur’e-type models, which overcomes the draw-
backs of numerical forward integration of the dynamics.
The algorithm is based on a contraction mapping property
that requires the underlying Lur’e-type model to satisfy
‘symmetric’ sector conditions rather than the conditions
stated in Theorem 2, see Pavlov et al. (2013). It is also
shown there that any convergent Lur’e-type model of the
form (2), satisfying the conditions in Theorem 2 for some
K, can be transformed to

ẋ(t, θ) = Ã(θ)x(t, θ) +B(θ)ũ(t, θ) +H(θ)w(t),

y(t, θ) = Cx(t, θ),

ũ(t, θ) = −ϕ̃(y(t, θ), θ),

(6)

where

Ã(θ) = A(θ)− K

2
B(θ)C,

ϕ̃(y(t, θ), θ) = ϕ(y(t, θ), θ)− K

2
y(t, θ).

The transformed model (6) satisfies the ‘symmetric’ sector
conditions if the original model (2) satisfies the conditions
in Theorem 2.

For Lur’e-type models satisfying the ‘symmetric’ sector
conditions, the MTF algorithm computes the steady-state
response with any user-defined accuracy. This algorithm
computes iteratively the response of the LTI block in
frequency-domain, while it computes the response of the
static nonlinear block in time-domain, which are both
computationally cheap steps. The intermediate signals
are transformed between the time- and frequency-domain
using the (Inverse) Fast Fourier Transform ((I)FFT).

In a practical implementation, truncation of the number
of Fourier coefficients to M frequencies is inevitable. It is
shown in Pavlov and van de Wouw (2008) that the MTF
algorithm converges for any M and, furthermore, that
there exists an upper bound for the mismatch between
the ‘real’ steady-state response ȳ(t, θ) and the response
ȳM (t, θ) computed using MTF limited to M frequencies.
As initial guess for the steady-state solution for this
algorithm, any response (e.g., the zero response) can be
taken. The algorithm terminates when the relative error is
smaller than or equal to the user-specified tolerance Y �.

The MTF algorithm is presented in Algorithm 1. There,
we use the transfer functions Gyu(jω, θ) = C(jωI −
Ã(θ))−1B(θ) and Gyw(jω, θ) = C(jωI − Ã(θ))−1H(θ).
Furthermore, we use the �2 signal norm, which is defined as
||Y ||2�2 :=

∑∞
m=−∞ |Y [m]|2. Moreover, in Algorithm 1, we

dropped the dependency on θ for notational convenience.
The computed steady-state response ȳ(tk, θ) can be used
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 , B(θ) =
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...
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 , H(θ) =
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...
hn
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C = [1 0 0 . . . 0] .

The total number of parameters nθ is 3 × n + nNL
with n the known state dimension and nNL the num-
ber of parameters used to parametrize the nonlinearity
ϕ. The parameters are collected in the vector θ� =[
a1 . . . an b1 . . . bn h1 . . . hn θ�NL

]
with θNL the param-

eters defining the static nonlinearity ϕ. The set Θ ⊂ Rnθ

is defined as the set of parameter vectors θ for which
model (2) satisfies conditions C1 - C3 in Theorem 2
(with A,B, C, φ(y) replaced by A(θ), B(θ), C, ϕ(y, θ), re-
spectively).

The parametrization of the static nonlinear block is a
non-trivial task (Schoukens and Tiels (2017)) where case-
specific a priori knowledge can also be employed. One
common approach is to parametrize the nonlinearity using
basis functions as ϕ(y(t, θ), θ) =

∑3n+nNL

k=3n+1 θkfk(y(t, θ)),
where the basis functions fk(y(t, θ)) are provided by the
user and the coefficients θk are the parameters. Such basis
functions can be defined in terms of polynomials and
trigonometric functions. However, both are unsuitable here
since these can not satisfy condition C2 in Theorem 2, i.e.,
the nonlinearity will typically not satisfy this incremental
sector bound globally. Nonlinearities that are suitable
are, e.g., piecewise linear maps, sigmoids, the arctangens
function and the hyperbolic tangens function.

Under the assumption of convergence, a periodic excita-
tion w(t) results in a periodic steady-state output ȳ(t)
with the same period-time T . The steady-state error signal
over one such period can then be defined as

ε(t, θ) := ȳ(t, θ)− ȳ(t), for t ∈ [t0, t0 + T ), (3)

where ȳ(t, θ) is the steady-state output of model (2).
However, in practice, only a discrete version of the mea-
sured ȳ(t) is available. Therefore, ε(t, θ) is only defined
for tk := t0 + kts with k = 0, 1, . . . , N − 1, where ts is
the sampling interval and N is the number of samples in
the period. The squared output error is taken as objective
function, which is defined as

J(θ) :=
1

N

N−1∑
k=0

ε(tk, θ)
2. (4)

The identification objective is to find the parameter vector
θ� ∈ Θ, which globally minimizes J(θ) constrained to the
set of convergent models characterized by the parameter
set Θ, i.e., θ� = argminθ∈Θ J(θ). Since the objective func-
tion J(θ) is highly nonlinear (Schoukens and Tiels (2017)),
we employ a gradient-based optimization algorithm to
reach a local minimum. In this algorithm, the gradient
of the objective function with respect to the parameter
vector θ is required, which for (4) reads as

∂J(θ)
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=

2

N

N−1∑
k=0

ε(tk, θ)
∂ε(tk, θ)

∂θ
. (5)

In (5), the steady-state error ε(tk, θ), defined in (3), as well
as the gradient of this error ∂ε(tk, θ)/∂θ = ∂ȳ(tk, θ)/∂θ,
are required. We will show in the next section that for the
considered model structure, we can compute ε(tk, θ) and
∂ε(tk, θ)/∂θ in a computationally efficient and accurate
way.

4. COMPUTATION OF STEADY-STATE RESPONSES
& GRADIENT INFORMATION

As discussed above, the steady-state output ȳ(t, θ) of
model (2) is required at sampling instances tk in the evalu-
ation of the objective function (4) and the computation of
its gradient (5). First, we introduce the MTF algorithm,
which enables computation of the steady-state response
of convergent Lur’e-type models in a computationally at-
tractive manner. After that, we will show how the MTF
algorithm can also be used to compute the gradient of the
objective function.

4.1 Mixed-Time-Frequency Algorithm

Pavlov and van de Wouw (2008) developed the MTF algo-
rithm to efficiently compute the steady-state response of
convergent Lur’e-type models, which overcomes the draw-
backs of numerical forward integration of the dynamics.
The algorithm is based on a contraction mapping property
that requires the underlying Lur’e-type model to satisfy
‘symmetric’ sector conditions rather than the conditions
stated in Theorem 2, see Pavlov et al. (2013). It is also
shown there that any convergent Lur’e-type model of the
form (2), satisfying the conditions in Theorem 2 for some
K, can be transformed to

ẋ(t, θ) = Ã(θ)x(t, θ) +B(θ)ũ(t, θ) +H(θ)w(t),

y(t, θ) = Cx(t, θ),

ũ(t, θ) = −ϕ̃(y(t, θ), θ),

(6)

where

Ã(θ) = A(θ)− K

2
B(θ)C,

ϕ̃(y(t, θ), θ) = ϕ(y(t, θ), θ)− K

2
y(t, θ).

The transformed model (6) satisfies the ‘symmetric’ sector
conditions if the original model (2) satisfies the conditions
in Theorem 2.

For Lur’e-type models satisfying the ‘symmetric’ sector
conditions, the MTF algorithm computes the steady-state
response with any user-defined accuracy. This algorithm
computes iteratively the response of the LTI block in
frequency-domain, while it computes the response of the
static nonlinear block in time-domain, which are both
computationally cheap steps. The intermediate signals
are transformed between the time- and frequency-domain
using the (Inverse) Fast Fourier Transform ((I)FFT).

In a practical implementation, truncation of the number
of Fourier coefficients to M frequencies is inevitable. It is
shown in Pavlov and van de Wouw (2008) that the MTF
algorithm converges for any M and, furthermore, that
there exists an upper bound for the mismatch between
the ‘real’ steady-state response ȳ(t, θ) and the response
ȳM (t, θ) computed using MTF limited to M frequencies.
As initial guess for the steady-state solution for this
algorithm, any response (e.g., the zero response) can be
taken. The algorithm terminates when the relative error is
smaller than or equal to the user-specified tolerance Y �.

The MTF algorithm is presented in Algorithm 1. There,
we use the transfer functions Gyu(jω, θ) = C(jωI −
Ã(θ))−1B(θ) and Gyw(jω, θ) = C(jωI − Ã(θ))−1H(θ).
Furthermore, we use the �2 signal norm, which is defined as
||Y ||2�2 :=
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m=−∞ |Y [m]|2. Moreover, in Algorithm 1, we

dropped the dependency on θ for notational convenience.
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together with the measured response ȳ(tk) to compute the
output error (3), which is subsequently used in (4) and (5).

Algorithm 1 Mixed-Time-Frequency Algorithm

1: Calculate W [m] of w(t) for |m| ≤ M using FFT.
2: Evaluate LTI dynamics in frequency-domain

Y0[m] = Gyw(jmω)W [m] for |m| ≤ M .
3: Compute y0(t) of Y0[m] using IFFT.
4: Set iteration counter i = 0.
5: while ||Yi − Yi−1||�2/||Yi−1||�2 > Y � do
6: Evaluate nonlinearity in time-domain

ũi+1(t) = −ϕ̃(yi(t)).

7: Compute Ũi+1[m] of ũi+1(t) using FFT.
8: Evaluate LTI dynamics in frequency-domain

Yi+1[m] = Gyu(jmω)Ũi+1[m] + Y0[m]
for |m| ≤ M .

9: Compute yi+1(t) of Yi+1[m] using IFFT.
10: Set i = i+ 1.

4.2 Gradient Computation

It will be shown next that the gradient ∂ε(t, θ)/∂θ, re-
quired in (5) at sampling instances tk, is the steady-state
solution of another convergent Lur’e-type model, and,
hence, can also be computed using the MTF algorithm.
The ideas are based on Pavlov et al. (2013), where a
similar method is presented to optimize the steady-state
performance of nonlinear controlled systems in Lur’e-type
form. However, in that work, the parameters only ap-
peared in the static nonlinear block, whereas in (2), the
parameters appear in both the LTI and static nonlinear
blocks. Therefore, the following result is a generalization
of the result presented in Pavlov et al. (2013).

Theorem 3. Consider system (2). Under the conditions
of Theorem 2, if the nonlinearity ϕ(y, θ) is C1 in (y, θ),
then the corresponding partial derivatives ∂x̄(t, θ)/∂θi
and ∂ε(t, θ)/∂θi are, respectively, the unique T -periodic
steady-state solution Ψ̄i(t, θ) and the corresponding peri-
odic steady-state output λ̄i(t, θ) of the following model

Ψ̇i(t, θ) = A(θ)Ψi(t, θ) +B(θ)Ui(t, θ) +Wi(t, θ),

λi(t, θ) = CΨi(t, θ),

Ui(t, θ) = −∂ϕ

∂y
(ȳ(t, θ), θ)λi(t, θ),

(7)

where

Wi(t, θ) =
∂A

∂θi
(θ)x̄(t, θ)−B(θ)

∂ϕ

∂θi
(ȳ(t, θ), θ)

− ∂B

∂θi
(θ)ϕ(ȳ(t, θ), θ) +

∂H

∂θi
(θ)w(t).

(8)

Furthermore, model (7) satisfies the conditions of The-
orem 2 with A,B, C, φ(y) replaced by A(θ), B(θ), C,
∂ϕ
∂y (ȳ(t, θ), θ)λi(t, θ), respectively.

Proof. The proof can be found in the Appendix.

The above theorem shows that the gradient ∂ε(t, θ)/∂θi,
for i = 1, 2, . . . , nθ, is the steady-state response of a
convergent Lur’e-type model. Hence, after transforming it
to the form of (6), its steady-state response, required in
(5) at sampling instances tk, can be computed using the
MTF algorithm for every parameter θi in θ individually.
Remark 4. Once the steady-state output ȳ(t, θ) of (2) is
calculated by the MTF algorithm, the steady-state x̄(t, θ)
required in (8) is calculated in the frequency domain from
the linear part of (6).

5. IDENTIFICATION ALGORITHM

The formulated identification problem is a non-convex
constrained optimization problem, where the objective
function J(θ) is minimized constrained to the set of
convergent models, i.e., θ ∈ Θ. To ensure θ staying inside
Θ in all optimization iterations, the objective function is
modified to include a penalty function ψ(θ):

Jmod(θ) = J(θ) + ψ(θ) (9)

with

ψ(θ) =

{
0 if θ ∈ Θ,

∞ if θ �∈ Θ.

The modified objective function Jmod(θ) is unbounded
when the parameter vector θ fails to stay in the set Θ,
whereas the original objective function J(θ) might remain
bounded as Theorem 2 only expresses sufficient conditions
for convergence. Therefore, by evaluating Jmod(θ), we
prevent the updated parameter vector θi+1 to take a value
for which it leaves the set Θ and thus guarantee the
convergence property in all optimization iterations.

The gradient of the modified objective function Jmod(θ)
equals the gradient of J(θ) as long as θ ∈ Θ. To minimize
Jmod(θ), a quasi-Newton scheme is employed in which at
iteration i, using gradient and Hessian information, the
step-direction di is calculated by

di = −H−1
i

∂J

∂θ
(θi), (10)

where Hi is the Hessian estimated iteratively by the
Broyden, Fletcher, Goldfarb, and Shanno (BFGS) method,
see Papalambros and Wilde (2000). After that, a line
search is performed in the step-direction di to find the step-
size β�

i = argminβ Jmod(θi+βdi) for some range of β. The
parameter vector is updated according to θi+1 = θi+β�

i di.
The algorithm is terminated when the decrease of the
objective function (Ji−1 − Ji) is smaller than a certain
user-defined value J� or the number of iterations i exceeds
a user-defined threshold imax. Algorithm 2 presents the
identification algorithm.

Remark 5. As with any gradient-based optimization rou-
tine applied to a non-convex optimization problem, con-
vergence to the global minimum is not guaranteed and
depends on the initial parameter estimates.

Algorithm 2 Identification Algorithm

1: Set the counter i = 0.
2: Calculate J(θ0) via (4).
3: while Ji−1 − Ji > J� AND i ≤ imax do
4: Calculate gradient ∂J(θ)/∂θ via (5) using (7).
5: Determine step-direction di via (10).
6: Perform line search β�

i = argminβJmod(θ + βdi).
7: Update parameter vector θi+1 = θi + β�

i di.
8: Calculate J(θi+1) via (4).
9: Set i = i+ 1.

6. SIMULATION EXAMPLE

To illustrate the effectiveness of the identification scheme,
we present a simulation example in this section. The sys-
tem under study consists of second-order LTI dynamics
with a static smooth saturation nonlinearity in feedback.
Such a nonlinearity is frequently encountered in mechani-
cal systems due to actuator limitation, sensor nonlineari-
ties and other nonlinear phenomena.

The considered system reads as
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Fig. 2. Iteration history of θ and J(θ) for σ2
e = 0.

ẋ(t) =
[−θ1 0
−θ2 1

]
x(t) +

[
θ3
θ4

]
u(t) +

[
θ5
θ6

]
w(t),

y0(t) = [0 1]x(t), y(t) = y0(t) + e(t),

u(t) = −ϕ(y0(t)) = − tanh (θ7y0(t)) ,

(11)

where e(t) is a noise distortion taken from a normal
distribution with variance σ2

e , i.e., e ∼ N (0, σ2
e), and kept

constant in between samples. Parameter θ7 represents the
slope of the saturation nonlinearity ϕ(y0(t)) at y0(t) = 0.
The true parameter vector θ0 ∈ Θ is chosen as follows:

θ0 = [2 2 1 1 1 1 1]
�
. (12)

The excitation signal w(t) is a random-phase multisine

w(t) =
∑20

l=1 Al sin(2πlf0t + ϑl) with the base frequency
f0 = 0.1 Hz (period time T = 10 sec), amplitudes
Al = 10 ∀ l and random phases ϑl taken in [0, 2π). The
number of samples N = 2048, which implies M = 1024
Fourier coefficients taken in the MTF algorithm.

Algorithm 2 minimizes a non-convex function Jmod(θ)
defined in (9), which, possibly, contains (many) local
minima. Therefore, as a starting point, initial parameter
estimates are required. For such initialization, we treat
the model as if it contains no nonlinearity in the feedback
loop and thus only contains LTI dynamics that are excited
in open loop. To this extent, the matrices A,H, and C
are initialized using the standard Matlab implementation
of N4SID (Van Overschee and De Moor (2012)), and are
refined using the prediction-error-method where stability
can be enforced (Ljung (1995)). The matrix B is initially
set to zero, i.e., θ3 = θ4 = 0. For θ7, any non-zero initial
value can be taken, here 0.5 is chosen. This initialization
procedure, where A is enforced to be Hurwitz and B = 0
(implying no feedback), guarantees a convergent initial
model satisfying the conditions of Theorem 2.

First we discuss the noiseless case σ2
e = 0, for which the

results are depicted in Fig. 2. The initial estimates for θ,
i.e., at iteration k = 0 obtained by the method described
above, differ from the true values θ0. Nevertheless, running
Algorithm 2, the parameter estimates converge to their
true values θ0 in (12) in 68 iterations. In every iteration,
the objective function Jmod(θ) decreases and, ultimately,
reaches (almost) 0. The total time to go through all 68
iterations, in which a total of 68×8 = 544 model responses
are computed, is only 2.7 seconds (on an Intel Core i7-
7700HQ, 2.8GHz processor).

Next, results for noise variances σ2
e = {10−6, 10−4, 10−2}

are discussed. For each σ2
e case, 10 trials are performed.

In each such trial, a new noise realization is added to
the noiseless output y0(tk) to obtain the distorted output

Fig. 3. Simulation results for different noise intensities. The
first 10 trials correspond to σ2

e = 10−6, the second 10
to σ2

e = 10−4 and the last 10 to σ2
e = 10−2.

y(tk). The total of 30 trials are presented in Fig. 3,
where initial (red dots) and final (black dots) values of
the seven parameters are depicted individually and the
objective function Jmod(θ) is also shown. It can be seen
that the initial estimates are biased with respect to their
respective true values depicted in blue. Furthermore, a
larger noise variance results in a larger variance of the
initial estimates. It can be seen that almost all parameter
estimates, resulting from Algorithm 2, are close to their
true ones, especially in the cases of σ2

e = 10−6 and σ2
e =

10−4, i.e., the first 20 trials. In the last 10 trials, where
a large noise variance of σ2

e = 10−2 is used, in particular,
parameter θ7 has a large variance. This might be due to
the product of the output of the static nonlinear function
ϕ(y(t, θ), θ), parametrized by θ7, with the matrix B(θ),
parametrized by θ3 and θ4, in the dynamics. Additional
research is required to explain the specific variances on the
final parameter estimates. The minimum of the objective
function J(θ) approximates the noise variance σ2

e , which is
expected since J(θ) is a measure for the variance of ε(tk, θ)
in (3). In each trial, approximately 500 model responses
are computed on average taking only 2.4 seconds (on a
Intel Core i7-7700HQ, 2.8GHz processor), which shows the
computational efficiency of the algorithm.
Remark 6. To reduce the effects of e(t) in practice, we can
average over several periods of the measured output y(t).

7. CONCLUSION & FUTURE WORK

In this paper, an identification approach has been pro-
posed for convergent continuous-time Lur’e-type systems.
The benefit of the proposed approach is that 1) it is
computationally attractive and 2) it guarantees that the
identified model preserves the convergence property.

Future work includes the development of dedicated initial-
ization methods, extension of the identification scheme to
more general forms of nonlinear (feedback) systems and to
the Multiple-Input Multiple-Output (MIMO) case.

Appendix A. PROOF OF THEOREM 3

The proof is given for the scalar case of θ. The proof can
be repeated analogously for each component of a vector-
valued θ. First, consider the following property of Lur’e-
type models (2) satisfying the conditions of Theorem 2.
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Fig. 2. Iteration history of θ and J(θ) for σ2
e = 0.
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Property 7. (Pavlov et al. (2013)). Consider model (2). Un-
der the conditions of Theorem 2, if θ1(h) converges to
θ2 as h → 0, and T -periodic w1(t, h) converges to T -
periodic w2(t) uniformly in t ∈ [t0, t0 + T ), then the cor-
responding steady-state solution x̄w1(h)(t, θ1(h)) converges
to x̄w2

(t, θ2) uniformly in t ∈ [t0, t0 + T ) as h → 0.

Let us show that for z(t, h) := 1
h (x̄(t, θ+h)− x̄(t, θ)) there

exists the limit limh→0 z(t, h). For notational convenience,
we drop the argument t from here on and we define
θ+ := θ + h.

As follows from the definition of the steady-state solution
x̄(θ) of the model (2), for h �= 0, z(t, h) is a T-periodic
function satisfying the dynamics

dz(t, h)

dt
=
1

h

(
A(θ+)x̄(θ+)−A(θ)x̄(θ)

)
+

1

h

(
−B(θ+)ϕ(ȳ(θ+), θ+) +B(θ)ϕ(ȳ(θ), θ)

)
+

1

h

(
H(θ+)−H(θ)

)
w,

which can be written as
dz(t, h)

dt
=
1

h

(
A(θ+)x̄(θ+)−A(θ)x̄(θ)

)
+

1

h

(
A(θ+)x̄(θ)−A(θ+)x̄(θ)

)
+

1

h

(
−B(θ+)ϕ(ȳ(θ+), θ+) +B(θ)ϕ(ȳ(θ), θ)

)
+

1

h

(
−B(θ+)ϕ(ȳ(θ), θ) +B(θ+)ϕ(ȳ(θ), θ)

)
+

1

h

(
−B(θ+)ϕ(ȳ(θ+), θ) +B(θ+)ϕ(ȳ(θ+), θ)

)
+

1

h

(
H(θ+)−H(θ)

)
w.

Applying the mean value theorem leaves

dz(t, h)

dt
= A(θ+)z +

∂A

∂θ
(α)x̄(θ)

+B(θ+)

(
−∂ϕ

∂θ
(ȳ(θ), β)− ∂ϕ

∂ȳ(θ)
(γ, θ)

∂ȳ

∂θ
(θ)

)

− ∂B

∂ϕ
(ζ)ϕ(ȳ(θ), θ) +

∂H

∂θ
(η)w,

(A.1)

for some α, β, ζ, η ∈ (θ, θ+) and γ ∈ (ȳ(θ), ȳ(θ+)). Thus,
we conclude that for a sufficiently small h �= 0, z(t, h)
is a T -periodic solution of the model (A.1) with inputs
w, x̄(θ) and γ. Taking the limit limh→0 z(h, t) and applying
Property 7 implies the convergence of α, β, ζ, η to θ and γ
to ȳ(θ) uniformly in time t, which allows to write (A.1) as
(7) with inputs w, x̄(θ) and ȳ(θ).

Let us next prove that model (7) satisfies conditions
C1-C3 of Theorem 2. Condition C1 is satisfied since
the matrices A,B and C of the LTI block of (7) are
the same as those of model (2). Condition C2 holds
with the same K as for the model (2) since 0 ≤
∂ϕ/∂ȳ(ȳ(θ), θ) ≤ K for all ȳ(θ) and θ. Condition C3 holds
automatically since A,B,C, and K remain unchanged.
Application of Theorem 2 to model (7) concludes that
for the T -periodic input [x̄(θ), w, ȳ(θ)], model (7) has
a unique T-periodic solution Ψ̄(θ). Moreover, the limit
limh→0 z(t, h) = ∂x̄/∂θ(θ) = Ψ̄(θ). Finally, it is straight-
forward to show that ∂ε/∂θ(θ) = ∂ȳ/∂θ(θ) = λ̄(θ), which
is the T -periodic output of model (7).
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