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Abstract This chapter presents a so-called extended model-reduction technique for
linear delay differential equations. The presented technique preserves the infinite-
dimensional nature of the system and facilitates the preservation of properties such as
system parameterizations (uncertainties). It is proved in this chapter that the extended
model-reduction technique also preserves stability properties and provides a guaran-
teed a-priori bound on the reduction error. The reduction technique relies on the solu-
tion of matrix inequalities that characterize controllability and observability prop-
erties for time delay systems. This work presents conditions on the feasibility of
these inequalities, and studies the applicability of the extended model reduction to a
spatio-temporal model of neuronal activity, known as delay neural fields. Lastly, it
discusses the relevance of this technique in the scope of model reduction of uncertain
time delay systems, which is supported by a numerical example.
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1 Introduction

Models in terms of delay differential equations have extensively been used to describe
engineering systems such as, e.g., mechanical and electric/electronic systems [1, 25].
Systems of delay differential equations have also been used to model phenomena in,
for instance, economics and biology [18]. Such models can, however, be complex in
the sense that they consist of a large number of delay equations. This complexity can
handicap simulation, analysis, or controller synthesis and implementation. This work
presents a model order reduction technique to address the issue of model complexity
of time delay systems.

In the course of the past four decades, a myriad of model order reduction tech-
niques have been proposed for linear delay-free systems. Balanced truncation [22] is
probably themost popular of these (see [15] for an overview). Parallel to these efforts,
the model-reduction problem of time delay systems has also been studied, though
to a much lesser extent. A common approach in the model complexity reduction of
time delay systems is approximating the time delay system by a finite-dimensional
model of, potentially, low order [2, 19, 20]. This approach has been motivated by
the fact that currently analysis and design based on finite-dimensional models is in
general more appealing, as it allows for the use of well-developed classical systems
and control theory. Nonetheless, delay-structure preserving methods, i.e., methods
that preserve the infinite-dimensional nature of the time delay system during model
reduction, have also gained considerable attention [3–5, 16, 23, 28, 32, 33]. This
attention is because reliable analysis and controller synthesis techniques are avail-
able today also for time delay systems [11, 21]. In addition, for a particular order of
the reduced model, a reduced model in terms of delay differential equations has the
potential to be more accurate than a finite-dimensional approximation of the same
order [26]. In addition to the delay structure, in many cases, it is beneficial to pre-
serve other desirable properties of the original model in the reduced-order model.
Important examples are stability properties, structures of physical interconnections
(e.g., the interconnection of a system and a controller) and the presence of uncer-
tainties and model parameters. This chapter presents such a robust/parameterized
model-reduction techniques for linear time delay systems.

This chapter is an extension of the work in [24], which introduced a so-called
extended balanced truncation procedure for time delay systems. This procedure was
motivated by the technique of extended-balanced truncation for finite-dimensional
systems in [27, 29]. Following [4, 23], the work [24] defined bounds on the control-
lability and observability energy functionals of time delay systems, and constructed
a model-reduction procedure based upon those. These bounds were characterized by
matrices which are solutions to a set of matrix inequalities. Compared to the results
in [23], extended balanced truncation comes with additional degrees of freedom in
the computation of (bounds on) these functionals through the use of slack variables.
It has been shown that the proposed technique is useful for the structured model
reduction of closed-loop time delay systems and also for delay systems with poly-
topic parametrizations/uncertainties. It preserves both asymptotic stability and the
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infinite-dimensional nature of the time delay system, while also providing an a-priori
computable, guaranteed, delay-dependent error bound.

The contributions of this chapter are fourfold. First, the feasibility of the matrix
inequalities in [24] is studied in detail by presenting necessary and sufficient condi-
tions on the feasibility of thosematrix inequalities. Crucial results in [24] on the error
bound and preservation of stability were lacking mathematical proofs. As a second
contribution, this work presents the missing proofs for those results. Third, it stud-
ies and numerically illustrates the effectiveness of the extended balancing approach
for parameterized/robust model reduction of time delay systems. Lastly, this work
studies the applicability of the extended model-reduction technique to models in
neuroscience. Namely, a method for dropping the spatial dependency in a particular
model of neural fields is presented. This leads to a high-order time delay system, and
the extended model-reduction technique is then applied to reduce the order of the
resulting neural model without spatial dependency. This contribution is presented as
a numerical example.
Outline.After introducing notation, a problem statement is given in Sect. 2. Section 3
introduces and gives a characterization of the observability and controllability energy
functionals of a time delay system. Section 4 recapitulates the proposed model order
reduction procedure in [24] and provides novel detailed proofs, and easy-to-check
feasibility conditions for it are discussed in Sect. 5. The application of this technique
to delay neural fields and robust/parameterized model reduction of delay systems
is elaborated on in Sects. 6, and 7, respectively, and conclusions are presented in
Sect. 8.
Notation. The set of real (non-negative) numbers is indicated by R (R≥0), and the
Euclidean norm of a vector x ∈ R

n is denoted by |x |, which is defined as |x | :=√
xT x . The notation L2([a, b],Rn) is the space of functions x : [a, b] → R

n which
have a bounded norm ‖x‖2 = (

∫ b
a |x(t)|2 dt)1/2, whereasL∞([a, b],Rn) is the space

of bounded, piecewise continuous functions mapping [a, b] onto R
n . The Banach

space of absolutely continuous functions which map the interval [−τ , 0] onto Rn is
indicated by Cn = C([−τ , 0],Rn). Furthermore,Wn = W([−τ , 0],Rn) refers to the
space of bounded functionsϕ ∈ Cn with square-integrable derivative in a weak sense,
i.e., ϕ̇ ∈ L2([−τ , 0],Rn) for ϕ ∈ Wn. [12, 18]. A block-diagonal matrix with A1,
. . ., Am on the diagonal is represented as blkdiag{A1, · · · , Am}, and Im is them × m
identity matrix. The notation P > 0, for P ∈ R

n×n , means that P is a symmetric,
positive definite matrix. Matrix transposition and conjugate transposition are shown
by the superscripts T and H , respectively. A star ∗ in a symmetric matrix represents
a symmetric term.
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2 Problem Statement

In this chapter, we consider a time delay system Ω of the form

Ω :

⎧
⎪⎨

⎪⎩

ẋ(t) = Ax(t) + Adx(t − τ ) + Bu(t),

y(t) = Cx(t) + Cdx(t − τ ) + Du(t),

x0 = ϕ.

(1)

Here, x(t) ∈ R
n is the state vector, u(t) ∈ R

m and y(t) ∈ R
p are the external input

and the output, respectively, while τ is a constant time delay. We assume that for
all τ ∈ [0, τ̄ ], with a constant τ̄ > 0, the system is asymptotically stable for zero
input. For t ∈ R, the function segment xt : [−τ , 0] → R

n denotes the state of Ω at
the time instance t , where xt (θ) = x(t + θ) for θ ∈ [−τ , 0]. The initial condition of
the system is given by ϕ ∈ Cn , such that x(t) = ϕ(t), t ∈ [−τ , 0].

The objective is to approximate Ω by an asymptotically stable model Ω̂ of order
k < n which has the same delay structure asΩ . Moreover, the input-output behavior
of Ω̂ should be close enough, in somemeasurable sense, to that ofΩ . In addition, the
model-reduction procedure itself should be applicable to time delay systems with
polytopic uncertainties/parameterizations and it should facilitate structured model
order reduction (that is, a model order reduction procedure which preserves physical
interconnection structures in a system) for time delay systems.

It is noted that since the state of Ω belongs to Cn , it has an infinite-dimensional
nature in addition to the, potentially large, finite number of dynamical equations (i.e.,
state equations) describing it. In this chapter, model order reduction is pursued with
respect to only the latter aspect.

3 Observability and Controllability Inequalities

Following [23, 24], we will discuss a model-reduction procedure for time delay
systems based on so-called energy functionals.

First, the observability energy functional characterizes the output energy of (1) for
a non-zero initial condition and zero input, and it can thus be regarded as a measure
of observability. More precisely, we have the following definition taken from [4] (see
[16] for a similar definition).

Definition 1 The observability functional of the system (1) is the functional Lo :
Cn → R≥0 defined as

Lo(ϕ) =
∫ ∞

0
|y(t)|2dt, (2)

where y(·) is the output of the system (1) for the initial condition x0 = ϕ and zero
input u = 0.
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In addition to the observability functional, the development of a balancing-based
model-reduction procedure requires information on the controllability properties of
the time delay system. In this regard, we consider the following definition of the
controllability functional as a measure of controllability, see again [4] (and [16]).

Definition 2 The controllability functional of the system (1) is the functional Lc :
Dn → R≥0 defined as

Lc(ϕ)= inf

{∫ 0

−∞
|u(t)|2dt

∣
∣
∣
∣u∈L2 ∩ L∞

(
(−∞, 0] ,Rm

)
, lim
T→∞ x−T =0, x0=ϕ

}

,

(3)
where xt is the solution of (1) for u that satisfies the above andDn ⊂ Cn is the domain
of Lc, that is the space of function segments ϕ for which Lc(ϕ) is well defined.

Generally, the a-priori computation of the observability and controllability func-
tionals (2) and (3) is a challenging task [16]. The following lemmas from [24] present
quadratic functionals characterized by computablematriceswhich can provide a tight
upper and lower bound of Lo(ϕ) and Lc(ϕ), respectively.

Lemma 1 Consider the asymptotically stable systemΩ in (1). Let there exist matri-
ces Q > 0, Qd > 0, Q̄ > 0 and S > 0, and a scalar αo for which

Mo =

⎡

⎢
⎢
⎣

SA + AT S + Qd − Q̄ Q̄ + SAd Q − S + αo AT S CT

∗ Qd − Q̄ αo AT
d S CT

d
∗ ∗ −2αoS + τ 2 Q̄ 0
∗ ∗ ∗ −Ip

⎤

⎥
⎥
⎦ < 0 (4)

holds. Then the functional Eo : Wn × L2([−τ , 0],Rn) → R≥0 given by

Eo(ϕ, ϕ̇) = ϕT (0)Qϕ(0)+
∫ 0

−τ

ϕT (s)Qdϕ(s) ds+τ

∫ 0

−τ

∫ 0

θ

ϕ̇T (s)Q̄ϕ̇(s) dsdθ, (5)

satisfies
Eo(ϕ, ϕ̇) ≥ Lo(ϕ), (6)

for each ϕ ∈ Wn and with the functional Lo as in Definition 1.

Proof The proof of this lemma can be found in [24]. �

Lemma 2 Consider the time delay system in (1). Let there exist matrices P > 0,
Pd > 0, P̄ > 0 and R > 0, and a positive scalar αc which satisfy

Mc =

⎡

⎢
⎢
⎣

AR + RAT + Pd − P̄ P̄ + Ad R P − R + αc RAT B
∗ −Pd − P̄ αc RAT

d 0
∗ ∗ −2αc R + τ 2 P̄ αc B
∗ ∗ ∗ −Im

⎤

⎥
⎥
⎦ < 0. (7)
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Then the functional Ec : Wn × L2([−τ , 0],Rn) → R≥0 given by

Ec(ϕ, ϕ̇)=ϕT (0)Uϕ(0)+
∫ 0

−τ

ϕT (s)Udϕ(s) ds+τ

∫ 0

−τ

∫ 0

θ

ϕ̇T (s)Ū ϕ̇(s) dsdθ, (8)

with U = R−1PR−1,Ud = R−1Pd R−1, Ū = R−1 P̄ R−1, satisfies

Ec(ϕ, ϕ̇) ≤ Lc(ϕ), (9)

for all ϕ ∈ Dn ∩ Wn and Lc as in Definition 2.

Proof The proof has been omitted for the sake of brevity.

Remark 1 The variables S, αo in (2), and R, αc in (7) are referred to as the slack
variables. By contrast, Q, Qd , Q̄ and U,Ud , Ū (also P, Pd , P̄) which characterize
the energy functionals (5) and (8), respectively, are referred to as the main decision
variables.

The next section recalls the proposed model-reduction procedure in [24] and
provides proofs for the technical results not provided in [24].

4 Model order reduction by truncation

Consider a partitioning of x(t) and xt (and ϕ) as

x(t) =
[
x1(t)
x2(t)

]

, xt =
[
x1,t
x2,t

]

, ϕ =
[

ϕ1

ϕ2

]

, (10)

where x1(t) ∈ R
k and ϕ1 ∈ Wk , with k < n and together with the corresponding

partitioning of the system matrices

A =
[
A11 A12

A21 A22

]

, Ad =
[
Ad,11 Ad,12

Ad,21 Ad,22

]

, B =
[
B1

B2

]

,

C = [
C1 C2

]
, Cd = [

Cd,1 Cd,2
]
.

(11)

A reduced-order approximation of (1), denoted by Ω̂ , is obtained by truncation of
the dynamics that correspond to x2, leading to

Ω̂ :

⎧
⎪⎨

⎪⎩

ζ̇(t) = A11ζ(t) + Ad,11ζ(t − τ ) + B1u(t),

ŷ(t) = C1ζ(t) + Cd,1ζ(t − τ ) + Du(t),

ζ0 = ϕ̂,

(12)
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where ζ(t) ∈ R
k and ŷ(t) ∈ R

p approximates y(t), and ϕ̂ ∈ Wk is the initial condi-
tion of Ω̂ .

The system Ω̂ approximates x1 in the partitioned coordinates, and it clearly cap-
tures the delay structure of the original system Ω . In the sequel, it is shown that this
type of model approximation can preserve other properties of the original model in
the reduced-order model provided that the matrices S and R have a certain structure.
First, we define an extended-balanced realization of Ω .

Definition 3 A realization as in (1) is said to be extended balanced if there exist
matrices S > 0, Q > 0, Qd > 0, Q̄ > 0, and a scalar αo satisfying (4), matrices
R > 0, P > 0, Pd > 0, P̄ > 0, and a scalar αc satisfying (7), and, additionally, S
and R are such that

S = R = Σ = blkdiag{σ1 Im1 ,σ2 Im2 , · · · ,σq Imq }. (13)

Here, the constants σi > 0, which satisfy σi > σi+1, i ∈ {1, ..., q − 1}, are extended
singular values of multiplicities mi and Σ

q
i=1mi = n.

Since S and R are symmetric, positive definite matrices, the system (1) can always
be transformed into an extended-balanced form by exploiting the standard balancing
transformation [10].

Lemma 3 Let there exist symmetric matrices S > 0, Q > 0, Qd > 0 and Q̄ > 0,
and a scalar αo satisfying (4), and symmetric matrices R > 0, P > 0, Pd > 0 and
P̄ > 0, and a scalar αc satisfying (7). Then, there exists a coordinate transformation
x(t) = T z(t), with T ∈ R

n×n, such that the realization in the new coordinates is
extended balanced.

An interesting feature of the presented model order reduction is that it guarantees
the preservation of stability properties, as stated in the following theorem.

Theorem 1 Let the system (1), which is asymptotically stable for zero input, be in an
extended-balanced realization and consider the reduced-order system (12) obtained
by truncation for k ≥ 1. Then, the reduced-order system Ω̂ is asymptotically stable
for zero input.

Proof As the system (1) is an extended-balanced realization, there exist a diagonal
matrix S > 0, and matrices Q > 0, Qd > 0 and Q̄ > 0, and a scalar αo such that (4)
holds. Thus, for any full-column rank matrix Ψ of appropriate dimensions it holds
that

Ψ T MoΨ < 0 (14)

with Mo as in (4). Since S is diagonal (recall Definition 3), we can write it in a block-
diagonal form as S = blkdiag{S1, S2}, where S1 ∈ R

k×k corresponds to the reduced
model Ω̂ and S2 to the truncated dynamics. Now, we choose Ψ = blkdiag{ψ,ψ,ψ},
with ψ = [Ik 0k×(n−k)]T . With this choice of Ψ and exploiting the block-diagonal
structure of S, (14) implies that
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Ψ T MoΨ =
⎡

⎢
⎣

AT11S1 + S1A11 + Qd,11 − Q̄11 ∗ ∗
ATd,11S1 + Q̄11 −Qd,11 − Q̄11 ∗

Q11 − S1 + αoS1A11 αoS1Ad,11 −2αoS1 + τ2 Q̄11

⎤

⎥
⎦ < 0, (15)

where Q11 > 0, Qd,11 > 0, Q̄11 > 0 are the upper left k × k blocks of Q > 0, Qd >
0 and Q̄ > 0, respectively.Now, using results from [11,Chapter 3], it is easily verified
that (15) is a sufficient condition for the asymptotic stability of the reduced-order
system for all time delays in the interval [0, τ ]. It should be mentioned that one may
use the inequality (7) to prove this theorem in a similar way. �

The availability of an a-priori computable error bound is an appealing property of the
presented model order reduction technique. The next theorem presents this property.

Theorem 2 Let the asymptotically stable system Ω as in (1) be in an extended-
balanced realization, as defined in Definition 3, and consider the reduced-order sys-
tem Ω̂ , as in (12), obtained by truncation for k = Σr

i=1mi for some r > 0. Moreover,
let αo = αc = α. Then, for any common input function u ∈ L2 ∩ L∞([0, T ],Rm)

and initial conditions ϕ = 0 and ϕ̂ = 0 for (1) and (12), respectively,

∫ T

0

∣
∣y(t) − ŷ(t)

∣
∣2 dt ≤ ε2

∫ T

0
|u(t)|2 dt,

for all T ≥ 0 and where the error bound ε is given as

ε = 2
q∑

i=r+1

σi , (16)

with σi as in (13).

Before presenting a proof for this theorem, we give a technical lemma which can
be proved based on results in [9].

Lemma 4 Consider a system of the form (1). If xt0 ∈ Wn at t0 ∈ R≥0 and u ∈
L∞([t0, t1],Rm) for t1 ≥ t0, then xt ∈ Wn for all t ∈ [t0, t1].
Now, we prove Theorem 2.

Proof To prove this theorem, we take a one-step reduction approach. To this end, we
first take a reduced-order system of the form (12) which is obtained by truncating the
states corresponding to the final extended singular value σq , leading to a reduced-
order model with k = n − mq . Next, we define auxiliary states

z(t) :=
[
x1(t) − ζ(t)

x2(t)

]

, w(t) :=
[
x1(t) + ζ(t)

x2(t)

]

. (17)

Using (1) and (12) for zero initial conditions, the definitions in (17) lead to the
dynamics
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ż(t) = Az(t) + Adz(t − τ ) + B̄ū(t),

δy(t) = Cz(t) + Cdz(t − τ ),
(18)

and
ẇ(t) = Aw(t) + Adw(t − τ ) + 2Bu(t) − B̄ū(t), (19)

where ūT (t) = [ ζT (t) ζT (t − τ ) uT (t) ], B̄T = [ 0 B̄T
2 ],with B̄2 = [ A21 Ad,21 B2 ],

and δy(t) = y(t) − ŷ(t) is the output of the error system. Now, based on the auxil-
iary dynamics and the observability and controllability functionals in (5) and (8), a
functional is introduced as

V (zt , wt , żt , ẇt ) = Eo(zt , żt ) + σ2
q Ec(wt , ẇt ), (20)

which is well defined as z, w ∈ Wn (u is assumed to be piecewise continuous and
bounded) due to Lemma 4. Similar to the proof of Lemma 1 in [24], it can be
shown that the time-derivative of V along the trajectories of (18) and (19) is upper
bounded by

V̇ (zt , wt , żt , ẇt ) ≤ ξTz (t)M̄oξz(t) + σ2
qξ

T
w(t)M̄cξw(t) − |δy(t)|2

+ (
2σq

)2|u(t)|2 + 2
(
zT (t) + αoż

T (t)
)
SB̄ū(t)

− 2σ2
q

(
wT (t) + αcẇ

T (t)
)
R−1 B̄ū(t),

(21)

where M̄o is obtained by applying a Schur complement to Mo defined in (4) and

M̄c := blkdiag{R, R, R, Im}−T Mcblkdiag{R, R, R, Im}−1,

with Mc and R as in (7), and

ξTz (t) := [ zT (t) zT (t − τ ) żT (t) ],
ξTw(t) := [wT (t) wT (t − τ ) ẇT (t) uT (t) ].

Given that M̄o < 0 and M̄c < 0 due to (4) and (7), (21) further implies that

V̇ (zt , wt , żt , ẇt ) ≤ − |δy(t)|2 + (
2σq

)2|u(t)|2 + 2
(
zT (t) + αoż

T (t)
)
SB̄ū(t)

− 2σ2
q

(
wT (t) + αcẇ

T (t)
)
R−1 B̄ū(t).

(22)
Also, recalling that S and R have diagonal structures due to the extended-balanced
form of the high-order system (see Definition 3), the time-derivative of V in (22)
satisfies

V̇ (zt , wt , żt , ẇt ) ≤ −|δy(t)|2 + (
2σq

)2|u(t)|2
+ 2

(
zT2 (t) + αoż

T
2 (t)

)
S2 B̄2ū(t) − 2σ2

q

(
wT

2 (t) + αcẇ
T
2 (t)

)
R−1
2 B̄2ū(t),

(23)
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where S2 and R2 are the lower right mq × mq blocks of S and R, respectively.
Next, using the facts that S2 − σ2

q R
−1
2 = 0, w2 = z2 = x2, for αo = αc = α, we

obtain
V̇ (zt , wt , żt , ẇt ) ≤ −|δy(t)|2 + (2σq)

2|u(t)|2,
. Now, integrating the above over the interval [0, T ] gives

V (zT , wT , żT , ẇT ) − V (z0, w0, ż0, ẇ0) ≤ −
∫ T

0
|δy(t)|2 dt + (

2σq
)2
∫ T

0
|u(t)|2 dt.

Theasymptotic stability of the original system implies that 0 ≤ V (zT , wT , żT , ẇT ) <

∞. Moreover, V (z0, w0, ż0, ẇ0) = 0, because of the zero initial condition. Therefore
the left-hand side of the above inequality exists and it is positive for all T ≥ 0, thus

∫ T

0

∣
∣y(t) − ŷ(t)

∣
∣2dt ≤ (

2σq
)2
∫ T

0
|u(t)|2 dt.

As a result, the one-step reduction error bound is

ε = 2σq . (24)

Next, following an analysis similar to the one presented in [13], which is based on
the triangle inequality, it can be shown that extending the above to multiple one-step
reductions leads to (16). �

The next section studies the feasibility of the matrix inequalities (4) and (7).

5 Feasibility of the Matrix Inequalities

In this section, we discuss feasibility conditions for the proposed model order reduc-
tion method. As this method relies on the matrix inequalities (4) and (7), we give
easy-to-check conditions (both necessary and sufficient) for existence of solutions
to these matrix inequalities for a common scalar αc = αo = α, as required for the
application of Theorem 2.

First, the following lemma shows that the feasibility of the inequalities is always
guaranteed for sufficiently small delays provided A + Ad is Hurwitz.

Lemma 5 Let (1) be asymptotically stable for τ = 0. Then, there exists a positive
scalar ε for which the matrix inequalities in (4) and (7) are feasible for all τ ∈ [0, ε).
Proof The fact that the system (1) is asymptotically stable for τ = 0 implies that
Ac := A + Ad is Hurwitz. Therefore, there exists a matrix Q = QT > 0 such that

AT
c Q + QAc + CT

c Cc < 0, (25)
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whereCc = C + Cd . The strict inequality in (25) guarantees the existence of a (large)
ᾱ > 0 such that

QAc + AT
c Q + CT

c Cc + (
QAd − Qd + CT

c Cd
)

× (
ᾱQ + Qd − CT

d Cd
)−1(

QAd − Qd + CT
c Cd

)T
< 0.

(26)

Following a Schur complement, this inequality implies that

[
QAc + AT

c Q + CT
c Cc QAd − Qd + CT

c Cd

∗ −ᾱQ − Qd + CT
d Cd

]

+ τ 2ᾱ

[
AT
c

AT
d

]

Q
[
Ac Ad

]
< 0

(27)
for all τ ∈ [0, εo) provided εo is sufficiently small. It can be shown that this inequality
is equivalent to (4) for S = Q,α = τ 2ᾱ and Q̄ = ᾱQ. Thus, inequality (4) also holds
for all τ ∈ [0, εo). A similar argument can be performed about the feasibility of (7),
i.e., we can show that there exists a sufficiently small εc such that (7) becomes feasible
for all τ ∈ [0, εc). The definition ε := min{εo, εc} completes the proof of Lemma 5.
�

Next, we present necessary conditions for the feasibility of (4) and (7) in terms
of upper bounds on the delay τ .

Lemma 6 Let Am := A − Ad be a non-Hurwitz matrix and λ̄m be an eigenvalue of
Am which has the largest modulus in the right-half complex plane. Then, a necessary
condition for (4) and (7) to hold is that

τ <
2

|λ̄m | . (28)

Lemma 7 Let A in (1) be a non-Hurwitz matrix and λ̄ be an eigenvalue of A which
has the largest modulus in the closed right-half complex plane. Then, a necessary
condition for (4) and (7) to hold is that

τ <

√
2

|λ̄|2 + σ2
d

, (29)

where σd is the smallest singular value of Ad .

Proof We present proofs for Lemmas 6 and 7 jointly, and based only on (4). First,
we eliminate the slack variables from (4) by multiplying it from the left and right by

[
In 0 AT 0
0 In AT

d 0

]

, and

[
In 0 AT 0
0 In AT

d 0

]T
,

respectively. This procedure results in
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[
QA + AT Q − Q̄ + Qd + τ 2AT Q̄A QAd + Q̄ + τ 2AT Q̄Ad

∗ −Q̄ − Qd + τ 2AT
d Q̄ Ad

]

< 0. (30)

This inequality further implies that

[
AT
mQ + QAm − 4Q̄ + τ 2AT

m Q̄Am QAd + 2Q̄ + Qd + τ 2AT
m Q̄Ad

∗ −Q̄ − Qd + τ 2AT
d Q̄ Ad

]

< 0.

(31)
Namely, this can be shown by the left and right multiplication of (30) by

[
In −In
0 In

]

, and

[
In −In
0 In

]T
,

respectively. Considering its upper left block, the inequality in (31) now implies that

AT
mQ + QAm − 4Q̄ + τ 2AT

m Q̄Am < 0.

Let v be an eigenvector of Am for the eigenvalue λm = μm + jωm . Then, left and
right multiplication of this inequality by vH and v implies

2μmvH Qv + (τ 2|λm |2 − 4)vH Q̄v < 0. (32)

Now, we consider only eigenvalues in the right-half complex plane. Namely, if μm ≥
0, the satisfaction of (32) requires that τ < 2/|λm | and Q̄ > 0. This result establishes
(28).

Next, we prove Lemma 7. The feasibility of (30) implies that

AT Q + QA − Q̄ + Qd + τ 2AT Q̄A <0, (33)

−Q̄ − Qd + τ 2AT
d Q̄ Ad <0, (34)

respectively, as follows from considering the block-diagonal elements. From (34),
we obtain that −Q̄ + τ 2AT

d Q̄ Ad < Qd . Using this result in (33), we conclude the
necessity of the following inequality:

AT Q + QA − 2Q̄ + τ 2AT Q̄A + τ 2AT
d Q̄ Ad < 0. (35)

Now, if we take v as an eigenvector of A corresponding to an eigenvalue λ which
lies in the closed right-half complex plane, (35) implies that

2Re(λ)vH Qv + (
τ 2|λ|2 + τ 2σ2

d − 2
)
vH Q̄v < 0.

Since Re(λ) ≥ 0, this relation cannot be feasible without the satisfaction of (29). �
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Remark 2 We note that the conditions provided by Lemmas 6 and 7 are only nec-
essary conditions and not sufficient, i.e., they imply the infeasibility of the matrix
inequalities if those conditions do not hold.

Remark 3 The condition of Lemmas 6 and 7 are more beneficial and practical when
the model order reduction problem of feedback control systems with delays in the
feedback channel is concerned, especially for systemswith an unstable plant, leading
to a non-Hurwitz A. In these system, the matrix A − Ad is often non-Hurwitz.

Next, we present a result that is helpful in solving the matrix inequalities. Namely,
given the couplings among α and the slack matrices in (4) and (7) (assuming that
αo = αc = α, in view of Theorem 2), these inequalities are nonlinear. To still enable
solving these inequalities by using existing techniques for linear matrix inequalities,
we perform a line search overα. For the line search to becomemore efficient, bounds
on the search space for α should be provided. The following lemma provides such
lower bound.

Lemma 8 Consider A, and define Am := A − Ad and let λ and λm be arbitrary
eigenvalues of A and Am, respectively. Then, a necessary condition for the matrix
inequalities (4) and (7) to hold is that

α > max{τ 2Re(λ),
τ 2

4
Re(λm)}. (36)

Proof Here, we use only (4) to derive this inequality. The term (Mo)33 (the (3,3)
component of Mo) implies that

Q̄ <
2α

τ 2
S, (37)

which follows from the fact that (Mo)33 is a diagonal element. Using this result along
with the fact that (Mo)11 < 0, we can conclude that

SA + AT S + Qd − 2α

τ 2
S < 0. (38)

Let Av = λv, i.e., v is an eigenvector corresponding to the eigenvalue λ of A. Then,
left and right multiplication of the above inequality with v and vH , respectively,
implies that

vH SAv + vH AT Sv − 2α

τ 2
vH Sv + vH Qdv < 0.

This, in turn, leads to (

2Re(λ) − 2α

τ 2

)

vH Sv < 0.

Since S > 0, this inequality holds only for α > Re(λ)τ 2. Following a similar pro-
cedure, it can be shown that the satisfaction of (4) also requires α > Re(λm)τ 2/4,
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with λm an eigenvalue of Am . The fact that these hold for all eigenvalues of A and
Am leads to (36). �

Remark 4 Clearly, the lower bound in (36) becomes zero when A and A − Ad are
both Hurwitz, given the fact that α < 0 is not allowed because of the fact that (Mo)33
must be negative definite.

6 Example: Delay Neural Fields

This section presents a numerical example. The involved matrix inequalities are
solved using the software CVX [14].

In this example, we study the application of the extended model-reduction tech-
nique to a model which describes the spatio-temporal interactions between neural
populations in the brain. For comparison, we have also applied the position bal-
ancing technique in [16] to this model. Contrary to the bounds on the energy func-
tions used in this chapter, position balancing relies on matrices that characterize the
exact observability and energy functionals for a restricted class of functionals. These
matrices represent the solution to a set of differential equations which are solved
approximately [17].

Consider the delayed-neural fields model (see [6] for a survey) in the form of
integro-differential equations:

li ẋi (r, t) = −xi (r, t) + si

⎛

⎝
n∑

j=1

∫

R
wi j (r, r

′)x j (r
′, t − τi j (r, r

′)) dr ′ + Ii (r, t)

⎞

⎠ ,

(39)
for i = 1, ..., q, where q is the number of considered neuronal populations. The
compact setR ⊂ Rdescribes the spatial domain containing the neuronal populations;
it is assumed here to be uni-dimensional for simplicity.Moreover, r ∈ R is the spatial
variable and xi (r, t) represents the neuronal activity of population i at time t ≥ 0
and position r ∈ R; wi j : R × R → R is a bounded function such that wi j (r, r ′)
describes the synaptic strength between location r ′ in population j and location
r in population i . The constant li > 0 is the time decay constant of population i ;
Ii : R × R → R denotes the exogenous input to population i ; τi j : R × R → [0, τ̄ ],
τ̄ ≥ 0, is the self (for i = j) or mutual (for i 
= j) time delay resulting from the non-
instantaneous communication between neurons, due to the finite velocity of signals
along the axons. The continuously differentiable function si : R → R describes the
excitability of population i .

To be able to rewrite (39) in the form (1), we first assume that the self time delays
are zero (τi i = 0) and the mutual delays are all fixed and equal, i.e., τi j (r, r ′) = τ
for all i 
= j and all r, r ′ ∈ R. With this assumption, and after linearizing the system
around an operating profile x∗

i (r) for the input Ii (r, t) = I ∗
i (r) (see [7] for details),

the approximate model has the form
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L ˙̃x(r, t) = −x̃(r, t) + S
∫

R
(
W1(r, r

′)x̃(r ′, t) + W2(r, r
′)x̃(r ′, t − τ )

)
dr ′ + S Ĩ (r, t),

(40)
where x̃ T := [x̃1, ..., x̃q ] with x̃i = xi − x∗

i , Ĩ
T := [ Ĩ1, ..., Ĩq ] with Ĩi = Ii − I ∗

i ,
L = diag{l1, ..., lq} andW1 = diag{wi i }, for i = 1, ..., q, andW2 = [wi j ] − W1, for
all i, j = 1, ..., q. Finally, S = diag{s̄1, ..., s̄q}, where s̄i results from the linearization
of the function si .

In the absence of delays (τi j (r, r ′) = 0), an approach was proposed in [30] to
analytically reduce the dynamics of the infinite-dimensional dynamics (39) to a
finite-dimensional differential equation by assuming that the kernels wi j can be
decomposed on a finite basis of spatial functions. Following this idea, we assume that
Wi (r, r ′), i = 1, 2, is a so-called Pincherle-Goursat Kernel, i.e., there exist Xi (r) ∈
R

q×Ni and Yi (r) ∈ R
q×Ni , Ni ∈ N, such that

Wi (r, r
′) = Xi (r)Y

T
i (r ′). (41)

We note that Xi (r) contains the basis vectors of Wi . We further assume that there
exists ĩ(t) ∈ R

N1+N2 , for which the decomposition Ĩ (r, t) = X (r)ĩ(t), with X =
[X1, X2], holds. Given the structure of Wi in (41) and of Ĩ , we approximate the
solution x̃ as x̃(r, t) = X̃(r)v(t), where

X̃(r) = [
X1(r) X2(r) Xe(r)

]
(42)

can be regarded as a reduction basis (albeit depending on the spatial variable). In
(42), Xe(r) ∈ R

q×Ne denotes a potential enrichment of this reduction basis over the
elements X1 and X2, which result from the structure of Wi . Moreover, v(t) ∈ R

n ,
n = N1 + N2 + Ne, is an unknown vector the driving dynamics which is yet to be
obtained.

Remark 5 We note that the structure of this approximation separates the effect of
the spatial and temporal variables.

Then, the substitution of (41) and the approximation (42) into (40) leads to

L X̃(r)v̇(t) = −X̃(r)v(t) + SX1(r)K1v(t) + SX2(r)K2v(t − τ ) + S X̃(r)ĩ(t),
(43)

where Ki = ∫
R Y T

i (r ′)X̃(r ′) dr ′, i = 1, 2. This equation holds for every r , so we can
multiply both sides of (43) by X̃ T (r) from the left. Then, integration of both sides
of the resulting equation over R leads to

Ml v̇(t) = (M1K1 − M)v(t) + M2K2v(t − τ ) + Msĩ(t),

where
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Table 1 Parameters of the neural field

Parameter Value Parameter Value

L diag{10, 20} w11 0

S diag{20, 20} w12 −30 exp

(

−
∣
∣r−r ′−1.32×10−2

∣
∣2

0.06

)

R [0, 2.5] ∪ [12.5, 15] × 10−3 w21 38 exp

(

−
∣
∣r−r ′−1.25×10−3

∣
∣2

0.06

)

τ 0.03 sec w22 −2.55 exp

(

−|r−r ′|2
0.03

)

Ml =
∫

R
X̃ T (r)L X̃(r)dr, M1 =

∫

R
X̃ T (r)SX1(r)dr , M2 =

∫

R
X̃ T (r)SX2(r)dr ,

Ms =
∫

R
X̃ T (r)SX (r)dr, M =

∫

R
X̃ T (r)X̃(r)dr .

(44)
Clearly, if Ml is invertible, this equation can be written in the form (1) by defining

A = M−1
l (M1K1 − M) , Ad = M−1

l M2K2, B = M−1
l Ms F,

C =
∫

R
C̄(r)X̃(r) dr, Cd = 0, D = 0.

Here, we have considered ĩ(t) = Fu(t) with F ∈ R
(N1+N2)×m and u(t) ∈ R

m as the
input. We note that F is defined such that the elements of u are independent. More-
over, C̄(r) ∈ R

p is the distributed output matrix. Namely, we consider outputs of
the form y(t) = ∫

R C̄(r)x̃(r, t) dr . Given the complexity of wi j and the enrichment
basis Xe, the dimension of X̃(r) and, subsequently, the order n of the time delay
system describing the dynamics of v(t) can be large.

In this example, we consider a neural field with the parameters reported in Table 1.
The input is given by Ĩ1(r, t) = 0 and Ĩ2(r, t) = (1 + r) exp(−r2/0.03)u(t) and the
output is characterized by C̄(r) = [1, 0.1]. After computing X1(r) and X2(r), where
a truncated Taylor series expansion has been exploited (for details, see Appendix
A) and considering Xe = 0, we obtain a system of the form (1) of order n = 9, and
FT = [1, 1, 0, ..., 0]. The frequency response function of this system between the
input u and the output y is represented by Gv( jω).

The corresponding singular values resulting from the application of the extended
model order reduction technique in comparison to those from the position balancing
technique are plotted in Fig. 1. In the same figure, we have reported the reduction
error ε, for the extended technique, as a function of the reduction order k. It is
observed that the singular values from the position balancing technique are smaller
than those from the extended method. However, we note that the position balancing
technique does not provide an a-priori error bound, neither does it guarantee the
stability of the reduced system. We observe a quick decay in the singular values
from the extended technique after k = 2. Thus, we may approximate the dynamics
of v(t) by a model, with the frequency response function represented by Ĝv( jω), of
order k = 2 and expect an accurate model approximation. In Fig. 2, the frequency
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Fig. 1 The singular values σk and the error bound ε as a function of the reduction order k
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Fig. 2 Comparison between the transfer functions of the original, reduced and error systems in the
neural field example
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response function G( jω) of the original (linearized) model in (40) is compared to
Gv( jω) and Ĝv( jω). In the same figure, we have presented transfer functions of the
error systems G( jω) − Gv( jω) and Gv( jω) − Ĝv( jω), of both techniques. From
this figure, we can clearly observe the high accuracy of the approximation from the
extended technique. The approximate model from the position balancing method
is slightly more accurate. We note that G( jω) is obtained by performing a spatial
discretization over a grid of 200 cells, and the same grid has been used to numerically
compute the matrices in (44). The error between G( jω) and Gv( jω) stems from the
limited resolution of the discretization and also the Taylor series expansion.

Remark 6 In addition to slightly outperforming the presented model-reduction
technique in terms of accuracy, position balancing relies on the computation of delay
Lyapunov equations which only require asymptotic stability of the model (instead of
solutions to matrix inequalities as in (4) and (7)). Nonetheless, we stress that posi-
tion balancing does neither provide guarantees on stability preservation nor gives an
a-priori bound on the reduction error.

We stress that the assumption made here requires a strong separation between spatial
and temporal evolution of (40) as well as a spatially uniform delays. Further work
is needed to relax these requirements.

7 Application to Parameterized Model Reduction

An extended model-reduction procedure as presented in the previous sections is
particularly suited for system-theoretic applications such as structured and parame-
terized model reduction. In this chapter, we focus on the latter application and refer
to [24] for a detailed discussion on the former.

Namely, a large class of parameterized time delay systems can be written in the
form of time delay systems with a polytopic parameterization of the form

Ωδ :

⎧
⎪⎨

⎪⎩

ẋ(t) = Aδx(t) + Adδx(t − τ ) + Bδu(t),

y(t) = Cδx(t) + Cdδx(t − τ ) + Dδu(t),

x0 = ϕ.

(45)

where the subscript δ denotes a polytopic parameterization such that a parameterized
matrix Mδ is defined as Mδ := ∑d

i=1 δi Mi , where Mi , i = 1, ..., d, is a given matrix
and δ ∈ Δ with Δ = {δ ∈ R

d |δi ≥ 0,
∑d

i=1 δi = 1}. It is assumed that for all δ ∈ Δ,
this system has the same stability properties as the system in (1).

Although the methods in [23] and [4] can be generalized to enable the reduction
of this type of systems, those can result in low-quality model approximations and
conservative error bounds, if not infeasible. On the other hand, the extended model
reduction improves both the feasibility and the accuracy of model approximation
for this type of systems. This is due to the fact that in an extended model-reduction
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method, we can assign a polytopic structure to themain decision variables to increase
the degrees of freedom in the model-reduction procedure. In conventional methods,
such as those in [23] and [4], the main decision variables Q and P are directly used in
computing the balancing transformation, and assigning a polytopic structure to those
complicates the reduction procedure (see [31], for parameterized model reduction of
delay-free systems to get an idea about complexities that can arise when assigning
parametric structures to P and Q).

In the extended technique, for the parameterized system in (45), the inequality
(4) is adapted to the following form:

Moδ =

⎡

⎢
⎢
⎣

SAδ + AT
δ S + Qdδ − Q̄δ Q̄δ + SAdδ Qδ − S + αo AT

δ S CT
δ

∗ −Qdδ − Q̄δ αo AT
dδS CT

dδ

∗ ∗ −2αoS + τ 2 Q̄δ 0
∗ ∗ ∗ −Ip

⎤

⎥
⎥
⎦ < 0.

(46)

By virtue of the properties of the polytopic uncertainty/parameterization, it can be
shown that Moδ = ∑d

i=1 δi Moi (note that S = ∑d
i=1 δi S) with

Moi =

⎡

⎢
⎢
⎣

SAi + ATi S + Qdi − Q̄i Q̄i + SAdi Qi − S + αo ATi S CT
i

∗ −Qdi − Q̄i αo ATdi S CT
di

∗ ∗ −2αoS + τ2 Q̄i 0
∗ ∗ ∗ −Ip

⎤

⎥
⎥
⎦ , i = 1, ..., d.

(47)

This implies that if there exist matrices Qi > 0, Q̄i > 0, Qdi > 0, i = 1, ..., d, and
S > 0, and a scalar αo such that Moi < 0 for i = 1, ..., d, then Moδ < 0. This result
together with a similarly adapted inequality Mcδ < 0 (an adaption to the inequality
(7)) provides matrices S and R required for reducing (45) by pursuing the same
procedure as in Sect. 4.

Remark 7 It is noted that in this parameterized model order reduction technique,
S and αo must satisfy d (the number of parameters) inequalities of the form (47)
simultaneously.

Remark 8 The error bound obtained from the parameterized technique is robust
in the sense that it holds for all δ ∈ Δ. Moreover, it can be shown that the reduced
system is asymptotically stable and it has the same parameterization as the original
one.

7.1 Example

Next, we present an example. In this example, we consider a wave equation which
has a damping factor in the forward direction. The wave equation, together with the
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considered boundary conditions and the initial condition, is given by

∂

∂t
q1(t, ξ) + c

∂

∂x
q1(t, ξ) = 0.025 f q1(t, ξ), (48)

∂

∂t
q2(t, ξ) − c

∂

∂x
q2(t, ξ) = 0, (49)

q1(t, 0) = β1q2(t, 0) + u(t), (50)

q2(t, l) = β2q1(t, l), (51)

q1(0, ξ) = 0, (52)

q2(0, ξ) = 0, (53)

where t ≥ 0 and ξ ∈ [0, l] are the temporal and spatial variables, respectively. Here,
l = 1000 m is the length of the spatial domain. Moreover, qi (t, ξ) ∈ R, i = 1, 2, are
the distributed variables, c = 1000m/s is the speed of the travelingwave components,
and f is a damping factor. We take f to be uncertain, but we assume that the upper
and lower bounds of it are known as f ∈ [0.5, 10.5].Moreover,β1 = 1 andβ2 = 0.7,
and u(t) is the input. The output is given by

y(t) = q1(t, l). (54)

From the literature, it is know that this system can bemodeled by delay-difference
equations [8]. However, in this study, for the sake of illustration, we discretize the
first PDE describing q1 (48) to obtain an approximative model of it in terms of ODEs,
whereas we write the other PDE (49) in terms of an equivalent delay equation, that
is, we can show that q2(t, 0) = q2(t − τ , l), with τ = l/c.

To perform the discretization, the spatial domain of the first PDE is discretized
into n cells of length Δξ. In the discretization scheme, Qi (t), for i = 1, 2, . . . , n,
approximates the spatial average of q1(t, ξ) over the i th cell and satisfies

Q̇i (t) = γ1Qi−1(t) − γ2Qi (t), i = 1, 2, . . . , n (55)

with γ1 = c/Δξ and γ2 = c/Δξ − 0.025 f . In this formulation, we approximate
Q0(t) ≈ q1(t, 0). Following the fact that q2(t, 0) = q2(t − τ , l), and by using the
boundary conditions (50) and (51), we can further write Q0(t) ≈ β1β2Qn(t − τ ) +
u(t), where the approximation q1(t, l) ≈ Qn(t) has been used. Finally, using (55)
together with these relations and the approximation y(t) ≈ Qn(t), we obtain amodel
of the form (1) with C = [0, 0, · · · , 1], Cd = 0 and

A =

⎡

⎢
⎢
⎢
⎢
⎣

−γ2 0 0

γ1
. . .

. . .

. . .
. . . 0

0 γ1 −γ2

⎤

⎥
⎥
⎥
⎥
⎦

, Ad =
[
0 γ1β1β2

0 0

]

, B =
[

γ1
0

]

.
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Fig. 3 The singular values σk and the error bound ε as a function of the reduction order k, for the
robust model reduction

We can then write this model as a time delay system with polytopic uncertainties,
due to uncertainties in f , in the form of (45) with d = 2. The order of this model,
determined by the resolution of the discretization, is chosen to be n = 25. The fre-
quency response function of the discretized model between input u and output y is
denoted by G( jω).

The presented robust/parameterized model order reduction method has been
applied to this model. Figure 3 presents the resulting extended singular values σi

in comparison to the error bound ε as a function of the order k of the reduced system.
Based on this figure, we choose k = 4. Note that σi and ε are independent of the
uncertain variable. Figure 4 reports the frequency response function of the original
model G( jω) of order n = 25 in comparison to the reduced-order model Ĝ( jω) of
order k = 4 for the extremal values f = 0.5 and f = 10.5. We observe that for both
extremal values of f , themodel-reduction results are quite accurate.We also observe,
in the subfigure on the right-hand side of Fig. 4, that in both cases, theH∞-norm of
the error system G( jω) − Ĝ( jω) is smaller than the a-priori obtained error bound,
as expected.
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Fig. 4 (Left) comparison between the frequency response function of the original system G and
the reduced-order one Ĝ, and (right) error bound in comparison to the frequency response function
of the error system G − Ĝ for the extremal values of the uncertain parameter f

8 Conclusions

In this chapter, by introducing slack variables in the computation of bounds on the
energy functionals, we have obtained an extended model-reduction technique for
linear time delay systems. This technique exhibits more flexibility compared to its
existing counterparts, making it interesting for purposes such as parameterized and
structured model reduction. Moreover, the proposed technique preserves stability
properties and also provides a computable error bound. We have numerically eval-
uated the performance of the proposed method by applying it to a model of neural
fields in the brain and to a model with polytopic uncertainties.

Appendix A. Derivation of X (r)

We consider wi j (r, r ′), for i, j = 1, 2. This function can be written in the following
general form

Wi j (r, r
′) = ki j exp

(

−
∣
∣r − r ′ − μi j

∣
∣2

2σi j

)

= ki j exp

(

− |r |2
2σi j

)

exp

(

−
∣
∣r ′ + μi j

∣
∣2

2σi j

)

exp

(
r(r ′ + μi j )

σi j

)
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for some constants ki j ,σi j and μi j . We wish to decompose wi j (r, r ′) into a multi-
plication of only-r and only-r ′ dependent functions. However, the term exp(r(r ′ +
μi j )/σi j ) cannot be directly decomposed into such a desirable form. To cope with
this issue, we use the Taylor series approximation of order ρ of this term to obtain

exp

(
r(r ′ + μi j )

σi j

)

≈ [
1 r r2 ... rρ

] [
1 (r ′+μi j )

σi j

(r ′+μi j )
2

2σ2
i j

...
(r ′+μi j )

ρ

ρ!σρ
i j

]T
,

where ρ is the order of approximation. With this approximation, we can now write

wi j (r, r
′) ≈ fi j (r)g

T
i j (r

′)

where
fi j (r) = [

fi j,0(r) · · · fi j,ρ(r)
]
,

gi j (r) = [
gi j,0(r) · · · gi j,ρ(r)

]

with

fi j,m(r) = rm exp

(

− |r |2
2σi j

)

,

gi j,m(r ′) = ki j

(
r ′ + μi j

)m

m!σm
i j

exp

(

−
∣
∣r ′ + μi j

∣
∣2

2σi j

)

, m = 0, 2, ..., ρ.

With this representation of w(r, r ′), we may choose

X1 =
[

0
f22

]

, X2 =
[
f12 0
0 f21

]

,

Y1 =
[

0
g22

]

, Y2 =
[

0 g21
g12 0

]

.

With this choice of X1 and X2, we obtain N1 = ρ and N2 = 2ρ. We also note that
this choice of X1 and X2 leads to w11 = 0.
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