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a b s t r a c t

In this paper we present a procedure to find all limit sets near bifurcating equilibria in a
class of hybrid systems described by continuous, piecewise smooth differential equations.
For this purpose, the dynamics near the bifurcating equilibrium is locally approximated as a
piecewise affine systemsdefined on a conic partition of the plane. To guarantee that all limit
sets are identified, conditions for the existence or absence of limit cycles are presented.
Combining these results with the study of return maps, a procedure is presented for a
local bifurcation analysis of bifurcating equilibria in continuous, piecewise smooth systems.
With this procedure, all limit sets that are created or destroyed by the bifurcation are
identified in a computationally feasible manner.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, local bifurcations are studied for a class of hybrid systems described by continuous, piecewise smooth
differential equations. This type of system models can be used to describe mechanical, electrical, biological or economical
systems; see e.g. [1–4]. These systems can exhibit the so-called discontinuity-induced bifurcations; see [1,5]. In this paper,
we study discontinuity-induced bifurcations of equilibria in planar systems. We present a procedure to find all limit sets,
which are created or destroyed by the bifurcation of an equilibrium point. Using this procedure, all these limit sets are
identified in a computationally feasible manner.
The state space of piecewise smooth systems can be partitioned in a number of domains where the dynamics is smooth,

and their boundaries, where the dynamics is nonsmooth. Discontinuity-induced bifurcations are topological changes in
behaviour when system parameters are varied around the values where a limit set collides with such a boundary. Although
the effect of such bifurcations is observed both in simulations and experiments, [1,5], no complete theory is available to
describe these bifurcations.
In planar autonomous systems, limit sets can be equilibria, periodic orbits (including limit cycles), homoclinic or

heteroclinic orbits. Discontinuity-induced bifurcations of periodic orbits and homoclinic or heteroclinic orbits can be studied
by taking a Poincaré section transversal to these orbits and analysing the resulting return map. In this manner, bifurcations
of limit cycles in piecewise smooth dynamical systems are rather well understood; cf. [5,6].
Several studies exist in which bifurcations of equilibria are investigated, where at the bifurcation point the equilibrium

is positioned on a single, smooth boundary; see [5,7,8]. However, no theoretical result is available when this equilibrium
is positioned on multiple boundaries, or when the boundary is a locally nonsmooth curve in state space. Existence of such
bifurcations was recognized in numerical simulations of exemplary systems in [7,9].
The main contribution of this paper is a procedure for a class of planar hybrid systems, namely systems described

by continuous, piecewise smooth differential equations, to find all limit sets that can be created or destroyed during a
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bifurcation of an equilibrium. Using this procedure, all limit sets that are created or destroyed during a bifurcation are
identified in a computationally feasible manner.
To analyse the dynamics near the bifurcation point, we construct a local approximation of the dynamics in a

neighbourhood of the bifurcating equilibrium, such that we obtain an approximate system, where the dynamics is affine
with respect to the bifurcation parameter in each smooth domain, that is a cone. Furthermore, the dynamics is dependent
on the bifurcation parameter in the affine term. These systems are called conewise affine systems, and also represent a class
of hybrid systems. We derive criteria under which the limit set of the nonsmooth systems are accurately described by the
approximated system.
To exclude closed orbits in certain regions of state space, the Bendixson Theorem and index theory are used. To obtain

all closed orbits in the remaining part of the state space, return maps are derived, whose Poincaré sections are chosen at
locations, determined by the investigation of specific trajectories. Fixed points of these returnmaps determine the existence,
location and stability of limit cycles or closed orbits.
We derive general conditions for the existence of a halfline in the conewise affine system, that cannot be traversed

by closed orbits. Using these conditions, one can guarantee that all limit sets can be found in a computationally feasible
manner with the given procedure. According to index theory, closed orbits, including limit cycles, should encircle at least
one equilibrium point. Derivation of all possible return maps for the trajectories that cross a line between the equilibria and
the halfline, mentioned above, will obtain all existing closed orbits. The domain of these return maps is bounded, such that
all fixed points can be detected efficiently with numerical methods.
Although the Poincaré–Bendixson theorem can be used to give sufficient conditions for the existence of limit cycles,

cf. [10], we will use a different approach to guarantee, that all limit cycles are identified.
This paper is organized as follows. In Section 2 some preliminary results are given, including the local approximation

of the piecewise smooth system by a conewise affine system. Subsequently, in Section 3 the stability of an equilibrium of
the resulting conewise affine system at the bifurcation point is investigated. In Section 4 the main theoretical results of this
paper are presented, together with the procedure to find all limit sets near the bifurcation point. Subsequently, in Section 5,
the effect of the used approximation is studied. The presented procedure is illustrated with examples in Section 6. Finally,
conclusions are formulated in Section 7.

2. Preliminaries

Throughout this paper, for the sake of brevity we will adopt the term nonsmooth systems to annotate the class of
continuous piecewise smooth systems. These systems can be described by the ordinary differential equation:

ẋ = F(x, ν), (1)
F(x, ν) = Fi(x, ν), x ∈ Di ⊂ R2,

where Di, i = 1, . . . , m̄, are open, non-overlapping domains such that ∪i∈{1,...,m̄} D̄i = R2, all functions Fi are smooth in
x for all x ∈ R2, and smooth in ν for all ν ∈ R, which is a single system parameter. Throughout this paper, let D̄ denote
the closure of an open set D . We assume that the domains Di, i = 1, . . . , m̄, are independent on the system parameter
ν. These domains are separated by the boundaries Cij betweenDi andDj. Note that the boundaries Cij can be nonsmooth
curves in R2. Let the domains Di, i = 1, . . . , m̄, and boundaries Cij be such that every finite line segment in R2 traverses
each boundary Cij a finite number of times. Similar to the approach given in [11], one can prove that F(x, ν) is Lipschitz
continuous in x.
In this paper, we adopt the following assumptions:

Assumption 1. At ν = 0, a single isolated equilibrium coincides with one or more boundaries Cij.

Without loss of generality, we will assume this equilibrium point is positioned at the origin for ν = 0.

Assumption 2. The derivative ∂F
∂ν

∣∣
(x,ν)=(0,0) 6= 0.

Under these assumptions, a local analysis of the dynamics around the equilibrium is constructed. Here, the origin of
the coordinate system is chosen such that the equilibrium for ν = 0 is positioned at the origin. We will make a local
approximation of system (1) that accurately represents the existence and stability of equilibria and limit cycles of the original
system, as we will show in Section 5. The boundaries on which the equilibrium is positioned are approximated by halflines
that coincide at the equilibrium. In this manner, the neighbourhood of the equilibrium can be partitioned by a number of
cones Si, i = 1, . . . ,m, separated by these halflines, where m ≤ m̄. We denote the boundaries such that the boundary
between Si and Sj is denoted as Σij. Possibly after renumbering the sets Di, i = 1, . . . , m̄, each cone Si, i = 1, . . .m, is a
local approximation of the setsDi. The smooth vector field Fi in each of the cones Si, i = 1, . . . ,m, can be approximated
by a linear differential equation ẋ = Aix, where Ai = ∂Fi

∂x

∣∣∣
(x,ν)=(0,0)

. When a Taylor approximation is used to approximate
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the effect on F(x, ν) of changes in the system parameter ν, an affine term ν ∂F
∂ν

∣∣
(x,ν)=(0,0) is obtained, such that the dynamics

is approximated by a conewise affine system, described by:

ẋ = f(x, µ), (2)
f(x, µ) = fi(x, µ) := Aix+ µb, x ∈ Si,

where all regions Si, i= 1, 2, . . . ,m, are cones coinciding at the origin, and we define µ = ν
∥∥∥ ∂F
∂ν

∣∣
(x,ν)=(0,0)

∥∥∥−1, such that
b := ∂F

∂µ

∣∣∣
(x,µ)=(0,0)

satisfies ‖b‖ = 1. Here, ‖ · ‖ denotes the Euclidian norm of a vector. The matrices Ai are such that the

function f(x, µ) is continuous. Choose the indices i of the open sets Si, i = 1, . . . ,m, such that the set {S1, . . . Sm} is ordered
in counter clockwise direction. LetΣij be the boundary between the cones Si and Sj and let {t12 . . . tm−1,m, tm1} be the set of
distinct unit vectors in R2 parallel to the boundariesΣ12 . . .Σm−1,m,Σm1, respectively. Define t01 := tm1 andΣ01 := Σm1,
such that each Si is bounded by Σi−1,i = {x ∈ R2|x = cti−1,i, c ∈ [0,∞)} and Σi,i+1 = {x ∈ R2|x = cti,i+1, c ∈ [0,∞)}.
With parameter µ = 0, the system is called conewise linear. Note that (2) is a subclass of the systems given in (1), which
implies that the conewise affine system satisfies the Lipschitz condition.
In this paper, the following definition of a cone is used, that is an adapted version of the definition given in [12].

Definition 1. Consider a region S ⊂ Rn. If x ∈ S implies cx ∈ S,∀c ∈ (0,∞) and S \ {0} is connected, then S is a cone.

Note that when the bifurcating equilibrium is positioned on a single boundaryΣij, that is nonsmooth at the origin, then the
conewise affine system contains one convex cone, and one nonconvex cone. To assess the validity of the approximation,
the relation between limit sets of the nonsmooth system (1) and the conewise affine approximation (2) will be discussed in
Section 5.
Similar to [13], we define visible eigenvectors.

Definition 2. Let ẋ = Aix+ µb be the dynamics on an open cone Si ⊂ R2, i = 1, . . . ,m. An eigenvector of Ai is visible if it
lies in S̄i.

Based on the index theory presented in [14], we can formulate the following theorem.

Theorem 1. Inside a closed orbit C of the planar dynamical system ẋ = f(x), where f : E → R2 is a Lipschitz continuous function
on E, at least one equilibrium point exists. If all equilibria inside C are hyperbolic nodes, saddles, or foci, then there must be an odd
number 2n+ 1 of equilibria, where n is an integer, such that n equilibria are saddles and n+ 1 equilibria are nodes or foci.

The proofs of this and subsequent results can be found in Appendix B.
Isolated closed orbits are limit cycles. According to the definition in [15], all closed orbits are limit sets. The following

extension of Bendixson’s Theorem is used.

Theorem 2 ([16]). Suppose E is a simply connected domain in R2 and f(x) is a Lipschitz continuous vector field on E, such that
the quantity ∇f(x) := ∂ f1

∂x1
(x) + ∂ f2

∂x2
(x) is not zero almost everywhere over any subregion of E and is of the same sign almost

everywhere in E. Then E does not contain closed trajectories of ẋ = f(x), where x =
(
x1
x2

)
and f =

(
f1
f2

)
.

3. Stability of an equilibrium at the bifurcation point

For µ = 0, the dynamics of the system (2) is described by the continuous, conewise linear system:

ẏ = f(y), (3)
f(y) = Aiy, y ∈ Si, i = 1, . . . ,m.

To analyse the dynamics of the conewise affine system (2), the stability of the equilibrium y = 0 of the conewise linear
system (3) is important. The stability result presented here provides necessary and sufficient conditions for the stability of
the origin of (3) and is an extension of a result presented in [13], since in that work all cones are required to be convex.
For the sake of brevity, in this paper, we restrict ourselves to the case of systems described with differential equations with
continuous right-hand side. We note that the stability result presented here can readily be extended to obtain necessary
and sufficient conditions for exponential stability or to allow for discontinuous functions f(·) in (3). Here, we refrain from
treating such extensions since the focus of the current paper is on bifurcation analysis.
To assess the stability of the equilibrium point y = 0 of (3), we distinguish systemswith, or without, visible eigenvectors,

as defined in Definition 2. In Section 3.1, the case of systems with visible eigenvectors is discussed. Subsequently in
Section 3.2, the case of systems without visible eigenvectors is studied. Finally, in Section 3.3, necessary and sufficient
conditions for asymptotic stability of (3) are derived.
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3.1. Systems with visible eigenvectors

Here, conewise linear systems of the form (3) with visible eigenvectors are studied. When a closed cone S̄ does contain
a visible eigenvector, the following result holds for trajectories inside this cone.

Lemma 3. Let S̄ be a closed cone, in which the dynamics is described by ẏ = Ay, and let there exist a visible eigenvector v in
S̄, corresponding to the eigenvalue λ < 0. Suppose no visible eigenvectors exist in this cone, associated with λ ≥ 0. Then, all
trajectories inside S̄ converge to y = 0 or leave S̄ in finite time.

A similar result is obtained for trajectories inside cones, that do not contain visible eigenvectors.

Lemma 4. Let S̄ be a closed cone in R2. Suppose no eigenvectors of A ∈ R2×2 are visible in S̄. Then for any initial condition
y0 ∈ S̄, with y0 6= 0, there exists a time t ≥ 0 such that eAty0 6∈ S̄.

Using the foregoing lemmas, the following result is proven, providing necessary and sufficient conditions for asymptotic
stability of the origin of conewise linear systems (3) with visible eigenvectors.

Lemma 5. Consider a continuous, conewise linear system described by (3). When this system contains one or more cones with
visible eigenvectors, then y = 0 is an asymptotically stable equilibrium of (3) if and only if all visible eigenvectors correspond to
eigenvalues λ < 0.

3.2. Systems without visible eigenvectors

In conewise linear systems (3) without visible eigenvectors, trajectories exhibit a spiralling motion around the origin,
visiting each region Si, i = 1, . . . ,m, once per rotation. Stability results are obtained for the spiralling motion by the
computation of a return map.
In the absence of visible eigenvectors, a trajectory in the region Si, i = 1, . . . ,m, will traverse this region in finite time.

The position y0 where a trajectory enters this region at time t0 = 0 is located on the boundary Σi−1,i, such that y0 can be
expressed as y0 = piti−1,i. Furthermore, this trajectory will cross Σi,i+1 in a finite time ti. The position of this crossing can
be given as: y(ti) = pi+1ti,i+1. Since the dynamics inside the cone are linear, the time ti can be solved for, such that y(ti) is
parallel to ti,i+1. In this manner, in [13], expressions for the traversal time and crossing positions are derived. The crossing
positions are linear in pi. Using such analysis, we can derive expressions for a scalar Mi, such that pi+1 = Mipi. Note that
similar expressions have been derived in [13] for systems (3) with cones, that are convex.
First, the position vectors y and tangency vectors t are represented in a new coordinate frame:

ỹi = P−1i y, for ỹi ∈ S̃i := {ỹi ∈ R2|ỹi = P−1i y, y ∈ S̄i}, (4)

where Pi is given by the real Jordan decomposition of Ai, yielding Ai = PiJiP−1i . This decomposition distinguishes three cases.

Case 1: If Ai has complex eigenvalues, then Ji =
[
ai −ωi
ωi ai

]
, where ai and ωi are real constants and ωi > 0. DefineΘ(a1, a2)

to be the angle in counter clockwise direction from vector a1 to vector a2. Herewith,

Mi =
‖t̃ii−1,i‖
‖t̃ii,i+1‖

e
ai
ωi
Θ(t̃ii−1,i,t̃

i
i,i+1). (5)

Case 2: If Ai has two distinct real eigenvalues λai and λbi and two distinct eigenvectors, then Ji =
[
λai 0
0 λbi

]
and

Mi =

∣∣∣∣∣eT2 t̃ii,i+1eT2 t̃
i
i−1,i

∣∣∣∣∣
λai

λbi−λai
∣∣∣∣∣eT1 t̃ii,i+1eT1 t̃

i
i−1,i

∣∣∣∣∣
λbi

λai−λbi

, (6)

where e1 :=
(
1 0

)T and e2 := (0 1
)T .

Case 3: If Ai has two equal real eigenvalues λai with geometric multiplicity 1, then Ji =
[
λai 1
0 λai

]
and

Mi =

∣∣∣∣∣eT2 t̃ii−1,ieT2 t̃
i
i,i+1

∣∣∣∣∣ eλai
(

eT1 t̃
i
i,i+1

eT2 t̃
i
i,i+1
−

eT1 t̃
i
i−1,i

eT2 t̃
i
i−1,i

)
. (7)

By computation of the scalarsMiwith (5), (6) or (7) for each cone Si, i = 1, . . . ,m, one can compute the returnmap between
the positions yk and yk+1 of two subsequent crossings of the trajectory y(t)with the boundaryΣm1:

yk+1 = Λyk, (8)
where

Λ =

m∏
i=1

Mi. (9)
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3.3. Stability result

Using the results given in Sections 3.1 and 3.2, we can derive necessary and sufficient conditions for the stability of the
origin of the conewise linear system (3).

Theorem 6. The origin of the continuous, conewise linear system (3) is globally asymptotically stable if and only if

(i) in each cone Si, i = 1, . . . ,m, all visible eigenvectors are associated with eigenvalues λ < 0,
(ii) in case no visible eigenvectors exist, it holds that Λ < 1, withΛ defined in (5), (6), (7) and (9).

4. Bifurcation analysis of a conewise affine system

The limit sets that can occur in planar continuous systems are equilibria, closed orbits and homoclinic or heteroclinic
orbits. To analyse the occurring bifurcations in (2), we are interested in characterisation of these limit sets, including their
local stability, for different values of the system parameterµ. The relationship between these limit sets and the limit sets of
(1) will be discussed in Section 5. The following assumption is adopted to study the conewise affine system (2).

Assumption 3. All matrices Ai, i = 1, . . .m, of (2) are invertible.

Note that this assumption implies that for given bifurcation parameter µ, system (2) can exhibit only isolated equilibrium
points xeq(µ) that satisfy f(xeq(µ), µ) = 0. Solutions of conewise affine systems as given in (2) scale linearly with the
bifurcation parameter µ, as formalised in the following lemma.

Lemma 7. Consider two continuous conewise affine systems ẋ = f(x) + µib, µi ∈ (0,∞), i = 1, 2, where f(·) is piecewise
linear with cone-shaped regions. If φ1(t) is a solution of ẋ = f(x)+µ1b, then φ2(t) = µ2

µ1
φ1(t) is a solution of ẋ = f(x)+µ2b.

From this lemma, we conclude that a complete bifurcation diagram can be obtained by finding all existing limit sets at an
arbitrary negative, and an arbitrary positive parameter µ, and at the bifurcation point with µ = 0. Subsequently, with
Lemma 7, the limit sets for all parameters µ can be found. The conewise affine system (2) is conewise linear if µ = 0. The
dynamical behaviour of (2) at µ = 0 is analysed in the previous section.
In continuous, conewise affine systems withµ 6= 0, the trajectories are tangent to a specific boundaryΣij at zero, one, or

all points on this boundary.When at a boundary an isolated point exists, where the trajectories are tangent to the boundary,
such a point will be called a tangency point and denoted with Tij. We determine all tangency points of the conewise affine
systemand compute trajectories in forward and backward time through these tangency points and through the origin.When
the vector f(x, µ) of (2) is parallel to a boundary at all points of this boundary, then a trajectory exists, that is parallel to the
boundary.
In addition, when a node or saddle point exists, the stable and unstablemanifold of this point are computed. Computation

of this finite number of trajectories yields insight in the possible behaviour of all trajectories. With these manifolds and
trajectories, for each domain Si, i = 1, . . . ,m, we can identify which subsets of Si contain trajectories that leave or enter
this domain and through which boundary. Therewith, one can identify what sequence of boundaries and cones can possibly
be visited by closed orbits.
For each of these sequences, a return map is derived. Hence, finding fixed points in these maps is equivalent to finding

closed orbits of (2). However, the domain of these maps may be unbounded, such that no feasible computational approach
would exist to find all fixed points in the map. Below, we present two theorems, that can be used to find a halfline in state
space, that cannot be traversed by any closed orbit. Existence of such a halfline reduces the domain of the map in which
fixed points may exist to a bounded domain.

Theorem 8. Consider the continuous, conewise affine system (2) with constant µ 6= 0. Suppose the system does not contain
visible eigenvectors. Construct a system

ẏ = f(y), (10)
f(y) = Aiy, y ∈ Si, i = 1, . . . ,m,

by setting µ = 0 in (2). Let Λ for this system be defined in (5), (6), (7) and (9). When Λ 6= 1, there exists an xF ∈ Σm1 \ {0},
such that all points in the halfline R := {x ∈ Σm1| ‖x‖ ≥ ‖xF‖} are not part of a closed orbit of (2).

A similar result is formulated for systems with visible eigenvectors.

Theorem 9. Consider system (2), satisfying Assumption 3. If visible eigenvectors exist and all boundaries Σij do not contain a
visible eigenvector of Ai or Aj, then there exists a halfline H ⊂ R2, such that closed orbits cannot contain a point x0 ∈ H.
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When analysing systems described by (2), Theorems 1, 2, 8 and 9 can be exploited to exclude closed orbits in specific regions
of state space. However, in certain cases the existence of closed orbits, including limit cycles, cannot be excluded in some
parts of the domain R2.
To find all closed orbits, return maps are constructed for all possible sequences of cones and boundaries. A logical choice

for the Poincaré section, onwhich the returnmaps are defined, are the positionswhere trajectories cross a certain boundary.
This is possible for all closed orbits that traverse multiple cones. Closed orbits in a single cone encircle a center, since the
dynamics in that cone is affine. In the following section, partial maps are constructed. A partial map describes the position
of a trajectory before and after the visit of a specific cone Si, i = 1, . . . ,m. Subsequently, we discuss how to combine these
partial maps to obtain the return map.

4.1. Trajectories visiting a cone Si

In the derivation of Theorem 6, a trajectory of a conewise linear system is followed inside a specific cone Si during the
traversal of this cone. Since the trajectory during this traversal is described by the linear differential equation ẏ = Aiy, an
analytical expression for the trajectory y(t) with initial position y0 ∈ Σi−1,i is derived. With this expression, the traversal
time ti and final position y(ti) are obtained. Here, a similar approach is used for the conewise affine system (2).
For a given cone Si, i = 1, . . . ,m, and given boundaries, where the trajectory enters or leaves this domain, the partial

map is constructed that gives the exit position as a function of the position, where Si is entered. Since (2) is autonomous, we
can assumewithout loss of generality that the domainSi is entered at the time t = 0.We study a trajectory traversingSi from
the boundaryΣ− towards the boundaryΣ+ in a finite time ti. Therefore, the trajectory x(t) satisfies x(t) ∈ Si, t ∈ (0, ti),
x(0) ∈ Σ− and x(ti) ∈ Σ+. We define the maps gi : Di ⊂ Σ− → Ii ⊂ Σ+, describing the position x(ti) as a function of x(0).
Expressions for gi are derived in Appendix A.

4.2. Construction of the return map

The stable or unstable manifolds of nodes and saddle points and the trajectories through tangency points and the origin
are computed. Therewith, for each domain Si, we can identify what subsets of Si contain trajectories that leave or enter this
domain and through which boundary. Combining these domains, one can identify what sequences of boundaries and cones
can contain closed orbits. A return map is computed for each sequence to find all closed orbits and their stability properties.
For example, suppose we want to study whether there exist one or more closed orbits that traverse the regions and

boundaries S1,Σ12, S2,Σ23, S3,Σ31 in this order. A Poincaré section is taken at the moments where trajectories crossΣ31,
the corresponding return map is denoted as M : DM ⊂ Σ31 → IM ⊂ Σ31. Therewith, M(xk) describes the first crossing
of a trajectory x(t), t > 0 with boundary Σ31, where x(t) corresponds to the initial condition x(0) = xk ∈ DM . Define
g1 : D1 ⊂ Σ31 → I1 ⊂ Σ12, which can be computed with Appendix A, whereΣ− = Σ31 andΣ+ = Σ12. In addition, define
g2 : D2 ⊂ Σ12 → I2 ⊂ Σ23 and g3 : D3 ⊂ Σ23 → I3 ⊂ Σ31 in a similar fashion. From a combination of g1, g2 and g3, one
obtains the return mapM(xk) = g3 ◦ g2 ◦ g1(xk).
Since M is a return map, every fixed point of this map is on a closed orbit. When this fixed point is isolated, than the

periodic orbit is a limit cycle. Furthermore, each closed orbit of (2), that traverses the boundaries and regions in the sequence
S1,Σ12, S2,Σ23, S3,Σ31, yields a fixed point inM .
The returnmapM can be computed for the possible sequences of cones andboundaries. By determining the fixedpoints of

suchmaps, the existence or absence of limit cycles and closed orbits can be investigated. Each returnmap is continuous, since
(2) is Lipschitz continuous, and trajectories of this class of systems are continuouswith respect to initial conditions; see [17],
Theorem3.4. Furthermore, the Euclidean normof themap, ‖M(x)‖, ismonotonously increasing in ‖x‖. Monotonicity follows
from the fact that the time-reversed system of (2) is Lipschitz as well, such that the inverse ofM should exist and should be
unique. The norm ‖M(x)‖ has to be increasing in ‖x‖. Otherwise, there exist points xa, xb ∈ DM , where ‖xa‖ < ‖xb‖ and
‖M(xa)‖ > ‖M(xb)‖. Note thatM is a return map, such that there exists a trajectory from xa toM(xa) and a trajectory from
xb towards M(xb). The positions xa, M(xa), xb and M(xb) should all be positioned on the same boundary, that is a halfline.
If ‖xa‖ < ‖xb‖ and ‖M(xa)‖ > ‖M(xb)‖, in planar systems, the trajectories from xa and xb have to cross each other before
they return to the Poincaré section. Such a crossing is not possible in systems that are Lipschitz. The fact that the returnmap
is continuous and monotonously increasing can be used in the computational approach to find all fixed points.

4.3. Procedure to obtain all closed orbits

In this section, a stepwise procedure is developed, such that all limit sets of (2) are found for negative, positive and
zero bifurcation parameter µ. With this procedure, the bifurcations of the continuous, conewise affine system (2) can be
described entirely.
Lemma7 implies, that only an arbitrary positive and negativeµ, andµ = 0, should be studied to obtain the full bifurcation

diagram. Theorems 1 and 2 are used to exclude the existence of closed orbits. For systems without visible eigenvectors,
Theorem 8 supplies a bound to exclude closed orbits far away from the origin. If visible eigenvectors exist, Theorem 9 can be
applied to bound the domain, in which closed orbits can occur. When Theorem 8 or 9 can be applied, a bounded domain for



J.J.B. Biemond et al. / Nonlinear Analysis: Hybrid Systems 4 (2010) 451–474 457

the return map remains, such that it is computationally feasible to find all fixed points of the return map with a numerical
method. When certain sequences of boundaries and cones may contain closed orbits, return maps will be constructed.
The following procedure yields a bifurcation diagram of (2) that contains all limit sets.

1. Identify all equilibria for positive and negative µ, i.e. the points x ∈ R2 where f(x, µ) = 0, with f(x, µ) given in (2).
2. Study the stability of the equilibrium point x = 0 at µ = 0 using Theorem 6. Identify all visible eigenvectors of
Ai, i = 1, . . . ,m.

3. For both an arbitrary fixed µ < 0 and µ > 0:
(a) Compute pointswhere the vector field is tangent to the boundaries. Subsequently, compute trajectories through these
tangency points and through the origin for a finite time. In addition, compute the eigenvalues of the matrices Ai, i =
1, . . . ,m, when an equilibrium exists inside the corresponding cone Si. When an equilibrium with real eigenvalues
exist, compute the stable and unstable manifolds by simulating a trajectory emanating from or converging to this
equilibrium in the direction of the eigenvectors. To check whether homoclinic or heteroclinic orbits exist, investigate
whether stable and unstable manifolds coincide.

(b) Identify, if possible, certain domains that cannot contain closed orbits. First, identify the value of tr(Ai), i = 1, . . . ,m
for each region Si, i.e. the trace of thematrices Ai. According to Theorem 2, a closed orbit should visit regions Si where
the traces tr(Ai) have opposite sign or are zero, since ∇f(x) = tr(Ai) for x ∈ Si.
Second, identify the character of the existing equilibria.With Theorem 1 one can guarantee that no closed orbits exist
in specific domains. For example, according to this theorem, no closed orbits are possible that encircle one hyperbolic
saddle and one focus. Subsequently, determinewhich equilibria should be encircled by possibly existing closed orbits.
Finally, when an unbounded domain remains that may contain closed orbits, identify halflines R or H as defined
in Theorem 8 or 9. Such halflines will reduce the domain, in which closed orbits can occur, to a bounded domain.
Investigate the sequences of cones and boundaries that may be traversed by closed orbits. For these sequences of
cones and boundaries, a return map will be constructed.

(c) Compute the maps gi : Σ−,i → Σ+,i of the individual cones Si that may be traversed by a closed orbit from Σ−,i
towardsΣ+,i. The derivation of these maps is given in Appendix A. Combination of the maps yields the return maps
for the possible sequences of cones and boundaries. Note that when a halfline R or H , as defined in Theorem 8 or 9,
respectively, is found that cannot be crossed by a closed orbit, the domains of these maps where fixed points may
exist will be bounded. Determine the fixed points of all possible return maps in a numerical manner. Compute the
local derivative of the return map at this fixed point, since this determines the stability of the limit cycle or closed
orbit.

4. Identify what limit sets appear, disappear or change their local stability for changing µ. Application of Lemma 7 with
respect to the limit sets for a givenµ < 0 orµ > 0 yields all limit sets forµ 6= 0. Combination with the piecewise linear
stability result gives a bifurcation diagram, containing all changes in limit sets and their stability.

The procedure given above yields all changes in the limit sets of the system. Completeness of the obtained limit cycles
follows from the fact that for each conewise affine system (2), a finite number of return maps can be determined, that may
contain fixed points. Computation of each of these return maps yields all limit cycles.

5. Approximation effects

In this section, the effect of the conewise affine approximation of a nonsmooth system is studied, as introduced in
Section 2. Results are presented for the existence and stability of equilibria (Theorem 10) and limit cycles (Theorem 11) in
the nonsmooth system (1) when such limit sets exist in the conewise affine system (2) and vise versa. With these theorems,
we show the applicability of the procedure for the bifurcation analysis as presented in Section 4 for nonsmooth systems of
the form (1).
We will use the following assumptions in addition to Assumptions 1 and 2:

Assumption 4. For all functions Fi(x, ν), i = 1, . . . , m̄, the Jacobian at the origin, i.e. ∂Fi∂x
∣∣∣
(x,ν)=(0,0)

, is invertible.

Note that this assumption is stricter than Assumption 3, in which only the vector fields Fi(x, ν), i = 1, . . . ,m, are
considered. In a neighbourhood around the origin, Assumption 4 excludes the existence of non-isolated equilibria in domains
Di that are cusp-shaped at the origin.

Assumption 5. The equilibria of the nonlinear system (1) do not move locally tangential to the boundaries when ν is varied
around 0.

We illustrate Assumption 5 in Fig. 1. This assumption implies nTi−1,iA
−1
i b 6= 0,∀i ∈ {1, . . . ,m}.

Remark 1. Paths of equilibria that approach the origin through a cusp-shaped region are excluded by Assumption 5.

Without loss of generality, we may assume that
∥∥∥ ∂F
∂ν

∣∣
(x,ν)=(0,0)

∥∥∥ = 1, yielding µ = ν. In the following assumption, the
occurrence of center-like behaviour is excluded.
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Fig. 1. Paths of equilibria of (1), depictedwith dashed lines, where boundariesCij are depictedwith solid lines. Assumption 5 excludes equilibria emanating
tangentially to a boundary, for example the equilibrium path inD3 . In addition, the same assumption excludes equilibria that emanate in a cusp-shaped
domain, as depicted in domainD1 .

Assumption 6. In a neighbourhood around the origin, the nonsmooth system (1) and conewise affine system (2) at the
bifurcation point ν = 0 or µ = 0 do not contain trajectories that are encircling the equilibrium without converging to the
origin for t →∞ or t →−∞.

For the conewise affine system, this assumption corresponds to Λ 6= 1, with Λ given in (9). The following result for the
existence of equilibria and the local stability of these equilibria is obtained.

Theorem 10. Let Assumptions 1, 2, 4 and 5 be satisfied. There exists a neighbourhood N ⊂ R of 0, such that for every equilibrium
of the nonlinear system (1) that exists for some ν ∈ N and converges to the origin for ν → 0, there exists an equilibrium in the
conewise affine system (2). Moreover, for every equilibrium of (2) there will exist an equilibrium in the full nonlinear system for
ν ∈ N.
When in addition to these assumptions for a given ν ∈ N̄ , with a neighbourhood N̄ ⊆ N of 0 chosen small enough, an

equilibrium of (1) exists inDi or at the origin and the following three conditions hold:
(i) when the equilibrium of (1) exists inDi, then the eigenvalues of the corresponding matrix Ai have nonzero real part, and
(ii) when this equilibrium has an unstable and stable manifold, no homoclinic or heteroclinic orbit connected to this equilibrium
point exist, and

(iii) Assumption 6 holds,

then for every ν ∈ N̄ the stability properties of the equilibrium of system (1) inDi or at the origin and the equilibrium of (2) in Si
or at the origin, with µ = ν , are equal.

Remark 2. The combination of Assumption 6 and condition (i) of Theorem 10 for the nonsmooth system (1) can be seen as
a counterpart for the assumption of hyperbolic dynamics near equilibria of smooth systems, as would be required to apply
the Hartman–Grobman Theorem; cf. [10].

In this work, we will consider limit cycles to be stable when, on both sides of the limit cycle, trajectories are converging
to the limit cycle. We will refer to limit cycles as unstable when, on both sides of the limit cycle, trajectories are diverging
from the limit cycle. Limit cycles that are attracting from one side and repelling from the other side are semi-stable; cf. [18].
Note that semi-stable limit cycles are unstable in the sense of Lyapunov.
We introduce the following assumptions on the closed orbits of (1) and (2):

Assumption 7. For every closed orbit of (1) and for every closed orbit of (2), a Poincaré map taken transversal to this closed
orbit only has isolated fixed points.

Note that this assumption implies that all closed orbits are limit cycles. However, they are allowed to be nonhyperbolic. To
state a result on the existence of limit cycles, we need the following restriction on the growth rate of limit cycles when the
bifurcation parameter is perturbed:

Assumption 8. For all limit cycles, denoted with γ , of the nonsmooth system (1) there exists a parameter range ν ∈ (0, ν∗)
with ν∗ > 0 (or ν ∈ (ν∗, 0) with ν∗ < 0) and constants c1, c2 > 0 such that ‖x‖ > c1|ν| ∧ ‖x‖ < c2|ν|, ∀x ∈ γ holds for
ν ∈ (0, ν∗) (or ν ∈ (ν∗, 0)).

This assumption implies that the curve in the bifurcation diagram, depicting the ‘‘amplitude’’ of a limit cycle, has a nonzero
finite derivative with respect to the parameter µ at the bifurcation point; cf. Fig. 2. For example, limit cycles γ that show
a square-root dependency with respect to the bifurcation parameter (‖γ ‖ ∼

√
ν) are excluded; such behaviour occurs for

example in the Hopf bifurcations of smooth systems.
The following theorem describes the relationship between limit cycles of (1) and (2).

Theorem 11. Let Assumptions 1, 2, 7 and 8 be satisfied. There exists a neighbourhood N of 0, such that the number of limit cycles
in the nonsmooth system (1) for ν ∈ N that are not semi-stable, is equal to the number of limit cycles in the approximation (2),
which are not semi-stable. In addition, their stability properties are equal.
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Fig. 2. Exemplary bifurcation diagram with curves for an equilibrium and a limit cycle. Assumption 8 implies that there exist finite c1, c2 > 0 such that
all curves representing limit cycles of (1) are contained in the shaded sectors.

No results are obtained for homoclinic and heteroclinic orbits, or the closed orbits around a center. When such limit
sets are not present, then the conewise affine approximation (2) serves as a good local approximation of (1). Theorem 10
shows that equilibria of (1) are accurately represented in the approximation (2). Furthermore, by Theorem11, limit cycles are
accurately represented aswell. Therefore, the procedure developed in Section 4 for conewise affine systems is an appropriate
tool to study the bifurcations of nonsmooth systems (1). This will be illustrated in Section 6.2 with an example.

6. Illustrative examples

In this section, first we will present a complete bifurcation analysis for a conewise affine system, using the results in the
previous sections. Subsequently, we present an example of a nonsmooth system that undergoes two discontinuity-induced
bifurcations of an equilibrium point.

6.1. Example for a conewise affine system

Consider the continuous system:

ẋ =


A1x+ µb, x ∈ S1 := {x ∈ R2|nT41x < 0 ∧ nT12x > 0},
A2x+ µb, x ∈ S2 := {x ∈ R2|nT12x < 0 ∧ nT23x > 0},
A3x+ µb, x ∈ S3 := {x ∈ R2|nT23x < 0 ∧ nT34x > 0},
A4x+ µb, x ∈ S4 := {x ∈ R2|nT34x < 0 ∧ nT41x > 0},

(11)

where the normal vectors are chosen as n12 =
[
0 1

]T , n23 = 1
√
2

[
−1 −1

]T , n41 = [0 −1]T , n23 = 1
√
2

[
1 1

]T . The
vector b =

[
cos(0.375π) sin(0.375π)

]T and µ ∈ R is the bifurcation parameter. The phase portrait of this system with

µ = −0.5 is shown in Fig. 3. The matrices Ai are A1 =
[
−0.5 1
−1 0

]
, A2 =

[
−0.5 0.91
−1 0.58

]
, A3 =

[
−1 0.41
0.5 2.08

]
, A4 =

[
−1 0.5
0.5 1.5

]
.

System (11) will be analysed with the procedure given in Section 4.3:

1. For µ < 0, two equilibria exist, with positions x = −µA−12 b in S2 and x = −µA−14 b in S4. For µ > 0, no equilibria exist.
2. At µ = 0, the conewise linear dynamics is unstable, since the visible eigenvector in S4 corresponds to an unstable
eigenvalue. In addition, one visible eigenvector in S3 exists, that corresponds to a stable eigenvalue.

3. Now, the system will be analysed for an arbitrarily chosen negative, and an arbitrarily chosen positive parameter µ.
Subsequently, with application of Lemma 7 the complete bifurcation diagram is obtained. For µ = −0.5:
(a) OnΣ12,Σ34 andΣ41, there exist points where the vector field is tangent to the boundary, i.e. points T12, T34 and T41,
respectively. Trajectories through these points and the origin are shown in Fig. 3. An unstable focus exist in S2, since
the related eigenvalues of A2 are 0.42± 0.79ı, where ı2 = −1. A saddle point exist in S4 with eigenvalues−1.10 and
1.60. The stable and unstable manifolds of this point are shown and do not form a homoclinic orbit.

(b) The trace tr(A1) < 0, whereas all other traces satisfy tr(Ai) > 0, i = 2, 3, 4. Therefore, application of Theorem 2
yields that each possible closed orbit visits S1. To satisfy Theorem 1, closed orbit(s) should encircle the focus without
encircling the saddle point.
By studying the depicted trajectories, one can conclude, that no closed orbit can traverse Σ12 \ [O, a], since these
trajectories cannot encircle the focus without encircling the saddle point, which is required according to Theorem 1.
Furthermore, closed orbits cannot traverse the interior of the line [a, b], since trajectories through this open line will
arrive at the line [c, d] in finite time, and enter the positively invariant region that is depicted gray in Fig. 3. Now, one
can conclude, that possible closed orbits visit only the regions S1 and S2, such that they should be contained in the
domain, that is depicted gray. This implies, that all closed orbits traverse the line [T12, e].
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Fig. 3. Phase portrait of system (11) forµ = −0.5with trajectories through the points Tij , denotedwith diamonds, and the origin. In addition, the equilibria
are depicted with asterisks, and the manifolds of the saddle point are shown.

a b

Fig. 4. (a) Combined mapM of (11) with µ = −0.5. (b) Bifurcation diagram of (11) with the bifurcation parameter µ.

(c) Existing closed orbits should traverse the line [T12, e]. We construct a map g2 : [T12, e] → [d, T12], that yields
the position g2(x) where a trajectory leaves the cone S2 when this cone was entered at x. Similarly, the map
g1 : [b, T12] → [T12, e] is computed. The maps are computed as presented in Appendix A. The combined map
M := g1 ◦ g2(x) is the return map and is shown in Fig. 4(a). It contains one fixed point. Apparently, a unique stable
limit cycle exists that contains x =

(
−0.55 0

)T .
For µ = 0.5 no equilibrium point of (11) exists, such that according to Theorem 1, no closed orbits can exist.

4. With the analysis above and application of Lemma 7, the bifurcation diagram is constructed, as given in Fig. 4(b). Both
the limit cycle, focus and saddle exist only for µ < 0. For µ = 0, unstable behaviour is observed. We note that this
bifurcation cannot occur in smooth dynamical systems and is explicitly induced by the nonsmoothness of the system.

6.2. Example for a piecewise smooth system

In the following example, a piecewise smooth system is studied that undergoes two bifurcations of an equilibrium.
Using the procedure presented in this paper, a local analysis of these bifurcations is performed. For the conewise affine
approximations, this analysis guarantees to find all equilibria and limit cycles that are created or destroyed locally during
the bifurcations. According to Theorems 10 and 11, the local bifurcations of the piecewise smooth system are accurately
described.
We consider the following continuous piecewise smooth system:

ẋ = Fi(x, ν), x ∈ Di, i = 1, 2, 3, (12)

where x =
[
x1 x2

]T
∈ R2, ν ∈ R is the bifurcation parameter and

F1(x, ν) = A1x+ νb+ 0.1
[
0
x31

]
, (13)
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Fig. 5. State space of (12) with boundaries Cij and domainsDi, i = 1, 2, 3.

F2(x, ν) = A2x+ νb+ 0.1
[
0
x31

]
, (14)

F3(x, ν) = A3x+ νb, (15)

and A1 =
[
0.5 −1
1 0

]
, A2 =

[
0.5 −1
1 −0.75

]
, A3 =

[
0.5 −1
−0.5 0

]
. The vector b =

[
cos(0.375π) sin(0.375π)

]T . The domains
Di, i = 1, 2, 3, are given by

D1 = {x ∈ R2|nT31x < 0 ∧ nT12x > 0}, (16)

D2 = {x ∈ R2|nT12x < 0 ∨ h23(x) < 0}, (17)

D3 = {x ∈ R2|nT31x > 0 ∧ h23(x) > 0}, (18)

where the function h23(x) is defined to describe the boundary betweenD2 andD3:

h23(x) := x2 −
4
30
x31 − 2x1, (19)

n31 =
[
1 0

]T and n12 = [0 1
]T . The boundary betweenDi andDj is called Cij. The partitioning of the state space of this

piecewise smooth system is depicted in Fig. 5.
First, we study at what parameters an equilibrium point is coinciding with one ormore boundaries. An equilibrium point

is positioned at the origin at ν = 0. The origin is coinciding with all boundaries. Furthermore, at ν = ν1, where ν1 ≈ 1.88,
the equilibrium point is positioned on x = x∗ ∈ C12, where x∗ ≈

(
−1.44 0

)T .
For ν < ν1, ν 6= 0, an isolated equilibrium exists inD2. For ν > ν1, an equilibrium point exists inD1. No equilibrium

point can exist inD3.
The equilibria in these domains will not undergo smooth bifurcations, since the Jacobian J1(x, ν) = ∂F1(x,ν)

∂x has eigen-

values 14 ± ı
1
2

√
3.75+ 1.2x21, such that if an equilibrium exists inD1, then it always is an unstable focus. Furthermore, the

Jacobian J2(x, ν) = ∂F2(x,ν)
∂x of F2 has eigenvalues− 18 ± ı

1
2

√
2.4375+ 1.2x21, such that if an equilibrium exists inD2, then it

always is a stable focus.
The nonsmooth bifurcations around ν = 0 and ν = ν1 will be studied locally with a conewise affine approximation of

the vector field.

6.2.1. Local analysis around ν = 0
For ν = 0 an equilibrium of (12) exists at the origin and the partial derivative ∂F

∂ν
= b, such that Assumptions 1 and 2 are

satisfied. Therefore, we approximate the boundaries C12, C23, C31 with the halflines Σ12, Σ23 and Σ31, respectively. Here,
the vectors t12 =

(
−1 0

)T , t23 = 1
√
5

(
1 2

)T and t31 = (0 1
)T define the halflinesΣij := {x ∈ R2|x = ctij, c ∈ [0,∞)}.

Definition of the normal vectors nij := (e1eT2 − e2eT1)tij yields n12 =
(
0 1

)T , n23 = 1
√
5

(
2 −1

)T and n31 = (1 0
)T . The

state space of this system is given in Fig. 6.
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Fig. 6. Limit cycles of (20), where µ = 1. The inner limit cycle is unstable, the outer limit cycle is stable. The stable focus is depicted with an asterisk.
According to Theorems 10 and 11, this phase portrait is locally a good approximation for the system (12) for ν in a neighbourhood of 0.

Introducing Taylor expansions of the vector fields Fi, i = 1, 2, 3, near the origin, Eq. (12) is locally approximated with:

ẋ =

A1x+ µb, x ∈ S1 = {x ∈ R2|nT13x < 0 ∧ nT12x > 0},
A2x+ µb, x ∈ S2 = {x ∈ R2|nT12x < 0 ∨ nT23x > 0},
A3x+ µb, x ∈ S3 = {x ∈ R2|nT23x < 0 ∧ nT13x > 0},

(20)

where Ai = Ai, i = 1, 2, 3, the affine vector is given by b =
[
cos(0.375π) sin(0.375π)

]T and µ = ν is the bifurcation
parameter.
The conewise affine system (20) is analysed with the procedure presented in Section 4.3. This analysis is completely

analogous to the analysis of the example given in Section 6.1. For the sake of brevity we omit the detailed analysis here and
focus on the discussion of the results; see [19] for further details.
At µ = 0, a stable spiralling motion is observed, such that the origin is a stable equilibrium point. For all µ 6= 0, only

one equilibrium exists, that is positioned in S2 and is a stable focus. For negative parametersµ, using a halfline R as defined
in Theorem 8, we obtain that no periodic orbits exist, such that only a single, stable focus exists. For positive parameters µ,
the system (20) contains two limit cycles and a stable focus, that are depicted in Fig. 6 forµ = 1. With the return maps that
are derived in this paper, we obtain that the inner limit cycle is unstable, the outer limit cycle is stable.
The bifurcation diagram of (20) is depicted in Fig. 8a for the parameter range µ ∈ [−0.8, 0.8], that corresponds to the

same range of the system parameter ν of (12).

6.2.2. Local analysis around ν = ν1
For ν = ν1, an equilibrium point x∗ exists that satisfies x∗ ∈ Σ12. We consider the neighbourhood around the bifurcation

point, and therefore introduce µ = ν − ν1 and y := x− x∗, where y =
(
y1 y2

)T . The partial derivative ∂F
∂ν
= b, such that

Assumptions 1 and 2 are satisfied.
We approximate the boundary C12 with the halflines Σ12p, and Σ12n, where Σ12p and Σ12n describes the boundary C12

for x1 ≥ x∗1 and x1 ≤ x∗1 , respectively. Let the unit vectors t12p =
(
1 0

)T and t12n = (−1 0
)T define the halflinesΣ12p :=

{y ∈ R2|y = ct12p, c ∈ [0,∞)} andΣ12n := {y ∈ R2|y = ct12n, c ∈ [0,∞)}. The normal vectors are n12p =
(
0 −1

)T and
n12n =

(
0 1

)T .
Introducing a Taylor expansion of the vector fields Fi, i = 1, 2, near thepoint (x∗, ν1), system (12) is locally approximated

with:

ẏ =
{
A1y+ µb, y ∈ S1 = {y ∈ R2|nT12py < 0},
A2y+ µb, y ∈ S2 = {y ∈ R2|nT12py > 0},

(21)

where A1 =
(
A1 +

(
0 0

0.3(x∗1)
2 0

))
and A2 =

(
A2 +

(
0 0

0.3(x∗1)
2 0

))
, where the affine vector is given by b =

[
cos(0.375π)

sin(0.375π)
]T
and µ ∈ R is the bifurcation parameter.
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Fig. 7. Unstable limit cycle of (21) with µ = −1. The stable focus is depicted with an asterisk.

Once more, for details of the analysis of bifurcations of (21) using the procedure of Section 4, we refer to [19]. Here we
focus on discussing the results. Forµ < 0, one equilibrium point exists in S2, that is a stable focus. This focus is encircled by
an unstable limit cycle, as depicted in Fig. 7 for µ = −1. At µ = 0, an expanding spiralling motion is observed around the
origin, such that the equilibrium at the origin is unstable. For µ > 0, one equilibrium point exist in S2, and no limit cycles
exist.
The bifurcation diagram is depicted in Fig. 8a for the parameter range µ ∈ [−0.8, 0.8], that corresponds to the range of

the system parameters ν ∈ [1.08, 2.68] of system (12). This type of bifurcation was identified in [7] as a discontinuous Hopf
bifurcation.

6.2.3. Bifurcations of the nonsmooth system
The nonsmooth bifurcations around ν = 0 and ν = ν1 are approximated locally in the previous sections, yielding

the bifurcation diagram as depicted in Fig. 8a. According to Theorems 10 and 11, similar limit sets exist in the smooth
system (12). Using the approximations, the bifurcation diagram of (12) is given in Fig. 8b and Fig. 8c. The limit cycles created
or destroyed by the bifurcations, as found by the conewise affine approximations, are followed for varying ν 6= 0 and
ν 6= ν1 using a sequential implementation of the shooting algorithm, cf. [20]. The path of the equilibrium point is computed
analytically.
The local bifurcations of the equilibrium at ν = 0 and ν = ν1 are accurately described. However, since the conewise

affine approximation uses a local approximation of (12) near (ν, x) = (ν1, x∗), the stable limit cycle induced at ν = 0 is not
identified by the local approximation around ν = ν1.
Note that the approach of this paper does not yield information on bifurcations of limit cycles. For example, with the

presented analysis we cannot exclude a bifurcation of the stable limit cycle for ν > 0.

7. Conclusions

A procedure is presented that yields a complete analysis of bifurcating equilibria in a class of hybrid systems, described
by a continuous, piecewise smooth differential equations. This procedure is a computationally feasible method to identify
all limit sets that are created or destroyed during the bifurcation of an equilibrium point.
To analyse the bifurcation with the given procedure, under certain assumptions, continuous, piecewise smooth hybrid

systems can be approximated near the bifurcation point by a conewise affine system. The bifurcation of the approximated,
conewise affine system accurately describes the local bifurcation of the equilibrium point in the continuous, piecewise
smooth system.
For the conewise affine system we study what limit sets appear or disappear, change in character or in their stability

properties under change of a system parameter. Existing equilibria, homoclinic and heteroclinic orbits of the conewise
affine system can be found in a relatively straightforward manner. The other limit sets that are possible in autonomous
planar systems are closed orbits, including limit cycles. To find these, we study the Poincaré return maps.
To be able to find all limit sets in a computationally feasible manner, new theoretical results are presented. With these

results, one can exclude the existence of closed orbits far away from the equilibria. Using these theoretical results, the
presented procedure is able to identify, in a computationally efficient manner, all limit sets, which appear or disappear in
the discontinuity-induced bifurcation of the equilibrium of the approximated, conewise affine system. The procedure will
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a

b

c

Fig. 8. Application of conewise affine approximations for the bifurcation analysis of (12). In panel a, the limit sets are shown of the conewise affine
approximations at ν = 0 and ν = ν1 . In panel b, the equilibrium path of (12) is shown, which is computed analytically. Furthermore, the limit cycles are
computed by repeated application of the shooting method. Since the stable limit cycle grows in ‘amplitude’ with increasing ν, the contents of panel b is
repeated in panel c with a larger y-scale.

identify all closed orbits, when multiple closed orbits are created at the bifurcation point. In two examples, the theoretical
results are illustrated.
The procedure presented in this paper is useful to assess the parameter dependency of the dynamics of planar piecewise

smooth systems. Knowledge on what limit sets can appear or disappear under parameter changes of a system can be useful
in the design of a system that is nonsmooth, and can be used to evaluate the robustness of the system, which is generally an
important desired characteristic for nonsmooth control systems.
The results of this work can be extended to a more general class of hybrid systems, described by piecewise smooth

systems with a discontinuous right-hand side, which are relevant for example in the context of mechanical systems with
Coulomb friction.
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Appendix A. Computation of maps gi, i = 1, . . . ,m.

We study a trajectory traversing Si from the boundary Σ− towards the boundary Σ+ in a finite time ti. Therefore, the
trajectory x(t) satisfies x(t) ∈ Si, t ∈ (0, ti), x(0) ∈ Σ− and x(ti) ∈ Σ+. To analyse this trajectory in the cone Si, a new
coordinate frame will be used, whose origin is shifted to the point where Aix+ µb = 0. In addition, other basis vectors are
chosen to describe positions in R2. The relations between coordinates in the original frame, denoted as x, with coordinates
in the new frame, denoted as x̃i, are:

x̃i = P−1i x+ µP−1i A
−1
i b, x = Pix̃i − µA−1i b, (22)

where Pi is found by the real Jordan decomposition, such that Ai = PiJiP−1i . The dynamics expressed in the new coordinate
frame is given by:

˙̃x
i
= Jix̃i, for t ∈ [0, ti]. (23)

Consider an initial condition with coordinates x0 = pit− ∈ Σ−. In the new coordinate frame, one finds x̃i0 = P
−1
i (p

it−
+µA−1i b). The direction of the vector tangent to the boundaryΣ− is given by t̃i− := P

−1
i t−, such that x̃i0 = p

i t̃i
−
+µP−1i A

−1
i b.
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There exists a crossing of the trajectorywith the boundaryΣ+ at time ti. Suppose this crossing occurs at x(ti) = pi+1t+. In
the new coordinate frame, this position is given by x̃i(ti) = pi+1 t̃i+ +µP

−1
i A

−1
i b,where a vector t̃i

+
:= P−1i t+ is introduced,

that is parallel withΣ+. Defining a vector orthogonal to t̃i+ yields ñ
i
+
:= (e1eT2 − e2eT1)t̃

i
+
, such that:

ñiT
+
x̃i(ti) = µñiT+P

−1
i A

−1
i b. (24)

Substitution of the solution x̃i(t) = eJit x̃i0 of (23) in (24) yields an expression which is evaluated at the time ti:

ñiT
+
eJiti x̃i0 = ñiT

+
x̃iT , (25)

where we defined the translation vector x̃iT := µP
−1
i A

−1
i b.

When the traversal time ti satisfying (25) is found, this time can be used to obtain the traversal position. Integrating (23)
over a time interval [0, ti] yields x̃i(ti) = eJiti x̃i0. In the original coordinate frame, this yields:

x(ti) = PieJiti x̃i0 − µA
−1
i b. (26)

Substitution of the time ti satisfying (25) in (26) forms amap gi : Di ⊂ Σ− → Ri ⊂ Σ+, describing the position of the cross-
ing position of the trajectory {x(t), t > 0, x(0) ∈ Di}withΣ+, such that x(ti) = gi(x(0)). The map gi will be computed by
distinguishing the three cases.
Case 1: If Ai has complex eigenvalues, then Ji =

[
ai −ωi
ωi ai

]
, where ai and ωi are real and ωi > 0. Hence, eJit = eait[

cos(ωit) − sin(ωit)
sin(ωit) cos(ωit)

]
. Herewith, (25) yields:

eaiti cos(ωiti)ñiT+ x̃
i
0 + e

aiti sin(ωiti)t̃iT+ x̃
i
0 = ñiT

+
x̃iT . (27)

This equation can be solved with a numerical solver to obtain the time ti. This time yields the position:

x(ti) = −eaiti sin(ωiti)Pi
(
e1eT2 − e2eT1

)
x̃i0 + e

aiti cos(ωiti)Pix̃i0 − µA
−1
i b. (28)

Case 2: If Ai has two real eigenvalues λai and λbi whose eigenvectors are distinct, then Ji =
[
λai 0
0 λbi

]
. Using eJit = eλaite1eT1

+ eλbite2e2, we obtain: x̃i(t) = eλaite1eT1 x̃
i
0 + e

λbite2eT2 x̃
i
0, such that (25) becomes:

eλaiti ñiT
+
e1eT1 x̃

i
0 + e

λbiti ñiT
+
e2eT2 x̃

i
0 = ñiT

+
x̃iT , (29)

that can be solved with a numerical solver to obtain the smallest time ti > 0. Evaluating (26) on this time yields:

x(ti) = eλaitPie1eT1 x̃
i
0 + e

λbitPie2eT2 x̃
i
0 − µA

−1
i b. (30)

Case 3: If Ai has two equal real eigenvalues λai with geometric multiplicity 1, then Ji =
[
λai 1
0 λai

]
and eJit = eλait

[
1 t
0 1

]
.

Substituting this expression in (25) yields:

eλaiti ñiT
+
x̃i0 + tie

λaiti ñiT
+
e1eT2 x̃

i
0 = ñiT

+
x̃iT . (31)

When the smallest ti > 0 satisfying (31) is found with a numerical solver, this can be substituted in (26), yielding:

x(ti) = eλaitiPix̃i0 + tie
λaitiPie1eT2 x̃

i
0 − µA

−1
i b. (32)

Appendix B. Proofs

Proof of Theorem 1. First we prove the existence of at least one equilibrium point. For this purpose, the index of a point
and the index of a Jordan curve are introduced. Next, we will prove the second part of the theorem.
Let ∆θ be the total change in the angle θ that the vector f(x) makes with some fixed direction as x traverses a Jordan

curve J once in the positive direction. Recall from [10] that a Jordan curve is defined as a topological image of a circle, i.e. J
is an x-set of points x = x(t), a ≤ t ≤ b, where x(t) is continuous, x(a) = x(b) and x(s) 6= x(t), for a ≤ s < t < b. Define
the index of J with respect to f as If(J) := ∆θ

2π .
Define the index of an isolated equilibrium point P with respect to f as the index of any Jordan curve encircling P , and no

other equilibrium points. This index will be denoted by If(P). For certain equilibria, the index is known; If(P) = 1 if P is a
hyperbolic node or focus and If(P) = −1 if P is a hyperbolic saddle.
According to Theorem 4.4, p. 400, [14], since C is a periodic orbit, If(C) = 1. The periodic orbit C is a Jordan curve, such

that Theorem 4.1, p. 398, [14] yields that C encircles at least one equilibrium point. This proves the first statement of the
theorem.
Suppose that all equilibrium points P1, . . . Pm that are encircled by the closed orbit are hyperbolic. Application of

Corollary 2, p. 400, [14] yields that the sum of indices of these equilibria equals one, i.e. If(C) =
∑m
i=1 If(Pi) = 1. The

value of the indices of a node, focus and saddle imply, that there must be an odd number 2n+ 1 of equilibria, of which n are
saddles and n+ 1 are nodes or foci. �
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Proof of Lemma 3. Three cases have to be distinguished according to the eigenvalues of the matrix A, that describes the
dynamics ẏ = Ay in region S̄. The existence of a visible eigenvector, corresponding to a real eigenvalue, implies that all
eigenvalues of A ∈ R2×2 are real.
In the first case, the eigenvalues of A are equal and this eigenvalue has geometric multiplicity two. The trajectories inside

S̄ converge to the origin since ẏ = Ay yields y(t) = eλty0, ∀y0 ∈ S̄, where λ < 0.
In the second case, the matrix A has an eigenvalue λ < 0 with algebraic multiplicity two and geometric multiplicity one.

Trajectories starting in S̄ can be written as y(t) = PeJtP−1y0 = eλt(y0 + tPe1eT2P
−1y0) as long as y(τ ) ∈ S̄ ∀τ ∈ [0, t],

where the Jordan canonical form A = PJP−1 is used, with J = λ(e1eT1 + e2eT2) + e1eT2 , e1 :=
(
1 0

)T and e2 :=
(
0 1

)T .
With λ < 0, either convergence of the trajectory to the origin is obtained, or the trajectory leaves S̄ in finite time.
In the third case, the matrix A has two distinct eigenvalues λa < 0 and λb < 0. Trajectories in the region S̄ are positioned

on the equilibrium y(t) = 0, ∀t > 0 or can be written as y(t) = PeJtP−1y0 = Pe1eT1P
−1y0eλat + Pe2eT2P

−1y0eλbt , ∀y0 ∈ S̄

as long as y(τ ) ∈ S̄, ∀τ ∈ [0, t], where the Jordan canonical form A = PJP−1 is used, with J = λae1eT1 + λbe2e
T
2 and

y0 ∈ S̄. The eigenvectors of A are given by the vectors va = Pe1 and vb = Pe2. The trajectory y(t) converges to either
Iva = {y ∈ R2|y = cva, c ∈ (0,∞)} when λa > λb or Ivb = {y ∈ R2|y = cvb, c ∈ (0,∞)} when λa < λb. If trajectories
converge to the set Ivk, k = a, b, corresponding to a visible eigenvector, i.e. Ivk ∈ S̄, k = a, b, they will approach the origin,
since the corresponding eigenvalue λk < 0, k = a, b. Otherwise, they will leave the region S̄ in finite time. �

Proof of Lemma 4. When S̄ is a halfline, the vector field Ay is pointing out of S̄, since otherwise, all y ∈ S̄ \{0} are eigenvec-
tors, that are visible. Every nonempty closed cone S̄ ⊂ R2 that is not a halfline can be written as the union of two nonempty
closed convex cones S̄1 and S̄2 that do not contain a subspace ofR2, i.e. S̄ = S̄1 ∪ S̄2, where these cones intersect only at the
halflineΣ12 = S̄1 ∩ S̄2. Due to the assumption in Lemma 4, both regions S̄j, j = 1, 2, and the boundaryΣ12 do not contain
an eigenvector of A.
According to Theorem 3 of [13], for any y0 ∈ S̄j, j = 1, 2, with y0 6= 0, there exists a time t1 ≥ 0 such that eAt1y0 6∈ S̄j.

Trajectories can traverse the boundary Σ12 only in one direction. Therefore, trajectories from a point y0 ∈ S̄j leave S̄ in a
finite time, possibly after traversing the other cone S̄k, k ∈ {1, 2}, k 6= j. �

Proof of Lemma 5. Necessity is trivial. To prove sufficiency of the stability requirements, we will prove that for every
trajectory y(t), with initial condition y0 ∈ R2 \ 0, there exist a finite time tf and closed cone S̄k, such that y(t) ∈ S̄k,∀t > tf .
Subsequently, we will prove that the trajectories converge to the origin for t →∞.
Consider the trajectory from any initial condition y0 ∈ R2 \ 0. When y0 is inside a cone S̄ containing no visible

eigenvectors, Lemma 4 guarantees that the trajectory will leave this cone in a finite time. When y0 is inside a cone S̄
containing visible eigenvectors, then, according to Lemma 3, trajectories may converge to the origin asymptotically and
remain in this cone. In that case, choose t1 = 0. Otherwise, they will leave the cone S̄ in a finite time t1.
Trajectories can traverse a boundary Σi,i+1 = {y ∈ R2|y = cti,i+1, c ∈ (0,∞)} only in one direction, either from Si to

Si+1 or vise versa, since the vector field f(y) on y = cti,i+1 is given by ẏ = cAiti,i+1 and c > 0. This means that possibly after
escape or traversal of some regions, all trajectories will arrive at a cone S̄k containing a visible eigenvector and remain there
for all t > tf . Here, tf is the sum of the finite time the escape of the first region took, and the finite times for the traversal of
regions without visible eigenvectors. Since these times are all finite according to Lemmas 3 and 4, the sum of these, which
is defined as tf , is also finite.
By Lipschitz continuity, the trajectory y(t) remains bounded for t ∈ [0, tf ]. Subsequently, it remains in a specific cone S̄k

for all t > tf , where S̄k contains a visible eigenvector. Hence, Lemma 3 guarantees asymptotic stability of the origin. �

Proof of Theorem 6. When visible eigenvectors are present, then necessity and sufficiency of (i) is given in Lemma 5. In
absence of visible eigenvectors, necessity of (ii) is proven by contradiction. Let T be the period time of the spiralling motion
of (3), as given in [13]. When Λ ≥ 1, then a trajectory from y0 ∈ Σm1 visits the sequence of positions y(kT ) = Λky0, k =
1, 2, . . ., contradicting asymptotic stability.
Sufficiency of (ii) can be obtained by proving that all trajectories will cross the boundary Σm1 in finite time. After this

finite time, the contraction property of the return map yk+1 = Λyk, withΛ < 1 implies asymptotic stability.
For trajectories starting with initial conditions positioned in one of the regions Si, i = 1, . . . ,m, according to Lemma 4,

there exists a finite time t1 ∈ [0,∞), such that the trajectory is not in the region Si. Since no state jumps can exist in (3),
the trajectory will therefore cross a boundaryΣi,i+1 in a finite time ts ∈ [0, t1]. Each boundary can only be traversed in one
direction. Therefore, only a finite number of regions Si can be traversed, beforeΣm1 is reached in a finite time. In this finite
time, the trajectory does not grow unbounded since (3) is globally Lipschitz.
After the trajectory has reached Σm1 for the first time, the trajectory converges to the origin in a spiralling motion, as

described by the return map yk+1 = Λyk, due to the fact thatΛ < 1. Herewith, sufficiency of (ii) is proven. �

Proof of Lemma 7. The proof is trivial and omitted for the sake of brevity. �

Proof of Theorem 8. To prove the theorem, first, a scaling law for conewise linear systems is presented in Lemma 12.
Second, a relationship between trajectories of the conewise affine system with µ 6= 0 and conewise linear systems with
µ = 0 is given in Lemma 13. Using that result, Theorem 8 is proven.
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Lemma 12. Consider two trajectories of the continuous, conewise linear system:

ẏ = f(y), (33)
f(y) := Aiy, y ∈ Si, i = 1, . . . ,m,

where Si, i = 1, . . . ,m, are cones. Consider the trajectories for two initial conditions, y0 and ỹ0, where ỹ0 = cy0, c ∈ [0,∞).
If y(t) is a trajectory for the system with y(0) = y0, then ỹ(t) = cy(t) is a trajectory emanating from ỹ(0) = ỹ0.

Lemma 13. Consider the continuous, conewise affine system given in (2), with constant µ 6= 0. Suppose this system does not
contain visible eigenvectors.
Define a Poincaré section for this system at the moments where the trajectory x(t) traverses Σm1 with a specified direction

(i.e. either from Sm to S1 or vise versa). Define the return map M : DM ⊂ Σm1 → IM ⊂ Σm1, such that M(xk) denotes the
position of the first crossing of x(t), t > 0, for the initial condition x(0) = xk ∈ Σm1. Construct a conewise linear system (33)
by setting µ = 0 in (2). Let Λ for the conewise linear system (33) be defined by (5), (6), (7) and (9).
The following two statements hold for the trajectories x(t) of the conewise affine system (2):

(i) WhenΛ < 1, there exists an xF ∈ Σm1 such that ‖M(xk)‖ < ‖xk‖, ∀xk ∈ R := {x ∈ Σm1| ‖x‖ ≥ ‖xF‖}.
(ii) WhenΛ > 1, there exists an xF ∈ Σm1 such that ‖M(xk)‖ > ‖xk‖, ∀xk ∈ R := {x ∈ Σm1| ‖x‖ ≥ ‖xF‖}.

Proof. An analytical expression for xF is obtained as follows. The conewise affine system (2) is considered as a perturbed
conewise linear system, whereµb is considered as the perturbation. Using the fact that the system is globally Lipschitz, the
difference between the trajectory x(t) of the conewise affine system and the trajectory ỹ(t) of the conewise linear system
(33) can be bounded for a given time period. A trajectory of ỹ(t) from ỹ0 ∈ Σm1 is studied, that encircles the origin and
crosses the boundaryΣm1 after one spiralling motion. We will use an initial condition ỹ0, with ‖ỹ0‖ large enough, such that
the trajectories ỹ(t) and x(t) emanating from this initial position will encircle the origin and traverse the boundary Σm1,
independent of the direction of the bounded perturbation. To find such an initial condition ỹ0 we first study an arbitrary
initial position y0 ∈ Σm1, for which the trajectory y(t) of (33) is followed during one spiralling period.
Let T be the period time of the spiralling motion of (33), as given in [13]. Consider a trajectory y(t), t ∈ [0, T ], of (33)

with an arbitrary initial condition y0 ∈ Σm1 \ {0} at time t = 0. From the stability analysis of the system (33), we obtain
y(T ) = Λy0, whereΛ is defined in (5), (6), (7) and (9).
Define the open set C(y0) as:

C(y0) :=
{
(Sm ∪Σm1 ∪ S1) ∩ {y ∈ R2|0 < tTm1y < ‖y0‖}, ifΛ < 1,
(Sm ∪Σm1 ∪ S1) ∩ {y ∈ R2|tTm1y > ‖y0‖}, ifΛ > 1.

(34)

Note that tm1 is a unit vector. The set C(y0) is shown in Fig. 9. Without loss of generality, assume that for all y ∈ Σm1 \ {0}
the vector field f(y) of (33) is pointing in direction of S1. Here, no generality is lost, since f(·) is homogeneous,Σm1 \ {0} is
a halfline from the origin and Si can be renumbered such that f(y) is pointing in direction of S1 for all y ∈ Σm1 \ {0}. Since
y(T ) ∈ Σm1 and f(y(T )) is pointing in direction of S1, one can conclude that there exist small times τ−, τ+ ∈ (0, T ) such
that the trajectory y(t) satisfies the following three conditions:

y(t) ∈ C(y0), ∀t ∈ [T − τ−, T + τ+], (35)

y(T − τ−) ∈ C(y0) ∩ Sm, (36)

y(T + τ+) ∈ C(y0) ∩ S1. (37)

Here, the following facts are used; the trajectory y(t) is continuous in time, the point y(T ) ∈ C(y0) and the trajectory
traversesΣm1 from Sm towards S1 at the time instant t = T . SinceC(y0), Sm and S1 are open sets, there exists an ε ∈ (0,∞),
such that for all vectors δ, with ‖δ‖ ≤ ε the conditions

y(t)+ δ ∈ C(y0), ∀t ∈ [T − τ−, T + τ+], (38)

y(T − τ−)+ δ ∈ C(y0) ∩ Sm, (39)

y(T + τ+)+ δ ∈ C(y0) ∩ S1, (40)

are satisfied. These conditions are illustrated in Fig. 9. A new initial condition ỹ0 = ky0, with k a positive constant, is chosen
for the system (33). Application of Lemma 12 yields, that ỹ(t) = ky(t). We introduce ζ = kδ, such that combination of the
conditions (38)-(40) with definition (34) yields:

ỹ(t)+ ζ ∈ C(ỹ0), ∀t ∈ [T − τ−, T + τ+], (41)

ỹ(T + τ−)+ ζ ∈ C(ỹ0) ∩ Sm, (42)

ỹ(T + τ+)+ ζ ∈ C(ỹ0) ∩ S1, (43)

for the trajectory ỹ(t)with initial condition ỹ0 = ky0 and for all ζ with ‖ζ‖ ≤ kε.
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(a)Λ < 1. (b)Λ > 1.

Fig. 9. Graphical representation of the conditions (38)–(40) for Λ < 1 and Λ > 1. The set C(y0) is shown as the dashed region. Note that the domain
around y(t), t ∈ [T − τ−, T + τ+] is contained in C(y0).

Now, consider the affine term of (2), i.e.µb, as a constant disturbance of the system (33). We study the trajectory x(t) of
(2) and the trajectory ỹ(t) of (33), both with the same initial condition xk = ỹ0 = ky0 at t = 0. Since system (2) is globally
Lipschitz with Lipschitz constant L, Theorem 3.4 in [17] can be applied, yielding

‖ỹ(t)− x(t)‖ ≤
|µ|

L

(
eL(T+τ+) − 1

)
, ∀t ∈ [0, T + τ+], (44)

whereµ is given in (2), T the period of the spirallingmotion of (33) and τ+ is introduced above. If we choose ỹ0 ∈ R :=
{
ỹ0 ∈

R2|ỹ0 = ky0, k ≥ |µ|εL
(
eL(T+τ+) − 1

)}
, with y0 and ε introduced above, then (44) yields ‖x(t)− ỹ(t)‖ ≤ kε,∀t ∈ [0, T+τ+]

and (41)–(43) yield:

x(t) ∈ C(xk), ∀t ∈ [T − τ−, T + τ+], (45)

x(T − τ−) ∈ C(xk) ∩ Sm, (46)

x(T + τ+) ∈ C(xk) ∩ S1, (47)

wherewe used xk = ỹ0. From these conditionswe conclude that the continuous trajectory x(t) of (2) crossesΣm1∩C(xk) at a
time tc ∈ (T−τ−, T+τ+). The definition of themapM in Lemma13 yieldsM(xk) = x(tc) ∈ Σm1∩C(xk), where x(t) denotes
the trajectory of (2) with initial condition xk. For Λ < 1, the intersection Σm1 ∩ C(xk) equals {x ∈ Σm1|‖x‖ ∈ (0, ‖xk‖)}.
ForΛ > 1, the intersectionΣm1 ∩ C(xk) equals {x ∈ Σm1|‖x‖ > ‖xk‖}.
The set R can be written as R = {x ∈ Σm1| ‖x‖ ≥ ‖xF‖}, with

xF :=
|µ|

εL

(
eL(T+τ+) − 1

)
y0, y0 ∈ Σm1 \ {0}. (48)

Hence, for Λ < 1, we obtain ‖M(xk)‖ < ‖xk‖, ∀xk ∈ R = {x ∈ Σm1| ‖x‖ ≥ ‖xF‖}. For Λ > 1, we obtain ‖M(xk)‖
> ‖xk‖, ∀xk ∈ R = {x ∈ Σm1| ‖x‖ ≥ ‖xF‖}. �

Consider a trajectory from the initial condition x0 ∈ R = {x ∈ Σm1| ‖x‖ ≥ ‖xF‖}, with xF derived in Lemma 13, and
assumeΛ 6= 1. Define the return mapM onΣm1 according to Lemma 13, and choose xF as given in that lemma. The return
map of the trajectory through the point x0 satisfies ‖M(x0)‖ 6= ‖x0‖.
It remains to be proven that the trajectory from M(x0) cannot return to x0. Without loss of generality, suppose the

trajectory traverses Σm1 from Sm towards S1 at t = 0. The vector field (2) on the boundary Σm1 can be described by
ẋ = A1x + µb, x ∈ Σm1, which is autonomous and affine. Hence, all trajectories traversing [x0,M(x0)] cross this line
from Sm to S1. Since the trajectory from M(x0) cannot cross his own trajectory or [x0,M(x0)], it cannot return to x0. No
closed orbit can exist that contains a point x0 ∈ R. �

Proof of Theorem 9. Consider a visible eigenvector v ∈ S̄i, i = 1, . . . ,m, corresponding to the real eigenvalue λu of a
system matrix Ai. Define a unit vector ni,i+1 normal to the boundary Σi,i+1 and a unit vector ni−1,i normal to the boundary
Σi−1,i, where both vectors point towards Si. This implies that Si = {x ∈ R2|xTni,i+1 > 0 ∧ xTni−1,i > 0}.
Now, we will prove that there exists a scalar cH ∈ [0,∞), such that the halfline H = {x ∈ R2|x = −µA−1i b + cv, c ∈

[cH ,∞)} is included completely in S̄i, the closure of Si. Taking the inner product of the vectors x = −µA−1i b+cv, c ∈ (0,∞)

with ni−1,i and ni,i+1, we find that xTni−1,i > 0 if c >
µnTi−1,iA

−1
i b

nTi−1,iv
and xTni,i+1 > 0 if c >

µnTi,i+1A
−1
i b

nTi,i+1v
. Both denominators are
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nonzero and positive, since the visible eigenvector v is not contained in either of the boundariesΣi−1,i orΣi,i+1 and v ∈ S̄i

according to Definition 2. The set H is contained in the closure of Si, i.e. H ⊂ S̄i, when cH = max(
µnTi−1,iA

−1
i b

nTi−1,iv
,
µnTi,i+1A

−1
i b

nTi,i+1v
).

Consider a trajectory of (2) with initial position x0 ∈ H . Any position in H can be written as x = −µA−1i b+ cv, such that
substitution in (2) yields ẋ = cAiv. However, since v is an eigenvector, we obtain ẋ = cλuv. This vector field is tangent to
the halfline H . This implies, that trajectories can only enter or leave the halfline H at x = −µA−1i b + cHv, the end point of
the halfline. When the vector field at this point is into (out of) H , then H is a positively (negatively) invariant set.
Uniqueness of solutions of (2) excludes closed orbits inside the halfline H . In addition, a closed orbit cannot traverse H ,

since in that case, the closed orbit should enter and leave H . This is not possible, since H is either a positively or negatively
invariant set. No closed orbits can exist that either are contained in H , or contain a point in H . �

Proof of Theorem 10. The proof of this theorem is given in two parts. In Part 1, the theorem is proven for all ν ∈ N \ {0}.
Subsequently, in Part 2, the case ν = 0 is discussed.
Part 1
In this part we will first discuss the existence of equilibria for ν 6= 0, subsequently their local stability properties are dis-
cussed. Let J ⊆ {1, . . . , m̄} contain the indices, such that the domains D̄i, i ∈ J contain the origin. According to Assumption 1,
Fi(0, 0) = 0, ∀i ∈ J . With Assumption 4, we can apply the Implicit Function Theorem, cf. [21], which yields that for each
i ∈ J locally there exists a smooth path xi,1(ν), that satisfies Fi(xi,1(ν), ν) = 0. Note that this path may be positioned out-
side D̄i. When xi,1(ν) ∈ D̄i for given ν ∈ N , then an equilibrium of (1) exists in this domain. Assumption 5 excludes the
possibility that there exists an equilibrium in the domain D̄i for ν ∈ N whenDi is a cusp-shaped region at the origin. (Note
that a cusp-shaped region is not represented by a cone in (2)). Therefore, we may restrict ourselves to the paths of possible
equilibria xi,1(ν), i ∈ {1, . . . ,m} ⊆ J .
Differentiating Fi(xi,1(ν), ν) = 0with respect to ν, we obtain with Assumptions 2 and 4:

∂Fi
∂ν

∣∣∣∣
(x,ν)=(0,0)

+
∂Fi
∂x

∣∣∣∣
(x,ν)=(0,0)

∂xi,1(ν)
∂ν

∣∣∣∣
(x,ν)=(0,0)

= 0,

∂xi,1(ν)
∂ν

∣∣∣∣
(x,ν)=(0,0)

= −A−1i b. (49)

To prove the first statement of the theorem for ν, µ 6= 0, without loss of generalitywemay assume there exists a positive
ν∗, such that xi,1(ν) ∈ Di for all ν ∈ (0, ν∗) for a given i ∈ {1, . . . ,m}, where an open set Di is chosen since we adopted

Assumption 5. This implies that ∂xi,1(ν)
∂ν

∣∣∣
(x,ν)=(0,0)

= −A−1i b ∈ Di, and sinceDi is locally approximated by Si andµ = ν > 0,

we obtain−µA−1i b ∈ Si, for µ > 0. In combinationwith the fact that equilibria of (2) are positioned on xi,2(µ) = −µA−1i b,
we obtain the following result: when (1) contains an equilibrium inDi for an i ∈ {1, . . . ,m} and ν in a range (0, ν∗), then
(2) contains an equilibrium point in Si for all µ > 0.
To prove the converse statement, we note that with Assumption 5, all paths of equilibria of (2) will be positioned in a

cone Si, i = 1, . . . ,m. Therefore, we assumewithout loss of generality that (2) contains an equilibrium path xi,2(µ) ∈ Si for
µ > 0 and given i ∈ {1, . . . ,m}, such that fi(xi,2(µ), µ) = 0. Solving this equation yields xi,2(µ) = −µA−1i b ∈ Si, ∀µ > 0.

Using (49), we obtain: ∂xi,1(ν)
∂ν

∣∣∣
(x,ν)=(0,0)

∈ Si, where xi,1(ν) denotes a path such that Fi(xi,1(ν), ν) = 0 holds. The domain

Di is locally approximated by Si, such that we have:
∂xi,1(ν)
∂ν

∣∣∣
(x,ν)=(0,0)

∈ Di. Since xi,1(ν) is a smooth path andDi is an open

set, therefore there exists a ν∗ > 0 such that xi,1(µ) ∈ Di,∀ν ∈ (0, ν∗).
For ν, µ 6= 0, the final statement of Theorem 10 is obtained from the Andronov–Pontryagin condition; cf. Theorem 2.5

of [22].Without loss of generality, we assume there exists an equilibriumof (1), that follows an equilibriumpath xi,1(ν) ∈ Di
for ν ∈ (0, ν∗) ⊂ N̄, ν∗ > 0 with i ∈ {1, . . . ,m}. We define F̄i(x, ν) := Fi(x− xi,1(ν), ν) for ν ∈ (0, ν∗), which is a smooth
function, such that ẋ = F̄i(x, ν) describes the dynamics of (1) in a neighbourhood M(ν) near the equilibrium. For each
ν ∈ (0, ν∗),M(ν) 3 0 is chosen such, that for all x̂ ∈ M(ν), x̂+ xi,1(ν) lies insideDi.
According to the Andronov–Pontryagin condition the system ẋ = F̄i(x, ν) is structurally stable inM(ν). Therefore, there

exists an ε > 0 such that for all vector fields Gi that satisfy

sup
x∈M(ν)

(
‖F̄i(x)− Gi(x)‖ +

∥∥∥∥∂ F̄i∂x − ∂Gi∂x
∥∥∥∥) ≤ ε, (50)

the systems ẋ = Gi(x) and ẋ = F̄i(x) are topologically equivalent. Choosing Gi(x) = Aix, and observing that F̄i(x, ν) and
xi,1(ν) are smooth functions satisfying F̄i(0, ν) = 0, xi,1(0) = 0 and ∂ F̄i

∂x

∣∣∣
(x,ν)=(0,0)

=
∂Gi
∂x

∣∣∣
(x,ν)=(0,0)

= Ai, we can choose

ν and M(ν) small enough such that (50) is satisfied. Since ẋ = Gi(x) describes the dynamics in the neighbourhood of an
equilibrium of (2), the systems (1) and (2) near their equilibria are locally topologically equivalent for ν ∈ (0, ν∗) when ν∗
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is chosen small enough. In addition, the stability properties of the equilibria of (2) and (1) are equal. Hence, the theorem is
proven for the case ν 6= 0.
Part 2
In this part, we will prove the theorem for the case ν = 0. Existence of an isolated equilibrium at the origin of (1) for ν = 0
is given by Assumption 1. By construction, an equilibrium at the origin exist in (2) for µ = 0, which is isolated since all
matrices Ai are invertible; cf. Assumption 4. It remains to be proven that the local stability properties of the equilibrium at
the origin of (1) with ν = 0 and (2) with µ = 0 are equal.
By Assumption 4, either all trajectories near an equilibrium of (1) encircle this point, or a stable or unstable manifold of

this equilibrium exist. Therefore, we will study both cases, yielding Lemmas 14 and 15, respectively.
We studymanifolds of the nonsmooth systems (1) and (2) similar to the stable and unstable manifolds of nodes and sad-

dle points in smooth dynamical systems. However,we allow thesemanifolds to be defined only in a domain S̄i, i = 1, . . . ,m
or D̄i, i = 1, . . . , m̄.

Lemma 14. Under Assumptions 1 and 4, the equilibrium at the origin of (1) with ν = 0 has a stable (unstable) manifold if and
only if the equilibrium at the origin of (2) with µ = 0 has a stable (unstable) manifold, that is tangent to the manifold of (1) at
the origin.

Proof. First, we will prove the necessity part of the lemma. By Assumption 1, an equilibrium exists at the origin for the non-
smooth system (1). Assume this equilibrium of (1) has a stable (unstable) manifold C that emanates from the origin towards
a domain D̄i, i = 1, . . . , m̄. We distinguish two cases. In Case I, we will prove that this manifold of (1) is represented in (2)
when the manifold emanates from the origin towards a domain D̄i, i = 1, . . . ,m, that does not form a cusp. Subsequently,
we will prove this statement when the manifold emanates into a cusp-shaped domain D̄n, n ∈ {m+ 1, . . . , m̄} in case II.
To prove necessity in Case I, we assume that themanifold C ∈ D̄i, i = 1, . . . ,m, is not positioned in a cusp of boundaries

near the origin. Then the domain D̄i in (1) is represented by the cone S̄i in (2). When C is emanating tangentially to a bound-
ary Cij of (1), then we choose the index i such that on the intersection of the manifold C with a neighbourhood of the origin,

the dynamics of system (1) is described by ẋ = Fi(x, 0). This implies that there exists a λ such that ∂Fi
∂x

∣∣∣
(x,ν)=(0,0)

r = λr,

where r is the vector tangent to C at the origin, with the direction chosen to satisfy r ∈ D̄i. Note that λ < 0 (λ > 0) for
the stable (unstable) manifold. Since Ai is defined as

∂Fi
∂x

∣∣∣
(x,ν)=(0,0)

, Ai therefore has eigenvector r. Since D̄i is locally approx-

imated with S̄i, the eigenvector r is visible in S̄i. This implies that the set c := {x ∈ R2 : x = sr, s ∈ [0,∞)} is a manifold
of the conewise affine system (2), on which the dynamics is given by ẋ = Aix = λx, such that a stable (unstable) manifold
of (2) corresponds to a stable (unstable) manifold of (1).
To prove necessity in Case II, we assume that the manifold C is emanating from the origin towards a cusp of boundaries

into a domainDn, n ∈ {m + 1, . . . , m̄} of (1), and r is the vector pointing into this cusp from the origin, then there exists
a λ such that ∂Fn

∂x

∣∣
(x,ν)=(0,0)r = λr. Without loss of generality, we assume that we do not have two or more adjoining cusp-

shaped regions. Note that λ < 0 (λ > 0) for the stable (unstable) manifold. Since the vector field of (1) is continuous at each
boundary Cij, we observe that

∂Fi
∂x tCij(x) =

∂Fj
∂x tCij(x),∀x ∈ Cij, where tCij(x) denotes a vector tangent to Cij at the point x.

Therefore, ∂Fn
∂x

∣∣
(x,ν)=(0,0)r = λr implies that

∂Fi
∂x

∣∣∣
(x,ν)=(0,0)

r = ∂Fj
∂x

∣∣∣
(x,ν)=(0,0)

r = λr, with the indices i, j ∈ {1, . . .m} chosen

such that the domainsDi andDj have boundaries tangent to the cusp at the origin, although the domainsDi andDj do not

form a cusp at the origin. Since Ai and Aj are, respectively, defined as
∂Fi
∂x

∣∣∣
(x,ν)=(0,0)

and ∂Fj
∂x

∣∣∣
(x,ν)=(0,0)

, both Ai and Aj have

eigenvector r. The domains D̄i and D̄j are locally approximated with, respectively, S̄i and S̄j, such that the eigenvector r is
visible and lies on the boundaryΣij between Si and Sj. This implies that the set c := {x ∈ R2 : x = sr, s ∈ [0,∞)} is a man-
ifold of the conewise affine system (2), on which the dynamics is given by ẋ = Aix = Ajx = λx, such that a stable (unstable)
manifold of (2) corresponds to the stable (unstable)manifold of (1). In both cases, the necessity part of the lemma is obtained.
Now, we will prove the sufficiency part of the lemma by assuming that there exists a stable (unstable) manifold

c ∈ S̄i, i = 1, . . . ,m, of the system (2). By Lemma 12, we can denote this manifold with c = {x ∈ R2 : x = sr, s ∈ [0,∞)},
where r ∈ S̄i is an eigenvector of Ai. Let λ be the eigenvalue corresponding to this eigenvector. Since c is a stable (unstable)
manifold, we obtain λ < 0 (λ > 0). Again, two cases are distinguished. First, we will study the case where c is positioned
in an open cone Si, subsequently we will prove the sufficiency part of the theorem in case c is positioned on a boundary.
To prove sufficiency in the first case, we assume that the stable (unstable) manifold c is positioned in an open cone Si.

Then the Hartman–Grobman Theorem, [10], guarantees that the system ẋ = Fi(x, 0) locally has the same stable and unsta-
ble manifolds as the system ẋ = Aix. Therefore, the vector field Fi(x, 0) satisfies ∂Fi

∂x

∣∣∣
(x,ν)=(0,0)

r = λr. Since the trajectories

of (2) in the cone S̄i coincide with the trajectories of ẋ = Aix and the trajectories of (1) in the domain D̄i coincide with the
trajectories of ẋ = Fi(x, 0), the nonsmooth system (1) has a stable (unstable) manifold corresponding to c if λ < 0 (λ > 0).
To prove sufficiency in the second case, we assume the stable (unstable) manifold c of (2) lies on a boundary Σij. Recall

that tij denotes the vector tangent toΣij, pointing towards this ray. Let K ⊆ {1, . . . , m̄} denote the set of indices, such that
D̄n has a boundary tangent toΣij at the origin if and only if n ∈ K . (The domain D̄nmay ormay not be a cusp-shaped region).
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Fig. 10. Schematic representation of the setDi∆Si , depicted shaded, that consists of two parts, where ‖w‖ is locally quadratic in ‖x‖.

We assumed the existence of a stable (unstable) manifold c of (2) on a boundaryΣij. This implies that there exists a λ < 0

(λ > 0) such that Aitij = λtij = ∂Fi
∂x

∣∣∣
(x,ν)=(0,0)

tij. For the sake of contradiction, suppose (1) has no stable (unstable) manifold

tangent to Σij. Then ∀n ∈ K ,∀λn < 0 (λn > 0) : ∂Fn∂x
∣∣
(x,ν)=(0,0)tij 6= λntij. However, since F(x, ν) is continuous, we obtain

∂Fi
∂x

∣∣∣
(x,ν)=(0,0)

tij = ∂Fn
∂x

∣∣
(x,ν)=(0,0)tij, ∀n ∈ K . Hence, Ai =

∂Fi
∂x

∣∣∣
(x,ν)=(0,0)

has no eigenvalue λ < 0, (λ > 0) with the eigenvec-

tor tij, contradicting the existence of a stable (unstable) manifold with eigenvalue λ in (2). A contradiction is obtained, such
that (1) has a stable (unstable) manifold, which is tangent toΣij at the equilibrium. In both cases, the sufficiency part of the
lemma is proven. �

Lemma 15. Under Assumptions 1, 4 and 6, all trajectories of (1) with ν = 0 in a neighbourhood around the equilibrium at the
origin are spiralling around the origin and converge towards the origin for t → ∞ (t → −∞) if and only if all trajectories of
(2) with µ = 0 are spiralling around the origin and converge to the origin for t →∞ (t →−∞).

Proof. First we prove the sufficiency part of the statement, subsequently the necessity part of the statement is proven. As-
sume a spiralling motion exists in the system (2). Since system (2) is Lipschitz continuous, the time-reversed system can
be studied, and the chosen coordinate frame may be mirrored along a coordinate axis we may assume, without loss of gen-
erality, that the spiralling motion is counter clockwise and trajectories of (2) are converging to the origin for t → ∞. We
consider a trajectory of (2) starting at t = 0 from a point x0 which is positioned on the positive vertical axis. There exists a
time T such that the trajectory x(t) of (2) encircles the origin O once and returns to a point x(T ) on the interval of the line
segment [O, x0]. Wewill compare the trajectories x(t) of (2) with x̃(t) of (1), where both are starting from x(0) = x̃(0) = x0.
With the same reasoning as used in the proof of Theorem 8, we can find finite τ , E > 0, such that x̃(t) traverses the interior
of [O, x0] at a time tc ∈ (T − τ , T + τ) if ‖x(t) − x̃(t)‖ ≤ E,∀t ∈ [0, T + τ ]. Let L be a Lipschitz constant of both F(x, 0),
given in (1) and f(x, 0), given in (2). Theorem 3.4 of [17] guarantees that the requirement ‖x(t)− x̃(t)‖ ≤ E,∀t ∈ [0, T + τ ]
is met when ‖F(x, 0) − f(x, 0)‖ < D := LE

eL(T+τ)−1
, ∀x ∈ R(x0), where the open, bounded set R(x0) is chosen such that the

previously mentioned trajectories satisfy x(t), x̃(t) ∈ R(x0),∀t ∈ [0, T + τ ]. Next, we will prove that, by choosing x0 small,
‖F(x, 0)− f(x, 0)‖ < D holds for all x ∈ R(x0).
From Lemma 12, we find that trajectories of the conewise affine system with µ = 0 scale linearly with initial condi-

tions, such that E and R(x0) can be chosen such that they scale linearly with ‖x0‖. We will prove that ‖F(x, 0)− f(x, 0)‖ =
O(L‖x‖2, ‖x‖2), such that by decreasing ‖x0‖, ‖F(x, 0)− f(x, 0)‖ < D, ∀x ∈ R(x0) can be satisfied. By the Taylor expansion
of Fi(x, 0), we obtain:

‖Fi(x, 0)− fi(x, 0)‖ = O(‖x‖2). (51)

DefineDi∆Si := (Di ∪ Si) \ (Di ∩ Si), which is given in Fig. 10. The width ‖w‖ of this set, as graphically defined in Fig. 10,
is locally quadratic with ‖x‖. Since on one of the boundaries ofDi∆Si, the dynamics is described by ẋ = Fi(x, 0), we apply
the Lipschitz property of (1) to obtain:

‖F(x, 0)− Fi(x, 0)‖ = O(L‖x‖2), ∀x ∈ Di∆Si. (52)

Combination of (51) with (52) yields:

‖F(x, 0)− fi(x, 0)‖ = O(L‖x‖2, ‖x‖2), ∀x ∈ Di∆Si ∪ (Di ∩ Si), (53)

such that we obtain

‖F(x, 0)− f(x, 0)‖ = O(L‖x‖2, ‖x‖2), ∀x ∈ R2. (54)

By choosing x0 small enough, R(x0) becomes small enough, such that ‖F(x, 0)− f(x, 0)‖ < D, x ∈ R(x0). Given this set
R(x0), we conclude that the trajectory x̃(t) from x0 ∈ R(x0), starting from the positive vertical axis, crosses the interior of
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the line [O, x0] in the time interval [T − τ , T + τ ]. Consequently, the nonsmooth system (1) exhibits a spiralling motion,
and trajectories of (1) in the neighbourhood R(x0) do converge to the origin for t →∞, when ‖x0‖ is chosen small enough.
The necessity part of the statement is equivalent with the statement that the absence of a stable (unstable) spiralling

motion of (2) with µ = 0 excludes a stable (unstable) spiralling motion of (1) with ν = 0. To prove the latter statement,
assume the conewise linear system (2) with µ = 0 does not exhibit spiralling motion, converging to the origin for t →∞
(t → −∞). Considering Assumptions 4 and 6, system (2) should either exhibit spiralling motion converging to the origin
for t → −∞ (t → ∞), or should contain visible eigenvectors. In the first case, the spiralling motion, converging to the
origin for t →−∞ (t →∞), implies that in a neighbourhood of R of the origin, a spiralling motion of (1) with ν = 0 exist,
and trajectories converge to the origin for t → −∞ (t → ∞). This follows directly from the sufficiency part of the proof.
In case visible eigenvectors exist in (2) with µ = 0, Lemma 14 guarantees that a manifold exist in (1) for ν = 0, emanating
from the origin. This manifold excludes a spiralling motion of (1) for ν = 0. Hence, we have proven that the absence of a
stable (unstable) spiralling motion of (2) with µ = 0 excludes a stable (unstable) spiralling motion of (1) with ν = 0. �

Given Assumption 4 an equilibrium is unstable when either an unstable manifold exist, or a diverging spiralling motion
occurs. An equilibrium point is locally asymptotically stable, when a converging spiralling motion exist or when a stable
manifold exist, and no unstable manifolds. Trajectories encircling an equilibrium, which are not converging to this point
for t → ∞ or t → −∞, are, in a neighbourhood around the origin, excluded by Assumption 6. Therefore, application of
Lemma 14 guarantees that at ν = µ = 0, the stability properties of the equilibrium at the origin of (1) and (2) are equal
when visible eigenvectors exist in (1).When no visible eigenvectors exist in (1), then the stability properties of the equilibria
at the origin of (1) and (2) are equal according to Lemma 15. �

Proof of Theorem 11. To prove Theorem 11, first we will introduce a new coordinate system, and derive the technical
Lemma 16 for the obtained system. Subsequently, in Lemma 17 we will state an intermediate result about the number of
limit cycles, which will be used to prove the theorem.
In a new coordinate system z = x

µ
, defined for µ 6= 0, the conewise affine system (2) is represented as:

ż = f̃(z), (55)

f̃(z) = Aiz+ b, z ∈ Si.

Clearly, this transformation does not change the existence and stability of limit sets of the conewise affine system. Expressing
(1) in the coordinates z = x

ν
, defined for ν 6= 0, we obtain:

ż = F̃(z, ν), (56)

F̃(z, ν) = F̃i(z, ν) :=
1
ν
Fi(νz, ν), z ∈ D̃i,

where D̃i := {z ∈ R2|z = x
ν
, x ∈ Di}.

For the difference between (55) and (56), we obtain:

Lemma 16. Consider F̃(z, ν) as given in (56) and f̃(z) as given in (55). For every domain R(ν) := {z ∈ R2|‖z‖ ≤ c|ν|, c > 0},
and for all D > 0 there exists a ν̄ > 0, such that

‖F̃(z, ν)− f̃(z)‖ ≤ D, ∀ν ∈ (−ν̄, ν̄), ∀z ∈ R(ν). (57)

Proof. We observe that

‖F̃i(z, ν)− f̃i(z)‖ =
1
ν

O(ν2‖z‖2, ν2‖z‖, ν2), (58)

= O(ν3c2, ν2c, ν), ∀z ∈ R(ν), (59)

since fi is a first-order approximation of Fi, such that ‖Fi(x, ν)− fi(x, ν)‖ = O(‖x‖2, ν‖x‖, ν2).
The setDi∆Si := (Di∪Si)\(Di∩Si) is given in Fig. 10. Thewidth ‖w‖ of this set, as graphically defined in Fig. 10, is locally

quadratic with ‖x‖. At least at one of the boundaries ofDi∆Si, we know that Fi = Fj, due to continuity of the vector fields
F, where j ∈ {1, . . . , m̄} is chosen such thatDj adjoinsDi. Hence, we obtain ‖Fj(x, ν)− Fi(x, ν)‖ = O(L‖w‖) = O(L‖x‖2),
where (1) and (2) both have a Lipschitz constant L. This implies:

‖F̃j(z, ν)− F̃i(z, ν)‖ = O(ν3Lc2), ∀z ∈ (D̃i∆Si) ∩ R(ν), (60)

where D̃i∆Si := (D̃i ∪ Si) \ (D̃i ∩ Si).
Note that the state space can be partitioned as follows:

R2 =
⋃

i=1,...,m

(
¯̃D i ∩ S̄i

)
∪

⋃
i=1,...,m

(
D̃i∆Si

)
.
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a b

Fig. 11. (a) Stable limit cycle γ of (61) with two nearby trajectories and Poincaré section P . (b) Invariant set I of (62), depicted shaded, that is bounded by
trajectories of (62) from points a and e.

This implies that combination of (59) and (60) yields ‖F̃(z, ν) − f̃(z)‖ = O(ν3c2, ν2c, ν, ν3Lc2), ∀z ∈ R(ν), such that for
all D > 0 and bounded domain R(ν) defined in the Lemma, we can find a ν̄ 6= 0 such that

‖F̃(z, ν)− f̃(z)‖ ≤ D, ∀ν ∈ (−ν̄, ν̄),∀z ∈ R(ν). �

Lemma 17. If the dynamical system

ż = f(z), (61)

exhibits a stable or an unstable limit cycle, denoted γ ∈ Θ , with f : R2 → R2 a Lipschitz continuous function and Θ ⊂ R2 an
open set containing no other limit sets, then there exists a D > 0 such that the dynamical system

˙̃z = f(z̃)+ g(z̃), (62)

has at least one closed orbit in Θ when ‖g(z̃)‖ ≤ D, ∀z̃ ∈ Θ . When the Poincaré return map taken transversal to the closed
orbits of (62) inΘ does not have non-isolated fixed points, then at least one of these orbits is a limit cycle with the same stability
properties as γ .

Proof. Consider a line P that is locally transversal to the set γ of (61), as depicted in Fig. 11(a). Let the point c be the point
of intersection of γ with P . First, we assume γ is asymptotically stable, such that there should exist trajectories δi ∈ Θ and
δo ∈ Θ of (61) as depicted in Fig. 11(a), that are converging to the limit cycle and encircle the same equilibria. Notice that
the intersection b of δi with P lies in the interior of [a, c] and the intersection d of δo with P lies in the interior of [c, e].
Now, we will determine a maximum difference E > 0 and time interval [0, T + τi], such that ‖z(t) − z̃(t)‖ < E,∀t ∈

[0, T+τi]would imply similar behaviour for the trajectories of (61) and (62). Any suchdifference can be obtained by choosing
D small enough, since both systems are Lipschitz continuous.
The following argument is similar as in the proof of Theorem 8. Let T be chosen such that z(T ) = b when z(0) = a. We

choose a small τi > 0 such that the trajectory z(t) from z(0) = a satisfies ‖z(t) − b‖ < min(‖a − b‖, ‖c − b‖),∀t ∈
[T − τi, T + τi]. When the trajectory z(t), t ∈ [0, T + τi] of (61) from z(0) = a and z̃(t), t ∈ [0, T + τi] of (62) from z̃(0) = a
satisfy ‖z(t)− z̃(t)‖ ≤ Ei, for t ∈ [0, T + τi], with Ei > 0 small enough, then the trajectory z̃(t) from z̃(0) = a traverses the
interior of [a, c] in a time interval t ∈ (T − τi, T + τi).
In a similar fashion, we can derive τo and Eo, such that when the trajectory z(t), t ∈ [0, T + τo] of (61) from z(0) = b and

z̃(t), t ∈ [0, T + τo] of (62) from z̃(0) = e satisfy ‖z(t) − z̃(t)‖ ≤ Eo, t ∈ [0, T + τo], with Eo > 0 small enough, then the
trajectory z̃(t) from z̃(0) = e traverses the interior of [c, e] in a time interval t ∈ (T − τo, T + τo).
Now, let E = min(Ei, Eo). When L is a Lipschitz constant of f(x), Theorem 3.4 of [17] implies ‖z(t) − z̃(t)‖ ≤ E,

t ∈ [0,max(T + τi, T + τo)] is satisfied for the trajectories from z(0) = z̃(0) = a and z(0) = z̃(0) = e, when E =
D
L

(
eLmax(T+τi,T+τo) − 1

)
, such that choosing a positive D ≤ D̄ := LE

e(Lmax(T+τi,T+τo))−1
renders E > 0 small enough. In that case,

the orbits of (61) and (62) from the point a both show, during one rotation, a diverging spiralling motion with respect to the
origin. Similarly, the orbits of (61) and (62) from the point e show a converging spiralling motion during one rotation.
Since (61) is Lipschitz continuous, when a and e are chosen close enough to c and a positive D ≤ D̄ is chosen small

enough, the function nTp ˙̃z is of constant sign on the line segment [a, e], where a normal vector np of P is introduced. This
implies that the domain I is a positively invariant set, with I bounded by two trajectories of (62) and two line segments
of [a, e], as depicted in Fig. 11(b). In addition, the points a and e can be chosen such, that the domain I does not contain
equilibria of (62) and all trajectories of (62) remain in Θ for t ∈ [0, T + τ ]. Therefore, the Poincaré–Bendixson theorem;
see [10], guarantees the existence of a closed orbit in I for system (62).
Since I is a positively invariant set, a stable limit set of (62) exists in I . This follows from studying the return map of the

perturbed system (62), which should be monotonous, to allow uniqueness of solutions in reverse time. Denoting the return
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map of the perturbed system with M̃ , we observe that ‖M̃(a)‖ > ‖a‖ and ‖M̃(e)‖ < ‖e‖. Since ‖a‖ < ‖e‖, this implies
that the monotonous function xk+1 = M̃(xk) has to cross the line xk+1 = xk from ‖M̃(xk)‖ > ‖xk‖ towards ‖M̃(xk)‖ < ‖xk‖
in the interval xk ∈ [a, e]. When no non-isolated fixed points in this return map can occur, as stated in the lemma, then
the perturbed system (62) exhibits a limit cycle which is asymptotically stable. The case of an unstable limit cycle follows
analogously by studying the time-reversed systems. �

Using this Lemma, Theorem 11 can be proven. By Assumption 7, all closed orbits of (1) are limit cycles. At given system
parameter ν, for each stable or unstable limit cycle γi, i = 1, . . . , l, of system (1), we can define an open set Ri(ν) 3 γi,
containing no other limit sets. We apply the coordinate transformation z = x

|ν|
, relating (2) to (55) and (1) to (56), since we

assumed µ = ν. Using Assumption 8, all limit cycles γi, i = 1, . . . , l of (1) are represented in the system (56), such that
(56) contains the same number l of limit cycles, denoted γ̄i, i = 1, . . . l, and the stability properties of γi and γ̄i correspond
for i = 1, . . . l.
Combination of Assumption 7 and Lemma 17 yields that, since Ri(ν) is an open set and the system (1) is Lipschitz

continuous, there exists a D > 0 such that when

‖F̃(z, ν)− f̃(z)‖ ≤ D, ∀z ∈ Ri(ν), (63)

holds, then ki limit cycles of (55) exists in Ri(ν), of which at least one has the same stability properties as γi. According to
Lemma 16, a neighbourhood N of ν = 0 exists, such that condition (63) is satisfied. Applying the reversed transformation
x = |µ|z, we obtain ki limit cycles of the conewise affine system (2), of which at least one has the same stability properties
as γi.
The proof of the theorem is concluded by proving ki = 1, ∀i = 1, . . . , l, which is proven by contradiction. Suppose that

there exists a domain Ri(ν) with ki ≥ 2 stable or unstable limit cycles γi,j, j = 1, . . . , ki, existing in the system (2) in the
domain Ri(ν), i = 1, . . . , l. For all these sets γi,j, j = 1, . . . , ki, we can find non-overlapping domains Ri,j(ν) ⊂ Ri(ν), j =
1, . . . , ki, containing only one limit cycle. Using the same reasoning as above, we obtain that therefore, every set Ri,j(ν)
contains a limit cycle of the nonsmooth system (1), implying Ri(ν) contains at least ki limit cycles. By construction however,
Ri(ν) contains only one such set, yielding a contradiction. Therefore, ki = 1 for all i ∈ {1, . . . , l}. Hence, the numbers of
stable or unstable limit cycles of (1) and (2) are equal. In addition, their stability properties are equal. �
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