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Abstract
The systematic design of a robust adaptive control strategy for the sawtooth period using electron cyclotron current
drive (ECCD) is presented. Recent developments in extremum seeking control (ESC) are employed to derive an
optimized controller structure and offer practical tuning guidelines for its parameters. In this technique a cost
function in terms of the desired sawtooth period is optimized online by changing the ECCD deposition location
based on online estimations of the gradient of the cost function. The controller design does not require a detailed
model of the sawtooth instability. Therefore, the proposed ESC is widely applicable to any sawtoothing plasma or
plasma simulation and is inherently robust against uncertainties or plasma variations. Moreover, it can handle a
broad class of disturbances. This is demonstrated by time-domain simulations, which show successful tracking of
time-varying sawtooth period references throughout the whole operating space, even in the presence of variations
in plasma parameters, disturbances and slow launcher mirror dynamics. Due to its simplicity and robustness the
proposed ESC is a valuable sawtooth control candidate for any experimental tokamak plasma, and may even be
applicable to other fusion-related control problems.

1. Introduction

The sawtooth instability is a periodic redistribution of the
plasma core particles and energy [1–3]. On the one hand, its
mixing effect provides a mechanism to regulate the exhaust of
helium ash and α-particles [4], and the influx of deuterium
and tritium in a fusion reactor. On the other hand, the
sawtooth instability can trigger neo-classical tearing modes
(NTMs), which in turn reduce the operational performance
and could lead to disruptions [5, 6]. Sawtooth control, in
particular control of the sawtooth period [7, 8], is necessary
to avoid NTM triggering while concurrently refreshing the
plasma core.

The onset of a sawtooth crash is often associated with
the magnetic shear at the q = 1 surface [9]. The sawtooth
period can therefore be affected by changing the shear around
q = 1 through the injection of electron cyclotron (EC)

waves, see [10–13] and references therein. By changing the
deposition location of the resulting EC current drive (ECCD)
relative to the q = 1 surface the growth rate of the shear can
either be increased or decreased, leading to shorter or longer
sawtooth periods, respectively. The ECCD deposition location
is typically determined by the angle of an EC mirror. Sawteeth
are usually observed using soft x-ray or electron cyclotron
emission (ECE) measurements. The sawtooth period can be
extracted from these measurements in several ways, e.g. using
multiresolution wavelet analysis as discussed in [14].

The ECCD actuator has successfully been employed in
a closed loop to control the sawtooth period on both TCV
[15] and Tore Supra [16, 17] using classical linear controllers.
A systematic design for such controllers has been presented
in [18] based on structured analysis of the dynamics of the
sawtooth period. This approach enabled a priori assessment of
closed-loop stability, performance and robustness, which has
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been verified by simulations. Recently a similar methodology
has been used to suggest performance improvement strategies
[19], yielding faster convergence of the sawtooth period with
high accuracy.

The above controller design strategies assume that the
dynamics of the sawtooth period, i.e. its frequency response
functions [18], and its statics, i.e. its steady-state input–output
map, can be measured and remain approximately constant over
time. This asks for reproducible and predictable plasmas.
Under reactor-like conditions these requirements can easily be
met, but under experimental circumstances plasma parameters
are often uncertain or unknown. Variations in the profiles of,
e.g., density, electron temperature, conductivity and impurity
concentration can cause the q = 1 surface to shift, and effects
like scattering and EC beam deflections can alter the ECCD
deposition location and width. Consequently, the input–output
map and the underlying dynamics can change significantly,
due to which the above mentioned controllers can become
unstable. Hence, experimental devices require a sawtooth
period controller which is robust against large variations,
uncertainties and disturbances.

A first example of such a robust alternative has been
presented in [20], showing experimental results from TCV
using extremum seeking control [21]. The work in [20] is
based on the specific controller structure from [22, 23], and
maximizes the sawtooth period without a priori knowledge
of the ECCD deposition location which yields this maximum
period. However, the controller parameters were reported to be
difficult to select, and stabilization on smaller-than-maximum
periods was not addressed.

Recent developments in control engineering [21, 24, 25]
have shed new light on extremum seeking control (ESC), and
have generalized and extended the work in [22, 23]. ESC
is essentially an adaptive control strategy, which optimizes a
certain cost function using an online estimation of its gradient.
The results in [21, 24, 25] have shown that the ESC structure
can be decomposed into separate subsystems, i.e. a cost
function, a gradient estimator and an optimization routine.
Each subsystem can be chosen and designed separately, which
offers flexibility and allows for a systematic design and tuning
of the extremum seeking controller. These insights thus offer
solutions for the practical issues raised in [20], and allow for a
dedicated optimization of ESC for the sawtooth period control
problem.

In this paper we present such an extremum seeker design,
tailored to the sawtooth period control problem based on
these new developments [21, 25]. The controller is defined
in the crash-driven discrete-time framework presented in
[18] and uses a cost function which allows tracking of any
desired sawtooth period. The gradient of this function is
estimated online by means of an external perturbation on the
EC mirror angle and subsequent dedicated filtering. A so-
called sliding mode optimizer [26] uses this gradient to adjust
the mirror angle with a constant rate towards the optimum,
which coincides with the desired sawtooth period. Practical
guidelines will be provided to tune the controller parameters,
based on the required separation of time-scales between these
subsystems of the extremum seeker [21].

This proposed adaptive control strategy is model-free, i.e.
it does not rely on any mathematical or physical model of the

sawtooth instability. Therefore, the controller is inherently
robust, as it can be applied to any sawtooth simulation or
sawtoothing plasma. A Kadomtsev–Porcelli sawtooth model
[18] is used as a case study to benchmark and test the controller.
Simulation results affirm that the controller can track any
time-varying sawtooth period reference, even when the plasma
parameters change significantly, various types of disturbances
and a detection delay are added, or slow EC launcher dynamics
is incorporated in the control loop. This demonstrates that ESC
is indeed highly robust against uncertainties and disturbances,
and is therefore readily applicable on experimental devices to
control the sawtooth period. The high robustness does come
at the expense of degraded closed-loop performance compared
with the techniques in [18, 19]; the separation of time-scales
prescribes low convergence speed and the external perturbation
induces ongoing oscillations on the sawtooth period.

This paper is organized as follows, section 2 briefly
discusses the considered sawtooth model and the sawtooth
period control problem. In section 3, the basic principles
of extremum seeking for sawtooth control are discussed.
Controller structure design and tuning guidelines are
elaborated in section 4. Tests of the controller on the sawtooth
model are presented in section 5 and possible performance
improvements are suggested in section 6. Conclusions and
discussion are addressed in section 7.

2. Control problem formulation

Since the highly robust control strategy for the sawtooth
period presented in this paper is model-free, it is applicable
to any sawtooth model or experimental sawtoothing plasma.
However, to illustrate the tuning of its controller parameters
and to assess the resulting closed-loop behaviour, ESC will
be applied to the specific control-oriented sawtooth model
proposed in [18]. In this section this model is briefly
recapitulated, and used to introduce the sawtooth period control
problem.

2.1. Kadomtsev–Porcelli sawtooth model

The considered sawtooth model consists of three main
elements: the diffusion equation of the poloidal magnetic field,
Porcelli’s criterion for triggering of the sawtooth crash [9] and
the Kadomtsev reconnection model [27]. The model consists
of a set of equations to describe the evolution of the poloidal
magnetic field Bθ(r, t) as a function of time t and radius r

∂

∂t
Bθ = ∂

∂r

(
η

µ0r

(
Bθ + r

∂

∂r
Bθ

)
− ηJCD

)

ifs1 < scrit, (1a)

Bθ(r, t
+) =

{
Bθ(r, t

−) for r � rmix
d
dr

�c
∗(r) + 1

R0
rBφ for r < rmix

if s1 � scrit, (1b)

with boundary conditions Bθ(0, t) = 0 and Bθ(a, t) =
µ0Ip/2πa. Here η is the plasma resistivity, µ0 the magnetic
permeability, R0 the tokamak major radius, a its minor radius,
Bφ the toroidal magnetic field and Ip the plasma current.
Moreover, s1 = s(rq=1) is the magnetic shear at the surface
where the safety factor q equals unity, where for large aspect
ratio tokamaks q(r, t) = rBφ/R0Bθ and s(r, t) = r

q

dq

dr
.
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According to Porcelli’s model [9] a sawtooth crash is triggered
if this s1 exceeds a critical value scrit , which is assumed to be
constant here. At a sawtooth crash, the flux surfaces up to
the mixing radius rmix reconnect on a very short time-scale
according to the model of Kadomtsev [27], represented by
equation (1b). The magnetic field Bθ after a crash (at time t+)
follows from the post-crash helical flux function �c

∗(r), which
depends on the pre-crash helical flux function �∗(r) at time
t−. This �c

∗(r) is calculated using the Archimedes–Kadomtsev
approach proposed in [18], i.e.

�c
∗(rc) = �∗(ri−) = �∗(rj+),

where r2
c =

∑
i

r2
i− −

∑
j

r2
j+, (2)

where ri− denotes the pre-crash surfaces with d�∗/dr < 0,
and rj+ the pre-crash surfaces with d�∗/dr > 0. The output
of the model is the time between two subsequent crashes
equation (1b), which defines the sawtooth period τs.

The magnetic field Bθ , and thereby the period τs, can be
influenced by the EC current drive profile JCD in equation (1a).
This profile is determined by the total driven current ICD and
the deposition location of the EC beam (assuming a constant
deposition width). The latter is directly influenced by the EC
mirror angle ϑa, which is considered the input of the sawtooth
model. The expression to determine JCD from the current drive
ICD and the EC mirror angle ϑa is given in [18].

This relatively simple model is control-oriented in the
sense that it captures the qualitative input–output behaviour
of the sawtooth and its dominant (magnetic) time-scales [18].
Note that the model is only valid for circular tokamaks, does not
incorporate heating effects of the EC beam and therefore does
not encompass the hysteresis discussed in [15], and note that in
reality scrit is not constant. However, these issues merely affect
the quantitative details of the input–output behaviour and are
therefore irrelevant for the controller structure. In particular,
the adaptive controller discussed in this paper is model-free
and is thus explicitly robust against such modelling errors.

The model is implemented in a Matlab� Simulink�
environment [18]. This gives great flexibility in the design
and interconnection of systems and signals. The model
parameters have been chosen according to the specifications
of the TEXTOR tokamak [28], and tuned to yield a realistic
ohmic sawtooth period of about 15 ms.

2.2. The sawtooth period control problem

A schematic representation of the sawtooth period control
problem is shown in figure 1. The first input to the sawtoothing
plasma, or in our case the sawtooth model, is the EC driven
current ICD, which is in the same direction as the plasma current
and is kept constant at ICD = 2 kA. The second input is the
mirror angle ϑa; the requested mirror angle is denoted by ϑ ,
which is the control variable in this paper. The output of the
sawtooth system is a set of measurements χ , e.g. soft x-ray
or ECE, from which a sawtooth period τs is determined by a
period detection algorithm [14]. The controller has two inputs:
τs and a reference sawtooth period τs,ref , which may be time
varying. The task of the controller is to steer the mirror such
that τs converges to τs,ref .

Figure 1. Sawtooth period controller topology, where χ represents
a sawtoothing plasma diagnostic (such as ECE or soft x-ray).

Figure 2. Steady-state input–output map of the model presented in
section 2.1 (solid) and the ohmic sawtooth period τ� (dashed), for
Bφ = 2.45 T and Ip = 400 kA.

As we will later argue, our proposed control strategy
operates on a time-scale that is slower than the time-scale of the
sawtooth dynamics. This implies that the mirror adjustments
are so slow that the sawtooth period is essentially always
close to its steady-state value. For this reason the steady-
state input–output behaviour of the sawtooth instability is of
importance, which describes the relation between the mirror
angle and the sawtooth period in steady-state, i.e. it depicts
τs for a certain ϑ as t → ∞. Figure 2 shows this input–
output map for the sawtooth model described in section 2.1,
which we will use as a case study throughout this paper. The
ohmic period τ� is indicated by the dashed line. Figure 2 thus
shows that for mirror angles below 7.5◦ the sawtooth period
shortens, and for larger angles the period is lengthened. This
corresponds to injecting current either inside or outside the
q = 1 surface. Such behaviour is in agreement with previous
observations [12, 13] and can be expected on ITER also [10].
Note that the slope or gradient dτs/dϑ of the input–output
map is not constant and even changes sign; for some values of
ϑ an increase in mirror angle yields an increase of the period,
whereas for other values of ϑ the period decreases. This shows
the importance of the gradient for a controller design; in order
to steer the mirror in the right direction, the sign of dτs/dϑ has
to be known.

Standard feedback control strategies as used in [15–18]
or high-performance controllers as in [19] require the sign of
the gradient to be constant, which limits their operating space,
e.g. to 0◦ � ϑ � 6◦. Moreover, they rely on knowledge of
the gradient (also known as the DC-gain) and the underlying
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Figure 3. ESC topology for the sawtooth period, depicting the extremum seeking controller in the bottom grey box.

dynamics to ensure stability of the control loop. As mentioned
in the introduction, this is a viable assumption under reactor-
like conditions. However, on experimental tokamaks plasma
parameters are often uncertain or time varying, leading to
large variations in the sawtooth dynamics, while the controller
operating space generally needs to be large. Hence, such
devices require more robust control approaches.

A good candidate is extremum seeking control, which
does not rely on any a priori knowledge of the system. It
only requires the existence of a stable steady-state input–output
map, with a unique output τs for each fixed input ϑ [22, 29];
the curve in figure 2, of which each point is indeed stable
[18], indicates that the considered sawtooth model meets this
criterion. ESC identifies the gradient of the system online
and is therefore able to cope with uncertainties of the input–
output map. Consequently, it can be used throughout the entire
operating space of the mirror. In this paper we will discuss the
systematic design of an extremum seeking (ES) controller for
the sawtooth period where the robustness against variations of
the input–output map is specifically addressed.

3. Fundamentals of extremum seeking for sawtooth
period control

ESC is an adaptive control strategy that uses online
optimization techniques to slowly drive a process to a desired
operating point which minimizes a cost function f . For
sawtooth period control this implies that ESC finds the mirror
angle ϑ that minimizes a certain function f such that the period
τs matches a desired reference value.

The block scheme in figure 3 shows the ESC topology for
the sawtooth period control problem. This closed loop operates
in both continuous time (sawtooth process) and discrete time
(controller). The sawtooth period, i.e. the variable to be
controlled, only changes when a crash occurs. There are no
measurements of the period between crashes, hence, controller
updates of the angle ϑ are triggered by the period detection.
Therefore, the controller operates in discrete time [30], with
the interval between control updates being the most recent
sawtooth period, which concurs with the approach taken in
[18]. The variable k is the crash counter and is a measure of
discrete time.

The ES controller consists of three subsystems: a
cost function, a gradient estimator and an optimizer. The
cost function should be such that its function value y is

minimal if the measured sawtooth period τs is equal to the
reference sawtooth period τs,ref . The gradient estimator uses
a perturbation signal d to estimate the gradients of the cost
function with respect to the mirror angle ϑ . The optimizer
uses this gradient estimate ξ to drive the estimate of the optimal
mirror angle ϑ̂ to the minimizer ϑ∗ of the cost function, which
is typically unknown, under the assumption that the input–
output map is not known exactly.

For this controller to work properly, it should be designed
such that a separation of the time-scales that each subsystem
operates in is obtained [25]. The cost function is static, and
could thus be viewed as part of the sawtooth process. The
estimation of the gradient can only be performed correctly if
the dynamics of the sawtooth period has converged sufficiently
close to the steady-state. The perturbation d used by the
gradient estimator thus has to be slower than the slowest time-
scale of the sawtooth dynamics. Some gradient estimators
need settling time due to internal filtering, others rely on a
slow optimizer in order to work; hence the optimizer operates
at the longest time-scale. In summary, an ES control loop
should display three important time-scales [21, 25]:

(1) the dynamics of the sawtooth period, including the cost
function (fastest);

(3) the perturbation for the gradient estimation (intermediate);
(3) the optimization (slowest).

This time-scale separation can be visualized in figure 4, which
is inspired by [21]. It shows an arbitrary steady-state map
(combination of sawtooth system and cost function) in grey,
with input ϑ and the value y of the cost function as output.
The output quickly evolves from some initial condition to
the steady-state map. The gradient estimation scans the cost
function on an intermediate time-scale, and the optimization is
performed on the slowest time-scale. The separation of time-
scales allows us to design each subsystem separately, starting
with the fastest system.

4. Extremum seeking controller design

This section discusses the working principles of the different
ESC subsystems, as well as the accompanying design
procedures. Moreover, implementation and tuning guidelines
are proposed in section 4.4, and a supervisory control loop is
discussed in section 4.5.
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Figure 4. Output trajectory showing the time-scale separation.

4.1. The cost function

The task of the extremum seeker is to find a mirror angle ϑ

that minimizes a static cost function f . This minimum of the
cost function should correspond to a desired operating point,
i.e. when the sawtooth period τs matches a desired period or
reference τs,ref . Therefore, we propose the cost function

f (τs, τs,ref) = (τs,ref − τs)
2, (3)

which has a unique minimum at τs = τs,ref . Figure 5 depicts
this cost function as a function of the input ϑ in steady-state
for τs,ref = 10 ms, obtained by substituting the input–output
map of figure 2 into equation (3). It shows multiple optima
that minimize the cost function, since there are two possible
mirror angles that can yield a sawtooth period of 10 ms. It
is unknown a priori to which minimum the extremum seeker
will converge. In section 5.1 it will be shown that the dynamic
behaviour of the closed-loop system is very different at the
two optimal mirror angles. Moreover, note that in a specific
case where τs,ref > τ� there will also be a local non-optimal
minimum of the cost function at ϑ = 0◦. In principle, ESC
could converge to such a point. To avoid this behaviour a
supervisor could be used, as discussed in section 4.5.

In practice the desired sawtooth period τs,ref may be time
varying, due to which the cost function may change. However,
as long as this reference is varied on a slower time-scale
than the optimizer, the controller is able to track the moving
optimum. In a previous application of ESC [20] the sawtooth
period has been maximized. In our framework this can be
achieved by choosing τs,ref in equation (3) greater than the
maximum sawtooth period (i.e. >30 ms). Similarly, choosing
τs,ref < 3 ms will minimize the sawtooth period.

4.2. Gradient estimator design

Numerical optimization algorithms often make use of the
gradient of a cost function to find its minimum. A commonly
used optimizer [21, 22, 29] is the first-order gradient descent
method

ϑ̂(k) = ϑ̂(k − 1) − γ · df

dϑ

∣∣∣∣
ϑ̂(k−1)

, (4)

where df /dϑ |ϑ̂(k) is the gradient at crash k, i.e. the derivative
of the cost function with respect to the control variable, in this
case the mirror angle ϑ . The optimization rate is proportional

Figure 5. Steady-state cost function equation (3) evaluated for
τs,ref = 10 ms and the input–output map in figure 2. The optima ϑ∗

1 ,
ϑ∗

2 have been indicated with the markers.

to this gradient (scaled with a gain γ > 0); if the gradient is
positive, the ϑ is decreased and vice versa, until the minimum
is reached.

Since by assumption the input–output map is unknown,
the gradient df /dϑ |ϑ̂(k) has to be estimated online. To this end
we first consider the minimal gradient estimator [29], depicted
in grey in figure 6, whose working principle relies on using
external perturbations on the input ϑ . In this scheme y(k) is
the value of the cost function, ϑ(k) its argument, d(k) is an
externally applied perturbation and ξ(k) is the output variable.
In accordance to the separation of time-scales we assume that
the perturbation d(k) is slower than the sawtooth dynamics,
so that the combination of the sawtooth system and the cost
function can be approximated by a static function f (ϑ(k)),
like the one shown in figure 5. For the output of the scheme it
then follows that

ξ(k) = d(k)f (ϑ̂ + d(k)). (5)

The perturbation d(k) is chosen to be sinusoidal. This is a
common choice in ESC, although other perturbations are also
possible [31]. Let ω be the frequency and α the amplitude, so
that d(k) = α sin(ωk), then the output becomes

ξ(k) = α sin(ωk)f (ϑ̂ + α sin(ωk)). (6)

A first-order Taylor expansion of f (ϑ(k)) around the nominal
input ϑ̂ yields

f (ϑ̂ + α sin(ωk)) ≈ f (ϑ̂) + α sin(ωk)
df

dϑ

∣∣∣∣
ϑ=ϑ̂

+ O(α2). (7)

Assuming small α, and thereby neglecting the higher-order
terms, substitution of this result in equation (6) then yields

ξ(k) ≈ α sin(ωk)f (ϑ̂) + α2 sin2(ωk)
df

dϑ

∣∣∣∣
ϑ=ϑ̂

= α sin(ωk)f (ϑ̂) +
α2

2
(1 − cos(2ωk))

df

dϑ

∣∣∣∣
ϑ=ϑ̂

. (8)

Hence, the instantaneous output ξ(k) consists of a static
componentα2/2 times the gradient, plus additional oscillations

5
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Figure 6. Topology of a minimal gradient estimator, indicated in grey.

Figure 7. Block scheme of the proposed gradient estimator, indicated in grey.

due to the perturbation. However, note that the optimizer,
which will use this ξ(k), operates on a longer time-scale than
the estimator; the oscillations will effectively average out over
such a long time-frame, since

lim
K→∞

1

K

K∑
k=0

(ξ(k)) = α2

2

df

dϑ

∣∣∣∣
ϑ=ϑ̂

. (9)

Hence, under the assumption of time-scale separation, the
output ξ(k) of figure 6 indeed provides an estimation of the
gradient of the cost function (in an averaged sense) with a
scaling of 2α−2.

The accuracy of the gradient estimator in equation (5)
and figure 6 is further improved by the inclusion of additional
filters. In the closed loop the nominal operating point ϑ̂ and
thereby f (ϑ̂) are time varying. Consequently, the first term
in equation (8) does not average out completely. Since ϑ̂ is
varying slowly (with the speed of the optimizer), f (ϑ̂) can be
attenuated by high-pass filtering the output of the cost function
y(k). The filtered signal y ′(k) then has an average close to
zero, while the term α sin(ωk)df dϑ |ϑ=ϑ̂ in equation (7) is
retained. The inclusion of this filter naturally improves the
gradient estimation, although ξ is still an approximation which
is only valid in an averaged sense.

Additionally, a low-pass filter could be applied to the
gradient estimation [21, 22, 25]. If such a filter is tuned to
have a slow response, the oscillating terms in equation (8)
are attenuated at the cost of additional delay. A more elegant
approach is the application of a moving average filter. Note that
ξ(k) consists of sums of periodic signals of frequency nω with
n = 1, 2, 3, . . .. A moving average filter with a time window
equal to the period time of the perturbation suppresses the exact
same frequencies and thus removes all oscillating terms in
equation (8). Let the perturbation frequency be ω = aπ where
0 < a < 1 and 2/a is a natural number. The perturbation then
becomes

d(k) = α sin(aπk), (10)

and a full period of the perturbation then involves n =
2/a sawtooth crashes. Therefore, we propose the following

moving average filter:

ξ(k) = 1

n

k∑
j=1+k−n

ξ ′(j), (11)

with ξ ′(k) the unfiltered gradient estimate. A schematic
representation of this extended gradient estimator, which is
used in this paper, is shown in figure 7. The gradient estimate
is formed by the output ξ(k), which again has to be scaled by
a factor 2α−2.

The frequency of the perturbation separates the fast
time-scale of the sawtooth dynamics from the slower time-
scale of the gradient estimator. This frequency should be
sufficiently low (belonging to the pass-band of the sawtooth
dynamics [18]), such that the response of the sawtooth period
to the perturbation is close to steady-state. On the other
hand, a faster perturbation leads to faster convergence of the
gradient estimator. The tuning of the perturbation frequency
is discussed in section 4.4.

4.3. Optimizer design

The optimizer uses the estimation of the cost function gradient
to change the mirror angle such that the cost function is
minimized, such as the first-order gradient descent technique
in equation (4). In this technique the gain γ scales the
convergence rate of the optimizer, which depends on the
estimated gradient. This implies that when the gradient is
large, γ has to be small to ensure that the optimization
is sufficiently slow. Unfortunately, in the sawtooth period
control problem the gradient undergoes very large changes,
as suggested by figures 2 and 5. If γ is tuned such that
acceptable performance is achieved in the regions where the
gradient is large, typically for mirror angles around 7.5◦, the
convergence speed is extremely slow in the regions with small
gradients, typically for mirror angles 0◦ � ϑ � 6◦. If the
optimizer is tuned such that it is performing well in the region
0◦ � ϑ � 6◦, it can actually be unstable in other regions,
since the time-scale separation may not be guaranteed. This
issue was encountered in [20] and ameliorated by scheduling
the optimizer gain. However, this compromises robustness,
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Figure 8. Sliding mode optimizer.

since it requires information on the input–output behaviour of
the sawtooth.

An alternative approach is to make the convergence rate
completely independent of the gradient by means of a so-called
sliding mode optimizer [26]. This optimizer uses only the
sign of the first-order gradient estimate, and steers the nominal
mirror angle with constant velocity (in discrete time) towards
the minimizer ϑ∗, i.e.

ϑ̂(k) = ϑ̂(k − 1) − γ sign(ξ(k)). (12)

The corresponding block scheme is shown in figure 8. There
are three main advantages of this type of optimizer:

• the gradient does not affect the convergence rate, hence
acceptable performance can be achieved throughout the
entire operating range;

• it is more robust (with respect to convergence), since it
requires only the sign of the gradient and thus allows for
certain errors on the gradient estimation;

• the tuning of the optimizer gain is simplified considerably,
as will be discussed in section 4.4.

A disadvantage of this approach is that chatter of ϑ around
the optimum will arise. Chatter is referred to as the unwanted
bouncing or switching of variables, in this case the mirror angle
ϑ , as shown in figure 9. The proposed optimizer is always
optimizing ϑ̂(k) with a fixed convergence rate determined by
γ . As a result, when close to an optimum, the mirror angle
(and with that the sawtooth period) will display an additional
oscillation around the optimum, with a lower frequency than
the perturbation. This frequency is related to the settling time
of the gradient estimate, and the slope of the trajectory of ϑ̂(k)

is equal to ±γ . The chatter can be interpreted as a disturbance,
but since its frequency is lower than the perturbation frequency,
the correlation between perturbation and chatter is small.
Hence, chatter does not influence the gradient estimate. The
amplitude of the chatter is determined by the optimizer gain
γ and the settling time of the optimizer, which is mainly
determined by the perturbation frequency. Both a larger γ

and a larger settling time of the optimizer yield a larger chatter
amplitude.

4.4. Overall control system and tuning of the controller
parameters

This section discusses the complete closed-loop control system
shown in figure 10, and presents guidelines for the tuning
of the controller parameters. Note again that the mirror and
the plasma operate in continuous time, whereas the controller
is defined in discrete time. The transition from continuous
to discrete time is done by the sawtooth period detection.
Conversely, a ‘hold’ operation keeps ϑ(k) constant in between
crashes to form the continuous-time signal ϑ(t).

Figure 9. Illustration of chatter around an optimum.

4.4.1. Tuning of the gradient estimator. As discussed in
section 4.2, the frequency of the perturbation d(k) has to
be sufficiently low such that the sawtooth period is close to
steady-state at all time. In [18] it is shown that currently
existing EC launchers, especially on smaller tokamaks like
TEXTOR, operate on a longer time-scale than the sawtooth
period dynamics. The speed of the launcher mirror is largely
characterized by the bandwidth of its own motion control
system. Roughly speaking, the launcher mirror can follow
frequencies up to the bandwidth quite well (so that ϑa ≈ ϑ) but
attenuates higher frequencies (so that ϑa ≈ 0). The bandwidth
of the launcher thus determines the maximal perturbation
frequency.

This bandwidth fbw is specified in the continuous-time
domain, while the proposed ESC operates in discrete time.
The fastest perturbation frequency in continuous time occurs if
the sampling interval of the controller is the shortest, i.e. when
the sawtooth period is the shortest. Hence, the perturbation
frequency should be selected such that its continuous-time
equivalent at the minimal sawtooth period is slightly lower than
the bandwidth of the launcher. Defining τs,min as the smallest
possible sawtooth period, the perturbation frequency a should
thus satisfy

a � 2fbw · τs,min. (13)

The earlier posed limits on parameter a still apply as well, i.e.
0 < a < 1 and 2/a must be a natural number. With a realistic
bandwidth fbw of 10 Hz [18] and a minimal sawtooth period of
3.0 ms the perturbation frequency would be a = 0.05 crash−1.
This perturbation frequency ensures optimal performance of
the gradient estimator, assuming that the launcher dominates
the sawtooth period dynamics.

In case the EC launcher operates on a faster time-scale
than the sawtooth dynamics, the selection of parameter a

requires identification of the slowest time-scale of the sawtooth
period. In that case the perturbation should belong to the pass-
band of the sawtooth period dynamics. Stepwise identification
experiments as described in [18] give information on the time-
scale of the sawtooth period. The period of the perturbation
d(k) should be larger than the settling time of such a step.
In [18], a step around ϑ = 2.68◦ has a settling time of five
crashes. Taking a safety margin into account, a perturbation
period of ten crashes could be chosen. Simulations indeed
showed that, in the case of an infinitely fast launcher, the
perturbation frequency could be increased to a = 0.2 crash−1,
corresponding to a ten crashes period.
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Figure 10. Complete closed loop with the ESC subsystems, i.e. the cost function, the gradient estimator, and the optimizer, marked grey.

The amplitude α of the perturbation d(k) must be chosen
as small as possible, since larger α lead to larger estimation
errors in equation (8). However, the minimal amplitude is often
limited by practical considerations. When disturbances are
large, the gradient estimator can become quite slow, as it then
takes more time to average out the effect of these disturbances.
A larger perturbation amplitude can then improve the signal-
to-noise ratio, and hence the speed, of the gradient estimation
ξ(k). Similarly, whenever hysteresis is present [15], α should
be large enough to identify the frequency of the perturbation
d(k) in the time-evolution of the sawtooth period; this way the
sign of the gradient can still be obtained, despite the hysteresis.
In a practical setup the positioning accuracy of the mirror
is likely to pose a lower limit on the minimal perturbation
amplitude. E.g. the mirror on TEXTOR has a maximal
positioning error of 0.6◦ during maximal acceleration [32],
and smaller positioning errors during normal motion. Here
the perturbation amplitude is chosen α = 0.3◦.

The high-pass filter in figure 10 is of a discrete-time first-
order type. It has a single tuning parameter h which must
satisfy 0 < h < 1. The lower the value of h the more
aggressive the filtering, i.e. for very low h the output of the
filter would always be close to zero and a lot of the content of
y(k) is lost. It is therefore important to choose h close to 1. A
practical value is h = 0.9.

4.4.2. Tuning of the optimizer. The optimizer gain γ is
directly related to the optimization speed and should be tuned
such that the optimizer is slower than the gradient estimator. If
the gain is chosen too large, the optimizer tends to overshoot

and miss the optimum since the gradient estimator is not able
to determine the gradient accurately if the operating point is
changing too fast. A pragmatic approach is to start with a small
γ and increase the gain during experiments. Here it is assumed
that the gradient estimator needs three perturbation periods to
settle, i.e. 3 · 2/a sawtooth crashes to obtain a proper gradient
estimate, since the moving average filter has a memory of one
perturbation period and the high-pass filter introduces some
additional settling time. The estimated minimizer ϑ̂(k) may
not change too much in this time window. Figure 2 shows
that the largest gradient is around ϑ ≈ 7.5◦, a region which is
approximately 2◦ wide. We therefore assume that the mirror
angle may vary about 0.5◦ during the settling of the gradient
estimator. An initial guess for the optimizer gain is thus

γ = 0.5

6
a [◦/crash]. (14)

With a = 0.2 crash−1 (assuming an infinitely fast launcher)
the initial guess is γ = 0.017◦/crash, in simulations we could
choose γ = 0.02◦/crash.

Note that the total closed-loop error comprises the sum
of the effects of both the perturbation d(k) and the chatter.
When operating close to the marginal point for NTM seeding,
one should realize that this error could lead to an accidentally
long, NTM triggering, sawtooth period. In such situations the
perturbation and chatter amplitudes should be tuned with care.

4.5. Usage of a supervisor for practical issues

In most control implementations supervisory controllers
are employed to detect and correct undesired closed-loop
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Figure 11. Unbounded mirror angle growth due to an infeasible reference.

behaviour. For the sawtooth control problem a supervisor can
be used to guard the low-level controller, i.e. the ESC, since
the requested mirror angle could grow unbounded for certain
specific reference trajectories.

This is illustrated in figure 11. If the sawtooth period
is first maximized and then sequentially lowered, it is not a
priori known in which direction the ESC will choose to evolve,
i.e. either to the left or to the right of the maximum. If the
ESC steers towards the right it is possible to have unbounded
growth of the mirror angle if τs,ref is set to a value smaller
than the ohmic sawtooth period. A supervisor can be used to
detect such unbounded growth and steer the mirror back using
feedforward techniques.

Detection could be done by means of an additional
gradient estimator, which estimates the gradient of the input–
output map of figure 2 directly (instead of the gradient of the
cost function). If the sign of this gradient is negative for mirror
angles beyond the q = 1 surface, unbounded growth might
occur, and the mirror needs to be steered back accordingly.
Another solution is to simply limit the maximally allowed
mirror angle. Similarly, a supervisor can prevent convergence
to a non-optimal local minimum at ϑ = 0◦, e.g. by steering the
angle to an arbitrary value outside q = 1 whenever τs,ref > τ�.
The actual design of a supervisory controller is out of scope
for this paper, as all simulation results are obtained without the
use of a supervisor.

5. Simulation results

To validate the effectiveness of the proposed ESC strategy,
this section shows and discusses the following closed-loop
simulations:

(1) the tracking of sawtooth period reference trajectories in
section 5.1;

(2) testing the controller for robustness against varying
plasma parameters and disturbances in section 5.2;

(3) the impact of the launcher dynamics on the performance
in section 5.3.

For cases 1 and 2 the response of the launcher mirror to a
requested angle is assumed to be infinitely fast compared with
the sawtooth dynamics, which is a reasonable assumption for
very large tokamaks such as ITER. The controller parameters
are the same for all simulations in section 5.1 and section 5.2,
in section 5.3 the tuning is adjusted to cope with the launcher
dynamics.

5.1. Tracking of sawtooth period references

In the following results the EC driven current ICD = 2 kA,
the perturbation frequency a = 0.2 crash−1, its amplitude
α = 0.3◦, the optimizer gain γ = 0.02◦/crash and the
high-pass filter parameter h = 0.9, as has been discussed in
section 4.4.

5.1.1. Tracking small sawtooth periods. In the first
simulation the initial mirror angle is chosen ϑ(k = 0) = 3◦

and the reference trajectory for the sawtooth period takes
values between 5 and 14 ms, i.e. the controller operates on
the left-hand side of figure 2. The closed-loop results are
shown in figure 12. The sawtooth period as a function of
the elapsed sawtooth crashes is shown in figure 12(a), the
reference is indicated with the thicker grey line. Figure 12(b)
shows the mirror angle and the estimate of the minimizer ϑ̂ ,
which shows the chatter due to the sliding mode optimizer. In
figure 12(c), the error τs−τs,ref is shown, which is the difference
between the actual sawtooth period and the reference. The
gradient estimate ξ is shown in figure 12(d). The reference
starts at 10 ms, and is then gradually lowered to 5 ms. Then
the reference sawtooth period is increased, first linearly then
in a stepwise fashion. The results show that there is a
small transient from the initial condition. The controller
achieves tracking of the requested sawtooth period with an
error of slightly more than 1 ms when the reference is changing
gradually. The controller successfully handles a step in the
reference applied at k = 800 crashes; the settling takes place
in about 100 crashes.

The oscillations on the sawtooth period are a result of the
perturbation on ϑ and the chatter on ϑ̂ introduced by the sliding
mode optimizer. Since the gradient of the input–output map
is relatively small, the resulting oscillations on τs are small.
In figure 12(b) the amplitude of the chatter is approximately
equal to the perturbation d(k).

The step in τs,ref leads to a large increase in the gradient
estimation in figure 12(d). A first-order gradient descent
optimizer equation (4) as in [20], whose optimization rate is
proportional to the gradient, would have yielded a significant
change in the mirror angle at this step. Such a change in ϑ can
be risky, as it can instantly bring the sawtooth system to another
operating region (e.g. the right-hand side of figure 2), which
can result in an unbounded growth of ϑ . In a specific incidental
case, such a change in ϑ may also turn out just right, yielding
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Figure 12. Simulation results of tracking small sawtooth period references: (a) the sawtooth period τs, (b) the mirror angle ϑ and estimated
minimizer ϑ̂ which shows the chatter, (c) the tracking error τs − τs,ref and (d) the gradient estimate.

an uncharacteristically fast convergence for ESC. An example
can be found in [20], where the controller adapts within just
one perturbation period to a rapid change in vertical position.
In contrast, figure 12(b) shows that the sliding mode optimizer
always alters ϑ linearly towards the new optimum. Hence, due
to this constant optimization rate the sliding mode optimizer
is more robust against large variations of the gradient.

5.1.2. Tracking large sawtooth periods. Figure 13
shows the simulation result where the initial mirror angle
ϑ(k = 0) = 7.3◦ and the reference takes values between 8 and
25 ms, including a step at k = 800 crashes. The controller
operates in the middle region of figure 2, typically around a
mirror angle of 7.5◦. There is a small transient from the initial
condition, after which the controller achieves good tracking.
The step in the reference is handled successfully as well.
Although the step is twice as large as the previous result, the
settling time is only 30 crashes. This is because the gradient
in this operating region is much larger than compared with the
smaller sawteeth in figure 12. Hence, small changes in ϑ have
a large effect on τs. So although the convergence rate in ◦/crash
is fixed, τs converges much faster, since a much smaller change
in mirror angle is required. However, the large gradient has
also caused the oscillations on the sawtooth period to increase
by a factor 5. To reduce these oscillations one could make
the amplitude of the perturbation smaller in regions where the
estimated gradient is large, e.g. by means of gain-scheduling
as suggested in [20].

5.1.3. Tracking in different operating regions. One of the
advantages of the proposed ESC is that it can switch between
regions with different signs of the input–output map gradient,
so that one can cover the whole operating region with a single
controller. The simulation results in figure 14 demonstrate

this. Starting from the right-hand side of the input–output map
where ϑ(k = 0) = 10◦, the ESC first maximizes the sawtooth
period to the steady-state maximum of about 30 ms, as the
31 ms reference value is unreachable. The controller then
quickly decreases the mirror angle to reach the 10 ms reference
value and tracks successfully as the reference gradually
changes to 5 ms. Figure 14(a) shows that the period makes
a small jump around k = 600 crashes; there the controller
jumps from the middle region (large gradient) to the left-
hand-side region (smaller gradient). This can be explained by
figure 14(c), which depicts the sawtooth period as a function
of the mirror angle. The thickness of the band created by
the trajectory of τs around the input–output map indicates
the accuracy of the gradient estimate. For mirror angles
5.5◦ � ϑ � 6.5◦ the band is very narrow, which implies
that the sawtooth dynamics is very fast in this region (as has
been shown in [18]). The gradient estimation is therefore very
accurate, which makes this region attractive. A wider band, as
for ϑ > 6.5◦, indicates a less accurate gradient estimation due
to slow sawtooth dynamics. The trajectory of τs at ϑ ≈ 6.7◦

is actually perpendicular to the steady-state input–output map,
thanks to which the controller crosses the minimum to the
region around ϑ = 6◦. Hence, the ESC converges to the
smallest of the two angles corresponding to 5 ms, which is
actually quite eligible since the oscillations on τs are much
smaller there. Afterwards, the ESC continues to decrease the
mirror angle to eventually reach 10 ms again.

In our case the region with slow dynamics is surrounded
by fast sawtooth dynamics. Hence, the somewhat erroneous
gradient estimations in the slow region are intercepted by the
neighbouring fast dynamics, where the gradient is estimated
correctly. It should be noted that the slow response around
ϑ ≈ 6.7◦ and the fast one around ϑ ≈ 6◦ are predictions
of the model in section 2.1, and may or may not occur in real
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Figure 13. Simulation results of tracking large sawteeth: (a) the sawtooth period τs, (b) the mirror angle ϑ and estimated minimizer ϑ̂ with
chatter present, (c) the tracking error τs − τs,ref and (d) the gradient estimate ξ .

Figure 14. Simulation results of sawtooth period tracking in three different regions: (a) the sawtooth period τs, (b) the mirror angle ϑ and
estimated minimizer ϑ̂ and (c) the input–output map and sawtooth period as function of the mirror angle. The markers indicate the start and
the end of the sawtooth period trajectory.

experiments. In practice, one may encounter other phenomena
that can have effects on the behaviour of the controller. The
simulations show that ESC can handle such phenomena, as
long as the separation of time-scales is satisfied.

5.2. Extremum seeking and robustness

For experimental devices controller robustness is an important
issue. Robustness is considered as the ability of the controller

to handle disturbances and uncertainties. The simulations in
this section will indeed demonstrate the robustness of ESC;
firstly, by considering variations of plasma parameters, and
secondly, by disturbing the closed loop with noise and delay.

5.2.1. Robustness against varying plasma parameters. First,
the robustness of ESC is demonstrated by applying the same
controller to a sawtooth model with different parameters; the
driven current ICD is changed from 2 to 1.8 kA, the plasma
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Figure 15. Simulation results with different plasma parameters (2), together with the original simulation indicated with (1). The sawtooth
period τs is shown in (a), the mirror angle ϑ and estimated minimizer ϑ̂ in (b) and the sawtooth period trajectory in (c). We see that in spite
of a dramatic variation of the gradients, including a change of sign, the sawtooth controller still performs robustly.

current Ip from 400 to 350 kA and the toroidal magnetic field
Bφ from 2.45 to 2.4 T. The simulation results are shown in
figure 15, together with the previous results from figure 12.
Figure 15(c) shows that the steady-state input–output map has
completely changed, due to the large shift of the q = 1 surface.
Nevertheless, the reference is still successfully tracked. The
oscillation on the sawtooth period at τs ≈ 15 ms is larger than
before, since the gradient at this operating point is now larger.
At τs ≈ 5 ms the oscillation is smaller, since that specific
operating point now has a nearly zero gradient. The settling
time after the step at 800 crashes is now much faster, which is
again caused by the larger gradient at τs ≈ 15 ms.

A linear controller as used in [15, 16, 18] is not able to
cope with such large parameter variations, as they change
the sign of the gradient over a large portion of the operating
space. ESC automatically adapts to such variations, even if
these occur online, i.e. during a discharge. Such changes are
similar to changes in the reference sawtooth period, since both
introduce a sudden change in cost function. Hence, ESC is
guaranteed to track these variations if they occur either on
a slow enough time-scale, or stepwise with sufficient time
between the steps (as in previous simulations). Note that if
the parameter variations largely affect the sawtooth period
dynamics, the time-scales of the controller subsystems might
have to be adjusted.

5.2.2. Robustness against disturbances and detection delay.
Real experiments are often subject to actuator and sensor noise.
In the sawtooth control loop there can be noise on the amount of
EC driven current and disturbances on the deposition location,
e.g. due to EC beam deflections or fluctuations of the plasma
position and shape. On the sensor side a sawtooth crash

detection is never flawless and will inevitably introduce delay
and noise on the sawtooth period. To demonstrate that ESC can
cope with these disturbances the following disturbances have
been added in a repeat of the simulation depicted in figure 12:

• a ±0.25◦ uniform random noise on ϑ ;
• a ±20 A uniform random noise on ICD (nominal value is

2 kA);
• a ±0.5 ms uniform random noise and an additional delay

of 5 ms on τs.

The results depicted in figure 16 show that the controller still
successfully tracks the reference and is thus robust for the
added disturbances. In principle the 5 ms detection delay
introduces a phase shift between the perturbation d(k) and
the resulting sawtooth period output τs(k), which influences
the gradient estimate. However, here this phase shift is at most
one crash, which is quite small compared with the perturbation
period of ten crashes. Moreover, the other disturbances on the
gradient estimate are mostly attenuated by the moving average
filter.

5.3. Impact of slow launcher dynamics

In the previous simulations the launcher mirror has been
considered infinitely fast. In practice, this launcher is a closed-
loop controlled mechanical device with a limited bandwidth,
introducing dynamics between ϑ and the actual mirror angle
ϑa. This dynamics can play an important role, especially when
the launcher time-scale is longer than the sawtooth period. In
this section the launcher closed loop is modelled in the same
fashion as in [18], i.e. by means of a second order low-pass
filter with a cut-off frequency (bandwidth) of fbw = 10 Hz
and a damping of 0.35. With this model two simulations have
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Figure 16. Simulation results with disturbances present: (a) the sawtooth period τs, (b) the mirror angle ϑ and estimated minimizer ϑ̂ , (c)
the tracking error τs − τs,ref and (d) the gradient estimate ξ .

Figure 17. Simulation results with slow launcher dynamics, (1) is with original tuning, (2) is with adjusted tuning: (a) the sawtooth period
τs, (b) is the actual mirror angle ϑa and estimate of the minimizer ϑ̂ , and (c) is the trajectory of τs on the steady-state input–output map.
Markers indicate the start and end of these trajectories.

been performed to investigate the influence of a slow launcher:
one with the original controller tuning, and one with adjusted
tuning. The results are shown in figure 17. The reference
starts at 10 ms and is lowered to 5 ms. The original tuning,
indicated with (1), fails as it maximizes the cost function
instead, due to a wrong estimation of the sign of the gradient.
In the second simulation, indicated with (2), the perturbation

frequency is lowered to the bandwidth of the launcher (i.e.
a = 0.05 crash−1), as described in section 4.2, and the
optimizer gain γ is reduced to γ = 0.01◦/crash to preserve
the separation of time-scales. With this adjusted tuning the
functionality of the controller is restored. Note that due to
the slow launcher the overall control loop is now a factor two
slower.
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Figure 18. Gradient estimator topology with additional phase lag compensation.

With the adjusted tuning the settling time of the gradient
estimator has increased. This is visible in the chatter, which
is of lower frequency. The gradient estimator is four times as
slow as before, the optimizer gain has been reduced by a factor
two. Consequently, the amplitude of the chatter has increased
with a factor two.

6. Extremum seeking and performance

The above results clearly demonstrate the extremely high
robustness of the extremum seeking controller. This robustness
is inherent to the fact that ESC is completely model-free;
it simply estimates the momentary behaviour of the sawtooth
period online. An ESC approach is therefore very useful
under experimental tokamak conditions, where the exact
plasma parameters are somewhat uncertain or conditions
may vary to a large extent. The disadvantage of ESC
is its relatively low performance. The simulations have
shown that convergence (or settling time) can take more
than 100 crashes (i.e. more than 1 s in continuous time), and
the sawtooth period will always oscillate around its desired
value due to the applied perturbation d(k) and the chatter.
Consequently, steady-state errors are about ±1 ms for small
τs, but can increase up to ±5 ms for larger τs. For comparison,
linear feedback controllers as in [18] and high-performance
approaches as in [19] obtain zero steady-state errors, and the
latter typically converges within 0.2 to 0.35 s. Hence, under
predictable reactor-like conditions such approaches might be
more beneficial.

The above illustrates the classical trade-off between
robustness and performance. It also indicates that the
performance of ESC can be improved by including explicit
knowledge of the sawtooth into the controller, at the expense
of some robustness. In this section we briefly suggest three
methods to achieve this.

6.1. Feedforward control

In situations where the steady-state input–output map of the
sawtooth period is approximately constant and a priori known,
this knowledge can be employed in advance to steer the mirror
angle towards a value corresponding to a desired τs,ref . This
open-loop technique is called feedforward control, a widely
used technique to improve closed-loop performance, such as
in [19]. Feedforward control can easily be combined with ESC
using the input–output map of figure 2 as a look-up table for
the mirror angle and adding this to the value of ϑ computed
by the optimizer. This will improve the settling time to a large
extent (up to the time-scale of the launcher mirror), but it does
not affect the steady-state oscillations. The extremum seeker

will still perturb and chatter to make sure the system remains
at the optimum of the cost function.

Feedforward control yields the best results when the
input–output map is known accurately. If the calculated
feedforward angle is significantly wrong, it can be viewed as
a disturbance or change in cost function. Since ESC is robust
against such disturbances, it will compensate for the error in
the feedforward, and still steer towards the desired sawtooth
period. However, this does reduce the performance in terms
of the settling time, possibly making it worse than without
feedforward.

6.2. Phase lag compensation

The sinusoidal perturbation on ϑ leads to an oscillation of the
sawtooth period τs with the same base frequency as ϑ . For slow
perturbations these signals are approximately in phase, but for
higher frequencies the sawtooth (and launcher) dynamics can
introduce a phase shift between ϑ and τs, which influences the
accuracy of the gradient estimate. In case of a phase shift ψ it
can be shown that the averaged gradient estimate becomes

lim
K→∞

1

K

K∑
k=0

(ξ(k)) = cos(ψ) · α2

2

df

dϑ

∣∣∣∣
ϑ=ϑ̂

. (15)

Hence, a mismatch cos(ψ) is introduced, which can lead to
a wrong estimation of the sign of the gradient when ψ �
π/2. This can be compensated for by phase-shifting the
demodulation signal with an estimate of the phase lag [33] as
shown in figure 18. Let ϕ be the phase shift in the demodulation
signal. The gradient estimate then becomes

lim
K→∞

1

K

K∑
k=0

(ξ(k)) = cos(ψ − ϕ) · α2

2

df

dϑ

∣∣∣∣
ϑ=ϑ̂

.

Hence, if the demodulation phase shift ϕ equals the phase lag
ψ , the gradient estimate is not affected. However, the phase
lag ψ in the discrete-time domain, discussed in section 3,
varies with the sawtooth period. In this case ϕ should
represent the average phase lag, since ϕ < ψ has the same
effect on the gradient estimation as ϕ > ψ . Determining
this average phase lag at the perturbation frequency requires
dynamic identification experiments, as has been proposed
in [18]. Alternatively, the demodulation signal d ′(k) can be
constructed by ‘holding’ the perturbation d(k), filtering it
with a continuous-time model of the launcher dynamics and
sampling the output at every sawtooth crash. This effectively
compensates for the phase lag ψ .

When the phase lag is compensated for, the perturbation
frequency can be increased, yielding shorter settling times of
the gradient estimator. Consequently, the optimizer gain can be
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Figure 19. Saturation function and tuning parameter p.

increased, leading to faster convergence of the overall control
loop.

6.3. Reducing the tracking error

Part of the oscillations on the error shown in the simulation
results are introduced by chatter, which is a side effect of
the chosen sliding mode optimizer. A common approach to
eliminate chatter is the use of the saturation function (or a
similar function like a hyperbolic tangent) instead of the sign
function [34] in the optimizer equation (12). This way the
optimization speed is constant when the estimated gradient is
large, and proportional to the gradient when the gradient is
small.

The saturation function depicted in figure 19 has limits
−1, 1, as does the sign function, and has a parameter p that
can be tuned to select at which value of the gradient to switch
from sliding mode to first-order gradient descent. However,
the simulation results in section 5.1 show that the gradient
varies significantly with the operating point. If p is small
compared with the gradient estimate, the optimizer would
only operate like a sliding mode optimizer, and chatter would
not be eliminated. If p is large compared with the gradient
estimate, the optimizer only uses first-order gradient descent,
which reduces robustness and affects the convergence speed.
Hence, eliminating chatter improves the performance in terms
of steady-state error, but at the expense of slower convergence
and less robustness.

7. Conclusions

In this paper we have provided a structured design of a robust
sawtooth period controller. The proposed extremum seeking
controller is a special type of adaptive controller. Its working
principle relies on online identification of the gradient of a
cost function, which has a minimum at the desired sawtooth
period, by a gradient estimator. The benefit of this control
strategy is that it does not rely on any model describing the
behaviour of the sawtooth period and is therefore highly robust.
Moreover, in principle it can be implemented and tuned without
any preceding identification experiments at all.

We have discussed each of the three building blocks of
the controller, i.e. the cost function, the gradient estimator and
the optimizer, and designed each one such that the sawtooth
period is controlled with maximal robustness and acceptable
performance. Furthermore, practical tuning guidelines for

the controller parameters have been suggested, based on the
required separation of time-scales between these subsystems,
and several performance improvements have been introduced.

The behaviour of the extremum seeking controller
has been assessed in a closed-loop interconnection with a
Kadomtsev–Porcelli sawtooth model. Simulation results
demonstrated the tracking of sawtooth period references in
different operating regimes. The controller is able to handle
stepwise changes in the sawtooth period reference, changes
in plasma parameters, additional crash detection delay and
disturbances on both the actuator and sensor side. In each
case the controller tracks the desired sawtooth period, which
demonstrates its high robustness.

ESC does come with a non-zero steady-state error, as the
sawtooth period is always oscillating around the reference
value. This is partly caused by an external sinusoidal
perturbation on the EC mirror angle, which is needed for
the online estimation of the gradient of the cost function.
Moreover, there is an additional chatter on the mirror angle,
introduced by the sliding mode optimizer.

The high robustness against plasma uncertainties and
disturbances makes ESC applicable to a wide variety of
sawtooth models and real sawtoothing plasmas, even when
there is a discontinuity in the steady-state input–output map,
which might arise in the presence of fast-ions [17]. ESC
can easily go across such a discontinuity, which will be
interpreted as a very large gradient, and stabilize the sawtooth
period on either side of it (stabilization on the discontinuity
itself will be subject to similar jumps as in [17]). ESC
is therefore a particularly interesting candidate to control
sawteeth on experimental devices, where plasma variations are
large and performance requirements are low, but also during the
commissioning phase of fusion reactors to search for suitable
operating conditions. Under controlled plasma conditions
where closed loop performance (in terms of convergence
speed and steady-state error) is more important, such as
in sawtoothing reactor scenarios, high-performance sawtooth
control strategies as in [19] are probably more suitable. Finally,
the possible applications of the proposed controller are not
limited to the sawtooth control problem only; ESC has been
used before in fusion research [35], and remains an interesting
candidate for any problem in or around the tokamak with non-
linearities, large model uncertainties or parameter variations.
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