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a b s t r a c t

The presence of dry friction in mechanical systems induces the existence of an equilibrium set, consisting
of infinitely many equilibrium points. The local dynamics of the trajectories near an equilibrium set is
investigated for systems with one frictional interface. In this case, the equilibrium set will be an interval
of a curve in phase space. It is shown in this paper that local bifurcations of equilibrium sets occur near the
endpoints of this curve. Based on this result, sufficient conditions for structural stability of equilibrium
sets in planar systems are given, and two new bifurcations are identified. The results are illustrated by
application to a controlled mechanical system with friction.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Many mechanical systems experience stick due to dry friction,
such that trajectories converge to an equilibrium set, that consists
of a continuum of equilibrium points, rather than to an isolated
equilibrium point. Dry friction appears at virtually all physical
interfaces that are in contact. The presence of equilibrium sets
in engineering systems compromises position accuracy in motion
control systems, such as robot positioning control; see e.g.
[1–3]. Dry friction may also cause other effects that deteriorate
performance of motion control systems, such as the occurrence
of periodic orbits; cf. [4,3]. In this paper sufficient conditions for
structural stability of equilibrium sets are given, and bifurcations
of equilibrium sets are studied.

The dry friction force is modelled using a set-valued friction
law that depends on the slip velocity, such that the friction law is
set-valued only at zero slip velocity. Using such a friction law, the
systems are described using a differential inclusion. Such friction
laws can accurately describe the existence of an equilibrium set;
see e.g. [5–7]. This class of friction models contains the models of
Coulomb and Stribeck. Dynamic friction models as discussed in [8]
are not considered, since these models increase the dimension of
the phase space, such that the study of bifurcations becomes more
involved. In the present paper the dynamics ofmechanical systems
are studied where dry friction is present in one interface.

The equilibrium sets of systems with dry friction may be stable
or unstable in the sense of Lyapunov. In addition, equilibrium
sets may attract all nearby trajectories in finite time; cf. [6]. A
natural question is to ask how changes in system parameters
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may influence these properties. To answer this question, structural
stability and bifurcations of equilibrium sets are studied.

For this purpose, the local phase portrait near an equilibrium
set is studied and possible bifurcations are identified. Under
a non-degeneracy condition, the local dynamics is shown to
be structurally stable near the equilibrium set, except for two
specific points, namely the endpoints of the equilibrium set. Hence,
analysis of the trajectories near these points yields a categorisation
of the bifurcations that are possible. In this manner, particularly,
bifurcations of equilibrium sets of planar systems are studied in
this paper.

Although quite some results exist on the asymptotic stability
and attractivity of equilibrium sets of mechanical systems with
dry friction, see [9–12,6,13], few results exist that describe
bifurcations of equilibrium sets, see e.g. [14,15]. In [12,6,11], Leine
and van de Wouw derive sufficient conditions for attractivity
and asymptotic stability of equilibrium sets using Lyapunov
theory and invariance results. In the papers of Adly et al. [10,9],
conditions are presented under which trajectories converge to
the equilibrium set in finite time. Using Lyapunov functions, the
attractive properties of individual points in the equilibrium sets
are analysed in [13]. Existing results on bifurcations of systems
with dry friction are either obtained using the specific properties
of a given model, or they do not consider trajectories in the
neighbourhood of an equilibrium set. In [14], a van der Pol system
is studied that experiences Coulomb friction. By constructing a
Poincaré return map, Yabuno et al. show that the limit cycle,
created by a Poincaré–Andronov–Hopf bifurcation for the system
without friction, cannot be created near the equilibrium set in the
presence of friction. In [15], the appearance or disappearance of an
equilibrium set is studied by solving an algebraic inclusion.

Bifurcations of the larger family of differential inclusions,
that contains models of mechanical systems with friction, are
studied e.g. in [16–25]. Bifurcations of limit cycles of discontinuous
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Fig. 1. Mechanical system subject to dry friction.

systems are studied using a return map; see [16,17,22,24].
However, in these systems the friction interface is moving,
such that the discontinuity surface does not contain equilibria.
Bifurcations of equilibria in two- or three-dimensions are studied
in e.g. [18–20,23]. Here, the dynamics is understood by following
the trajectories that become tangent to a discontinuity boundary.
Guardia et al. present in [25] a generic classification of bifurcations
with codimension one and two in planar differential inclusions.
However, the special structure of differential inclusions describing
mechanical systems with dry friction, which we will analyse in
the present paper, is considered to be non-generic by Guardia
et al.. In the class of systems studied in the present paper,
equilibrium sets occur generically, and persist when physically
relevant perturbations are applied. Due to the difference in allowed
perturbations, the scenarios observed in the present paper are not
considered in [25]. In [17,21], the authors study bifurcations of
equilibria in continuous systems, that are not differentiable. Due
to the assumptions posed in these papers, all equilibria are isolated
points.

In this paper a more general class of mechanical systems with
friction is studied. Both the existence of an equilibrium set and
the local phase portrait are investigated. Sufficient conditions for
structural stability of this phase portrait are given. Such conditions
are derived for equilibrium points in smooth systems, among
others, by Hirsch, et al.; see [26–28]. Parallel to their approach in
smooth systems, we analyse the structural stability of differential
inclusions restricted to a neighbourhood of the equilibrium set. At
systemparameterswhere the conditions for structural stability are
not satisfied, two bifurcations are identified that do not occur in
smooth systems.

The outline of this paper is as follows. First, we introduce
a model of a mechanical system with friction in Section 2 and
present the main result. This theorem states that local bifurcations
of equilibrium sets occur in the neighbourhood of two specific
points, which are the endpoints of the equilibrium set. In Section 3,
classes of systems are identified that are structurally stable. In
Section 4, two bifurcations of the equilibrium set of planar systems
are presented. In addition, it is shown that no limit cycles can be
created by a local scenario similar to the Poincaré–Andronov–Hopf
bifurcation. In Section 5, the results of this paper are illustrated
with an example of a controlled mechanical system with dry
friction. Concluding remarks are given in Section 6. The proofs of
the main results are given in Appendices.

2. Modelling and main result

Consider a mechanical system that experiences friction on one
interface between two surfaces that move relative to each other in
a given direction. Let x denote the displacement in this direction
and ẋ denote the slip velocity; see Fig. 1 for an example. For an
n-dimensional dynamical system this implies that n − 2 other
states y are required besides x and ẋ. These states contain the other
positions and velocities of the mechanical system, and possibly
controller and observer states, e.g. in the case of a feedback-
controlled motion system. The system given in Fig. 1 can be
modelled with the additional states y =


y1
ẏ1


. In general, using
the states x, ẋ and y, the dynamics are described by the following
differential inclusion; cf. [19]:

ẍ − f (x, ẋ, y) ∈ −FsSign(ẋ),
ẏ = g(x, ẋ, y), (1)

where f and g are sufficiently smooth, Fs ≠ 0, and Sign(·) denotes
the set-valued sign function

Sign(p) =


p
|p|
, p ≠ 0,

[−1, 1], p = 0.
Note that (1) also encompasses systems with other nonlinear-

ities than dry friction, e.g. robotic systems. Introducing the state
variables q =


x ẋ yT

T , the dynamics of (1) can be reformu-
lated as:
q̇ ∈ F(q), (2)

F(q) =

F1(q), q ∈ S1 := {q ∈ Rn
: h(q) < 0},

F2(q), q ∈ S2 := {q ∈ Rn
: h(q) > 0},

co{F1(q), F2(q)}, q ∈ Σ := {q ∈ Rn
: h(q) = 0},

(3)

where q ∈ Rn, co(a, b) denotes the smallest convex hull containing
a and b, and F1 and F2 and h are given by the smooth functions:

F1(q) =

 ẋ
f (x, ẋ, y)+ Fs

g(x, ẋ, y)


, (4)

F2(q) =

 ẋ
f (x, ẋ, y)− Fs

g(x, ẋ, y)


, (5)

h(q) = ẋ. (6)
In most existing bifurcation results for differential inclusions,

see e.g. [18–20,23], parameter changes are considered that induce
perturbations of the function F in (2). Hence, in these studies
the first component of F is perturbed, which implies that the
case where the discontinuity surface coincides with the set where
the first element of F is zero is considered non-generic by these
authors. This implies that the existence of an equilibrium set in
(2) is non-generic. However, parameter changes for the specific
system (1) will only yield perturbations of f and g in (2). We show
that for the class of systems under study, i.e. mechanical systems
with set-valued friction, equilibrium sets will occur, generically.

To study trajectories at the discontinuity surface Σ , the
solution concept of Filippov is used; see [19]. Three domains
are distinguished on the discontinuity surface. If trajectories on
both sides arrive at the boundary, then we have a stable sliding
regionΣ s. If one side of the boundary has trajectories towards the
boundary, and trajectories on the other side leave the boundary,
this domain is called the crossing region Σ c (or transversal
intersection). Otherwise, we have the unstable sliding motion on
the domainΣu. The mentioned domains are identified as follows:
Σ := {q ∈ Rn

: h(q) = 0}
Σ s

:= {q ∈ Σ : LF1h > 0 ∧ LF2h < 0},
Σu

:= {q ∈ Σ : LF1h < 0 ∧ LF2h > 0},
Σ c

:= {q ∈ Σ : (LF1h)(LF2h) > 0},

(7)

where LFih, i = 1, 2, denotes the directional derivative of h with
respect to Fi, i.e. LFih = ∇hFi(q).

The vector field q̇ = F s(q) during slidingmotion at q ∈ Σu
∪Σ s

is defined by Filippov as follows. For each q, the vector F s(q) is the
vector on the segment between F1(q) and F2(q) that is tangent to
Σ at q:

q̇ = F s(q) :=
LF1h(q) F2(q)− LF2h(q) F1(q)

LF1h(q)− LF2h(q)
, (8)

=

 0
0

g(x, 0, y)


. (9)
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Fig. 2. Sketch of discontinuity surface Σ of (2)–(6) with n = 3 and Fs > 0,
containing an equilibrium set E .

Since LF1h = LF2h+ 2Fs, it follows from (7) that Fs > 0 implies that
no unstable sliding occurs, and Fs < 0 implies that no stable sliding
occurs. The resulting phase space is shown schematically in Fig. 2
for the case n = 3.

In Appendix A we show that the equilibrium set is a segment
of a curve on the discontinuity surface Σ when the following
assumption is satisfied.

Assumption 1. The functions f and g are such that f (0, 0, 0) =

0, g(0, 0, 0) = 0 and

 ∂ f (x, 0, y)
∂x

∂ f (x, 0, y)
∂y

∂g(x, 0, y)
∂x

∂g(x, 0, y)
∂y

 is invertible.

Furthermore, the map

f
g


is proper.1

For systems satisfying this assumption, the equilibrium set E of (1)
is a one-dimensional curve as shown in Fig. 2. The equilibrium set
of a differential inclusion is given by 0 ∈ F(q), which is equivalent
with (q ∈ Σ s

∪ Σu
∧ LF2h F1(q) − LF1h F2(q) = 0), since 0 ∈

q2
co{f (q)− Fs, f (q)+ Fs}


is equivalent with q ∈ Σ s

∩Σu and g(q) = 0
is equivalent with LF2h F1(q)− LF1h F2(q) = 0 for q ∈ Σ s

∩Σu; see
(8).

The equilibrium set is divided into interior points and the two
endpoints as follows:

E := {q ∈ Σu
∪Σ s

: LF2h F1 − LF1h F2 = 0},
I := {q ∈ E : F1 ≠ 0 ∧ F2 ≠ 0},
Ei := {q ∈ E : Fi = 0}, i = 1, 2.

(10)

Note, that interior points are called pseudo-equilibria in [17]. The
endpoints E1 and E2 satisfy LF1h = 0 or LF2h = 0, respectively,
hence they are positioned on the boundary of the stable or unstable
sliding mode as given by (7).

In the present paper, the trajectories near the equilibrium set
will be studied. The influence of perturbations of (1) on the phase
portrait of a system is studied. For this purpose, we define the
topological equivalence of phase portraits of (1) in Definition 1.
We note that this definition is equal to the definition for smooth
systems; see e.g. [29–31].

Definition 1 ([19]). We say that two dynamical systems in open
domains G1 and G2, respectively, are topologically equivalent if
there exist a homeomorphism from G1 to G2 which carries, as
does its inverse, trajectories into trajectories. This equivalence
relation allows for a homeomorphism that does not preserve
the parameterisation of the trajectory with time, as required for
topological conjugacy defined in [29]. Throughout this paper, we
assume that f and g smoothly depend on system parameters.
When a parameter variation of a dynamical system A yields a
system Ã which is not topologically equivalent to A, then the
dynamical system experiences a bifurcation.

1 A continuous map is proper if the inverse image of any compact set is compact.
With the definitions given above, we can formulate our main
result in the following theorem.

Theorem 1. Assume (1) satisfies Assumption 1. If ∂g
∂y |p has no

eigenvalue λ with real(λ) = 0 for any p ∈ E , then the dynamical
system (1), in a neighbourhood of the equilibrium set, can only
experience bifurcations near the endpoints E1 or E2.

Proof. The proof is given in Appendix B. �

The theorem is proven using the concept of structural stability,
which is introduced in the following section.

3. Structural stability of the system near the equilibrium set

To prove Theorem 1, the influence of perturbations on systems
(1) are studied. If perturbations of f and g of (1) cannot yield
a dynamical system which is not topologically equivalent to the
original system, then the occurrence of bifurcations is excluded.
Hence, structural stability of (1) is investigated, which is defined
as follows.

Definition 2. A system A given by (1) is structurally stable for
perturbations in f and g if there exists an ϵ > 0 such that the system
Ã given by (1) with f̃ and g̃ such that

|f − f̃ | < ϵ,

∂(f − f̃ )
∂q

 < ϵ,

∥g − g̃∥ < ϵ,

∂(g − g̃)
∂q

 < ϵ,

(11)

is topologically equivalent to system A.

Note, that this definition corresponds to C1-structural stability as
defined by Sotomayor [32], and is tailored to dynamical systems
described using second-order time derivatives of the state x.

Note that perturbations of (1) in f and g do not cause
perturbations of the first component of F(·) in (2), as observed
e.g. in [32] or [19, page 226]. One consequence of this fact is
that equilibrium sets occur generically in systems (1), although
they are non-generic in systems (2). In experiments onmechanical
systems with dry friction, such equilibrium sets are found to occur
generically; see [8]. For this reason, perturbations of the class
(11) are used throughout this paper. System A can be structurally
stable for perturbations in f and g , whereas the corresponding
system (2) is not structurally stable for general perturbations of
F . Small changes of system parameters cause small perturbations
of f and g and their derivatives. However, the first equation
of (2) will not change under parameter changes. Namely, this
equation represents the kinematic relationship between position
and velocity of a mechanical system, such that perturbation of this
equation does not make sense for the class of physical systems
under study. Hence, structurally stability for perturbations in f
and g excludes the occurrence of bifurcations near the system
parameters studied.

In smooth systems, structural stability of dynamical systems in
the neighbourhood of equilibrium points is studied four decades
ago by, among others, Hirsch et al.; see [26–28]. It is now well
known that, restricted to the neighbourhood of an equilibrium
point, smooth dynamical systems are structurally stable when the
equilibrium point is hyperbolic. For hyperbolic equilibrium points
of smooth systems, the inverse function theorem implies that the
equilibrium point is translated over a small distance when the
vector field is perturbed, and the perturbed vector field near this
equilibrium point is ‘close’ to the original vector field near the
unperturbed equilibrium. Hence, the Hartman–Grobman theorem
shows that there exists a topological equivalence for the phase
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portrait in the neighbourhoods of both equilibria. In this paper,
the structural stability of system (1) in the neighbourhood of
equilibrium sets is studied analogously.

Small perturbations of system (1) will cause the equilibrium
set E to deform, but the equilibrium set of the perturbed system
remains a smooth curve in state space. Hence, there exists a
smooth coordinate transformation (analogous to the translation
for smooth systems) that transforms the original equilibrium set
E to the equilibrium set of the perturbed system, as shown in
Appendix A. Furthermore, the vector field near both equilibrium
sets are ‘close’, as shown in Lemma 7. Using this coordinate
transformation, Theorem 1 will be proven in Appendix B.

3.1. Structural stability of planar systems

In this section sufficient conditions are presented for the struc-
tural stability of planar systems, restricted to a neighbourhood of
equilibrium sets. In the planar case, (1) and (2) reduce to, respec-
tively:

ẍ − f (x, ẋ) ∈ −FsSign(ẋ), (12)

q̇ ∈ F(q) =


F1(q) =


q2

f (q1, q2)+ Fs


, h(q) < 0,

F2(q) =


q2

f (q1, q2)− Fs


, h(q) > 0,

(13)

where q =

x ẋ

T and h(q) = q2. In this case, the Filippov
solution q̇ = Fs(q) = 0 for q ∈ Σ s

∪ Σu, such that the set of
interior points of the equilibrium point satisfies I = Σ s

∪Σu.
In this section it is assumed that Fs > 0, which corresponds to

the practically relevant case where dry friction dissipates energy.
The assumption Fs > 0 does reduce the number of topological dis-
tinct systems of (12). However, the case Fs < 0 yields topologi-
cally equivalent systems when time is reversed. The case Fs > 0
implies Σu

= ∅ such that trajectories remain unique in forward
time.

According to Theorem 1, structural stability of (12), restricted
to a neighbourhood of the equilibrium set, is determined by
the trajectories of (12) near the endpoints. Analogously to the
Hartman–Grobman theorem, which derives sufficient conditions
for structural stability of trajectories near an equilibrium point
in smooth systems based on the linearised dynamics near this
point, sufficient conditions for structural stability of (12) will
be formulated based on the linearisation of F1 and F2 near the
endpoints of the equilibrium set.

For ease of notation, we define : Ak :=
∂Fk
∂q |q=Ek , k = 1, 2, which

determines the linearised dynamics in Sk near the endpoints of the
equilibrium set. In the other domain, i.e. S3−k, it follows from (13)
that the vector field is pointing towards the discontinuity surface.
To study the structural stability of planar systems (12), we adopt
the following assumption.

Assumption 2.
(i) The dry friction force satisfies Fs > 0.
(ii) The eigenvalues of Ak, k = 1, 2, are distinct and nonzero.

Observe that (i) implies that the equilibrium point E persists,
whereas (ii) concerns the linearised vector field near the endpoints
of E . Furthermore, (ii) implies that Ak is invertible. The following
theorem presents sufficient conditions for structural stability of
(12), restricted to a neighbourhood of the equilibrium set.

Theorem 2. Consider a system A given by (12) satisfying Assump-
tions 1 and 2. Restricted to a neighbourhood of the equilibrium set,
system A is structurally stable for perturbations in f .

Proof. The proof is given in Appendix C. �
Table 1
Possible systems (12), categorised by the eigenvalues of the Jacobian matrix near
the endpoints, which are locally structurally stable in a neighbourhood of the
equilibrium set. Note that the indices of A1 and A2 can be changed. Eigenvalues
are denoted with − or + when the eigenvalues are real and positive or negative,
respectively. Complex eigenvalues are denoted with c.

Eigenvalues of A1 Eigenvalues of A2

λ1 λ2 λ1 λ2

Sink–Sink − − − −

Sink–Source − − + +

Sink–Saddle − − − +

Sink–Focus − − c c
Source–Source + + + +

Source–Saddle + + − +

Source–Focus + + c c
Saddle–Saddle − + − +

Saddle–Focus − + c c
Focus–Focus c c c c

The proof of this theorem is given in Appendix C. The theorem
implies that one can identify 10 different types of systems (12)
with a stable sliding mode which, restricted to a neighbourhood
of the equilibrium set, are locally structurally stable, as shown in
Table 1. Note, that an unstable slidingmode yields analogous types
of equilibrium sets.

If f satisfies the symmetry property: f (x, 0) = −f (−x, 0),
then only the Source–Source, Sink–Sink, Saddle–Saddle and
Focus–Focus types are possible.

4. Bifurcations

Due to the special structure of (1), general dynamical systems of
the form (2) have a richer dynamics than systems (1). For example,
all codimension-one bifurcations of (2) as observed in [20] cannot
occur in (1). In general, the sliding motion of the system (2) yields
a nonzero sliding vector field, whereas the sliding motion of (1)
contains a set of equilibria. Therefore, in this section bifurcations
of (1) are studied, restricting ourselves to planar systems as given
in (12). Such bifurcations occur in systems (2) aswell, but will have
a higher codimension.

Using Assumption 2, in Section 3 several types of topologically
distinct planar systems (12) are identified, which are structurally
stable in a neighbourhood of the equilibrium set. Hence, it seems
a reasonable step to consider parameter-dependent systems,
and study the parameters where the given conditions on the
differential inclusion (12) no longer hold. In this manner, two
bifurcations of planar systems (1) are presented. At the bifurcations
points, Assumption 2(ii) is violated.

4.1. Real or complex eigenvalues

Consider system (12) where eigenvalues of A1 change from real
to complex eigenvalues under a parameter variation. From (12)
it follows that A1 =


0 1
a21 a22


, hence the eigenvalues of A1 are

distinct when a21 ≠ −
1
4a

2
22 and the eigenvalues are both nonzero

given a21 ≠ 0. Now, let the first part of Assumption 2 be violated,
such that the eigenvalues are equal. In that case, we obtain a21 =

−
1
4a

2
22.

Arbitrarily close to systems with a21 = −
1
4a

2
22 there exist

topologically distinct systems, since a system where A1 has
complex eigenvalues is topologically distinct from a system
where A1 has real eigenvalues. This follows from the observation
that there exists a stable or unstable manifold containing E1 if
and only if A1 has real eigenvalues. However, there exists no
homeomorphism that satisfies the conditions in Definition 1 and
maps a trajectory on thismanifold to a trajectory of a systemwhere
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(a) a21 = −0.001. (b) a21 = −0.0025. (c) a21 = −0.004.

Fig. 3. System (14)with Fs = 1 and a22 = −0.1 showing a focus-node bifurcation. The equilibrium set E is given by a bold line, the real eigenvectors of the stable eigenvalues
of A are represented with dashed lines. The real eigenvectors are distinct for a21 > −0.0025, collide at a21 and subsequently become imaginary.
(a) a21 = −0.1. (b) a21 = 0. (c) a21 = 0.1.

Fig. 4. System (15) with Fs = 1, a22 = −1 and varying a21 , showing a bifurcation where an eigenvalue becomes zero. A neighbourhood of the origin is depicted, that does
not contain the complete equilibrium set. The equilibrium set E is given by a bold line, the eigenvectors of stable or unstable eigenvalues of ∂F2

∂q |q=0 are represented with
dashed lines.
(a) a21 = −0.001. (b) a21 = 0. (c) a21 = 0.001.

Fig. 5. System (14) with Fs = 1, a22 = −0.1 and varying a21 , showing a bifurcation when an eigenvalue becomes zero and the system is linear. The equilibrium set E is
given by a bold line, the stable or unstable manifolds are represented with dashed lines. At a21 = 0, the equilibrium set coincides with the line x ∈ R, ẋ = 0.
A1 has complex eigenvalues, since in that case only one trajectory
converges towards E1, which originates from S2.

This bifurcation is illustrated with the following exemplary
system:

ẍ − a21x − a22ẋ ∈ −FsSign(ẋ), (14)

with Fs = 1, a22 = −0.1 and varying a21. In this example the
matrices A1 and A2 are equal, such that both endpoints undergo a
bifurcation at the same time. This system shows a bifurcationwhen
a21 = −0.0025, as shown in Fig. 3. We refer to this bifurcation
as a focus-node bifurcation. According to [9], all trajectories of
system (14) will arrive in the equilibrium set E in finite time if
and only if a21 < −

1
4a

2
22 = −0.0025. For a21 ≥ 0.0025, the

matrices A1 and A2 have a real eigenvector corresponding to an
eigenvalueλ. The span of this eigenvector contains trajectories that
converge exponentially according to x(t)−Ei = eλt(x(0)−Ei), i =

1, 2, which consequently does not converge in finite time. Hence,
this change of the attractivity properties of the equilibrium set
coincides with a bifurcation, defined using topological equivalence
as used in this paper.

4.2. Zero eigenvalue

Consider system (12) where an eigenvalue of A1 becomes zero
under parameter variation,whereA1 =


0 1
a21 a22


. Thismatrix has

an eigenvalue equal to zero when a21 = 0 becomes zero.
At the point E1 of the equilibrium set the vector field satisfies

F1(E1) = 0. By definition, the point E1 is an endpoint of E , such
that trajectories cross Σ outside E . This implies that the second
component of F1, denoted F ẋ

1 , evaluated on the curve Σ changes
sign at E1. Since F1 is smooth and F ẋ
1 changes sign at E1, we obtain

∂kFx1
∂xk

|E1 ≠ 0 for an odd integer k ≥ 3, and ∂ iFx1
∂xi

|E1 = 0, for
i = 1, . . . , k − 1. The equilibrium set E on Σ is given by F ẋ

2 < 0
and F ẋ

1 > 0. A change of a systemparameter can create two distinct
domains where F ẋ

1 > 0 near E1, such that two equilibrium sets are
created.

This bifurcation is illustrated with the following exemplary
system:

ẍ − a21x − a22ẋ + Fs + x3 ∈ −FsSign(ẋ), (15)
with Fs = 1, a22 = −1 and varying a21. The system is designed such
that the origin is always the endpoint of an equilibrium set. The
resulting phase portrait is given in Fig. 4, and shows thementioned
bifurcation. For a21 = −0.1, one compact equilibrium set exists.
For a21 = 0, an eigenvalue of the system becomes zero, and the
corresponding eigenvector is parallel to the equilibrium set. Note
that this implies that both Assumptions 1 and 2(ii) are violated.
For a21 > 0, the equilibrium set splits in two separated, compact,
equilibrium sets; cf. Fig. 4(c).

Another bifurcation occurs when F1 and F2 are linear systems.
In that case, the equilibrium set grows unbounded when a21 → 0,
and becomes the complete line satisfying x ∈ R, ẋ = 0. This
bifurcation is illustrated in Fig. 5 using system (14) with a22 =

−0.1, Fs = 1 and varying a21.

4.3. Closed orbits

In smooth systems the Poincaré–Andronov–Hopf bifurcation
can create a small closed orbit near an equilibrium point. A similar
scenario cannot occur in planar systems (12) when Fs ≠ 0, as
shown in the following lemma.
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Fig. 6. Example of mechanical system subject to dry friction.

Lemma 3. Consider system (12) with Fs ≠ 0 satisfying Assump-
tion 1 which has closed orbit γ with period Tγ . Given a period time
Tγ , there exists an ϵ > 0 such that E + Bϵ does not contain parts of
the closed orbit γ .

Proof. The proof is given in Appendix D. �

This lemma contradicts the appearance of a limit cycle with
finite period near the equilibrium set, as appears close to a
smooth Poincaré–Andronov–Hopf bifurcation point in smooth
systems. Note, that the appearance of limit cycles is not excluded,
when changes of system parameters causes the dry friction force
Fs to change sign, which is physically unrealistic. When the
discontinuous nature of the system is introduced by other effects
than dry friction, the appearance of limit cycles can occur in
physical systems; see e.g. [33].

Remark 1. A heteroclinic orbit may exist that connects the
endpoints E1 to E2 through two trajectories, one positioned in the
smooth domain S1 and the other positioned in the opposite smooth
domain S2. Small perturbations of this system can be expected to
cause the appearance of limit cycles with an arbitrary large period
time.

The result given in Lemma 3 is derived using the specific structure
of the vector field near the equilibrium set. Non-local events such
as the appearance of homoclinic or heteroclinic orbits are not
considered in this paper, and will be subject to further research.

5. Illustrative example

The applicability of Theorem 1 for higher-dimensional systems
is illustrated with an observer-based control system, where a
single mass is controlled using a velocity observer. The system is
given by:

q̇ = Aq + B(u + f (q)), (16)

with q =

x ẋ

T
∈ R2, measurement z = x, control input u and

friction force f (q) ∈ −FsSign(q2), as shown schematically in Fig. 6.
We assume M = 1. The matrix A is given by A =


0 1
0 −c


, with

c > 0 and B =

0 1

T .
For this system, a linear state feedback controller of PD-type

is designed, yielding u = kpz + kdv, with proportional gain
kp, differential gain kd, and v an estimate of the velocity ẋ. This
estimate is obtained with the following reduced order observer,
that is designed for the linear system without friction; see [34]:

v̇ = −cv + u. (17)

After substitution of v = y, the resulting closed-loop system is
given byẋ
ẍ
ẏ


∈ Ac

x
ẋ
y


+

 0
−FsSign(ẋ)

0


, (18)

Ac =

 0 1 0
−kp −c −kd
−kp 0 −c − kd


, (19)
which is equivalent with (2), where f (x, ẋ, y) = −kpx − cẋ − kdy
and g = −kpx − (c + kd)y. Assumption 1 implies ckp ≠ 0. If this
is satisfied, system (19) has the equilibrium set {q =


x ẋ y


∈

R3
:

x ẋ y


=


−


1
kp

+
kd
ckp


α 0

α

c


, α ∈ [−Fs, Fs]}.

Since ∂g
∂y = −c − kd, Theorem 1 shows that when −c − kd ≠ 0,

no bifurcations occur away from the endpoints E1 and E2, given by
x ẋ y


= ±


−


1
kp

+
kd
ckp


Fs 0

Fs
c


.

The structural stability of trajectories near the endpoints of an
equilibrium set is studied in the present paper only for planar
systems,while the current example is 3-dimensional. However,we
will still present a bifurcation of trajectories near the endpoints.
Similar to the approach used in Section 4, the linearisation of
the vector field near the endpoints is used. Here, matrices A1
and A2 coincide with Ac , which has eigenvalues λ1 = −c
and λ2,3 = −

c+kd
2 ±

1
2


(c + kd)2 − 4kp. The eigenvalues λ2,3

change from real to complex when kd = −c + 2

kp. At this

point a bifurcation occurs similar to the focus-node bifurcation
observed in Section 4.1. When two eigenvalues are complex, for
both endpoints Ei, i = 1, 2, there exists only one trajectory that
converges to the endpoints Ei from domain Si for t → ∞ or
t → −∞. When eigenvalues λ2,3 are real, more trajectories exist
with this property. Hence, a bifurcation occurs when kd crosses the
value −c + 2


kp. This bifurcation is illustrated in Fig. 7 where the

parameters c = 0.5, kp = 1, Fs = 2 are used. At these parameters,
the mentioned bifurcation occurs at kd = 1.5. For the used system
parameters, the eigenvalues of Ac have negative real part. In Fig. 7,
only trajectories near the endpoint E2 are shown. Since the system
is symmetric, the same bifurcation occurs near the endpoint E1.

These results suggest that using the linearisation of the
dynamics near the endpoints, sufficient conditions for structural
stability of trajectories can be constructed for higher-dimensional
systems, analogously to the results in Sections 3.1 and 4 for planar
systems.

6. Discussion

In this paper, bifurcations and structural stability of a class
of nonlinear mechanical systems with dry friction are studied
in the neighbourhood of equilibrium sets. It has been shown in
Theorem 1 that local bifurcations of equilibrium sets of a class of
nonlinearmechanical systemswith a single frictional interface can
be understood by studying the trajectories of two specific points
in phase space, which are the endpoints of the equilibrium set.
Hence, local techniques can be applied in a neighbourhood of these
points. For differential inclusions given by (1), the linearisation of
vector fields is only applicable to the part of the state space where
the vector field is described by a smooth function. A careful study
of this linearisation has given insight in the topological nature
of solutions of the differential inclusion near the equilibrium set.
Hence, in the neighbourhood of equilibrium sets the result of
Theorem 1 significantly simplifies the further study of structural
stability and bifurcations for this class of mechanical systems with
friction.

Using this approach, sufficient conditions are derived for
structural stability of planar systems given by (1), restricted to
a neighbourhood of the equilibrium set. Furthermore, two types
of bifurcations of the equilibrium set of this class of systems are
identified, which do not occur in smooth systems.

Discontinuous systems have been studied in [35,36] using a
smooth approximation of the discontinuity, followed by the use
of singular perturbation theory to obtain the dynamics on a slow
manifold. If this approach is followed for system (1), then the
equilibrium set is represented by an equilibrium point on the slow
manifold. Investigating the similarities between these approaches
would be an interesting direction for further research.
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(a) kd = 1.6. (b) kd = 1.5.

(c) kd = 1.4.

Fig. 7. System (19) with c = 0.5, kp = 1 and Fs = 2, showing a bifurcation near the endpoints at kd = 1.5. The equilibrium set E is given by a dotted line, and the real
eigenvectors of A2 are represented with thick lines.
Acknowledgement

This work is supported by the Netherlands Organisation for
Scientific Research (NWO).

Appendix A. Existence of an equilibrium set

In this section the existence of an equilibrium set is shown for
system A given by (1) and a perturbed system Ã. Subsequently,
the existence is proven of a smooth coordinate transformation
that maps the equilibrium set of A onto the equilibrium set of
a perturbed system Ã. The section is concluded with a technical
result on the dynamics of A expressed in the new coordinates. This
result will show that we may assume that the equilibrium sets
of A and Ã coincide, without influencing the conditions posed in
Theorem 1.

In the remainder of this paper, let Ã be a perturbed system given
by (1) with f̃ and g̃ perturbed versions of f and g , respectively. Let
the sets Ẽ, Ĩ, S̃1, S̃2, Σ̃, Σ̃ c, Σ̃ s, functions F̃(·) F̃1(·), F̃2(·), F̃s(·)
and points Ẽ1 and Ẽ2 of system Ã be defined analogous to the sets,
functions and points defined for system A.

The following result shows that the equilibrium sets E and Ẽ
are curves in the state space.

Lemma 4. Consider system A and Ã given by (1) with f , g, f̃ , g̃
satisfying (11) for ϵ > 0 sufficiently small. Furthermore,
let Assumption1 be satisfied. The equilibrium setsE and Ẽ of systemsA
and Ã, respectively, are curves in state space that can be parameterised
by smooth functions c and c̃, such that E = {c(α), α ∈ [−Fs, Fs]},
f (c(α)) = α and g(c(α)) = 0, resp. Ẽ = {c̃(α), α ∈ [−Fs, Fs]},
f̃ (c̃(α)) = α and g̃(c̃(α)) = 0.

Proof. Define Z(x, y) =


f (x, 0, y)
g(x, 0, y)


and observe that 0 ∈ F(q)

for all q ∈ E implies Z(x, y) =


α
0


, with α ∈ [−Fs, Fs]. Using
Assumption 1, the global inverse function theorem; cf. [37], can be
applied,which states that Z(x, y) is a homeomorphism. Application
of the Corollary following Lemma 2 of [37] shows that the inverse
of the function Z is smooth. Hence, there exist smooth functions
X(β) and Y (β) defined by Z(X(β), Y (β)) = β .

Since (11) is satisfied by A and Ã with ϵ > 0 suffi-
ciently small, we find that for sufficiently small ϵ, the matrix ∂ f̃ (x, 0, y)

∂x
∂ f̃ (x, 0, y)

∂y
∂ g̃(x, 0, y)

∂x
∂ g̃(x, 0, y)

∂y

 is invertible. Define Z̃(x, y) :=


f̃ (x, 0, y)
g̃(x, 0, y)


.

The functions f̃ and g̃ are smooth, such that application of the
global inverse function theorem yields that there exists an ϵ >

0 such that (11) implies that there exist smooth functions X̃
and Ỹ such that Z̃(X̃(β), Ỹ (β)) = β . Now, we define cx(α) =

X


α
0


and cy(α) = Y


α
0


and c(α) =


cx(α)
0

cy(α)


, such that

Z(cx(α), cy(α)) =

α, 0


. The curve c(·) is a parameterisation of

E , such that E = {q ∈ Rn
: q = c(α), α ∈ [−Fs, Fs]}. Analogously,

a parameterisation c̃(·) of Ẽ can be constructed. �

Using this lemma, a map is constructed that maps the
equilibrium set E of A onto the equilibrium set Ẽ of Ã.

Lemma 5. Consider system A and Ã given by (1) with f , g, f̃ , g̃
satisfying (11) for ϵ > 0 sufficiently small. Furthermore,
let Assumption 1 be satisfied and let ∂g

∂y |p be invertible for all p ∈ E .

There exists a smooth map He =

Hx
e

H ẋ
e

Hy
e

 with smooth inverse in a

neighbourhood of E , such that Hx
e = Hx

e (x) and H ẋ
e =

dHx
e

dx ẋ, that
maps E onto Ẽ . Furthermore, for any δ > 0 there exists an ϵ > 0
such that for any system Ã for which (11) holds, the resulting map He
satisfies ∥He(q) − q∥ < δ and ∥

∂He
∂q − I∥ < δ, where I denotes the

n-dimensional identity matrix.
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Proof. In this proof the map He is constructed as follows. Using
Lemma 4, it will be shown that the equilibrium sets E and Ẽ can
be parameterised as functions of x and x̃, respectively. Using this
parameterisation, a map He is constructed that maps the curve E
onto Ẽ .

Consider the parameterisations c(·) and c̃(·) of E and Ẽ ,
respectively, as given in Lemma 4. In order to construct a map He
which is defined in a neighbourhood of E , we extend c(α) and
c̃(α) such that they are defined in a neighbourhood of a closed set
α ∈ [α1, α2], with α1 < −|Fs| and α2 > |Fs|, which is possible
according to the extension lemma; see [38].

Let c(α) =


cx(α)
0

cy(α)


and c̃(α) =


c̃x(α)
0

c̃y(α)


. Differenti-

ating the defining expressions f (cx(α), 0, cy(α)) = α and
g(cx(α), 0, cy(α)) = 0 with respect to α yields ∂ f

∂x
dcx
dα +

∂ f
∂y

dcy
dα = 1,

and ∂g
∂x

dcx
dα +

∂g
∂y

dcy
dα = 0, which should be satisfied at the equilib-

rium set. Since both equations should be satisfied, invertibility of
∂g
∂y implies dcx

dα ≠ 0 along the equilibrium curve. Smoothness of g
and c imply that one can pick α1 < −|Fs| and α2 > |Fs| sufficiently
close to −Fs and Fs, such that dcx

dα |α ≠ 0 and ∂g
∂y |c(α) is invertible

for all α ∈ (α1, α2). The function cx(α) is smooth, such that the
dcx
dα |α ≠ 0 implies that the inverse function theoremcan be applied,
which yields that there exists a smooth inverse c−1

x (x) defined on
the interval x ∈ co{cx(α1), cx(α2)}. Furthermore, dcx

dα ≠ 0 implies
that cx is either monotonously increasing or decreasing, such that
the x-variables of E are positioned in co{cx(−Fs), cx(Fs)}. Now, let
y = Ψ (x) := cy(c−1

x (x)) denote the y-coordinate such that the
equilibrium set E can be parameterised as follows:

E = {q ∈ Rn
: q =


x 0 Ψ T (x)

T
,

x ∈ co{cx(−Fs), cx(Fs)}}. (A.1)

We observe that c−1
x (x) is defined on the interval x ∈ co{cx(α1),

cx(α2)} and cy(α) is defined on (α1, α2). Hence, the map Ψ (x) is
defined in a neighbourhood of co{cx(−Fs), cx(Fs)}.

To construct a function Ψ̃ (·) for the equilibrium set Ẽ analogous
to Ψ (·), first we will prove that ∂ g̃

∂y |p̃ is invertible for p̃ ∈ Ẽ if ϵ is

sufficiently small. Since the functions f , g, f̃ , and g̃ are smooth and
satisfy Assumption 1, the inverse function theorem implies that for
each ϵ1 > 0 there exists an ϵ > 0 such that (11) implies that for
each p satisfying


p2 f (p) g(p)T


=

0 α 0


there exists a

p̃, such that

p̃2 f̃ (p̃) g̃(p̃)T


=

0 α 0


and ∥p − p̃∥ < ϵ1.

Hence, there exists an ϵ > 0, such that, firstly, ∥p̃ − p∥ < ϵ1
and secondly, invertibility of ∂ g̃

∂y |p implies invertibility of ∂ g̃
∂y |p. If ϵ

is sufficiently small, this implies that ∂ g̃
∂y |p̃ is invertible.

Therefore a function Ψ̃ can be constructed for the equilibrium
set Ẽ analogously to the function Ψ for equilibrium set E when
ϵ > 0 is sufficiently small, such that the equilibrium set Ẽ can be
parameterised as follows:

Ẽ = {q ∈ Rn
: q =


x̃ 0 Ψ̃ T (x̃)

T
,

x̃ ∈ co{c̃x(−Fs), c̃x(Fs)}}. (A.2)

Let Ex
1, Ex

2 denote the x-component of E1 and E2, respectively,
such that Ex

1 = cx(−Fs), and Ex
2 = cx(Fs). Hence, Ex

1 and Ex
2 are

the x-coordinates of the endpoints of the equilibrium set E . The
values Ẽx

1, and Ẽx
2 are defined analogously. The smooth invertible

mapHe is constructed as follows. LetHx
e (x) = Ẽx

1+
(x−Ex1)(Ẽ

x
2−Ẽx1)

Ex2−Ex1
and

H ẋ
e (ẋ) =

(Ẽx2−Ẽx1)
Ex2−Ex1

ẋ. Furthermore, letHy
e (x, y) = y+Ψ̃ (Hx

e (x))−Ψ (x).

Since Ψ (x) and Ψ̃ (x̃) are defined in neighbourhoods of x ∈

co{Ex
1, E

x
2} and x̃ ∈ co{Ẽx

1, Ẽ
x
2}, respectively, we observe that He is
defined in a neighbourhood of E . The maps Ψ and Ψ̃ are smooth
since cy and c−1

x are smooth functions. It follows that the map He
and its inverse are a smooth. Clearly, x̃ = Hx

e (x)maps the interval
x ∈ co{Ex

1, E
x
2} onto the interval x̃ ∈ co{Ẽx

1, Ẽ
x
2}. Combination of this

fact with Eqs. (A.1) and (A.2) yields that q̃ = He(q) ∈ Ẽ if and only
if q ∈ E .

To prove the final statement of the lemma, observe that for each
δ1 > 0,wemay choose an ϵ > 0 such that ∥Ẽx

i −Ex
i ∥ < δ1, i = 1, 2,

∥c(α)−c̃(α)∥ < δ1 and ∥
∂c
∂q −

∂ c̃
∂q∥ < δ1. The statement ∥Ẽx

i −Ex
i ∥ <

δ1, i = 1, 2, implies that given an arbitrarily small δ2 > 0 there
exists a δ1 > 0 such that Hx

e (q) − x < δ2, H ẋ
e (q) − ẋ < δ2 for

q in a neighbourhood of E . The statement ∥c(α) − c̃(α)∥ < δ1
implies that for each δ3 > 0 there exists a δ1 > 0 such that
∥Ψ̃ (x)− Ψ (x)∥ < δ3. Hence, for each δ > 0 there exists an ϵ > 0
small enough such that ∥He(q)− q∥ < δ.

The statement ∥
∂c
∂q −

∂ c̃
∂q∥ < δ1 implies that |

∂Ψ
∂x −

∂Ψ̃
∂ x̃ | can

be chosen small. Choosing ϵ > 0 small enough one obtains that

|
(Ẽx2−Ẽx1)
Ex2−Ex1

− 1| becomes arbitrarily small. Hence,

∂He

∂q
=



(Ẽx
2 − Ẽx

1)

Ex
2 − Ex

1
0 0

0
(Ẽx

2 − Ẽx
1)

Ex
2 − Ex

1
0

(Ẽx
2 − Ẽx

1)

Ex
2 − Ex

1

∂Ψ̃

∂ x̃
−
∂Ψ

∂x
0 1


satisfies the last statement of the lemma. �

In the next result new coordinates are introduced for system A.
The equilibrium set E of A, expressed in these coordinates, will be
shown to coincide with the equilibrium set Ẽ of Ã.

Lemma 6. Consider systems A and Ã given by (1)with f , g, f̃ , g̃ satis-
fying (11) for ϵ > 0 sufficiently small. Furthermore, let Assumption 1
be satisfied and let ∂g

∂y |p be invertible for all p ∈ E . The dynamics of
system A near the equilibrium set can be described in new coordinates
q̄ =


x̄ ˙̄x ȳT

T , such that

¨̄x − f̄ (x̄, ˙̄x, ȳ) ∈ −FsSign(˙̄x),
˙̄y = ḡ(x̄, ˙̄x, ȳ),

(A.3)

where the functions f̄ and ḡ are smooth, given that ϵ is sufficiently
small.

Proof. Let q̄ = He(q), with He(q) given in Lemma 5. Observe
that q ∈ Si implies q̄ ∈ Si, i = 1, 2, when ϵ is small enough,

since Ẽx2−Ẽx1
Ex2−Ex1

becomes close to one according to the last statement

of Lemma 5. Smoothness of f̄ and ḡ follows from ˙̄q = F̄i(q̄) =
∂He
∂q q̇ =

∂He
∂q Fi(H−1

e (q̄)) and the fact thatHe andH−1
e are smooth, see

Lemma 5, where F̄i(q̄) =

q̄2 f̄ (q̄)+ (−1)i+1Fs ḡT (q̄)

T . �

In order to study the structural stability of system (1), the functions
f ,g and their Jacobian matrices will be important. Hence, the
following technical result on f , g, f̄ and ḡ will be used.

Lemma 7. Consider systems A and Ã given by (1) and let the
conditions of Lemma 6 be satisfied. Consider a mapping He such
that q̄ = He(q) yields the coordinates given in Lemma 6. For each
δ > 0 there exists an ϵ > 0 such that (11) implies that, firstly,
∥
∂g
∂y −

∂ ḡ
∂ ȳ∥ < δ and secondly, ∥ ∂Fi

∂q |Ei −
∂ F̄i
∂ q̄ |Ēi∥ < δ, i = 1, 2, where

F̄i(q̄) =

q̄2 f̄ (q̄)+ (−1)i+1Fs ḡT (q̄)

T .
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Proof. Given δ1 > 0, Lemma 5 states that there exists an ϵ > 0
such that (11) implies ∥

∂He
∂q − I∥ < δ1. It follows that ∂H

−1
e
∂q becomes

close to identity as well, such that for each δ2 > 0, there exists
an ϵ > 0 such that (11) implies, firstly, that ∥

∂He
∂q − I∥ < δ2

and secondly, ∥ ∂H
−1
e
∂q − I∥ < δ2. Hence, the properties of ḡ and

F̄ follow from ∂ F̄i
∂ q̄ |Ēi =

∂2He
∂q∂ q̄ Fi(H

−1
e (Ēi)) +

∂He
∂q

∂Fi
∂q

∂H−1
e
∂ q̄ (Ē1), where

Fi(H−1
e (Ēi)) = Fi(Ei) = 0. �

We now obtained a coordinate transformation He, which can be
applied to guarantee that the equilibrium sets of A and Ã coincide.
Hence, assuming that the equilibrium sets of A and Ã coincide
will not introduce a loss of generality. The properties of the
dynamical equation (1) that will be used in the proof of Theorem 1
are not changed by this coordinate transformation. Note, that a
similar argument is used to study perturbations of a hyperbolic
equilibrium point for a smooth dynamical system; see e.g. [39].

Appendix B. Proof of Theorem 1

To prove Theorem 1, first the structural stability of the sliding
dynamics given by (8) is investigated. Subsequently, it is shown
that a topological map, i.e. a homeomorphism satisfying the
conditions given in Definition 1, can be extended orthogonal to this
boundary if it exists for the sliding trajectories onΣ . An eigenvalue
λwill be considered critical if real(λ) = 0.

Lemma 8. Let system (1) satisfy Assumption 1 and let Fs > 0. If ∂g
∂y |p

does not have critical eigenvalues for all p ∈ E , then for any closed
set J ⊂ I the sliding trajectories of system (1) in a neighbourhood
N(J) ⊂ Σ of J are structurally stable for perturbations of f and g.

Proof. Weconsider a systemA given by (1) and a perturbed system
Ã described by (1) with f̃ , g̃ satisfying (11) for sufficiently small
ϵ > 0. By Lemma 7, wemay assumewithout loss of generality that
the equilibrium set of A and Ã coincide.

The sliding solutions of A are described by (8). Restricting this
dynamics to the boundaryΣ , one obtains:

ẋ = 0,
ẏ = g(x, 0, y), (B.1)

for system A and

ẋ = 0,
ẏ = g̃(x, 0, y), (B.2)

for system Ã. Note that ϵ > 0 can be chosen such that ∂ g̃
∂y is ar-

bitrarily close to ∂g
∂y . Hence, the Jacobian matrix ∂g

∂y |p for p ∈ E has

the same number of positive and negative eigenvalues as ∂ g̃
∂y |p. This

implies that trajectories of ẏ = g̃(x, 0, y) are locally topologically
equivalent near p to the trajectories dynamics of ẏ = g(x, 0, y);
cf. Theorem 5.1 of [39, page 68]. From the reduction theorem,
cf. [40, page 15], we conclude that (B.1) and (B.2) are topologically
equivalent. �

The importance of the topological nature of sliding trajectories
will be shown using the following lemma. To prove this lemma, the
following notation is used. Let q(t) = ϕ(t, q0) denote a solution of
system A given by (1) in the sense of Filippov with initial condition
q(0) = ϕ(0, q0) = q0. Furthermore, let q(t) = ϕi(t, q0), i = 1, 2,
denote a trajectory of q̇ = Fi(q) satisfying q(0) = ϕi(0, q0) = q0.
Analogously, the functions ϕ̃(·, ·), ϕ̃i(·, ·), i = 1, 2, are defined
for the perturbed system Ã. We note that this notation can be used
for trajectories in reverse time when t < 0.
Lemma 9. Let system (1) satisfy Assumption 1 and let Fs > 0. For
every interior point p ∈ I there exists a neighbourhood N(p) and a
finite τ > 0 such that any trajectory with an initial condition in N(p)
arrives inΣ s at time t ∈ [0, τ ].

Proof. This proof follows the lines as described by Filippov;
see [19, page 262]. Consider an interior point p ∈ I , and observe
that I ⊂ Σ s. Trajectories near p on Σ s trivially satisfy the lemma
for t = 0. Hence, we restrict our attention to trajectories in S1 near
p. The trajectories in S2 can be handled analogously. The interior
point p ∈ I ⊂ Σ s, such that (7) implies LF1h(p) > 0. Since F1 is
smooth, there exist an δ > 0 and neighbourhood Na(p) of p such
that LF1h(q) > δ,∀q ∈ Na. Since F1 is smooth, for all q ∈ Na(p)∩Σ
there exists a unique trajectory ϕ1(t, q) of q̇ = F1(q) that satis-
fies ϕ1(0, q) = q. By LF1h(q) > δ there exists a τ > 0 such that
ϕ1(t, q) ∈ S1, ∀t ∈ [−τ , 0). Hence, the trajectory ϕ1(t, q) coin-
cides with a trajectory of (1) on this time interval. From Theorem
3, [19, page 128], we conclude that these trajectories form a one-
sided neighbourhood N1(p) of p. By studying the trajectories in S2,
analogously we find a one-sided neighbourhood N2(p). Since there
exists a neighbourhood N(p) ⊂ Σ s

∪ N1(p) ∪ N2(p), the lemma is
proven. �

From this lemma it follows that the qualitative nature of trajecto-
ries near interior points p ∈ I can be described as follows. Accord-
ing to Lemma 9, trajectories arrive at the discontinuity surface in
finite time. Subsequently, these trajectories are described by the
sliding vector field. Using this property, a topological map defined
for sliding trajectories onΣ can be extended towards a neighbour-
hood of this boundary, which is formalised in the next lemma.

Lemma 10. Consider two systems A and Ã and let there exist a topo-
logical map HΣ : U → Ũ , where U ⊂ Σ and Ũ ⊂ Σ̃ . If (−1)iLFih(q)
< 0, ∀q ∈ U, and (−1)iLF̃ih(q̃) < 0, ∀q̃ ∈ Ũ , for i = 1 or i = 2,
then one can extend the topological map HΣ towards Si such that HΣ
is defined in a closed n-dimensional subset of U ∪ Si that contains U.

Proof. To prove the lemma, we exploit the assumption that
LF1h(q) > 0, ∀q ∈ U and LF̃1h(q̃) > 0, ∀q̃ ∈ Ũ . The case LF2h(q)
< 0, ∀q ∈ U and LF̃2h(q̃) < 0, ∀q̃ ∈ Ũ can be handled analogously.
We observe that LF1h(q) > 0, ∀q ∈ U implies that for any
q ∈ U , there exists a unique trajectory of system A that satisfies
ϕ(0, q) = q and ϕ(t, q) ∈ S1 for t ∈ [T1, 0), with T1 < 0. Choosing
q̃ = HΣ (q), LF̃1h(HΣ (q)) > 0 analogously implies that there exists
a unique trajectory of Ã such that ϕ̃(0,HΣ (q)) = HΣ (q) ∈ Ũ
and ϕ̃(t,HΣ (q)) ∈ S̃1 for t ∈ [T2, 0), where T2 < 0. Introducing
T = max(T1, T2) yields ϕ(t, q) ∈ S1 and ϕ̃(t,HΣ (q)) ∈ S̃1, ∀t ∈

[T , 0), ∀q ∈ U .
From Theorem 3, [19, page 128], we conclude that the union

of these trajectories form compact, connected n-dimensional sets
V and Ṽ containing U and Ũ . Hence, there exist a unique map
ψ : V → [T , 0] × U such that (τ , ρ) = ψ(q) with inverse
q = ϕ(τ , ρ). Here, ρ denotes the first point where the trajectory
with initial condition q crosses Σ , the time lapse is denoted −τ .
Since (−1)iLFih(q) < 0, ∀q ∈ U, there exists a unique trajectory
ϕi(t, ρ) of q̇ = Fi(q)with initial condition ϕ(0, ρ) = ρ ∈ U at time
t = 0 that crossesΣ non-tangential (i.e. transversal) at time t = 0
and satisfiesϕ(t, q) ∈ Si,∀t ∈ (T , 0). For this time interval, the tra-
jectory ϕi of q̇ = Fi(q) coincides with the trajectory ϕ of A. Hence,
we observe that ψ is continuous and unique; cf. [26, page 242].

Now, we define HΣ (q) for q ∉ Σ as HΣ (q) = ϕ̃(τ ,HΣ (ρ)),
where (τ , ρ) = ψ(q). We observe that HΣ : V → Ṽ satisfies the
conditions of the lemma, and maps trajectories of A onto trajecto-
ries of Ã. �
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The following lemma gives sufficient conditions for the
structural stability of trajectories near interior points of the
equilibrium set. Since trajectories near the endpoints E1 and E2
of the equilibrium set are not considered, the following lemma is
restricted to arbitrarily closed subsets of I .

Lemma 11. Let system (1) satisfy Assumption 1 and let Fs > 0. If
∂g
∂y |p does not have critical eigenvalues for all p ∈ E , then for any
closed set J ⊂ I the trajectories of system (1) in a neighbourhood N(J)
of J are structurally stable for perturbations of f and g.
Proof. Consider system A described by (1) and let the perturbed
version be denoted by Ã. Under the conditions given in the lemma,
the result of Lemma 8 implies that there exists a topological map
HΣ in a set N̄(J) ⊂ Σ containing J , that maps trajectories of A
onto trajectories of Ã. Observing that N̄(J) ⊂ Σ s, one can apply
Lemma 10, which proves that the map HΣ can be extended to
subsets of S1 and S2. In this manner, a topological map is obtained
from a neighbourhood of J to a neighbourhood of HΣ (J), which
proves the lemma, see Definition 2.

Under the conditions given in the foregoing lemma, we
conclude that no changes can occur in the topological nature of
trajectories around interior points of the equilibrium set. Hence,
we are able to prove Theorem 1.
Proof of Theorem 1. Theorem 1 is proven by contradiction. Sup-
pose there exists a system A(µ) smoothly depending on parameter
µ, that undergoes a local bifurcation at parameter µ = 0 which
does not occur at the endpoints. Furthermore, we use the assump-
tion in the theorem that ∂g

∂y |p does not have critical eigenvalues for
system A(0). A sufficiently small change of µ near 0 can be chosen
such that systems A(0) and A(µ) satisfy (11) for arbitrarily small ϵ.
Reversing the direction of time if necessary, wemay assume Fs > 0
such that Lemma 11 can be applied. This lemma contradicts the oc-
currence of a local bifurcation of the equilibrium set at an interior
point. �

Appendix C. Proof of Theorem 2

In this section, Theorem 2 is proven. First, we study the
trajectories in the neighbourhood of an individual endpoint Ek with
k = 1 or k = 2, where the eigenvalues of Ak are complex.
Subsequently, endpoints are studiedwhereAk has real eigenvalues.
Recall that a topological map is a homeomorphism satisfying the
conditions given in Definition 1.

Lemma 12. Consider a planar system A given by (12) satisfying As-
sumptions 1 and 2, where Ak, with k = 1 or k = 2, has complex
eigenvalues λ = α ± ıω, ω ≠ 0. Furthermore, let Ã be a perturbed
system satisfying (11) with sufficiently small ϵ > 0. There exist a
topological map Hc and neighbourhoods N(Ek) of Ek and Ñ(Ẽk) of Ẽk
such that Hc : N(Ek) → Ñ(Ẽk).
Proof. By Lemma 7, we may assume that the equilibrium sets of
A and Ã coincide. From (12) it follows, together with Fs > 0 of
Assumption 2, that the equilibrium sets E and Ẽ coincide with
stable sliding motion, i.e. E = Σ s and Ẽ = Σ̃ s.

In this proof we consider the case k = 1, the proof for k = 2
can be derived analogously. Let the real matrix P be given by the
real Jordan decomposition of A1 given by A1 = PJP−1, where
J =


α −ω
ω α


. Hence, the linear system ẇ = A1w can be rep-

resented by new coordinates r, θ such that w̄1 = r cos(θ) and
w̄2 = r sin(θ), with


w̄1 w̄2

T
= P−1w. In these coordinates,

the dynamics ẇ = A1w yields ṙ = αr and θ̇ = ω. Hence, all
trajectories of this system encircle the origin, and cross every line
through the origin every T =

π
ω
time units. If we let w = q − E1,

then ẇ = A1w serves as a linear approximation of q̇ = F1(q) near
E1. Using the same coordinates r and θ , we obtain θ̇ = ω+ ω̄(r, θ),
Fig. C.8. Sketch of trajectories near E1 for a 2-dimensional system when A1 has
complex eigenvalues. The left panel shows trajectories of A, the right panel shows
trajectories of a perturbed system Ã.

where ω̄ is determined by the error introduced by the linearisation.
Hence, the function ω̄ is smooth and satisfies ω̄(r, θ) = O(r2). For
each δ > 0, there exists a small enough neighbourhood N1(E1) of
E1 such that θ̇ ∈ [ω − δ, ω + δ] and ṙ ∈ [αr − δ, αr + δ].

This implies that there exists a neighbourhoodN2(E1) ⊂ N1(E1)
of E1, such that trajectories of q̇ = F1(q) in N2(E1) cross every line
through E1 in a transversal manner; see Fig. C.8. Hence, for each
q ∈ Σ s

∩N2(E1) there exist a T (q) near−
π
ω
such that ϕ1(T (q), q) ∈

Σ c , where ϕ1(t, q) denotes the trajectory of q̇ = F1(q)with initial
condition ϕ1(0, q) = q at time t = 0. The function T (q) is continu-
ous; see [26, page 242]. Since LF1h(q) > 0 for q ∈ Σ s, the trajectory
ϕ1(t, q) crossesΣ s from S1, such thatϕ1(t, q) ∈ S1,∀t ∈ (T (q), 0).
By Filippov’s solution convention, the trajectory ϕ1(t, q) coincides
with a trajectory of (12) for t ∈ [T (q), 0]. Furthermore, any point
q ∈ S1 ∩ N2(E1) can be described with the coordinates (τ , ρ),
ρ ∈ Σ s, τ ∈ (T (ρ), 0), such that q = ϕ1(τ , ρ).

Now, consider a perturbed system Ã satisfying (11) with ϵ suffi-
ciently small. This implies the eigenvalues of Ã1 are arbitrarily close
to the eigenvalues of A, and hence are complex. Analogous to the
reasoning given in the foregoing paragraph for system A, one can
show that there exists a continuous function T̃ (ρ̃) for ρ̃ ∈ Σ̃ s,
such that ϕ̃1(T̃ (ρ̃), ρ̃) ∈ Σ̃ c and any point q̃ ∈ S̃1 ∩ Ñ2(Ẽ1) can
be described with the coordinates (τ̃ , ρ̃), τ̃ ∈ (T̃ (ρ̃), 0), such that
q̃ = ϕ̃1(τ̃ , ρ̃).

LetHc1 map points (τ , ρ) → (τ̃ , ρ̃) = (
T̃ (ρ)
T (ρ)τ , ρ). This map and

its inverse are locally continuous since T (ρ) and T̃ (ρ) are nonzero,
and the functions T (·), T̃ (·) are continuous.

Now, let Hc map ϕ1(τ , ρ) → ϕ̃1(τ̃ , ρ̃), where (τ̃ , ρ̃) =

Hc1(τ , ρ). This map is continuous away from the point E1 sinceHc1
is continuous and both ϕ1 and ϕ̃1 are trajectories of a smooth sys-
tem, hence ϕ1 and ϕ̃1 are continuous.

The domain of definition of Hc is extended from S1 towards
Σ as follows. For points q ∈ Σ we choose a sequence {qi} with
limi→∞ qi = q ∈ Σ and qi ∈ S1 and define Hc(q) = limi→∞ Hc(qi).
In this manner, the domain of Hc becomes (S1 ∪Σ) ∩ N2(E1).

Continuity of Hc is trivial away from the point E1. Now, con-
tinuity of Hc at E1 is proven. Consider two arbitrary sequences
{qi} ∈ S1 and {q̄j} ∈ S1 with limi→∞ qi = limj→∞ q̄j = E1.
The two sequences correspond to different coordinates {τi, ρi} and
{τ̄j, ρ̄j}. We observe that both limi→∞ ρi = E1 and limj→∞ ρ̄i = E1,
whereas the limits of the τ and τ̄ -sequences may differ. However,
Ẽ1 = E1 is an equilibrium of ˙̃q = F̃1(q̃), such that ϕ̃1(t, Ẽ1) =

Ẽ1, is independent on t . Hence, we obtain Ẽ1 = Hc(E1) =

limi→∞ Hc(qi) = limj→∞ Hc(q̄j). Continuity of Hc at E1 is proven.
At E1 one finds F1(E1) = 0, such that LF2h(E1) = −2Fs; see (4)

and (5). Hence, according to Lemma 10 the domain of definition of
Hc can be extended towards a neighbourhood of E1 in S2, such that
Hc : N(E1) → Ñ(Ẽ1), where N(p) denotes a neighbourhood of p
and Ñ(p̃) denotes a neighbourhood of p̃. The map Hc is a topologi-
cal map. �

Lemma 12 proves that the trajectories near an endpoint Ek, k = 1
or k = 2 are structurally stable when the matrix Ak has complex
eigenvalues, such that all trajectories in Sk near Ek will encircle this
point and either enterΣ s, or cross the boundaryΣ c in finite time.
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Fig. C.9. Sketch of trajectories near E1 for a 2-dimensional system when A1 has
two real eigenvalues. The left panel shows trajectories of A, the right panel shows
trajectories of a perturbed system Ã.

In the following lemma, structural stability is studied of
trajectories in the neighbourhood of an endpoint Ek when the
matrix Ak has real eigenvalues. Hereto, separatrices of this system,
consisting of trajectories that converge asymptotically to the
endpoint Ek, are introduced as follows.

In case Ak, k = 1 or k = 2, has real nonzero eigenvalues,
Assumption 2 implies that the eigenvectors vj of Ak satisfy ∇hvj ≠

0, since Ak =


0 1

∂ f
∂x

|Ek
∂ f
∂ ẋ

|Ek


. To study the case where Ak has

real eigenvalues, separatrices of the system are studied. Assume Ak
has nonzero, real eigenvalues and let HHG denote the topological
map that maps trajectories of (12) in Sk to trajectories of q̇ =

Akq, which exist according to the Hartman–Grobman theorem.
Given an eigenvalue λj, let vj denote the unique corresponding unit
eigenvector of Ak that points towards Si. The set M̄j := {q ∈ R2

:

q = cvj, c ∈ (0,∞)}, j = 1, 2, is invariant for q̇ = Akq, such that
the setMj := {Ek} + H−1

HG (M̄j) is invariant for q̇ = Fk(q − Ek). Since
the set Mj consist of a single trajectory of the smooth differential
equation q̇ = Fk(q), Mj is a smooth curve. The invariant manifold
Mj is a separatrix for system (12) that is tangent to M̄j at Ek. If
Ak has two distinct real eigenvalues, the separatrices M1 and M2
correspond to the eigenvalues λ1 and λ2 of Ak. Note that M1 and
M2 coincide with the stable and unstable manifold of Ek positioned
in Sk if the eigenvalues of Ak satisfy λ1 < 0 < λ2. For perturbed
systems Ã, the separatrices M̃1 and M̃2 are defined analogously.

Lemma 13. Consider a planar system A given by (12) satisfying As-
sumptions 1 and 2, where Ak, with k = 1 or k = 2, has real,
nonzero eigenvalues. Furthermore, let Ã be a perturbed system sat-
isfying (11) with sufficiently small ϵ > 0. There exist a topological
map Hr and neighbourhoods N(Ek) of Ek and Ñ(Ẽk) of Ẽk such that
Hr : N(Ek) → Ñ(Ẽk).

Proof. In this proof we consider the case k = 1; the proof for
k = 2 can be derived analogously. Since the eigenvalues and
eigenvectors of a real, nonsingularmatrix are continuous functions
of parameters, the eigenvalues and eigenvectors of Ã1 are close
to those of A1. Hence, Ã1 has real, nonzero eigenvalues, and
separatrices M̃1 and M̃2 of Ã are locally close to M1 and M2. From
(12) it follows, together with Fs > 0 of Assumption 2, that the
equilibrium sets E and Ẽ near the points E1 or Ẽ1 coincide with
stable sliding motion, hence E and Ẽ coincide with Σ s and Σ̃ s,
respectively.

For the system A the separatrices M1 and M2 partition the
domain N(E1) ∩ S1 into three sectors c1, c2, c3; see Fig. C.9. The
index of c1 is chosen such that E is a subset of the boundary of c1
and the boundary of c3 contains Σ c , as shown in Fig. C.9. Similar,
we partition Ñ(Ẽ1) into three domains c̃1, c̃2, c̃3, bounded by the
manifolds M̃1, M̃2, Σ̃ and Ẽ1.

Trajectories in c2 ∪ M1 ∪ M2 of A, are described by q̇ = F1(q)
and trajectories of Ã in c2 ∪ M1 ∪ M2 are described by ˙̃q = F̃1(q̃).
Near E1, resp E2, these trajectories are locally equivalent according
to Lemma 9 and 10 of [41, page 306–307]. Hence, there exist a
topological map H2

r mapping c2 ∪ M1 ∪ M2 onto c̃2 ∪ M̃1 ∪ M̃2.
Fig. C.10. Schematic construction of domains P1 and P2 , which are shown hatched.

For a sufficiently small neighbourhood N(E1), by Lemma 3
of [19, page 194], there exist topological maps H1

r and H3
r from

trajectories of A in c1 ∩ N(E1) and c3 ∩ N(E1), respectively, onto
trajectories of Ã in sectors c̃1 ∩ Ñ(Ẽ1) and c̃3 ∩ Ñ(Ẽ1), respectively.
According to [19, page 196], the topological mapsH1

r andH3
r can be

chosen to coincide at separatricesM1,M2 with H2
r . In this manner,

we obtain a topological map Hr : N(E1) ∩ (Σ ∪ S1) → Ñ(Ẽ1) ∩

(Σ̃ ∪ S̃1).
At E1 one finds F1(E1) = 0, such that LF2h(E1) = −2Fs; see (4)

and (5). Hence, Lemma 10 is applied. The domain of definition of
Hr is extended towards a subset of S2 such thatHr mapsN(E1) onto
Ñ(Ẽ1). �

Lemmas 12 and 13 guarantee structural stable properties for
system (12) in neighbourhoods of the endpoints of an equilibrium
set under certain conditions on the linearised dynamics around
these endpoints. These results are combined with Theorem 1, to
prove Theorem 2.

Proof of Theorem 2. Let Ã be an arbitrary system satisfying (11)
for ϵ sufficiently small. By Lemma 7, we may assume that the
equilibrium sets of A and Ã coincide. According to Assumption 2,
the eigenvalues of A1 and A2 are either complex or real, nonzero
and distinct. In the first case, Lemma 12 guarantees that there
exists a topologicalmapHk, k = 1, 2, from aneighbourhoodN(Ek)
of Ek to a neighbourhood of Ẽk; in the case of real eigenvalues this
is guaranteed by Lemma 13. Now, in the neighbourhood N(E1)we
select two arbitrary points pa1, p

b
1 such that pa1, p

b
1 ∈ I ∩ N(E1)

and 0 < |pa1 − E1| < |pb1 − E1|; see Fig. C.10. Analogously, we
select two points pa2, p

b
2. Choosing J = co{pa1, p

a
2} yields J ⊂ I , such

that Lemma 11 implies there exists a topological map HJ defined
in a neighbourhood N(J) of J . According to [41, page 196], the
topologicalmapsHk, k = 1, 2, can be chosen to coincidewithHJ at
the equilibrium points, such that Hk(p) = HJ(p), ∀p ∈ co{pak, p

b
k}

for k = 1, 2.
To obtain a topological map that is continuous and coincides

with Hk near Ek, k = 1, 2, and coincides with HJ for points
further away from these endpoints, transition regions P1 and P2
are introduced, given by Pk(J) := {q ∈ N(J) ∩ N(Ek) : limt→∞

ϕ(q, t) ∈ co{pak, p
b
k}}, k = 1, 2; see Fig. C.10. In these regions, new

topological maps are introduced that connect HJ and Hk, k = 1, 2,
in a continuous fashion.

In this manner, a topological map is constructed in a
neighbourhood of E , which is constructed as follows. One can
select a subsetN ′(J) ⊂ N(J) containing J , andN ′(Ek) ⊂ N(Ek), k =

1, 2, such that N ′(E1) ∪ N ′(E2) ∪ P1 ∪ P2 ∪ N ′(J) contains a
neighbourhood of E , the interiors of the sets N ′(Ek), k = 1, 2,
and N ′(J) have an empty intersection and the domains N ′(Ek), k =

1, 2, and N ′(J) intersect with Pk only at a one-dimensional set;
cf. Fig. C.11. For q ∈ Pk, k = 1, 2, we will construct a topological
map HPk that coincides with Hk for q ∈ N ′(Ek) and coincides with
HJ for q ∈ N ′(J).

We will now proceed to construct the map HP1 that connects
H1 and HJ in a continuous fashion. Analogously, a map HP2 can be
constructed.
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Fig. C.11. Schematic construction of a neighbourhood of E .

Since HJ and H1 coincide for q ∈ P1 ∩ J = co{pa1, p
b
1}, we

need to construct a map HP1 that, firstly, coincides with HJ at the
intersection of the closures of N ′(J) and P1 and secondly, coincides
with H1 at the boundary between N ′(E1) and P1. Let the function
HP1 coincide with HJ for q ∈ P1 ∩ J . Since P1 = (P1 ∩ S1)∪ (P1 ∩ J)∪
(P1 ∩ S2), firstly we will construct the map HP1 for points in P1 ∩ S1
such that it coincideswithHJ at the boundary between P1 andN ′(J),
which is denoted with B, and coincides with H1 at the boundary
between P1 and N ′(E1), which is denoted with C; cf. Fig. C.11.

Both maps H1 and HJ satisfy H1(q) ∈ S̃1 and HJ(q) ∈ S̃1 when
q ∈ S1. Hence, we will introduce new coordinates in S̃1. Similar to
the proof of Lemma 10, for points q̃ ∈ S̃1 we introduce the new
coordinates (τ , ρ) given byψ : P1 → [T , 0]× [pa1, p

b
1] with T < 0,

such that (τ , ρ) = ψ(q̃), ϕ̃1(τ , ρ) = q̃ and ρ ∈ [pa1, p
b
1] ⊂ J ,

where q̃(t) = ϕ̃1(t, q̃0) is a trajectory of ˙̃q = F̃1(q̃) with initial
condition q̃(0) = q̃0. For q ∈ P1 ∩ S1, both the maps H1(q)
and HJ(q) can be expressed in the coordinates (τ , ρ), such that
(Hτ1 ,H

ρ

1 ) = ψ(H1(q)) and (HτJ ,H
ρ

J ) = ψ(HJ(q)).
The functions Hρ1 (q) and HρJ (q) denote the position of the first

crossing with the boundary Σ of trajectories of system A with
initial conditions q. At Σ ∩ P1, the maps H1 and HJ coincide since
Σ ∩ P1 is part of the equilibrium set. Since both H1 and HJ map
trajectories onto trajectories and the maps coincide for q ∈ Σ ∩

P1 = co{pa1, p
b
1}, we find that Hρ1 (q) = HρJ (q), ∀q ∈ P1.

Recall that the map HP1 should coincide with HJ at curve B
and with H1 at curve C . For the variable τ , we introduce a linear
interpolation HτP1 given by HτP1(q) = Hτ1 (q) +

Hρ1 (q)−pa1
pb1−pa1

(HτJ (q) −

Hτ1 (q)), which clearly is a function that blendsHτ1 andHτJ in set P1∩
S1. Transforming (Hρ1 (q),H

τ
P1
(q)) to the coordinates q̃, a topological

map HP1 is defined in P1 ∩ S1. Expressed in (ρ, τ ) coordinates, it
immediately follows that firstly, HP1 coincides with HJ at curve
B, secondly, it coincides with H1 at curve C and finally, HP1(p) =

H1(p) = HJ(p), ∀p ∈ P1 ∩ J . Analogously, HP1 is defined in P1 ∩ S2,
such that HP1(q) is defined for all q ∈ P1. The map HP2 can be
constructed with the same procedure.

Now, we define

H(q) =


H1(q), q ∈ N ′(E1),
HJ(q), q ∈ N ′(J),
H2(q), q ∈ N ′(E2),
HP1(q), q ∈ P1,
HP1(q), q ∈ P2,

(C.1)

which is a topological map, proving the theorem. �

Appendix D. Proof of Lemma 3

Proof of Lemma 3. The existence of aminimumdistance between
interior points and a limit cycle is trivial, since trajectories close to
the interior points are attracted to the equilibrium set; cf. Lemma9.
Hence, we need to prove that any limit cycle remains away from
the endpoints E1 and E2. In this proof we will show that the limit
cycle does not come close to the equilibrium point E1, the second
case can be excluded analogously. Without loss of generality, we
assume Fs > 0. For the sake of contradiction, we assume that a
limit cycle γ comes close to E1 and has finite period Tγ . Since the
vector field F2 is pointing towards S1 in a neighbourhood of E1, the
limit cycle should leave the neighbourhood of E1 in direction of S1.
Since the dynamics in S1 is described by the smooth differential
equation q̇ = F1(q), we observe that ∥q̇∥ becomes arbitrarily small
near E1. Hence, a trajectory on γ will spend an arbitrarily long
period of time in the neighbourhood of E1. This implies that the
period time of the closed orbit γ becomes arbitrarily long, yielding
a contradiction. The lemma is proven. �
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