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a b s t r a c t

Two similar stability notions are considered; one is the long established notion of convergent systems,
the other is the younger notion of incremental stability. Both notions require that any two solutions
of a system converge to each other. Yet these stability concepts are different, in the sense that none
implies the other, as is shown in this paper using two examples. It is shown under what additional
assumptions one property indeed implies the other. Furthermore, this paper contains necessary and
sufficient characterizations of both properties in terms of Lyapunov functions.
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1. Introduction

In this paper we study and compare two long established and
related stability notions, namely those of incremental stability
[1–4] and convergence [5–7]. These stability notions have received
increased interest in recent years due to their potential application
in synchronization [8–10], nonlinear output regulation [11],
steady-state analysis of nonlinear systems [12] and many other
nonlinear control problems. We refrain from giving a further
and exhaustive overview on these, and related, stability notions;
rather, we study and compare in detail the notions of incremental
stability as defined in [3] and convergent systems as defined in [7].
The reason for this study is that, although these stability notions
appear to be similar, they are in fact different. On the one hand, we
will make explicit these differences and, on the other hand, wewill
present conditions under which one stability property implies the
other.

Let us introduce the definitions of convergence and incremental
stability. Consider hereto a system

ẋ(t) = f (t, x) (1)

with f :Rn+1
→ Rn measurable in t and locally Lipschitz in x ∈

Rn, uniformly for t in compact sets (this assumption guarantees
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uniqueness and local existence of solutions, cf. [13]). We say that
a set A ⊂ Rn is positively invariant under (1) if x0 ∈ A implies that
for all t0 ∈ R, x(t, t0, x0) ∈ A for all t ≥ t0.

Let X ⊂ Rn be a subset of Rn. We are interested in two stability
concepts, defined as follows.

Definition 1 (cf. [11,7]). System (1) is uniformly convergent in a
positively invariant set X if

1. all solutions x(t, t0, x0) exist for all t ≥ t0 for all initial condi-
tions (t0, x0) ∈ R × X;

2. there exists a unique solution x(t) in X defined and bounded
for all t ∈ R;

3. the solution x(t) is uniformly1 asymptotically stable in X,
i.e., there exists a function β ∈ KL such that for all (t0, x0) ∈

R × X and t ≥ t0,
∥x(t, t0, x0) − x(t)∥ ≤ β


∥x0 − x(t0)∥, t − t0


.

System (1) is globally uniformly convergent if it is uniformly
convergent in Rn.

For a uniformly convergent system, the unique, bounded
uniformly asymptotically stable solution x(t) is called a steady-
state solution.

1 In Definition 1 the uniqueness of the solution x(t) is in fact a consequence of its
uniform asymptotic stability, cf. [11, p.15, Property 2.15].

0167-6911/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
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Definition 2 (cf. [3]). System (1) is incrementally asymptotically
stable (IS for short) in a positively invariant set X ⊂ Rn if there
exists a function β ∈ KL such that for any ξ 1, ξ 2

∈ X and t ≥ t0,

∥x(t, t0, ξ 1) − x(t, t0, ξ 2)∥ ≤ β

∥ξ 1

− ξ 2
∥, t − t0


. (2)

In the case X = Rn we say that system (1) is globally incrementally
stable (GIS), or just incrementally stable.

The definitions given here are for seemingly very general time-
varying systems. Still, implicit to both definitions is that solutions
to (1) with initial conditions in X exist for all forward times. Also
note that in contrast to the definition given here, most existing
notions of incremental stability, e.g. [3], are defined only for
systems with right-hand sides not explicitly depending on time.
Furthermore, item 1 in Definition 1 is actually redundant, since
in this paper we define convergence with respect to a positively
invariant set. However, historically convergence would be defined
using item 1 instead of the positively invariant set.

As argued above the properties of incremental stability and
convergence are very useful in tackling a range of nonlinear control
problems. Moreover, since the definition of uniform convergence
implies the existence of a unique bounded (uniformly globally
asymptotically stable) solution, termed the steady-state solution,
the convergence property is a powerful tool for steady-state
(performance) analysis of nonlinear (control) systems. We note
that the existence of such a well-defined steady-state solution is
not implied by the incremental stability property.

Both the incremental stability and the uniform convergence
property can be thought of as an open-loop observability property,
i.e., the possibility to construct an observer for the system that is
based entirely on past input data.

In [3], equivalent notions of incremental stability have been
derived, most notably among them a characterization in terms of
a merely continuous Lyapunov function, albeit only for systems
with right-hand sides not depending explicitly on time. Other
notions of incremental stability such as, e.g., in [14] are invariant
under changes of coordinates. Here we focus on a notion similar
to that in [3], and, by extending a result from [3], we present a
Lyapunov characterization of incremental stability (see Theorem5)
for systems with right-hand sides depending explicitly on time. In
contrast, to date and to the best of our knowledge no necessary
and sufficient characterization in terms of a Lyapunov function
is known for the convergence property; however, a number of
sufficient conditions for uniform convergence based on Lyapunov
functions can be found in [15,5,6,11,16]. In addition, we also
provide a characterization of global uniform convergence in terms
of a smooth Lyapunov function.

Another difference between the two properties is that incre-
mental stability, as defined in [3], is not invariant under changes of
coordinates. For the purposes of this paper, however, we will not
pursue this aspect further and instead refer the interested reader
to the discussion in [4].

On the one hand, it might seem obvious that in general
incremental stability does not imply convergence, cf. Example 4
in this paper. Namely, for systems whose trajectories converge
to each other and at the same time tend to infinity together,
clearly, the unique x(t) as in Definition 1, if it exists, would not be
bounded. On the other hand, one might be led to believe that the
converse implication could be true, i.e., that a convergent system
is incrementally stable, since when two different trajectories
x(t, t0, ξ 1) and x(t, t0, ξ 2) tend to x(t), then obviously they also
tend to each other, as is depicted in Fig. 1. This would imply that
the class of convergent systems is a proper subset of the class of
incrementally stable systems.

In this paper, we will argue that incremental stability and
convergence are indeed distinct stability notions. This claim is

Fig. 1. The uniform convergence property: two solutions tending to the unique
bounded solution x(·).

supported by several examples, presented in Section 2. Herein,
we first show that convergence does not imply incremental
stability, since the convergence of two trajectories towards each
other does not have to be uniform in the distance of the initial
conditions. Second, we show that if any two trajectories become
eventually close (as is the case in incrementally stable systems),
that does not imply the existence of a solution that is bounded
forward and backward in time (as in convergent systems). Still,
these stability notions are related and we will present sufficient
conditions in Section 3 under which one property implies the
other. In that section we also provide converse Lyapunov results
for incrementally stable and uniformly convergent systems, which
are of independent interest. All proofs of these main results are
provided in an Appendix. The paper will close with conclusions in
Section 4.
Notation. By R+ we denote the real half line [0, ∞). Throughout
the paper we will denote by K the class of continuous and strictly
increasing functions κ:R+ → R+ for which κ(0) = 0. A function
ρ is of class K∞ if it is of class K and unbounded. A continuous
function β:R2

+
→ R+ is of class KL if for any fixed s ≥ 0,

β(·, s) ∈ K and β(s, ·) is non-increasing with limt→∞ β(s, t) = 0.

2. Examples

Our first example is a systemwhose trajectories spiral counter-
clockwise towards a bounded solution z(t), but the further away
from z(t) one starts, the faster the angular velocity is. So the
solution z(t) is globally asymptotically stable, which is shown
using a quadratic Lyapunov function, while two solutions starting
at t = 0 an appropriately chosen distance ϵ > 0 away from each
other get separated arbitrarilymuch in finite time, if they both start
far away from z(t).

Example 3 (A Uniformly Convergent System that is not GIS). For z ∈

R2 consider the system

ż(t) =


−sin t
cos t


+ ∥z(t) − z(t)∥2

2


−z2(t) + sin(t)
z1(t) − cos(t)


− sat1


∥z(t) − z(t)∥2

2

 z1(t) − cos(t)
z2(t) − sin(t)


, (3)

where z(t) = (cos t, sin t)⊤ and satr : R → R is given by

satr(s) =


−r if s ≤ −r
s if |s| < r
r if s ≥ r.

Obviously, z(t) is a bounded solution of (3) on R. Now consider the
time-varying quadratic Lyapunov function V (t, z) =

1
2∥z−z(t)∥2

2.
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Then it can be verified that

V̇ =
d
dt

V (t, z(t))

= −sat1

∥z(t) − z(t)∥2

2


∥z(t) − z(t)∥2

2 < 0

whenever z(t) ≠ z(t), proving uniform global asymptotic stability
of the bounded solution z(t) of (3). Hence the system is globally
uniformly convergent. (See also Theorem 7.) Rewriting x(t) :=

z(t) − z(t) in polar coordinates (r, φ) yields, in the region where
r > 1,

ṙ = −r
φ̇ = r2,

which has solutions for initial values (in polar coordinates)
(r0, φ0)⊤, r0 > 1, explicitly given by

r(t) = r0e−t

φ(t) = φ0
+

(r0)2

2


1 − e−2t, (4)

for t ≥ 0 such that r(t) > 1.
Claim.WithM =

2πe
e−1 there exist points ξ 1, ξ 2 with ∥ξ 1

−ξ 2
∥ ≤ M

such that for any R > 1 sufficiently large,

∥z(1/2, 0, ξ 1) − z(1/2, 0, ξ 2)∥ =

√
R + M +

√
R

√
e

,

see Fig. 2. This implies that there cannot exist a KL function β
such that (2) holds and hence the system is not GIS.

Proof of the Claim. Let R > 1 be large enough such that solutions
z(t, 0, ξ i) starting in ξ 1

=
√

R + M, 0
⊤

+ z(0) and ξ 2
=√

R, 0
⊤

+z(0) satisfy ∥z(t, 0, ξ i)−z(t)∥ = ∥x(t, 0, ξ i
−z(0))∥ >

1 for all t ∈ [0, 1/2], i = 1, 2. Observe that ∥ξ 1
− ξ 2

∥ =
M +

√
R

2
√
R − 2

√
R + M

1/2
≤

√
M . Using (4), at time t = 1/2

the difference of the respective angle functionsφi(t) = φ(t, 0, ξ i
−

z(0)), i = 1, 2, satisfies

φ1(1/2) − φ2(1/2) = (R + M)/2(1 − e−2t) − R/2(1 − e−2t)

=
M
2

(1 − 1/e) = π. (5)

Denote correspondingly ri(t) = r(t, 0, ξ i
− z(0)), i = 1, 2.

Using (5),

∥z(1/2, 0, ξ 1) − z(1/2, 0, ξ 2)∥

= ∥x(1/2, 0, ξ 1
− z(0)) − x(1/2, 0, ξ 2

− z(0))∥
= r1(1/2) + r2(1/2)

=
√
R + Me−1/2

+
√
Re−1/2

=

√
R + M +

√
R

√
e

,

where the second equality is due to the fact that x(1/2, 0, ξ 1) and
x(1/2, 0, ξ 2) are vectors pointing in opposite directions, as certified
by (5). �

In the previous example, we have in fact shown that a
bounded trajectory can be globally asymptotically stable (GAS) and
trajectories are not GAS with respect to each other.

Another example is the system

ẋ = −sat1x.

Here the bounded solution is the origin x(t) ≡ 0. The origin is
globally asymptotically stable (hence the system is convergent),
and yet the difference between trajectories starting out arbitrarily
close remains constant before the first of them enters the unit ball.

Fig. 2. The two trajectories in Example 3 start on the positive real half line with an
initial separation less than

√
M at time t = 0 and the lesser initial distance to the

origin isR. At time t = andunder a suitable time-varying change of coordinates,
the arguments of the trajectories are shifted by 180° so that the separation distance
is about 2

√
R.

This system could be considered marginally GIS, as the distance
between trajectories cannot increase arbitrarilymuch in finite time
as in Example 3.

The second type of example, discussed next and concerning a
GIS system that is not uniformly convergent, is much easier to
construct than the first, as we only have to construct a system
with one globally uniformly asymptotically stable solution, which
is unbounded in forward time. In fact, even a one-dimensional
counterexample can be realized.

Example 4 (A System that is GIS but not Uniformly Convergent).Con-
sider

ẋ(t) = t − x, x ∈ R, (6)

which has the explicit solution

x(t, t0, x0) = x0e−t+t0
+

 t

t0
es−tsds

= x0e−t+t0
+

(s − 1)es−ts=t

s=t0

= x0e−t+t0
+ (t − 1) − (t0 − 1)et

0
−t .

Obviously, the solution passing through x0 = 0 at t0 = 0
is unbounded. Hence the system cannot be globally convergent
(since otherwise the same solution would have to be attracted to a
bounded solution as t → ∞).

Taking any ξ 1, ξ 2
∈ R then

d
dt


x(t, t0, ξ 1) − x(t, t0, ξ 2)


= −


x(t, t0, ξ 1) − x(t, t0, ξ 2)


,

which implies

∥x(t, t0, ξ 1) − x(t, t0, ξ 2)∥ ≤ ∥ξ 1
− ξ 2

∥e−(t−t0),

which, in turn, represents a KL-estimate on the difference
between any two solutions. So the system (6) is GIS.

This in turn implies that the solution passing through x0 = 0
is globally attractive, and hence no bounded solution can exist, so
the system cannot be convergent on a subset of Rn.

On the one hand, the above examples clearly show that the
stability notions of convergence and incremental stability are
different. On the other hand, the classes of GIS and convergent
systems also have nonempty intersection: for example, any linear
system ẋ = Axwith A Hurwitz satisfies both properties.
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3. Whendoes uniformconvergence imply incremental stability
and vice versa?

In this section, we present several sufficiency results re-
garding convergence and incremental stability that show under
which conditions one property implies the other (see Sections 3.2
and 3.3).

In order to obtain one of themain results,we require a Lyapunov
characterization for GIS for systems of the form (1), which is of
independent interest. This converse Lyapunov result is presented
in Section 3.1. Here we also provide a Lyapunov characterization
for global uniform convergence, which is essentially based on
standard converse Lyapunov results for uniform asymptotic
stability. However, we note that such a full Lyapunov-based
characterization of convergence was lacking in the literature.

Ourmain results aimat answering the following twoquestions:

1. When is a uniformly convergent system IS?
2. When is an IS system uniformly convergent?

The first question will be answered in Section 3.2 and the second
one in Section 3.3.

Briefly, Theorems 8 and 11 show that incremental stability
and uniform convergence are in fact equivalent, when system (1)
evolves in a compact set.

On a global scale, more restrictive and less symmetric
assumptions have to be added, and we present one main theorem
for each direction (Theorems 10 and 12).

All proofs in this section are provided in the Appendix.

3.1. Converse Lyapunov results

In [3] a characterization of GIS in terms of a merely continuous
Lyapunov function has been derived for systems of the form

ẋ = f (x, d), (7)

where d is an arbitrary, measurable disturbance function taking
values in a closed subset D of Rm. However, the formulation (7)
does not encode an explicit dependence of the right-hand side f
on time, and subsequently the Lyapunov function shown to exist
in [3] does not depend on time either.

Similarly, the existence result of a smooth Lyapunov function
from a KL-estimate in [17], while capable of capturing time-
varying systems through the state-space augmentation

ξ̇ =
d
dt


x
t


=


f (t, x)

1


=: F(ξ),

imposes stronger conditions on the time dependence than neces-
sary for existence and uniqueness of solutions, which we seek to
avoid here.

A recent converse result established in [18] provides locally
Lipschitz continuous Lyapunov functions for non-autonomous
differential equations, utilizing the theory of skew-product flows,
which addsmore technical overhead thanwould seem appropriate
for our purposes.

Therefore, we propose the following result that shows the ex-
istence of a time-varying Lyapunov function for global incremental
stability.

Theorem 5. System (1) is GIS if and only if there exist a continuous
functionW :R×Rn

×Rn
→ R, functions α1, α2, α3 of classK∞ such

that

1. the inequalities

α1(∥x1 − x2∥) ≤ W (t, x1, x2) ≤ α2(∥x1 − x2∥) (8)

hold for all x1, x2 ∈ Rn and t ∈ R;

2. along trajectories of (1) for any ξ 1, ξ 2
∈ Rn, and any t ≥ t0 it

holds that

W

t, x(t, t0, ξ 1), x(t, t0, ξ 2)


− W (t0, ξ 1, ξ 2)

≤ −

 t

t0
α3

∥x(τ , t0, ξ 1) − x(τ , t0, ξ 2)∥


dτ . (9)

In this result we can trade the unboundedness of α3 for a
Lipschitz-like property of the Lyapunov function W as formalized
in the next corollary. This corollary will be instrumental in the
proof of Theorem 12.

Corollary 6. If system (1) is GIS then there exist a continuous function
W :R×Rn

×Rn
→ R, functions α1, α2 ∈ K∞, and a positive definite

functionα3 such that the inequalities (8) and (9) hold.Moreover, there
exists a function γ ∈ K∞ so that for all z1, z2 ∈ Rn

× Rn and all t0,

|W (t0, z1) − W (t0, z2)| ≤ γ (∥z1 − z2∥). (10)

Condition (10) implies uniform continuity ofW with respect to
z, which itself is equivalent to the existence of a class K function
ζ such that

ζ (|W (t0, z1) − W (t0, z2)|) ≤ ∥z1 − z2∥

for all t0 ∈ R and all z1, z2 ∈ Rn
× Rn. However, ζ does not

necessarily need to be invertible, and hence (10) is a bit stronger
than uniform continuity.

The proof of the preceding theorem is rather complex, see
Appendix A.1. In contrast, for global uniform convergence we can
obtain a corresponding characterization using a standard converse
Lyapunov result, [19, Theorem 23], which for our purposes reads
as follows.

Theorem 7. Assume that system (1) is globally uniformly convergent.
Assume that the function f is continuous in (t, x) and C1 with respect
to the x variable. Assume also that the Jacobian ∂

∂x f (t, x) is bounded,
uniformly in t. Then there exist a C1 function V :R × Rn

→ R+,
functions α1, α2, and α3 ∈ K∞, and a constant c ≥ 0 such that

α1(∥x − x(t)∥) ≤ V (t, x) ≤ α2(∥x − x(t)∥) (11)

and

∂V
∂t

+
∂V
∂x

f (t, x) ≤ −α3(∥x − x(t)∥) (12)

and

V (t, 0) ≤ c, t ∈ R. (13)

Conversely, if a differentiable function V :R×Rn
→ R+ and functions

αi ∈ K∞, i = 1, 2, 3, and c ≥ 0 are given such that for some
trajectory x:R → Rn estimates (11)–(13) hold, then system (1)must
be globally uniformly convergent and the solution x is the unique
bounded solution as in Definition 1.

The proof of this result is an application of Massera’s result
to (1) under the change of coordinates z(t) = x(t) − x(t). The
only addition is (13), which is equivalent to the boundedness
of x(t). For if x(t) is bounded forward and backward in time,
i.e., supt∈R ∥x(t)∥ < ∞, then 0 ≤ V (t, 0) ≤ α2(∥x(t)∥) ≤

supτ∈R α2(∥x(τ )∥) =: c < ∞. On the other hand, if (13) holds,
then the solution x must be bounded forward and backward in
time, since for all t ∈ R we have

∥x(t)∥ ≤ α−1
1 (V (t, 0)) ≤ α−1

1 (c) < ∞.
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3.2. From convergence to incremental stability

The following theorem is a new sufficiency condition for
incremental stability.

Theorem 8. Suppose system (1) is uniformly convergent on a
compact set X. Then, it is also incrementally stable on that set.

Remark 9. Let us now briefly revisit Example 3 given the result in
Theorem 8. Example 3 concerns a system that is globally uniformly
convergent, but not GIS. Since the system is globally uniformly
convergent, it is also uniformly convergent on compact, positively
invariant sets and Theorem 8 shows that it is also incrementally
stable on such compact sets. Note that the argument against it
being GIS does not imply that it is not incrementally stable on
compact positively invariant sets, since R in the example cannot
be chosen arbitrarily large when considering initial conditions on
compact sets.

If system (1) does not evolve in a compact set then additional
conditions on the vector field f allow us to infer one stability
property from the other.

Let us now formulate conditions under which a globally
convergent system is also globally IS. In general, while also for
convergent systems all trajectories approach each other, they may
do so non-uniformly in the initial separation distance, as could be
seen from Example 3. The idea of the next result is to enforce this
uniformity by an additional assumption on a (non-strict, quadratic)
Lyapunov function for a globally convergent system.

Theorem 10. Suppose system (1) is globally uniformly convergent.
Assume that also the assumptions of Theorem 7 are satisfied. Assume
further that there exist a positive definite matrix P ∈ Rn×n, i.e. P =

P⊤ > 0, a constant C > 0, and a continuous positive definite function
α4:R+ → R+ such that for all times t ∈ R and all x1, x2 ∈ Rn

(x1 − x2)⊤P

f (t, x1) − f (t, x2)


≤


−α4(∥x1 − x2∥) if max{∥x1∥, ∥x2∥} ≥ C,
0 otherwise. (14)

Then (1) is GIS.

Examples of systems to which Theorem 10 is applicable
include all so-called quadratically convergent systems, see [16],
i.e., globally convergent systems where the convergence property
is characterized by a quadratic Lyapunov-type function. This also
includes systems satisfying the convergence conditions in [6,5].

On the other hand, it is interesting to ask when an IS system is
also convergent. This will be answered in the next section.

3.3. From incremental stability to convergence

Let us recall one of Demidovich’s results [5], which can be found
as Theorem 1 in [7]. This result provides a sufficiency condition
for system (1), with f continuously differentiable in x, being GIS,
namely that there exists a positive definite matrix P = P⊤ so that

J(x, t) =
1
2


P

∂ f
∂x

(t, x) +

∂ f
∂x

(t, x)
⊤

P


(15)

is negative definite uniformly in (t, x) ∈ R1+n. Global uniform
convergence follows if, in addition,

∥f (t, 0)∥ ≤ c < ∞. (16)

Following ideas by Yakubovich and Demidovich, (16) together
with (15) guarantee the positive invariance and global asymptotic
stability of a compact setΩ := {x ∈ Rn: x⊤Px ≤ C}with a constant

C depending on P and c as well as the existence of a solution x(t)
in Ω that is bounded forward and backward in time.

Interestingly, condition (15) actually implies that all solutions
of (1) are globally uniformly exponentially stable, cf. [7], i.e., it
implies even more than GIS. So in light of Example 3 this condition
appears to be stronger than required. In effect, this condition
imposes the existence of a quadratic Lyapunov function V (x1 −

x2) = (x1−x2)⊤P(x1−x2) on the differences between trajectories.
A more general version using Lyapunov functions V (x1, x2) of two
arguments can be found in [11, Theorem 2.40, p. 28]. This general
type of Lyapunov function would usually not imply exponential
incremental stability, but it still implies GIS.

Below, we present a result that IS on compact sets implies
uniform convergence on compact sets, where the implication does
not hinge on the existence of certain (incremental) Lyapunov
functions.

Theorem 11. Suppose system (1) is incrementally stable in a compact
set X. Then it is also uniformly convergent in X.

Finally, we present a result providing conditions under which
global incremental stability implies global uniform convergence.
Results tailored specifically to dissipative, periodic systems have
been presented in [15]. The result below is formulated for themore
general class of time-varying systems of the form (1).

Theorem 12. Suppose that system (1) is GIS, where f :Rn+1
→ Rn is

locally Lipschitz in x ∈ Rn. Then, the following statements hold:
1. There exists a sufficiently small c ≥ 0 such that if ∥f (t, 0)∥ ≤ c,

for all t ∈ R, then system (1) is globally uniformly convergent;
2. If there exists a compact set Ω ⊂ Rn that is positively in-

variant with respect to (1), then system (1) is globally uniformly
convergent.

The magnitude of c ≥ 0 is a measure of the magnitude of
the vector field f (t, 0). As we are employing a converse Lyapunov
result in the proof of Theorem 12, we cannot provide a more
explicit formula that c needs to satisfy. Please note that for
c = 0 the result is obvious, since then the origin is a globally
asymptotically stable equilibrium. However, when a GIS-Lyapunov
function is known, the assumption on the vector field can be made
more explicit, as in the following corollary.

Corollary 13. Assume that there exist functions W, α3, and γ as
in Corollary 6. Let c ≥ 0 be such that for all small h > 0,

∥f (t, 0)∥h ≤ ch < γ −1(hα3(r)) (17)

for some r > 0. Then system (1) is globally uniformly convergent.

Remark 14. The existence of a positively invariant compact set in
the second statement of Theorem 12 can be inferred from explicit
conditions on the vector field f and the boundary of a compact
candidate set K ⊂ Rn.

One such condition, cf. [20, Theorem 5] or [21, Theorem 11.6.2],
is that there exists an integrable function k ∈ L1(R, R) such that
f :R × X → Rn is Lipschitz with respect to x in the sense that

∥f (t, x) − f (t, y)∥ ≤ k(t)∥x − y∥. (18)

Then K is positively invariant under (1) if for all t ∈ R and x ∈ ∂K
(the boundary of K ),

f (t, x) ∈


v ∈ Rn: lim inf

h↘0

dK (x + hv)

h
= 0


(19)

where

dK (y) := inf
x∈K

∥y − x∥

is the distance from y to K .
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Remark 15. We note that, for smooth systems, the Lyapunov-
based sufficient conditions for uniform convergence in [5–7] are
special cases of Theorem 12 in the sense that quadratic Lyapunov
functions are employed to characterize incremental stability
properties (and the existence of a compact positively invariant set).
Hence, the classes of systems treated in these references can be
considered examples satisfying the conditions of Theorem 12.

It should also be noted that in the result of Demidovich [5,7]
also the condition ∥f (t, 0)∥ ≤ c , ∀t , with c > 0, is employed as in
claim 1 in Theorem 12. However, by the grace of the fact that
quadratic Lyapunov functions are used in [5,7] to characterize in-
cremental stability properties, the satisfaction of ∥f (t, 0)∥ ≤ c , ∀t ,
for any c > 0 is sufficient to prove global uniform convergence
in [5,7].

4. Conclusions

The global uniform convergence property and global incremen-
tal asymptotic stability are very related and yet different proper-
ties. This paper in particular contributes examples of systems that
are globally uniformly convergent but not globally incrementally
stable (and vice versa). These examples further illuminate the es-
sential differences between these stability notions. Moreover, we
present results that state sufficient conditions underwhich the one
property implies the other.

Appendix. Proofs and auxiliary results

A.1. Proof of the converse Lyapunov results in Section 3.1

Proof of Theorem 5. The proof is similar to the proof given
by Angeli [3], but there are some significant and non-obvious
differences that we will elaborate on. The main difference and
technical difficulty lies in the fact that while the systems (7)
considered in [3] can depend on a time-varying perturbation, they
maynot dependon time explicitly. In contrast, our characterization
of incremental stability is for systems depending explicitly on time.
Themain differences are thus related to the uniformity of the decay
of the Lyapunov function. This boils down to a different definition
for U(t0, z0) in step 3 of the proof, as compared to Angeli’s proof.
Another difference is the use of Sontag’s lemma on KL-functions
in step 7, where another argument was used in the original proof.
Finally, we use a scaling argument similar to the one used in [22]
in order to obtain a decay rate of class K∞ in step 8.

The ‘if’-part of the proof follows standard arguments (see,
e.g., [23, Theorem 3.2.7]) and is thus omitted. In the following we
treat the ‘only if’-part.

Let us adopt the following notation for this proof. We consider

ẋ = f (t, x) (A.1)

and

ż =
d
dt


x1
x2


=


f (t, x1)
f (t, x2)


(A.2)

as in [3]. We have that the diagonal ∆ := {(x⊤, x⊤)⊤: x ∈ Rn
} ⊂

R2n is GAS w.r.t. system (A.2) if and only if system (A.1) is GIS, as
is shown in Lemma 2.3 in [3].2 The distance of a point z =


x1
x2


to

the diagonal ∆ is given by

∥z∥∆ := inf
w∈∆

∥w − z∥

2 Note that [3, Lemma 2.3] holds also true for (explicitly) time-dependent
nonlinear systems (A.2), although in [3] ‘‘disturbance-dependent’’ systems are
considered.

and it is shown in [3] that this equals

∥z∥∆ =
1

√
2
∥x1 − x2∥.

Now to the details of the proof:

1. First we define

g(t0, z0) := sup
t≥t0

∥z(t, t0, z0)∥∆ (A.3)

which satisfies for the K∞ functionsα1 = id andα2 = β(·, 0),
where β comes from the definition of GIS, the estimateα1(∥z∥∆) ≤ g(t, z) ≤α2(∥z∥∆) (A.4)

for all z ∈ R2n and t ∈ R. Observe that the supremum in (A.3) is
in fact amaximum, since ∥z(·, t0, z0)∥∆ is continuous and tends
to zero as time tends to infinity. The function g also satisfies the
continuity property

|g(t, z1) − g(t, z2)| ≤
√
2β(2∥z1 − z2∥∆, 0)

=: γ (∥z1 − z2∥∆), (A.5)

for all z1, z2 ∈ R2n and t ∈ R. This can be proved as per Fact 2.5
in [3].

2. Along solutions the function g is obviously non-increasing: for
s > 0 we have

g(t0, z0) ≥ g(t0 + s, z(t0 + s, t0, z0)).

3. Now define

U(t0, z0) := sup
s≥0

g(t0 + s, z(t0 + s, t0, z0))k(s),

where k is any continuously differentiable, positive, increasing
function for which there exist 1 ≤ c1 < c2 such that k(t) ∈

[c1, c2] for all t ∈ R+, and the derivative of k is bounded from
below by some positive and decreasing function d, i.e. k̇(t) ≥

d(t) for all t ∈ (0, ∞). Necessarily d(t) → 0 as t → ∞, since
otherwise (and because d(t) ≥ 0) kwould growwithout bound.

4. In view of c2 ≥ k(t) ≥ c1 ≥ 1 for all t ∈ R+ and (A.4) it follows
that

U(t0, z0) ≥ g(t0, z0) ≥ ∥z0∥∆ (A.6)

and

U(t0, z0) ≤ c2α2(∥z0∥∆). (A.7)

Using the relation ∥z∥∆ =
1

√
2
∥x1 − x2∥, the inequalities (A.6)

and (A.7) establish

α1(∥x1 − x2∥) :=
1

√
2
∥x1 − x2∥ ≤ U(t0, x1, x2) and

U(t0, x1, x2) ≤ c2α2


∥x1 − x2∥

√
2


=: α2(∥x1 − x2∥).

(A.8)

5. From the definition of U it follows that for all t0 ∈ R and any
z1, z2 ∈ R2n and for all ϵ > 0 there exists an sϵ = sϵ,t0,z1 ≥ 0
such that

U(t0, z1) ≤ ϵ + g(t0 + sϵ, z(t0 + sϵ, t0, z1))k(sϵ).

This inequality yields, in view of k(t) ≤ c2 for all t ∈ R+

and (A.5), in a few steps (refer to Angeli’s proof in [3]) that

U(t0, z1) − U(t0, z2) ≤ ϵ +γ (β(∥z1 − z2∥, 0))c2.

With ϵ arbitrary and using a symmetry argument we arrive
at |U(t0, z1) − U(t0, z2)| ≤ γ (∥z1 − z2∥), where γ (r) =γ β(r, 0)


c2.



Author's personal copy

B.S. Rüffer et al. / Systems & Control Letters 62 (2013) 277–285 283

6. By definition, U is non-increasing along solutions. We will now
show that U strictly decreases along solutions of (A.2).

By the definition of U , for all r > 0 and z0 ∈ R2n with
∥z0∥∆ = r , for all t0 ∈ R, all h > 0, and all ϵ > 0, there exists
an s = sϵ,h,t0,z0 ≥ 0 such that we can show that

U(t0 + h, z(t0 + h, t0, z0))

≤ U(t0, z0)

1 −

k(h + s) − k(s)
c2


+ ϵ. (A.9)

7. Now we would like to let h ↘ 0 and ϵ → 0 in (A.9) to obtain
an estimate on the decay of U along solutions of (A.2). For this
we have to ensure that s in (A.9) does not grow without bound
when ϵ and h tend to zero.
Claim. For all r > 0 there exists a T = T (r) > 0 such that s
in (A.9) satisfies s ≤ T , independent of the choice of h > 0 and
ϵ > 0.

Proof. Westart by recalling a known fact. FromSontag’s lemma
on KL-functions [24] it is known that for any β ∈ KL there
exist functions κ1, κ2 ∈ K∞ such that for all r, t ∈ R+,

β(r, t) ≤ κ1

κ2(r)e−t. (A.10)

A simple consequence of (A.10) is that for any δ > 0 we have

β(r, t) < δ whenever t > ln
κ2(r)

κ−1
1 (δ)

. (A.11)

Now we prove the claim. We know from estimates (A.6) and
(A.7) that

0 < r = ∥z0∥∆ ≤ U(t0, z0) ≤ c2α2(r).

Continuity and monotonicity properties of U along trajectories
of (A.2) with ∥z0∥∆ = r yield that for some ν > 0, µ > 0,

ν + ϵ < U(t0, z0) − µ

< U(t0 + h, z(t0 + h, t0, z0))

≤ U(t0, z0) (A.12)

for all 0 < h < h = h(ϵ) if ϵ > 0 is sufficiently small, which
we will henceforth assume.

Let δ = ν/c2 and let us assume that no finite T > 0 as in the
claim exists. Then for every integer N > 0 there must exist an
s > N such that (A.9) holds for this s, i.e., we can show that

U(t0 + h, z(t0 + h, t0, z0)) ≤ β(∥z0∥∆, h + s)c2 + ϵ

< ν + ϵ whenever s > ln
κ2(r)

κ−1
1 (ν/c2)

due to (A.11).

Considering (A.12) we arrive at the contradiction

ν + ϵ < U(t0 + h, z(t0 + h, t0, z0)) < ν + ϵ

thus proving the claim. �

Hence we have shown that we can pass to an appropriate limit
in (A.9) as h ↘ 0 and ϵ → 0, since s = sϵ,h,t0,z0 in (A.9) remains
bounded.

8. Following essentially the same arguments as in [3] we obtain
for some positive definite functionα3,

U̇(t0, z0) := lim sup
h↘0

U(t0 + h, z(t0 + h, t0, z0)) − U(t0, z0)
h

≤ −α3(∥z0∥∆).

At this stage it is left to show that we can modify U such that
the functionα3 can be taken to be of class K∞. The argument
we are going to make follows the idea in [22].

To this end let µ, ρ ∈ K∞ such that ρ ′
= µ and that

s → (µ ◦ α−1
1 )(s)α3(s) is bounded from below by some class

K∞ function α3. This is always possible.
Define W := ρ(U) and verify using (A.8) that it satisfies

bounds (8) with αi = ρ ◦ αi, i = 1, 2. Compute

Ẇ (t0, z0) := lim sup
h↘0

W (t0 + h, z(t0 + h, t0, z0)) − W (t0, z0)
h

= lim sup
h↘0

ρ ′(U(τt0,h, z(τt0,h, t
0, z0)))

×
U(t0 + h, z(t0 + h, t0, z0)) − U(t0, z0)

h
≤ −ρ ′


α−1

1 (∥z0∥∆)

·α3(∥z0∥∆)

≤ −α3(∥z0∥∆), (A.13)

withα3 ∈ K∞ and where in Eq. (A.13) we have used the mean
value theorem to obtain a sequence τt0,h

h→0
−→ t0 of points in

(t0, t0 + h), followed by continuity of ρ ′ and U with respect to
time.

9. Now, following again the same arguments as in [3] we obtain
for t ≥ t0, W (t, z(t, t0, z0)) − W (t0, z0) ≤ −

 t
t0 α3(∥z(s,

t0, z0)∥∆)ds, which proves the inequality (9) in the theorem.
This completes the proof of the theorem. �

Proof of Corollary 6. Just take instead ofW the functionU defined
in the preceding proof at the end of step 5, it satisfies all the
requirements by construction. Without loss of generality, the
function γ can be taken to be class K∞. �

A.2. Proofs of the results in Section 3.2 (From convergence to
incremental stability)

Proof of Theorem 8. For future reference we denote dX :=

maxx,y∈X ∥x − y∥, the diameter of X. Note that without loss of
generalitywe can assume that the closure of the trajectory x (which
is a compact set) is contained in X, i.e.,


t∈R{x(t)} ⊂ X.

We are going to show that differences of solutions satisfy the
uniform attraction and stability properties for restricted initial
conditions.

Uniform attraction: for any ϵ > 0 there exists a T > 0 such
that for any ξ ∈ X, ∥x(t, t0, ξ) − x(t)∥ ≤ β(dX, t − t0) ≤ ϵ/2
if t − t0 ≥ T . By the triangle inequality it follows that for any
ξ, η ∈ X, ∥x(t, t0, ξ) − x(t, t0, η)∥ ≤ ϵ if t − t0 ≥ T . This shows
that all solutions starting in X are mutually uniformly attractive.

Uniform stability: the following argument follows ideas in the
proof of [13, Theorem 55]. Let ξ 1, ξ 2

∈ X and t0 ∈ R be arbitrary.
In view of item 3 of Definition 1 we have that ∥x(t, t0, ξ 1) −

x(t, t0, ξ 2)∥ ≤ 2β(dX, t − t0) for all t > t0, i.e., there exists a
KL functionβ such that

∥x(t, t0, ξ 1) − x(t, t0, ξ 2)∥ ≤ β(dX, t − t0) for all t > t0.

Thus there exists a compact setY ⊃ Xwhich contains all solutions
with initial values in X (in fact, X is positively invariant, so Y =

X). Write x1(t) := x(t, t0, ξ 1) and x2(t) := x(t, t0, ξ 2). Regarding

x1(t) − x2(t) = ξ 1
− ξ 2

+

 t

t0
[f (s, x1(s)) − f (s, x2(s))]ds

for all t ≥ t0, we have due to the local Lipschitz condition on f and
the compactness ofX that there exists a locally integrable function
α:R → R≥0, cf. [13, Appendix C], such that for all t ≥ t0,

∥x1(t) − x2(t)∥ ≤ ∥ξ 1
− ξ 2

∥ +

 t

t0
α(s)∥x1(s) − x2(s)∥ds.
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Thus, with Gronwall’s inequality we arrive at

∥x1(t) − x2(t)∥ ≤ ∥ξ 1
− ξ 2

∥e(
 t
t0

α(s)ds)

for all t ≥ t0. As ∥x1(t) − x2(t)∥ ≤ β(dX, t − t0) for all t ≥ t0, we
arrive at

∥x1(t) − x2(t)∥ ≤ min

∥ξ 1

−ξ 2
∥e(

 t
t0

α(s)ds)
,β(dX, t−t0)


.

From there we can obtain a KL functionβ such that

∥x(t, t0, ξ 1) − x(t, t0, ξ 2)∥ ≤ β(∥ξ 1
− ξ 2

∥, t − t0)

for all ξ 1, ξ 2
∈ X, t0 ∈ R and t ≥ t0. �

Proof of Theorem 10. By Theorem 7, which is about the charac-
terization of the uniform convergence property, there exists a Lya-
punov functionV satisfying (11) and (12). The solution x is bounded
on R, i.e. there exists a C2 ≥ 0 such that ∥x(t)∥ ≤ C2 for all t ∈ R.
Without loss of generality we can assume that C−C2 > 0, if neces-
sary by enlarging C for which (14) is satisfied. There also exist pos-
itive constants cP , CP such that for all x1, x2 ∈ Rn, cP∥x1 − x2∥2

≤

(x1 − x2)⊤P(x1 − x2) ≤ CP∥x1 − x2∥2.
Denote K :=


(x1, x2) ∈ Rn

× Rn: max{∥x1∥, ∥x2∥} ≤ C

. On

the compact set K we have V (t, x1)+V (t, x2) ≤ α2(∥x1 −x(t)∥)+
α2(∥x2 − x(t)∥) ≤ 2α2(C + C2), where V is given by Theorem 7.

Let us define W (t, x1, x2) :=
1
2b

V (t, x1) + V (t, x2)


(x1 −

x2)⊤P(x1 − x2) where b(s) = s/(1+s) is a bounded class K function.
We have

W (t, x1, x2) ≤
1
2
CP∥x1 − x2∥2

=: α2(∥x1 − x2∥)

since b(s) ≤ 1 for all s ≥ 0. We also have that

W (t, x1, x2) ≥
1
2
b

α1(∥x1 − x∥) + α1(∥x2 − x∥)


cP∥x1 − x2∥2

≥
1
2
b


α1


1
2
∥x1 − x∥ +

1
2
∥x2 − x∥


cP∥x1 − x2∥2

≥
1
2
b


α1


∥x1 − x2∥

2


cP∥x1 − x2∥2

=: α1(∥x1 − x2∥).

So W is positive definite and radially unbounded in the distance
∥x1 − x2∥.

Denoting V̇ (xi) :=
∂V
∂t +

∂V
∂x f (t, x

i) ≤ −α3(∥xi − x(t)∥) as
per (12) and d

dsb(s) by b′(s), we compute the time derivative of W
as

Ẇ :=
d
dt

W (t, x1(t), x2(t))

= b′

V (t, x1) + V (t, x2)


[V̇ (x1) + V̇ (x2)]

×
1
2
(x1 − x2)⊤P(x1 − x2) + b


V (t, x1) + V (t, x2)


× (x1 − x2)⊤P


f (t, x1) − f (t, x2)


. (A.14)

On the set K , the first term in the right-hand side of (A.14) is
bounded from above by

−
1
2
α3


∥x1 − x2∥

2


cP∥x1 − x2∥2

1 + 2α2(C + C2)
2

while the second term in the right-hand side of (A.14) is non-
positive due to (14). Outside of K the first term could be arbitrarily

small in magnitude as b′(s) → 0 for s → ∞, while this term is still
negative. Hence, outside of K , (A.14) is bounded from above by

b

2α1(C − C2)


(x1 − x2)⊤P


f (t, x1) − f (t, x2)


≤ −α4(∥x1 − x2∥)b


2α1(C − C2)


,

again due to (14). It follows that Ẇ is bounded from above by a
function which is negative definite with respect to the set where
x1 = x2. A standard scaling argument (see [22]) with U = ρ(W )
for a suitable function ρ ∈ K∞ turns this into a smooth Lyapunov
function satisfying U̇ ≤ −α5(U) with α5 ∈ K∞. This function U
in particular satisfies (8) and (9). Hence, by virtue of Theorem 5we
conclude that system (1) is indeed GIS. �

A.3. Proofs of the results in Section 3.3 (From incremental stability to
convergence)

We start with an auxiliary result.

Proposition 16. Let A ⊂ Rn be a compact and positively invariant
set for system (1). Then there exists a solution x(t) in Awhich is defined
for all times.

The proof is a simplified version of [6, Lemma 2] and omitted
for the sake of brevity.

Proof of Theorem 11. By Proposition 16 there exists a bounded
solution x(t) in X which is defined for all times. As all solutions
are uniformly attractive, so is x(t).

The uniqueness proof follows the same reasoning as the proof
of Property 2.4 in [11]. �

Proof of Theorem 12. Let us first show that the condition in
claim 1. in the theorem togetherwith the fact that the system is GIS
implies the existence of a compact positively invariant setΩ ⊂ Rn.

According to Corollary 6, the fact that the system is GIS implies
that there exists a continuous function W (t, x1, x2) satisfying (8)
and (9) with α1,α2 ∈ K∞ and α3 positive definite and there exists
a function γ ∈ K∞ such that (10) holds.

With V (t, x) := W (t, x, 0) and for h > 0 sufficiently small, we
compute

V (t0 + h, x(t0 + h, t0, ξ)) − V (t0, ξ)

= W (t0 + h, x(t0 + h, t0, ξ), 0) − W (t0, ξ , 0)
= W (t0 + h, x(t0 + h, t0, ξ), 0) − W (t0, ξ , 0)

+W (t0 + h, x(t0 + h, t0, ξ), x(t0 + h, t0, 0))
−W (t0 + h, x(t0 + h, t0, ξ), x(t0 + h, t0, 0))

(9)
≤ −

 t0+h

t0
α3

∥x(τ , t0, ξ) − x(τ , t0, 0)∥


dτ (A.15)

+W (t0 + h, x(t0 + h, t0, ξ), 0)
−W (t0 + h, x(t0 + h, t0, ξ), x(t0 + h, t0, 0)).


(A.16)

The last inequality proves the existence of a compact positively
invariant set if the term (A.15) dominates the term (A.16), so that
the entire expression becomes negative for large enough ξ .

For (A.16) we compute, using the Landau symbol O,

W (t0 + h, x(t0 + h, t0, ξ), 0)
−W (t0 + h, x(t0 + h, t0, ξ), x(t0 + h, t0, 0))

(10)
≤ γ

x(t0 + h, t0, ξ)
0


−


x(t0 + h, t0, ξ)

x(t0 + h, t0, 0)


= γ (∥x(t0 + h, t0, 0)∥) ≤ γ (∥f (t0, 0)∥h + O(h2))

≤ γ (ch + O(h2)) =: C .
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For large ξ ∈ Rn the integral in (A.15) dominates C , if c is chosen
sufficiently small. In this case we have Ẇ < 0 outside a compact
set, rendering the said compact set positively invariant.

Now, we have that under the conditions of claims 1 and 2 in
the theorem, there exists a compact positively invariant set for
system (1). By Proposition 16, the existence of a compact positively
invariant set implies the existence of a solution x̄(t) which is
defined and bounded for all t ∈ R.

This solution x(t) is uniformly globally asymptotically stable,
since all solutions are uniformly globally asymptotically stable
(since the system is GIS by assumption). From here it follows
that x(t) must also be unique, see [11, p.15, Property 2.15]. This
completes the proof. �

Proof of Corollary 13. We use the same notation as in the
previous proof. If c ≥ 0 is chosen such that (17) holds then the
increments of V are non-positive outside a compact set in the
preceding proof. �
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