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a b s t r a c t

Incremental stability is a property of dynamical and control systems, requiring the uniform asymptotic
stability of every trajectory, rather than that of an equilibrium point or a particular time-varying trajec-
tory. Similarly to stability, Lyapunov functions and contractionmetrics play important roles in the study of
incremental stability. In this paper, we provide characterizations and descriptions of incremental stability
in terms of existence of coordinate-invariant notions of incremental Lyapunov functions and contraction
metrics, respectively. Most design techniques providing controllers rendering control systems incremen-
tally stable have two main drawbacks: they can only be applied to control systems in either parametric-
strict-feedback or strict-feedback form, and they require these control systems to be smooth. In this paper,
we propose a design technique that is applicable to larger classes of control systems, including a class of
non-smooth control systems. Moreover, we propose a recursive way of constructing contraction met-
rics (for smooth control systems) and incremental Lyapunov functions which have been identified as a
key tool enabling the construction of finite abstractions of nonlinear control systems, the approximation
of stochastic hybrid systems, source-code model checking for nonlinear dynamical systems and so on.
The effectiveness of the proposed results in this paper is illustrated by synthesizing controllers rendering
two non-smooth control systems incrementally stable. The first example aims to show how to recursively
construct the incremental Lyapunov functions. The second example aims to show the key role of the com-
puted incremental Lyapunov function in constructing a finite abstraction that is equivalent to the system
under study.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Incremental stability is a stronger property than stability for dy-
namical and control systems. In incremental stability, focus is on
convergence of trajectories with respect to each other rather than
with respect to an equilibrium point or a specific trajectory. Simi-
larly to stability, Lyapunov functions play an important role in the
study of incremental stability. In [1], Angeli proposed the notions
of incremental Lyapunov function and incremental input-to-state
Lyapunov function, and used these notions to provide character-
izations of incremental global asymptotic stability (δ-GAS) and
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incremental input-to-state stability (δ-ISS). Notions of δ-GAS, δ-ISS
and incremental Lyapunov functions, proposed in [1], are not co-
ordinate invariant, in general. Since most of the controller design
approaches benefit from changes of coordinates, in [2], the au-
thors proposed different notions of δ-GAS and δ-ISS which are
coordinate invariant. In [3], the authors proposed notions of in-
cremental Lyapunov function and incremental input-to-state Lya-
punov function that are coordinate invariant as well. We use these
newnotions of Lyapunov functions to fully characterize thenotions
of incremental (input-to-state) stability as proposed in [2]. Fur-
thermore, we provide sufficient conditions for coordinate invari-
ant incremental (input-to-state) stability in the formof contraction
metrics inspired by the work in [4].

The number of applications of incremental stability has in-
creased progressively in the past years. Examples include build-
ing explicit bounds on the region of attraction in phase-locking in
the Kuramoto system [5],modeling of nonlinear analog circuits [6],
robustness analysis of systems over finite alphabets [7], global
synchronization in networks of cyclic feedback systems [8], con-
trol reconfiguration of piecewise affine systems with actuator and
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sensor faults [9], construction of symbolic models for nonlinear
control systems [10–12], and synchronization [13,14]. Unfortu-
nately, there are very few results available in the literature regard-
ing the design of controllers enforcing incremental stability of the
resulting closed-loop systems. Therefore, there is a growing need
to develop design methods rendering control systems incremen-
tally stable.

Related works include the controller designs for convergence
of Lur’e-type systems [15,16] and a class of piecewise affine sys-
tems [17] through the solution of linear matrix inequalities (LMIs).
In contrast, the current paper does not require the solution of
LMIs and the existence of controllers is always guaranteed for the
class of systems under consideration. The quest for backstepping
design approaches for incremental stability has received increas-
ing attention recently. Recently obtained results include backstep-
ping design approaches rendering parametric-strict-feedback1
form systems incrementally globally asymptotically stable2 us-
ing the notion of contraction metrics in [19–21], and backstep-
ping design approaches rendering strict-feedback1 form systems
incrementally input-to-state stable3 using the notion of contrac-
tion metrics and incremental Lyapunov functions in [2,3], respec-
tively. The results in [15] offer a backstepping design approach
rendering a larger class of control systems than those in strict-
feedback form input-to-state convergent, rather than incremen-
tally input-to-state stable. We will build upon these results in [15]
and extend those in the scope of incremental stability. The notion
of (input-to-state) convergence requires existence of a trajectory
which is bounded on the whole time axis which is not required
in the case of incremental input-to-state stability. The notion of
input-to-state convergence cannot be applied to the results in
[10–12], which require the uniform global asymptotic stability of
every trajectory rather than that of a particular trajectory that is
bounded on the entire time axis. See [2,22,23], for a brief compar-
ison between the notions of convergent system and incremental
stability.

Our controller synthesis techniques improve upon most of the
existing backstepping techniques in three directions:

(1) by providing controllers enforcing not only incremental global
asymptotic stability but also incremental input-to-state stabil-
ity;

(2) by being applicable to larger classes of control systems includ-
ing a class of non-smooth control systems;

(3) by providing a recursive way of constructing not only contrac-
tion metrics but also incremental Lyapunov functions.

In the first direction, our technique extends the results in [19–21],
where only controllers enforcing incremental global asymptotic
stability are designed. In the second direction, our technique
improves the results in [19–21], which are only applicable to
smooth parametric-strict-feedback form systems, and the results
in [2,3], which are only applicable to smooth strict-feedback form
systems. In the third direction, our technique extends the results
in [19–21,2], where the authors only provide a recursive way of
constructing contraction metrics, and the results in [15], where
the authors do not provide a way to construct Lyapunov functions
characterizing the input-to-state convergence property induced by
the controller. Note that, the explicit availability of incremental
Lyapunov functions is necessary in many applications. Examples
include the construction of symbolic models for nonlinear control
systems [11,24,25], robust test generation of hybrid systems [26],

1 See [18] for a definition.
2 Understood in the sense of Definition 2.2.
3 Understood in the sense of Definition 2.3.
the approximation of stochastic hybrid systems [27], and source-
code model checking for nonlinear dynamical systems [28]. Note
that incremental Lyapunov functions can be used as bisimulation
functions, recognized as a key tool for the analysis in [26–28].

Our technical results are illustrated by designing incremen-
tally input-to-state stabilizing controllers for two unstable non-
smooth control systems that do not satisfy the assumptions
required in [19–21,2,3]. The main objective of the first example
is to show how the incremental Lyapunov functions can be con-
structed recursively using the results in this paper. Regarding the
second example, we construct a finite bisimilar abstraction for the
resulting incrementally stable closed-loop systemusing the results
in [11], which, as we care to stress, only apply to incrementally sta-
ble systems with explicitly available incremental Lyapunov func-
tions (where the latter can be constructed on the basis of the results
in this paper). When a finite abstraction is available, the synthesis
of the controllers satisfying logic specifications expressed in linear
temporal logic or automata on infinite strings can be easily reduced
to a fixed-point computation over the finite-state abstraction [29].
Note that, satisfying those specifications is difficult or impossible to
enforce with conventional control design methods. Furthermore,
to add a discrete component to the problem, we assume that the
system is subject to a constraint expressed by a finite automaton.
We synthesize another controller on top of the resulting incremen-
tally stable closed-loop system satisfying some logic specification
explained in details in the example section.

The outline of the paper is as follows. Section 2 provides some
mathematical preliminaries, the definition of the class of control
systems that we consider in this paper, and stability notions. Sec-
tion 3 provides characterizations of incremental stability in terms
of existence of incremental Lyapunov functions and contraction
metrics. In Section 4,we present the proposed backstepping design
approach. Two illustrative (non-smooth) examples are discussed in
detail in Section 5. Finally, Section 6 concludes the paper.

2. Control systems and stability notions

2.1. Notation

The symbols Z, N, N0, R, R+ and R+

0 denote the set of integer,
positive integer, nonnegative integer, real, positive, and nonnega-
tive real numbers, respectively. The symbols Im, 0m×n, and 0m de-
note the identity and zeromatrices inRm×m andRm×n, and the zero
vector in Rm, respectively. Given a vector x ∈ Rn, we denote by xi
the i-th element of x, by |xi| the absolute value of xi, and by ∥x∥ the

Euclidean norm of x; we recall that ∥x∥ =


x21 + x22 + · · · + x2n for

x ∈ Rn. Given a measurable function f : R+

0 → Rn, the (essen-
tial) supremum of f is denoted by ∥f ∥∞; we recall that ∥f ∥∞ :=

(ess)sup{∥f (t)∥, t ≥ 0} and ∥f ∥[0,τ ) := (ess)sup{∥f (t)∥, t ∈

[0, τ )}. A function f is essentially bounded if ∥f ∥∞ < ∞. For a
given time τ ∈ R+, define fτ so that fτ (t) = f (t), for any t ∈ [0, τ ),
and fτ (t) = 0 elsewhere; f is said to be locally essentially bounded
if for any τ ∈ R+, fτ is essentially bounded. A function f : Rn

→ R+

0
is called radially unbounded if f (x) → ∞ as ∥x∥ → ∞. The closed
ball centered at x ∈ Rm with radius ε is defined by Bε(x) = {y ∈

Rm
| ∥x − y∥ ≤ ε}. A continuous function γ : R+

0 → R+

0 , is said
to belong to class K if it is strictly increasing and γ (0) = 0; γ is
said to belong to class K∞ if γ ∈ K and γ (r) → ∞ as r → ∞.
A continuous function β : R+

0 × R+

0 → R+

0 is said to belong to
class KL if, for each fixed s, the map β(r, s) belongs to class K∞

with respect to r and, for each fixed nonzero r , the map β(r, s)
is decreasing with respect to s and β(r, s) → 0 as s → ∞. If
φ : Rn

→ Rn is a global diffeomorphism and G : Rn
→ Rn×n

is a smooth map, the notation φ∗G : Rn
→ Rn×n denotes the

smooth map (φ∗G)(x) = (
∂φ

∂x )
TG(φ(x))( ∂φ

∂x ). A Riemannian metric
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G : Rn
→ Rn×n is a smooth map on Rn such that, for any x ∈ Rn,

G(x) is a symmetric positive definite matrix [30]. For any x ∈ Rn

and smooth functions I, J : Rn
→ Rn, one can define the scalar

function ⟨I, J⟩G as IT (x)G(x)J(x).Wewill still use the notation ⟨I, J⟩G
to denote ITGJ even if G does not represent a Riemannian metric. A
function d : Rn

×Rn
→ R+

0 is a metric on Rn if for any x, y, z ∈ Rn,
the following three conditions are satisfied: (i) d(x, y) = 0 if and
only if x = y; (ii) d(x, y) = d(y, x); and (iii) (triangle inequal-
ity) d(x, z) ≤ d(x, y) + d(y, z). We use the pair (Rn, d) to denote
a metric space Rn equipped with the metric d. We use the nota-
tion dG to denote the Riemannian distance function provided by
the Riemannian metric G, as defined for example in [30]. We re-
fer to the proof of Lemma 3.12 in the paper for the definition of
dG. For a set A ⊆ Rn, a metric d, and any x ∈ Rn, we abuse the
notation by using d(x,A) to denote the point-to-set distance, de-
fined by d(x,A) = infy∈A d(x, y). A function f is said to be smooth
if it is an infinitely differentiable function of its arguments. Given
measurable functions f : R+

0 → Rn and g : R+

0 → Rn, we de-
fine d(f , g)∞ := (ess)sup{d(f (t), g(t)), t ≥ 0} and d(f , g)[0,τ ) :=

(ess)sup{d(f (t), g(t)), t ∈ [0, τ )}. The diagonal set ∆ ⊂ R2n is
defined as:∆ =


z ∈ R2n

∥ ∃x ∈ Rn
: z =


xT , xT

T.
2.2. Control systems

The class of control systems that we consider in this paper is
formalized in the following definition.

Definition 2.1. A control system is a quadruple:

Σ = (Rn,U,U, f ),

where:

• Rn is the state space;
• U ⊆ Rm is the input set;
• U is the set of all measurable, locally essentially bounded

functions of time from intervals of the form ]a, b[⊆ R toUwith
a < 0 and b > 0;

• f : Rn
× U → Rn is a continuous map satisfying the following

Lipschitz assumption: for every compact set Q ⊂ Rn, there
exists a constant Z ∈ R+ such that ∥f (x, u) − f (y, u)∥ ≤

Z∥x − y∥ for all x, y ∈ Q and all u ∈ U.

A curve ξ :]a, b[→ Rn is said to be a trajectory of Σ if there
exists υ ∈ U satisfying:

ξ̇ (t) = f (ξ(t), υ(t)) ,

for almost all t ∈]a, b[. Although we have defined trajectories over
open domains, we shall refer to trajectories ξ : [0, t] → Rn de-
fined on closed domains [0, t], t ∈ R+ with the understanding of
the existence of a trajectory ξ ′

:]a, b[→ Rn such that ξ = ξ ′
|[0,t]

with a < 0 and b > t . We also write ξxυ(t) to denote the point
reached at time t under the input υ from initial condition x =

ξxυ(0); the point ξxυ(t) is uniquely determined, since the assump-
tions on f ensure the existence and uniqueness of trajectories [31].

A control systemΣ is said to be forward complete if every tra-
jectory is defined on an interval of the form ]a,∞[. Sufficient and
necessary conditions for a system to be forward complete can be
found in [32]. A control systemΣ is said to be smooth if f is smooth.

2.3. Stability notions

Here, we recall the notions of incremental global asymptotic
stability (δ∃-GAS) and incremental input-to-state stability (δ∃-ISS),
presented in [2].

Definition 2.2 ([2]). A control system Σ = (Rn,U,U, f ) is incre-
mentally globally asymptotically stable (δ∃-GAS) if it is forward
complete and there exist ametric d and aKL function β such that
for any t ∈ R+

0 , any x, x′
∈ Rn and any υ ∈ U the following condi-

tion is satisfied:

d (ξxυ(t), ξx′υ(t)) ≤ β

d

x, x′


, t

. (2.1)

As defined in [1], δ-GAS requires the metric d to be the Eu-
clideanmetric. However, Definition 2.2 only requires the existence
of ametric.We note thatwhile δ-GAS is not generally invariant un-
der changes of coordinates, δ∃-GAS is. When the origin is an equi-
librium point for Σ , with υ(t) = 0 for all t ∈ R+

0 , and the map
ψ : Rn

→ R+

0 , defined by ψ(·) = d(·, 0), is continuous4 and radi-
ally unbounded, both δ∃-GAS and δ-GAS imply global asymptotic
stability.

Definition 2.3 ([2]). A control system Σ = (Rn,U,U, f ) is incre-
mentally input-to-state stable (δ∃-ISS) if it is forward complete and
there exist a metric d, a KL function β , and a K∞ function γ such
that for any t ∈ R+

0 , any x, x
′
∈ Rn, and anyυ, υ ′

∈ U the following
condition is satisfied:

d (ξxυ(t), ξx′υ′(t)) ≤ β

d

x, x′


, t

+ γ

υ − υ ′


∞


. (2.2)

By observing (2.1) and (2.2), it is readily seen that δ∃-ISS
implies δ∃-GASwhile the converse is not true in general. Moreover,
whenever the metric d is the Euclidean metric, δ∃-ISS becomes
δ-ISS as defined in [1]. We note that while δ-ISS is not generally
invariant under changes of coordinates, δ∃-ISS is. When the origin
is an equilibrium point for Σ , with υ(t) = 0 for all t ∈ R+

0 , and
the map ψ : Rn

→ R+

0 , defined by ψ(·) = d(·, 0), is continuous4
and radially unbounded, both δ∃-ISS and δ-ISS imply input-to-state
stability [33].

3. Characterizations of incremental stability

This section contains characterizations and descriptions of
δ∃-GAS and δ∃-ISS in terms of existence of incremental Lyapunov
functions and contraction metrics, respectively. We note that only
the sufficiency part of Lyapunov characterizations of δ∃-GAS and
δ∃-ISS were presented in [3]. In Section 4, we will use such incre-
mental Lyapunov functions and contraction metrics to synthesize
controllers rendering closed-loop systems incrementally stable.

3.1. Incremental Lyapunov function characterizations

We start by recalling the notions of an incremental global
asymptotic stability (δ∃-GAS) Lyapunov function and an incremen-
tal input-to-state stability (δ∃-ISS) Lyapunov function, presented
in [3].

Definition 3.1 ([3]). Consider a control systemΣ = (Rn,U,U, f )
and a smooth function V : Rn

× Rn
→ R+

0 . Function V is called
a δ∃-GAS Lyapunov function for Σ , if there exist a metric d, K∞

functions α, α, and κ ∈ R+ such that:
(i) for any x, x′

∈ Rn,
α(d(x, x′)) ≤ V (x, x′) ≤ α(d(x, x′));

(ii) for any x, x′
∈ Rn and any u ∈ U,

∂V
∂x f (x, u)+

∂V
∂x′ f (x

′, u) ≤ −κV (x, x′).

Function V is called a δ∃-ISS Lyapunov function forΣ , if there exist
a metric d, K∞ functions α, α, σ , and κ ∈ R+ satisfying conditions
(i) and:
(iii) for any x, x′

∈ Rn and for any u, u′
∈ U,

∂V
∂x f (x, u)+

∂V
∂x′ f (x

′, u′) ≤ −κV (x, x′)+ σ(∥u − u′
∥).

4 Here, continuity is understood with respect to the Euclidean metric.
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To provide characterizations of δ∃-ISS (resp. δ∃-GAS) in terms of
the existence of δ∃-ISS (resp. δ∃-GAS) Lyapunov functions, we need
the following technical results.

Here, we introduce the following definition which was inspired
by the notion of uniform global asymptotic stability (UGAS) with
respect to sets, presented in [34].

Definition 3.2. A control system Σ = (Rn,U,U, f ) is uniformly
globally asymptotically stable (U∃GAS) with respect to a set A ⊆

Rn if it is forward complete and there exist a metric d, and a KL
function β such that for any t ∈ R+

0 , any x ∈ Rn and any υ ∈ U,
the following condition is satisfied:

d(ξxυ(t),A) ≤ β(d(x,A), t). (3.1)

We now introduce the following definition which was inspired
by the notion of uniform global asymptotic stability (UGAS) Lya-
punov functions in [34].

Definition 3.3. Consider a control systemΣ = (Rn,U,U, f ), a set
A ⊆ Rn, and a smooth function V : Rn

→ R+

0 . Function V is called
a U∃GAS Lyapunov function, with respect to A, forΣ , if there exist
a metric d, K∞ functions α, α, and κ ∈ R+ such that:

(i) for any x ∈ Rn,
α(d(x,A)) ≤ V (x) ≤ α(d(x,A));

(ii) for any x ∈ Rn and any u ∈ U,
∂V
∂x f (x, u) ≤ −κV (x).

The following theorem characterizes U∃GAS in terms of the
existence of a U∃GAS Lyapunov function.

Theorem 3.4. Consider a control system Σ = (Rn,U,U, f ) and a
set A ⊆ Rn. If U is compact and d is a metric such that the function
ψ(·) = d(·, y) is continuous4 for any y ∈ Rn then the following
statements are equivalent:

(1) Σ is forward complete and there exists a U∃GAS Lyapunov
function with respect to A, equipped with the metric d.

(2) Σ is U∃GAS with respect to A, equipped with the metric d.

Proof. First we show that the function φ(·) = d(·,A) is a contin-
uous function with respect to the Euclidean metric. Assume that
{xn}∞n=1 is a converging sequence in Rn with respect to the Eu-
clidean metric, implying that ∥xn − x∗

∥ → 0 as n → ∞ for some
x∗

∈ Rn. By the triangle inequality, we have:

d

x∗, y


≤ d


x∗, xn


+ d (y, xn) , (3.2)

for any n ∈ N and any y ∈ A. Using inequality (3.2), we obtain:

φ

x∗


= d(x∗,A) = inf
y∈A

d

x∗, y


≤ inf

y∈A


d

x∗, xn


+ d (y, xn)


= d


x∗, xn


+ inf

y∈A
d (y, xn) = d


x∗, xn


+ φ (xn) , (3.3)

for any n ∈ N. Using inequality (3.3) and the continuity assumption
on d, implying that limn→∞ d (x∗, xn) = d(x∗, x∗) = 0, we obtain
for any n ∈ N:

φ

x∗


≤ inf
m≥n


d

x∗, xm


+ φ (xm)


⇒ φ


x∗


≤ lim
n→∞

infφ (xn) , (3.4)

where a limit inferior exists because a lower bounded sequence of
real numbers always admit a greatest lower bound [35]. By doing
the same analysis, we have:

φ

x∗


≥ lim
n→∞

supφ (xn) , (3.5)
where a limit superior exists because an upper bounded sequence
of real numbers always admit a lowest upper bound [35]. Using
inequalities (3.4) and (3.5), one obtains:

φ

x∗


= lim
n→∞

φ (xn) ,

implying that φ is a continuous function with respect to the Eu-
clideanmetric. Since φ(·) = d(·,A) is a continuous, positive semi-
definite function, by choosingω1(·) = ω2(·) = d(·,A) in Theorem
1 in [36], the proof completes.

Before showing themain results, we need the following techni-
cal lemma, inspired by Lemma 2.3 in [1].

Lemma 3.5. Consider a control system Σ = (Rn,U,U, f ). If Σ is
δ∃-GAS, then the control system Σ = (R2n,U,U,f ), wheref (ζ , υ)
=

f (ξ1, υ)T , f (ξ2, υ)T

T , and ζ =

ξ T1 , ξ

T
2

T , is U∃GASwith respect
to the diagonal set ∆.

Proof. SinceΣ is δ∃-GAS, there exists a metric d : Rn
× Rn

→ R+

0
such that property (2.1) is satisfied. Now we define a new metricd : R2n

× R2n
→ R+

0 by:

d(z, z ′) = d(x1, x′

1)+ d(x2, x′

2), (3.6)

for any z =

x1T , x2T

T , z ′
=


x′

1
T
, x′

2
T
T

∈ R2n. It can be readily

checked thatd satisfies all three conditions of a metric. Now we
show thatd(z,∆), for any z =


xT1, x

T
2

T
∈ R2n, is proportional to

d(x1, x2) that will be exploited later in the proof. We have:

d(z,∆) = inf
z′∈∆

d(z, z ′) = inf
x′∈Rn

dx1x2

,


x′

x′


= inf

x′∈Rn


d(x1, x′)+ d(x2, x′)


≤ inf

x′=x1


d(x1, x′)+ d(x2, x′)


= d(x1, x1)+ d(x1, x2) = d(x1, x2). (3.7)

Since d is a metric, by using the triangle inequality, we have:
d(x1, x2) ≤ d(x1, x′)+ d(x2, x′) for any x′

∈ Rn, implying that:

d(x1, x2) ≤ inf
x′∈Rn


d(x1, x′)+ d(x2, x′)


=d(z,∆). (3.8)

Hence, using (3.7) and (3.8), one obtains:

d(x1, x2) ≤d(z,∆) ≤ d(x1, x2) ⇒ d(x1, x2) =d(z,∆). (3.9)

Using equality (3.9) and property (2.1), we have:

d (ζzυ(t),∆) = dξx1υ(t)
ξx2υ(t)


,∆


= d


ξx1υ(t), ξx2υ(t)


≤ β (d (x1, x2) , t) = β

d (z,∆) , t ,
for any t ∈ R+

0 , any z =

xT1, x

T
2

T
∈ R2n and any υ ∈ U, where

ζzυ =

ξ Tx1υ , ξ

T
x2υ

T . Hence, Σ is U∃GAS with respect to∆.

We can now provide the characterization of δ∃-GAS in terms of
existence of a δ∃-GAS Lyapunov function.

Theorem 3.6. Consider a control system Σ = (Rn,U,U, f ). If U
is compact and d is a metric such that the function ψ(·) = d(·, y)
is continuous4 for any y ∈ Rn then the following statements are
equivalent:

(1) Σ is forward complete and there exists a δ∃-GAS Lyapunov
function, equipped with the metric d.

(2) Σ is δ∃-GAS, equipped with the metric d.
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Proof. The proof from (1) to (2) has been provided in Theorem 2.6
in [3], even in the absence of the compactness and continuity as-
sumptions on U and d, respectively. We now prove that (2) im-
plies (1). Since Σ is δ∃-GAS, using Lemma 3.5, we conclude that
the control system Σ , defined in Lemma 3.5, is U∃GASwith respect
to the diagonal set ∆. Since ψ(·) = d(·, y) is continuous4 for any
y ∈ Rn, it can be easily verified that the function ψ(·) =d(·, z ′) is
also continuous4 for any z ′

∈ R2n, where the metricdwas defined
in Lemma 3.5. Using Theorem 3.4, we conclude that there exists a
U∃GAS Lyapunov function V : R2n

→ R+

0 , with respect to the diag-
onal set∆, for Σ . Thanks to the special form of Σ , using the equal-
ity (3.9), and slightly abusing notation, the function V satisfies:

(i) α
d  xx′ ,∆ ≤ V


x
x′


≤ α

d  xx′ ,∆ ⇒ α(d
(x, x′)) ≤ V (x, x′) ≤ α(d(x, x′));

(ii)

∂V
∂x

∂V
∂x′
  f (x, u)

f (x′, u)


≤ −κV


x
x′


⇒

∂V
∂x f (x, u) +

∂V
∂x′ f (x

′, u) ≤

−κV (x, x′),

for any x, x′
∈ Rn, any u ∈ U, some K∞ functions α, α and some

κ ∈ R+. Hence, V is a δ∃-GAS Lyapunov function for Σ . This com-
pletes the proof.

Before providing the characterization of δ∃-ISS in terms of
existence of a δ∃-ISS Lyapunov function, we need the following
technical lemma, inspired by Proposition 5.3 in [1]. By following
similar steps as in [1], we need to define the proximal point func-
tion satU : Rm

→ U, defined by:

satU(u) = argmin
u′∈U

u′
− u

 . (3.10)

As explained in [1], by assuming U is closed and convex and since
∥ · ∥ : Rm

→ R+

0 is a proper and convex function, the definition
(3.10) is well-defined and the minimizer of

u′
− u

 with u′
∈ U

is unique. Moreover, by convexity of U we have:

∥satU(u1)− satU(u2)∥ ≤ ∥u1 − u2∥, ∀u1, u2 ∈ Rm. (3.11)

Lemma 3.7. Consider a control systemΣ = (Rn,U,U, f ), where U
is closed and convex. If Σ is δ∃-ISS, equipped with a metric d such
that ψ(·) = d(·, y) is continuous4 for any y ∈ Rn, then there exists a
K∞ function ρ such that the control system Σ = (R2n,D,D,f )5 is
U∃GAS with respect to the diagonal set ∆, where:

f (ζ , ω) =


f (ξ1, satU(ω1 + ρ(d(ξ1, ξ2))ω2))
f (ξ2, satU(ω1 − ρ(d(ξ1, ξ2))ω2))


,

ζ =

ξ T1 , ξ

T
2

T
,D = U × B1(0m), and ω =


ωT

1 , ω
T
2

T .
Proof. The proofwas inspired by the proof of Proposition 5.3 in [1].
We include the complete details of the proof to ensure that the
interested reader can assess the essential differences caused by
using the arbitrarymetric d rather than the Euclideanmetric. Since
Σ is δ∃-ISS, equipped with the metric d, there exist some KL
function β and K∞ function γ such that:

d(ξxυ(t), ξx′υ′(t)) ≤ max{β(d(x, x′), t), γ (∥υ − υ ′
∥∞)}. (3.12)

Note that, inequality (3.12) is a straightforward consequence of
inequality (2.2) in Definition 2.3 (see Remark 2.5 in [33]). Using
the results in Lemma 3.5 and the proposed metricd in (3.6), we
have that d(x, x′) = d(z,∆), where z =


xT , x′T

T . Without loss
of generality we can assume α(r) = β(r, 0) > r for any r ∈ R+.

5 D is the set of all measurable and locally essentially bounded functions of time
from intervals of the form ]a, b[⊆ R to D with a < 0 and b > 0.
Let ρ be a K∞ function satisfying ρ(r) ≤
1
2γ

−1
◦

α−1(r)/4


(note

that γ , α ∈ K∞). Now we show that

γ
2ω2(t)ρ

d(ζzω(t),∆) ≤d(z,∆)/2, (3.13)

for any t ∈ R+

0 , any z ∈ R2n, and any ω =

ωT

1 , ω
T
2

T
∈ D . Since γ

is a K∞ function and ω2(t) ∈ B1(0m) for any t ∈ R+

0 , it is enough
to show

γ

2ρ
d(ζzω(t),∆) ≤d(z,∆)/2. (3.14)

Since

γ

2ρ
d(ζzω(0),∆) = γ


2ρ
d(z,∆)

≤ α−1 d(z,∆) /4 <d(z,∆)/4,
and ϕ(·) = d(·,∆) is a continuous4 function (see proof of The-
orem 3.4), then for all t ∈ R+

0 small enough, we have γ

2ρ
d

(ζzω(t),∆)


≤d(z,∆)/4. Now, let

t1 = inf

t > 0 | γ


2ρ
d(ζzω(t),∆) >d(z,∆)/2 .

Clearly t1 > 0. We will show that t1 = ∞. Now, assume by con-
tradiction that t1 < ∞. Therefore, the inequality (3.14) holds for
all t ∈ [0, t1). Hence, for all t ∈ [0, t1), one obtains:

γ
2ω2(t)ρ

d(ζzω(t),∆) ≤ γ

2ρ
d(ζzω(t),∆)

≤d(z,∆)/2 < α
d(z,∆) /2. (3.15)

Let υ and υ ′ be defined as:

υ(t) = satU

ω1(t)+ ρ

d(ζzω(t),∆)ω2(t)

,

υ ′(t) = satU

ω1(t)− ρ

d(ζzω(t),∆)ω2(t)

.

By using (3.11), we obtain:

∥υ(t)− υ ′(t)∥ ≤
2ω2(t)ρ

d(ζzω(t),∆) .
Using (3.12) and (3.15), we have:d(ζzω(t),∆) = d (ξxυ(t), ξx′υ′(t)) ≤ β


d(x, x′), 0


= β

d(z,∆), 0 = α
d(z,∆) , (3.16)

for any t ∈ [0, t1), any ω ∈ D , and any z =

xT , x′T

T
∈ R2n. Using

ρ(r) ≤
1
2γ

−1
◦

α−1(r)/4


, the inequality (3.16) implies that

γ

2ρ
d(ζzω(t),∆) ≤d(z,∆)/4, (3.17)

for any t ∈ [0, t1). Since the function ψ(·) = d(·,∆) is continu-
ous,4 the inequality (3.17) contradicts the definition of t1. There-
fore, t1 = ∞ and inequality (3.13) is proved for all t ∈ R+

0 .
Therefore, using (3.12) and (3.13), we obtain:d(ζzω(t),∆) = d (ξxυ(t), ξx′υ′(t))

≤ max

β

d(x, x′), t


, γ

∥υ − υ ′

∥∞


≤ max


β

d(x, x′), t


, γ
2ω2ρ

d(ζzω,∆)∞


≤ max


β
d(z,∆), t ,d(z,∆)/2 ,

for any z =

xT , x′T

T
∈ R2n, any ω ∈ D , and any t ∈ R+

0 . Since
β is a KL function, it can be readily seen that for each r > 0
ifd(z,∆) ≤ r , then there exists some Tr ≥ 0 such that for any
t ≥ Tr , β

d(z,∆), t ≤ r/2 and, hence,d(ζzω(t),∆) ≤ r/2. Now
we show that the set∆ is a global attractor for the control systemΣ . For any ε ∈ R+, let k be a positive integer such that 2−kr < ε.
Let r1 = r and ri = ri−1/2 for i ≥ 2, and let τ = Tr1 +Tr2 +· · ·+Trk .
Then, for t ≥ τ , we have d(ζzω(t),∆) ≤ 2−kr < ε for alld(z,∆) ≤ r , and all ω ∈ D . Therefore, it can be concluded that
the set ∆ is a uniform global attractor for the control system Σ .
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Furthermore, sinced(ζzω(t),∆) ≤ β
d(z,∆), 0 for all t ∈ R+

0 ,
all z ∈ R2n, and all ω ∈ D , the control system Σ is uniformly
globally stable and as shown in [36], it is U∃GAS.

Finally, the next theorem provides a characterization of δ∃-ISS
in terms of the existence of a δ∃-ISS Lyapunov function.

Theorem 3.8. Consider a control system Σ = (Rn,U,U, f ). If U is
compact and convex and d is a metric such that the function ψ(·) =

d(·, y) is continuous4 for any y ∈ Rn then the following statements
are equivalent:
(1) Σ is forward complete and there exists a δ∃-ISS Lyapunov

function, equipped with metric d.
(2) Σ is δ∃-ISS, equipped with metric d.

Proof. The proof from (1) to (2) has been shown in Theorem 2.6
in [3], even in the absence of the compactness and convexity
assumptions on U and the continuity assumption on d. We now
prove that (2) implies (1). As we proved in Lemma 3.7, since Σ is
δ∃-ISS, it implies that the control system Σ , defined in Lemma 3.7,
is U∃GAS with respect to ∆. Since ψ(·) = d(·, y) is continuous4

for any y ∈ Rn, it can be easily verified that ψ(·) = d(·, z ′) is
continuous4 for any z ′

∈ R2n, where the metricd was defined in
the proof of Lemma 3.5. Using Theorem 3.4, we conclude that there
exists a U∃GAS Lyapunov function V , with respect to ∆, for Σ . By
using the special form of Σ , defined in Lemma 3.7, the equality
(3.9), and slightly abusing notation the function V satisfies:

(i) α
d  xx′ ,∆ ≤ V


x
x′


≤ α

d  xx′ ,∆ ⇒ α(d
(x, x′)) ≤ V (x, x′) ≤ α(d(x, x′));

for any x, x′
∈ Rn, some K∞ functions α, α and

(ii) 
∂V
∂x

∂V
∂x′

 
f (x, satU(d1 + ρ(d(x, x′))d2))
f (x′, satU(d1 − ρ(d(x, x′))d2))


≤ −κV


x
x′


⇒

∂V
∂x

f (x, satU(d1 + ρ(d(x, x′))d2))

+
∂V
∂x′

f (x′, satU(d1 − ρ(d(x, x′))d2))

≤ −κV (x, x′), (3.18)

for some κ ∈ R+, any x, x′
∈ Rn, and any


dT
1, d

T
2

T
∈ D. By choos-

ing d1 = (u + u′)/2 and d2 = (u − u′)/(2ρ(d(x, x′))) for any
u, u′

∈ U, it can be readily checked that

dT
1, d

T
2

T
∈ U × B1(0m),

whenever 2ρ(d(x, x′)) ≥ ∥u − u′
∥. Hence, using (3.18), we have

that the following implication holds:

if ϕ(d(x, x′)) ≥ ∥u − u′
∥, then

∂V
∂x

f (x, u)+
∂V
∂x′

f (x′, u′) ≤ −κV (x, x′), (3.19)

where ϕ(r) = 2ρ(r). As shown in Remark 2.4 in [33], there is no
loss of generality in modifying inequalities (3.19) to

∂V
∂x

f (x, u)+
∂V
∂x′

f (x′, u′) ≤ −κV (x, x′)+ σ(∥u − u′
∥),

for some K∞ function σ and someκ ∈ R+, which completes the
proof.

3.2. Contraction metrics description

In addition to incremental Lyapunov functions, the δ∃-GAS and
δ∃-ISS conditions can be checked by resorting to contraction
metrics. The interested reader may consult [37] for more detailed
information about the notion of contraction metrics. Note that, for
all definitions and results in this subsection we require function
f to be continuously differentiable which was not the case in
the characterizations of incremental stability using incremental
Lyapunov functions.

Now we recall the notions of contraction metrics, presented
in [37,2].

Definition 3.9 ([37]). Let Σ = (Rn,U,U, f ) be a smooth control
system on Rn equipped with a Riemannian metric G. The metric G
is said to be a contraction metric, with respect to states, for system
Σ if there exists someλ ∈ R+ such that:

⟨X, X⟩F ≤ −λ⟨X, X⟩G, (3.20)

for F(x, u) =

∂ f
∂x

T
G(x)+ G(x) ∂ f

∂x +
∂G
∂x f (x, u), any u ∈ U, X ∈ Rn,

and x ∈ Rn. The constantλ is called the contraction rate.

Note that when the metric G is constant, the condition (3.20) is
known as theDemidovich’s condition [15,38,39]. It is shown in [15]
that such condition implies δ-GAS and the convergent system
property forΣ .

Definition 3.10 ([2]). Let Σ = (Rn,U,U, f ) be a smooth control
system on Rn equipped with a Riemannian metric G. The metric G
is said to be a contractionmetric, with respect to states and inputs,
for systemΣ if there exist someλ ∈ R+ and α ∈ R+

0 such that:

⟨X, X⟩F + 2

∂ f
∂u

Y , X

G

≤ −λ⟨X, X⟩G + α⟨X, X⟩

1
2
G ⟨Y , Y ⟩

1
2
Im , (3.21)

for F(x, u) =

∂ f
∂x

T
G(x)+ G(x) ∂ f

∂x +
∂G
∂x f (x, u), any X ∈ Rn, x ∈ Rn,

u ∈ U, and Y ∈ Rm. The constantλ is called the contraction rate.

The following theoremshows that the existence of a contraction
metric, with respect to states and inputs, (resp. with respect to
states) implies δ∃-ISS (resp. δ∃-GAS).

Theorem 3.11. Let Σ = (Rn,U,U, f ) be a smooth control system
on Rn equipped with a Riemannian metric G and let U be a convex
set. If the metric G is a contraction metric, with respect to states and
inputs, (resp. with respect to states) for system Σ and (Rn, dG) is a
complete metric space, thenΣ is δ∃-ISS (resp. δ∃-GAS).

Proof. Since (Rn, dG) is a complete metric space, using the
Hopf–Rinow theorem [40], we conclude thatRn with respect to the
metric G is geodesically complete. The rest of the proof is inspired
by the proof of Theorem 2 in [4]. Consider two points x and x′ in Rn

and a geodesic χ : [0, 1] → Rn joining x = χ(0) and x′
= χ(1).

The geodesic distance between the points x and x′ is given by:

dG(x, x′) =

 1

0


dχ(s)
ds

T

G(χ(s))
dχ(s)
ds

ds. (3.22)

Consider the straight line χt(s) = (1 − s)υ(t) + sυ ′(t), for fixed
t ∈ R+

0 , fixed υ, υ
′
∈ U, and for any s ∈ [0, 1]. The curve χt is a

geodesic, with respect to the Euclidean metric, on the subset U ⊆

Rm joiningυ(t) = χt(0) andυ ′(t) = χt(1). Consider also the input
curveυs defined byυs(t) = χt(s). Let l(t) be the length of the curve
ξχ(s)υs(t) parametrized by s and with respect to the metric G, i.e.:

l(t) =

 1

0


δξ TG


ξχ(s)υs(t)


δξds,

with δξ =
∂

∂s
ξχ(s)υs(t). (3.23)
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In the rest of the proof, we drop the argument of the metric G for
the sake of simplicity. By taking the derivative of (3.23) with re-
spect to time, we obtain:

d
dt

l(t) =

 1

0

d
dt


δξ TGδξ


2

δξ TGδξ

ds

=

 1

0

δξ T


∂ f
∂x

T
G +

∂G
∂x f + G ∂ f

∂x


δξ + 2δυT


∂ f
∂u

T
Gδξ

2

δξ TGδξ

ds,

where δυ =
∂
∂sυs(t).

Since G is a contraction metric, with respect to states and inputs,
withλ and α the constants introduced in Definition 3.10, the fol-
lowing inequality holds:

d
dt

l(t) ≤ −

λ
2
l(t)+

α

2

 1

0

√

δυT δυds

= −

λ
2
l(t)+

α

2
∥υ(t)− υ ′(t)∥. (3.24)

Using (3.24) and the comparison principle [41], we obtain:

l(t) ≤ e−
λ
2 t l(0)+

α

2
e−

λ
2 t ∗ ∥υ(t)− υ ′(t)∥

≤ e−
λ
2 t l(0)+

αλ

1 − e−

λ
2 t


∥υ − υ ′
∥∞

≤ e−
λ
2 t l(0)+

αλ ∥υ − υ ′
∥∞,

where ∗ denotes the convolution integral.6 From (3.22) and (3.23),
it can be seen that l(0) = dG(x, x′). However, for t ∈ R+, l(t) is
not necessarily the Riemannian distance function, determined by
G, because ξχ(s)υs(t) is not necessarily a geodesic, implying that it
is always bigger than or equal to the Riemannian distance func-
tion7: dG(ξxυ(t), ξx′υ′(t)) ≤ l(t), and, hence, the following inequal-
ity holds:

dG (ξxυ(t), ξx′υ′(t)) ≤ e−
λ
2 tdG(x, x′)+

αλ ∥υ − υ ′
∥∞,

which, in turn, implies thatΣ is δ∃-ISS. The proof for the case that
G is a contraction metric, with respect to states, can be readily ver-
ified by just enforcing δυ(t) = 0 and υ(t) = υ ′(t) for any t ∈ R+

0 .

Since completeness of the metric space (Rn, dG) is crucial to
the previous proof, the following lemma provides a sufficient
condition on the metric G guaranteeing that (Rn, dG) is a complete
metric space.

Lemma 3.12. The RiemannianmanifoldRn equipped with a Rieman-
nianmetric G, satisfying8 ω∥y∥2

≤ yTG(x)y for any x, y ∈ Rn and for
some positive constant ω, is complete as a metric space, with respect
to dG.

Proof. The proof was suggested to us by C. Manolescu. First, for
each pair of points x, y ∈ Rn we define the path space:

Ω(x, y) = {χ : [0, 1] → Rn
| χ is piecewise smooth,

χ(0) = x, and χ(1) = y}.

Recall that a function χ : [a, b] → Rn is piecewise smooth if χ is
continuous and if there exists a partitioning a = a1 < a2 < · · · <

6 e−
λ
2 t

∗ ∥υ(t)− υ ′(t)∥ =
 t
0 e−

λ
2 (t−τ)∥υ(τ)− υ ′(τ )∥dτ .

7 Note that given a Riemannianmetric G, the Riemannian distance function is the
smallest distance, determined by G.
8 This condition is nothing more than uniform positive definiteness of G.
ak = b of [a, b] such that χ |(ai,ai+1) is smooth for i = 1, . . . , k − 1.
We can then define the Riemannian distance function dG(x, y) be-
tween points x, y ∈ Rn as

dG(x, y) = inf
χ∈Ω(x,y)

 1

0


dχ(s)
ds

T

G(χ(s))
dχ(s)
ds

ds.

It follows immediately that dG is a metric on Rn. The Riemannian
manifold Rn is a complete metric space, equipped with the metric
dG, if every Cauchy sequence9of points in Rn has a limit in Rn. As-
sume {xn}∞n=1 is a Cauchy sequence inRn, equippedwith themetric
dG. By using the assumption on G, we have

dG(xn, xm) = inf
χ∈Ω(xn,xm)

 1

0


dχ(s)
ds

T

G(χ(s))
dχ(s)
ds

ds

≥
√
ω inf
χ∈Ω(xn,xm)

 1

0


dχ(s)
ds

T dχ(s)
ds

ds

=
√
ω∥xn − xm∥. (3.25)

It is readily seen from the inequality (3.25) that the sequence
{xn}∞n=1 is also a Cauchy sequence in Rn with respect to the Eu-
clidean metric. Since the Riemannian manifold Rn with respect
to the Euclidean metric is a complete metric space, the sequence
{xn}∞n=1 converges to a point, named x∗, in Rn. By picking a con-
vex compact subset D ⊂ Rn, containing x∗, and using Lemma 8.18
in [30], we have: ω∥y∥2

≥ yTG(x)y for any y ∈ Rn, x ∈ D, and
some positive constant ω. Since the sequence {xn}∞n=1 converges to
x∗

∈ D, there exists some integer N such that the sequence {xn}∞n=N
remains forever inside D. Hence, we have:
√
ω∥xn − x∗

∥ ≤ dG(xn, x∗) ≤
√
ω∥xn − x∗

∥,

for any n > N . Therefore, the sequence {xn}∞n=1 converges to x∗
∈

Rn, equipped with the metric dG. Therefore, Rn with respect to the
metric dG is a complete metric space.

Resuming, in this section we have provided a characteriza-
tion of δ∃-GAS and δ∃-ISS in terms of the existence of δ∃-GAS and
δ∃-ISS Lyapunov functions and we have provided sufficient condi-
tions for δ∃-GAS and δ∃-ISS in terms of the existence of a contrac-
tion metric. Based on these results, in the next section, we propose
a backstepping controller design procedure, providing controllers
rendering control systems incrementally stable. Additionally, we
will provide incremental Lyapunov functions and contractionmet-
rics (the latter for smooth control systems).

4. Backstepping design procedure

The backstepping method proposed here is inspired by the
backstepping method, described in [15,18]. Here, we will extend
this approach to render the closed-loop system δ∃-ISS and to con-
struct δ∃-ISS Lyapunov functions. Consider the following subclass
of control systems:

Σ :


η̇ = f (η, ζ ),
ζ̇ = υ,

(4.1)

where x =

yT , zT


∈ Rnη+nζ is the state of Σ , y and z are initial

conditions for η, ζ -subsystems, respectively, and υ is the control
input.

In support of the main result of this section (Theorem 4.2), we
need the following technical result.

9 A sequence {xn}∞n=1 in a metric space X , equipped with a metric d, is a Cauchy
sequence if limn,m→∞ d(xn, xm) = 0.
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Lemma 4.1. Consider the following interconnected control system

Σ :


η̇ = f (η, ζ , υ),
ζ̇ = g(ζ , υ). (4.2)

Let the η-subsystem be δ∃-ISS with respect to ζ , υ , as inputs, and
let the ζ -subsystem be δ∃-ISS with respect to υ for some metrics dη
and dζ , respectively, such that the solutions ηyζυ10 and ζzυ satisfy the
following inequalities:

dη

ηyζυ(t), ηy′ζ ′υ′(t)


≤ βη


dη

y, y′


, t


+ γζ

dζ (ζ , ζ ′)∞


+ γυ

υ − υ ′


∞


, (4.3)

dζ (ζzυ(t), ζz′υ′(t)) ≤ βζ

dζ

z, z ′


, t


+γυ υ − υ ′


∞


, (4.4)

where y, y′ and z, z ′ are the initial conditions for the η, ζ -subsystems,
respectively. Then, the interconnected control system Σ in (4.2) is
δ∃-ISS with respect to υ .

The proof of the preceding result can be found in the Appendix
and is inspired by the proof of Proposition 4.7 in [1].

We can now state themain result of this section, on a backstep-
ping controller design approach for the control system Σ in (4.1),
rendering the resulting closed-loop system δ∃-ISS.

Theorem 4.2. Consider the control system Σ of the form (4.1). Sup-
pose there exists a continuously differentiable function ψ : Rnη →

Rnζ such that the control system

Ση : η̇ = f (η, ψ(η)+υ) (4.5)

is δ∃-ISS with respect to the input υ . Then for any λ ∈ R+, the state
feedback control law:

υ = k(η, ζ ,υ) = −λ(ζ − ψ(η))+
∂ψ

∂y
(η)f (η, ζ )+υ (4.6)

renders the control systemΣδ∃-ISS with respect to the input υ .
Proof. Consider the following coordinate transformation:

χ =


χ1
χ2


= φ(ξ) =


η

ζ − ψ(η)


, (4.7)

where ξ =

ηT , ζ T

T . In the new coordinate χ , we obtain the
following dynamics:

Σ :

χ̇1 = f (χ1, ψ(χ1)+ χ2) ,

χ̇2 = υ −
∂ψ

∂y
(χ1)f (χ1, ψ(χ1)+ χ2) .

The proposed control law (4.6), given in the new coordinate χ by

υ = k(χ1, χ2 + ψ(χ1),υ)
= −λχ2 +

∂ψ

∂y
(χ1)f (χ1, ψ(χ1)+ χ2)+υ, (4.8)

transforms the control system Σ into:

Σ :


χ̇1 = f (χ1, ψ(χ1)+ χ2),
χ̇2 = −λχ2 +υ. (4.9)

Due to the choice of ψ , the χ1-subsystem of Σ is δ∃-ISS with re-
spect to χ2. It can be easily verified that the χ2-subsystem is input-
to-state stable with respect to the input υ . Since any ISS linear

10 Notation ηyζυ denotes a trajectory of η-subsystem under the inputs ζ and υ
from initial condition y ∈ Rnη .
control system is also δ-ISS [1], χ2-subsystem is also δ-ISS11 with
respect toυ . Therefore, using Lemma4.1,we conclude that the con-
trol system Σ is δ∃-ISS with respect to the input υ . Since, δ∃-ISS
property is coordinate invariant [2], we conclude that the original
control systemΣ in (4.1) equippedwith the state feedback control
law in (4.6) is δ∃-ISS with respect to the inputυ which completes
the proof.

Remark 4.3. The δ∃-ISS property of system Ση in (4.5) can be
established, for example, using the approaches provided in [15,17]
for some relevant classes of control systems (such as piece-wise
affine systems and Lur’e-type systems).

Remark 4.4. We should emphasize that incremental stability
requires the uniform asymptotic stability of every trajectory and
can, in general, not be achieved by just asymptotically stabilizing a
particular time-varying trajectory using conventional techniques.
For instance, the first example in [22], see also [23], illustrates
a two-dimensional nonlinear system which is globally uniformly
convergent, i.e. exhibits a uniformly globally asymptotically stable
trajectory, but it is not globally incrementally stable. Hence, the
induction of incremental stability by means of feedback requires
different controller synthesis techniques, such as e.g. the proposed
one here.

Remark 4.5. The result of Theorem4.2 can be extended to the case
that we have arbitrary number of integrators:

Σ :


η̇ = f (η, ζ1),
ζ̇1 = ζ2,
...

ζ̇k = υ.

Note that in this case, the functions f and ψ must be sufficiently
differentiable.

Although the proposed approach in Theorem 4.2 provides a
controller rendering the control system Σ of the form (4.1) δ∃-
ISS, it does not provide a way of constructing δ∃-ISS Lyapunov
functions or contraction metrics. In the next lemmas, we show
how to construct incremental Lyapunov functions and contraction
metrics for the resulting closed-loop system, recursively. Note that
the constructed incremental Lyapunov functions can be used as
a necessary tool in the analysis in [11,24,26,28]. We will show in
the example section how the explicit availability of an incremental
Lyapunov function helps us to use the results in [11] to construct
a finite bisimilar abstraction for an incrementally input-to-state
stable (non-smooth) control system.

Lemma 4.6. Consider the control systemΣ of the form (4.1). Suppose
there exists a continuously differentiable function ψ : Rnη → Rnζ

such that the smooth function V : Rnη × Rnη → R+

0 is a δ∃-ISS
Lyapunov function for the control system

Ση : η̇ = f (η, ψ(η)+υ), (4.10)

and with respect to the control input υ . Assume that V satisfies
condition (iii) in Definition 3.1 for some κ ∈ R+ and some σ ∈ K∞,
satisfying σ(r) ≤ κr2 for someκ ∈ R+ and any r ∈ R+

0 . Then the
functionV : Rnη+nζ × Rnη+nζ → R+

0 , defined asV (x, x′) = V (y, y′)+ ∥(z − ψ(y))− (z ′
− ψ(y′))∥2,

where x =

yT , zT

T and x′
=


y′T , z ′T

T , is a δ∃-ISS Lyapunov
function for Σ as in (4.1) equipped with the state feedback control
law (4.6) for all λ ≥

κ+κ+1
2 .

11 We recall that δ-ISS property is equivalent to δ∃-ISS property with respect to
the Euclidean metric.
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Proof. As explained in the proof of Theorem 4.2, using the pro-
posed state feedback control law (4.6) and the coordinate trans-
formation φ in (4.7), the control system Σ of the form (4.1) is
transformed to the control system Σ in (4.9). Now we show that

V (x,x′) = V (x1,x′

1)+ (x2 −x′

2)
T (x2 −x′

2),

is a δ∃-ISS Lyapunov function for Σ , wherex =
xT1,xT2T andx′

=x′T
1,x′T

2
T are the states of Σ andx1,x′

1, andx2,x′

2 are the states
of χ1, χ2-subsystems, respectively. Since V is a δ∃-ISS Lyapunov
function for χ1-subsystem when χ2 is the input, it satisfies con-
dition (i) in Definition 3.1 using a metric d asfollows:

α(d(x1,x′

1)) ≤ V (x1,x′

1) ≤ α(d(x1,x′

1)),

for some α, α ∈ K∞. Now we define a new metricd : Rnη+nζ ×

Rnη+nζ → R+

0 by

d(x,x′) = d(x1,x′

1)+ ∥x2 −x′

2∥. (4.11)

It can be readily checked thatd satisfies all three conditions of a
metric. Using metricd, function V satisfies condition (i) in Defini-
tion 3.1 as follows:

µ
d(x,x′)


≤ V (x,x′) ≤ µ

d(x,x′)

,

where µ,µ ∈ K∞, µ
d(x,x′)


= α(d(x1,x′

1)) + ∥x2 −x′

2∥
2, and

µ
d(x,x′)


= α(d(x1,x′

1))+∥x2 −x′

2∥
2. Nowwe show that V sat-

isfies condition (iii) in Definition 3.1 for Σ . SinceV is a δ∃-ISS Lya-
punov function forχ1-subsystemwhenχ2 is the input, λ ≥

κ+κ+1
2 ,

σ(r) ≤κr2, and using the Cauchy Schwarz inequality, we have:

∂V
∂x f (x1, ψ(x1)+x2)T ,−λxT2 +uT T

+
∂V
∂x′


f (x′

1, ψ(x′

1)+x′

2)
T ,−λx′T

2 +u′T T
≤
∂V
∂x1 f (x1, ψ(x1)+x2)+

∂V
∂x′

1
f (x′

1, ψ(x′

1)+x′

2)

+ 2(x2 −x′

2)
T (−λx2 +u)− 2(x2 −x′

2)
T 

−λx′

2 +u′


≤ −κV (x1,x′

1)+ σ(∥x2 −x′

2∥)

− 2λ∥x2 −x′

2∥
2
+ 2(x2 −x′

2)
T (u −u′)

≤ −κV (x1,x′

1)+κ∥x2 −x′

2∥
2

− 2λ∥x2 −x′

2∥
2
+ 2∥x2 −x′

2∥∥u −u′
∥

≤ −κV (x1,x′

1)+κ∥x2 −x′

2∥
2

− 2λ∥x2 −x′

2∥
2
+ ∥x2 −x′

2∥
2
+ ∥u −u′

∥
2

≤ −κV (x,x′)+ ∥u −u′
∥
2.

The latter inequality implies that V is a δ∃-ISS Lyapunov function
for Σ . Since δ∃-ISS Lyapunov functions are coordinate-invariant
[3], we conclude that the function V : Rnη+nζ × Rnη+nζ → R+

0 ,
defined byV (x, x′) = V (φ(x), φ(x′))

= V (y, y′)+ ∥(z − ψ(y))− (z ′
− ψ(y′))∥2,

is a δ∃-ISS Lyapunov function for Σ , as in (4.1), equipped with the
state feedback control law in (4.6).

Remark 4.7. One can use the LMI based results in [15–17] to find
a quadratic δ∃-ISS Lyapunov function for systemΣη in (4.10).

Remark 4.8. It can be verified that the backstepping design ap-
proach for strict-feedback form control systems, proposed in [3],
is a special case of the results in Lemma 4.6. The results in [3] can
be easily obtained by recursively applying the results proposed in
Lemma 4.6. Moreover, one can construct a metric d for a strict-
feedback form control system, satisfying (2.1) or (2.2), by recur-
sively applying the construction in (4.11) and applying the change
of coordinate in (4.7).

The next lemma shows how to construct contractionmetrics for
the closed-loop system resulting from the backstepping controller
synthesis technique in Theorem 4.2.

Lemma 4.9. Consider the control system Σ of the form (4.1) and
assume function f is smooth. Suppose there exists a continuously
differentiable function ψ : Rnη → Rnζ such that the metric G :

Rnη → Rnη×nη is a contraction metric, with respect to states and
inputs, for the control system

Ση : η̇ = f (η, ψ(η)+υ),
satisfying the condition (3.21) for someλ ∈ R+ and α ∈ R+

0 . Then

G(x) =

G(y)+


∂ψ

∂y

T
∂ψ

∂y
−


∂ψ

∂y

T

−
∂ψ

∂y
Inζ

 ,
where x =


yT , zT

T , is a contraction metric, with respect to states
and inputs, for Σ as in (4.1) equipped with the state feedback control
law in (4.6) for all λ > α2

8λ .
Proof. As explained in the proof of Theorem 4.2, using the
proposed control law (4.6) and the coordinate transformation φ in
(4.7), the control systemΣ of the form (4.1) is transformed to the
control system Σ in (4.9). Now we show that the metric

G(x) =

G(x1) 0nη×nζ
0nζ×nη Inζ


,

is a contraction metric, with respect to states and inputs, for Σ ,
wherex =

xT1,xT2T is the state of Σ , andx1, andx2 are states of
χ1, χ2-subsystems, respectively. It can be easily seen that G is pos-
itive definite becauseG is positive definite since it is a contraction
metric for Ση . Now we show that G satisfies the condition (3.21)
for the control system Σ . SinceG is a contraction metric, with re-
spect to states and inputs, for χ1-subsystem when χ2 is the input,
we have:

XT
1


∂ f
∂x1

TG(x1)+G(x1) ∂ f
∂x1

+
∂G
∂x1 f (x1, ψ(x1)+x2)X1 + 2XT

2


∂ f
∂x2

TG(x1)X1

≤ −λXT
1
G(x1)X1 + α

XT
1
G(x1)X1

 1
2
XT

2
X2
 1

2 , (4.12)

for any X1,x1 ∈ Rnη , X2,x2 ∈ Rnζ , some λ ∈ R+, and some
α ∈ R+

0 . By choosing λ >
α2

8λ , using (4.12), and the Cauchy Schwarz
inequality we obtain the chain of inequalities in (4.13) for anyX =

XT
1
XT
2

T
∈ Rnη+nζ , anyx =

xT1xT2T ∈ Rnη+nζ , any Y ∈ Rnζ ,
and someλ ∈ R+.

XT
1
XT
2


·

∂ [f ,−λx2 +u]T
∂x

T

G(x)
+ G(x) ∂ [f ,−λx2 +u]T

∂x +
∂G
∂x

f (x1, ψ(x1)+x2)

−λx2 +u

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·

X1X2


+ 2Y T


0nη×nζ
Inζ

T
G(x) X1X2


=
XT

1
XT
2



·



∂ f
∂x1

TG(x1)+G(x1) ∂ f
∂x1 +

∂G
∂x1 f G(x1) ∂ f

∂x2
∂ f
∂x2

TG(x1) −2λInζ


·

X1X2


+ 2Y TX2 ≤ −λ X1,X1

G
+α

X1,X1
 1
2G X2,X2

 1
2
Inζ

− 2λXT
2
X2 + 2Y TX2

≤ −λ X1,X1
G −λXT

2
X2

+ 2
√

Y TY
XT

2
X2 +

X1,X1
G

≤ −λ X,X G + 2
X,X  12G ⟨Y , Y ⟩

1
2
Inζ
. (4.13)

Hence, G is a contraction metric, with respect to states and in-
puts, for Σ . Since a contraction metric, with respect to states and
inputs, is coordinate invariant [2], we conclude thatG = φ∗G is
a contraction metric, with respect to states and inputs, for Σ as
in (4.1) equipped with the state feedback control law in (4.6). This
completes the proof.

Remark 4.10. It can be verified that the backstepping design
approach for strict-feedback form control systems, proposed in [2],
is a special case of the results in Lemma 4.9. The results in [2] can
be easily obtained by recursively applying the results proposed in
Lemma 4.9.

5. Example

We illustrate the results of this paper on two different ex-
amples. Both examples are unstable non-smooth control systems
that does not satisfy the assumptions required in [19–21,2,3].
The results in [15] also cannot be applied here because they would
result in a closed-loop system which is input-to-state convergent
rather than δ∃-ISS. The first example involves a four-dimensional
control system and aims to show how to recursively construct a
δ∃-ISS Lyapunov function. The second example involves a two-
dimensional non-smooth control system and aims at elucidating
the role of incremental Lyapunov functions in enabling the con-
struction of finite abstractions of nonlinear control systems. The
reader interested in additional examples can also consult [42] for a
physical example on a synchronous generator to which the results
proposed in Lemmas 4.6 and 4.9 can be applied recursively.

5.1. Example 1

The example in this section illustrates the application of the
results in the paper to design controllers rendering a system in-
crementally stable and to recursively construct a δ∃-ISS Lyapunov
function. Consider the following non-smooth control system:

Σ :


η̇1 = −η1 + |η3|,
η̇2 = −η2 + sat(η1)sat(η3),
η̇3 = η3 + η1η2η3 + η33 + ζ1,

ζ̇1 = ζ1 + ζ 3
1 + η23 + υ,

(5.1)

where sat : R → R is the saturation function, defined by:

sat(x) =


−1 if x < −1,
x if |x| ≤ 1,
1 if x > 1.

(5.2)
It can be readily verified that for υ(t) = 0 for any t ∈ R+

0 ,Σ is
unstable at (0, 0, 0, 0), implying thatΣ is not δ∃-ISS. By introduc-
ing the feedback transformationυ = ζ1 + ζ 3

1 +η23 +υ , the control
systemΣ is transformed into:

Σ :


η̇1 = −η1 + |η3|,
η̇2 = −η2 + sat(η1)sat(η3),
η̇3 = η3 + η1η2η3 + η33 + ζ1,

ζ̇1 =υ.
Now by choosing ψ(η) = −4η3 − η1η2η3 − η33 and substituting
ψ(η)+υ instead of ζ1, we obtain the following η-subsystem:

Ση :

η̇1 = −η1 + |η3|,
η̇2 = −η2 + sat(η1)sat(η3),
η̇3 = η3 + η1η2η3 + η33 + ψ(η)+υ = −3η3 +υ.

It remains to show that Ση is δ∃-ISS with respect toυ . We will do
so in a recursive fashion. First we show that the control system:Σ1 : η̇1 = −η1 + |η3|, (5.3)

is δ∃-ISS with respect to the input η3. By choosing the function
V1(y1, y′

1) = (y1 −y′

1)
2, where y1 and y′

1 are states of Σ1, and using
the Cauchy Schwarz inequality, we have that:

∂V1

∂y1
(−y1 + |y3|)+

∂V1

∂y′

1


−y′

1 + |y′

3|


≤ −2(y1 − y′

1)
2
+ 2|y1 − y′

1| |y3 − y′

3|

≤ −V1(y1, y′

1)+ |y3 − y′

3|
2,

showing that V1 is a δ∃-ISS Lyapunov function for Σ1 in (5.3) and,
hence, Σ1 is δ∃-ISS with respect to the input η3. Second, we show
that the control system:Σ2 : η̇2 = −η2 + sat(η1)sat(η3), (5.4)

is δ∃-ISSwith respect to inputs η1 and η3. Similarly, it can be shown
that the function V2(y2, y′

2) = (y2−y′

2)
2, where y2 and y′

2 are states
of Σ2, is a δ∃-ISS Lyapunov function for Σ2 in (5.4). Hence, Σ2 is
δ∃-ISS with respect to inputs η1 and η3. Third, it can be shown in a
similar fashion that the control system:Σ3 : η̇3 = −3η3 +υ,
is δ∃-ISS with respect to the inputυ . By virtue of Lemma 4.1, we
conclude that the control system Ση is δ∃-ISS with respect to υ .
By using the results in Theorem 4.2 for the control system Σ , we
conclude that the state feedback control law:

υ = k(η, ζ , ῡ) = −λ(ζ1 − ψ(η))+
∂ψ

∂y
η̇ + ῡ

= −λ

ζ1 + 4η3 + η1η2η3 + η33


+

η3 + η1η2η3 + η33 + ζ1

 
−4 − η1η2 − 3η23


− η2η3 (−η1 + |η3|)− η1η3

× (−η2 + sat(η1)sat(η3))+ ῡ, (5.5)

renders the control system Σδ∃-ISSwith respect to input ῡ , for any
λ ∈ R+. Therefore, the state feedback control law

υ =k(η, ζ , ῡ) = k(η, ζ , ῡ)− ζ1 − ζ 3
1 − η23, (5.6)

renders the control systemΣδ∃-ISS with respect to input ῡ .
Let us now aim for finding a δ∃-ISS Lyapunov function V :

R4
× R4

→ R+

0 for the control system Σ in (5.1), equipped with
the state feedback control lawk in (5.6). It can be shown that the
functionV (y, y′) =


y1 − y′

1

2
+

y2 − y′

2

2
+

y3 − y′

3

2 is a δ∃-ISS
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Lyapunov function for the control system Ση . Using Theorem 4.6,
we conclude that the function:

V (x, x′) = V (y, y′)+ |(z1 − ψ(y))− (z ′

1 − ψ(y′))|2

= (y1 − y′

1)
2
+ (y2 − y′

2)
2
+ (y3 − y′

3)
2

+

(z1 + 4y3 + y1y2y3 + y33)

− (z ′

1 + 4y′

3 + y′
1y′

2y′
3 + y′3

3)
2
, (5.7)

where x = [y1, y2, y3, z1]T is the state of Σ , is a δ∃-ISS Lyapunov
function for the control systemΣ equippedwith the state feedback
control lawk in (5.6) with λ > 5

4 .
We simulate the closed-loop systemwith λ = 5 and ῡ(t) = 10

sin(2t), for any t ∈ R+

0 . In Fig. 1, we show the closed-loop trajecto-
ries stemming from the initial conditions (1, 1, 1, 1) and (−1,−1,
−1,−1), respectively. The figure shows that indeed, by virtue of
the δ∃-ISS property, both trajectories converge to each other.

5.2. Example 2

Consider the following non-smooth control system:

Σ :


η̇1 = sat(η1)+ η1 + 5ζ1,
ζ̇1 = ζ 2

1 + η21 + υ,
(5.8)

where sat : R → R is the saturation function, defined in (5.2).
It can be readily verified that Σ is unstable at (0, 0), implying

that Σ is not δ∃-ISS. Note that here we require δ∃-ISS and a δ∃-ISS
Lyapunov function in order to construct a finite equivalent abstrac-
tion using the results in [11]. By introducing the feedback transfor-
mationυ = ζ 2

1 +η21 +υ , the control systemΣ is transformed into
the following form:

Σ :


η̇1 = sat(η1)+ η1 + 5ζ1,
ζ̇1 =υ.

Nowby choosingψ(η1) = −η1 and substitutingψ(η1)+υ instead
of ζ1, we obtain the following η-subsystem:Ση : η̇1 = sat(η1)+ η1 + 5(ψ(η1)+υ) = sat(η1)− 4η1 + 5υ.
It remains to show that Ση is δ∃-ISS with respect toυ . By choosing
the function V1(y1, y′

1) = (y1 − y′

1)
2, where y1 and y′

1 are states ofΣη , and using the Cauchy Schwarz inequality, we have that:

∂V1

∂y1
(sat(y1)− 4y1 + 5u)+

∂V1

∂y′

1


sat

y′

1


− 4y′

1 + 5u′


≤ −8(y1 − y′

1)
2
+ 2|y1 − y′

1| |sat(y1)− sat(y′

1)|

+ 10(y1 − y′

1)(u −u′) ≤ −8(y1 − y′

1)
2
+ 2(y1 − y′

1)
2

+ 10(y1 − y′

1)(u −u′) ≤ −5(y1 − y′

1)
2
+ 25(u −u′)2,

showing that V1 is a δ∃-ISS Lyapunov function for Ση and, hence,Ση is δ∃-ISS with respect toυ . By using the results in Theorem 4.2
for the control system Σ , we conclude that the state feedback con-
trol law:

υ = k(η1, ζ1, ῡ) = −λ(ζ1 − ψ(η1))+
∂ψ

∂y1
η̇1 + ῡ

= −λ (ζ1 + η1)− (sat(η1)+ η1 + 5ζ1)+ ῡ,

renders the control system Σδ∃-ISSwith respect to input ῡ , for any
λ ∈ R+. Therefore, the state feedback control law

υ =k(η1, ζ1, ῡ) = k(η1, ζ1, ῡ)− η21 − ζ 2
1 , (5.9)

makes the control systemΣδ∃-ISS with respect to input ῡ .
Using Lemma 4.6, we conclude that the function V : R2
×R2

→

R+

0 , defined by:

V (x, x′) = V1(y1, y′

1)+
(z1 − ψ(y1))−


z ′

1 − ψ(y′

1)
2

= (y1 − y′

1)
2
+

(z1 + y1)− (z ′

1 + y′

1)
2

=

x − x′

T P x − x′


=

x − x′

T 2 1
1 1

 
x − x′


,

where x = [y1, z1]T is the state ofΣ , is a δ∃-ISS Lyapunov function
for the control systemΣ equipped with the state feedback control
lawk in (5.9) with λ > 25+5+1

2 . Here, we choose λ = 16.
It can be readily verified that the functionV (x, x′) =

√
V (x, x′)

is also a δ∃-ISS Lyapunov function for the control system Σ

equipped with the state feedback control lawk in (5.9) with λ >
25+5+1

2 , satisfying:

(i) for any x, x′
∈ R2,

√
λmin(P)

x − x′
 ≤ V (x, x′) ≤

√
λmax(P)

∥x − x′
∥;

(ii) for any x, x′
∈ R2 and for any ū, ū′

∈ U ⊆ R, ∂V
∂x f


x,k(x, ū)+

∂V
∂x′ f


x′,k(x′, ū′)


≤ −2.5V (x, x′)+

|ū−ū′
|

λmin(P)
;

(iii) for any x, y, z ∈ R2,
V (x, y)−V (x, z) ≤

λmax(P)√
λmin(P)

∥y − z∥;

where λmin(P), and λmax(P) indicate, respectively, the minimum
and maximum eigenvalues of P . Note that, the property (iii) is a
consequence of Proposition 10.5 in [29].

Finite abstractions are simpler descriptions of control systems,
with finitely many states, in which each state of the abstraction
represents a collection or aggregate of states in the control system.
Similar finite abstractions are used in software and hardwaremod-
eling, which enables the composition of such (hardware/software)
abstractions with the finite abstraction of the control system.
The result of this composition are finite abstractions capturing
the behavior of the control system interacting with the digital
computational devices. Once such abstractions are available, the
methodologies and tools developed in computer science for veri-
fication and controller synthesis purposes can be easily employed
to control systems, via these abstractions. However, for construct-
ing a bisimilar finite abstraction, using the results in [11] which
does not impose any restriction on the sampling time, the control
system is required to be incrementally stable and to exhibit an in-
cremental Lyapunov function. The incremental stability property
bounds the error propagations coming from discretization of the
state space and input set in the process of constructing the finite
bisimilar abstractions. We refer the interested readers to [29] for
more detailed information about the finite abstractions and their
great advantages in controller synthesis problems.

Now, we construct a finite abstraction S(Σ) for the control sys-
tem Σ , equipped with the control input υ in (5.9), using the re-
sults in [11]. We assume that ῡ(t) ∈ U = [−10, 10], for any
t ∈ R+

0 , and ῡ belongs to set U that contains piecewise con-
stant curves of duration τ = 0.1 second (τ is the sampling time)
taking values in


U

0.5 =


ū ∈ U | ū = 0.5k, k ∈ Z


. We work

on the subset D = [−1, 1] × [−1, 1] of the state space Σ . For
a given precision12 ε = 0.1 and using properties (i)–(iii) of V ,
we conclude that D should be quantized with resolution of η =

0.009, using the results of Theorem 4.1 in [11]. The state set of
S(Σ) is [D]η = {x ∈ D | xi = kiη, ki ∈ Z, i = 1, 2}. It can be read-
ily seen that the set [D]η is finite. The computation of the finite

12 The parameter ε is the maximum error between a trajectory of the control
system and its corresponding trajectory from the finite abstraction at times kτ ,
k ∈ N0 , with respect to the Euclidean metric.
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Fig. 1. Evolution of η1 , η2 , η3 , and ζ1 with the input ῡ(t) = 10 sin(2t) and initial conditions (1, 1, 1, 1), and (−1,−1,−1,−1), respectively.
a u u

Fig. 2. Finite systemdescribing the schedulability constraints. The lower part of the
states are labeled with the outputs a and u denoting availability and unavailability
of the microprocessor, respectively.

abstraction S(Σ) was performed using the tool Pessoa [43]. Us-
ing the computed finite abstraction, we can synthesize controllers,
providing ῡ in (5.9), satisfying specifications that are difficult to
enforce with conventional controller design methods. Here, our
objective is to design a controller navigating the trajectories ofΣ ,
equipped with the control input υ in (5.9), to reach the target set
W = [−0.05, 0.05] × [−0.05, 0.05], indicated with a red box in
Fig. 3,while avoiding the obstacles, indicated as blue boxes in Fig. 3,
and remain indefinitely insideW . Furthermore,we assume that the
controller is implemented on amicroprocessor, which is executing
other tasks in addition to the control task. We consider a schedule
with epochs of three time slots in which the first slot is allocated to
the control task and the other two to other tasks. A time slot refers
to a time interval of the form [kτ , (k + 1)τ [ with k ∈ N and where
τ is the sampling time. Therefore, the microprocessor schedules is
given by (depending on the initial slot):

|auu|auu|auu|auu|auu|auu|auu| · · · ,

|uua|uua|uua|uua|uua|uua|uua| · · · ,

|uau|uau|uau|uau|uau|uau|uau| · · · ,

where a denotes a slot available for the control task and u denotes
a slot allotted to other tasks. We assume that in unallocated time
slots, the input ῡ is identically zero. The schedulability constraint
on the microprocessor can be represented by the finite system in
Fig. 2.

A controller, providing ῡ in (5.9) and enforcing the specification
has been designed by using standard algorithms fromgame theory,
implemented in Pessoa, where the finite system is initialized from
state q2, see second sequence above. In Fig. 3, we show the closed-
loop trajectories of Σ , equipped with the control input υ in (5.9)
(including the additional controller for ῡ) and stemming from the
initial conditions [0.8, 0.9] and [−0.8,−0.9]. It is readily seen that
the specifications are satisfied. In Fig. 4, we show the evolution
of the input signal ῡ in (5.9) corresponding to the two initial
Fig. 3. Evolutions of the closed-loop system with initial conditions (0.8, 0.9), and
(−0.8,−0.9).

Fig. 4. Evolutions of the input signals ῡ1 and ῡ2 , corresponding to initial conditions
(0.8, 0.9), and (−0.8,−0.9), respectively.

conditions. It can be easily seen that the schedulability constraint
is also satisfied, implying that the control input ῡ is identically zero
at unallocated time slots.

Resuming, we employed the results in this paper to render
the closed-loop system incrementally stable and to construct an
incremental Lyapunov function for the closed-loop system. The
explicit availability of an incremental Lyapunov function allowed
us to use the results in [11] to construct a finite abstraction S(Σ)
for the control systemΣ in (5.8), equipped with the control input
in (5.9). This finite abstraction allowed us to use tools developed
in computer since to synthesize a controller satisfying some logic
specifications difficult to enforce using conventional controller
synthesis methods.



M. Zamani et al. / Systems & Control Letters 62 (2013) 949–962 961
6. Discussion

In this paper we provided the characterizations of incremen-
tal stability, defined in [2], in terms of existence of incremental
Lyapunov functions, defined in [3]. We also provided sufficient
conditions for incremental stability in terms of contraction met-
rics. Moreover, we developed a backstepping procedure to design
controllers enforcing incremental input-to-state stability (or con-
traction properties) for the resulting closed-loop system. The pro-
posed approach in this paper generalizes the work in [19–21,2,3]
by being applicable to larger classes of control systems and the
work in [15] by enforcing incremental input-to-state stability
rather than input-to-state convergence. Moreover, in contrast
to the proposed backstepping design approach in [15], here we
provided a way of constructing incremental Lyapunov functions,
which are known to be a key tool in the analysis provided in [11,
24,26,28]. As we showed in one of the examples in the paper, the
explicit existence of an incremental Lyapunov function helps us to
use the results in [11] to construct a finite bisimilar abstraction for
a resulting incrementally stable closed-loop (non-smooth) control
system.
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Appendix

Proof of Lemma 4.1. The proof was inspired by the proof of
Proposition 4.7 in [1]. The essential differences lie in the choice
of the metric for the overall system Σ using the metrics for η, ζ -
subsystems.We provide the proof so that it can be easily compared
with the proof in [1]. Using (4.3), (4.4) and triangle inequality, the
chain of inequalities in (A.1) hold, whereγ ∈ K∞ andβ,β ∈ KL
in (A.1) are defined as following:γ (r) = βη


3γζ (2γυ(r)) , 0+ βη (3γυ(r), 0)

+ γζ (2γυ(r))+ γυ(r),β(r, t) = βη

3βη (r, t/2) , t/2


,β(r, t) = βη


3γζ


2βζ (r, 0)


, t/2


+ γζ


2βζ (r, t/2)


dη

ηyζυ(t), ηy′ζ ′υ′(t)


≤ βη


dη

ηyζυ(t/2), ηy′ζ ′υ′(t/2)


, t/2


+ γζ


dζ

ζ , ζ ′


[t/2,∞)


+ γυ

υ − υ ′


[t/2,∞)


≤ βη


βη

dη(y, y′), t/2


+ γζ


dζ

ζ , ζ ′


∞


+ γυ

υ − υ ′


∞


, t/2


+ γζ


dζ

ζ , ζ ′


[t/2,∞)


+ γυ

υ − υ ′


[t/2,∞)


≤ βη


3βη(dη(y, y′), t/2), t/2


+βη


3γζ


dζ

ζ , ζ ′


∞


, t/2


+βη


3γυ


∥υ − υ ′

∥∞


, 0


+ γζ


dζ

ζ , ζ ′


[t/2,∞)


+ γυ

υ − υ ′


[t/2,∞)


≤ βη


3βη(dη(y, y′), t/2), t/2


+βη


3γζ


βζ

dζ

z, z ′


, 0

+γυ υ − υ ′


∞


, t/2


+βη


3γυ


∥υ − υ ′

∥∞


, 0

+ γζ


dζ

ζ , ζ ′


[t/2,∞)


+ γυ

υ − υ ′


[t/2,∞)



≤ βη

3βη(dη(y, y′), t/2), t/2


+βη


3γζ


2βζ


dζ

z, z ′


, 0

, t/2


+βη


3γζ


2γυ υ − υ ′


∞


, t/2


+βη


3γυ


∥υ − υ ′

∥∞


, 0


+ γζ


dζ

ζ , ζ ′


[t/2,∞)


+ γυ

υ − υ ′


[t/2,∞)


≤ βη


3βη(dη(y, y′), t/2), t/2


+βη


3γζ


2βζ


dζ

z, z ′


, 0

, t/2


+βη


3γζ


2γυ υ − υ ′


∞


, 0


+βη

3γυ


∥υ − υ ′

∥∞


, 0


+ γζ

βζ

dζ

z, z ′


, t/2


+ γυ ∥υ − υ ′

∥∞


+ γυ

υ − υ ′


[t/2,∞)


≤ βη


3βη(dη(y, y′), t/2), t/2


+βη


3γζ


2βζ


dζ

z, z ′


, 0

, t/2


+βη


3γζ


2γυ υ − υ ′


∞


, 0


+βη

3γυ


∥υ − υ ′

∥∞


, 0


+ γζ

2βζ


dζ

z, z ′


, t/2


+ γζ


2γυ ∥υ − υ ′

∥∞


+ γυ

υ − υ ′


∞


≤ β dη(y, y′), t


+β dζ (z, z ′), t


+γ ∥υ − υ ′

∥∞


. (A.1)

Now we define a new metric d : Rnη+nζ × Rnη+nζ → R+

0 by:

d(x, x′) = dη(y, y′)+ dζ (z, z ′), (A.2)

for any x =

yT , zT

T
∈ Rnη+nζ and x′

=


y′T , z ′T

T
∈ Rnη+nζ .

It can be readily checked that d satisfies all three conditions of a
metric. By defining ξxυ =


ηTyζυ , ζ

T
zυ

T , using inequalities (4.4) and
(A.1), and for any t ∈ R+

0 , any x, x′
∈ Rnη+nζ , and any υ, υ ′

∈ U,
we obtain:

d (ξxυ(t), ξx′υ′(t))
= dη


ηyζυ(t), ηy′ζ ′υ′(t)


+ dζ (ζzυ(t), ζz′υ′(t))

≤ β dη(y, y′), t

+β dζ (z, z ′), t


+γ ∥υ − υ ′

∥∞


+βζ


dζ

z, z ′


, t

+γυ υ − υ ′


∞


≤ β dη(y, y′)+ dζ (z, z ′), t


+β dη(y, y′)+ dζ (z, z ′), t


+βζ


dη(y, y′)+ dζ


z, z ′


, t

+γ ∥υ − υ ′

∥∞


+γυ υ − υ ′


∞


≤ β


d(x, x′), t


+ γ


∥υ − υ ′

∥∞


, (A.3)

where β ∈ KL and γ ∈ K∞ are defined as following:

β(r, t) = β(r, t)+β(r, t)+ βζ (r, t),
γ (r) = γ (r)+γυ(r).
Hence, the overall systemΣ of the form (4.2) is δ∃-ISS with respect
to υ .
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