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Abstract. This paper studies the dynamical response of a rotary drilling system with a drag bit, using a
lumped parameter model that takes into consideration the axial and torsional vibration modes of
the bit. These vibrations are coupled through a bit-rock interaction law. At the bit-rock interface,
the cutting process introduces a state-dependent delay, while the frictional process is responsible for
discontinuous right-hand sides in the equations governing the motion of the bit. This complex system
is characterized by a fast axial dynamics compared to the slow torsional dynamics. A dimensionless
formulation exhibits a large parameter in the axial equation, enabling a two-time-scales analysis that
uses a combination of averaging methods and a singular perturbation approach. An approximate
model of the decoupled axial dynamics permits us to derive a pseudoanalytical expression of the
solution of the axial equation. Its averaged behavior influences the slow torsional dynamics by
generating an apparent velocity weakening friction law that has been proposed empirically in earlier
work. The analytical expression of the solution of the axial dynamics is used to derive an approximate
analytical expression of the velocity weakening friction law related to the physical parameters of the
system. This expression can be used to provide recommendations on the operating parameters
and the drillstring or the bit design in order to reduce the amplitude of the torsional vibrations.
Moreover, it is an appropriate candidate model to replace empirical friction laws encountered in
torsional models used for control.
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1. Introduction. Self-excited vibrations are phenomena commonly observed in rotary
drilling systems used by oil industries. According to down-hole measurements [16], drilling
systems permanently experience torsional vibrations, which often degenerate into stick-slip
oscillations. These oscillations are characterized by stick phases, during which the rotation
stops completely, and slip phases, during which the angular velocity of the tool increases up
to two times the nominal angular velocity. Stick-slip oscillations are an important cause for
drillstring failures and drag bit breakages. In order to reduce the costs of failures, consid-
erable research effort has been dedicated in recent years to suppressing the large torsional
vibrations. Diverse strategies, both active and passive, have been proposed in the literature
to compensate for stick-slip vibrations; see [11, 13, 14, 19]. Control strategies usually operate
at the ground surface by regulating the torque delivered to the drilling system or by adapting
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the weight-on-bit.
Most of these studies rely on one- or two-degree-of-freedom (DOF) models that account

for the torsional dynamics only. The oscillation mechanism arises from the friction model,
which empirically captures the bit-rock interaction. The most common friction models include
(i) velocity weakening laws as in [3, 4], (ii) stiction plus Coulomb friction (see [11, 19]), and
(iii) models including the Stribeck effect (characterized by a decreasing friction-velocity map
localized around zero velocity), with different degrees of complexity such as Karnop and LuGre
models [5] that can be found in [12, 13, 14].

The diversity of these different friction models raises the question of the physical origin
of the torsional vibrations. It complicates the synthesis of control laws designed to eliminate
the oscillations in torsion and excludes the influence of the bit design on such vibrations.

In the present paper, we undertake the analysis of a new model, proposed in [17, 18],
based on a physical and geometrical modeling of the bit-rock interaction. In this model, stick-
slip vibrations do not result from an empirical friction model but rather from the dynamic
coupling between the axial and torsional DOF of the drilling system.

In this approach, the axial vibrations are sustained by the regenerative effect associated
with cutting. Namely, since the motion of the bit is helical, the thickness of the rock (or depth
of cut) removed by a cutter at time t is affected both by its own axial position and by the path
of the cutter ahead. As a consequence, the cutting force depends on the current axial position
of the bit and a delayed axial position of the bit. This model is consistent with studies of
chattering in metal machining [7, 10, 20, 22]. The regenerative effect is ultimately responsible
for the coupling of the two modes of oscillations and for the existence of self-excited vibrations.
A discontinuous term is present in the equations of motion due to the frictional contact taking
place at the wearflat-rock interface.

Numerical simulations of this complicated system of equations exhibit stick-slip oscillations
or bit bouncing phenomena for sets of parameters consistent with quantities measured in real
field operations [17, 18]. Furthermore, an apparent bit-rock velocity weakening is recovered
in the numerical simulations under certain conditions even though all the model parameters
are rate-independent, including the friction coefficient. It has also been shown that a key
parameter related to the bit shape has a dominant influence on the existence of stick-slip
torsional vibrations.

A numerical analysis of the model is presented in [18]. It identifies the intermittent losses
of the frictional contact at the wearflat-rock interface as the cause of the apparent decrease
of the torque with the bit angular velocity. The losses of contact also contribute to a gain in
drilling efficiency, as an energy transfer from the frictional contact to the pure cutting process
occurs.

The complex and diversified numerical simulations in [18] motivate the analysis in the
present paper aiming to identify the oscillation mechanisms and their parametric dependence.
The proposed analysis exploits the presence of a large parameter in the axial governing equa-
tion leading to a two-time-scales separation between the fast axial dynamics and the slow
torsional dynamics. The analysis uses a combination of averaging methods and a singular
perturbation approach [21]. The study of the decoupled axial and torsional dynamics pro-
vides an explanation for the emergence of most of the different dynamic regimes observed in
parameter space. We also derive an approximate analytical expression of the velocity weak-
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ening law related to the physical parameters of the system. This expression can be used to
provide recommendations on the operating parameters and the drillstring or the bit design
in order to reduce the amplitude of the torsional vibrations. Moreover, it is an appropriate
candidate to replace empirical friction laws encountered in torsional models used for control.

The paper is organized as follows. Section 2 is devoted to the derivation of the mathe-
matical model of the drilling system and its main features. In section 3, we briefly present
the methodology of analysis based on singular perturbation theory and the averaging method.
The fast axial dynamics are analyzed in section 4. In section 5, an approximated analytical
expression of the averaged axial dynamics is used in the analysis of the torsional dynamics.
Section 6 shows some limitations of the two-time-scales approach. Finally, we draw some
conclusions in section 7.

2. Drilling model.

2.1. Derivation of the dynamical model. A rotary drilling structure consists essentially
of a rig, a drillstring, and a bit. The essential components of the drillstring are the bottom
hole assembly (BHA), composed mainly of heavy steel tubes to provide a large downward
force on the bit, and a set of drill pipes made of thinner tubes. For the idealized drilling
system under consideration, we assume that the borehole is vertical and that there are no
lateral motions of the bit.

The lumped parameter model of the drillstring presented in [17, 18], which is stripped to
its essential elements, consists of an angular pendulum of stiffness C ended with a punctual
inertia I and a punctual mass M free to move axially (see Figure 1) to represent the BHA
and the bit as a unique rigid body. At the top of the drillstring, an upward force Ho and a
constant angular velocity Ωo are imposed. It is assumed that the weight-on-bit provided by
the drillstring to the bit Wo = Ws −Ho is constant, which implies that the hook load Ho is
adjusted to compensate for the varying submerged weight of the drillstring Ws. The equations
of motion of the drill bit and the BHA are then given by

Figure 1. Simplified model of a drilling system.
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Figure 2. (a) Sketch of forces acting on a single cutter; (b) section of the bottom-hole profile located between
two successive blades of a drill bit (after [18]).

I
d2Φ(t)

dt2
+ C (Φ(t) − Ωot) = −T (t),(2.1)

M
d2U(t)

dt2
= Wo −W (t),(2.2)

where U , Φ and t denote vertical, angular positions of the drag bit and time, respectively. The
reacting torque-on-bit T (t) and the reacting weight-on-bit W (t) originate from the process of
rock destruction occurring at the bit-rock interface.

The formulation of the bit-rock interface laws derives from a phenomenological model [6]
of the forces acting on a single cutter of width w when removing rock over a constant depth d
and constant longitudinal velocity, as sketched in Figure 2(a). The rock cutting consists of two
independent processes: (i) a pure cutting process taking place at the cutting face (subscript c)
and (ii) a frictional contact process (subscript f) along the interface between the wearflat of
length � (horizontal flat surface below the cutter) and the rock. The total force on the cutter
is the sum of the cutting force Fc and the friction force Ff , exerted on the cutting face and
on the wearflat, respectively.

The vertical (subscript n) and horizontal (subscript s) components (see Figure 2(a)) of the
cutting force and the friction force are expressed as

Fcs = εwd, Fcn = ζFcs, Ffs = μFfn, Ffn = σw�,

where ε is the intrinsic specific energy (the minimum amount of energy required to destroy a
unit volume of rock), ζ is a number characterizing the orientation of the cutting force, μ is the
coefficient of friction, and σ is the maximum contact pressure at the wearflat-rock interface.
When the wearflat is in conforming contact with the rock, σ is a constant parameter. Based
on single cutter experiments, the value of this parameter can reasonably be assumed to be in
the same range as ε [1, 2].

The distinction between cutting and friction forces is also relevant to modeling the gener-
alized forces acting on a drill bit. The reacting torque-on-bit T and the reacting weight-on-bit
W due to the operation of rock destruction account for both cutting and frictional processes,
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T (t) = Tc(t) + Tf(t),(2.3)
W (t) = Wc(t) +Wf(t).(2.4)

The idealized drag bit of radius a consists of n identical radial blades regularly spaced by
an angle of 2π/n; see Figure 2(b). Each blade is characterized by a vertical cutting surface
facing a depth of cut dn and a wearflat of constant width �n orthogonal to the bit axis. The
cumulative depth of cut of the bit is d = ndn, and the equivalent wearflat width for the bit is
� = n�n.

By integrating the effects of all the individual cutters along the bit profile, the cutting
components of W and T are given by [6]

(2.5) Wc (t) = naζεdn (t) , Tc (t) = n
a2

2
εdn (t) ,

both proportional to the depth of cut dn (t) removed at time t. When the bit experiences
vibrations, the rock ridge facing the blades varies. Because of the helicoidal motion (the
bottom hole profile is dictated by the passage of the previous blade), the variable dn(t) is
expressed by

(2.6) dn(t) = U(t) − U(t− tn(t)),

where the delay tn is the time required for the bit to rotate by an angle of 2π/n. The delay
tn is the solution of the implicit equation

(2.7)
∫ t

t−tn(t)

dΦ(s)
ds

ds = Φ(t) − Φ(t− tn(t)) =
2π
n
.

A conceptual sketch is depicted in Figure 2(b).
The frictional components of W and T are given by

(2.8) Wf = na�nσ
(1 + sign(dU

dt ))
2

, Tf = n
a2

2
γμ�nσ

(1 + sign(dU
dt ))

2
,

where the parameter γ depends on the spatial orientation and distribution of the wearflats
along the bit profile [1]. The forces acting at the wearflat/rock are assumed constant once
the wearflat is in conforming contact with the rock [18], i.e., when the bit moves downward
dU
dt > 0. When the bit moves upward (dU

dt < 0), we assume a complete loss of contact between
the wearflat and the rock, so that the frictional components Wf and Tf vanish. Note that
referring to Wf as a frictional term is a slight abuse of language since it is a reaction force.
Our terminology emphasizes that both Tf and Wf arise from the frictional process.

In the absence of vibrations, the nominal drilling solution (dU
dt > 0) is given by

(2.9) Φo = Ωot−
(
Tf + a(Wo−Wf)

2ζ

)
C

, Uo(t) =
(Wo −Wf)

aζε

Ωo

2π
t,

where Tf + a(Wo−Wf)
2ζ is the nominal torque To and (Wo −Wf) /aζε is the nominal depth of

cut.
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The expression of the dimensionless equations that govern the bit motion, also referred to
in the literature as the threshold-type delay equations, yields

ü (τ) = nψ [−vo (τn − τno) − u (τ) + u (τ − τn) + λng(u̇(τ))] ,(2.10)
ϕ̈ (τ) = n [−vo (τn − τno) − u (τ) + u (τ − τn) + βλng(u̇(τ))] − ϕ (τ) ,(2.11) ∫ τ

τ−τn(τ)
(ωo + ϕ̇ (s)) ds =

2π
n
,(2.12)

where u(τ) = (U − Uo)/L∗ and ϕ(τ) = Φ − Φo represent the dimensionless axial and angular
deviation to the nominal solutions, respectively. The dot denotes differentiation with respect
to the dimensionless time τ = t/

√
I/C. The characteristic length is given by L∗ = 2C/εa2.

In the absence of torsional vibrations, ϕ = 0 and τn = τno = 2π/nωo; in the absence of axial
vibrations, u = u (τ − τn) = 0. The function g(u̇) in (2.10) is defined as

(2.13) g(u̇) =
1
2

(1 − Sign(u̇+ vo)) .

Physically, the dimensionless normalized term g(u̇) is the complement of the normalized re-
acting force Wf/na�nσ, i.e., g(u̇) +Wf/na�nσ = 1.

The dimensionless parameters of the model (2.10)–(2.12) are the following:
(i) the control parameters Wo = aWo/2ζC and ωo = Ωo

√
I/C;

(ii) the nominal dimensionless reacting force λ = nλn = na2�nσ/2ζC is proportional to
the length of the wears (it is an image of the bluntness of the bit);

(iii) the nominal axial bit velocity vo = ωo (Wo − λ) /2π;
(iv) the lumped parameter β = μγζ characterizes the geometry of the bit;
(v) the lumped parameter ψ = ζεaI/MC characterizes the drill string design.
The set of equations (2.10)–(2.12) is nonlinear, coupled, and contains a state-dependent

delay. Furthermore, the frictional process causes a discontinuous term g(u̇) in (2.10) and
(2.11). The solutions of the discontinuous differential equation are defined in Filippov’s sense.
Filippov’s convex method [8] treats the discontinuous function g(u̇) as a convex set-valued
mapping on the hyperplane u̇ = −vo; i.e., Sign(x) maps 0 to the set [−1, 1].

2.2. Stick modeling.

2.2.1. Axial stick.
• A stick phase may occur in the axial dynamics, only when the axial vibrations cause

the axial velocity U̇ to become zero for a limited period of time although the bit is
still rotating forward

(
Φ̇ > 0

) ≡ (ϕ̇(τ) > −ωo). We refer to this situation as the axial
stick phase during which the axial position of the bit is stationary (U = const). It
corresponds to the situation where the applied weight-on-bit Wo can be compensated
by the cutting force Wc and a portion of the reacting force Wf . In dimensionless form,
the latter is upperbounded by λ, and the mathematical conditions for an axial stick
phase are as follows:

0 ∈ nψ

[
−vo (τn − τno) − u (τ) + u (τ − τn) +

λn

2
(1 − Sign(0))

]
(2.14)

⇒
[
−vo (τn − τno) − u (τ) + u (τ − τn) +

λn

2

]
2
λn

∈ [−1, 1] .(2.15)
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The value of g(u̇) during the axial stick phase is given by

(2.16) g(u̇ = −vo) =
vo (τn − τno) + u (τ) − u (τ − τn)

λn
.

2.2.2. Torsional stick. The torsional model (2.11) is valid as long as ϕ̇ > −ωo, which
corresponds to a slip phase. The torsional vibrations may become so severe that the sign of
the velocity is reversed. In this case, the magnitude of the frictional torque is assumed to be
sufficient to restrain the bit from rotating backward. The system then enters a stick phase
during which the bit sticks to the rock. The torsional stick phase is modeled by

(
Φ̇ = 0

)
≡ (ϕ̇(τ) = −ωo) ,(2.17) (

U̇ = 0
)
≡ (u̇ = −vo) .(2.18)

The stick equations (2.17)–(2.18) are substituted into (2.10) and (2.11) until the right-hand
side of (2.11) becomes positive and the bit enters a new slip phase. Physically, since the
rotation of the drill pipes continues at the surface, the torque applied by the drillstring onto
the BHA builds up until its magnitude is sufficient to overcome the reacting torque, causing
the bit to rotate.

2.3. Bit bouncing. Model (2.10)–(2.12) loses its validity when the dimensionless depth
of cut

(2.19) δ = n [voτn + (u (τ) − u (τ − τn))]

becomes negative. This event will be referred to as bit bouncing, which is detrimental for
the bit. It occurs when the bit experiences sufficiently large axial vibrations to disengage
completely from the rock formation. The objective of the design is to avoid it.

3. Two-time-scales analysis. In view of the complexity of the model, its mathematical
analysis is not straightforward. However, two clearly distinct time scales (see Figure 11)
emerge due to the magnitude of the parameter ψ, which is typically of order 102–103. In the
remainder of the paper, we consider the model (2.10)–(2.12) in the singularly perturbed form

ε2ü (τ) = − [vo (τn − τno) + u(τ) − u (τ − τn) − λng(u̇ (τ))] ,(3.1)

ϕ̈ (τ) + ϕ (τ) = −n [
(1 − β)λng(u̇ (τ)) − ε2ü (τ)

]
,(3.2) ∫ τ

τ−τn(τ)
(ωo + ϕ̇ (t)) dt =

2π
n
,(3.3)

where 1/
√
nψ = ε > 0 is a small parameter. In this configuration, the axial dynamics will be

considered as “fast” dynamics, and the torsional dynamics as “slow” dynamics. Indeed, the
characteristic dimensionless time of the torsional oscillations is τt ≈ 2π, while the characteristic
dimensionless time of the axial oscillations is τa ≈ 2π/

√
ψ.

In the classical singular perturbation theory, the fast system can be studied independently
by freezing the slow variables. Commonly called the boundary layer system, it consists of
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trajectories that converge exponentially to a slow manifold. Upon convergence of the boundary
layer, solutions evolve on the so-called reduced model that provides a good estimate of the
slow dynamics.

In the particular system (3.1)–(3.3), solutions of the boundary layer converge towards a
family of limit cycles that depends on the parameters of the system. Nonetheless, the au-
thors of [21] provide a unification framework that combines averaging methods and singular
perturbation approach to handle systems with complex fast dynamics. Although the theory
has not been fully developed for our particular type of equation (threshold type with discon-
tinuous terms), we adopt a similar approach to analyze the dynamics of the complete system
(3.1)–(3.3).

In the next section, the fast axial dynamics of (3.1) are studied under the simplifying
assumption that the delay τn is a fixed parameter. Under certain conditions, numerical simu-
lations show that stable oscillations in u̇ are observed. We will propose an analytical approx-
imation of the fast axial solution. In section 5, this approximation will be used to study the
slow torsional dynamics by means of averaging methods.

4. Axial dynamics. In order to observe the periodic oscillations in u̇ as a true limit cycle,
a proper coordinate transformation is in place, where the new set of state variables must be
of zero derivative mean over the limit cycle. Let us assume that periodic oscillations exist in
u̇. Then, we may write that

(4.1) 〈ü(τ)〉a =
1
τa

∫ τ+τa/2

τ−τa/2
ü (s) ds = 0.

In the simplest case where τn = τno, which is not contradictory with the existence of an axial
limit cycle as will be shown below, the equality

(4.2) 〈u(τ) − u (τ − τn)〉a = λn 〈g(u̇ (τ))〉a
is obtained by averaging (3.1) with (4.1) over one axial limit cycle, where the mean value of
the only nonlinear term 〈g(u̇ (τ))〉a in (3.1) is nonzero. Therefore, a drift of the solution in the
u-direction with a velocity depending on λn 〈g(u̇ (τ))〉a exists. Note that 〈g(u̇ (τ))〉a is a priori
unknown as it is a function of u̇ (τ); i.e., it depends on the solution of (3.1).

For this reason, we introduce a new set of state variables of zero derivative mean over an
axial limit cycle

w1 (τ̄) = u (τ̄ − τ̄n) − u (τ̄) − v̄o (τ̄n − τ̄no) ,

w2 (τ̄) = u̇ (τ̄) /
√
nψ,

that evolves in the fast time scale τ̄ = τ
√
nψ and where v̄o = vo/

√
nψ, τ̄n = τn

√
nψ, and

τ̄no = τno
√
nψ. Physically, the new variable w1 represents the negative discrepancy between

the dimensionless form of the depth of cut and the nominal one. In the new variables, the
axial equation (3.1) admits the state-space representation

ẘ1 (τ̄) = w2 (τ̄ − τ̄n) − w2 (τ̄) ,(4.3)
ẘ2 (τ̄) = w1 (τ̄ ) + λnḡ(w2 (τ̄)),(4.4)
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with

(4.5) ḡ(w2) =
1
2

(1 − sign (w2 + v̄o)) .

The limit cycle observed in the new state (w1, w2) space will be understood as the axial
limit cycle. The system (4.3)–(4.4) is referred to as the fast system. The round dot denotes
differentiation with respect to the stretched time τ̄ . The initial condition required to solve the
infinite dimensional axial dynamics (3.1) is the function u(·) on the time interval [−τn, 0]. In
the new variables, this initial condition translates into the function w2 (·) on the time interval
[−τ̄n, 0] and

(4.6) w1(0) = −v̄o (τ̄n − τ̄no) −
∫ 0

−τ̄n

w2(t)dt.

The equilibrium solution of (4.3)–(4.4) with (4.6) is (w1, w2) = (0,−v̄o (τ̄n − τ̄no) /τ̄n). Phys-
ically, it corresponds to the rigid translation u̇ = −vo (τn − τno) /τn, u (τ − τn) − u (τ) =
vo (τn − τno).

In a neighborhood of this equilibrium, the reacting force Wf at the wearflat-rock interface
is permanent (w2 > −v̄o), as its dimensionless complement ḡ(w2) is 0. The dynamics ẘ1 (τ̄) =
w2 (τ̄ − τ̄n) − w2 (τ̄) and ẘ2 (τ̄) = w1 (τ̄) are then linear. Stability of the equilibrium is thus
determined by the location of the roots of the characteristic function

(4.7) P (s) = s2 + 1 − e−sτ̄n .

This function does not have roots in the right half of the complex plane when τ̄n < π/
√

2. Two
complex conjugated roots pass from the left half-plane to the right half-plane at the critical
value τ̄n = π/

√
2. They remain in the open right half-plane for τ̄n > π/

√
2. Consequently, the

equilibrium point (w1, w2) = (0,−v̄o (τ̄n − τ̄no) /τ̄n) is exponentially stable when τ̄n < π/
√

2,
marginally stable when τ̄n = π/

√
2, and unstable when τ̄n > π/

√
2. In typical field operations,

the delay satisfies τ̄n > π/
√

2, meaning that the equilibrium solution is unstable.
The growth of the solutions of (4.3)–(4.4) away from this unstable equilibrium is limited

by the nonlinear friction. Under certain conditions, this mechanism is responsible for the
existence of an axial stick-slip limit cycle. The next section provides a qualitative description
of this limit cycle in the phase plane (w1, w2).

4.1. Analysis of the axial limit cycle. When the equilibrium of (4.3)–(4.4) is unstable
(τ̄n > π/

√
2), numerical simulations indicate that the solutions of (4.3)–(4.4) either grow

unbounded (ultimately leading to bit bouncing as described in section 2.3) or converge to a
limit cycle that fits the qualitative description of Figure 3.

In the state space (w1, w2), the axial limit cycle illustrated in Figure 3 can be decomposed
into three different phases: a slip phase, a stick phase, and a sliding phase. By choosing
arbitrarily the origin of time as w1(0) = 0, w2(0) = −vo, and ẘ1(0) > 0, the temporal
sequence of these three phases during one period [0, τ̄a] of the cycle is as follows:

(i) The slip phase (τ̄ ∈ [0, τ̄k]) is characterized by the condition w2 (τ̄) > −vo. As a
consequence, ḡ(w2) = 0, and the solution obeys the unstable linear dynamics

ẘ1 (τ̄) = w2 (τ̄ − τ̄n) − w2 (τ̄) ,(4.8)
ẘ2 (τ̄) = w1 (τ̄) .(4.9)
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Figure 3. Axial limit cycle in the space (w1, w2) and the corresponding evolution of w1, w2, and λnḡ(w2)
in time.

During this phase, w2 (τ̄ − τ̄n) is initially greater than −vo (due to the previous slip
phase) and larger than w2 (τ̄); i.e., w1 (τ̄) and w2 (τ̄) increase according to (4.8) and
(4.9), respectively. When w2 (τ̄) becomes larger than w2 (τ̄ − τ̄n), w1 (τ̄) decreases and
becomes negative, causing w2 (τ̄) to decrease. During that lapse of time, w2 (τ̄ − τ̄n)
has reached the previous stick phase (w2 (τ̄ − τ̄n) = −vo). When w2 (τ̄) becomes equal
to −vo, the system enters the stick phase.

(ii) The stick phase (τ̄ ∈ [τ̄k, τ̄n]) is characterized by constant axial velocity w2 = −v̄o
and constant friction λnḡ(w2) = −w1(τ̄k). The projection of the solution in the phase
plane (w1, w2) has shrunk to one point. This phase will last until the delayed solution
w2 (τ̄ − τ̄n) enters a slip phase described in (i). It happens when τ̄ = τ̄n. Note that
the existence of the stick phase, necessary to observe the axial stick-slip limit cycle,
relies on the conditions 0 ≤ −w1(τ̄k) ≤ λn and τ̄k ≤ τ̄n.

(iii) During the sliding phase (τ̄ ∈ [τ̄n, τ̄a]), the axial velocity is still at rest (w2 (τ̄) = −v̄o),
but the delayed axial velocity w2 (τ̄ − τ̄n) > −v̄o when τ̄ > τ̄n, causing w1 (τ̄) to
slide along the line w2 (τ̄) = −v̄o in the state space (w1, w2). The term λnḡ(w2 (τ̄))
decreases accordingly until it reaches 0, i.e., the minimum value that ḡ(w2 (τ̄)) can
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attain. Then a new cycle starts.
The reader should note that the stick phase defined in section 2.2.1 (U and U̇ constant)

consists of the stick phase (w1 and w2 constant) and the sliding phase (w2 = −v̄o and ẇ1 > 0)
in the new variables. Numerical simulations show also the existence of the axial limit cycle
when −w1(τ̄k) is slightly greater than λn. The trajectories pass below the line w2 = −v̄o and
stick onto w2 = −v̄o somewhat later. We do not consider this case here since it arises in a
very small region of the set of parameters.

In the next section, we derive an approximate solution for this limit cycle that allows for
an analytic prediction of the influence of key system parameters on this limit cycle. These
analytical predictions are compared to numerical solutions obtained from solving the fast
dynamics by a shooting method [15].

4.2. Analytical approximation of the axial limit cycle.
Slip phase: To approximate the time evolution of the limit-cycle solution shown in Figure 3,

we assume that the delayed axial velocity is zero (w2 (τ̄ − τ̄n) = −v̄o) during the slip
phase τ̄ ∈ [0, τ̄k]. The resulting linear system

ẘ1 = −v̄o − w2,(4.10)
ẘ2 = w1,(4.11)

is solved for the initial condition w2(0) = −v̄o, which yields

w1 (τ̄) = C1 cos τ̄ ,(4.12)
w2 (τ̄) = C1 sin τ̄ − v̄o, τ̄ ∈ [0, τ̄k] .(4.13)

Stick phase: The approximated solution (4.12)–(4.13) enters the stick phase at τ̄k = π when
w2(τ̄k) becomes equal to −v̄o. The dimensionless term λnḡ(w2) associated with the
frictional process increases suddenly (λnḡ(w2) = −w1 (τ̄k) = C1 according to (4.12))
such that ẘ2 (τ̄) = 0 during the stick phase. The necessary condition for observing a
stick phase is w2 (τ̄ − τ̄n) = w2 (τ̄) = −v̄o ⇒ τ̄n > π, which satisfies the condition of
instability of the axial equilibrium (τ̄n > π/

√
2), and −w1 (τ̄k) ≤ λn.

Sliding phase: The solution in the sliding phase is given by

w1 (τ̄) = −C1 cos (τ̄ − τ̄n) ,(4.14)
w2 (τ̄) = −v̄o.(4.15)

The (approximate) solution returns to the initial state when w1(τ̄ ) = C1, i.e., at time
τ̄a = π + τ̄n.

The free constant C1 in (4.12)–(4.13) is determined from the initial condition

w1 (0) = C1 = v̄oτ̄no −
∫ 0

−τ̄n

w2(t) + v̄odt.

Since w2(τ̄ ) = −v̄o over [−τ̄n, 0], we obtain

(4.16) C1 = v̄oτ̄no,
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Figure 4. Top: Limit cycle of w1 and w2 with τ̄ . Bottom: Approximated limit cycle of w1 and w2 in terms
of τ̄ .

which corresponds to the nominal depth of cut per blade. The time evolution of the axial
limit cycle solution and its approximation are illustrated in Figure 4.

The approximate solution of the limit cycle provides the following predictions:
• The period of the limit cycle is estimated as τ̄a = π + τ̄n. It grows linearly with the

delay and is independent of the parameters v̄o and τ̄no.
• The amplitude of the limit cycle is estimated as C1 = v̄oτ̄no, regardless of the delay
τ̄n. It must be less than λn to observe a stick phase, which is essential to the existence
of the axial limit cycle, as otherwise bit bouncing will eventually take place.

• In the next section, we will see that the axial dynamics influence the torsional dynamics
through the average value of ḡ(w2 (τ̄)) over one axial limit cycle. By using (2.16)
with (4.5), λnḡ(w2 (τ̄)) is different from zero only during the stick and the sliding
phase where it takes the value −w1 (τ̄). Figure 4 illustrates that −w1 (τ̄) takes both
positive and negative values over one period of the approximate limit cycle, which
is in contrast to the (physical meaningful) property that ḡ should take only positive
values in the exact model. To correct for this artifact, we compute the averaged
frictional term λn 〈ḡ(w2 (τ̄))〉a using the approximate limit cycle, but we restrict the
interval of integration to the positive values of ḡ(w2 (τ̄)) only, i.e., on the time-interval
[0, τ̄n + π/2], yielding

λn 〈ḡ(w2 (τ̄))〉a =
1
τ̄a

∫ τ̄a

0
λnḡ(w2 (s))ds(4.17)

≈ − 1
τ̄n + π

∫ τ̄n+π/2

π
w1 (s) ds =

v̄oτ̄no (τ̄n − π + 1)
(τ̄n + π)

.(4.18)
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Figure 5. Top: Period of the axial limit cycle for different values of τ̄n, v̄o, and τ̄no. Middle: Maximum
values of ḡ(w2) with respect to τ̄n (v̄o = 0.063, τ̄no = 6.8), v̄o (τ̄n = 6.8, τ̄no = 5.8), and τ̄no (v̄o = 0.043,
τ̄no = 10.18), respectively (these results are obtained by solving the fast system with the shooting method).
Bottom: Comparison between the results obtained with the approximative and the fast systems.

It is linear in the parameters v̄o and τ̄no. It is a monotonic function of the delay,
but its dependency saturates as the delay increases. Note that 〈ḡ(w2 (τ̄))〉a becomes
zero when τ̄n = π − 1, which almost agrees with the condition of stability of the axial
equilibrium π/

√
2.

Figure 5 illustrates the excellent match between these analytical predictions and the nu-
merical results obtained from a shooting method applied to the exact model.

We see that τ̄n does not affect the amplitude of the periodic orbit but varies linearly with
v̄o and τ̄no as predicted by the approximated system. The period of the orbit is influenced
only by τ̄n, and the average value is an excellent approximation of the solutions obtained from
the full model.
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When the bit angular velocity is small, the delay is large, and the system spends most of
the time in the stick phase where the frictional contact force between the wearflat and the
rock is constant. This corresponds in Figure 5 to the increase of λn 〈ḡ(w2 (τ̄))〉a with τ̄n.

4.3. Bit bouncing. Bit bouncing occurs when both the equilibrium solution and the limit
cycle solution of the axial dynamics are unstable. The amplitude of the vibrations grows
exponentially, and the bit ultimately loses contact with the rock completely.

The existence of the axial limit cycle discussed in the previous section requires the condi-
tion

(4.19) 0 ≤ −w1(τ̄k) ≤ λn.

We use condition (4.19) together with the parametric condition τ̄n > π/
√

2 (which guarantees
that the equilibrium is unstable) as a prediction of the parametric range in which a stable
axial limit cycle exists.

Because −w1(τ̄k) = v̄oτ̄no in the approximation (4.12)–(4.16), equation (4.19) translates
into the parametric condition v̄oτ̄no < λn, which, rewritten in the original parameters of the
model, is equivalent to the condition

(4.20) Wo/λ < 2,

where we recall that Wo is related to the applied weight-on-bit and λ is proportional to the
length of the wears (bluntness of the bit).

This prediction is in good agreement with the stability map in Figure 6, numerically com-
puted from the full model (2.10)–(2.12), as shown in [9]. To draw the map, we simulated
300 bit revolutions for each pair of values (Wo, λ). If the depth of cut becomes negative,
the computation is stopped and the corresponding value (Wo, λ) is given the dark grey color;
otherwise a light grey color is chosen. The black region indicates parameter values for which
the bit is not drilling but is only in frictional contact. In that case, the dimensionless ap-
plied weight-on-bit Wo does not overcome the nominal dimensionless frictional term λ (i.e.,
the weight-on-bit transmitted by the wearflats when the bit is drilling). In the absence of
torsional vibrations, i.e., when ϕ̇ = 0, the theoretical analysis predicts no bit bouncing when
the axial equilibrium is stable (τ̄no = τ̄n < π/

√
2 ⇔ ωo > ωs

o = 2
√

2ψ/n) or when Wo/λ < 2.
These predictions are mainly illustrated in Figure 7, although the numerical results are ob-
tained from the complete system (2.10)–(2.12) where the bit experiences torsional vibrations.
The three different axial regimes (stable equilibrium, stable limit cycle, bit bouncing) are
represented in the parametric plane (ωo,Wo). We conclude that the predictions of the ana-
lytical approximation of the axial limit cycle are accurate in detecting the transitions, such
as stability of the axial equilibrium, stability of the axial limit cycle, and bit bouncing.

5. Torsional dynamics. The reduced (slow) dynamics governing the torsional motion is
obtained by assuming the following:

1. The slow variables are constant over the period of oscillations of the axial vibrations:

(5.1) 〈f (τ)〉a =
1
τa

∫ τ+τa/2

τ−τa/2
f (τ + s) ds ≈ f (τ) ,

where f can be either ϕ, ϕ̇, ϕ̈ or τn and τa = τ̄a/
√
nψ.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NONLINEAR DRILLSTRING DYNAMICS ANALYSIS 541

Figure 6. Map of stability for values of (Wo, λ) (n = 6, β = 0.276, ωo = 4, ψ = 63.1); after [9].

Figure 7. Numerical map of stability for different rotational speeds ωo and ψ when n = 6, β = 0.43, and
λ = 4.2; after [18].

2. The mean axial acceleration along a periodic solution of the axial limit cycle is zero:

(5.2) 〈ü (τ, τn)〉a = 0.

By averaging (3.2) over a period of the axial limit cycle τa(τn), the reduced model yields
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Figure 8. Comparison between the real delay τn and the approximation 2π
n(ωo+ϕ̇)

during three stick-slip cycles.

(5.3) ϕ̈ (τ) + ϕ (τ) = −n (1 − β)λn 〈g(u̇ (τ, τn))〉a .

Together with (3.3), this equation forms the reduced system.

5.1. Analytical approximation of the torsional dynamics. To facilitate the analysis of
the slow dynamics, we derive an explicit relationship linking τn (τ) and the bit angular velocity
ϕ̇ (τ). Most of the time, the delay τn is of the order of 10−1, which is small compared to the
characteristic time 2π of the torsional oscillations. For this reason, we treat the torsional
variable ϕ̇ (τ) as a constant over the delay τn (τ), and its expression yields

∫ τ

τ−τn(τ)
(ωo + ϕ̇ (t)) dt ≈ τn (τ) (ϕ̇ (τ) + ωo) =

2π
n

(5.4)

⇔ τn (τ) ≈ 2π
n (ωo + ϕ̇ (τ))

.(5.5)

It should be noted that this approximation is no longer valid when the bit is in the torsional
stick phase (i.e., when ωo + ϕ̇ (τ) ≈ 0). See Figure 8 for a comparison between the real delay
τn and the approximation in (5.5).

By combining the results obtained in section 4.2 and the approximation (5.5), we can
construct an analytical approximation Ga (ωo + ϕ̇ (τ)) of 〈g(u̇ (τ, τn))〉a that is valid when the
axial limit cycle exists and is stable (τ̄n > π − 1 ⇔ ωo + ϕ̇ (τ) < ωs

o and Wo/λ < 2):

(5.6) Ga (ωo + ϕ̇ (τ)) =
(Wo − λ)

λ

(
2π

√
ψ − (π − 1)

√
n (ωo + ϕ̇ (τ))

)
2π

√
ψ + π

√
n (ωo + ϕ̇ (τ))

.

By substituting Ga (ωo + ϕ̇ (τ)) into (5.3), we obtain an approximate equation governing
the slow torsional vibrations

(5.7) ϕ̈ (τ) + ϕ (τ) = −n (1 − β)λnGa (ωo + ϕ̇ (τ))

that becomes autonomous and nonlinear because of the term Ga (ωo+ϕ̇ (τ)). This equation (or
reduced model) will be helpful to characterize the origin and the nature of torsional vibrations.

The following observations are drawn from (5.6):
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Figure 9. Left: Ga with respect to ψ when n = 6, ωo+ϕ̇(τ ) = 4, Wo = 8, and λ = 5.4. Right: Ga(ωo+ϕ̇(τ ))
with respect to ωo + ϕ̇(τ ) for three different values of ωo(1, 3, 6). The bifurcation between the stable axial limit
cycle and the stable axial equilibrium occurs at 2

√
2ψ/n = 9.17 in this example.

Figure 10. Torque averaged over several bit revolutions for different values of the rotational speed obtained
from numerical simulations of the complete system.

• Ga (ωo + ϕ̇ (τ)) is monotonically increasing with the parameter ψ (see left panel in
Figure 9) for all other parameters fixed.

• In Figure 9, Ga (ωo + ϕ̇ (τ)) is plotted for different values of ωo + ϕ̇ (τ). When
ωo + ϕ̇ (τ) > ωs

o, then Ga (ωo + ϕ̇ (τ)) = 0, which corresponds to the exponential local
stability of the axial equilibrium point. The monotonic decrease of Ga (ωo+ϕ̇ (τ)) with
ωo + ϕ̇ (τ) recovers the so-called velocity weakening law, often empirically assumed to
be an intrinsic property of the bit-rock interaction (see [3, 4]) and the essential cause
of the torsional vibrations. In the present model, the velocity weakening law is a
consequence of the axial vibrations and more precisely of the decreases of the contact
forces occurring at the wearflat-rock interface. The velocity weakening effect in the
torque is further illustrated in Figure 10.

• The function Ga (ωo + ϕ̇ (τ)) is directly proportional to Wo/λ−1 = nv̄oτ̄no/λ, which is
the cumulative nominal dimensional depth of cut scaled by the dimensionless frictional
contact.

5.2. Local stability analysis. By using the approximate analytical expression of Ga in
(5.6), we can perform a local stability analysis of the equilibrium point of the reduced model.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

544 GERMAY, VAN DE WOUW, NIJMEIJER, AND SEPULCHRE

Figure 11. Stick-slip torsional and axial vibrations. The frequency of the torsional dynamics ϕ̇ differs
strongly from the axial dynamics u̇ (n = 6, ψ = 63.1, β = 0.276, ωo = 4, Wo = 3.44).

Jacobian linearization of the model yields

(5.8) ϕ̈ (τ) − (1 − β)λG′
a (ωo) ϕ̇ (τ) + ϕ (τ) = − (1 − β)λGa (ωo) ,

with

(5.9) G′
a (ωo) =

dGa (ω)
dω

∣∣∣∣
ω=ωo

= − (2π − 1)
(Wo/λ− 1) 2

√
nψ

π
[
2
√
nψ + nωo

]2 .

The bits commonly used in the petroleum industry are characterized by β < 1. Since
Wo > λ (a necessary condition for drilling), we can conclude the following:

1. The equilibrium point of (5.7) is given by

(5.10) ϕ (τ) = − (1 − β)λGa (ωo) and ϕ̇ (τ) = 0.

It thus depends on the fast axial dynamics (Ga (ωo)).
2. The derivative G′

a (ωo) is always negative when τ̄n ≈ 2π
√
nψ/n (ωo + ϕ̇ (τ)) > π − 1,

meaning that equilibrium point in torsion is unstable.
3. τ̄n ≈ 2π

√
nψ/n (ωo + ϕ̇ (τ)) < π− 1, G′

a (ωo) = 0, and the reduced model reduces to a
harmonic oscillator. Then, the equilibrium point of the reduced model is marginally
stable. Marginal stability of the reduced model gives rise to the quasi-limit cycle
discussed in section 5.4.

5.3. Large torsional vibrations. Large torsional vibrations are observed when the axial
dynamics exhibits a stable limit cycle with stick and slip phases. These torsional oscillations
are characterized by a fast growth of the amplitude of the torsional vibrations and under
certain conditions a large torsional limit cycle that exhibits alternating stick (ϕ̇ = −ωo) and
slip phases (ϕ̇ > −ωo). The dominant frequencies occurring in the axial and torsional modes
differ strongly (see Figure 11).

The local stability analysis of the analytical approximation of the reduced model predicts
that the torsional oscillations will appear when 2π

√
nψ/n (ωo + ϕ̇ (τ)) > π−1. The numerical
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Figure 12. Comparison between the standard deviation of the solution ϕ̇ of the full model and the ap-
proximated reduced model with n = 6, β = 0.3, ψ = 63.1, Wo − λ = 2.6, ωo = 3 obtained through numerical
simulation with a simulation time T = 5.

solutions of the analytical approximation of the torsional system and the numerical solutions
of the full model are compared by measuring the standard deviation of the bit angular velocity
around its nominal value, defined as

std(ϕ̇) =
1
T

∫ T

0
ϕ̇2(t)dt.

In Figure 12, we have arbitrarily chosen initial conditions at rest for both systems (ϕ(0) =
ϕ̇(0) = 0). The deviation of the initial condition from the equilibrium is thus given by
− (1 − β)λGa (ωo) (see (5.10)). The effect of the magnitude of the initial deviation is mainly
observed when the simulation time T is relatively short (T = 5). The full model and the
reduced model are in good agreement except for the so-called antiresonance zone, which will
be briefly discussed in section 6.1. We see, for instance, that the results in Figure 12(b)
and 12(c) are consistent with the results presented in Figure 9.

In Figure 13, the simulations are initialized near the equilibrium value of the reduced
model (see (5.10)). The initial condition on the bit rotational velocity ϕ̇ (0) is set to 10−3ωo

in order to trigger the oscillations in the analytical approximation of the torsional dynamics.
There again, we observe coherent numerical results between the two models.
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Figure 13. Comparison between the standard deviation of the solution ϕ̇ of the original and slow systems
with n = 6, β = 0.3, ψ = 63.1, Wo − λ = 2.6, ωo = 3 obtained through numerical simulation with a simulation
time T = 130.

Figure 14. Different types of evolution of the torsional vibrations when n = 6, ψ = 50, Wo−λ = 2, ωo = 5;
(a) β = 0.3, (b) β = 1.3; after [18].

It should be emphasized that the amplitude of the torsional limit cycle in the full model
may depend on the initial condition. Although the numerical simulations usually match the
rate of growth of the oscillations predicted with the reduced equation (5.7), the torsional limit
cycles may differ slightly. Nevertheless, the vibrations remain large and can be considered as
detrimental for the drillstring.

Our analysis identifies the mean effect of axial vibrations Ga (ωo + ϕ̇ (τ)) as a critical
damping term in the torsional dynamics. Inspection of Ga (ωo + ϕ̇ (τ)) provides simple recom-
mendations for the drillers: a parameter β > 1 guarantees positive damping, i.e., the absence
of stick-slip vibrations, as seen in Figure 14. Furthermore, geometric parameters should be
designed to minimize the term (1 − β)λG′

a (ωo).
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Figure 15. Quasi-limit cycle in the phase plane (ϕ, ϕ̇). The parameters are n = 6, ψ = 63.1, β = 0.276,
ωo = 10, Wo − λ = 3.44.

5.4. Quasi-limit cycle. A quasi-limit cycle is observed when the axial equilibrium is stable
and when the function Ga (ωo + ϕ̇ (τ)) in (5.6) vanishes, resulting in the reduced dynamics
ϕ̈ (τ) + ϕ̇ (τ) = 0.

Figure 15 depicts a cross section of the phase diagram (ϕ, ϕ̇) in this regime. Each loop
takes about 2π units of dimensionless time. The amplitude of the torsional limit cycle strongly
depends on the initial conditions. Although the right-hand side of (5.7) is zero, we observe a
slow amplification of the torsional vibrations in the full model (see Figure 15). The marginal
stability of the reduced model is inconclusive for the stability of the global system.

It should be emphasized that the damping term in (5.8) is destabilizing when β < 1,
unless G′

a (ωo) = 0, which characterizes the just described quasi-limit cycle regime. It is
seen in Figure 10 that this parametric condition will occur for ωo sufficiently large. The
consequence is that increasing the rotational speed is a way to avoid the exponential instability
of the torsional equilibrium when β < 1. This is consistent with field practice where drilling
structures are often equipped with a down-hole motor.

6. Limitations of the two-time-scales approach. The two-time-scales approach in the
previous section provides an accurate prediction of the different behaviors of the model in
parametric regions when there is a clear separation between the fast time scale of axial dy-
namics and the slow time scale of torsional dynamics.

In this section, we briefly describe additional phenomena that are observed when this time
scale separation no longer holds.

6.1. Antiresonance. The antiresonance regime occurs when the axial dynamics exhibit
stick-slip oscillations that eventually damp the torsional vibrations. It occurs mainly at very
low nominal rotational speeds ωo, as seen in Figure 16.

In order to understand the source of this destabilizing mechanism, we simulated the axial
dynamics while imposing ϕ̇ as a harmonic signal of amplitude ωo/2. Figure 17 illustrates the
evolution of λng(u̇) at two different speeds:

• on the left, ωo = 1, and the antiresonance phenomenon occurs;
• on the right, ωo = 3, and the torsional stick-slip oscillations are fully developed.

The antiresonance process is clearly identified as a synchronization of the amplitude of
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Figure 16. Antiresonance regime: Torsional vibrations are stabilized by the axial vibrations (n = 6,
ψ = 63.1, β = 0.276, ωo = 1, Wo − λ = 3.44).

Figure 17. Evolution of vo (τn − τno) and n(1−β)λng(u̇) when the angular bit velocity ϕ̇+ωo is imposed to
be harmonic and with a bias of ωo/2. On the left, the rotational speed ωo is such that we observe numerically
the antiresonance mode, while on the right, the steady state corresponding motion is stick-slip vibrations in
torsion.

the plateaus of g(u̇) with the angular velocity, stabilizing the torsional equilibrium at hand.
This particular stabilization mechanism of the torsional equilibrium occurring at small ωo

is not predicted by the two-time-scales approach. Furthermore, the two-time-scales approach
predicts that the amplitude of the axial limit cycle is influenced only by voτno and not by
τn (see Figure 18). However, the variation of the amplitude of the plateaus of g(u̇) with the
angular velocity or equivalently the delay τn is clearly noticeable in Figure 17. Figure 19
suggests that the variation of the delay during the axial slip phase, i.e., when g(u̇) = 0, is a
passive source of the stability mechanism. In Figure 19, the delay is first constant and then
increases linearly. Therefore, the variation of the magnitude of the plateaus of g(u̇) depends
on the slope of τn during the axial slip phase. As a matter of fact, the axial dynamics act as
a sampler of the derivative of the delay at each slip phase. The value of the derivative of the
delay at these particular instants affects the height of the plateaus of g(u̇). The maximum
values of n(1 − β)λng(u̇) are plotted in Figure 20 for different values of the slope of τn.

The antiresonance regime is advantageous because it stabilizes the torsional equilibrium.
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Figure 18. Evolution of the maximum value of n (1 − β)λng(u̇) over one axial limit cycle for different
values of ϕ̇ obtained with the shooting method (we use the approximation ϕ̇ ≈ 2π

nτn
− ωo).

Figure 19. Evolution of τn and n (1 − β)λng(u̇) when the delay changes as an increasing ramp.

Figure 20. Discrepancy of max(n (1 − β)λng(u̇)) for different slopes of ramp of τn.

Unfortunately, it occurs only at extremely low rotational speed, which makes it an impractical
solution in drilling applications.

6.2. Delayed bifurcations.

6.2.1. Bit bouncing. The analysis in section 4.3 predicted bit bouncing when the axial
equilibrium is unstable and the axial limit cycle does not exist, i.e., τ̄n > π/

√
2 and Wo > 2λ

(see Figure 7).
When the bit experiences torsional vibrations, ϕ̇ (τ) oscillates around zero, and it may

happen that the delay τ̄n (τ) ≈ 2π
√
ψ/

√
n (ωo + ϕ̇ (τ)) oscillates around π/

√
2. This occurs
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Figure 21. Map of stability for different rotational speeds ωo (n = 6, β = 0.276, ψ = 63.1); after [9].

when ωo approaches the bifurcation value ωs
o = 2

√
2ψ/n.

The asymptotic solutions of the (delay-frozen) fast axial dynamics then alternate between
stable and unstable axial equilibrium. In the full model, this phenomenon delays the bit
bouncing bifurcation predicted at Wo = 2λ. Figure 21 illustrates that the transition from
stable drilling to bit bouncing in the full model moves away from the theoretical prediction
Wo = 2λ as ωo approaches the bifurcation value ωs

o = 2
√

2ψ/n = 9.17. This effect is also
visible in Figure 7.

6.2.2. Quasi-limit cycle. For the same reason, the results obtained for the reduced model
and for the full model may differ when the parameters are in the vicinity of the bifurcation
ωs

o = 2
√

2ψ/n, as displayed in Figure 22. The parametric region where a quasi-limit cycle
is observed in numerical simulations is much larger than the one predicted from the reduced
model. This is because the transient time to pass from the axial equilibrium point to the
stable axial limit cycle is not negligible. The fast axial solutions do not reach steady state
over this time frame, which reduces the averaged frictional term λn 〈g(u̇ (τ))〉a and therefore
delays the instability of the torsional dynamics.

7. Conclusions. A novel approach to modeling stick-slip vibrations of drag bits in drilling
structures accounts for the coupling between the axial and the torsional modes of vibrations
via the bit-rock interface laws. This coupling introduces a state-dependent delay and a dis-
continuous friction term in the governing equations. Numerical simulations (see [18]) show the
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Figure 22. Mean value of the friction term over one limit cycle in torsion (λn 〈g(u̇)〉t = λn
T

∫ T

0
g(u̇)dt) in

terms of ωo. The black dots are the solutions of the full model, while the white dots are the solutions of the fast
subsystem.

existence of different steady-state behaviors, such as axial and torsional stick-slip oscillations,
antiresonance regime of the torsional dynamics, and a quasi-limit cycle or bit bouncing, in the
torsional or axial direction, respectively. Furthermore, a parametric analysis reveals that the
apparent decrease of the mean torque with the angular velocity responsible for the growth of
the amplitude of the torsional vibrations is a consequence of the axial vibrations and more
precisely of the intermittent decreases of the frictional contact forces at the wearflat-rock
interface.

The dimensionless formulation exhibits a large parameter ψ in the model, which enables a
two-time-scales analysis of the axial and torsional dynamics. The axial mode oscillates much
faster than the torsional mode of vibration. In this paper, we present an asymptotic analysis
that decouples fast axial dynamics (with a frozen constant delay) from the slow torsional
dynamics, influenced only by the averaged behavior of the fast dynamics. When the delay
is larger than a critical value π/

√
2nψ, where n is the number of blades mounted on the

bit, a stable limit cycle in the axial direction is observed over a certain parametric range. An
approximate model of the axial dynamics is proposed to provide an analytical characterization
of the limit cycle. The resulting analytical predictions match the numerical observations well.
They are useful for characterizing the phenomenon of bit bouncing, which originates from the
instability of the axial solutions.

The approximate model also provides an analytical expression of the averaged reacting
torque-on-bit that influences the torsional dynamics. Its variation in terms of the bit angular
velocity recovers the empirical velocity weakening law observed in experiments. The analysis
of the slow torsional dynamics predicts the emergence of the different regimes of torsional
vibrations (stick-slip vibrations or a quasi-limit cycle) in parametric ranges that agree with
the numerical simulations. The analytical predictions provide useful recommendations for the
design of drilling structure, the selection of the operating parameters, or the control synthesis.

We also discuss some limitations of the two-time-scales approach to capturing phenomena
such as antiresonance or delayed bifurcations. The antiresonance regime is characterized
by small vibrations of the bit angular velocity around its nominal value, although the bit
experiences intermittent losses of frictional contact. This regime occurs at low rotational
speed, or equivalently at large delay. It is only observable when the axial stick time is large
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enough to generate phase locking with the bit angular velocity.
This work possibly opens new perspectives for the synthesis of passive control laws to

reduce the amplitude of the torsional vibrations. Most notably, it was shown that the equilib-
rium of the torsional dynamics could become exponentially stable by changing the bit design
through the parameter β or the number of active blades n.
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