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Summary

Automated managed-pressure drilling (MPD) is a method to enhance downhole pressure-control performance and safety during drilling
operations. It is becoming more common to use model-based simulation for the evaluation of pressure-control systems designed for
MPD automation before using those in the field. This demands a representative hydraulics-simulation model that captures the relevant
aspects of a drilling system. This paper presents such a model and an approach to numerically implement that model for simulation
studies. The complexity of this simulation model should be limited, first, to support effective numerical implementation and, second
and most importantly, to allow for the analysis of the behavior and performance of the automated pressure-control systems during the
controller-design phase. To this end, aspects of a drilling system that can considerably affect the performance of the automated MPD
system are captured in the model. This hydraulics model incorporates both the distributed and multiphase-flow nature of a drilling
system. Moreover, it captures nonlinear boundary conditions at the inlet of the drillstring, at the drill bit, and choke manifold, and also
the variations in the cross-sectional area of the flow path. Model validations against field data from real-life MPD operations and simu-
lations of industry-relevant scenarios indicate that these aspects are effectively captured in the model and preserved during the
numerical implementation.

Introduction

Conventionally, the task of pressure control is accomplished by changing the mud density during drilling operations. However, this
method of controlling the pressure is slow and inaccurate, and it lacks a means of compensating and responding to transient pressure
fluctuations (e.g., occurring during pipe-connection operations or drilling into high-pressure formations). Besides, this method cannot
be used for drilling deep wells with narrow drilling windows because of its low accuracy. To overcome such drawbacks of conventional
pressure-control methods, MPD has been introduced. A main objective of MPD is to provide a means of fast, accurate, and efficient
control of the bottomhole pressure, as opposed to conventional methods. As we illustrate in Fig. 1, in MPD, the annulus is sealed off at
the top with a rotating control device to direct the mud flow from the annulus to a choke valve with a variable opening (Stamnes et al.
2008; Godhavn 2010). This equipment, which is often accompanied by a backpressure pump, pressurizes the fluid inside the wellbore
by providing an active backpressure. The backpressure, and thus the bottomhole pressure, can be controlled by manipulating the choke
opening. In automated MPD systems, the task of manipulating the choke opening is primarily performed by an automatic pressure-
control system. This enhances safety and performance and reduces drilling time and cost (Godhavn et al. 2011). In particular, if
equipped with advanced control systems, automated MPD can make it possible to handle many well-control events automatically with-
out operator intervention and using conventional well-control methods (Berg et al. 2019a).

A control system designed for automated MPD should pass some virtual and representative test scenarios on a simulation level
before it can be used in the field. These are performed because any failure in the drilling system, especially in the pressure-control
system, can have catastrophic consequences. Training new operators for drilling operations and well-control incidents in a controlled
environment, as well as well monitoring, are other important reasons for performing model-based simulation studies in drilling (Cayeux
et al. 2012; Vishnumolakala et al. 2015). However, simulations performed for training purposes often need to be well-supported by
graphical interfaces, which is not the case when it comes to controller design. These simulations rely on a mathematical model of the
drilling-system dynamics, the complexity of which varies depending on the required purpose. In particular, the complexity of an MPD
model developed for testing pressure controllers should be limited to facilitate the performance analysis and design of the control
system by neglecting less-important system aspects. Such a model, called the simulation model in this context, should only contain
aspects of a drilling system considered in the controller designed, and aspects that are not considered in the controller design but can
have detrimental effects on the performance of the controller. Models used in the controller design are called the design models. A
design model is often much simpler than a simulation model because it usually contains only the mass-transport dynamics, neglecting
the distributed nature of drilling systems (Nygaard and Nævdal 2006; Di Meglio et al. 2009; Kaasa et al. 2012; Aarsnes et al. 2016b;
Pedersen et al. 2018). The following are a number of the drilling aspects that can be detrimental to an automated MPD system.

• Pressure-wave propagation: Pressure controllers are usually dependent on simplified models in which pressure dynamics (i.e.,
wave-propagation effects) are ignored partially (Landet et al. 2013) or totally (Stamnes et al. 2008; Di Meglio et al. 2009; Kaasa
et al. 2012; Aarsnes et al. 2016b; Ambrus et al. 2016; Nikoofard et al. 2017; Pedersen et al. 2018). The essential time scale associ-
ated with these dynamics can be in the range of tens of seconds, or even minutes, in the case of gas influx into the wellbore. Not
only can such dynamics deteriorate the control performance, but they can also cause instability (Pedersen et al. 2015), if not
accounted for during the controller-design stage.
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• Dynamics of the flow in the drillstring: In many cases (Aarsnes et al. 2016a), the dynamics of the flow in the drillstring (as
opposed to the flow through the annulus), whether fast or slow, are ignored throughout the controller-design stage. This part can,
however, have a significant contribution to the system behavior (e.g., by changing the location of the major resonance frequencies
of the system or generating additional resonance frequencies). Thus, the closed-loop performance in practice can be worse than
expected from simulation studies if system aspects imposed by the drillstring are ignored in the design model.

• Nonlinear behavior of the drill bit: Once the drillstring flow path is ignored in the design model, the drill bit is replaced by an inde-
pendent source of flow. The flow through the bit is, however, nonlinearly dependent on the pressure drop over the bit. In particu-
lar, in the case of standpipe pressure control during gas influxes, this nonlinearity can be detrimental.

• The variable structure (i.e., switching nature) of the model: This variable structure is induced mainly by the presence of a non-
return valve in the bottomhole assembly. During operations such as pipe connection, the non-return valve usually remains closed,
changing the system properties and behavior.

• Variations in the cross-sectional area of the flow path: These variations, especially those in the annulus, can have significant con-
tributions to the frequency responses of a drilling system. Therefore, if not included in the design model, these aspects can com-
promise the control performance.

Other dynamical effects, such as temperature transients, evolve so slowly [e.g., see Fig. 14 in Cayeux et al. (2012)] that these can be
neglected in the simulation model. These effects can be modeled in terms of uncertainties in the system parameters. Effects such as
well expansion can also be approximately lumped into the system parameters (Berg et al. 2019b).

In this paper, we rely on physical simplifications to derive a simulation model for MPD that is consistent with the modeling choices
listed previously. The simulation of the resulting model uses a numerical discretization method. Because these numerical methods are
incapable of exactly preserving all the characteristics of the model, particular care should be taken in choosing, developing, and using
these numerical methods. Thus, we also provide a dedicated numerical approach for the simulation of this model.

The majority of existing hydraulics-simulation models for drilling are single-phase models, often derived from the (isothermal)
Euler model (Landet et al. 2012; Naderi Lordejani et al. 2018), and two-phase models, which are often derived from either the two-fluid
model or the drift-flux model (DFM) (Lage et al. 2003; Nygaard and Nævdal 2006; Shekari et al. 2013; Udegbunam et al. 2015; Aarsnes
et al. 2016d; Strecker et al. 2017; de Carvalho et al. 2019). In MPD modeling, it is key to specify the boundary conditions of the system
carefully because exactly these boundary conditions differentiate MPD from conventional drilling methods and are means of applying
control inputs. Moreover, one should consider the fact that the flow path in a drilling system, from the rig pump to drill bit all the way
up to the choke, experiences discontinuities in its cross-sectional area. These discontinuities have a considerable contribution to the
transient- and steady-state behavior of the flow and pressure along the flow path. These issues have not been addressed adequately in
the literature. Lage et al. (2003) showed, by means of simulations and experiments on test wells, the predictive capabilities of the DFM
for drilling operations. Although they provided an advanced numerical setting for the simulation of their model, they performed their
studies in a conventional drilling setting, not MPD. They did also not consider variations in the cross-sectional area of the flow. The
work by Wei et al. (2018) is similar to Lage et al. (2003), but the drilling model is solved with a different numerical scheme to
improve the solution accuracy. Aarsnes et al. (2016b) used the DFM as a basis for simulating the annulus, testing controllers, and
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Fig. 1—Simplified schematic of a drilling system with MPD equipment. BHA 5 bottomhole assembly.
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model-complexity reduction for MPD. The issue of variations in the cross-sectional area was, however, not addressed. A similar
hydraulics model was studied in Udegbunam et al. (2015), where only the annulus was considered in the model and an extrapolation
method was used for solving the considered boundary conditions for simulations. Shekari et al. (2013) used the two-fluid model for the
simulation of the flow in the annulus. Cayeux et al. (2012) provided a survey on advances in drilling simulators, but no technical details
were given on the underlying mathematical models. In this paper, we propose a model for two-phase flow MPD drilling operations
using the DFM. This model takes all the relevant aspects, mentioned previously, into account.

Contributions. The main contribution of this paper is a simulation platform suitable for evaluating controller performance for MPD
operations, which includes both the physical model and the tool to implement it. In particular, a comprehensive formulation of a
hydraulics model for MPD-relevant two-phase-flow drilling scenarios is presented first. In this model, interactions between different
parts of a drilling system are formulated in terms of boundary conditions. The complexity of the model is limited to contain control-
relevant hydraulics aspects of drilling-system dynamics that can in some way be detrimental to the closed-loop performance of an auto-
mated MPD. The developed model allows for the simulation of many drilling scenarios ranging from making pipe connections, choke
plugging and choke swapping, and bit-nozzle plugging to liquid- and gas-influx scenarios. Then, we provide a numerical approach to
support simulation tooling for fast scenario testing. In particular, we adapt a characteristics-based method to solve the nonlinear bound-
ary conditions, and also propose a dynamical model for the drill bit to circumvent numerical issues that appear at low pump-flow rates.
Because the effects of variations in the cross-sectional area of the flow path can be significant both on the transient- and steady-state
responses of the system, we explicitly address these variations during the numerical implementations of the model. Finally, we validate
the hydraulics model for relevant MPD scenarios of single-phase flow by comparing it with a set of field data obtained from commis-
sioning tests of an automated MPD system.

Outline. The next section is devoted to providing a short introduction to the DFM. Next, the mathematical modeling of the system is
discussed. The steady-state solution of the model is discussed afterward. After completing the modeling part, we present a numerical
approach for the implementation of the model, which is later illustrated by means of a simulation study.

DFM

This section provides a short introduction to the DFM (Gavrilyuk and Fabre 1996) because it is the cornerstone of the MPD model to be
developed. Flow behavior in a transmission line can, to some extent, be described by the DFM. Because of its relative simplicity yet
favorable capabilities in capturing the pressure and mass-transport dynamics of two-phase flows, the DFM is probably the most widely
used model in literature on the control and simulation of two-phase drilling scenarios (Aarsnes et al. 2016d). Consisting of two mass-
conservation equations and one combined momentum-conservation equation, the DFM reads as

@q

@t
þ @f ðqÞ

@x
¼ S; ð1Þ

with
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where x 2 ð0; LÞ and t> 0 are the spatial and time variables, respectively, with L being the length of the computational domain and the
well in this case. The volume fraction, density, velocity, and pressure are denoted by a ¼ aðt; xÞ; q ¼ qðt; xÞ; v ¼ vðt; xÞ and p¼ p(t,x),
respectively, where the subscript l denotes the liquid phase and g refers to the gas phase. The vector of primitive variables (individual

variables that have a clear physical meaning) is indicated by u ¼ ½al;ql; vl; ag;qg; vg; p�T , while q represents the vector of conservative

variables and f ð�Þ is the flux function. The source term is represented by s(u,t,x), and Cl and Cg model mass exchange between the
phases, which are often assumed to be zero. The source term consisting of a gravitational and frictional term is given by

sðu; t; xÞ ¼ qmg sinðhÞ � 2�ðuÞqmvmjvmj
D

; ð3Þ

where g and h(x) are the gravitational acceleration and the inclination of the transmission line with reference to the horizontal direction,
and D is the hydraulic diameter. Moreover, qm ¼ alql þ agqg and vm ¼ alvl þ agvg are the mixture density and velocity, respectively.

Here, � is the Fanning friction factor, which is in general a challenging parameter to determine. It is well-known that drilling muds in
general exhibit non-Newtonian behaviors (Reed and Pilehvari 1993). There are a number of models describing these types of flows,
such as the Herschel-Bulkley, Bingham plastic, and the power-law model. Of these three, the three-parameter model of Herschel-
Bulkley is the most accurate because it includes the other two models as special cases. However, the respective equations are highly
nonlinear and challenging to solve and, moreover, complex models with too many parameters are less useful from a control and estima-
tion perspective. Here, we adapt the two-parameter power-law model to trade off between complexity and accuracy. In this model, we
define the generalized Reynolds number as Re ¼ qmvmDeff=lm;app, where Deff ¼ 4nmD=ð3nm þ 1Þ is the effective diameter and

lm;app ¼ lnm
m

3nm þ 1

4nm

8vm

D

� �nm�1

; ð4Þ

is the apparent mixture viscosity (Reed and Pilehvari 1993). Here, nm ¼ alnl þ ag, with nl being the liquid-behavior index, is the
mixture-behavior index, and lm ¼ alml þ aglg, with ll and lg being the liquid and gas viscosity, respectively, is the mixture viscosity.
The Fanning friction factor for laminar flow, when Re < 3; 250� 1; 150nm, is given by

� ¼ 16

Re
; ð5Þ

while for the turbulent flow, when Re> 4,250–1,150nm, � is the solution to
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where e is the pipe roughness (Reed and Pilehvari 1993). As can be seen, Eq. 6 is highly nonlinear and no exact explicit solution is cur-
rently available to it; thus, we use an approximate solution (see Appendix A). For transition flow, when Re 2 ½3; 250; 4; 250� � 1; 150nm,
we compute � by a linear interpolation from Eqs. 5 and 6. We stress again that one can use a different frictional model depending on
the application and required accuracy; Livescu (2012) provides a review of these models.

Remark 1. The power-law model is in general considered to be complex when it comes to the design of controllers and estimators
for MPD automation, given that it is far less common compared with simpler Newtonian models used for these purposes.

Remark 2. Using mixture parameters and variables lm, qm, and vm is a common approach to extend liquid frictional models to two-
phase flows. Likewise, we have used a mixture-behavior index nm to be able to use the power-law model for two-phase-flow scenarios.

The DFM is completed by four other equations to be, potentially, solvable uniquely. These, often known as the closure laws, are
expressed as

p� p0 � c2
l ðql � q0Þ ¼ 0; ð7aÞ

p� c2
gqg ¼ 0; ð7bÞ

al þ ag � 1 ¼ 0; ð7cÞ

vg � vl � UðuÞ ¼ 0; ð7dÞ

where p0, q0, cl, and cg are the reference pressure, liquid reference density, sound velocity in the liquid, and sound velocity in the gas,
respectively. Eqs. 7a and 7b are, respectively, known as the equations of state (EOSs) for the liquid and gas. An EOS describes the state
of matter in terms of physical variables such as temperature, density, and pressure. EOSs can be rather complex in general, but we here
use linear variants approximating only the relation between pressure and density, as in Eqs. 7a and 7b. We note that these equations still
capture the liquid and gas compressibility. Moreover, the volume balance between the phases is imposed by Eq. 7c, and the slip law
(Eq. 7d) describes the relative velocity between the two phases depending on the function Uð�Þ. Here, the slip law is given by (Ishii and
Hibiki 2011)

UðuÞ ¼ C0ðuÞvm þ VdðuÞ � vl; ð8Þ

where C0ð�Þ and Vdð�Þ are the distribution parameter and drift velocity, respectively. Several descriptions, which are mostly obtained
using experiments and function fitting, for these parameters can be found in the literature. Depending on well conditions, mud proper-
ties, and expected drilling scenarios, a particular description of these parameters can be selected to be used in the hydraulics model,
assuming only bubbly and slug flows. For a review of a variety of descriptions for these parameters and their validity conditions, see
Bhagwat and Ghajar (2014).

It can be shown that the DFM admits three distinct eigenvalues in a wide region of the variable space (Evje and Fjelde 2002). These
eigenvalues are k1 ¼ vg; k2 ¼ vg � cm; k3 ¼ vg þ cm, with cm(u) being the sound velocity in the mixture. Currently, no exact analytical
expression is available for cm(u). Thus, we use an approximation of cm(u) based on the local definition of the bulk moduli,

cmðuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
bmðuÞ
qmðuÞ

s
; ð9Þ

where bm is the mixture bulk modulus, defined as bm ¼
blbg

albg þ agbl

, with bg¼ p and bl ¼ c2
l ql being the bulk moduli of gas and liquid,

respectively (Kaasa et al. 2012; Aarsnes et al. 2016a).

MPD Description and Hydraulics Modeling

Consulting Fig. 1, an MPD system can be simply regarded as two equivalent hydraulic-transmission lines (or simply pipes) that are con-
nected through a drill bit in the middle and one of which ends up with a controllable choke valve. The exposed zone of the annulus (the
so-called openhole section) is susceptible to gas and liquid influx from the surrounding formations that might potentially contain hydro-
carbons. Therefore, to have a good description of the flow and pressure transients along the flow path, it is necessary to use a
multiphase-flow model for the annulus. However, except in some specific drilling operations, such as operations performed in underba-
lanced drilling, it is quite reasonable to use a single-phase-flow model to describe the flow in the drillstring.

Hydraulics Modeling. The DFM, as in Eq. 1, can be used only for the description of the flow lines with constant cross-sectional area,
while in practice there are variations in the cross-sectional area of the flow path because of changes in the diameter of pipes and open
hole that affect the flow behavior. This urges the use of a modified version of the DFM that accounts for the variations in the cross-
sectional area. The modified DFM for the annulus is (Rommetveit and Vefring 1991)

@ðAaqaÞ
@t

þ @faðAaqaÞ
@x

¼ AaSa þ
@Aa

@x
Pa; ð10Þ

where AaðxÞ is the cross-sectional area of the annulus, and we have denoted Pa :¼ ½0; 0; pa�T . In this context, sub/superscripts a and d
refer to the annulus and drillstring, respectively. Compared with the model (Eq. 1), changes in the cross-sectional area lead especially
to the term Pa@Aa=@x. We should note that t, x, qa, fað�Þ, and Sa are the same as in Eq. 1, computed from the variables in the annulus. In
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the annulus, as illustrated in Fig. 1, x¼ 0 marks the well bottom and x¼L is a point in the annulus that is in the same level as the
choke. Moreover, Da ¼ Din � do, with Din being the diameter of the annulus and do being the outer diameter of the drillstring, and
ha(x)¼ –h(L–x).

As will be explained in later sections, we need to switch between the primitive variables ua and the conservative ones qa to numeri-
cally solve the model under development. On the basis of the closure laws in Eq. 7 and also the relation between the vectors qa and ua,
as in Eq. 2, we derive a relation for the pressure in terms of conservative variables,

pa ¼
�bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4d
p

2
; ð11Þ

where b ¼ q0c2
l � p0 � qa;1 � c2

g and d ¼ �ðq0C2
l � p0Þc2

gqa;2. Next, given the pressure from Eq. 11, Eqs. 7a and 7b can be used to
compute ql and qg, respectively. Next, the definition of qa leads to expressions for the volume fractions,

al ¼
qa;1

ql

; ag ¼
qa;2

qg

: ð12Þ

Next, we can compute vl using

vl ¼
qa;3ð1� C0agÞ � qa;2Vd

qa;1 þ C0agqa;2
: ð13Þ

Then, from the slip law (Eq. 7d), with Eq. 8, we obtain

vg ¼
C0alvl þ Vd

1� C0ag
: ð14Þ

Remark 3. Depending on the choice of C0(u) and Vd(u), if these parameters are dependent on vl and vg, then Eqs. 13 and 14 can
become nonlinear equations with respect to vl and vg, which need to be solved simultaneously using nonlinear solvers. However, these
are often independent of vl and vg.

As already mentioned, the main reason for using a two-phase model for the annulus is to enable modeling of a gas influx from the
formation into the annulus. On the contrary, it is reasonable to use a single-phase model for describing the flow behavior inside the drill-
string. It is worth mentioning that there are certain drilling operations, such as operations in underbalanced drilling, where some rate of
gas is intentionally injected into the drillstring. This gas injection in turn gives rise to a two-phase medium in the drillstring. An isother-
mal Euler equation accounting for the variations in the cross-sectional area describes the flow behavior in the drillstring,

@ðAdqdÞ
@t

þ @fdðAdqdÞ
@x

¼ AdSd þ
@Ad

@x
Pd; ð15Þ

where fdðAdqdÞ ¼ ½Adqv;Adqv2 þ Adpd�T ; Sdðud; t; xÞ ¼ ½0; sdðud; t; xÞ�T ;Pd :¼ ½0; pd�T . Moreover, q ¼ qðt; xÞ; v ¼ vðt; xÞ; pd ¼ pdðt; xÞ
are the mud density, velocity, and pressure profiles along the drillstring. The vectors of primitive and conservative variables are indi-

cated by ud ¼ ½q; v; pd�T and qd ¼ ½q;qv�T , respectively. Moreover, Ad(x) is the cross-sectional area of the drillstring. For the drillstring,
x¼ 0 marks a point in the drillstring that is at the same level as the pump, whereas x¼ L marks its outlet at the bit. To avoid unnecessary
notational complexities, we do not use a subscript to refer to the primitive variables in the drillstring, except for the pressure. As before,
sd is the source term acting on the flow in the drillstring, and the same model as in Eq. 3 is used to determine it, with the mixture varia-
bles and parameter reducing to liquid variables. Moreover, we have Dd¼ din, with din being the inner diameter of the drillstring, and
hd(x)¼ h(x). The EOS considered for the liquid in the drillstring is the same as Eq. 7a, the one used in the annulus.

Remark 4. It should be noted that Eq. 15 can be obtained from Eq. 10 by setting ag¼ 0.

Boundary Conditions. To potentially be able to solve Eqs. 10 and 15 uniquely, one needs to specify a set of boundary conditions. In
this regard, a careful observation of Fig. 1 reveals that the hydraulics behavior of an MPD system is largely dictated by three main phys-
ical boundary conditions, which are the boundaries at the drillstring inlet, the bit together with the behavior of the formations around
the openhole, and the choke valve, as the annulus outlet.

The boundary condition at the drillstring inlet is expressed in a general form as

fibc½qðt; 0Þ; vðt; 0Þ; t� ¼ 0; ð16Þ

where fibcð�; �; �Þ is the boundary condition at the drillstring inlet, and it is determined depending on the ongoing drilling operation. For
example, during normal operations, when the drillstring is connected to the mud pump, we can define

fibc :¼ Adð0Þqðt; 0Þvðt; 0Þ � JpðtÞ; ð17Þ

where Jp(t) denotes the mass-flow rate of the mud pumped into the drillstring. It should be noted that in practice we are often provided
the pump strokes per minutes np(t) rather than the mass-flow rate. In that case, the mass-flow rate can be computed using
Jp½qðt; 0Þ; t� ¼ VpnpðtÞqðt; 0Þ, where Vp is the volume that the pump sweeps per stroke. As another example, during a bleedoff operation,
an operation to slowly release the trapped pressure within the drillstring before detaching it from the topdrive, a valve equation should
be used to model this boundary condition. Next, at the bottom of the well, one can write three boundary equations, consisting of the bit
equation that describes the liquid-mass-flow rate through the bit in terms of the pressure drop over the bit, the liquid-mass-balance equa-
tion between both sides of the bit, and the gas balance between the formations and the annulus, respectively,

AdðLÞqðt;LÞvðt; LÞ � cdAn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qðt; LÞr½pdðt;LÞ � paðt; 0Þ�

p
¼ 0; ð18Þ
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AdðLÞqðt;LÞvðt; LÞ þ Jl
r½paðt; 0Þ; pr� � Aað0Þalðt; 0Þqlðt; 0Þvlðt; 0Þ ¼ 0; ð19Þ

Jg
r ½paðt; 0Þ; pr� � Aað0Þagðt; 0Þqgðt; 0Þvgðt; 0Þ ¼ 0; ð20Þ

where the function rðeÞ ¼ e; if e > 0

0; if e � 0

�
is used to model the non-return valve installed above the bit inside the bottomhole assembly,

An is the effective area of the bit nozzles, and cd is the discharge coefficient. Jl
rð�; �Þ and Jg

r ð�; �Þ represent the mass-flow rates of the
liquid and gas, respectively, exchanged between the wellbore and the formations with a pressure pr, known as the reservoir pressure.
Here, we approximate these variables using a linear static reservoir model (Aarsnes et al. 2016c),

Ji
r ¼ jir½pr � paðt; 0Þ�; i 2 fg; lg; ð21Þ

where ji is the production index for the phase i. Coupling with a more intricate reservoir model is also possible, and it can be substituted
into Eq. 21. However, near-wellbore reservoir modeling is beyond the scope of this paper. At the top side of the annulus, the boundary
condition is determined by the choke equation describing the mass-flow rate of the mixture through the choke as a function of the pres-
sure drop over the choke (Di Meglio et al. 2011),

Jc½t; uaðt;LÞ� � JbppðtÞ � Ju
c ½uaðt;LÞ� ¼ 0;

Jc½t; uaðt; LÞ� ¼
Xnc

i¼1

kc;iGi½zc;iðtÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qmðt;LÞr½paðt; LÞ � p0�

p
; � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ð22Þ

where kc,i, zc,i, and Gið�Þ are the choke-flow factor, the choke opening, and the choke characteristic of the choke valve i, respectively. nc

is the number of choke valves in the MPD setup and Jbpp(t) is the mass-flow rate from the backpressure pump. Moreover, Ju
c ¼

AaðLÞalðt; LÞqlðt;LÞvlðt;LÞ þ AaðLÞagðt; LÞqgðt; LÞvgðt; LÞ is the mass-flow rate upstream the choke, whereas Jc is that downstream the

choke. Again, more accurate models of multiphase flow through the valve can be derived to replace Eq. 22.
The combination of Eqs. 7 through 22 constructs our MPD simulation model. Specifically, in this model, we have accounted for var-

iations in the cross-sectional area of the flow path and also the nonlinear boundary conditions of an MPD system. The MPD model has
now been specified, and next the steady-state solution of the system can be found using this model.

Steady-State Solution of the Model

Clearly, to be able to solve the MPD model derived in the preceding section, an initial condition is required. Because most of the drill-
ing time is occupied by normal drilling operations, it is reasonable to start a simulation study from a drilling-ahead condition. In this
case, the system shows steady-state behavior; therefore, all the derivatives with respect to the time variable t can be discarded from
Eqs. 10 and 15, resulting in the steady-state-differential equations

dfaðAaqaÞ
dx

¼ AaSa þ
@Aa

@x
Pa;

dfdðAdqdÞ
dx

¼ AdSd þ
@Ad

@x
Pd: � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ð23Þ

Now, using the closure laws (Eq. 7) together with Eq. 23, we obtain

dyaðxÞ
dx

¼ M�1
a ðyaÞHaðya; xÞ;

dydðxÞ
dx

¼ M�1
d ðydÞHdðyd; xÞ; � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ð24Þ

where ydðxÞ ¼ ½v; q�
T ; yaðxÞ ¼ ½vl; vg; ag; pa�T , with the macron bar (i.e., �) indicating the variables and vectors in the steady

state. Moreover,

Ma ¼

1� @U
@vg

�1� @U
@vl

� @U
@ag

� @U
@pa

ð1� agÞq l 0 �qlvl
vlð1� agÞ

c2
l

0 agqg qgvg
agvg

c2
g

ð1� agÞqlvl agqgvg 0 1

2
66666666664

3
77777777775
; Md ¼

q v

qv c2
l

� 	
;

Ha ¼ Sa �
dAa

dx

0
ð1� agÞqlvl

Aa

agqgvg

Aa

0

2
6666664

3
7777775
; Hd ¼ Sd �

1

Ad

dAd

dx

qv

0

� 	
; � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ð25Þ

with UðuÞ as in Eq. 8. The boundary conditions of the ordinary differential equation (Eq. 24) are given by the physical boundary condi-
tions (Eqs. 17, 18, and 22) in the steady-state conditions,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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ðAdqvÞjx¼0 � Jp ¼ 0;

ðAdqvÞjx¼L � ½Aað1� agÞqlvl�jx¼0 þ Jl
f ½pað0Þ; pr� ¼ 0;

Jg
f ½pað0Þ; pr� � ðAaagqgvgÞjx¼0 ¼ 0;

ðAdqvÞjx¼L � Ancd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qðLÞr½pdðLÞ � pað0Þ�

p
¼ 0;

ðAaalq lvl þ AaagqgvgÞjx¼L þ Jbpp �
Xnc

i¼1

kc;iGiðzc;iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qmðLÞr½paðLÞ � p0�

p
¼ 0: � � � � � � � � � � � � � � � � � � � � � � � � � � � ð26Þ

Eqs. 24 and 26 construct a two-point boundary-value problem in terms of x as the independent variable.
Note that the presence of dA/dx, which contains impulses caused by area discontinuities in A(x), in the steady-state equations

(Eq. 24) causes discontinuities in the steady-state solution. After we have initialized our problem by solving Eq. 24, we start with the
numerical implementation of the model in the sequel.

The developed model in this paper includes the system dynamics and aspects that are essential to the control performance. Consider-
ing only the control-relevant aspects of the system in the model keeps its complexity relatively low, such that it permits, for example, a
semianalytical assessment of its dynamical properties (an assessment that relies partially on theoretical analyses and partially on numer-
ical analyses). For instance, semianalytical analyses are used in Di Meglio (2011). This type of assessment can be computationally
expensive, if not impossible, in the case of high-complexity models. Moreover, simulation studies performed during the controller
design might need to be performed several times. Thus, it is important for these simulations to run quickly. Moreover, the relatively
low complexity of the model will allow designers and engineers to more easily identify the reason for or the source of problems in the
case of poor simulation results.

Numerical Implementation

The MPD model derived previously cannot be solved analytically because of its complexity (e.g., infinite-dimensional nature and
nonlinearities). To solve and then use this model for simulation purposes, we use a numerical scheme that is based on a finite-volume-
method discretization. As illustrated in Fig. 2, in the finite-volume method (LeVeque 2002), the spatial domain of a hyperbolic partial-
differential equation (PDE) is divided into a finite number of control volumes or cells. All the variables are assumed to have a
predefined distribution in each control volume. As illustrated in Fig. 2, the spatial domain is discretized into N cells denoted by
Gi ¼ ðxi�1=2; xiþ1=2Þ; i ¼ f1; 2;…;Ng, of length Dx, with xiþ1=2 ¼ iDx as the ith cell interface and xi ¼ ði� 1=2ÞDx marking the

middle point of that cell. The variable Un
i [Qn

i ] is an approximation of the spatial average of the vector uðnDt; xÞ [qðnDt; xÞ] over Gi and
the approximate variables at the right- and left-hand sides of each interface are indicated by U– and Uþ, respectively. Here, Dt is the dis-
cretization timestep size. A finite-volume Godunov-type method has the general form (LeVeque 2002)

Qnþ1
i ¼ Qn

i �
Dt

Dx
½FðUþ�iþ1=2;U

�
iþ1=2Þ � FðUþi�1=2;U

��
i�1=2Þ� þ DtSn

i ; ð27Þ

where Fð�; �Þ, a conventional numerical flux function assuming a fixed cross-sectional area, is determined by the numerical scheme, and
Sn

i ¼ SðUn
i ; nDt; xiÞ is the discretized source term. A starred variable U*, yet to be computed, is an update of the variable U that accounts

for variations in the cross-sectional area of the flow. Note that because the same formula as in Eq. 27 is used for solving both Eqs. 10
and 15, the sub/superscripts a and d are omitted for readability. The timestep size Dt is determined using the Courant-Friedrichs-Lewy
(CFL) condition (Courant et al. 1967). In particular, the numerical implementation of the DFM (Eq. 1) has been extensively studied in
the last few decades (Fjelde and Karlsen 2002). These studies mostly aim at developing accurate but computationally low-cost numeri-
cal schemes for computing the numerical flux function.

To treat the variations in the cross-sectional area of the flow path of the MPD model, the method proposed by Kröner and Thanh
(2005) for Eq. 15 and an extension of that method proposed by Abbasi et al. (2019) for the modified DFM (Eq. 10) are exploited here to
compute the variables with asterisk symbols in Eq. 27. In this method, we use a coordinate transformation that gives the equivalent
values of the variables in a cell if the geometry of that cell changes. In particular, when updating the variables in the cell Gi, we assume

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ui
n

U +

x

U −

x 1
2

xi – 1
2

xi +

xi +1x1 xi
1
2

xN+ 1
2

x 3
2

u (nΔt, x)
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... ...

Flow path Gi

Outlet

0 L

A+A−

Fig. 2—Illustration of a spatial discretization performed in the finite-volume method.
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that the cells Gi–1 and Gi þ 1 have the same geometries as Gi and use this transformation to compute the equivalent of the variables
in those cells, considering this change of geometry. In this way, we are still able to use a Godunov setting with numerical flux

functions as in Eq. 27 to numerically solve our MPD simulation model. Following this approach, Uþ�d ¼ ½qþ�; vþ��
T

of the
interface iþ 1=2 in the drillstring is obtained through a nonlinear coordinate transformation that is given in terms of a system
of equations,

qþ�vþ�A�d � qþvþAþd ¼ 0;

ðvþ�Þ2 � ðvþÞ2 þ c2
l ln

qþ�

qþ

� �2

¼ 0; � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ð28Þ

where A– and Aþ denote, as illustrated in Fig. 2, the cross-sectional area A immediately at the left- and right-hand sides of an interface,
respectively. Moreover, U��d of the interface i� 1=2 is obtained by replacing the superscriptsþ and – with – and þ, respectively, in
Eq. 28 and then solving the resulting equation. Next, Uþ�a for the DFM of the annulus is obtained by a coordinate transformation given
by Eq. 29 together with closure relations Eqs. 7a through 7d and 8,

aþ�l qþ�l vþ�l


 �
A�a � aþl qþl vþl


 �
Aþa ¼ 0;

aþ�g qþ�g vþ�g

� �
A�a � aþg qþg vþg

� �
Aþa ¼ 0;

aþ�l qþ�l

qþ�g

vþ�l

2

� �2

þ aþ�g

vþ�g

2

� �2

� aþl qþl
qþg

vþl
2

� �2

� aþg
vþg
2

� �2

þ c2
gln

qþ�g

qþg

 !2

¼ 0: � � � � � � � � � � � � � � � � � � � � � � � � � � ð29Þ

As before, U��a of the interface i� 1=2 is obtained by replacingþ and – in Eq. 29 with – and þ, respectively.

Remark 5. A close observation of Eq. 28 reveals that variations in the pressure profile pd(t,x) in the drillstring caused by changes in
the cross-sectional area at the location of these changes are not significant. This is mainly because the mud velocity v in the drillstring
is far smaller than the sound velocity cl. On the contrary, when there is gas inside the annulus, variations in the cross-sectional area can
cause considerable variations in the pressure. Given this explanation, without losing much accuracy, we can assume that qþ� ¼ qþ for
the drillstring and solve only the mass-balance equation of Eq. 28, which is linear, for computing vþ�.

After computing Qnþ1
i from Eq. 27, the vector of primitive variables is computed using Eqs. 11 through 14. Then, if a first-order

scheme is used, a uniform distribution is considered for the variables uðnDt; xÞ over a cell Gi, thus

ûðnDt; xÞ ¼ Un
j ; x 2 ðxi�1

2
; xiþ1

2
Þ: ð30Þ

When a second-order scheme is used, this approximation is obtained by a linear interpolation as

ûðnDt; xÞ ¼ Un
j þ ðuxÞnj ðx� xiÞ; x 2 ðxi�1

2
; xiþ1

2
Þ; ð31Þ

where ðuxÞnj is an approximation of the exact derivatives @uðnDt; xÞ=@x at x¼ xj, computed using a flux limiter (Sweby 1984).

Remark 6. We reasonably assume that A(x) is piecewise continuous, with a discontinuity occurring only at a cell interfaces such
that A(x) is constant in each cell Gi [i.e., for x 2 ðxi�1=2; xiþ1=2Þ; i ¼ 1; 2;…;N].

In the next subsection, we explain how to combine the implicit boundary conditions of the problem with the numerical scheme used
for updating the internal domains of the model.

Boundary-Conditions Treatment. Expanding the scheme (Eq. 27) for i¼ 1 and i¼N reveals explicit dependencies on U0 and UNþ 1,
and also implicit dependencies on U�1;UNþ2 for the case of second-order schemes. These variables are required to incorporate the
boundary conditions of the boundary-value problem in the described scheme in the preceding section. Extrapolation is a common
method for determining the boundary variables. It is effective and can provide accurate results if there are no source terms in the model
(Prebeg et al. 2015). However, it lacks a sound theoretical support and can cause large spikes in the solution in the presence of source
terms. Contrary to extrapolation, a method known as the characteristics-based method (Cook et al. 2018) offers more accurate and reli-
able solutions and it also has a more reliable theoretical foundation. This method involves breaking a two-point boundary-value prob-
lem into two initial value problems and solving those separately at their respective boundaries. Now, by using a nonlinear coordinate
transformation and approximations, the DFM with the closure laws (Eqs. 7a through 7d) can be decomposed into its characteristic equa-
tions. In this form, two of the PDEs describe the propagation of the pressure waves, also called fast dynamics of the DFM, inside the
domain, and one PDE, called the slow dynamics, describes the migration of the gas phase. For the DFM (characterizing flow in the
annulus), these relations come in the following form (Fjelde and Karlsen 2002),

agð1� C0agÞ
d1pa

d1t
þ pa

d1

d1t
ag ¼ 0; ð32Þ

d2pa

d2t
� qlcmðvg � vlÞ

d2ag

d2t
� qlalðvg � vl þ cmÞ

d2vl

d2t
¼ ðvg � vl þ cmÞsa; ð33Þ

d3pa

d3t
þ qlcmðvg � vlÞ

d3ag

d3t
� qlalðvg � vl � cmÞ

d3vl

d3t
¼ ðvg � vl � cmÞsa; ð34Þ

where in this case we have defined
di

dit
:¼ @

@t
þ ka;i

@

@x
, i¼ 1, 2, 3, which is a directional derivative along the vector V ¼ ½1; ka;i�T , with

ka;i being an eigenvalue of the DFM of the annulus. Eqs 32 through 34 correspond to the gas-volume wave traveling at a speed ka;1 ¼
vg downstream the annulus, the pressure waves propagating at ka;2 ¼ vl � cm upstream the annulus, and the pressure wave traveling at a
speed of ka;3 ¼ vl þ cm toward the choke, respectively. The characteristic relations of the isothermal Euler equation describing the
single-phase flow in the drillstring are given by
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@pd

@t
� kd;1

@pd

@x
� clq

@v

@t
� clqkd;1

@v

@x
¼ clsd; ð35Þ

@pd

@t
þ kd;2

@pd

@x
þ clq

@v

@t
þ clqkd;2

@v

@x
¼ �clsd; ð36Þ

where Eq. 35 corresponds to the pressure wave traveling upstream the flow with a velocity of kd;1 ¼ v� cl, while Eq. 36 corresponds to
the pressure wave traveling the opposite direction at a velocity of kd;2 ¼ cl þ v.

Remark 7. Note that the characteristic relations in Eqs. 32 through 34 are obtained under several simplifying assumptions, such as
an incompressible liquid phase, @C0ðuÞ=@u ¼ 0 and @VdðuÞ=@u ¼ 0, and that agqg � alql holds, because otherwise the derivation of
such relations is highly challenging, if not impossible. Naturally, these assumptions lead to some degree of inaccuracy in the computa-
tion of the boundary variables. Nonetheless, for small gas volume fractions ag (less than 0.25) at the boundaries, these assumption are
rather realistic, especially when MPD operations are supported by high-performance kick detectors and pressure-control systems that
prevent large gas kicks. It is mentioned that the relations in Eqs. 35 and 36 are exact.

In the remainder of this section, we propose a method for computing the boundary variables using the characteristic relations of
Eqs. 32 through 36 together with the physical boundary conditions introduced previously.

We solve the drillstring inlet boundary condition in Eq. 16 together with the characteristic relation (Eq. 35), forming an initial value
problem as

fibc½qðt; 0Þ; vðt; 0Þ; t� ¼ 0;

@pd

@t
� kd;1

@pd

@x
� clq

@v

@t
� clqkd;1

@v

@x
¼ clsd: � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ð37Þ

This algebraic PDE, if solved at x¼ 0, gives udðt; 0Þ ¼ ½vðt; 0Þ;qðt; 0Þ�T . However, finding the analytical solution of this nonlinear
algebraic PDE is challenging. Therefore, we solve Eq. 37 numerically by performing a first-order Euler discretization (both spatial and
temporal) on Eq. 37, yielding

fibcðqn
0; v

n
0; nDtÞ ¼ 0;

pn
d;0 � pn�1

d;0

Dt
� clq

n�1
1

vn
0 � vn�1

0

Dt ¼ �ðkd;1Þn�1
1

pn�1
d;0 � pn�1

d;1

Dx
� clðqkd;1Þn�1

1

vn�1
0 � vn�1

1

Dx
þ clsd½Un�1

d;1 ; ðn� 1ÞDt; 0�; � � � � � � � � ð38Þ

where the variables qn
0 and vn

0, the solutions of Eq. 38, are approximations of qðnDt; 0Þ and vðnDt; 0Þ, respectively, and the notation ð�Þij
stands for the term inside the parentheses evaluated at the time instance i and the point xj in the special domain. The resulting nonlinear alge-
braic equation Eq. 38, together with the EOS (Eq. 7a), can be solved with a proper zero-finder algorithm, such as a Newton solver. After

this equation is solved, we can compute Un
d;0 ¼ ½vn

0;q
n
0�

T
and Qn

d;0 ¼ ½qn
0;q

n
0vn

0�
T
, as required in Eq. 27 for the drillstring. At the bottom of

the well, we take a similar approach. At this boundary, there are couplings between the boundary variables in the annulus and those in the
drillstring, and nine unknown boundary variables in total with seven boundary equations and closure laws. These together with the charac-
teristic equations (Eqs. 36 and 33) construct an initial value problem that is solved numerically at this boundary to compute the boundary
vectors Un

d;Nþ1 and Un
a;0 (as well as Qn

d;Nþ1 and Qn
a;0). However, using a numerical method similar to the one described previously is compu-

tationally expensive because it involves solving a nine-dimensional nonlinear algebraic equation. Moreover, it can cause numerical oscilla-
tions when the flow through the bit is close to zero, which is the case during a pipe-connection operation. Therefore, here we connect the
two boundaries at both sides of the bit through an intermediate ordinary-differential equation (for the derivation, see Appendix B),

_zðtÞ ’
n½zðtÞ;DpdhðtÞ�; for zðtÞ > 0;

maxf0; n½zðtÞ;DpdhðtÞ�g; for zðtÞ ¼ 0

�
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ð39Þ

where DpdhðtÞ ¼ pdðt; L� Dl=2Þ � paðt;Dl=2Þ, and

n ¼ 2AdðLÞAað0Þ
Dl½AdðLÞ þ Aað0Þ�

Dpdh �
z2

2qðt;L� Dl=2ÞðAacdÞ2
þ ~sa

Adð0Þ
þ ~sd

AaðLÞ

" #
; ð40Þ

with z(t) being an approximation of the mass flow rate through the bit Jbit(t), and ~sa and ~sd as in Appendix B. The operator maxð�; �Þ in
Eq. 39 is used to account for the non-return valve installed in the drillstring to prevent a backflow from the annulus into the drillstring,
and we take Dl as a parameter that determines the inertia of the dynamics of z(t). Now, using the other characteristic relation in the drill-
string and performing an Euler discretization over space and time, we can approximately compute the drillstring boundary variables at
the bit by solving

zn � AdðLÞqn
Nþ1vn

Nþ1 ¼ 0;

pn
d;Nþ1 � pn�1

d;Nþ1

Dt
� clq

n�1
N

vn
Nþ1 � vn�1

Nþ1

Dt ¼ ðkd;2Þn�1
N

pn�1
d;N � pn�1

d;Nþ1

Dx
þ clðqkd;2Þn�1

N

vn�1
N � vn�1

Nþ1

Dx
� clsd½Un�1

d;N ; ðn� 1ÞDt;L� Dx=2�;

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ð41Þ

where vn
Nþ1 and qn

Nþ1 are approximations of the boundary variables v(t, L) and qðt;LÞ, respectively, and zn, an approximation of zðnDtÞ,
is obtained from the time discretization of Eq. 39 using an Euler method,

vj ¼ vj�1 þ
Dtznðvj�1;Dpn�1

dh Þ; for vj�1 > 0;

Dtzmax½0; nðvj�1;Dpn�1
dh Þ�; for vj�1 ¼ 0;

j ¼ f1; :::;mg:
(

zn :¼ vm; � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ð42Þ

where v is an auxiliary variable such that v0 ¼ zn�1 and Dtz is the corresponding discretization timestep size. Note that, to avoid numer-
ical oscillations when the timestep Dt is large, we can design Dtz to be smaller than Dt. To this end, we set Dtz ¼ Dt=m; m 2N, where
m is chosen to be large enough.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Analogously, we can compute Un
a;0, as an approximation of uaðnDt; 0Þ, by solving the following system of nonlinear algebraic equa-

tions as a result of spatial and temporal discretization of Eq. 33 using the Euler method with Eqs. 19 and 20,

zn þ Jl
rðpn

a;0; prÞ � Aað0ÞðalqlvlÞn0 ¼ 0;

Jg
r ðpn

a;0; prÞ � Aað0ÞðagqgvgÞn0 ¼ 0;

pn
a;0 � pn�1

a;0

Dt
� ½qlcmðvg � vlÞ�

n�1
1

an
g;0 � an�1

g;0

Dt

� ½qlalðvg � vl þ cmÞ�n�1
1

vn
l;0 � vn�1

l;0

Dt
¼ �ðka;2Þ

n�1
1

pn�1
a;1 � pn�1

a;0

Dx
þ ½ka;2qlcmðvg � vlÞ�

n�1
1

an�1
g;1 � an�1

g;0

Dx

þ ½ka;2qlalðvg � vl þ cmÞ�n�1
1

vn�1
l;1 � vn�1

l;0

Dx
þ ðvg � vl þ cmÞn�1

1 sa½Un�1
a;1 ; ðn� 1ÞDt; 0�: � � � � � � � � � � � � � � � � � ð43Þ

Note that the above equations (Eq. 43) need to be solved together with the closure laws to return (generally) a unique solution. After
solving Eqs. 41 and 43, we can compute Qn

d;Nþ1 and Qn
a;0. At the choke boundary, the initial value problem consists of the choke equa-

tion (Eq. 22), and all closure laws of the DFM (Eqs. 7a through 7d) together with the two characteristic equations (Eqs. 32 and 34).
This problem is approximated in terms of a nonlinear algebraic equation, similar to Eq. 38, using a first-order Euler discretization over
space and time domains. The solution of the resulting algebraic equation is then used to compute Un

a;Nþ1 and Qn
a;Nþ1.

Remark 8. If a second-order scheme is used, in addition to the boundary vectors Ua,0 and Ua,Nþ 1, the vectors Ua;�1 and Ua;Nþ2 also
need to be determined. Although these variables are less crucial than the boundary variables for the accuracy of the MPD model, the
way we compute these can have a significant effect on the solution. A common approach in this regard is to assume that Ua;�1 ¼ Ua;0

and Ua;Nþ2 ¼ Ua;Nþ1. However, one can use more advanced approaches, such as the one proposed by Prebeg et al. (2017), which comes
at a higher computational expense.

Field-Data Comparisons and Simulation Studies of Industry-Relevant Scenarios

To evaluate the predictive capabilities of the simulation model and the performance of the proposed numerical implementation of the
model, simulations and model validations against experimental data are performed in this section.

Comparisons with Field Data. We have performed comparisons for single-phase-flow scenarios between the hydraulics model pre-
sented in this paper and field data obtained during commissioning tests of an MPD operation on a real drilling well. These tests were
performed after running casing and before resuming drilling ahead at the length of 1647 m to adjust the MPD control system. The geo-
metries of the drillstring and wellbore are reported in Fig. 4. The other parameters used in the model are listed in Table 1. The consid-
ered measurements correspond to a time period when the drillstring was stationary. In this experiment, the mass flow of the mud
pumped into the drillstring varies between low, medium, and high values at different rates.

In this paper, instead of identifying Giðzc;iÞ as a function of zc,i, we approximate it as a function of time [i.e., we compute the implicit
choke characteristic G(t) from the measurements and use it in our simulations]. In particular, to approximately compute G(t), we use
the relation

GðtÞ ¼
X2

i¼1

Giðzc;iÞ ’
JcðtÞ

kc;1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qcðtÞr½pcðtÞ � p0�

p ; ð44Þ

where pcðtÞ ¼ paðt;LÞ and qcðtÞ ¼ qaðt;LÞ are the measured pump pressure and flow density upstream of the choke, and it is assumed
that kc,2¼ kc,1. The choke flow JcðtÞ is also a measured variable in Eq. 44. We note that this relation is directly obtained from the choke
equation in Eq. 22. The pump-flow rate together with the choke-opening signals and implicit choke characteristic G(t) are reported
in Fig. 5.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Δl
2

Drillstring

Annulus

Control volume

Bit

Fig. 3—Schematic of the control volume assumed over the bit to facilitate solving the boundary equations at the bit.
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Fig. 4—Diameter of the annulus and drillstring of the drilling well used in the model-validation studies.

Parameter Symbol Value Unit 

Length of the well L 1647 m 

Average well inclination θ 1.08 rad 

Liquid-bulk modulus βl 0.94×109 Pa 
Reference pressure p0 105 Pa 
Liquid density at p0 ρ0 1210 kg/m3

Number of chokes nc 2
0.0026
0.0026

m
m

 – 
Choke-flow factor kc,1

kc,2

2

Choke-flow factor 2

Liquid viscosity μl 0.177 Pa·s 
Liquid-behavior index nl 0.93 – 

Bit-nozzle area An 5.69×10–4 m2

Bit-discharge coefficient cd 0.8 – 

Table 1—Parameters used in the hydraulics model for

model validation.

0 200 400 600

Time (seconds)

C
ho

ke
 S

ig
na

ls
J p

 (
kg

/s
)

800 1,000 1,200 1,400

0 200 400 600 800 1,000 1,200 1,400

0

0.5

1.0

0

20

40

60

80

G

zc,1

zc,2

Fig. 5—Field data: (top) the pump-mass-flow rate, and (bottom) the choke-opening signals zc,1 and zc,2 and the implicit choke char-
acteristic G(t).
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In Fig. 6, the measured and simulated mass-flow rates Jc are plotted compared with the measured pump-flow rate Jp. We can observe
a good match between these two signals. Because the entire length of the wellbore was cased throughout this scenario, we set Jl

r ¼ 0.
Next, we compare the measured and simulated pressure signals at the choke and pump. In the left-hand side of Fig. 7, the modeled and
measured choke pressures pc are compared, where a good match is observed between the measurements and the model. The quality of
this match is also an indication of the good accuracy of the implicit choke characteristic G(t). Moreover, by comparing Fig. 7 with
Fig. 6, which reports the flow rates, during periods when the pump flow is steady, we can observe that transients in the choke pressure
pc correspond to transients in the choke flow Jc. This is because of the compressibility of the mud, which is well-captured by the
hydraulics model. The model-based and measured pump pressures pp ¼ paðt;LÞ are plotted on the right-hand side of Fig. 7. We can
clearly see a good match between these two signals. However, there are some discrepancies between the two signals as well. These dis-
crepancies are primarily caused by imperfections in the power-law model, used for computing the friction factor. We could expect a
higher accuracy by using more advanced frictional models, such as the Herschel-Bulkley model, but at the expense of additional com-
putational complexity and one additional parameter to identify.

A careful observation of the pump- and choke-pressure measurements reveals that there is a delay of approximately 4 seconds
between transients in the pump pressure and those in the choke pressure, which is exactly because pressure waves propagate at the lim-
ited speed of sound velocity. These delays are well-captured by the model, which is another indication of the high predictive capability
of the hydraulics model in terms of capturing fast transients and wave-propagation effects. Moreover, in Fig. 7, the high accuracy of the
surface pressure-control system of MPD can be well-observed when comparing the measured choke pressure with its reference.

Simulation Studies. The geometries of the drillstring and the annulus considered in the simulations are reported in Fig. 8, and the
parameters are listed in Table 2. In this subsection, we attempt to convey the importance of having a simulation model for which the
complexity is kept relatively low by including pressure-control-relevant aspects of an MPD system. We achieve this by demonstrating
through simulations that theoretical analyses derived from simple design models and simulation studies are not always sufficient for
obtaining a comprehensive and reliable assessment of an MPD pressure-control system, and further types of assessments (such as
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Fig. 6—Comparison of the measured and modeled choke-mass-flow rates, together with the measured pump flow.
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semianalytic assessments) derived from a simulation model might be needed. This type of assessment might itself become impossible if
the simulation model includes irrelevant or less-relevant aspects that can cause excessive complexity. However, these types of assess-
ments are beyond the scope of this paper.

To compute the numerical flux functions Fað�; �Þ in Eq. 27 for the DFM of the annulus, a second-order flux-vector-splitting scheme
is used (Evje and Fjelde 2002). For the drillstring, a first-order upwind scheme (LeVeque 2002) is used to compute Fdð�; �Þ for Eq. 15.
To obtain a simpler numerical implementation and without losing much accuracy, we linearized the flux function fdð�Þ in Eq. 15. After
this linearization, which is obtained by considering cl � vðxÞ, for all x 2 ð0; LÞ, the flux function in Eq. 15 reduces to
f T
d ðqdÞ ¼ ½qv; c2

l q�, which is now linear in terms of qd. The maximum value that the timestep Dt can take is determined by the CFL
(Courant et al. 1967) condition, which is a necessary condition for the convergence of a numerical solution, as in Eq. 27. To compute
the timestep, we use the relation

Dt ¼ CFLDxk; k ¼ maxfjka;1j; jka;2j; jka;3j; jkd;1j; jkd;2jg; ð45Þ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Fig. 8—Diameter and cross-sectional area of the annulus and of the drillstring considered for the simulation case studies.

Parameter Symbol Value Unit 

Length of the well L 4000 m 
Well inclination θ(x) π/2 rad 

Liquid-bulk modulus βl 1.1×109 Pa 
Sound speed in gas cg 316 m/s 
Reference pressure p0 105 Pa 
Liquid density at p0 ρ0 1500 kg/m3

Number of chokes nc 1 – 
Choke-flow factor kc,1 0.0025 m2

Average velocity Vd 0.5 m/s 
Liquid viscosity μl 0.04 Pa·s 
Gas viscosity μg 5×10–6 Pa·s 

Liquid-behavior index nl 0.95 - 
Bit-nozzle area An 5.77×10–4 m2

Space-discretization-step length ∆x 12.5 m 
Bit-control-volume length ∆l 1.5∆x m 

Gas-production index κg 8×10–7 kg/(Pa·s) 
Bit-discharge coefficient cd 0.8 – 

Profile parameter C0 1.1 – 
Number of discretization cells N 320 – 

CFL number CFL 0.9 – 
Discretization parameter m 20 – 

Table 2—Simulation parameter values.
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where CFL is called the CFL number that should be less than unity (Courant et al. 1967). Note that while one can choose different time-
steps for the drillstring and the annulus in computing Eq. 27, here we choose both to be equal and assume that k ¼ cl. For the case
when there is gas in the annulus, the timestep (Eq. 45) can be highly conservative (in the sense that it is chosen much smaller than the
maximum value it can take) for computing Eq. 27 for the annulus, causing a diffusive solution for the annulus. This is because even for
small values of ag in a cell, the sound velocity in that cell can drop substantially.

We perform the simulations for the following three common and representative drilling scenarios:
• For the first case study, we run the implemented model for a choke-plugging scenario; that is, a contingency where the choke

effective area drops because of, for example, partial or complete blockage of the orifice by drilling cuttings. Here, we replicate
such a scenario by a sudden decrease in the choke-flow factor kc,1 in Eq. 22 during drilling ahead.

• Making a pipe connection is a common, normal drilling operation that takes place approximately every 2 to 10 hours, depending
on the rate of penetration. A pipe-connection operation entails halting drilling by slowly ramping down the pump flow to zero,
and then bleeding off the trapped pressure inside the drillstring by opening a bleedoff valve. Afterward, the topdrive is detached
from the drillstring, and a new stand of drillpipe is screwed onto the drillstring. After that, the rig-pump flow is ramped up again,
resuming the drilling.

• Gas influx, or gas kick, and subsequent gas migration in the annulus is the third scenario that will be studied. A kick usually hap-
pens when the reservoir pressure exceeds the well pressure, which can occur for reasons such as drilling into a high-pressure zone,
a pressure drop during a pipe connection, or swab and surge effects. We simulate such a scenario by increasing the reservoir pres-
sure to replicate running into an unexpected high-pressure zone.

Regarding the control system, a simple pressure-control system is used to maintain the downhole pressure during these scenarios.
We design this control system using the simple lumped-parameters model in Kaasa et al. (2012). This model consists of three ordinary-
differential equations, and in this model the wave-propagations effect is compromised in exchange for simplicity. Although this model
is derived from a single-phase-flow assumption, it partially accounts for two-phase scenarios through the parameters related to the bulk
moduli. A comparison between this design model and the simulation model is provided in Table 3.

Remark 9. The focus of this paper is not on controller design, and the used controller does not necessarily provide a satisfactory
pressure-control performance. The focus is rather on assessing how certain model/system aspects, taken into account in the proposed
model, affect closed-loop-system performance.

Following the work by Kaasa et al. (2012), this control system is made up of two parts: a proportional-integral controller that regu-
lates the surface pressure pc through the choke opening zc as the control input, and an estimator that generates a reference for the con-
troller from the surface and downhole measurements and also the reference given for the downhole pressure p�dh. The reference
generator consists of a parametrized model, approximating the surface pressure depending on a given reference for the downhole pres-
sure, and an estimator that generates an estimate for the parameters of this model. This estimator is designed with a recursive-least-
square method with a forgetting factor (Nelles 2001). Assuming laminar flow, the parametrized model is given by

p�cðtÞ ¼ p�dhðtÞ � ½JcðtÞ � JbppðtÞ�½1� hf ðtÞ�F� ½1� hgðtÞ�G; ð46Þ

where F ¼
ðl

0

32llq0

AaðxÞd
2

aðxÞ
dx and G ¼ g

ðl

0

q0sin½haðxÞ�dx; hf ðtÞ and hgðtÞ are the to-be-estimated parameters, the estimates of which are

indicated by ĥ f ðtÞ and ĥgðtÞ, respectively. Here, we assume that the surface measurements are available at a high sampling rate while
the downhole measurements are performed at a low rate, which is often the case in realistic drilling scenarios. Here, we take the down-
hole sampling period during normal operations to be Dte ¼ 20 seconds. In practice, and especially in the case of long wells, there is
also some delay in transmitting the downhole measurements to the surface because of the use of mud-pulse telemetry. However, we
here assume that the downhole data are immediately available after measurement. Moreover, we assume that the only choke, described

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ledoMngiseDledoMnoitalumiSnoitidnoCledoM

sEDO3swalerusolc5+sEDP5ytixelpmoC
Number of dimensions 1D 1D 

Number of phases 2 1 
Captures liquid/liquid flows Yes No 
Captures gas/liquid flows Yes No 

Captures flow compressibility Yes No 
Captures wave propagation Yes No 

Captures gas migration Yes No 
Captures liquid influx Yes Yes 
Captures gas influx Yes No 

Captures flow-pattern transitions Yes No 
Captures variation in cross-sectional area Yes No 

Isothermal-condition assumption Yes Yes 
Radially homogeneous flow assumption Yes Yes 

Axial flow assumption Yes Yes 

Table 3—Conditions of the simulation model vs. the design model. ODE¼ordinary-differential equation.
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by Eq. 22, has a linear characteristic in its operating range [i.e., G1ðzc;1Þ ¼ zc;1 for 0 � zc;1 � 1, and G1ðzc;1Þ ¼ 0 and G1ðzc;1Þ ¼ 1 for
zc,1< 0 and zc,1> 1, respectively]. However, one can consider more complex characteristics for the choke through Gð�Þ.

Results for a Choke-Plugging Scenario. Here, the results for a choke-plugging scenario are shown. In this scenario, the choke-flow
factor kc,1 drops by 50% from its nominal value at t¼ 400 seconds. Because a laminar flow has weaker damping effects on propagating
pressure waves and an objective of this subsection is to illustrate the distributed aspects of the model, we consider a laminar flow with
nl¼ 1 along the entire flow path in this scenario. The corresponding results are reported in Fig. 9, on the left-hand side of which are the
pressure signals for both the design model and the simulation model, and on the right-hand side of which are snapshots of the liquid
velocity along the flow path. As seen from the left-hand side of Fig. 9, the overall closed-loop responses in both models are similar; the
design and simulation models show close dynamical behaviors in this scenario. The difference between the two models in terms of the
steady-state values of the pressures pc and pp is because the compressibility of the liquid is not captured in the design model.

The developed simulation model in this paper captures the wave-propagations effects to a large extent, and these effects can be
clearly observed in the left-hand side of Fig. 9 (for the simulation model) in the time delays that exist between the time when the pres-
sure wave is generated at the surface and the times when it affects the downhole and pump pressures. In addition, the jagged behavior
observed in the pressure signals is caused by the wave-propagation effects. A more insightful illustration of this effect is given in the
figure in the right-hand side of Fig. 9 by the snapshots of the liquid velocity along the flow path at a variety of time instances. In particu-
lar, Fig. 9, right-hand side, illustrates the propagation and reflection of pressure waves when striking obstacles (such as the bit), as well
as geometrical changes in the flow path. As can be seen, right before the choke gets plugged, the system is experiencing a nearly
steady-state condition. When the choke is plugged at t¼ 400 seconds, it causes some fluctuations in the velocity (and also pressure) pro-
files of the system that keep propagating along the system afterward, until those are mitigated on a longer time scale, because of fric-
tional effects and control suppression, as well as numerical dissipations.

In summary, these results show the value of the proposed model in the scope of the performance evaluation of MPD control systems.

Results for a Pipe-Connection Scenario. Next, we present the simulation results in a pipe-connection scenario. The results are pre-
sented for two sets of control parameters to further illustrate how neglecting the fast transients (such as wave-propagation effects result-
ing from the distributed nature of the system) in the design model can deteriorate the closed-loop performance.

In this scenario, the mass-flow rates of the mud pump and the backpressure pump change as in Fig. 10. When the pump-flow rate
reaches a level less than one-half of its nominal value, we stop sampling the downhole variables and updating the estimator to replicate
a realistic connection scenario during which the downhole measurements are not available because of the lack of mud circulation.

We first implement this scenario by considering the set of control parameters, referred to as Parameter Set 1, which are designed to
lead to slow and gentle control signals and a rather slow closed-loop system in terms of recovering from disturbances such as changes
in the pump flow. We report the results of these simulations in Figs. 11 and 12. We apply the controller to both the design model and
simulation model. It is observed from Fig. 11 that the simulation model exhibits a transient behavior that is similar to that of the design
model. This observation indicates that the simulation model reduces to the design model when the operations are performed slowly,
such as in pipe connections. We have also shown the flow and pressure drop of the bit in Fig. 12. As expected, when the pressure drop
is negative [i.e., pdðt;LÞ � paðt; 0Þ < 0], the flow through the bit (Jbit) becomes zero because of the non-return valve.

Results of these simulations can, however, be misleading because they might lead one to conclude that the distributed nature of a
drilling system with MPD need not be taken into account while designing a pressure controller. To show that this can be a wrong con-
clusion and to further highlight the considerable effects of the distributed nature the system on the closed-loop performance, we repeat
the same simulation scenario, but with the second set of control parameters, referred to as Parameter Set 2, which should lead to faster
control signals and better closed-loop performance in terms of recovering from disturbances. The results are plotted in Fig. 13. As
expected, the closed-loop performance with the design model as the plant has improved. However, the response quality when this con-
troller is applied to the simulation model has degraded unexpectedly. This has the following important implications:

0

500

1000

1500

2000

2500

3000

3500

4000
3.06.0

110

640

650

660

15

20

2570

65

60

55

660

650

640

125

120

115

105

100
6.5 7.0

Time (minutes)

p p
 (

ba
r)

p d
h 

(b
ar

)
p c

 (
ba

r)

7.5 8.06.0 6.5 7.0

Time (minutes)
7.5 8.0

6.0 6.5 7.0 7.5 8.06.0 6.5 7.0 7.5 8.0

6.0 6.5 7.0 7.5 8.06.0 6.5 7.0

Design Model

Signal
Reference

Simulation Model Drillstring Annulus

Before

3.5 seconds after
6 seconds after
11 seconds after

7.5 8.0

3.5 4.0

D
ep

th
 (

m
)

4.5 1.0 1.5 2.0 2.5
υl (m/s)υ (m/s)

3.0 3.5

0

500

1000

1500

2000

2500

3000

3500

4000

Fig. 9—Simulation results for a choke-plugging event: (left) the choke, downhole, and pump-pressure signals while comparing the
design model with the simulation model; (right) snapshots of the spatial velocity profile for the simulation model before and after
the event.
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• The simulation model is more realistic than the design model, and it provides a more accurate prediction of the flow and pressure
behavior in a drilling system.

• One should not rely only on the theoretical results derived from the design model and the simulations on a high-fidelity simulation
model because those might show perfect performance in some scenarios and poor performance in other scenarios. This can be
because this controller with Parameter Set 2 results in closed-loop dynamics that are too fast that the fast dynamical aspects of the
drilling system (such as the pressure wave-propagation effects) are no longer negligible.

• By having the time scale of the fast dynamics of the system, we can already predict intuitively which proportional-integral control
parameters can result in poor performance without needing to perform time-consuming simulations on the simulation model.
However, doing so might be challenging or even impossible when the control system is more complicated.

In such cases, one approach to determine the performance of the closed-loop system can be performing semianalytical system analy-
ses together with simulation studies on the simulation hydraulics model, which includes only the pressure control aspects of MPD to
allow for fast analyses and also simulations.
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Fig. 11—Simulation results for a pipe-connection scenario for Parameter Set 1: the choke, downhole, and pump-pressure signals
from (left) the design model and (right) the simulation model.

4 6 8 10 12 14 16
Time (minutes)

M
as

s-
F

lo
w

 R
at

e 
(k

g/
s)

18 20 22 24
0

10

20

30

40

50

60

Mud pump

Backpressure pump

Fig. 10—Mass-flow rates of the mud pump and the backpressure pump in the connection scenario.

DC201108 DOI: 10.2118/201108-PA Date: 4-May-20 Stage: Page: 16 Total Pages: 22

ID: jaganm Time: 12:14 I Path: //chenas03.cadmus.com/Home$/jaganm$/SA-DC##200007

16 2020 SPE Drilling & Completion



Results for a Gas-Influx Scenario. This subsection illustrates the ability of the hydraulics model to capture gas influx and migration
scenarios in the annulus in a closed-loop setting with MPD. Throughout this scenario the pump-flow rate is kept constant at Jp¼ 60 kg/s.
A rapid 4% increase in the reservoir pressure pr is applied at t¼ 400 seconds, resembling the scenario of encountering a high-pressure
zone while drilling. Before this time, the flow is single phase all along the flow path. Here, we assume that we can detect the resulting
gas kick and also identify the new reservoir pressure some time after it begins. Afterward, a new reference, larger than the reservoir pres-
sure, is set for the downhole pressure to prevent additional gas influxes into the wellbore. To prevent a potential control failure, this oper-
ation, changing p�dh, is performed slowly. We should mention that a common practice during a kick is to control the pump pressure rather
than the downhole pressure.

The simulation results are depicted in Figs. 14 and 15. The choke, downhole, and pump pressures are shown on the left-hand side of
Fig. 14. On the right-hand side of Fig. 14, we illustrate the choke opening together with the parameters of the estimator. We can clearly
observe that when the gas reaches the surface, it leads to a rapid change in the choke opening. Moreover, the gas expansion in the annu-
lus causes ĥg to increase for some time, as expected, given the fact that the gas-expansion phenomenon lowers the hydrostatic pressure
in the annulus. Fig. 15 gives an illustration of the gas migration and its effects on the flow rate through the choke. We can see from
snapshots of the gas void fraction ag, on the right-hand side of Fig. 15, that as the kick moves closer to the surface it expands more
because of a lower pressure. The gas expansion is also illustrated in Fig. 16. The gas expansion also increases the mass-flow rate of the
choke, as can be clearly observed from Jc(t). On the contrary, when the kick reaches the surface and starts leaving the annulus through
the choke, the mass-flow rate of the choke rapidly drops, starting at approximately t¼ 33.5 minutes. The steady-state difference
between the accumulative mass of the influx and the accumulative mass of the gas through the choke shows that the used scheme does
not exactly preserve the mass-flow rate. To obtain more accuracy in this respect, one can adapt well-balanced schemes that are more
capable of preserving the steady-state response (Chertock et al. 2015). However, in general, this type of scheme is highly expensive
computationally. It is observed that the control system successfully, in terms of remaining stable, circulated out the kick in this scenario.
Yet it is not unreasonable to expect the failure of the designed control system in events such as a choke plugging when there is a two-
phase flow in the annulus. The reason for this is large changes in the system behavior that can occur in such cases. In particular, even
for small amounts of gas-void fraction ag, the sound velocity of the flow in the annulus drops dramatically, causing the fast dynamics of
the system to stop being regarded as fast. This observation again implies the importance of performing a semianalytical assessment of
the performance of a pressure-control system using simulation models, in addition to simulation studies.
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Fig. 13—Simulation results for a pipe-connection scenario for Parameter Set 2: the choke, downhole, and pump-pressure signals
from (left) the design model and (right) the simulation model.
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Simulations Starting from a Transient State. In general, drilling systems with automated MPD are close to some steady-state condi-
tion for most of the drilling time. Therefore, it is reasonable to start the simulation of many drilling scenarios from a steady state of the
hydraulics model. Nonetheless, a reliable MPD control system should also show robustness to situations where the system is already in
a transient state when the control system takes over the control task. Therefore, in this part, we present simulation results that have been
started from a transient initial condition. To design a transient initial condition for these simulations, we consider a steady state of the
model without any gas in the wellbore and then add a pocket of gas to perturb it. The gas migration corresponding to this scenario is
reported on the right-hand side of Fig. 17. In Fig. 17, the snapshot caught at the zero time shows the considered initial condition for ag.
The pump, downhole, and choke-pressure signals are reported on the left-hand side of Fig. 17. These simulations show that this hydraul-
ics model and the numerical tool can also be used to simulate drilling scenarios starting from a transient state.

Conclusions

A two-phase hydraulics model in the form of two coupled systems of PDEs has been derived for MPD. The model complexity is limited
by incorporating only the mass transport, pressure dynamics, and other aspects of an MPD system that can affect the performance of a
pressure-control system in real-world drilling scenarios. Therefore, it provides a basis for evaluating the performance of pressure-
control systems in virtual test scenarios. Moreover, an approach has been presented for numerical implementation of the model. Varia-
tions in the cross-sectional area of the flow path as well as the nonlinear boundary conditions are often not considered in the control
design but do exist in reality, and can significantly jeopardize the performance and stability of a pressure-control system. These aspects
have been captured in the model and are accounted for during numerical implementations. The predictive capability of the model and
the performance of the numerical implementations have been demonstrated through illustrative case studies representing a choke-
plugging, connection, and gas-influx scenario. Through these studies, we have also demonstrated the importance of keeping the com-
plexity of an MPD simulation low. However, the developed model is not suitable for handling scenarios related to vertical motions of
the drillstring, such as washing-stand and tripping scenarios. Adding this aspect to the model is the focus of ongoing research. In addi-
tion, we have illustrated the high accuracy of the model by comparing it with field data from a real-life drilling well for single-phase
scenarios. A direction of our current work is the further validation of the developed MPD model in this paper by comparing simulation
results and drilling field data for two-phase-flow drilling scenarios.

Nomenclature

Aa ¼ annulus area, m2

Ad ¼ drillstring area, m2

An ¼ bit-nozzle area, m2

cd ¼ bit-discharge coefficient
cg ¼ sound speed in gas, m/s
cl ¼ sound speed in liquid, m/s

C0 ¼ profile parameter
CFL ¼ CFL number

din ¼ inner diameter of drillstring, m
do ¼ outer diameter of drillstring, m
D ¼ hydraulic diameter, m

Deff ¼ effective diameter, m
Din ¼ wellbore diameter, m

G ¼ choke characteristic
Jbpp ¼ backpressure pump-flow rate, kg/s

Jp ¼ rig pump-flow rate, kg/s
kc ¼ flow factor of choke, m2

L ¼ well length, m
nc ¼ number of choke valves
nl ¼ liquid-behavior index

nm ¼ mixture-behavior index
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Fig. 17—Simulation results for a transient initial condition: (left) the pump, downhole, and choke-pressure signals and (right)
snapshots of the gas-void fraction ag along the annulus.
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n ¼ temporal discretization index
N ¼ number of cells in discretization
pa ¼ pressure in annulus, Pa
pc ¼ choke pressure, Pa
pd ¼ pressure in drillstring, Pa

pdh ¼ downhole pressure, Pa
pp ¼ pump pressure, Pa
pr ¼ reservoir pressure, Pa
p0 ¼ reference pressure, Pa
Re ¼ generalized Reynolds number, Pa

t ¼ temporal variable, seconds
v ¼ liquid velocity in drillstring, m/s

vg ¼ gas velocity, m/s
vl ¼ liquid velocity in annulus, m/s

vm ¼ mixture velocity, m/s
Vd ¼ drift velocity, m/s
zc ¼ opening of choke
ag ¼ gas-void fraction
al ¼ liquid-void fraction
bg ¼ gas-bulk modulus, Pa
bl ¼ liquid-bulk modulus, Pa
Dl ¼ bit-control volume length, m
Dx ¼ spatial discretization step size, m
Dt ¼ discretization timestep size, seconds
e ¼ pipe roughness, m
h ¼ well inclination, rad
hf ¼ frictional correction parameter
hg ¼ gravitational correction parameter

h ¼ average well inclination, rad
jg ¼ gas-production index, kg/(Pa�s)
lg ¼ gas dynamic viscosity, Pa�s
ll ¼ liquid dynamic viscosity, Pa�s
lm ¼ mixture viscosity, Pa�s
� ¼ Fanning friction factor

qc ¼ choke density, kg/m3

qg ¼ gas density, kg/m3

ql ¼ liquid density in annulus, kg/m3

qm ¼ mixture density, kg/m3

q0 ¼ liquid density at p0, kg/m3
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Appendix A—Approximate Solution for Turbulent Flows

We here present an approximate solution to Eq. 6 using a first-order Taylor-series expansion. From Eq. 6, we define

Hð�Þ :¼ 1ffiffiffi
�
p þ 4 log

0:27e
Deff

þ 1:26n�1:2
m

�ð1�
nm
2
ÞRe

� 
n�0:75
m

8<
:

9=
;; ðA-1Þ

such that Hð�Þ ¼ 0. We take

� ¼ �0 � D�; ðA-2Þ

where

�0 ¼
1

16 log
0:27e
Deff

þ 5:74

Re0:9

� �� 	2
; ðA-3Þ

is a well-known approximate solution to the Colebrook equation, which is recovered from Eq. A-1 for nm¼ 1 (Swanee and Jain 1976).
Moreover, D� is a parameter that is to be approximated. Now, using a Taylor expansion of Hð�Þ around �0, we obtain

Hð�Þ 	 Hð�0Þ � H0ð�0ÞD�; ðA-4Þ

where H0ð�0Þ ¼
dH

d�
ð�0Þ is available analytically. Following Eq. A-4, designing D� as

D� ¼ Hð�0Þ
H0ð�0Þ

; ðA-5Þ

leads to Hð�0 � D�Þ 	 0. Substituting this design of D� into Eq. A-2 further leads to an explicit approximation for the friction factor,

� 	 �0 �
Hð�0Þ
H0ð�0Þ

: ðA-6Þ

One can expand Eq. A-6 to obtain a closed-form description of it to reduce the computational burden during simulations. Our
numerical evaluations verified the high accuracy of this approximate solution over a wide range of Reynold’s numbers and
0:6 < nm < 1:4.

Appendix B—Derivation of the Dynamical Bit Equation

The bit equation is obtained by considering a control volume filled with only liquid over the bit, as illustrated in Fig. 3, and averaging
the momentum-conservation equation for liquid over the control volume. For the first and second halves of this control volume, each of
the length Dl=2, in the drilling and annulus, we obtain, respectively,

Dl

2

dzðtÞ
dt
¼ AdðLÞ

z2ðtÞ
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Aað0Þqaðt; 0Þ

þ paðt;Dl=2Þ � paðt; 0Þ
� 	

þ ~saðtÞ; ðB-2Þ

where z(t) is an approximation of the average mass-flow rate in this control volume, which also gives an approximation of the flow
through the bit. Note that we have also assumed a single-phase flow in the one-half of this control volume that is in the annulus. More-

over, ~sd ¼ AdðLÞ
ðL

L�Dl=2

sdðud; t; xÞdx and ~sa ¼ Aað0Þ
ðDl=2

0

saðua; t; xÞdx. These terms can be approximated as

~sdðtÞ ’ AdðLÞ
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2
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2

� �
; ~saðtÞ ’ Aað0Þ

Dl

2
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Dl

2

� �
: ðB-3Þ

Next, considering that qðt;L� Dl=2Þ ’ qðt;LÞ and qaðt;Dl=2Þ ’ qaðt; 0Þ, subtracting Eq. B-1 from Eq. B-2 results in

Aað0Þpaðt; 0Þ þ AdðLÞpdðt; LÞ ¼ Aað0Þpaðt;Dl=2Þ þ AdðLÞpdðt;L� Dl=2Þ � ~sdðtÞ þ ~saðtÞ: ðB-4Þ

Now, given the bit equation in Eq. 18, we have

pdðt;LÞ � paðt; 0Þ ¼
1

2qðt; LÞ
zðtÞ
cdAn

� 	2

; z > 0: ðB-5Þ

If we solve Eqs. B-4 and B-5 for pd(t,L) and pa(t,0) and substitute the solution into the summation of Eqs. B-1 and B-2, we obtain the
bit equation (Eq. 39).
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