
814 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 5, MAY 2004

provided to show that the proposed annular bound is less conservative
than the existing results reported recently.

APPENDIX

PROOF OF THEOREM 1

Suppose that r 2 Z [f(z)]. Then, it is easy to see that r 2 Z[g(z)].
This implies that

r
n + an�1r

n�1 + an�2r
n�2 + � � �+ a1r + a0

= r
2n + b2n�2r

2n�2 + b2n�4r
2n�4 + � � �+ b2r

2 + b0

= 0:

Thus, one has

jrjn+jan�1jjrj
n�1+jan�2jjrj

n�2+� � �+ja1jjrj � ja0j

jrj2n+jb2n�2jjrj
2n�2+jb2n�4jjrj

2n�4+� � �+jb2jjrj
2 � jb0j

jrjn � jan�1jjrj
n�1+jan�2jjrj

n�2+� � �+ja1jjrj+ja0j

jrj2n � jb2n�2jjrj
2n�2+jb2n�4jjrj

2n�4+� � �+jb2jjrj
2+jb0j

which imply that

f1 (jrj) � 0; f2 (jrj) � 0; f3 (jrj) � 0; and f4 (jrj) � 0: (2)

In the following, we separate two cases to discuss the annular bounds
for the zeros of the polynomial of (1).

Case 1: a0 6= 0 (or, equivalently, b0 6= 0)

By Descartes’ rule of signs, it can be readily obtained that each poly-
nomial equation fi(x) = 0, with i 2 4, has a unique positive root.
Moreover, it is easy to see that

f1(x) < 0; 8x 2 [0; �1) f1(�1) = 0

and f1(x) > 0 8x 2 (�1;1) (3a)

f2(x) < 0 8x 2 [0; �2); f2(�2) = 0

and f2(x) > 0 8x 2 (�2;1) (3b)

f3(x) < 0 8x 2 [0; �3); f3(�3) = 0

and f3(x) > 0 8x 2 (�3;1) (3c)

f4(x) < 0 8x 2 [0; �4); f4(�4) = 0

and f4(x) > 0 8x 2 (�4;1) (3d)

which imply that

jrj � �1; jrj � �2 jrj � �3 and jrj � �4 (4)

in view of (2) and (3).

Case 2: a0 = 0 (or, equivalently, b0 = 0)

By Descartes’ rule of signs, it is easy to see that �1 = �2 = 0 and

f1(x) � 0 and f2(x) � 0 8x 2 [�1;1) (5a)

f3(x) < 0 8x 2 [0; �3); f3(�3) = 0

and f3(x) > 0 8x 2 (�3;1) (5b)

f4(x) < 0 8x 2 [0; �4); f4(�4) = 0

and f4(x) > 0 8x 2 (�4;1) (5c)

which imply that

jrj � �1 jrj � �2 jrj � �3 and jrj � �4 (6)

in view of (2) and (5).
From (4) and (6), we conclude that l := maxf�1; �2g � jrj �

minf�3; �4g := u, with r 2 Z[f (z)]. This completes the proof.
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The Local Output Regulation Problem:
Convergence Region Estimates

Alexei Pavlov, Nathan van de Wouw, and Henk Nijmeijer

Abstract—In this note, the local output regulation problem is considered.
The presented results answer the question: Given a controller solving the
local output regulation problem, how do you estimate the set of admissible
initial conditions for which this controller makes the regulated output con-
verge to zero?The results are illustrated by a disturbance rejection problem
for the transitional oscillator with a rotational actuator (TORA) system.

Index Terms—Convergence region, disturbance rejection, nonlinear sys-
tems, output regulation.

I. INTRODUCTION

In this note, we consider the problem of asymptotic regulation of the
output of a dynamical system, which is subject to disturbances gener-
ated by an external system. This problem is known as the output reg-
ulation problem. For nonlinear systems, solutions to the local output
regulation problem were given in [1] and [2]. In [1], necessary and suf-
ficient conditions for the solvability of the problem in some neighbor-
hood of an equilibrium were obtained and a procedure for designing a
controller that solves the problem was presented. That paper was fol-
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lowed by publications regarding the local approximate output regula-
tion problem [6], [7] and other aspects of the output regulation problem
for nonlinear systems: regulation in the presence of uncertainties, adap-
tive, semiglobal and global output regulation (see [3]–[5], [9], and the
references therein). At the same time, one problem regarding the local
output regulation problem remained open: given a controller solving
the problem in some neighborhood of the origin, how to determine (or
estimate) a neighborhood of admissible initial conditions? Without an-
swering this question, solutions to the local output regulation problem
may not be satisfactory from an engineering point of view.

The first answers to that question were given in [10] and [11]. In
those papers, procedures for estimating the set of admissible initial con-
ditions were proposed. In this note, we extend the results obtained in
[10] and [11] in order to obtain improved estimation results. The anal-
ysis is based on the results of [12], [13], and [20], which give sufficient
conditions for every trajectory in a certain set to be exponentially stable.
More information related to such properties of dynamical systems can
be found in [14]–[16], and [10].

This note is organized as follows. In Section II, we recall the local
output regulation problem and state the problem of estimating the set
of admissible initial conditions. In Section III, some auxiliary technical
results are presented. Section IV contains the main estimation results.
In Section V, the obtained results are applied to a disturbance rejection
problem in the transitional oscillator with a rotational actuator (TORA)
system (see [17] and [18] for details about the TORA system). Conclu-
sions are presented in Section VI. The proofs of all results are given in
the Appendix.

The notations used in the note are the following.AT is the transpose
of matrix A and A�T := (A�1)T ; the norm of a vector is denoted
as jzj = (zT z)1=2; for a positive–definite matrix P = P T > 0, we
define the vector norm j � jP as jzjP :=

p
zTPz; kPk is the operator

norm of the matrix P induced by the vector norm j � j; I is the identity
matrix; the largest eigenvalue of a symmetricmatrixJ = JT is denoted
�(J) and DFz(z) is the Jacobian matrix of F (z).

II. ESTIMATION PROBLEM STATEMENT

First, we recall the problem of local output regulation. Following [1],
consider systems modeled by equations of the form

_x = f(x; u; w) (1)

e = h(x;w) y = hm(x; w) (2)

with state x 2 n, input u 2 p, regulated output e 2 l , measured
output y 2 l , and exogenous inputw 2 Rm generated by the linear
exosystem

_w = Sw: (3)

The functions f; h and hm are at least continuously differentiable and
f(0; 0; 0) = 0; h(0; 0) = 0; hm(0; 0) = 0. It is assumed that ex-
osystem (3) is neutrally stable, i.e., the equilibriumw = 0 is Lyapunov
stable in forward and backward time [4]. The assumption of linearity
of the exosystem is introduced in order to avoid unnecessary technical
complications. All results presented later can be extended to the case
of a general neutrally stable exosystem. Due to the neutral stability
assumption, the spectrum of S consists of simple eigenvalues on the
imaginary axis with, possibly, multiple eigenvalues at zero. Without
loss of generality, we assume that S is skew-symmetric and, thus, any
solution of (3) has the property jw(t)j � Const. Notice that if the
right-hand side of (1) depends on a vector  of unknown constant pa-
rameters, w and  can be united and treated together as an external
signal (w; ) generated by an extended exosystem given by (3) and
_ = 0. This extended exosystem also satisfies the assumptions given

before. Here, we assume that such extension has already been made
and that (3) corresponds to an extended exosystem.

The local output regulation problem is to find, if possible, a feedback
of the form

_� = �(�; y) (4)

u = �(�; y) (5)

with �(0; 0) = 0 and �(0; 0) = 0 such that a) e(t) = h(x(t);w(t))!
0 as t ! 1 along every solution of the system

_x = f(x; �(�; hm(x;w)); w) (6)
_� = �(�; hm(x;w)) (7)

_w = Sw (8)

starting close enough to the origin; and b) for w(t) � 0, the equilib-
rium point (x; �) = (0; 0) of the closed-loop system (6), (7) is locally
exponentially stable.

A controller solving the local output regulation problem makes
the output e tend to zero at least for small initial conditions
(x(0); �(0); w(0)). Without specifying the region of admissible
initial conditions for which output regulation occurs, such solution
may not be satisfactory from an engineering point of view. Thus, we
come to the following estimation problem: Given the closed-loop
system (6), (7) and the neutrally stable exosystem (8), estimate the
region of admissible initial conditions for which the regulated output
e(t) = h(x(t);w(t)) tends to zero.

Denote z := (xT ; �T )T 2 n+k (k is the dimension of �). Then,
the closed-loop system (6), (7) can be written as

_z = F (z;w)

e = �h(z;w) := h(x; w) (9)

where F (z;w) is the right-hand side of (6), (7). It is well known (see
[1] and [3]) that a controller solves the local output regulation problem
if and only if the corresponding closed-loop system (9) satisfies the
following conditions.

A) The Jacobian matrix DFz(0; 0) is Hurwitz.
B) There exists a mapping z = �(w) defined in a neighborhood

W of the origin, with �(0) = 0, such that

@�

@w
(w)Sw = F (�(w);w)

0 = �h(�(w);w); 8 w 2 W: (10)

We will give a solution to the estimation problem based on the func-
tions F (z; w) and �(w), which are found at the stage of controller de-
sign [1]–[5]. To simplify the subsequent analysis, it is assumed that the
closed-loop system (9) and the mapping �(w) are defined globally for
all z 2 n+k and w 2 m (i.e., W = m). If this assumption does
not hold, one should restrict the subsequent results to the sets Z � n

andW � m for which F (z;w) and �(w) are well defined.
Before proceeding with solving the estimation problem, we discuss

the main idea of the solution. First, we find two sets C � n+k and
Wc � m having the following property: If w(t) 2 Wc for t � 0,
then any two solutions z1(t) and z2(t) of system (9) lying in C for all
t � 0 converge to each other: jz1(t) � z2(t)j ! 0 as t ! 1. We
call such set C a convergence set and the set Wc a companion to the
set C. Such sets exist, due to conditionA). This condition implies that
near the origin, for smallw(t), the closed-loop system (9) behaves like
a linear asymptotically stable system and, in particular, all its solutions
are exponentially stable. Second, we find a set Y � C �Wc of initial
conditions (z(0);w(0)) such that any trajectory (z(t);w(t)) starting
in this set satisfies the following conditions: w(t) 2 Wc; �(w(t)) 2 C
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and z(t) 2 C for all t � 0. As follows from condition B); �z(t) :=
�(w(t)) is a solution of system (9) along which e(t) � 0. Thus, by the
properties of C andWc, it holds that z(t)! �z(t) := �(w(t)) as t!
+1 and, hence, e(t) = �h(z(t);w(t))! �h(�(w(t));w(t)) � 0. So,
Y is an estimate of the set of admissible initial conditions (z(0);w(0))
for which output regulation occurs.

III. CONVERGENCE SETS AND THE DEMIDOVICH CONDITION

In this section, we present and discuss a technical result about con-
vergence sets for a system with input w given by

_z = F (z;w); where z 2 n+k; w 2 m F (�; �) 2 C1:

(11)

The next lemma gives sufficient conditions for sets C � n+k and
Wc �

m to be a convergence set and its companion, respectively.
Lemma 1 [12] [20]: Suppose a convex set C � n+k and a set

Wc �
m satisfy the Demidovich condition

sup
z2C;w2W

�(PDFz(z;w) +DF
T
z (z;w)P ) =: �� < 0 (12)

for some positive–definite matrix P = P T > 0. Then, for any con-
tinuous input w(t) such that w(t) 2 Wc for t � 0, any two solutions
z(t) and �z(t) of (11) lying in C for all t � 0 satisfy

jz(t)� �z(t)j � Ce��tjz(0)� �z(0)j (13)

for some � > 0 and C > 0 that are independent of the particular
z(t); �z(t) and w(t).

The proof of this result is based on the Lyapunov-like function
V (z; �z) = jz � �zj2P . Condition (12) guarantees that if z(t) and �z(t)
lie in C and w(t) 2 Wc, then the function V (z(t); �z(t)) satisfies
_V � ��=kPkV . This, in particular, implies that if the ellipsoid
EP (�z(t); r) := fz : V (z; �z(t)) < rg is contained in C for all t � 0,
then EP (�z(t); r) is invariant. Uniting this observation with Lemma 1,
we obtain the following corollary.
Corollary 1: Suppose C and Wc satisfy the conditions of Lemma

1. Let w(t) 2 Wc for all t � 0 and �z(t) be a solution of (11) such that
�z(t) 2 C for all t � 0. If the ellipsoid EP (�z(t); r) is contained in C
for all t � 0, then any solution of (11) starting in z(0) 2 EP (�z(0); r)
satisfies (13).

In order to solve the estimation problem stated in Section II, we
need to find sets C and Wc satisfying the Demidovich condition.
If DFz(0; 0) is Hurwitz (this is the case in the output regulation
problem), one can choose a matrix P = P T > 0 satisfying the
matrix inequality PDFz(0; 0) + DFT

z (0; 0)P < 0. By continuity,
PDFz(z;w) + DFT

z (z;w)P is negative definite at least for small
z and w. Hence, the Demidovich condition (12) is satisfied for
C(R) := fz : jzj < Rg and W(�) := fw : jwj < �g for some
smallR and �. If PDFz(z;w) +DFT

z (z;w)P depends only on part
of the coordinates z, then the Demidovich condition is satisfied for
CN (R) := fz : jNzj < Rg andW(�) := fw : jwj < �g, where the
matrix N is such that Nz consists of the coordinates that are present
in PDFz(z; w) + DFT

z (z;w)P . Having chosen the matrix N , the
numbers � andR can be found numerically (in some simple cases this
can be done analytically).

IV. MAIN RESULTS

We begin with answering the following question: under what con-
ditions solves a controller, which solves the local output regulation
problem, the global output regulation problem?Note, that due to condi-
tionA), the closed-loop system (9) satisfies the Demidovich condition
(12) locally, i.e., for C andWc being some neighborhoods of the origin

in n+k and m, respectively. If the Demidovich condition is satisfied
globally, then output regulation is attained globally, as stated by the
following theorem.
Theorem 1: Let the local output regulation problem be solved. Sup-

pose, the closed-loop system (9) satisfies the Demidovich condition
(12) globally, i.e., for C = n+k and Wc = m. Then, any trajec-
tory (z(t);w(t)) of the closed-loop system (9) and the exosystem (8)
satisfies

jz(t)� �(w(t))j � Ce��tjz(0)� �(w(0))j (14)

for certain � > 0 and C > 0 independent of (z(t);w(t)), and e(t) =
�h(z(t);w(t))! 0 as t! +1.

This theorem is a straightforward consequence of Lemma 1 and the
fact that �z(t) := �(w(t) is a solution of (9) along which e(t) � 0.

If the Demidovich condition is satisfied only locally, we can find the
sets CN (R) and Wc(�) for which this condition holds. This can be
done numerically or, in some simple cases, analytically. Having found
such sets, we can solve the estimation problem stated in Section II. Prior
to formulating the solution, let us introduce the following function:

mN(w0) := sup
t�0

jN�(w(t;w0))j (15)

where w(t;w0) is a solution of the exosystem (8) satisfying
w(0; w0) = w0. The functionmN(w0) indicates whether �(w(t;w0))
lies in the set CN (R). Denote d to be the smallest number such that
the inequality jNzj � djzjP is satisfied for all z 2 n+k. The number
d can be found from the formula d = kNP�1=2k. Indeed

d = sup
jzj =1

jNzj = sup
jP zj=1

jNzj

= sup
j~zj=1

jNP�1=2~zj = kNP�1=2k:

The following theorem gives an estimate of the set of admissible initial
conditions in the form of a neighborhood of the output-zeroing mani-
fold z = �(w).
Theorem 2: Let the local output regulation problem be solved. Sup-

pose, the closed-loop system (9) satisfies the Demidovich condition
(12) with CN (R) := fz : jNzj < Rg and Wc(�) := fw : jwj <
�g for some R > 0; � > 0 and some matrix N . Then, any trajec-
tory (z(t);w(t)) of the closed-loop system (9) and the exosystem (8)
starting in the set

Y := f(z0; w0) : jw0j < �;mN(w0)

< R; jz0 � �(w0)jP <
1

d
(R�mN(w0)) (16)

satisfies

jz(t)� �(w(t))j � Ce��tjz(0)� �(w(0))j (17)

for some � > 0 and C > 0 independent of (z(t);w(t)), and e(t) =
�h(z(t);w(t))! 0 as t!1.

The relation between the setsY; CN (R) andWc(�) is schematically
shown in Fig. 1.

If we want the closed-loop system (9) and the exosystem (3) to start
in the set Y , we need to guarantee that, first, the exosystem starts in
a point w0 in the set M := fw0 : jw0j < �;mN(w0) < Rg and,
second, that the closed-loop system (9) starts in the setA(w0) := fz0 :
(z0; w0) 2 Y)g. As can be seen from Fig. 2, the sets A(w0) may be
different for different values of w0. Thus, the knowledge of w0 is im-
portant. In practice, however, we may not know the exact value of w0.
For example, if the exosystem generates disturbances, then, knowing
the level of disturbances, we can establish that w0 2 M, but still the



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 5, MAY 2004 817

Fig. 1. Relation between the sets Y; C (R) andW (�): Y is an invariant set
inside C (R) �W (�).

Fig. 2. SetsY andA(w): for differentw andw , the setsA(w ) andA(w )
may be different.

exact value of w0 is unknown. In order to cope with this difficulty, in
the next result we find sets Z0 and W0 such that in whatever point
w0 2 W0 the exosystem is initialized, output regulation will occur if
the closed-loop system starts in z0 2 Z0. Prior to formulating the re-
sult, we define the functions

�(r):= sup
jwj�r

(jN�(w)j+dj�(w)jP ); R(r):=(R��(r))=d: (18)

The function �(r) is nondecreasing and �(0) = 0. Let r� > 0 be the
largest number such that r� � � and �(r) < R for all r 2 [0; r�).
Now, we can formulate the result.
Theorem 3: The conclusion of Theorem 2 holds for any trajectory

(z(t); w(t)) starting in

z(0) 2 EP (R(r)) := fz : jzjP < R(r)g

w(0) 2 Bw(r) := fw : jwj < rg

for some r 2 [0; r�).
The proof of this theorem is based on the fact that for every r 2

[0; r�) the setEP (R(r))�Bw(r) is a subset of Y , as shown in Fig. 3.
We can enlarge the obtained estimates by redefiningR(r) [see (18)]

in the following way:

R(r) := (Rm(r)� �(r))=d (19)

where Rm(r) is defined as the largest number such that the Demi-
dovich condition is satisfied for CN (R) andWc(r) = fw : jwj < rg
for any R 2 [0;Rm(r)). In this case, the convergence of solutions
to the output-zeroing manifold will be exponential, but not uniform.

Fig. 3. Relation between the sets Y; E (R(r)) and B (r).

In practice, the functionRm(r) can be determined numerically and in
some cases analytically.

A. Estimates for the Local Approximate Output Regulation Problem

Even though the local output regulation can be solvable, it can be
extremely difficult to find a controller that solves it. For such controller,
the closed-loop system would satisfy conditionsA) and B). Condition
B) is the one that is difficult to satisfy. At the same time, in many
cases it is easy to find a controller that satisfies (10) in condition B)
approximately (see [6]–[3]), i.e., as follows.

B�) There exists a mapping z = ~�(w) defined in a neighborhood
W of the origin, with ~�(0) = 0, such that

@~�

@w
(w)Sw = F (~�(w);w) + "1(w)

0 = �h(~�(w);w) + "2(w) (20)

for all w 2 W , where "1(w) and "2(w) are small (in
some sense) continuous functions satisfying "1(0) = 0 and
"2(0) = 0.

It is known (see [6]), that if the closed-loop system satisfies condi-
tionsA) and B�), then for all sufficiently small initial conditions z(0)
and w(0) the regulated output e(t) converges to a function ~e(w(t)),
where ~e(w) is of the same order of magnitude as "1(w) and "2(w).
This is called local approximate output regulation. Since it is required
that the initial conditions must be sufficiently small, the problem of es-
timating this set of admissible initial conditions is also relevant in the
case of approximate output regulation. This estimation problem can
be solved using the same techniques as in the case of exact output
regulation. The main idea is to find a set of initial conditions ~Y �
C �Wc (where C andWc satisfy the Demidovich condition) such that
if (z(0);w(0)) 2 ~Y , then z(t) 2 C; ~�(w(t)) 2 C and w(t) 2 Wc, for
all t � 0. As follows from (20), ~z(t) := ~�(w(t)) can be considered
as a solution of the perturbed system _z = F (z;w) + "1(w(t)) and
along this solution the regulated output equals "2(w(t)). Since z(t) is
exponentially stable (because of the Demidovich condition), a small
perturbation "1(w(t)) implies, in the limit, a small difference between
z(t) and ~�(w(t)) (see [19, Ch. 5]). More precisely

lim sup
t!+1

jz(t)� ~�(w(t))j � C lim sup
t!+1

j"1(w(t))j (21)

for some constant C independent of z(0) and w(0). This, in turn,
implies

lim sup
t!+1

je(t)j � ~C lim sup
t!+1

j"1(w(t))j+ lim sup
t!+1

j"2(w(t))j (22)

for some ~C . Hence, ~Y is an estimate of the set of admissible initial
conditions. Estimates in the form of direct product ~Z0 � ~W0 can be
found in a similar way as in Theorem 3.
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Fig. 4. R(r) and r for the estimates E (R(r))� B (r).

V. EXAMPLE

Let us illustrate the application of Theorem 3. Consider the so-called
TORA-system described by equations of the form

_x1 = x2; _x2 = �x1 + � sinx3 + �D

_x3 = x4 _x4 = v

e = x1 � � sinx3 (23)

where � and � < 1 are some positive parameters, v is a control input
andD is a disturbance force. For simplicity, we assume that both x and
w are measured, i.e., y = (x; w). This system is a nonlinear bench-
mark mechanical system that was introduced in [17] (see also [18]).
The control problem is to find a controller such that e tends to zero
in the presence of a harmonic disturbance D of known frequency, but
unknown amplitude and phase. This is a particular case of the output
regulation problem. The disturbance force D can be considered as an
output of the linear harmonic oscillator

_w1 = 
w2 _w2 = �
w1 D = w1: (24)

For small initial conditions x(0) and w(0), this output regulation
problem is solved by a static controller of the form v = c(w)+K(x�
�(w)), where the mappings �(w) 2 4 and c(w) 2 are defined by
the formulas

�1(w) := �
�w1


2
�2(w) := �

�w2




�3(w) := � arcsin
�w1


2�

�4(w) := �
�
w2


4�2 � �2w2

1

(25)

ec(w) :=
�
2w1 
4�2 � �2 w2

1 + w2

2


4�2 � �2w2

1

3
(26)

and the matrixK is such that the closed-loop system has an asymptoti-
cally stable linearization at the origin. Indeed, it is easy to check that for
such controller the closed-loop system satisfies conditions A) and B)
with the specified �(w) (see [3] and [5] for details on solving the local
output regulation problem). Let us apply Theorem 3 to estimate the set
of admissible (x(0);w(0)) (since the controller is static, then z = x)
for the following values of the parameters: � = 0:5; � = 0:04;
 = 1,
K = (12;�4;�8;�5).

First, we must choose a matrix P = P T > 0 such that
PDFx(0; 0) + (DFx(0; 0))

TP < 0. We find such P from the
Lyapunov equation PDFx(0; 0) + (DFx(0; 0))

TP = �Q, where
Q is the diagonal matrix diag(2; 8; 1; 1). For convenience, P is
normalized such that kPk = 1. SinceDFx(x; w) depends only on x3,
the matrix N for the set CN(R) is chosen equal to N = (0; 0; 1; 0),
i.e., such that Nx = x3. So, the convergence set C is sought in the
form CN (R) := fx : jx3j < Rg (see Section III for details). Since

DFx(x; w) does not depend on w, the companion setWc can be taken
equal to m and Rm(�) � Const. Numerical computation gives
Rm = 1:03. Finally, computation of R(r) given by (19) gives us the
estimates of the admissible initial conditions sets:EP (R(r))�Bw(r).
The function R(r) is shown in Fig. 4. Note, that the mappings �(w)
and c(w) and, thus, the closed-loop system are defined only for
jw1j < 
2�=�. For the given values of the system parameters this
constraint is given by jw1j < 12:5. The obtained estimates satisfy
this condition. The estimates are fairly conservative. According to
simulations, for a fixed level of disturbance r, output regulation still
occurs for x(0) 2 EP ( �R(r)) with �R(r) about four-times larger than
the obtained R(r). One possible reason for such conservativeness is
a bad choice of the matrix P . A different choice of P may result in
better estimates. At the moment, it is an open question how to choose
P in order to obtain the best (in some sense) estimates.

VI. CONCLUSION

In this note, we have considered the problem of estimating the sets of
admissible initial conditions for a solution to the local output regulation
problem. The presented solutions to this estimation problem are based
on the so-called Demidovich condition. If a controller solves the
local output regulation problem, then the closed-loop system satisfies
the Demidovich condition locally. If the Demidovich condition is
satisfied globally, then output regulation is attained globally (under
the assumption that the output-zeroing manifold is defined globally).
If this is not the case, results providing estimates of the sets of
admissible initial conditions are given. The obtained estimates consist
of initial conditions for which the trajectories of the forced closed-loop
system converge to the output-zeroing manifold exponentially. The
results are illustrated by application to a disturbance rejection problem
in the TORA system. Since the exosystem is allowed to generate
constant signals, the obtained results are also suitable for systems
with parametric uncertainties. Although the analysis in the note was
performed under the assumption of linearity of the exosystem, the
results can be extended to the case of a general neutrally stable
exosystem. Similar results can be obtained for the local approximate
output regulation problem, for which estimating the set of admissible
initial conditions is also relevant.

The obtained estimates are, in general, fairly conservative, since they
are based on quadratic stability analysis and strongly depend on the
choice of the matricesN and P . Despite this conservatism, the results
can be rather useful in the following situations. First, one can directly
use the estimates in practice (for certain simple systems they may be
quite satisfactory). Second, if the estimates are too conservative, one
can use them as a starting point for obtaining larger estimates by means
of, for example, backward integration. The third way is to use the esti-
mates as a criterion for choosing/tuning certain controller parameters.
Since controller design admits some freedom in choosing certain con-
troller parameters (like the matrix K in the TORA example), one can
pick such parameters that guarantee larger estimates. For example, one
can aim at finding controller parameters that guarantee satisfaction of
the Demidovich condition globally. Such controller would solve the
output regulation problem globally.

APPENDIX

Proof of Theorem 2: We need to show that (17) holds for any
solution (z(t); w(t)) that starts in (z(0);w(0)) satisfying the relations:
jw(0)j < �;mN(w(0)) < R and z(0) 2 EP (�(w(0)); r), where
EP (�z; r) := fz : jz � �zjP < rg and r := (R � mN(w(0)))=d.
Due to the conditions on the initial conditions and the properties of the
exosystem, jw(t)j � jw(0)j < � and the solution �z(t) := �(w(t))
satisfies

jN �z(t)j � sup
t�0

jN�(w(t))j = mN(w(0)) < R:
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Hence, �z(t) 2 CN (R) and w(t) 2 Wc(�) for all t � 0. Let us show
that EP (�z(t); r) � CN (R) for all t � 0. Suppose z 2 EP (�z(t); r) for
some t � 0. Then

jNzj � jN �z(t)j+ jN(z � �z(t))j � mN(w(0))+ djz � �z(t)jP

< mN(w(0))+ dr = R:

Consequently, EP (�z(t); r) � CN (R) for all t � 0. The sets CN (R)
andWc(�) satisfy the conditions of Lemma 1. By Corollary 1, we ob-
tain (17). Finally, e(t) = �h(z(t);w(t))! �h(�(w((t));w(t)) � 0 as
t! +1.

Proof of Theorem 3: It is sufficient to show that EP (R(r)) �
Bw(r) � Y for any r 2 [0; r�). Then, the statement of Theorem 3
follows from Theorem 2. Suppose z0 2 EP (R(r)) and w0 2 Bw(r)
for some fixed r 2 [0; r�). According to the definition of Y , we first
need to show that jw0j < �. This is true due to the fact that jw0j < r <
r� � �. Next, we show that mN(w0) < R. By the definition of �(r),
it holds that jN�(w)j � �(r) for all jwj < r. The choice of jw0j < r
implies jw(t; w0)j � jw0j < r. Hence, by the definition of mN(w0)
we obtain

mN(w0) = sup
t�0

jN�(w(t;w0))j � sup
jwj<r

jN�(w)j � �(r):

The choice of r < r� implies that �(r) < R and consequently
mN(w0) < R.

Next, we need to show that jz0 � �(w0)jP < (R �mN(w0))=d.
The triangle inequality implies

jz0 � �(w0)jP � jz0jP + j�(w0)jP : (27)

By the choice of z0 and by the definition of R(r)

jz0jP < R(r) = (R� �(r))=d

= (R� sup
jwj�r

(jN�(w)j+ dj�(w)jP ))=d

� (R�mN(w0))=d� j�(w0)jP :

Substituting this inequality in (27), we obtain jz0 � �(w0)jP < (R�
mN(w0))=d. This completes the proof.
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Further Results on the Bounds of the Zeros of
Quasi-Critical Polynomials

Zifang Zhang, Daoyi Xu, and Jianren Niu

Abstract—On the basis of the relationship of the th power of a poly-
nomial and its modular form (polynomial whose coefficients are the moduli
of the coefficients of that polynomial), we derive a necessary and sufficient
condition for the modulus of the th power of a polynomial for contacting
its modular form on the boundary of a disc. Combinedwith the result about
distribution of zeros of analytic function, some new sufficient conditions are
derivedwhich give bounds of the absolute values of the roots of a quasi-crit-
ical polynomial. These results extend certain earlier similar tests for linear
discrete-time systems. Finally, four examples are given to demonstrate the
results, Example 2.1 gives a state feedback application, Examples 2.2 and
2.4 deal with -stability, and Example 2.3 display that our theorems give
better results when increases but at the cost of increasing complexity.

Index Terms—D-stability, linear discrete-time system, quasi-critical sit-
uation, Schur stability, state feedback control system.

I. INTRODUCTION

A linear time-invariant discrete-time system

x(k) = a1x(k � 1) + � � �+ anx(k � n) (k = 0; 1; . . .) (1.1)

is asymptotically stable if all the roots of its characteristic polynomial

f(z) = z
n

� a1z
n�1

� � � � � an (1.2)
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