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Abstract—In this paper, we study the stability of networked con-
trol systems (NCSs) that are subject to time-varying transmission
intervals, time-varying transmission delays, and communication
constraints. Communication constraints impose that, per trans-
mission, only one node can access the network and send its infor-
mation. The order in which nodes send their information is orches-
trated by a network protocol, such as, the Round-Robin (RR) and
the Try-Once-Discard (TOD) protocol. In this paper, we generalize
the mentioned protocols to novel classes of so-called “periodic” and
“quadratic” protocols. By focusing on linear plants and controllers,
we present a modeling framework for NCSs based on discrete-time
switched linear uncertain systems. This framework allows the con-
troller to be given in discrete time as well as in continuous time.
To analyze stability of such systems for a range of possible trans-
mission intervals and delays, with a possible nonzero lower bound,
we propose a new procedure to obtain a convex overapproxima-
tion in the form of a polytopic system with norm-bounded additive
uncertainty. We show that this approximation can be made arbi-
trarily tight in an appropriate sense. Based on this overapproxima-
tion, we derive stability results in terms of linear matrix inequali-
ties (LMIs). We illustrate our stability analysis on the benchmark
example of a batch reactor and show how this leads to tradeoffs
between different protocols, allowable ranges of transmission in-
tervals and delays. In addition, we show that the exploitation of
the linearity of the system and controller leads to a significant re-
duction in conservatism with respect to existing approaches in the
literature.

Index Terms—Communication constraints, networked control
systems (NCSs), stability, switched systems, time-varying systems,
uncertain systems.

I. INTRODUCTION

N ETWORKED control systems (NCSs) are systems in
which control loops are closed over a real-time com-

munication network. The fact that controllers, sensors, and
actuators are not connected through point-to-point connections,
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but through a multipurpose network offers advantages, such
as increased system flexibility, ease of installation and mainte-
nance, and decreased wiring and cost. However, networking the
control system also introduces new challenges, caused by the
packet-based data exchange between different parts of the net-
work. Therefore, control algorithms are needed that can handle
the communication imperfections and constraints caused by
the packet-based communication. The control community is
widely aware of this fact, as is evidenced by the broad attention
NCSs have received recently, see, e.g., the overview papers
[1]–[4].

In general, network-induced communication imperfections
and constraints can be categorized into five types:

i) quantization errors in the transmitted signals, due to the
finite word length of the transmitted packets;

ii) packet dropouts, due to unreliable transmissions;
iii) variable sampling/transmission intervals;
iv) variable transmission delays;
v) communication constraints, i.e., not all sensor and actu-

ator signals can be transmitted at the same time.
It is generally known that any of these phenomena can degrade
closed-loop performance or, even worse, can harm closed-loop
stability of the control system. It is therefore important to know
how these effects influence the stability properties.

Systematic approaches to analyze stability of NCSs subject
to only one of these network-induced imperfections are well
developed. For instance, the effects of quantization are studied
in [5]–[9], of packet dropouts in [10]–[12], of time-varying
transmission intervals and delays in [13]–[17], and [18]–[24],
respectively, and of communication constraints in [25]–[28].
However, since in NCSs typically all the aforementioned
limitations and constraints are present simultaneously, it is
relevant to study the consequences of all these phenomena in a
common framework. Unfortunately, fewer results are available
that study combinations of these imperfections. References
that simultaneously consider two types of network-induced
imperfections are given in Table I. Furthermore, [29] considers
imperfections of type (i), (iii), (v), and [30] studies type (ii),
(iii), and (iv) simultaneously. In this paper, we will focus on
the stability of NCSs with time-varying transmission intervals
and delays and the presence of communication constraints, i.e.,
type (iii), (iv), and (v) phenomena.

Stability of NCSs subject to communication constraints,
time-varying transmission intervals and transmission delays
has already been considered in [41], [42]. The communication
constraints impose that, per transmission, only one node can
access the network and send its information and, hence, a pro-
tocol is needed to orchestrate when a certain communication
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TABLE I
REFERENCES THAT STUDY TWO NETWORKED INDUCED

IMPERFECTIONS SIMULTANEOUSLY

node is given access to the network. Given a protocol, such
as the Round-Robin (RR) and the Try-Once-Discard (TOD)
protocol, the mentioned papers provide criteria for computing
the so-called Maximum Allowable Transmission Interval
(MATI) and the Maximum Allowable Delay (MAD). Stability
is guaranteed as long as the actual transmission intervals and
delays are always smaller than the MATI and MAD, respec-
tively. The difference between the work in [41] and [42], is that
in the latter a delay compensation scheme is proposed. This
delay compensation requires time stamping of the messages
and sending future control signals in larger packets, which is
not needed in the more basic emulation based approach, as
in [41] and the earlier work without transmission delays in
[29], [36]–[40], [43]. Furthermore, the results in [42] have the
drawback that they are not applicable to the commonly used
Round-Robin protocol, while [41] is.

The work presented in [41], [42] both apply to general
nonlinear plants and controllers and are based on a contin-
uous-time modeling paradigm related to hybrid systems as in
[44]. However, neither [41], nor [42] include the possibility
that the controller is formulated in discrete time. The case of
discrete-time controllers has been considered in [25], where,
however, a fixed transmission interval and absence of delay are
assumed. Another feature of [41], [42] is that, in these works,
zero lower bounds on the transmission intervals and delays

are considered (i.e., , ).
The ability to handle discrete-time controllers and nonzero
lower bounds on the transmission intervals and delays is highly
relevant from a practical point of view, because controllers are
typically implemented in a digital and, thus, discrete-time form.
Furthermore, finite communication bandwidth always intro-
duce nonzero lower bounds on the transmission intervals and
transmission delays. This motivates the need for studying these
situations as well, preferably in a nonconservative manner.
Although the work presented in [41] and [42] is very general
and can accommodate for many nonlinear NCSs, their results
cannot reduce conservatism when a certain structure is present
in the NCS, such as linearity of the controller and plant.

In this paper, we focus on linear plants and linear con-
trollers and study the stability of the corresponding NCS
in the presence of communication constraints, time-varying
transmission intervals and time-varying delays, where the
latter two possibly have a nonzero lower bound. Moreover,
we allow for both a continuous-time as well as a discrete-time
controller, which requires a different modeling paradigm than
in [41] and [42], and in the work without transmission delays,
[36]–[40]. In particular, we provide techniques for assessing
stability of the NCS with time-varying transmission intervals

and time-varying transmission delays

for two well-known protocols, namely, the Round-Robin (RR)
protocol and the Try-Once-Discard (TOD) protocol, and their
generalizations. These generalizations consist of the classes
of “periodic” and “quadratic” protocols, which are formally
introduced here. In contrast with [41] and [42], we apply a
discrete-time modeling framework that leads to a switched
linear system model with exponential uncertainty. To properly
handle this exponential uncertainty, we provide a polytopic
overapproximation for this system. This overapproximation
is obtained using a novel procedure that combines ideas from
gridding [14], [15] and norm bounding [16]–[18]. Unlike other
methodologies for obtaining a convex overapproximation, see,
e.g., [14]–[20] and the overview paper [45], we provide a proof
that the newly proposed procedure can be made arbitrarily tight
in an appropriate sense. Using this overapproximated system,
we can assess stability using newly developed conditions
based on linear matrix inequalities (LMIs). We will show the
effectiveness of the presented approach on the benchmark
example of a batch reactor as used in [25], [36]–[39], [41],
and [43], as well. Moreover, we will show that the linearity
of plant and controller can indeed be exploited, which leads
to a significant reduction of conservatism with respect to the
existing approaches.

The remainder of this paper is organized as follows. After
introducing the necessary notational conventions, we introduce
the model of the NCS in Section II and propose a method to
write it as a discrete-time switched linear uncertain system.
We also state a precise problem formulation. Subsequently,
in Section III, we provide a procedure to overapproximate
the NCS model by a polytopic system with norm-bounded
uncertainty. In Section IV, we provide conditions for stability
of the NCS in terms of LMIs and reflect in Section V on the
conservatism this approach introduces. Finally, we illustrate
the stability results using a numerical benchmark example in
Section VI and draw conclusions in Section VII. The Appendix
contains the proofs of the more technical lemmas and theorems.

A. Nomenclature

The following notational conventions will be used.
denotes a block-diagonal matrix with

the entries on the diagonal and de-
notes the transposed of matrix . For a vector ,
we denote by the th component and by its
Euclidean norm. We denote by the
spectral norm of the matrix , which is the square-root of
the maximum eigenvalue of the matrix . For brevity, we

sometimes write symmetric matrices of the form ,

as . Finally, by and , we denote the limit

as approaches from above and below, respectively, and the
convex hull and interior of a set are denoted by and

, respectively.

II. NCS MODEL AND PROBLEM STATEMENT

In this section, we present the model describing the net-
worked control systems (NCSs), subject to communication
constraints, time-varying transmission intervals and delays.
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Fig. 1. Illustration of a typical evolution of � and ��.

Let us consider the linear time-invariant (LTI) continuous-time
plant given by

(1)

where denotes the state of the plant, the
most recently received control variable, the (measured)
output of the plant, and the time. The controller, also an
LTI system, is assumed to be given in either continuous time by

(2a)

or in discrete time by

(2b)

In these descriptions, denotes the state of the con-
troller, the most recently received output of the plant
and denotes the controller output. At transmission in-
stant , , (parts of) the outputs of the plant and
controller are sampled and are transmitted over the net-
work. We assume that they arrive at instant , called the arrival
instant. The situation described above is illustrated in Fig. 1. In
the case we have a discrete-time controller (2b), the states of
the controller are updated using , i.e.,
as in [25], directly after is updated. Note that in this case, the
update of in (2b) has to be performed in the time interval

.
Let us now explain in more detail the functioning of the net-

work and define these “most recently received” and exactly,
see also [25], [36]–[41]. The plant is equipped with sensors and
actuators that are grouped into nodes. At each transmission
instant , , one node, denoted by ,
obtains access to the network and transmits its corresponding
values. These transmitted values are received and implemented
on the controller or the plant at arrival instant . As in [41],
a transmission only occurs after the previous transmission has
arrived, i.e., , for all . In other words,
we consider the sampling interval to be lower bounded and the
delays to be smaller than the transmission interval. After each
transmission and reception, the values in and are updated
with the newly received values, while the other values in and

remain the same, as no additional information is received. This
leads to the constrained data exchange expressed as

(3)

for all , where is a diag-
onal matrix, given by

(4)

when . In (4), the elements , with and
, are equal to one, if plant output is in node

, elements , with and ,
are equal to one, if controller output is in node , and are zero
elsewhere.

The value of in (3) indicates which node is
given access to the network at transmission instant , .
Indeed, (3) reflects that the values in and corresponding
to node are updated just after , with the corresponding
transmitted values at time , while the others remain the same.
A scheduling protocol determines the sequence and
particular protocols will be made explicit later.

The transmission instants , as well as the arrival instants
, are not necessarily distributed equidistantly in time.

Hence, both the transmission intervals and the
transmission delays are varying in time, as is
also illustrated in Fig. 1. We assume that the variations in the
transmission interval and delays are bounded and are contained
in the sets and , respectively, with and

. Since we assumed that each transmission delay
is smaller than the corresponding transmission interval , we
have that , for all , where

(5)

Remark II.1: In the above reasoning, we implicitly assumed
that packet loss does not occur, similar to, e.g., [25], [37], [39],
and [40]. However, we could accommodate for packet dropouts
by modeling them as prolongations of the transmission interval,
as done in [38] and [41]. This means that if we assume that
there is a bound on the maximum number of successive
dropouts, and we have stability of the NCS for ,
for all , in the case without dropouts, then the NCS with
dropouts is still guaranteed to be stable for , for
all , where

(6)

in which .

A. NCS as a Discrete-Time Switched Uncertain System

To analyze stability of the NCS described above, we trans-
form it into a discrete-time model. In this framework, we need
a discrete-time equivalent of (1) and also of (2a) in case a con-
tinuous-time controller is used. To arrive at this description, let
us first define the network-induced error as

(7)

The discrete-time switched uncertain system can now be ob-
tained by describing the evolution of the states between and

. In order to do so, we define ,
, and . Since

, as in (3), is a piecewise-constant left-continuous signal, i.e.,
, we can write
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. This allows us to write the exact discretization
of (1) as follows:

(8)

As (3) and (7) yield and ,
(8) can be rewritten as

(9)

A discretized equivalent of (2a) is obtained in a similar fashion
by defining , , ,

, and observing , and is given by

(10)

We now present three different models, each describing a par-
ticular NCS. The first and the second model cover the situation
where both the plant and the controller outputs are transmitted
over the network, differing by the fact that the controller is given

by (2a) and (2b), respectively. In the third model, it is assumed
that the controller is given by (2a) and that only the plant out-
puts are transmitted over the network and are sent contin-
uously via an ideal nonnetworked connection. We include this
particular case, because it is often used in examples in the NCS
literature (see, e.g., the benchmark example in [25], [36]–[39],
and [41]) and it allows us to compare our methodology to the
existing ones.

1) NCS Model With Controller (2a): For an NCS having con-
troller (2a), the complete NCS model is obtained by combining
(3), (7), (9), and (10) and defining

(11)

This results in the discrete-time model, as shown in (12) at the
bottom of the page, in which , with

, and

(13a)

(13b)

(13c)

2) NCS Model With Controller (2b): For an NCS having con-
troller (2b), the complete NCS model is obtained by combining
(2b), (3), (7), and (9), also resulting in (12), in which now

(14a)

(14b)

(14c)

3) The NCS Model if Only is Transmitted Over the Network:
In this case, we assume that only the outputs of the plant are
transmitted over the network and the controller communicates
its values continuously and without delay. We therefore have
that , for all , which allows us to combine
(1) and (2a), yielding

(15)

Since is still updated according to (3), we can describe the
evolution of the states between and in a
similar fashion as in (9). In this case, (11) reduces to

(16)

(12)
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resulting in (12), in which

(17a)

(17b)

(17c)

B. Protocols as a Switching Function

Based on the previous modeling steps, the NCS is formu-
lated as a discrete-time switched uncertain system (12). In this
framework, protocols are considered as the switching function
determining . We consider two commonly used protocols,
see [36]–[41], [43], namely the TOD and the RR protocol and
generalize these into two novel classes of protocols, named
“quadratic” and “periodic” protocols.

1) Quadratic Protocols: A quadratic protocol is a protocol,
for which the switching function can be written as

(18)

where , , are certain given matrices. In case
two nodes have the same maximal values, one of them can be
chosen arbitrarily. In fact, the well-known TOD protocol, some-
times also called the Maximum Error First (MEF) protocol, be-
longs to this class of protocols. In this protocol, the node that has
the largest network-induced error, i.e., the difference between
the most recently transmitted values and its current values of
the signals corresponding to the node, is granted access to the
network. We can arrive at the TOD protocol by adopting the fol-
lowing structure in the matrices:

(19)

in which , , is given by (4). Furthermore, if

we define , where , (18) becomes

(20)

which is the TOD protocol.
2) Periodic Protocols: Another class of protocols that is con-

sidered in this paper is the class of so-called periodic protocols.
A periodic protocol is a protocol that satisfies for some

(21)

for all . is then called the period of the protocol. Ac-
tually, the well-known RR protocol belongs to this class and is
defined by

(22)

and period , i.e., during each period of the protocol every
node has access to the network exactly once.

The above modeling approach now provides a description of
the NCS system in the form of a discrete-time switched linear
uncertain system given by (12) and one of the protocols, charac-
terized by (18) or (21). The system switches between linear
uncertain systems and the switching is due to the fact that only
one node accesses the network at each transmission instant. The
uncertainty is caused by the fact that the transmission intervals
and the transmission delays are varying over time.

C. Stability of the NCS

The problem studied in this paper is to determine the stability
of the continuous-time NCS, given by (1), (2a) or (2b), (3), and
(7), with protocols satisfying (18) or (21) given the bounds
and , or to find bounds that guarantee stability. Let us now
formally define stability for this continuous-time NCS.

Definition II.2: The continuous-time NCS given by (1), (2a)
or (2b), (3), and (7), with protocols satisfying (18) or (21),
having states , is
said to be Uniformly Globally Exponentially Stable (UGES) if
there exist and , such that for any initial condition

, any sequence of transmission intervals ,
and any sequence of transmission delays , with

, for all , it holds that

(23)

Stability of the continuous-time NCS can be analyzed by as-
sessing stability of the discrete-time uncertain switched linear
system (12) with switching functions satisfying (18) or (21), as
we will show. Let us now formally define stability of this dis-
crete-time system.

Definition II.3: System (12) with switching sequences satis-
fying (18) or (21) is said to be Uniformly Globally Exponentially
Stable (UGES) if there exist and , such that
for any initial condition , any sequence of transmission
intervals , and any sequence of transmission delays

, with , for all , it holds that

(24)

Since the discrete-time switched uncertain linear system (12)
with switching sequences satisfying (18) or (21) is formulated
in discrete time, we can only assess stability at the transmission
instants. However, states of the plant (1) and controller (2a) ac-
tually evolve in continuous time. In the next lemma, we state
that UGES of the discrete-time NCS model implies UGES of
the continuous-time NCS.

Lemma II.4: Assume the discrete-time system (12) with
switching sequences satisfying (18) or (21) is UGES, then the
continuous-time NCS given by (1), (2a) or (2b), (3), and (7),
with protocols satisfying (18) or (21) is also UGES.

Proof: The proof is given in the Appendix.
This lemma states that it suffices to consider the discrete-time

model (12) with switching sequences satisfying (18) or (21) to
assess UGES of the continuous-time NCS system.
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III. OBTAINING A CONVEX OVERAPPROXIMATION

In the previous section, we obtained an NCS model in the
form of a switched uncertain system. However, the form as in
(12) is not really convenient to develop efficient techniques for
stability analysis due to the nonlinear dependence of
on the uncertain parameters and . Therefore, we will pro-
vide a procedure that overapproximates system (12) by a poly-
topic system with a norm-bounded additive uncertainty of the
form

(25)

where , , , for
and , with the number of vertices

of the polytope. Furthermore, , ,
denotes an unknown time-varying vector with

(26)

and , , where is a norm-bounded set of ma-
trices in that describes the additive uncertainty. This ad-
ditive uncertainty can have some specific structure, as we will
see below. The model (25) should be an overapproximation of
(12) in the sense that for all , it holds that

(27)

In this paper, we use the gridding idea of [14], [15] to obtain,
for a fixed , by evaluating of (12) at a collection of
selected pairs of transmission intervals and transmission delays

, . Hence, we take
in (25), with . However, contrary to [14], [15],
we choose to allow for convex combinations of the vertices,
whereas in [14], [15] the system switches between the vertices
only. Moreover, we construct a norm-bounded additive uncer-
tainty to capture the remaining approximation error, as
done in, e.g., [16]–[18]. By comparing with the convex
combinations of the vertices instead of with the vertices alone,
we obtain smaller bounds on the additive uncertainty than in
[14]–[16], [18].

By specifying , , and thereby deter-
mining , it only remains to show how to choose in
(25) and in order to satisfy (27). This additive uncertainty
is used to capture the approximation error between the original
system (12) and the polytopic system

(28)

In order for (27) to hold, for each triple , with
and , there should exist some

and , such that

(29)

Fig. 2. Partitioning of � into triangles � .

Hence, we should determine the worst case distance between
the real system (12) and the polytopic system (28), leading to
an upper bound on the approximation error. To obtain such
an upper bound, we partition into triangles ,
see Fig. 2, and we compare , for , with

, where

, , denote the vertices (with vertex index
, and ) of tri-

angle . This allows us to construct the right-hand side of (29)
by computing the worst-case distance. Note that it is always pos-
sible to partition into triangles, as is a convex polytope. We
will, however, also provide a systematic procedure to obtain a
suitable partitioning.

A specific feature of the overapproximation presented in this
paper is that, contrary to [14]–[20], it can be made arbitrarily
tight, i.e., besides that (27) holds, it also holds that

(30)

for each , in which can be chosen arbi-
trarily small. This can be achieved by increasing the number of
pairs , , in a well-distributed fashion.
The fact that (30) can be ensured to hold for an arbitrarily small

is important, as it allows us to show that the existence
of a Lyapunov function of a particular type for (12) is equiva-
lent to the existence of a Lyapunov function of the same type
for (25). Since we will indeed show that (30) can be guaranteed
for any choice of , we can let the introduced conservatism
in the overapproximation vanish. We will formalize this result
in Section V.

We now formalize the procedure to obtain a convex overap-
proximation as outlined above. The procedure results in a tight
overapproximation, by adding pairs until is
achieved for an user-specified threshold , such that (30)
holds with .

Procedure III.1:
Step 1) Choose a desired . Furthermore, select dis-

tinct pairs , , such that
, where . Now parti-

tion into triangles , , such
that, for each , where ,
it holds that

(31)
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where , . Hence,
, are the vertices of the

triangle . Moreover, for all
and , , , and

, i.e., the triangles form a (nonoverlap-
ping) partitioning of and have nonempty interiors.

Step 2) Define

(32)

for all and ,
.

Step 3) To bound the approximation error, first construct the
matrix , that, depending on the NCS model defined
in Section II-A, is given by

if (12) is as in Section II-A1
if (12) is as in Section II-A2

if (12) is as in Section II-A3.

(33)
Decompose the matrix into its real Jordan form
[46], i.e., , where is an invertible
matrix and

(34)

with , , the th real
Jordan block of .

Step 4) Compute for each real Jordan block ,
, the worst case approximation error

of all triangles , , i.e.,

(35a)

(35c)

(35c)

in which and

(36a)

(36b)

(36c)

For a detailed explanation of the origin of the ap-
proximation error bounds, see the proof of Theorem
III.2.

Step 5) Define

(37)

and

(38)

with the identity matrix of size , complying with
the th real Jordan Block, and compute

(39)

Step 6) In case that , meaning that the user-specified
tightness of the overapproximation in the sense of
(30) is not achieved we add a pair

to . In order to determine the specific pair to
be added, compute the point , where
the maximum approximation error is achieved by
solving

(40)

in which

(41)

and add this new pair
to the set , i.e., up-

date according to

(42)

and redefine . Furthermore, subdivide the
corresponding triangle into smaller triangles
and replace by the smaller triangles in the set

, i.e.,

(43)

redefine1 , and repeat the procedure
from Step 2.

1In case one of the smaller triangles satisfies
��� ������ � �� �� ��� � �� �� ��� � �� �� 	 � for some

�� � � �
� �� ��, meaning that ��� � �� � lies on one of the edges of � ,
then this triangle is not added to the set �, and the number of triangles in the
partitioning increases according � 
	 � � 
.
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Step 7) In case , the user-specified tightness of the
overapproximation is achieved and the resulting ad-
ditive uncertainty set is
given by

(44)

Theorem III.2: Consider the NCS given by (12) where
, , with as in (5). If system (25) is

obtained by following Procedure III.1 for some user-specified
, then (27) holds and thus (25) is an overapproximation

of (12). Furthermore, the overapproximation is -tight, in the
sense that (30) holds, with given by (39) and .

Proof: The proof is given in the Appendix.
Remark III.3: In the special case that or that ,

Procedure III.1 has to be modified slightly. This is because we
proposed to form triangles , , having the
property that , which is not possible when
or . Instead, in this case, we partition into line-seg-
ments , such that, for each , , it
holds that

(45)

where , , now denote the vertices of the line
segment . All other properties of , , still
hold and the remainder of the procedure can be applied mutatis
mutandis.

UGES of the NCS system given by (1), (2a) or (2b), (3), and
(7), with protocols satisfying (18) or (21), with ,

, can now be guaranteed by proving UGES of (25), with
switching sequences satisfying (18) or (21), , and

, , using the result of Lemma II.4 and the fact that (25)
is a (tight) overapproximation of (12).

IV. STABILITY OF SWITCHED SYSTEMS WITH

PARAMETRIC UNCERTAINTY

In the previous sections, we discussed the NCS model and in-
troduced a way to overapproximate it by a switched polytopic
system with norm-bounded uncertainty. Given this switched un-
certain system, we can analyze whether a switching sequence,
as induced by a protocol, renders the switched system UGES.

We will start with so-called quadratic protocols that in-
clude the well-known TOD protocol as a particular case. The
analysis is based on extensions of the ideas in [47], in which
only switched linear systems without any form of uncertainty
are considered. Hence, generalizations are needed to include
switched polytopic systems with norm-bounded uncertainties
as in (25). After the stability analysis for the quadratic protocols
and the TOD protocol as a special case, we will also show how
we can analyze stability for periodic protocols, having the RR
protocol as a special case.

For proving stability of system (25), with switching se-
quences satisfying (18) or (21), we will employ the so-called
full block S-procedure [48], which is applied in the following
lemma.

Lemma IV.1: Let be given and consider the set as in
(44). Then, it holds that

(46)

for all , if

(47)
where

(48)

where is an identity matrix of size .
Proof: It follows directly from the full-block S-procedure

[48] and the block-diagonal structure of (44).
By choosing a suitable , (46) can lead to a sufficient condi-

tion for stability of (25).

A. Quadratic Protocols

In this section, we assume that the switching function is given
by (18). To analyze the stability of (25) having this switching
function, we introduce the non-quadratic Lyapunov function

(49)

where

(50)

Furthermore, we introduce the class of so-called Metzler
matrices given by

(51)

The main result of this section is presented in the following
theorem.

Theorem IV.2: Assume that there exist a matrix
, positive definite matrices , and matrices ,

and , satisfying

(52)

for all and . Then, the switching
law (18) renders the system (25) UGES. Consequently, the NCS
given by (1), (2a) or (2b), (3), and (7) is also UGES if the
switching law (18) is employed as the protocol.

Proof: The proof is given in the Appendix.
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Remark IV.3: The results of Theorem IV.2 can be exploited
in two ways: 1) For the design of a stabilizing protocol. Then
the conditions in (52) are not LMIs, but Bilinear Matrix In-
equalities (BMIs) due to the presence of the product of and

. Although literature on solving BMIs is available, see, e.g.,
[49]–[51], solving BMIs is considered to be of a high numer-
ical complexity. 2) Stability analysis for a given protocol. In the
situation that the matrices , , are completely
given for a particular quadratic protocol, the conditions (52) are
LMIs in and , for all and

.

B. TOD Protocol

In Section II-B, we showed that by suitable choice of ,
, as in (19), the TOD protocol is a specific

quadratic protocol. We can therefore use the result of Theorem
IV.2 to determine the allowable range of transmission intervals
and transmission delays of the NCS using the TOD protocol.
This result is formalized in the following corollary, in which

(53)

Corollary IV.4: Assume that there exist matrices
, , a matrix , matrices ,

, and , satisfying

(54)
for all and , with , as in (4).
Then, the system (25) with (20) is UGES. Consequently, the
NCS, given by (1), (2a), or (2b), (3), and (7), with the TOD
protocol (20) is also UGES.

Proof: The proof follows directly from Theorem IV.2 and
the fact that is structured as in (19). Therefore, it holds that

.

C. Periodic Protocols and the RR Protocol

We will now analyze another class of communication pro-
tocols, namely the periodic protocols, with the RR protocol
as a special case. Hence, we need to analyze stability of the
system (25) with a switching sequence induced by (21) or
(22). This system is essentially a -periodic uncertain system.
For this system, we introduce positive definite matrices ,

, and a time-dependent periodic Lyapunov
function given by

(55)

We can now present the main result of this section.
Theorem IV.5: Assume that there exist positive defi-

nite matrices , , and matrices ,
and , satisfying

(56)

where , for all and .
Then, the system (25) with (22) is UGES and consequently, the
NCS as given by (1), (2a) or (2b), (3), and (7) with a periodic
protocol (21) is UGES.

Proof: The proof follows the same lines of reasoning as the
proof of Theorem IV.2.

V. NONCONSERVATIVENESS OF THE OVERAPPROXIMATION

Given the results of the previous sections, it is now natural
to ask if and how conservative the presented methodology is.
The answer is given by the following result, showing that if the
original system (12) (without any overapproximation), with pro-
tocol (18) or (21), is UGES in the sense that a Lyapunov function
of a particular type exists, given by (49) or (55), respectively,
the presented procedure based on the overapproximation will
guarantee stability and will find a respective Lyapunov function,
given that the overapproximation of (12) is sufficiently tight, i.e.,
(30) holds for a sufficiently small . Therefore, making a
convex overapproximation, according to Procedure III.1, intro-
duces no conservatism in the stability analysis as presented in
the previous section.

In the following theorem, we will show the result for the NCS
model (12) with protocol (18). A similar result holds for the
NCS model (12) with protocol (21).

Theorem V.1: Suppose system (12), with protocol (18), has
a Lyapunov function of the form (49), i.e., there exist a ma-
trix and positive definite matrices ,

, such that

(57)

for all and , and some . Then,
there exists an , such that for any -tight overapproximation
satisfying (30), with , the conditions of Theorem
IV.2 hold.

Proof: The proof is given in the Appendix.
This result states that the convex overapproximation does not

introduce conservatism when analyzing UGES using mode-de-
pendent quadratic Lyapunov functions.

VI. ILLUSTRATIVE EXAMPLE

In this section, we illustrate the presented theory using a well-
known benchmark example in the NCS literature, see, e.g., [25],
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[37]–[39], [41], consisting of a model of a batch reactor. The
linearized batch reactor is given by (1), with

(58)

The continuous-time controller considered in [25], [37]–[39],
[41] is given by (2a), with

(59)

First, we will analyze the continuous-time NCS as also used
in [37]–[39], [41]. As done in these references, we consider
the TOD and RR protocol and assume that the controller is di-
rectly connected to the actuator, i.e., only the two outputs are
transmitted via the network. Since communication delays are
only considered in [41], and gives in absence of delays (i.e.,

) the same results as in [37], we compare our results
with [41]. This will show that our results provide significantly
less conservative bounds on the uncertain transmission inter-
vals and transmission delays than earlier results in the literature.
Second, we illustrate that our framework can equally well deal
with discrete-time controllers, a larger number of nodes than
used in previous examples in the literature, and a nonzero lower
bound on the transmission interval.

A. Continuous-Time Controller

In order to assess the bounds on the allowable transmission
intervals and delays, we first define our NCS model as in
Section II-A3. This model appropriately describes the situation
as discussed in this example, where only the plant outputs are
transmitted over the network and are sent continuously via a
nonnetworked connection. Then, we derive the uncertain poly-
topic system (25) that overapproximates the NCS model (12),
using Procedure III.1. As in [41], we try to obtain combinations
of and for which the NCS is stable, and we assume that

, and we take . We cannot make too small,
because, by doing so, , as in (12), approaches the
identity matrix and LMI solvers run into numerical problems, as
the system becomes close to unstable. Note that [37]–[39], [41]
also use nonzero lower bound on the transmission intervals to
prevent Zeno behavior, although, this lower bound can be taken
arbitrarily small. Using Procedure III.1, we obtain a convex
overapproximation, in which we choose as decreasing

does not change the results in this example. Using the
obtained overapproximation, we can check for which combina-
tions of and , the LMIs in Corollary IV.4 and Theorem IV.5
are feasible. This results for each in the maximum achievable

Fig. 3. Tradeoff curves between allowable transmission intervals and transmis-
sion delays for two different protocols.

(or vice versa) for which the LMIs in Corollary IV.4 and
Theorem IV.5 are satisfied. This results in tradeoff curves, as
shown in Fig. 3. These tradeoff curves can be used to impose or
select a suitable network with a certain communication delay
and a certain allowable transmission interval.

Moreover, in Fig. 3, also the tradeoff curves as obtained in
[41] are given. We conclude that our proposed methodology
is less conservative than the one in [41]. More interestingly,
in case there is no delay, i.e., , the maximum al-
lowable transmission interval obtained in [37], which pro-
vide the least conservative results known in literature so far,
was , while we obtain . In [39], was
estimated (using simulations) to be approximately 0.08 for the
TOD protocol. Furthermore, for the RR protocol, [37] provides
the bound in the delay-free case, while we obtain

. Also in [39], for a constant transmission interval,
i.e., , the bound 0.0657 was obtained for the RR protocol.
The case where the transmission interval is constant, provides
an upper bound on the true maximum allowable transmission in-
terval (MATI). We can therefore conclude that for this example,
our methodology reduces conservatism significantly in compar-
ison to existing methodologies and even approximates known
estimates of the true MATI closely.

B. Discrete-Time Controller

Next, we compute , , , and for the NCS with a discrete-
time controller as in (2b). Contrary to the example presented
above, and all examples considered in [37]–[39], [41], we now
designate a node to each single sensor and actuator, resulting in
an NCS with four nodes. By doing so, we try to point out that our
methodology is also suitable to study more complex problems.
In this example, the controller is given by an exact discretization
of the continuous-time controller (2a) with matrices (59) using
a zero-order hold and assuming a nominal transmission interval

and a bounded variation around this nominal
transmission interval. We assume that and , i.e.,
transmissions can be infinitely fast, but do not occur infinitely
often. In this example, we select and

, where determines the range of allowable
transmission intervals and we only consider the RR protocol.

After obtaining a convex overapproximation using Procedure
III.1, in which we have taken , and assessing stability
using the results of Theorem IV.5, we can now plot for each

, the largest range, determined by and
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Fig. 4. Tradeoff curves between allowable transmission intervals and transmis-
sion delays.

, for which UGES is guaranteed. In this example, we
take , which results in the tradeoff curve as shown
in Fig. 4.

VII. CONCLUSION

In this paper, we studied the stability of Networked Con-
trol Systems (NCSs) that are subject to communication con-
straints, time-varying transmission intervals and time-varying
delays. We analyzed the stability of the NCS when the commu-
nication sequence is determined by one of the protocols in the
newly introduced classes of quadratic protocols or periodic pro-
tocols, having the well-known TOD and the RR as special cases.
This analysis was based on a discrete-time switched linear un-
certain system to model the NCS. A new and efficient convex
overapproximation was proposed that allows us to analyze sta-
bility using a finite number of linear matrix inequalities. We pre-
sented an automated procedure to obtain the overapproximation
and we formally showed that the convex overapproximation can
be made arbitrarily tight and does not introduce conservatism.
On a benchmark example, we illustrated the advantages and the
effectiveness of the developed theory. In particular, we showed
that stability can be guaranteed for a much larger maximum
allowable transmission interval and maximum allowable trans-
mission delay, when compared to the existing results in the lit-
erature. In addition, our results can be applied for stability anal-
ysis of NCS with discrete-time controllers and nonzero lower
bounds on the transmission intervals and delays, which could
not be analyzed before even though they are highly relevant for
practical implementations of networked controllers.

Future work focusses on studying the case where delays are
not restricted to be smaller than the transmission interval, on
the inclusion of quantization effects of the sensor and actuator
signals on the closed-loop stability and performance, and on
co-design methods of the controller and the protocol.

APPENDIX

PROOFS OF THEOREMS AND LEMMAS

Proof of Lemma II.4: In Theorem 4 of [52], it was shown
that a sampled-data system is UGES if and only if its corre-
sponding discretised model is UGES and the intersample be-
havior is so-called linearly uniformly globally bounded over

(LUGBT), where is the sampling interval. This means,
roughly speaking, that the intersample behavior can be bounded
by a linear function of the state of the system at the transmission

instants. Since the discrete-time system is UGES by assumption,
it only remains to show LUGBT. To do so, let us introduce an
additional variable , for all . Solving
the differential (1) on the interval yields

(60)

and on the interval

(61)

Or equivalently, when expressed in states at the sample instants,
for ,

(62)

and for

(63)

Using (62) and (63), we can bound the intersample behavior on
the interval by

(64)

Similar inequalities can be derived that bound the intersample
behavior for the state evolution of (2a) and for the net-
work-induced error given by (7). Therefore, by using the bounds
on and , the continuous-time NCS (1), (2a) or (2b), (3), and
(7) is LUGBT. Consequently, Theorem 4 of [52] implies that the
continuous-time NCS is UGES.

Proof of Theorem III.2: The proof is based on showing that
Procedure III.1 yields that system (25) is an overapproximation
of (12) in the sense that (27) holds, and that this overapproxima-
tion is tight in the sense that (30) holds for a , satisfying

for some .
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In order for (27) to hold, considering a fixed ,
we should have that for all , there exist an and
a , such that (29) holds, i.e.,

(65)

Therefore, given distinct pairs , ,
and as in (32), we can write the approximation error be-
tween of (12) and of (28) as

(66)

where

(67)

in which , , are defined as in Sections II-A1, II-A2,
or II-A3. Using the real Jordan form of (33), we can observe that

(68a)

(68b)

(68c)

hold for all if , , and are defined as in
Sections II-A1 and II-A3. Since and , when defined
as in Section II-A2, contain identity matrices in the lower-right
part, the left-hand side of (68b) and (68c) contain zero blocks.
Therefore, in case of and being defined as in
Section II-A2, equality in (68b) and (68c) do not automatically
hold and we have to impose additional requirements on
to ensure that the appropriate Jordan blocks of the right-hand
side of (68b) and (68c) also equal zero. These additional
requirements are that

(69)

since substituting (69) into (68) indeed results in zero-blocks at
the appropriate places in the left-hand side of (68). Now, com-
bining (67) and (68) yields

(70)
provided that (69) holds.

As an intermediate step in the proof, we aim at finding a set
of matrices, such that for all there is an

such that . Since , we will perform
the construction of per triangle , , and
combine them later. Hence, for each , we now
aim at constructing such that for all ,

, there is an such that . In par-
ticular, for , , with as in (31),
take , , and , ,
where , , and ,

. Let us now bound the norm of (70) for triangle
, , and per Jordan block ,

using this particular choice for . Hence, for all ,
with

(71)

for in which , , and are
given by (36). This upper bound on the approximation errors
allows us to write

(72)

To obtain independent of , as in (44), let us now introduce
the scaling matrix

(73)
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in which is an identity matrix of size , complying with the
size of the and observe that , with as in (44).
Now due to (35) and (38), , and this allows us to
rewrite (72) as

(74)

with as in (26) and as in (44), which is. By taking the
convex hull over all in the left-hand-side and
observing that the right-hand-side is independent of , we ob-
tain (27).

To show that (30) holds for as in (39), we consider a fixed
and show that for all and , there

exist a pair and a , satisfying , such that

(75)
Since by definition it holds that

, this inclu-
sion is satisfied if

(76)

which holds for as in (39), due to the fact that Procedure
III.1 terminates not until .

Proof of Theorem IV.2: The proof is based on showing that
as in (49) is a Lyapunov function for the switched uncer-

tain system (25) with switching law (18). Note that
, with , due to (18). Now, we obtain using (49)

and (25) that

(77)

To obtain UGES, it is sufficient to require that the Lyapunov
function is strictly decreasing in the sense that [due to (77)]

(78)

for all , , and . By taking a
Schur complement, realizing that , and using
that , we obtain that (78) is equivalent to stating that
(79), as shown at the bottom of page, is positive definite for all

, , and . A necessary and sufficient
condition for positive definiteness of (79), for all , is that

for all and . Using again
a Schur complement, we can rewrite the condition as
follows:

(80)

or equivalently

(81)
for all , and . As
(81) has the form of (46) of Lemma IV.1, it is therefore im-
plied by (47). Applying a Schur complement yields (52) for all

and all . Since (52) holds by the
hypothesis of the theorem, we can conclude that is strictly
decreasing in spite of the presence of the uncertainty. Standard
Lyapunov-based stability arguments now prove that (25) with
(18) is UGES. Using that (25) is an overapproximation of (12)
as proven in Theorem III.2 and subsequently, using the result of
Lemma II.4, it follows that the NCS system given by (1), (2a)
or (2b), (3), and (7) is UGES.

(79)
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Proof of Theorem V.1: Since (57) holds for all pairs
and, therefore, for all , , we have

that

(82)

for all and . Note that (82) holds
irrespective of the choice of , . Now
suppose that we would establish that there exist matrices

, and , such that

(83)

for all and . Then, combining
this expression with (82) yields, after taking a Schur comple-
ment, the conditions of Theorem IV.2. Hence, if the fact that
(30) holds for a sufficiently small , implies that (83) holds for
some , we completed the proof.

Therefore, it remains to show that there exists an , such that
for any , (83) is satisfied for some . Note
that (83) holds if

(84)

and , for some , and for all
and . By choosing , for all

and with , we can observe
that (84) is implied by

(85)

where denotes the minimum eigenvalue of
. Since it holds that , (85)

is implied by

(86)

Furthermore, is implied by ,
for some and all and .
Now choosing , multiplying the left-hand and the
right-hand side of (86) by , and realizing that

yields that (86), and thereby (84), is satisfied if

(87)

and that is satisfied if , which
can be satisfied by choosing sufficiently small.

Therefore, if (49) is a Lyapunov function for system (12),
with protocol (20), then there exists an , such that for
any overapproximation satisfying (30) with , the
conditions of Theorem IV.2 hold, which completes the proof.
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