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Tracking Control for Hybrid Systems
With State-Triggered Jumps

J. J. Benjamin Biemond, Nathan van de Wouw, W. P. Maurice H. Heemels, and Hendrik Nijmeijer, Fellow, IEEE

Abstract—This paper addresses the tracking problem in which
the controller should stabilize time-varying reference trajectories
of hybrid systems. Despite the fact that discrete events (or jumps)
in hybrid systems can often not be controlled directly, as, e.g., is the
case in impacting mechanical systems, the controller should still
stabilize the desired trajectory. A major complication in the anal-
ysis of this hybrid tracking problem is that, in general, the jump
times of the plant do not coincide with those of the reference tra-
jectory. Consequently, the conventional Euclidean tracking error
does not converge to zero, even if trajectories converge to the ref-
erence trajectory in between jumps, and the jump times converge
to those of the reference trajectory. Hence, standard control ap-
proaches can not be applied. We propose a novel definition of the
tracking error that overcomes this problem and formulate Lya-
punov-based conditions for the global asymptotic stability of the
hybrid reference trajectory. Using these conditions, we design hys-
teresis-based controllers that solve the hybrid tracking problem for
two exemplary systems, including the well-known bouncing ball
problem.

Index Terms—Asymptotic stability, control system analysis, hy-
brid systems, tracking control.

I. INTRODUCTION

H YBRID systems, such as for example robotic systems
with impacts, digitally controlled physical systems, elec-

trical circuits with switches, and models of chemical reactors
with valves, can be characterized by the interaction between
continuous-time dynamics and discrete events, cf. [1]–[3]. Due
to this interaction, hybrid systems can show more complex be-
havior than can occur in ordinary differential equations (ODEs)
or discrete-time systems. Consequently, conventional control
approaches are often not directly applicable.
Most existing results in the literature on hybrid control sys-

tems deal with the stability of time-independent sets (especially
with equilibrium points), such that the stability can be analyzed
using Lyapunov functions, see, e.g., [1], [2], [4]–[10]. Essen-
tially, such a set is asymptotically stable when a Lyapunov func-
tion decreases both during flow and jumps (i.e., discrete events),
see, e.g., [1], [4], and [5]. Extensions of these results allow for
Lyapunov functions that increase during jumps, as long as this
increase is compensated by a larger decrease during flow, or
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vice versa. Such results are reviewed in [7] and [11]. Using
these Lyapunov-based stability results, several control strategies
have been developed to stabilise time-independent sets for hy-
brid systems, see, e.g., [1], [9].
Few results exist where controllers are designed to make a

system track a given, time-varying, reference trajectory, that ex-
hibits both continuous-time behavior and jumps. In this paper,
we consider reference trajectories that are solutions of the plant
for a given, time-dependent reference input. When the jump
times of the plant trajectories can be guaranteed to coincide with
jumps of the reference trajectory, then stable behavior of the Eu-
clidean tracking error is possible and several tracking problems
have been solved in this setting, see, e.g., [12]–[16]. In [17],
observer problems are considered for a class of hybrid systems
where a similar condition is exploited, namely, that the jumps
of the plant and the observer coincide. When jump times of the
plant trajectory and reference trajectory can be ensured to
coincide, standard Lyapunov tools are applicable to study the
evolution of along trajectories. However, requiring the
jump times of plant and reference trajectories (or plant and ob-
server) to coincide is a strong condition that limits the appli-
cability of these results. For example, this can not be ensured
for general hybrid systems with state-triggered jumps, such as
models of mechanical systems with unilateral constraints, cf.
[10], [18].
In hybrid systems with state-triggered jumps, the jump times

of the plant and the reference trajectory are in general not coin-
ciding. To illustrate this behavior, we consider the trajectories
of a scalar hybrid system with state , where the con-
tinuous-time evolution is given by

(1a)

where is a bounded control input and jumps occur according
to:

(1b)

Now, consider the signal as a reference trajectory,
where denotes the modulus operator, and observe that
is the solution of (1) from the initial condition with

. Suppose that a control signal is constructed such
that a plant trajectory tracks the reference trajectory (in fact,
such a controller will be designed in Section V-A), then we ex-
pect behavior as given in Fig. 1, where the state and reference
trajectory converge to each other away from the jump times,
and the jump times show a vanishing mismatch. During the time
interval caused by this jump-time mismatch, the Euclidean error

is large, as shown in Fig. 1(b). Since this behavior also
occurs for arbitrarily small initial errors , the Euclidean
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Fig. 1. (a) Exemplary trajectories of (1). (b) Euclidean tracking error .

error displays unstable behavior in the sense of Lyapunov. This
“peaking behavior” was observed in [10], [12], [13], [17], [19],
and is expected to occur in all hybrid systems with state-trig-
gered jumpswhen considering tracking or observer design prob-
lems. However, although the Euclidean error may display unde-
sirable properties, from a control engineering point of view, the
trajectories shown in Fig. 1 are considered to exhibit desirable
behavior. Therefore, it seems that the evaluation of the tracking
error using non-Euclidean distance functions might be advan-
tageous for a class of hybrid systems, such as the example in
(1). For this reason, we formulate a different notion of tracking
in this paper, that considers the behavior shown in Fig. 1 as a
proper solution, since the jump times of the plant converge to the
jump times of the reference and the distance between the plant
and reference trajectories converges to zero during time inter-
vals without jumps. This tracking notion is less restrictive than
notions requiring stability of the Euclidean error (cf. [12]–[15]),
such that the class of hybrid systems that can be considered is
widened significantly.
Several approaches have already been presented to formalize

tracking notions where controllers that solve the resulting
tracking problem are allowed to induce behavior as shown
in Fig. 1. However, in these approaches it is not clear how
to formulate conditions under which such tracking problems
are solved. In [19], [20], the tracking of a billiard system is
considered using the concept of “weak stability,” which implies
that the position of the ball is always required to be close to the
reference trajectory, but the error in velocity is not studied for
a small time interval near the jump instances. In addition, the
convergence of jump times is required. In [21], this approach
is extended to a larger class of hybrid systems. However, since
no requirements are imposed close to the jump times, such a
tracking problem definition needs knowledge of complete tra-
jectories. Alternatively, the notion of weak stability is employed
in [22], [23] for unilaterally constrained mechanical systems
with reference trajectories where all impacts, if they occur,
show accumulation points (i.e., Zeno behavior), followed by a
time interval where the constraint is active. In the very recent
conference papers [24], [25], tracking control problems for bil-
liard systems are formulated by requiring asymptotic stability
of a set of trajectories, consisting of the reference trajectory
and its mirror images, when reflected in the boundaries of the
billiard. This independent research effort resulted in a related
control problem formulation and controller design approach
as those given for the bouncing ball example in Section V-B
of the current paper. In this paper, we aim to present a general

framework for addressing tracking problems for a relatively
generic class of hybrid systems (not focussing on a class of
mechanical systems with unilateral constraints as in [24] and
[25]). Alternatively, in [19], it is suggested to employ the
stability concept of Zhukovsky (see [26]). Using this stability
concept, the plant trajectory is compared with the reference
trajectory after a rescaling of time for the plant trajectory, i.e.,
the error should behave asymptotically stable,
where a function is used with .
As a second alternative, a Hausdorff-type metric between the
graphs of the reference and plant trajectory is suggested in
[27]. Both the rescaling function for Zhukovsky stability
and the Hausdorff-type metric require complete knowledge of
the trajectories, and, consequently, it is not clear how these
concepts can be used to solve the design problem of tracking
controllers.
In order to study tracking problems with non-matching

jump times, we propose an alternative approach using a
non-Euclidean distance between the plant and reference states,
where convergence of this distance measure corresponds to
the desired notion of tracking. Since this distance measure
incorporates information on the “closeness” of the reference
state and plant state at each time instant, the tracking problem
can be formulated based on the time evolution of the distance
measure evaluated along trajectories of the closed-loop system.
This fact is instrumental in our approach, as it allows us to
derive sufficient conditions under which the tracking problem
is solved, that are formulated using the instantaneous state, its
time-derivatives, and the jumps that can occur. Since such in-
formation is encoded directly in the hybrid system description,
this property is an advantage of our approach when compared
to the analysis of [19]–[21], where convergence of jump times
is proven using complete trajectories. In addition to this new
formulation of the tracking problem for hybrid systems, we
present sufficient conditions that guarantee that this problem is
solved. In this manner, we will provide a general framework for
the formulation and analysis of tracking problems for hybrid
systems. Although we do not address the synthesis problems of
tracking controllers in its full generality, we are convinced that
the results of this paper provide an indispensable stepping stone
towards such a synthesis procedure. In fact, the applicability of
the presented framework for the design of tracking controllers
will be demonstrated for two exemplary systems, including a
mechanical system with a unilateral constraint.
The main contributions of this paper can be summarized as

follows. First, the proposed reformulation of the tracking notion
using a non-Euclidean tracking error measure allows to state
and analyze tracking problems for a large class of hybrid sys-
tems, and these tracking problems are not rendered infeasible by
the “peaking” of the Euclidean tracking error. Second, existing
Lyapunov-type stability conditions, both with and without an
additional average dwell-time condition, are extended to allow
non-Euclidean distance functions, yielding sufficient conditions
for the global asymptotic stability of time-invariant sets. This
result allows to formulate conditions that ensure that the new
tracking problem is solved. Third, in two examples we show
that the new tracking error measure can be used to design con-
trollers that solve the tracking problem.
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This paper is organized as follows. In Section II, the hy-
brid system model and the corresponding solution concept
are introduced. Subsequently, in Section III, requirements
are formulated for the design of appropriate tracking error
measures, and the tracking problem is formulated. Section IV
contains Lyapunov-type conditions that are sufficient for the
tracking problem to be solved. The results of this paper are
illustrated with examples on controller synthesis for the hybrid
tracking problem in Section V, and conclusions are formulated
in Section VI.

Notation

denotes the -dimensional Euclidean space; the set of
real numbers; the set of nonnegative real numbers; the
set of natural numbers including 0. Let denote the inte-
rior of a set , the boundary of the set, its clo-
sure, the smallest closed convex hull containing , and

denotes its Lebesgue measure. Let denote
a set-valued mapping from to subsets of . Given vec-
tors and , denotes the Euclidean vector
norm, denotes and denotes . A
function is said to belong to class-
( ) if it is continuous, zero at zero, strictly increasing
and unbounded. Given a Lipschitz function ,

denotes the generalized differential of Clarke, i.e.,
, where denotes the set

of measure zero where is not defined.

II. MODELING OF HYBRID CONTROL SYSTEMS

In this paper, we employ the framework of hybrid inclusions
described in [1], allowing the continuous-time dynamics (flow)
to be time-dependent, such that the hybrid system is given by

(2a)

(2b)

with , , where
describes the continuous-time (flow) dynamics that

is feasible when states are in the flow set , and jumps
can occur according to when states are in the jump
set . The control inputs are assumed to
be contained in the compact set . Moreover, only trajectories
from initial conditions in are considered. Note that the
reset map in (2b) is not dependent on time or the actuator
inputs , and models purely state-triggered jumps. We adopt the
convention that when .
The following technical assumption is imposed on the data of

the hybrid system (2).
Assumption 1: For any bounded set , the set

is non-empty, measurable and essentially bounded
for all and is non-empty
and bounded for all .
In order to define solutions of the hybrid system (2), we as-

sume that the input satisfies , which al-
lows, first, to evaluate solutions of the hybrid systems when the
input is a time signal , and second, to consider
discontinuous, state-dependent control laws, e.g., sliding mode
controllers. We consider solutions of the hybrid system (2) in

the sense of [1], such that is defined on a hybrid time domain
as follows. A hybrid time instant is given

as , where denotes the continuous time lapsed,
and denotes the number of experienced jumps. The arc is
a solution of (2) associated to when jumps satisfy (2b) and
is a Filippov solution of (2a) during flow, cf. [28]. This implies

for all such that
and1

for almost all and all such that
has non-empty interior, where

represents the convexification of the vector field as defined by
Filippov, where sets of Lebesgue measure zero are excluded.
The solution is said to be complete if is unbounded,
which, for example, holds for all trajectories of (2) if
is invariant under the dynamics of (2). The hybrid time domain

is called unbounded in -direction when for each
there exist a such that . In this paper, we
only consider maximal solutions, i.e., solutions for which the
domain can not be extended.
Analogous to the common approach in tracking control for

ODEs, we consider reference trajectories that are unique so-
lutions to (2), i.e., solutions to ,

, for a given input signal
and initial condition . We design a control law for to ob-
tain asymptotic tracking, in an appropriate sense, of the refer-
ence trajectory by the resulting closed-loop plant. We consider
feedback controllers that are static, where ,
or dynamic, where the (possibly hybrid) controller has an in-
ternal state and is described by

(3)

and assume that this controller satisfies Assumption 1. In order
to study the stability of the closed-loop system, we create an ex-
tended hybrid system with state . The dynamics
of this extended hybrid system is given by

(4a)

(4b)

where

1We employ, with a slight abuse of notation, the convention that
denotes .
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and we denote the domain of in (4b) with . We refer to
, , and as the data of system (4).
The main advantage of considering this extended hybrid

system (4) is that a joint hybrid time domain is created, where
hybrid times denote the continuous time
lapsed, and gives the total number of jumps that occurred in
, and . Hence, one can compare the reference state with
the plant state for each time instant . Let
denote the unit matrix of dimension , and let be a zero
matrix of dimension . Defining

(5)

allows to introduce a tracking error and formulate a
tracking problem by requiring, first, that re-
mains small provided that the initial error is
small, and second, that converges to zero for

, provided that this limit exists.
In fact, we will formulate the tracking problem by requiring
asymptotically stable behavior of , and, in two
exemplary systems, we will design controllers that guarantee
that the domain is unbounded in -direction, such that
the limit exists and, for example, no accumulation of
jump times (known as Zeno behavior, cf. [1]) will occur.
Remark 1: If two distinct trajectories and from (2) are

considered, then, in general, . In this case,
if one would define a time-dependent tracking error at time

, then it would not be not clear what time
is appropriate to use in a comparison of

and . Such problems are avoided by studying the extended
dynamics in (4), where the functions ,

and are reparameteriza-
tions of the functions ,
and , respectively.

III. TRACKING CONTROL PROBLEM FORMULATION FOR
HYBRID SYSTEMS

In Section III-A, we introduce distance functions
suitable to compare the plant trajectory with the refer-
ence trajectory, such that asymptotically stable behavior of

corresponds to appropriate tracking. Subse-
quently, in Section III-B we introduce asymptotic stability with
respect to the tracking error , and formalize the hybrid
tracking problem.

Definition of the Tracking Error Measure

In hybrid systems where jumps of the plant are state-trig-
gered, as in (2), asymptotically stable behavior of the Euclidean
error is generally impossible to achieve due to the peaking
phenomenon, see Fig. 1, which, even when and converge to
each other away from the jump instances, occurs when jump
times of the reference and plant trajectories show a small, pos-
sibly asymptotically vanishing, mismatch. To illustrate this in
the exemplary system (1), observe that if converges to
zero during continuous-time evolution and jumps are not ex-
actly coinciding, then, by the structure of the jump map (1b),

directly after a jump of either or . Since this
peaking phenomenon renders all tracking problems infeasible
that require stable behavior of the Euclidean error , in
this paper, we present a novel approach to compare trajectories
of the plant with a reference trajectory. For hybrid systems with
state-triggered jumps given in (2), we will show that the exact
properties of the jumps can be used to compare a reference tra-
jectory with a plant trajectory, when one of them just experi-
enced a jump, and the other did not. A distance function between
two trajectories that enables such a comparison incorporates the
structure of the jumps, as described in (2b), and hence is tailored
to the specific hybrid system. In this paper, we employ distance
functions, denoted as , to formulate and solve the tracking
problem.
We consider distance functions that are not sensitive

to jumps of the plant and the reference trajectory, i.e.,
for and for

. In this manner, stability with respect to
the distance function is not influenced by the jumps of
the plant or the reference trajectory. As we will show below, a
distance function is an appropriate measure to compare
a reference trajectory with a plant trajectory when it satis-
fies the following conditions. We adopt the notation

and .
Recall that when .
Definition 1: Consider a hybrid system given by (2) that

satisfies Assumption 1. A nonnegative function
is called a distance function compatible with

when it is continuous and satisfies

such that

(6a)

is bounded

(6b)

(6c)

(6d)

In this paper, we will study stability of the set where
is zero for system (4). Using (6a), in this set,

, such that holds
true, such that the distance is zero if and only if
either (such that the right-hand side of the implica-
tion in (6a) holds with ), or and can be
mapped onto each other instantaneously by jumps of
and jumps of , and, hence, . For
example, if jumps of (2b) cannot directly follow each other,
i.e., when , and is invertible, then (6a)
becomes ,

.
The condition (6b) implies that, for every given , is

radially unbounded. This property will be instrumental to prove
that convergence of to zero implies convergence of to
zero, away from the jump instances, i.e., when is not close to
the sets or .
Finally, (6c)-(6d) guarantee that remains con-

stant over jumps, such that the evaluation of the function
along a trajectory of a closed-loop system (4), i.e., the
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Fig. 2. Tracking error
evaluated along trajectories of (1).

function , is a continuous function with
respect to , and is not affected when changes. Conse-
quently, does not show the “peaking be-
havior,” as occurs in the Euclidean distance .
This property is illustrated in Fig. 2, where the function

is shown
when evaluated along the trajectories depicted in Fig. 1. In
Section V-A, we will show that this tracking error definition for

is indeed compatible with the hybrid system (1) in the
sense of Definition 1.
In this paper, we will formulate a tracking problem that

requires asymptotic convergence of to zero
along trajectories. The following theorem states that such a
convergence property of implies, at least for
the time instances where is bounded away from the jump
set and its image , that converges to
zero.
Theorem 1: Let the distance converge

asymptotically to zero along solutions of the closed-loop
system (4), i.e., , let these so-
lutions be complete, let be bounded for all
and let be compatible with (2). For each trajectory and all

, there exists a such that
holds when and

(7)

Proof: See Appendix A.
We note that in Section V, we present examples of hybrid sys-

tems and reference trajectories where the time intervals where
(7) is violated can be made arbitrarily small by selecting
sufficiently small. Consequently, in these cases, asymptotic con-
vergence of to zero implies that the time inter-
vals where “peaking” may occur (i.e., the time intervals where
the Euclidean distance can be large), become shorter
over time. We are convinced that more general (sufficient) con-
ditions can be formulated that guarantee that the time intervals
where (7) is violated can be made arbitrarily small by selecting

sufficiently small, such that these conditions additionally
guarantee that the time intervals where the Euclidean error may
display “peaking behavior” vanish asymptotically over time.
Inspired by these observations, in the following section, we

will formulate the tracking problem by requiring asymptotically
stable behavior of .

A. Tracking Problem Formulation

In this section, we discuss the stability of reference trajecto-
ries, and restrict our attention to bounded reference trajectories
that satisfy the following assumption.

Assumption 2: The reference trajectory is bounded,
is unbounded in -direction, and is the unique solution of (2)
for an input and given initial condition
.
Below, we formulate the tracking problem which requires

all trajectories of (4) to be such that behaves asymp-
totically stable. Hereto, we combine the definitions of (asymp-
totic) stability of trajectories, cf. [26], [29], with existing sta-
bility notions for hybrid systems, cf. [1], and employ distance
functions compatible with system (2) to express the dis-
tance between and , as introduced in Definition 1. To create a
common hybrid time domain, as mentioned before, we consider
solutions of the embedded system (4), such that and are both
defined on the hybrid time domain of trajectories of (4),
where and are defined in (5). Let us now formalize the sta-
bility properties of the reference trajectory.
Definition 2: Given a distance function

compatible with system (2), a reference trajectory
satisfying Assumption 2 is
• stable with respect to if for all and there
exists a such that

(8)

• asymptotically stable with respect to if it is stable and
one can choose such that

(9)

holds if is unbounded;
• globally asymptotically stable with respect to if it stable
with respect to and

(10)

holds for all trajectories of (4) such that
is unbounded.

As a special case of this definition, the (global) asymptotic
stability of an equilibrium point with respect to can be
evaluated by using . If the Euclidean distance

would be used, then the given definition re-
duces to the classical definition of asymptotic stability of trajec-
tories in the sense of Lyapunov, see, e.g., [26].
Using Definition 2, we formalize the tracking problem as

follows.
Problem 1 [(Global) Tracking Problem]: Given a hybrid

system (2) satisfying Assumption 1, a compatible distance
function and a reference trajectory satisfying Assumption
2, design a controller (3) such that the trajectory is (globally)
asymptotically stable with respect to .
This tracking problem is not affected by the peaking phenom-

enon of the Euclidean error, as depicted in Fig. 1(b), since the
trajectory of the plant is compared with the reference trajec-
tory using a distance function compatible with (2), as given in
Definition 1. As stated in Theorem 1, convergence of to zero
implies that, away from the jump instances, converges
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to zero. By formulation of the tracking problem using the dis-
tance , the tracking problem in Problem 1 embeds a more
intuitive and less restrictive notion of the closeness of jumping
trajectories. Note that the tracking problem defined here con-
siders a controller (3) that does not induce jumps of the plant
state directly, cf. (2b).
Remark 2: The tracking problem given in Problem 1 only

considers asymptotically stable behavior of the tracking error
. However, transient performance requirements of the

closed-loop system in terms of decay rates can also be formu-
lated using the distance function given in Definition 1.
Remark 3: Problem 1 implies that has to be an

invariant set for the closed-loop system (2), (3), and for this
reason, it requires a.e. when
and . Although, for example, PI-controllers
naturally do not have this property, a relevant class of static
and dynamic hybrid controllers can be considered, including
hysteresis-based controllers, of which an example will be given
in Section V-A.

IV. SUFFICIENT CONDITIONS FOR STABILITY
WITH RESPECT TO

In this section, we will use Lyapunov-like functions to study
the behavior of and to analyze whether a given controller (3)
solves the tracking problem formulated in Problem 1. First, we
will show that the solutions of the closed-loop system can be
considered as Filippov solutions during continuous-time evolu-
tion (Section IV-A). Subsequently, in Section IV-B we present
two theorems with Lyapunov-type stability conditions for the
stability of a set, and apply these results to obtain sufficient
conditions under which the tracking problem formulated in
Problem 1 is solved.

A. Closed-Loop Solutions

By construction of the extended hybrid system (4), if we
adopt Assumption 1 for the plant (2) and controller (3), then
the following property directly follows for the extended hybrid
system (4).
1) Property 1: For any bounded set , the set

is non-empty, measurable and essentially bounded for
all , and is non-empty and bounded for
all .
Note, in particular, that this property implies that the solution

concept of Filippov can be applied over those segments of the
hybrid trajectories of (4) where flow occurs. As noted before,
Filippov’s solutions are defined using the convexification of the
vector field of (4a):

(11)
such that is non-empty, bounded, closed, and convex
for all and all from a bounded set, and upper semi-contin-
uous in , as shown in [28, p. 85]. Hence, trajectories satisfy

for almost all and fixed .

B. Lyapunov-Type Stability Conditions

In order to formulate Lyapunov-type conditions for the
tracking problem given in Problem 1, we first present
conditions for the asymptotic stability of the set

for a continuous func-
tion . The considered stability properties
of this set for the dynamics (4), using , directly
imply asymptotic stability of the reference trajectory for
the closed-loop trajectory of the hybrid system (2), (3). Anal-
ogously to Definition 2, the set
is said to be stable with respect to a continuous function ,
when, for each , there exists a such that

, , holds for all
trajectories of system (4) with .
The set is asymptotically stable with respect to the function
when, in addition, there exist a such that, for all

complete solutions with initial conditions ,
converges to zero for . We first formulate a

basic Lyapunov-function-based result guaranteeing asymptotic
stability with respect to (Theorem 2). In contrast to existing
results on stability of sets, see, e.g., [1], firstly, non-Euclidean
errors measures are used, and second, stability of unbounded
sets is considered. Furthermore, we present Theorem 3 which
allows the increase of the Lyapunov function over jumps, as
long as this increase is compensated for by a larger decrease
over continuous-time evolution, a characteristic which we will
employ in Section V to prove stability of a reference trajectory
when a hysteresis-based controller is used.
Recall that Property 1 holds naturally for the system (4) when

both the plant (2) and controller (3) satisfy Assumption 1, and
that the data of (4) is designed to model the closed-loop dy-
namics, as discussed in Section II. For this reason, we will now
proceed as follows. In Theorems 2 and 3, we present sufficient
conditions for the stability of the set
with respect to for hybrid systems (4) with Property 1. Sub-
sequently, these conditions are used in Theorem 4 to present
conditions that guarantee that the tracking problem presented in
Problem 1 is solved. Throughout this paper, Lyapunov functions
are considered that are Lipschitz functions, which, in addition,
are regular as defined in Definition 2.3.4 in [30]. Recall that,
without any further reference, we will only consider solutions
which are maximal.
Theorem 2: Consider the hybrid system (4), and let Property

1 hold. In addition, suppose there exist a continuous function
, a regular and Lipschitz function
, functions and scalar

, such that

(12a)

(12b)

(12c)

with given in (11), then is a stable
set of (4) with respect to . If, in addition, for all solutions of
(4) with initial conditions in , is unbounded in
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-direction, then the set is globally
asymptotically stable with respect to .

Proof: See Appendix B.
Theorem 2 is valuable for the design of controllers solving the

tracking problem formulated in Problem 1. For example, if static
state-feedback controllers are employed, where ,
and a Lyapunov function is selected, then (12b) directly gives
sufficient conditions for the closed-loop differential inclusion
(4a) after substitution of the control law. In Section V-B, a
bouncing-ball system is presented as an example, where a static
control law is designed in this manner.
For various hybrid control systems, along discrete events (i.e.,

jumps), theLyapunov functionmight increase (i.e.,mightnot sat-
isfy condition (12c) of Theorem 2), while this increase is com-
pensated for by a larger decrease of the Lyapunov function over a
sufficiently long continuous-time period without jumps. An ex-
emplary system with this behavior will be given in Section V-A,
where the increase of the Lyapunov function is induced by the
switches of a hysteresis-based controller. To study the behavior
of such systems, inTheorem3below,wepresent sufficient condi-
tions for stability of trajectories that have an average inter-jump
time of at least time units, as defined in the following defini-
tion. This definition is formulated by adapting the average dwell
time conditions of [11] to the hybrid system framework, allowing
trajectories that have a finite number of subsequent jumps at the
same continuous-time instant .
Definition 3: We say that a trajectory for

, if for all and all
where , the relation holds.
Note that implies that the trajectory satisfies a

minimal inter-jump time restriction of time units. However,
the state of the extended hybrid system (4) is designed such
that it embeds the plant state and reference state . Hence,
if the jump times of plant converge to the jump times of the
reference trajectory, as shown, e.g., in Fig. 1, then the extended
hybrid system (4) directly violates such a dwell time restriction

. For this reason, we will focus on trajectories
satisfying the less restrictive condition , with

. For the example presented in Section V-A, we will show
that explicit expressions for and can be derived, such that
trajectories of the extended hybrid system (4) indeed satisfy

.
We present sufficient conditions for global asymptotic sta-

bility of the set with respect to the
distance in the following theorem, where we require all tra-
jectories of a system (4) to satisfy .
Theorem 3: Let trajectories of (4) from all initial conditions

in satisfy , for some , and let (4)
satisfy Property 1. In addition, suppose there exist a continuous
function , a regular and Lipschitz
function , functions
and scalars , such that

(13a)

(13b)

(13c)

with given in (11), then is a stable
set of (4) with respect to if

(13d)

holds. If, in addition, is unbounded in -direction, then
is globally asymptotically stable with

respect to .
Proof: See Appendix C.

Note that in the proof of this theorem we evaluate an upper
bound of the Lyapunov function for all . For this reason, in
contrast to the approach in [21], our analysis does not require
periodicity of reference trajectories.
Using the previously presented Theorems 2 and 3, we now

formulate sufficient conditions under which the tracking control
problem, i.e., Problem 1, is solved. We note that, for a relevant
class of hybrid systems (2), controllers can be designed such
that the closed-loop system trajectories , which are modelled
by the extended hybrid system (4), satisfy , with

, where the values for and follow directly from the
plant dynamics (2) and the controller (3). In Section V-A, we
present an example where the derivation of and is shown.
Theorem 4: Consider the global tracking problem for hybrid

system (2) with compatible tracking error (according to Defi-
nition 1) and reference trajectory satisfying Assumption 2, let
the controller (3) be given, let (2) and (3) satisfy Assumption 1,
and let the hybrid time domain of any trajectory of
system (4) be unbounded in -direction. Suppose there exist a
regular and Lipschitz function , func-
tions and scalars , such that:

(14a)

(14b)

(14c)

with given in (11), such that is the state of
the extended hybrid system (4) with data . If one
of the following conditions hold:
(i) the expression (14c) holds with , or
(ii) there exist such that all solutions of (4) satisfy

, and

(14d)

then the global tracking problem (given in Problem 1) is
solved.
Proof: See Appendix D.

V. TRACKING CONTROLLER DESIGN FOR

EXEMPLARY SYSTEMS

In this section, two examples are given where a controller is
designed to solve the tracking problem formulated in Problem 1.
For these two examples, we show that the design of a distance
function compatible with the exemplary hybrid system not only
allows to formulate the tracking problem, but in addition, can
be used to design a controller solving the tracking problem.
After designing the tracking error measure and the con-

troller (3), for the examples presented in the following sections,



BIEMOND et al.: TRACKING CONTROL FOR HYBRID SYSTEMS WITH STATE-TRIGGERED JUMPS 883

we employ Theorem 4 to show that the closed-loop system ren-
ders the reference trajectory asymptotically stable.

A. Global Tracking for a Scalar Hybrid System

In this section, we consider the tracking problem for the scalar
hybrid system (1) with a reference trajectory , that is the solu-
tion to (1) for and initial con-
dition . Since for
all , the continuous-time dynamics, described by (1a), yields
trajectories that can only leave by arriving at and thus ex-
perience a jump. Integrating (1a) over time , we obtain

, such that we can write the reference
trajectory as

(15)

with ,
where denotes the largest integer such that . Any
jump of will induce , such that subsequently, flow is
possible. A next jump can only occur when has increased to
1, which takes at least .
For this reason, the time domain is unbounded in -di-
rection and the reference trajectory satisfies Assumption 2.
To evaluate the tracking error between a plant trajectory

and the reference trajectory , we employ the distance function

(16)

To show that this function satisfies the conditions of
Definition 1, first, we show that (6a) holds. We observe
that for the reset map (1b), for all ; hence,

can only hold for . As
a consequence, , such that
is equivalent to

. Considering the jump map (1b),
we observe that for , such
that, equivalently, we can write . Substi-
tuting this function in the foregoing logical expression yields

, which is equivalent
to , such
that indeed (6a) holds.
The requirement formulated in (6b) holds since is

bounded. For and arbitrary ,
we observe that , and since

for , we also obtain
, such that holds, as

required in (6c). An analogous argument shows that (6d) holds.
As continuity of is obvious, this show that the conditions in
Definition 1 are satisfied and the distance function in
(16) is compatible with the hybrid system (1).
Now, we will design a controller that solves the global

tracking problem as formulated in Problem 1 using the distance
function given in (16). Since during flow, solutions
are considered in the sense of Filippov, static controllers

cannot solve the global tracking problem,
as can be observed intuitively as follows. Let represent an
analog 12-hours clock, such that corresponds to 0h00
or 12h00, let denote a different pointer that should track the
hour hand of the clock, such that the jumps in and of plant

(1) correspond to the 12-hour time jump of the clock. If is just
behind , asymptotically stable behavior requires “speeding
up” the pointer to converge to the reference time . However,
if is just ahead of , should run slower than the reference
hour hand, and thus slow down and “wait” for the reference
trajectory . However, at some point, say, if the difference
between and is 6 hours, should arbitrarily decide to “wait
for ,” or “accelerate to catch up with .” If the evolution of
is described by a Filippov solution, then such a decision is not
possible at all points: the Filippov solution will always have
a trajectory, where , that corresponds to an anti-phase
synchronized state, meaning that the difference between and
remains 6 hours.
Essentially, this behavior is induced by the fact that Brockett’s

necessary conditions for stabilizability hold both for smooth
differential equations and Filippov systems, cf. e.g., [31]. Since
the observed phenomenon can be translated directly to system
(1), global tracking is not feasible using a static controller

. As observed e.g., in [32], one approach to
avoid this problem, which we will employ in this paper, is to
introduce a hysteresis-based controller with discrete variable

that will ensure the global tracking problem to
be solved.
The rationale behind the controller design is as follows.

First, we observe that the distance (16) is given by the min-
imum of three functions , and , where

, and . For
each of these functions, a controller , is designed
that enforces converging behavior of to zero during flow, i.e.,
controls , or or to zero. Subsequently,
the function

(17)

is used to determine in which part of the state space, which of the
three control inputs , is applied. We design the up-
dates of the hysteretic state such that
becomes zero if either , or .
For this purpose, updates of are triggered by a violation of

, with , whichmay occur when
the plant or reference trajectory experiences a jump. At these
time instances, is reset to ensure
again. The parameter determines the hysteretic domain.
Using this reasoning, the following hysteresis-based controller
is designed:

(18a)

(18b)

with
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Fig. 3. Simulation results for system (1) with controller (18), where
and reference trajectory is the solution from initial

condition . The plant trajectory emanates from initial condition
. (a) Reference and plant trajectory. (b) Feedback action. (c)

Lyapunov function evaluated along the trajectory. (d) Error measure .
(e) Hysteretic variable . (f) Control input . Details near
are shown in the insets of panels (b-d).

where is used implicitly. The
resets of are designed to ensure that a violation of

is directly corrected by a reset in , and, as we
will show in the proof of Theorem 5, such jumps only occur
directly after jumps of or . We set and design the
controller output as

(18c)

where we select , which is a parameter that determines
the convergence rate of the closed-loop tracking error .
The following theorem proves that this controller solves the

global tracking problem given in Problem 1 for the reference
trajectory , by employing case (ii) of Theorem 4.
Theorem 5: Given the hybrid system (1) with reference tra-

jectory (15) and distance function (16), the hybrid controller
(18) solves the global tracking problem stated in Problem 1.

Proof: See Appendix E.
In Fig. 3, simulation results are shown that illustrate the

controller for a reference trajectory with initial condition
. The plant shows intuitively correct behavior

and converges to the reference away from the jump instances,
as predicted by Theorem 1. Note that the introduced hysteresis
causes the Lyapunov function to increase at the first jump
of the reference trajectory. The Lyapunov function decreases
monotonically to zero during flow, and, after the first jump,
is not affected by jumps of the hybrid system. After the first
hysteretic reset, the control feedback action , i.e.,

, is always negative, such that the plant trajectory
“waits” for the reference trajectory, as explained using the
analogy between system (1) and a clock hand. The tracking
error evaluated in , depicted in Fig. 3(d), does not
display the “peaking” of the Euclidean tracking error of these
trajectories, shown in Fig. 1.

B. Tracking Control for the Bouncing Ball

We consider the bouncing trajectories of a ball on a table,
see Fig. 4(a), as an elementary though representative model in

Fig. 4. (a) Bouncing ball system (21). (b) Sets
for two points and , where is given in (22).

the class of hybrid models for mechanical systems with impacts.
Assuming that non-impulsive forces can be applied on the ball
with unit mass, the flow of the system is described by

(19a)

where contains the vertical position and ve-
locity of the ball, respectively, is the gravitational acceler-
ation, is a force that can be applied to the system, and the con-
tact force between the ball and the table, with ,
for , and , for , avoids pene-
tration of the table by the ball, cf. [18].
Motion according to (19a) is only possible when the distance
between the table and the ball is nonnegative. If the ball

arrives at the surface , then a Newton-type impact law
with restitution coefficient equal to one is assumed, modelled as

(19b)

We consider the following reference trajectory:

(20)

where denotes the modulus operator. This trajectory is
a solution to (19) for initial conditions
and . In this example, we focus on the local tracking
problem given in Problem 1 and design a static control law

such that the reference trajectory is asymp-
totically stabilized for the closed-loop plant dynamics. For
trajectories near this reference trajectory the contact force
vanishes for almost all , such that the trajectories are described
by the system

(21a)

(21b)

In order to define a tracking error measure , we use the
property that the velocity changes sign at impacts, and the
position is zero, see (21b). Hence, if we want to compare
a reference state with plant state when one of them just
experienced a jump, then the distance is appropriate.
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Away from jump instances, typically, the conventional distance
can be used. To distinguish when the distance or
should be considered, we use the minimum of both, such

that the novel distance measure is given by

(22)

To recognize that this distance function satisfies the conditions
posed in Definition 1, first, note that , such
that when , implying that

, such that is equivalent to
. Since for

, the condition can
be rewritten to , such that
directly follows and relation (6a) is satisfied. As required in (6b),
for given , the set is compact, as
it is the union of the bounded sets and

. Since for , relation
(6c) holds, as
, which equals . An analogue argument shows that

(6d) holds. Since, in addition, is continuous, the tracking error
measure is compatible with the hybrid system (19).
In Fig. 4(b), the neighborhoods

of two different points , are shown. Essentially, the
tracking error measure allows to compare a reference trajec-
tory with a plant trajectory, “as if” both of them already jumped.
For example, in Fig. 4(b), the gray domain with positive is
considered close to , since will experience a jump soon,
and after this jump, will arrive in this domain.
We design a tracking control law for system

(21) using a reasoning that exploits the design of the tracking
error measure in (22). Analogously to the design approach
in the previous section, observe that in (22) is given by
the minimum between the two functions, and

. When the trajectory is sufficiently close to
and neither of them experiences a jump in the near future or
past, then the tracking error given in (22) is given by

. Along solutions of the differential (19a), this error
could accurately be controlled towards zero using a controller
with PD-type feedback, given by

(23)

where . Implementation of this controller yields the
error dynamics , such
that is an asymptotically stable
equilibrium point of the flow dynamics with given in (23).
However, if either the reference trajectory or the plant just

experienced a jump, as given in (22) is given by
. The continuous-time behavior of is stable when

the closed-loop dynamics satisfy
, which is obtained by selecting the controller as

(24)

with . Based on these insights, we propose a con-
troller that switches between (23) and (24). To choose the par-
titioning of the state space where either (23) or (24) are ap-

plied, the following candidate Lyapunov function is
considered:

(25)

with

(26)
where a symmetric, positive definite matrix and scalar
are chosen such that

(27)

with , where for symmetric and real ma-

trices , we adopt the notation when is negative
definite, and when . For strictly posi-
tive , the matrix is Hurwitz, which implies that such
and exist, since [33][Theorem 4.6] implies that for any sym-
metric, positive definite matrix there exist a symmetric, pos-
itive definite such that , and can
be chosen sufficiently small, such that . Based on
the Lyapunov function candidate , the following control law

is designed, such that or decreases along
continuous-time solutions described by (19a):

.
(28)

In the next theorem we show that the control law (28) indeed
solves the tracking problem formulated in Problem 1.
Theorem 6: Consider the bouncing ball system (21), tracking

error given in (22), and reference trajectory given in (20)
for . Application of the control law as
defined in (28), with given in (26) and , to
the hybrid system (21) makes the reference trajectory asymp-
totically stable with respect to . In addition, the set

is contained in the basin of at-
traction of , where is chosen to satisfy

(29)

Proof: See Appendix F.
The control law given in (26),(28) with

and is applied to system (21) with

. The trajectory from the initial condition
is shown with the dashed line in Fig. 5(a)-(b).

Clearly, the hybrid trajectory converges to during flow, and
the jump instances of and converge to each other. The Eu-
clidean distance and the distance between both
trajectories are shown in Fig. 5(c) and (d), respectively. Al-
though the Euclidean distance displays the unstable “peaking”
behavior, the tracking error expressed using the distance
remains continuous over trajectories, and converges to zero.
Hence, the local tracking problem as formulated in Problem 1
is solved, and the trajectories shown in Fig. 5(a). show desirable
tracking behavior. Indeed, as predicted by Theorem 1,
decreases to zero for away from , where .
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Fig. 5. (a), (b) Reference trajectory and plant trajectory of (21), where
and the control law (28) is applied with . (c) Tracking

error expressed in Euclidean distance , (d) distance function given
in (22) and (e) control input .

Although the controller designs for the examples in
Sections V-A and V-B have been tailored to the specific
examples, we care to highlight that we employed a common
rationale for the controller design. First, the tracking error
measure is designed as the minimum of functions

corresponding to , , ,
where the functions are designed such that
for . (For the bouncing ball example given in (21), the
functions and coincide due to the structure of and .)
Subsequently, for each function , a control law
is designed that would stabilize the set where along

flowing solutions. Finally, a Lyapunov candidate function is
employed to determine which control law is applied in what
part of the state space.

VI. CONCLUSION

In this paper, the problem of (global) tracking of time-depen-
dent reference trajectories is studied for hybrid systems with
state-triggered jumps. We formulated the tracking problem in
such a way that it corresponds to the intuitive notion of tracking
for hybrid systems: the plant trajectories tend asymptotically
to the reference trajectory, such that away from the time in-
stances where the reference trajectory jumps, the Euclidean
tracking error becomes small. To formalize this notion of
tracking, the tracking error is evaluated using a novel, non-Eu-
clidean distance measure. It is shown in this paper that such
distance functions have three advantages. First, it facilitates
the formulation of a tracking problem that is feasible for a
large class of hybrid system, including mechanical systems
with impacts, and does not require the jumps of the plant to
coincide with the jumps of the reference trajectory. Second,
the formulated tracking problem can be analyzed by evaluating
Lyapunov functions along closed-loop trajectories, and is
feasible for a large class of reference trajectories, which are not
required to be periodic. Third, as shown in the examples, the
new tracking error measure can be used to design controllers

solving the tracking problem. Using exemplary systems, in-
cluding the well-known bouncing ball system, we illustrate
that the tracking problem is feasible for hybrid systems with
state-triggered jumps and that the presented results support the
design of tracking controllers for such hybrid systems.
Further research should be directed to the development of

a synthesis procedure for generic hybrid systems that leads
to, first, a tracking error measure that is tailored to the hybrid
system under study and, second, a control law that solves the
tracking problem formulated in this paper. The requirements on
the distance measure and the stability analysis presented in this
paper form important stepping stones towards such a generic
synthesis procedure.

APPENDIX

Proof of Theorem 1: Consider an arbitrary trajectory
of system (4) satisfying the hypotheses of the theorem and de-
fine as in (5). Select such that .
The requirement (6a) implies that, given , the non-

negative function is zero if and only if

The set is closed, since
due to (6a), and is contin-

uous. Boundedness of follows from (6b), such that is
compact. Let give the distance to the
set . We will construct a -function such that

(30)

For this purpose, analogous to the proof of Lemma 4.3 in [33],
let be given as:

(31)

which is non-decreasing. Since (6b) is satisfied, we observe that
, for and for .

Hence, we can construct a strictly increasing and continuous
function such that and . Since, in
addition, (31) implies , we observe
that (30) is satisfied.
By assumption, converges to zero along the closed-

loop trajectory . Hence, for
all there exists a time such that

(32)

The -function is invertible, such that (32) and (30) imply

(33)
We will conclude the proof of this theorem by proving that

(34)
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implies when (7) holds. We can rewrite
as:

(35)

(36)

(37)

with .

Since we adopted the convention that when ,
for , can only hold when . Since,

in addition, , with (7) we observe that

when . Hence, (7) and (34)
imply that the infimum of (37) is attained with .
For and , implies

, such that (7) implies
. Hence, , when

, . Consequently, the combination of (7) and (34)
implies that the infimum in (37) is attained with ,
yielding

(38)

With (33), we conclude that holds for all
where (7) is satisfied, proving the

theorem.
Proof of Theorem 2: To prove stability of the set

, consider the Lyapunov function , evalu-
ated along a trajectory of (4), i.e., . Inequality (12c)
implies that is non-increasing over jumps and, according to
Theorem 2.2 of [34], (12b) guarantees

for almost all

(39)
Integration of this expression with respect to time and using
(12c) yields

(40)

such that the bounds in (12a) imply

(41)
which, together with , directly implies

, proving stability with
respect to . If, additionally, is unbounded in -direc-
tion, then asymptotic convergence with respect to is obtained.
Since this argument holds for all trajectories , global asymp-
totic stability with respect to is obtained, thereby proving the
theorem.

Proof of Theorem 3: We consider the Lyapunov function
, evaluated along a trajectory of (4), i.e., , to

prove stability of the set . Let
, and let denote the continuous time

when experiences the -th jump, that is, where and
. According to Theorem 2.2 of [34], (13b)

guarantees

for almost all

(42)
Integration of this expression with respect to time over

the time intervals , with , yields
,

which holds trivially when . Using this expression
and (13c), we obtain

(43)

Substituting , which follows from
, and using , we obtain

.
Using , we find

. Combining
(13d) and , we observe that , such that the
previous expression implies that converges to zero along
trajectories. Using (13a) yields

(44)

proving convergence of to zero. Since is chosen arbitrarily,
globally asymptotically stability of
with respect to is obtained, proving the theorem.

Proof of Theorem 4: Let be as
given in the formulation of the theorem and Assumption 2. If,
additionally, requirement (i) or (ii) is satisfied, then application
of Theorem 2 or 3 , respectively, implies that the set

is globally asymptotically
stable with respect to for the dynamics (4). If we select

, then we observe that
, as defined in (5), represents the reference trajectory on

the hybrid time domain , since this reference trajectory
satisfies Assumption 2 and is the unique solution of the hybrid
system from initial condition . Additionally, we observe
that , as defined in (5), represents the closed-loop plant
trajectory from the initial condition . Since the set

is globally asymptotically
stable with respect to , the trajectories and satisfy all
the conditions imposed in Definition 1 for any initial condition
of the plant trajectory, i.e., for any . Hence, the
reference trajectory is a globally asymptotically stable trajec-
tory of the closed-loop plant dynamics and the tracking problem
of Problem 1 is solved.

Proof of Theorem 5: In this proof, we will show that The-
orem 4(ii) is applicable, by firstly, showing that (14a)–(14c)
holds for the following Lyapunov function:

.
(45)
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Subsequently, we prove that the closed-loop trajectories are un-
bounded in –direction, and finally, we derive expressions for

that satisfy condition (ii) of Theorem 4.
First, we consider the extended hybrid system (4), where, in

this case,

(46)
for
for

for

(47)

(48)

(49)

Using (45), we observe that the relation
is satisfied and thus also (14a) holds with

the functions and .
Observe that, for , we obtain

, and since
we find that

(14b) reduces to , which is satisfied
for , since

(50)

By verification of the three different jumps described in (47),
it follows directly that (14c) is satisfied.
Now, we will derive lower and upper bounds for the right-

hand side of (1a) to select such that , and
to show that the time domain of trajectories of (4) is unbounded
in -direction. Observe that
, and , with

, such that

and using the selection of and , we obtain .
Observe that directly implies that trajectories of (1a) can
only leave by arriving at and experiencing a jump, which,
after one jump, can only be followed by flow. Hence, the time
domain of is unbounded in -direction.
Now, we design such that trajectories of the embedded

system (4) satisfy . Observe that jumps in (or
jumps in ) can only occur after it increased from 0 to 1 since
the last jump. Using the upper bound , this will take at
least 1/2 time units. Hence, every 1/2 time units, both and
can jump once according to (1b). The controller input (18c) is

designed such that continuous-time behavior always decreases
, such that jumps in only can be triggered by jumps in

or , or to be more explicit, jumps of will not be triggered
by reaching the set where when
and are described by (1a). Hence, system (4) can exhibit at
most jumps during every continuous-time interval of
length 1/2, i.e., we can select and obtain

. Since satisfies Assumption 2, the time domain
of is unbounded and , we directly obtain that
the time domain of is unbounded in -direction.
Evaluating (14d) with yields

, such that Theorem 4(ii) proves that
the global tracking problem given in Problem 1 is solved.

Proof of Theorem 6: This theorem is proven by applica-
tion of case (i) of Theorem 4 with the Lyapunov function can-
didate defined in (25)–(27). Since we are interested in a local
tracking problem, we restrict our attention to the given reference
trajectory and plant trajectories satisfying ,
with selected as required in the theorem. Such trajectories
are described by system (4) when we select

for
for

(51)

for
for

(52)

(53)

(54)

We will apply Theorem 4 to prove global asymptotic stability
of this system, which directly implies that the local tracking
problem defined in Theorem 6 is solved. First, we show that the
set does not contain points where .
This follows directly from (29), since, if , then

To find a lower bound for , observe that
, with given in (26), and both

and can be bounded from below using the minimum eigen-
value of , which we denote with , such that we ob-
serve

We obtain an upper bound for by separately studying the
domains ,

, and
, using the upper bounds

and , where is
the maximum eigenvalue of the matrix .
First, we observe that the set where

contains the points where , and for this reason,
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holds at these points. Since the
domain is connected,
the function is continuous, and, addi-
tionally, cannot occur, we find that

holds for all points in this domain, and
hence, we can employ the upper bound

. Via analogous reasoning, we obtain
for the domain

. Finally, in the domain
where , we observe that

and since , we directly
obtain . Therefore,
in we observe that (14a) is satisfied with

and
.

It can directly be observed that for the function given in
(25), the requirement (14c) holds with equality for .
Hence, it only remains to be shown that (14b) holds, and in ad-
dition, that the time domain of the trajectories in is
unbounded in -direction.
According to (28), is discontinuous only on the surface

, which, as observed already, is not con-
tained in . Hence, first, is continuously differen-
tiable and, second, is continuous for all

at any time , and one
can write .
Since is given by

for
for ,

(55)
we obtain

for
for .

(56)

Hence, (27) yields

for
for

for all and all
, which, given (25), directly implies ,

such that (14b) holds. This implies that decreases
during flow. Since is not explicitly dependent on time,
we can apply Proposition 2.4 of [35] which yields that all
trajectories have an unbounded hybrid time domain. For any

, the set
does not contain the origin, which follows directly from

and the choice of as
given in (29). Hence, after each jump in , the trajectory has
to experience flow and travel at least a distance , which

will take at least a continuous-time duration , such that
the time domain of is unbounded in -direction.
Hence, Theorem 4(i) is applicable, such that the reference

trajectory is locally asymptotic stable for the dynamics (4).
Since in the above analysis, convergence is shown for all initial
conditions in , this domain is
contained in the basin of attraction of the reference trajectory ,
thereby proving the theorem.
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