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Abstract—We investigate the tracking control of nonlinear net-
worked control systems (NCS) affected by disturbances. We con-
sider a general scenario in which the network is used to ensure the
communication between the controller, the plant and the reference
system generating the desired trajectory to be tracked. The com-
munication constraints induce non-vanishing errors (in general)
on the feedforward term and the output of the reference system,
which affect the convergence of the tracking error. As a conse-
quence, available results on the stabilization of equilibrium points
for NCS are not applicable. Therefore, we develop an appropriate
hybrid model and we give sufficient conditions on the closed-loop
system, the communication protocol and an explicit bound on
the maximum allowable transmission interval guaranteeing that
the tracking error converges to the origin up to some errors due
to both the external disturbances and the aforementioned non-
vanishing network-induced errors. The results cover a large class
of the so-called uniformly globally asymptotically stable protocols
which include the well-known round-robin and try-once-discard
protocols. We also introduce a new dynamic protocol suitable for
tracking control. Finally, we show that our approach can be used
to derive new results for the observer design problem for NCS.
It has to be emphasized that the approach is also new for the
particular case of sampled-data systems.

Index Terms—Hybrid systems, networked control systems, ob-
servers, sampled-data, tracking control.

I. INTRODUCTION

N ETWORKED control systems (NCS) have received con-
siderable research interest these last decades. This is

justified by the fact that, nowadays, controllers often commu-
nicate with the plant via a network which may be used for
other tasks as well. This implementation offers great advantages
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over classical point-to-point connections in terms of cost, flex-
ibility and ease of maintenance. On the other hand, it requires
the development of appropriate control strategies to guarantee
the desired stability properties under the communication con-
straints caused by the use of the network. Most available results
on NCS concentrate on the stabilization of equilibrium points
(see for example [2]–[6]), while very few studies address the
tracking control of NCS, see [7]–[9], although this problem is
fundamental in control theory. The latter references have shown
that tracking control exhibits specific difficulties which are due
to the use of the communication channel and which are absent
when considering the stabilization of an equilibrium point.
Indeed, tracking controllers are often composed of a feedback
term (to ensure the convergence to the desired solution) and
a feedforward term (which induces the desired solution in the
closed-loop system). The authors of [7]–[9] have shown that
the errors induced by the network on the feedforward term lead
to approximate tracking. Similarly, the fact that the reference
signals are transmitted via the communication channel may
also be a source of errors that obstruct the convergence of the
tracking error to zero.

The main purpose of the present paper is to propose a method
to design controllers which achieve a state tracking objective
for NCS affected by exogenous perturbations. The reference to
be tracked can either be given as a reference trajectory or as
the states of a reference system as in the master-slave synchro-
nization problem. We follow an emulation-like approach as in
[2]–[6] which consists in first designing a controller that solves
the problem in the absence of communication constraints.
Afterwards, we implement the controller over a network and
study the conditions that preserve the tracking property up to
some errors caused by the network. We consider a general
scenario where the channel is used to ensure the communication
between the controller, the plant and the reference system. This
allows us to encompass the architectures studied in [7]–[9] as
particular cases and to investigate a rich class of new ones. At
each transmission instant, the network is such that only a single
node (i.e. a group of sensors or actuators) is granted access
to the network according to a rule called scheduling protocol.
The class of protocols we consider includes the round-robin
(RR) protocol, the try-once-discard (TOD) protocol [6] and
more generally the protocols which are Lyapunov uniformly
globally asymptotically stable (UGAS) as defined in [5]. We
also propose a new dynamic protocol for tracking control which
may ensure improved performance compared to the RR and
TOD protocols. In comparison to [7]–[9], we consider nonlin-
ear systems (as opposed to linear systems) and we study the
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effect of sampling and scheduling (as opposed to sampling and
delays or quantization, although we believe that the framework
laid down in this paper allows extensions in these directions by
exploiting the ideas from [3], [10] for instance).

We present a new hybrid model using the formalism of
[11] to study the tracking control of NCS which is general
enough to describe the setups of [7]–[9] and to represent various
new architectures as mentioned above. It relies on the choice
of a specific set of coordinates which facilitates the analysis
afterwards. Next we state sufficient conditions on the closed-
loop system and we provide an explicit and easy-to-use bound
on the maximum allowable transmission interval (MATI) to
ensure that the tracking error converges to the origin up to
some errors due to the external perturbations, as expected,
but also due to the aforementioned network-induced errors.
These additional errors constitute an essential difference with
the scenario where an equilibrium point has to be stabilized
and they induce supplementary technical difficulties. Indeed,
the stability analysis is based on the construction of a hybrid
Lyapunov function inspired by [2], which exhibits the feature
of potentially increasing at jumps (as opposed to [2]). We then
provide guidelines on how to implement the controller and to
design the scheduling protocol to reduce the impact of the non-
vanishing network-induced errors on the tracking accuracy.

Building upon the analogies which exist between master-
slave synchronization and observer design [12], we also derive
new results for the observer design problem for NCS. Com-
pared to [13], [14], we rely on a Lyapunov-based analysis (as
opposed to trajectory-based arguments) and we provide a new
bound on the MATI. In addition, we envision an emulation
procedure similar to [15] which allows us to relax some of the
assumptions of [13], [14] for the considered class of systems.
It has to be noticed that we focus on a more general class
of observers than that in [15] and that we propose a different
stability analysis as well as a different MATI bound. Overall, we
would like to emphasize that the presented results are new in the
context of sampled-data systems (with non-uniform sampling),
in which case the scheduling protocol grants access to all nodes
at each transmission instant.

The paper is organized as follows. Preliminaries are pre-
sented in Section II. The tracking control problem is formal-
ized in Section III. Next, we propose a suitable NCS model
in Section IV and the assumptions we adopt are given in
Section V. The main stability results are stated in Section VI.
In Section VII, we give examples of protocols suitable in the
scope of tracking. The application of the derived results to the
observer design problem for NCS is presented in Section VIII.
Examples are provided in Section IX. All the proofs are given
in the Appendix.

II. PRELIMINARIES

Let R := (−∞,∞), R≥0 := [0,∞), R>0 := (0,∞), Z≥0 :=
{0, 1, 2, . . .}, and Z>0 := {1, 2, . . .}. A function γ :R≥0→R≥0

is of class K if it is continuous, zero at zero and strictly
increasing, and it is of class K∞ if in addition it is unbounded. A
continuous function γ : R2

≥0 −→ R≥0 is of class KL if for each
t ∈ R≥0, γ(·, t) is of class K, and, for each s ∈ R>0, γ(s, ·)

is decreasing to zero. Additionally, a function β : R3
≥0 → R≥0

is of class KLL, if β(·, ·, t) ∈ KL and β(·, t, ·) ∈ KL for any
t ∈ R≥0. For x ∈ R

n and y ∈ R
m, the notation (x, y) stands for

[xT, yT]
T

. We use In to denote the identity matrix of dimension
n and diag(A1, A2) to denote the block diagonal matrix made
of the square matrices A1 and A2. For (t, j), (s, k) ∈ R× Z≥0,
we write (t, j) � (s, k) if t+ j ≤ s+ k.

We will study hybrid systems of the form below using the
formalism of [16], [17]

ẋ = f(x,w) for x ∈ C, x+ = g(x,w) for x ∈ D (1)

where x ∈ R
n is the state, w ∈ R

m is the input, f is the flow
map, g is the jump map, C is the flow set and D is the jump set.
We assume that C and D are closed subsets of Rn and that f
and g are respectively continuous on C and on D. A subset E⊂
R≥0×Z≥0 is a hybrid time domain if for all (T, J)∈E, E∩
([0, T ]×{0, . . . , J})=

⋃
j∈{0,1,...,J−1}([tj , tj+1], j) for some

finite sequence of times 0= t0≤ t1≤ . . .≤ tJ . A function w :
E→R

m is a hybrid input if E is a hybrid time domain and if
w(·, j) is Lebesgue measurable and locally essentially bounded
for each j. A function x :E→R

n is a hybrid arc if E is a hy-
brid time domain and if x(·, j) is locally absolutely continuous
for each j. The hybrid arc x :domx→R

n and the hybrid input
w :domw→R

m is a solution pair to (1) if: i) domx=domw
and x(0, 0)∈C∪D; ii) for any j∈Z≥0, x(t, j)∈C and d/dt
x(t, j)=f(x(t, j), w(t, j)) for almost all t∈Ij where Ij={t :
(t, j) ∈ domx}; iii) for every (t, j)∈domx such that (t, j+
1)∈domx, x(t, j)∈D and x(t, j+1)=g(x(t, j), w(t, j)). A
solution pair (x, u) to (1) is maximal if it cannot be ex-
tended, and it is complete if domx is unbounded. Let w be
a hybrid signal with (0,0) as initial hybrid time, we define
‖w‖(t,j) := max{ ess.sup

(t′,j′)∈domw\Γ(w),(0,0)�(t′,j′)�(t,j)

|w(t′, j ′)|,

sup
(t′,j′)∈Γ(w),(0,0)�(t′,j′)�(t,j)

sup |w(t′, j ′)|} where Γ(w) is the

set of all (t′, j ′) ∈ domw such that (t′, j ′ + 1) ∈ domw.

III. PROBLEM STATEMENT

A. The Tracking Problem

Consider the nonlinear plant model

ẋp = fp(xp, u, wp), yp = gp(xp) (2)

where xp ∈ R
nx is the state, u ∈ R

nu the control input, yp ∈
R

ny the measured output and wp ∈ R
nwp is an external pertur-

bation. The reference xd that system (2) has to track is given by
the solution to

ẋd = fp(xd, uff , wd), yd = gp(xd) (3)

where uff ∈ R
nu is the (feedforward) input, yd ∈ R

ny denotes
the measured output and wd ∈ R

nwd is a vector of external
disturbances. When xd is a given reference trajectory, wd may
model the uncertainty on the feedforward term uff when its
exact expression is not available. System (3) may also model
a master system that the plant (2) has to synchronize with. In
this scenario, the master system (3) may be affected by external
disturbances which justifies the presence of wd in (3). We as-
sume that the reference system (3) has a unique solution for any
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Fig. 1. Block diagram of the tracking control of NCS studied in [7], [9].

Fig. 2. Block diagram of the tracking control of NCS studied in [8].

initial condition xd(0) and any inputs uff and wd of interest.
Both uff and yd are available for the purpose of control.

We consider the following controller decomposition

u = ufb + uff (4)

where the feedforward term uff comes from (3) and the feed-
back term ufb is the output of the dynamic controller given by

ẋc = fc(xc, yp, yd, wc), ufb = gc(xc) (5)

where xc ∈ R
nxc is the controller state and wc ∈ R

nwc is a vec-
tor of perturbations which may affect the controller dynamics.

B. Controller Implementation Over the Network

We investigate the scenario where a network is used to ensure
the communication between the plant sensors and the controller
and between the controller and the plant actuators. We also
allow for the case where the communication channel is used
to transmit the output and the input of the reference system (3),
i.e. yd and uff . We consider a general setting because we can
then capture, in a unified manner, specific scenarios in which
the network is only used to realize some relevant subsets of the
aforementioned communications, such as e.g. the cases in:

• [7], [9] where the reference and plant outputs, yd and yp
respectively, are sent together to the controller and uff is
not transmitted, see Fig. 1.

• [8] where the output yd is directly available to the con-
troller and uff is generated by the controller (note that
yd = xd in [8]), see Fig. 2.

Our approach also allows us to study the scenario depicted
in Fig. 3 for instance, where the reference output yd and the
feedforward term uff are transmitted via the network. In that
case, it is reasonable to set up the network in such a way that
the feedforward term uff is directly transmitted to the plant
actuators.

Fig. 3. Block diagram of the tracking control of NCS when uff is sent by the
reference system.

The sensors and the actuators of the plant (2) and of the
reference system (3) are grouped into � nodes (depending on
their spatial location) which are connected to the network. At
each transmission instant ti, i ∈ Z≥0, only one node is granted
access to the network by the scheduling protocol. The trans-
mission sequence {ti}i∈Z≥0

is such that υ ≤ ti − ti−1 ≤ τ ∗ for
i ∈ Z>0, where τ ∗ ∈ R>0 is the MATI and υ is the lower bound
on the minimum achievable transmission interval given by the
hardware constraints (see [4]). Notice that the transmission
intervals ti − ti−1 may be time-varying and uncertain.

The plant (2) no longer receives u = ufb + uff but û =
ûfb + ûff which is generated from the most recently trans-
mitted feedback and feedforward terms. We distinguish the
feedback term ufb from the feedforward term uff because
these may be transmitted via distinct nodes (see Fig. 3 for
instance). The dynamics of the plant now becomes

ẋp = fp(xp, ûfb + ûff , wp) t ∈ [ti−1, ti]

yp =gp(xp). (6)

Similarly, the controller (5) no longer receives yp and yd but
their networked versions ŷp and ŷd

ẋc = fc(xc, ŷp, ŷd, wc) t ∈ [ti−1, ti]

ufb =gc(xc). (7)

The variables ûfb, ûff , ŷp, ŷd have the following dynamics:

˙̂ufb = f̂fb(xp, xc, xd, ŷp, ŷd, ûfb, ûff )
˙̂uff = f̂ff (xp, xc, xd, ŷp, ŷd, ûfb, ûff )
˙̂yp = f̂p(xp, xc, xd, ŷp, ŷd, ûfb, ûff )
˙̂yd = f̂d(xp, xc, xd, ŷp, ŷd, ûfb, ûff )

⎫⎪⎪⎬
⎪⎪⎭ t ∈ [ti−1, ti]

and

ûfb

(
t+i
)
=ufb(ti) + hfb (i, ep(ti), ed(ti), efb(ti), eff (ti))

ûff

(
t+i
)
=uff (ti) + hff (i, ep(ti), ed(ti), efb(ti), eff (ti))

ŷp
(
t+i
)
= yp(ti) + hp (i, ep(ti), ed(ti), efb(ti), eff (ti))

ŷd
(
t+i
)
= yd(ti) + hd (i, ep(ti), ed(ti), efb(ti), eff (ti))

where efb := ûfb − ufb ∈ R
neu , eff := ûff − uff ∈ R

neu ,
ep := ŷp − yp ∈ R

nep , ed := ŷd − yd ∈ R
ned (neu := nu and

nep = ned := ny) denote the network-induced errors on the
feedback and the feedforward terms and the plant and the
reference outputs, respectively. The functions f̂fb, f̂ff , f̂p, f̂d
represent the holding functions, i.e. the way the variables
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ûfb, ûff , ŷp, ŷd are generated between two successive trans-
mission instants. In practice, it is common to use zero-order-
hold devices, i.e. f̂fb, f̂ff , f̂p, f̂d are equal to 0. Other functions
may also be implemented such as model-based algorithms
as explained in [13], [14] for example. We let f̂fb, f̂ff , f̂p, f̂d
depend on xp, xc and xd for the sake of generality to capture the
cases where they depend on a part of these vector variables. The
functions hfb,hff ,hp,hd model the scheduling mechanism
which governs the transmissions at each instant ti between
the controller on the one hand and the plant and the reference
system on the other hand. Following the terminology of [4], we
refer to the equation below as the protocol

e
(
t+i
)
= h (i, e(ti)) (8)

where e := (ep, ed, efb, eff ) ∈ R
ne , ne := nep + ned + 2neu ,

and h := (hp,hd,hfb,hff ). Since the network is composed of
� nodes, we partition e as e = (e1, . . . , e�) (after reordering, if
necessary). The protocol (8) is such that at each transmission in-
stant ti, if node j gets access to the network, the corresponding
error ej experiences a jump while the other components of e
remain unchanged; usually ej(t

+
i ) = 0 but this is not needed in

general. It has been shown in [4] that several common protocols
can be modeled by (8). For the RR protocol which grants access
to each node in a periodic fashion, the function h is given by

h(i, e) = (I−Δ(i)) e (9)

where Δ(i) = diag(Δ1(i), . . . ,Δ�(i)). For k ∈ {1, . . . , �} and
i ∈ Z≥0, Δk(i) := δk(i)Ink

where
∑

k∈{1,...,�} nk = ne and
δk(i) = 1 if i = k + jl for j ∈ Z≥0 and δk(i) = 0 otherwise.
The try-once-discard (TOD) protocol (introduced in [6]) gives
access to the node where the norm of the local network-
induced error, |ej | with j ∈ {1, . . . , �}, is the largest. Therefore,
we have

h(i, e) = (I−Ψ(e)) e (10)

where Ψ(e) := diag(ψ1(e)In1
, . . . , ψ�(e)In�

) where ψj(e) =
1 if j = min(argmaxj′∈{1,...,�} |ej′ |) and ψj(e) = 0 other-
wise. Model (8) also captures standard sampled-data systems
(in which case there is no scheduling) by setting h to 0.

Remark 1: When the output of the controller (5) is of the
form ufb = gc(xc, yp, yd) (instead of ufb = gc(xc)), the pro-
tocol (8) depends on xp, xd and xc in general, i.e. e(t+i ) =
h(i, e(ti), xp(ti), xd(ti), xc(ti)). The model presented in the
next section has to be modified accordingly in this case and
the stability results of Section VI will apply; only the analysis
of the protocol in Section VII needs to be revisited. It has to
be noticed that there are situations in which the protocol (8)
remains independent of xp, xd, xc when ufb = gc(xc, yp, yd)
(in which case the results of Section VII holds). This occurs
for instance when the controller is directly connected to the
plant actuators (as there is no error efb) or when there is no
scheduling (as h = 0). �

Our objective is to provide conditions on system (2)–(5) and
on the network to guarantee the approximate convergence of
the plant state xp towards the reference state xd in the presence
of network-induced communication constraints.

IV. A HYBRID MODEL OF NCS

Before presenting the hybrid model, we need to define new
coordinates. As we are interested in the convergence of xp

towards xd, we introduce the tracking error ξ := xp − xd ∈
R

nξ (nξ = nx). We also define the error e := (eξ, efb) ∈ R
ne

where eξ := ep − ed ∈ R
neξ , ne := ny + nu and neξ := ny .

The idea is to show that the ξ- and the e-systems satisfy
some robust asymptotic stability properties with respect to the
external perturbation vector w := (wp, wd, wc) ∈ R

nw (nw :=
nwp

+ nwd
+ nwc

) and the network-induced errors (ed, eff )
which are regarded as external disturbances similarly to [8].
This choice is motivated by the fact that ed and eff typically de-
pend on the reference system (3) and there is a priori no reason
why they should satisfy some asymptotic stability properties
even for very fast transmissions (recall that the MATI τ ∗ cannot
be infinitely small as it needs to be such that τ ∗ ≥ υ > 0),
contrary to e as we will show in Section VI. For instance,
when zero-order-hold devices are implemented, ėd = −ẏd and
ėff = −u̇ff so that the origin is not an equilibrium point of
the systems in ed and eff when ẏd �= 0 and u̇ff �= 0 (which is
generally the case when tracking time-varying trajectories).

We model the overall NCS as a hybrid system using the for-
malism of [16], for which a jump describes a transmission. We
use the coordinates (ξ, xc, xd, e, ed, eff , κ, τ1, τ2). The variable
κ ∈ Z≥0 is a counter variable which keeps track of the number
of transmissions. It is used to describe protocols such as the RR
protocol where it plays the role of the discrete time i in (9).
The variables τ1, τ2 ∈ R≥0 are clock variables: τ1 represents
the time elapsed since the last transmission and τ2 models the
‘continuous’ time. The following model is derived:

ξ̇ = fξ(τ2, ξ, xc, xd, e, ed, eff , w)
ẋc = fc(τ2, ξ, xc, xd, e, ed, w)
ẋd = fd(τ2, xd, w)
ė = ge(τ2, ξ, xc, xd, e, ed, eff , w)
ėd = gd(τ2, ξ, xc, xd, e, ed, eff , w)
ėff = gff (τ2, ξ, xc, xd, e, ed, eff , w)
κ̇ = 0
τ̇1 = 1
τ̇2 = 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

τ1 ∈ [0, τ ∗]

ξ+ = ξ
x+
c = xc

x+
d = xd

e+ = he(κ, e, ed, eff )
e+d = hd(κ, e, ed, eff )
e+ff = hff (κ, e, ed, eff )

κ+ = κ+ 1
τ+1 = 0
τ+2 = τ2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

τ1 ∈ [υ, τ ∗]. (11)

The functions fξ, fc, fd, ge, gd, gff , he, hd and hff are
obtained by direct calculations from the developments in
Section III (the τ2-argument captures their dependency on uff

or u̇ff ) and are assumed to be continuous. We similarly write
e+p = hp(κ, e, ed, eff ) and e+fb = hfb(κ, e, ed, eff ) to model
the jumps of the ep- and the efb-systems at each transmission
instant.
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For the sake of convenience, we introduce qx := (ξ, xc, xd)∈
Rx and qe := (e, ed, eff ) ∈ Re to distinguish the physical
variables from the errors induced by the network, where Rx :=
R

nξ+nxc+nx andRe :=R
ne+ned

+neff . In that way, we can write

q̇x = f(τ2, qx, qe, w)
q̇e = g(τ2, qx, qe, w)
κ̇ = 0
τ̇1 = 1
τ̇2 = 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

τ1 ∈ [0, τ ∗]

q+x = qx
q+e = h(κ, qe)
κ+ = κ+ 1
τ+1 = 0
τ+2 = τ2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

τ1 ∈ [υ, τ ∗]. (12)

V. ASSUMPTIONS

Inspired by [2], we present the assumptions we adopt
which can be used as guidelines to design and implement the
controller (4), (5) for the robust stabilisation of the desired
trajectory.

The protocol has to be such that Assumption 1 holds.
Assumption 1: There exist a function W :Z≥0×Re→R≥0

that is locally Lipschitz in qe, αW , αW ∈K∞, ρ∈ [0, 1) and μd,
μff ∈ K∞ such that for any (κ, qe) ∈ Z≥0 ×Re, it holds that

αW (|e|) ≤W (κ, qe) ≤ αW (|qe|) ,
W (κ+ 1, h(κ, qe)) ≤ ρW (κ, qe) + μd (|ed|) + μff (|eff |) .

(13)

�
The function W is used to analyze the stability of the

discrete-time dynamics of the qe-system. We will see in
Section VII that this system is strongly related to the scheduling
protocol. It can be noted that W is allowed to depend on the
full vector qe but it needs to be lower bounded by a class-K∞
function of |e| according to (13). It is shown in Section VII that
RR and TOD protocols admit a function W which only depends
on e. However, it is possible to envision protocols where W
does depend on the full vector qe (e.g. see Section VII-B).
Contrary to similar conditions in [2]–[4], the second inequality
in (13) holds with the additional perturbation terms μd and
μff . This difference is due to the fact that Assumption 1
does not apply to the protocol (8) but to the qe-system at
jumps which, although related, are different dynamical systems.
Indeed, the jumps of qe are governed by the vector field h =
(hp − hd, hfb, hff ) while the protocol concerns the variable e
whose jumps are dictated by h = (hp, hd, hfb, hff ). It can be
noticed that analogous conditions to (13) are considered in [18]
where input-to-state stable (ISS) protocols have been defined
(except that here ed and eff are parts of the overall state qe,
while in [18] there are exogenous disturbances). The constant ρ
in (13) often depends on the number of nodes � of the network
in such a way that large � leads to large ρ, which tends to 1 as
� goes to infinity (as we will see in Section VII). This implies

a smaller decrease of W at each jump and therefore a smaller
MATI bound according to the formula given in the following.

We assume that the following exponential growth condi-
tion on the qe-dynamics between two transmission instants
holds, which thus depends on the continuous-time dynamics of
yp, yd, ufb, uff and on the choice of the holding functions.

Assumption 2: There exist L ≥ 0, a continuous function H :
Rx → R≥0 and νd, νff , νw ∈ K∞ such that for all qx ∈ Rx,
κ ∈ Z≥0, τ2 ∈ R≥0, w ∈ R

nw and almost all qe ∈ Re〈
∂W (κ, qe)

∂qe
, g(τ2, qx, qe, w)

〉
≤ LW (κ, qe) +H(qx)

+νd (|ed|) + νff (|eff |) + νw (|w|)

where W comes from Assumption 1. �
The controller (4), (5) needs to be designed so that the

condition below is valid.
Assumption 3: There exist a locally Lipschitz func-

tion V : Rx → R≥0, αV , αV ∈ K∞, ε ∈ R>0, γ ∈ R≥0 and
σd, σff , σw ∈ K∞ such that for any qx ∈ Rx

αV (|ξ|) ≤ V (qx) ≤ αV (|qx|) (14)

and for all qe ∈ Re, τ2 ∈ R≥0, w ∈ R
nw and almost all qx ∈

Rx

〈∇V (qx), f(τ2, qx, qe, w)〉 ≤−εV (qx)−εW 2(κ, qe)−H2(qx)

+γ2W 2(κ, qe) + σd (|ed|) + σff (|eff |) + σw (|w|) (15)

where W and H come from Assumptions 1–2. �
The function V may depend on the full vector qx but it needs

to be lower bounded by a class-K∞ function of the norm of ξ.
This kind of Lyapunov functions is investigated in [19] in the
context of the stability with respect to two measures for exam-
ple. It relaxes standard requirements and it is sufficient to make
statements about the convergence of the tracking error towards
the origin. According to (14) and (15), the emulated controller
does ensure an ISS-like property for the tracking error dynamics
(i.e. the ξ-system) with W, ed, eff , w as inputs. Assumption 3
also implies that the ξ-system satisfies an L2-stability prop-
erty from (W,

√
σd(|ed|),

√
σff (|eff |),

√
σw(|w|)) to H . The

constant ε in (15) is usually taken sufficiently small. We will
show how Assumptions 2 and 3 can be validated for particular
(classes of) systems in Section IX.

The last condition is on the MATI. As in [2], we need to have
a network which has a sufficiently high bandwidth so that the
assumption stated below is satisfied.

Assumption 4: The MATI τ ∗ satisfies τ ∗<T (ρ, γ, L) where

T (ρ, γ, L) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
Lr arctan

(
r(1−ρ)

2 ρ
1+ρ (

γ
L−1)+1+ρ

)
if γ>L

1
L

1−ρ
1+ρ if γ=L

1
Lrarctanh

(
r(1−ρ)

2 ρ
1+ρ (

γ
L−1)+1+ρ

)
if γ<L

(16)

with r :=
√

|(γ/L)2 − 1|, ρ ∈ [0, 1) and γ, L ≥ 0 come from
Assumptions 1–3. �
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VI. MAIN RESULTS

We are ready to state the main result. Its proof is based
on the proof of Theorem 1 in [2] and requires some essential
modifications to handle the effect of the network-induced errors
ed, eff and external perturbations w.

Theorem 1: Consider system (12) and suppose Assumptions
1–4 hold. Then there exist β ∈ KLL, δd, δff , δw ∈ K∞ such
that for any solution (qx, qe, κ, τ1, τ2, w)

|(ξ(t, j), e(t, j))| ≤ β (|(qx(0, 0), qe(0, 0))| , t, j)

+δd
(
‖ed‖(t,j)

)
+ δff

(
‖eff‖(t,j)

)
+ δw

(
‖w‖(t,j)

)
(17)

for all (t, j) in the domain of the solution. Moreover, δd(s)
and δff (s) can be written as (1 + ϕ(τ ∗))ψ(υ−1)δ(s) for s ≥ 0
where δ, ψ ∈ K∞ and ψ : R≥0 → R>0. �

Property (17) is obtained by constructing a hybrid Lyapunov
function U (see the proof of Theorem 1) which satisfies an ISS-
like property on flows but not at jumps. Thus, we use the fact
thatU flows for some time (at least υ seconds, see Section III-B)
before jumping in order for the decreasing property of U on
flows to compensate, in some sense, the potential increase of U
at jumps.

Remark 2: The norms of the errors ‖ed‖(t,j), ‖eff‖(t,j) and

the functions δd, δff in (17) depend on the MATI τ ∗. We may
find upper bounds for ‖ed‖(t,j) and ‖eff‖(t,j) on a case-by-case
basis. For instance, when zero-order-hold devices are imple-
mented and the RR protocol is selected, we can proceed like in
(31) in [8] (where delays are taken into account but not schedul-
ing). On the other hand, the functions δd, δff also depend on
the minimum time υ between two jumps. We see that δd, δff

go to infinity as υ tends to 0. This fact is due to the stability
analysis which requires to decrease for some time υ during
flows in order to guarantee stability. On the other hand, the
more transmissions, the smaller the norms of ed and eff , which
would typically compensate the increase in the gains. That is the
case in Section IX where all the gains are linear. The mean value
theorem can then be used to upper bound the norms of ed and
eff by a constant that multiplies the inter-transmission interval
(under mild regularity conditions on yd and uff ) which would
then compensate the constant υ coming for the gains. We think
that a different analysis inspired by the small gain arguments
used in [18] may help to avoid this issue. Nevertheless, our ap-
proach is justified by the fact that the proposed Lyapunov-based
proof allows us to derive easily computable MATI bounds,
which are typically less conservative than those derived using
trajectory-based proofs, and that any real network has fixed
minimum inter-transmission interval υ. �

Theorem 1 shows that (ξ, e) tends to a ball centered at
the origin and of radius1 δd(‖ed‖(t,j)) + δff (‖eff‖(t,j)) +
δw(‖w‖(t,j)) as (t, j) grows. Thus, ξ indeed converges to the
origin up to some errors due to w, as expected, but also due

1If the maximal solutions to (12) are complete and if the limits superior of
‖ed‖(t,j), ‖eff‖(t,j), ‖ew‖(t,j) are bounded as t+ j → ∞, a tighter upper-

bound of this radius is given by lim sup
t+j→∞

δd(|ed(t, j)|) + δff (|eff (t, j)|) +

δw(|w(t, j)|).

to eff and ed which are induced by the network, similar to
[8]. In practice, we want these errors to be sufficiently small
and it might then be convenient to have some estimates of
δd(‖ed‖(t,j)) and δff (‖eff‖(t,j)). While it may be possible to
bound the norms of ed and eff (see Remark 2), we know that
the expressions for δd and δff we can deduce from the proof of
Theorem 1 are subject to some conservatism. Nevertheless, the
result in Theorem 1 provides the following qualitative insights
on how to reduce the impact of the network-induced errors eff
and ed on the tracking error:

• For δff (‖eff‖(t,j)): first, when uff can be directly im-
plemented on the actuators, we have eff ≡ 0. When this
is not possible, some previews of uff might be considered
as in [8] to reduce the error due to eff .

• For δd(‖ed‖(t,j)): it can be shown that δd can be written as

δd(s) = α(μd(s) + νd(s) + σd(s)) for s ≥ 0, where α is
some class-K∞ function (which depends on V , W , τ ∗ and
υ) and μd, νd, σd come from Assumptions 1–3. We show
in Section VII that it is possible to set μd = 0 by selecting
an appropriate protocol or by appropriately implementing
the emulated controller.

In practice, we would like to make sure that the states
qx = (ξ, xc, xd) and qe = (e, ed, eff ) remain bounded when
the reference trajectory and the perturbation w are bounded.
This point is addressed in the proposition below.

Proposition 1: Consider system (12) and suppose the fol-
lowing holds.

(i) Assumptions 1–4 hold.
(ii) There exist some functions Nd : R

nx+ned
+neff → R≥0,

Nc : R
nxc → R≥0 and γd, γc ∈ K∞ such that for any

solution (qx, qe, κ, τ1, τ2, w)

|(xd(t, j), ed(t, j), eff (t, j))|
≤ Nd (xd(0, 0), ed(0, 0), eff (0, 0)) + γd

(
‖w‖(t,j)

)
(18)

and

|xc(t, j)|≤Nc (xc(0, 0))+γc

(
‖(ξ, xd, e, ed, w)‖(t,j)

)
(19)

for any (t, j) in the domain of the solution. Then there exist a
function N̄ : Rx ×Re → R≥0 and γ̄ ∈ K∞ such that

|(qx(t,j), qe(t,j))|≤N̄(qx(0, 0), qe(0, 0))+γ̄
(
‖w‖(t,j)

)
(20)

for all (t, j) in the domain of the solution. �
Item (i) of Proposition 1 implies that the assumptions of

Theorem 1 hold so that (17) is ensured. Item (ii) of Proposition 1
gives conditions on the boundedness on the reference system
(3) and the dynamic controller (5). Let us now illustrate how
one could verify the conditions under item (ii) using reasonable
assumptions for NCS. Consider for that purpose a solution
(qx, qe, κ, τ1, τ2, w) to (12) and let (t, j) be in the domain of
the solution. The inequality (18) may be verified as follows.
First, it may be shown that

|xd(t, j)| ≤ Nxd
(xd(0, 0)) + γxd

(
‖w‖(t,j)

)
(21)
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where Nxd
:Rnx →R≥0 and γxd

∈K∞, which is a reasonable
assumption on the reference system when tracking bounded
reference trajectories. For the (ed, eff )-system, consider the
case where zero-order-hold devices are implemented and the
protocol is such that |hd(κ, e, ed, eff )|≤|ed| and |hff (κ, e, ed,
eff )|≤|eff | (which is the case for any relevant protocol).
When the norm of the feedforward term uff is bounded by
a constant Mff ≥0, we then derive that |eff (t, j)|≤2Mff+
|eff (0, 0)|. Using (21) and the continuity of gp, we deduce that
|yd(t, j)|≤Ñxd

(xd(0, 0))+γ̃xd
(‖w‖(t,j)) where Ñxd

:Rnx →
R≥0 and γ̃d ∈ K∞. Hence |ed(t, j)| ≤ |yd(t, j)|+|ŷd(t, j)| ≤
2Ñxd

(xd(0, 0))+ 2γ̃xd
(‖w‖(t,j))+|ed(0, 0)|. In that way, (18)

is satisfied with Nd(xd(0, 0), ed(0, 0), eff (0, 0))= Nxd
(xd(0,

0))+2Ñxd
(xd(0, 0))+|ed(0, 0)|+2Mff+|eff (0, 0)| and γd=

γxd
+2γ̃xd

. Finally, the bounded-input-bounded-state property
in (19) for the xc-system may be studied using the Lyapunov
function V in Assumption 3 for instance.

VII. ON THE CHOICE OF THE PROTOCOL

In this section, we give examples of protocols which ensure
the satisfaction of Assumption 1 in Section V. We first show that
this assumption is verified when the protocol (8) is Lyapunov
UGAS under mild conditions. We then specialize this result
for the RR protocol for which stronger properties are shown
to hold. Finally, we propose a new dynamic TOD-like protocol.

A. Lyapunov UGAS Protocols

The stability of protocols has first been characterized in
[4], and the notion of Lyapunov UGAS protocols has been
introduced in [5].

Definition 1: The protocol (8) is said to be Lyapunov uni-
formly globally asymptotically stable (UGAS) if there exist
W : Z≥0 × R

ne → R≥0, αW,αW ∈ K∞ and ρ ∈ [0, 1) such
that for all κ ∈ Z≥0 and e ∈ R

ne the following is satisfied:

αW (|e|) ≤W(κ, e) ≤ αW (|e|) (22)
W (κ+ 1,h(κ, e)) ≤ρW(κ, e) (23)

recall that e = (ep, ed, efb, eff ). �
We are now ready to state the main result of this section.
Proposition 2: Consider the protocol (8) and suppose the

following conditions hold.

(i) For any j ∈ {1, . . . , ne} and κ ∈ Z≥0, |hj(κ, e)| ≤ |ej |
with h = (h1, . . . ,hne

) where h is given in (8).
(ii) The protocol (8) is Lyapunov UGAS with a continu-

ous function W : Z≥0 × R
ne → R≥0 which is locally

Lipschitz in e and satisfies for all κ ∈ Z≥0 and almost
all e ∈ R

ne , |∂W(κ, e)/∂e| ≤ M , where M ≥ 0.

Then Assumption 1 is verified withW(κ,e)=W(κ,eξ,0, efb,0),
αW (s)=αW(s), αW (s)=αW(s), μd(s) = 2M(1 + ρ)s,
μff (s) = M(1 + ρ)s for s ≥ 0 and ρ = ρ. �

Note that item (i) in Proposition 2 simply states that the local
errors do not increase at each transmission which is the case
for all relevant protocols. The conditions of Proposition 2 are
satisfied by the RR and the TOD protocol in view of Section IV
in [4].

Since we are interested in a different stability property for
the e-system at jumps than in [4], we can propose an alternative
Lyapunov function to verify Assumption 1 for the RR protocol,
based on Proposition 4 in [4], which ensures stronger properties
and may lead to less conservative MATI bounds.

Proposition 3: Suppose the protocol (8) is the RR protocol
as defined in (9), then Assumption 1 is satisfied with W (κ, e) =√∑∞

i=κ |φ(i, κ, e)|2, where φ(i, κ, e) is the solution to2 e+ =
(hp(κ, eξ), hfb(κ, efb)) at time i starting at time κ with ini-
tial condition e, αW (s) = s, αW (s) =

√
�s, μd(s) =

√
�s and

μff (s) = 0 for s ≥ 0 and ρ =
√
(�− 1)/�. Moreover, μd = 0

if and only if hp = hd. �
Proposition 3 ensures the satisfaction of Assumption 1 with

μff = 0 which reduces the impact of the feedforward error
eff on the tracking error ξ. It also provides a necessary and
sufficient condition to obtain μd = 0 in Assumption 1 which is
interesting to reduce the impact of ed on the tracking error ξ
(see Section VI). That condition states that ŷp and ŷd must have
the same dynamics at jumps which is the case when yp and yd
are sent over the network via the same nodes for example. That
also allows us to conclude that, even if yd (equivalently yp) is
directly available at the controller side, it may be advantageous
to introduce the variable ŷd (equivalently ŷp) to generate the
control input instead of using yd (equivalently yp), where ŷd
jumps as ŷp does, otherwise μd will not be equal to 0 and it will
introduce an additional error on the convergence of (ξ, e). This
is discussed in more detail in Section VIII and in the scope of
an illustrative example in Section IX.

B. The TOD-Tracking Protocol

We now propose a new TOD-like protocol, that we call
the TOD-tracking protocol. Consider the scenarios where each
corresponding components of yp and yd are assigned to the
same nodes.3 In that way, a subvector (e, eff )j of (e, eff ),
j ∈ {1, . . . , �}, can be associated to each of the � nodes of
the network. The idea is to grant access to the node where
|(e, eff )j | is the biggest (and not |ej |, j ∈ {1, . . . , �}, as in the
classical TOD protocol, see the end of Section III-B). We define
the function h in (8) as h(κ, e) = (I−Ψ(e))e where Ψ(e) =
(δ1(e)In1

, . . . , δ�(e)In�
) where n1 + . . .+ n� = ne and

δj(e) =
{
1 if j = min (argmaxj |(e, eff )j |)
0 otherwise.

(24)

The lemma below shows that the TOD-tracking protocol satis-
fies Assumption 1. It directly follows from Proposition 5 in [4].

Proposition 4: Suppose the protocol (8) is the TOD-
tracking protocol, then Assumption 1 is satisfied with W (qe) =
|(e, eff )|, αW (s) = αW (s) = s, μd(s) = μff (s) = 0 for s ≥
0 and ρ =

√
(�− 1)/�. �

The TOD-tracking protocol ensures Assumption 1 holds
with μd = μff = 0, which is a priori not the case for the

2It has to be noted that hp (respectively hd) only depends on κ and ep
(respectively κ and ed) for the RR protocol, see (9).

3The TOD-tracking protocol can also be used when the nodes which transmit
yp (equivalently yd) have access to yd (equivalently yp). That is typically the
case when yd is a given trajectory which can be implemented on smart nodes.
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TOD protocol according to Proposition 2. Thus, the TOD-
tracking protocol may reduce the error of (ξ, e), and hence
improve the tracking performance in view of the discussion in
Section VI. We will also see this in simulations for an example
in Section IX.

Remark 3: Various variations of the TOD-tracking protocol
can be deduced according to the network setup. For instance,
when the control input is sent over the network as ufb + uff ,
like in the example in Section IX-B, we can set the protocol to
grant access to the node where |(eξ, efb + eff )j | is the largest
(and not |(eξ, efb, eff )j | as above). We then take W (qe) =
|(eξ, efb + eff )|. Assumption 1 is verified with the same func-
tions αW , αW , μd, μff and constant ρ as in Proposition 4,
except that the lower bound in the first inequality of (13)
depends on |(eξ, efb + eff )| and not on |e|. In this case, (17)
holds by replacing e in the left hand-side by (eξ, efb+eff ). �

VIII. OBSERVER DESIGN

In this section, we show how the results of Section VI can
be used to emulate nonlinear observers for NCS. Consider the
nonlinear system

ẋ = f(x,w), y = g(x) (25)

where x∈R
nx is the state, y∈R

ny the measured output, w∈
R

nw is an external perturbation, f is continuous and g is contin-
uously differentiable. We assume that we know how to design
a full-order observer of the following form for system (25)

˙̄x = f(x̄, 0) + k(x̄, y − ȳ), ȳ = g(x̄) (26)

where x̄ ∈ R
nx is the estimate of x, ȳ ∈ R

ny is the output of
the observer and k is continuous. This problem can be seen as
a tracking problem where we want x̄ to converge towards x.
We thus recover the formulation of Section III by taking⎧⎪⎨

⎪⎩
xd = x
yd = y
uff = 0
wd = w

⎧⎪⎨
⎪⎩

xp = x̄
yp = ȳ
ufb = k(x̄, y − ȳ)
wp = 0

(27)

fp(x, u, w) = f(x,w) + u and gp = g. Notice that the innova-
tion term of the observer k(x̄, y − ȳ) in (26) is interpreted as a
feedback input to (26) which is directly sent to the observer.

We implement the observer (26) over a network, see Fig. 4.
The output y is sent over the communication channel via �
nodes. In [13], [14], the observer (26) is implemented as

˙̄x = f(x̄, 0) + k(x̄, ŷ − ȳ). (28)

Here, we do not necessarily make the emulated observer depend
on its own output ȳ but on some ỹ (which corresponds to ŷp
with the notation of Section III). In that way, the emulated
observer is

˙̄x = f(x̄, 0) + k(x̄, ŷ − ỹ). (29)

We will see that it is possible to ensure a stronger stability
property than in [13] by appropriately selecting the dynamics of
ỹ. It has to be noticed that the same idea is proposed in [15] for
the design of a class of high-gain observers. Compared to [15],

Fig. 4. Block diagram of the observer implementation over a network.

we treat a more general class of nonlinear observers and we
propose a different stability analysis which leads to a different
MATI bound formula.4

Noting that eff = 0 since there is no feedforward term,
we write the overall model using the coordinates (ξ, xd, e, ed,
κ, τ1) with ξ = x̄− x, which we call the estimation error in
this section, xd = x, e = eξ = ep − ed where ep = ỹ − ȳ and
ed = ŷ − y

ξ̇ = fξ(ξ, xd, e, w)
ẋd = fd(xd, w)
ė = ge(ξ, xd, e, w)
ėd = gd(ξ, xd, e, w)
κ̇ = 0
τ̇1 = 1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

τ1 ∈ [0, τ ∗]

ξ+ = ξ
x+
d = xd

e+ = he(κ, e, ed)
e+d = hd(κ, e, ed)
κ+ = κ+ 1
τ+1 = 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

τ1 ∈ [υ, τ ∗] (30)

with

fξ(ξ, xd, e, w) := f(ξ + xd, 0)− f(xd, w)
+ k (ξ + xd,g(xd)− g(xd + ξ)− e)

fd(xd, w) := f(x,w) = f(xd, w)

ge(ξ, xd, e, w) := f̂p(ξ, xd, e, w)− f̂d(ξ, xd, e, w)

+
∂g

∂x
(xd)f(xd, w)−

∂g

∂x̄
(xd + ξ)

× (f(ξ + xd, 0)
+k (ξ + xd,g(xd)− g(xd + ξ)− e))

gd(ξ, xd, e, w) := f̂d(ξ, xd, e, w)−
∂g

∂x
(xd)f(xd, w) (31)

where f̂p and f̂d are defined by the holding functions. We do not
need to introduce the variable τ2 as in (11) because there is no
feedforward term here. Since the problem can be modeled as in
Section IV, we can directly apply Theorem 1 to conclude about
the convergence of the estimation error ξ under the required
conditions.

On the other hand, it may be possible to select the dynamics
of ŷp = ỹ so that (17) holds with δd = 0, i.e. the estimation
error converges to a smaller neighborhood of the origin. To
see this, consider the case where zero-order-hold devices are

4It is hard to say that the bound in Corollary 1 is less or more conservative
than the bounds in [15] or [13] in general because they are based on a different
set of assumptions and do not depend on the same constants.
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TABLE I
CONSTANTS USED IN SECTION VIII

used (i.e. f̂p = f̂d = 0 in (31)) and the protocol is either the RR,
the TOD-tracking protocol5 or all data are transmitted at each
transmission instant as in the context of sampled-data systems.
The variable ỹ is held constant between two transmissions and
jumps as ŷ does, i.e., when ŷi for i ∈ {1, . . . , �} is updated
so is ỹ. Denoting ỹ = (ỹ1, . . . , ỹny

), ŷ = (ŷ1, . . . , ŷny
) and

y = (y1, . . . , yny
), the dynamics of ỹ is given by

˙̃y =0 when τ1 ∈ [0, τ ∗]

ỹ+j =

{
ȳj if ŷ+j = yj
ỹj otherwise

when τ1 ∈ [υ, τ ∗]. (32)

Note that, in that case, the system can be modeled as in
(30) with a jump map for the e-system which is continuous.
In that way, Assumption 1 is valid with μd = 0 according
to Propositions 3–4, respectively, for the RR and the TOD-
tracking protocols. We make the following assumption which is
satisfied by the observers in [20]–[22] for instance when using
zero-order-hold devices.

Assumption 5: There exist L̃ ≥ 0, a continuous function H̃ :
R

nξ → R≥0 and ν̃w ∈ K∞ such that for all ξ ∈ R
nξ , xd ∈ R

nx ,
e ∈ R

ne , ed ∈ R
ned and w ∈ R

nw , it holds that

|ge(ξ, xd, e, w)| ≤ L̃|e|+ H̃(ξ) + ν̃w (|w|) . (33)

�
We take the function W to be as in Proposition 3 for the

RR protocol and we choose W (e) = |e| for the TOD-tracking
protocol (note that eff = 0 here) and for the sampled-data case.
Thus, by combining Assumption 5 with the fact that for the
considered protocols, for all κ ∈ Z≥0 and almost all e ∈ R

ne it
holds that ∣∣∣∣∂W (κ, e)

∂e

∣∣∣∣ ≤ M (34)

where M ≥ 0 is given in Table I. Assumption 2 is then satisfied
with L = ML̃, H = MH̃ , νd = 0, and νw = Mν̃w.

Finally, the observer needs to be designed such that
Assumption 3 is satisfied with σd = 0. This is justified by the
definition of the vector fields of system in (30) which can be
written independently of ed, see (31) (recall that f̂p = f̂p = 0
here). In that way, property (17) holds with δd = δff = 0 for
system (30) as stated below.

Colorary 1: Consider system (30) with either the RR or the
TOD-tracking protocol or in the sampled-data case. Suppose
Assumption 5 is satisfied and Assumption 3 holds with σd = 0.

5When the TOD-tracking protocol is implemented, we need the sensor nodes
to have access to yp (and thus ep), i.e. they need to have sufficient compu-
tational capacities to run a copy of the observer; a similar implementation is
described in more detail in Remark 2 in [13].

If the MATI τ ∗ is strictly less than T (ρ, γ, L) in (16) where
γ comes from Assumption 3 and L and ρ are given in Table I
depending on the adopted protocol, then there exist β ∈ KLL,
δw ∈ K∞ such that for any solution (ξ, xd, e, ed, κ, τ1, w)

|(ξ(t, j), e(t, j))|≤β (|(qx(0, 0), e(0, 0))| , t, j)+δw
(
‖w‖(t,j)

)
(35)

for all (t, j) in the domain of the solution. �
Compared to [13], we do not require the plant (25) to be

stable and we ensure the asymptotic convergence of the esti-
mation error towards the origin in the absence of perturbations
w (as opposed to a practical stability property in [13]) when
the observer (26) is emulated using zero-order-hold devices.
Furthermore, a new MATI bound is given in Corollary 1.

IX. EXAMPLES

We demonstrate how the results of Section VI can be used for
the tracking control of stabilizable linear systems in Section IX-
A. We then consider an example concerning a nonlinear single-
link robot arm in Section IX-B.

A. Linear Systems

Consider the linear plant ẋp = Axp +Bu+ Fwp where
A,B,C are real matrices of appropriate dimensions, the pair
(A,B) is stabilizable and the state is measured (yp = xp in (2)).
The feedforward term uff verifies ẋd = Axd +Buff , where
xd is also measured (yd = xd in (3)). We assume that xd(t) is
twice continuously differentiable so that uff (t) is continuously
differentiable. The controller is designed as u = ufb + uff

with ufb = −K(xp − xd) where K is such that A−BK is
Hurwitz. It ensures the asymptotic convergence of xp towards
the reference trajectory xd up to an error due to wp. We
implement the controller over a network composed of � nodes,
as described in Section III, using zero-order-hold devices. The
scheduling protocol is selected to be the RR protocol; noting
that similar results can be derived for the TOD(-tracking)
protocols. We write the problem using the model in (11). We
obtain

fξ(ξ, e, eff , w) = (A−BK)ξ +B(Λe+ eff ) + Fwp

fd(τ2, xd) =Axd +Buff

ge(ξ, e, eff , w) = (−(A−BK)ξ −B(Λe+ eff )− Fwp, 0)
gd(τ2, xd) = −Axd −Buff (36)

where Λ = [−K I] and recall that τ2 reflects time-dependencies
in the right-hand side due to uff . We concentrate on the case
where the plant state xp and the reference trajectory xd are
transmitted to the controller via distinct nodes. In that case, we
assume that uff is sent from the reference system to the actua-
tors via the network, as depicted in Fig. 3. The same approach
can be applied for the other cases described in Section III-B.

Since A−BK is Hurwitz, the ξ-system is L2-gain stable
from (e, eff , wp) to (A−BK)ξ with gain γ ≥ 0. The result
below follows from Theorem 1. Its proof is omitted; it consists
in verifying that the required conditions of Theorem 1 holds for
this particular linear case.
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Proposition 5: Consider system (11) with (36) and suppose
τ ∗ satisfies Assumption 4 with ρ =

√
(�− 1)/�, L =

√
�|BΛ|

and γ is defined above. Then property (17) holds. �

B. Single-Link Robot Arm

We consider a single-link robot arm whose dynamics can be
written as

ẋ1 = x2, ẋ2 = −a sin(x1) + bu (37)

where x1 is the angle, x2 is the rotational velocity which are
both measured, u is the input torque and a, b > 0 are fixed
parameters. The system (37) has to track the reference system

ẋ1,d = x2,d, ẋ2,d = −a sin(x1,d) + buff (38)

where x1,d and x2,d are measured and uff (t) = 10 sin(50t).
When there is no communication constraint, the asymptotic
convergence of (x1, x2) towards (x1,d, x2,d) is ensured using
the control input u = ufb + uff where ufb = b−1(a(sin(x1)−
sin(x1,d))−(x1 − x1,d)− (x2 − x2,d)). We consider the case
where the controller is implemented using zero-order-hold
devices and communicates with system (37) via a network
composed of 3 nodes for x1, x2 and u, respectively (� = 3).
Thus, we assume that6 x1,d, x2,d, uff are directly available to
the controller as in Fig. 2. The transmission sequence {ti}i∈Z>0

is such that ti − ti−1 = τ ∗(= υ) for i ∈ Z>0, where τ ∗ will be
specified later. The emulated feedback controller is

ufb=b−1 (a (sin(x̂1)−sin(x̂1,d))−(x̂1 − x̂1,d)−(x̂2−x̂2,d))
(39)

where x̂1,d and x̂2,d are held constant between transmissions
and jump as x̂1 and x̂2 do. In that way, the emulated feedback
term (39) does not depend on x1,d and x2,d although these
variables are continuously known by the controller. We will
see that this choice may be advantageous in order to reduce
the impact of the errors ed and eff on the convergence of the
tracking error.

In the sequel, we study three different protocols: the RR, the
TOD and the TOD-tracking. We write the system in the form
of (11) with: fξ(qx, qe)=(ξ2,−a(sin(ξ1+x1,d)−sin(x1,d)−
sin(ξ1+x1,d+e1,ξ + e1,d) + sin(x1,d + e1,d))− (ξ1+e1,ξ)−
(ξ2+ e2,ξ)+ befb+ beff ), fd(τ2, xd) = (x2,d,−a sin(x1,d) +
buff ), ge(qx, qe)= −(fξ(qx, qe), 0), gd(τ2, qx)= −fd(τ2, xd)
and gff (τ2) = −u̇ff . We consider the function W in
Proposition 3 for the RR protocol, W (e) = |e| for the TOD
protocol and W (qe) = |(eξ, efb + eff )| for the TOD-tracking
protocol (see Remark 3). In that way, Assumption 1 is valid, see
Section VII. On the other hand, we have that |ge(qx, qe)| ≤
|ξ2|+ |ξ1 + ξ2|+D|e|+2a|ed|+b|eff |, where D :=

√
3max

{1+a, b}. The considered functionsW are such that:αW (s)=s
for s ≥ 0 and |∂W (κ, qe)/∂qe|≤M for almost all
qe and all κ with M=

√
� for the RR protocol (see

Example 3 in [4]) and M=1 for the TOD and the

6We make this assumption in order to be able to consider the TOD-tracking
protocol (see Section VII).

TABLE II
MATI BOUNDS IN SECTION IX-B

TOD-tracking protocol. As a consequence, |〈(∂W (κ, qe)/
∂qe), g(τ2, qx, qe, w)〉|≤M(DW (κ, e)+ |ξ2|+ |ξ1 + ξ2|+ 2a
|ed|+ b|eff |) for almost all qe and all qx, w, τ2, κ, where g=
(ge, gd). Hence, Assumption 2 is verified with L = MD,
H(qx) = M(|ξ2|+ |ξ1+ξ2|), νd(s) = 2Mas and νff (s) =
Mbs for s ≥ 0. We now show that Assumption 3 holds with
V (ξ)=αξ21+βξ1ξ2+δξ22 where α, β, δ will be chosen such
that (14) holds. Writing a(sin(ξ1+x1,d)−sin(ξ1+x1,d+e1,ξ+
e1,d)) = ā(e1,ξ + e1,d) and a(sin(x1,d)− sin(x1,d + e1,d)) =
ãe1,d with varying parameters ā, ã in [−a, a], we have that
〈∇V (ξ), fξ(qx, qe)〉≤−βξ21−(2δ−β)ξ22+(2α−2δ−β)ξ1ξ2+
(2δξ2+βξ1)(Υe+ (−ā+ ã)e1,d + beff ) where Υ:=[−ā− 1
− 1 b]. Applying twice the fact that xy≤(η/2)x2 + (1/2η)y2

for x, y∈R≥0 and η > 0, we obtain 〈∇V (ξ), fξ(qx, qe)〉≤−β
ξ21−(2δ−β)ξ22+(2α−2δ−β)ξ1ξ2+(1/2)(η−1+η̃−1)(2δξ2 +
βξ1)

2 +(1/2)ηD2|e|2 + (1/2)η̃((−ā+ã)e1,d+ beff )
2 where

η, η̃ > 0 and D has been defined above. We use that | − ā+
ã|≤2a and (x+y)2≤2x2+2y2 to obtain 〈∇V (ξ), fξ(qx,
qe)〉≤−βξ21−(2δ−β)ξ22+ (2α−2δ − β)ξ1ξ2+(1/2)(η−1+
η̃−1)(2δξ2 + βξ1)

2+ (1/2)ηD2|e|2+η̃(4a2|ed|2+b2|eff |2).
Therefore, if we ensure that (14) holds and

−ε|ξ|2 −H2(qx) ≥ −βξ21 − (2δ − β)ξ22 + (2α− 2δ − β)ξ1ξ2

+
1

2
(η−1 + η̃−1)(2δξ2 + βξ1)

2 (40)

with ε > 0, then Assumption 2 is verified with γ =√
(1/2)ηD2 + ε, σd(s) = 4η̃a2s2 and σff (s) = η̃b2s2 for

s ≥ 0. Note that Assumption 2 holds when α = β = δ and by
taking α, η and η̃ sufficiently large and ε sufficiently small.
Nonetheless, such a choice may lead to a large γ which may
then give us conservative MATI bounds (as the bound in (16)
increases as γ increases). Thus, we have computed α, β, δ, η
by minimizing γ =

√
(1/2)ηD2 + ε under the conditions that

(14) and (40) hold using the Matlab optimization toolbox taking
a = 9.81 · 0.5 and b = 2. We have obtained α = 3.05, β =
1.05, δ = 5.05, η = 10.11 and ε = 0.0001. The MATI bounds
are summarized and compared to the bounds estimated via
simulations in Table II.It has to be emphasized that our method
strongly relies on the choice of the Lyapunov functions V and
W and that other functions may lead to larger bounds. We no-
tice that the bounds for the TOD and the TOD-tracking protocol
are the same according to Assumption 4 and in simulations.
Interest in the TOD-tracking is justified by the fact that it may
reduce the impact of the errors ed and eff on the tracking error
as discussed below Proposition 4 and illustrated by Fig. 5. On
the other hand, we see in Fig. 6 that the convergence error is
of the same order of magnitude when using the TOD-tracking
and the RR protocol; the advantage of the TOD-tracking is that
we can consider larger transmission intervals (see Table II).
Finally, we have compared the obtained tracking errors for the
cases where the emulated feedback controller (39) uses either



POSTOYAN et al.: TRACKING CONTROL FOR NONLINEAR NETWORKED CONTROL SYSTEMS 1549

Fig. 5. Tracking error for MATI τ∗ = 0.005.

Fig. 6. Tracking error for MATI τ∗ = 0.005.

Fig. 7. Tracking error for MATI τ∗ = 0.005 and the RR protocol when the
controller uses (x̂1,d, x̂2,d) (solid lines) or (x1,d, x2,d) (dashed lines).

the variables (x̂1,d, x̂2,d) or (x1,d, x2,d) in (39), see Fig. 7. We
see that, for the RR protocol, ξ1 := x1 − x1,d converges to a
smaller neighborhood of the origin when the controller uses
(x̂1,d, x̂2,d) instead of (x1,d, x2,d), while no major difference
is seen for ξ2 := x2 − x2,d.

X. CONCLUSION

We have presented a Lyapunov-based emulation approach
for the tracking control of time-varying trajectories for non-
linear NCS. To handle the specific features of tracking control
for NCS, we have proposed a new hybrid model. We have
presented sufficient conditions under which an approximate
tracking control objective is achieved. In addition, we have
explained how the controller can be implemented and how the
protocol can be set up in order to reduce the impact of some of
the network-induced errors on the tracking error. Finally, it has
been shown that these results on tracking control can be directly
employed to obtain new results for the observer design problem
for NCS as well. We believe that the results of this paper can be
extended in various directions. In particular, tracking control in
NCS subject to small transmission delays can be addressed by
first appropriately modifying the model of Section IV and then
adapting the Lyapunov-based stability analysis given in [3].

APPENDIX

Proof of Theorem 1: The proof is organised as follows. First,
a hybrid Lyapunov function U is designed. Second, we study
the derivative of U along the solutions to (11) on flows (when
τ1 ∈ [0, τ ∗]) and its dynamics at jumps (when τ1 ∈ [υ, τ ∗]).
Third, we obtain (17) by applying standard comparison prin-
ciples together with the fact there exists a minimum amount of
time υ between two jumps. Finally, we prove the last part of
Theorem 1 about the functions δd, δff .

We focus on the case where ρ ∈ (0, 1); when ρ = 0 similar
arguments as in [24] are used. The constant T (ρ, γ, L) in (16)
corresponds to the time it takes for the solution to ψ̇ = −2Lψ −
γ(ψ2 + 1) to decrease from the initial condition ψ(0) = 1/ρ to
ψ(T (ρ, γ, L)) = ρ (see Lemma 2 in [2]). We now define the
following differential system

φ̇ = −2Lφ− γ
(
(1 + η)φ2 + 1

)
with φ(0) =

1

ρ∗
(41)

where η > 0, ρ∗ ∈ (ρ, 1). The time T̃ (ρ∗, γ, L, η) it takes for φ
to decrease from 1/ρ∗ to ρ∗ is a continuous function in η and ρ∗

which decreases with both increasing η and ρ∗ as long as ρ∗ ≤ 1
(by invoking the comparison principle). Moreover, we have that
T̃ (ρ, γ, L, 0) = T (ρ, γ, L), as a consequence T̃ (ρ∗, γ, L, η) ≤
T (ρ, γ, L). Based on these facts, for any τ ∗ < T (ρ, γ, L) we
can always find ρ∗ sufficiently close to ρ with ρ∗ > ρ and η suf-
ficiently small such that τ ∗ < T̃ (ρ∗, γ, L, η). In the following,
we take η ∈ (0, (ρ∗/ρ)2 − 1).

The following claim follows from Claim 1 in [2] and the
developments above.

Claim 1: For all τ1 ∈ [0, τ ∗], φ(τ1) ∈ [ρ∗, (1/ρ∗)]. �
For the sake of convenience, we introduce q := (qx, qe, κ, τ1,

τ2) ∈ R where R := Rx ×Re × Z≥0 × R
2
≥0 and write system

(11) as

q̇ = F (q, w) for q ∈ C, q+ = G(q) for q ∈ D (42)

where C := {q ∈ R : τ ∈ [0, τ ∗]} and D := {q ∈ R : τ ∈
[υ, τ ∗]}. We define, for all q ∈ C ∪D ∪G(D)

U(q) := V (qx) + γφ(τ1)W
2(κ, qe). (43)
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According to Remark 2.3 in [23] and Assumptions 1 and 3, we
have that

αU (|(ξ, e)|) ≤ U(q) ≤ αU (|(qx, qe)|) (44)

with αU : s �→ min{αV (s/2), ρ
∗αW (s/2)} ∈ K∞ and αU :

s �→ αV (s) + (1/ρ∗)αW (s) ∈ K∞.
In view of (41) and since q+x = qx

U (G(q)) =V (qx) + γφ(0)W 2 (κ+ 1, h(κ, qe))

=V (qx) + γ
1

ρ∗
W 2 (κ+ 1, h(κ, qe)) . (45)

Using Assumption 1 (we omit the arguments of V and W in the
following for the sake of simplicity), we obtain

U (G(q)) ≤V + γ
1

ρ∗
(
ρW + μd (|ed|) + μff (|eff |)

)2
=V +γ

1

ρ∗
(
ρ2W 2+2ρW

(
μd (|ed|)+μff (|eff |)

)
+
(
μd (|ed|) + μff (|eff |)

)2)
. (46)

We are going to upper bound the right-hand side of the above
equation using the following inequalities (we utilize that 2ab ≤
a2 + b2 for a, b ∈ R)(

μd (|ed|) + μff (|eff |)
)2

=μd (|ed|)2 + μff (|eff |)2

+ 2μd (|ed|)μff (|eff |)
≤ 2μd (|ed|)2 + 2μff (|eff |)2

(47)

and (using that 2ab ≤ (η/2)a2 + (2/η)b2 for a, b ∈ R)

2ρW
(
μd (|ed|) + μff (|eff |)

)
= 2ρWμd (|ed|) + 2ρWμff (|eff |)

≤ η

2
ρ2W 2 +

2

η
μd (|ed|)2 +

η

2
ρ2W 2 +

2

η
μff (|eff |)2

= ηρ2W 2 +
2

η
μd (|ed|)2 +

2

η
μff (|eff |)2 . (48)

As a consequence, we obtain the following bound on U(G(q))
from (46)

U (G(q))

≤ V + γ
1

ρ∗

(
ρ2W 2 + ηρ2W 2 +

2

η
μd (|ed|)2

+
2

η
μff (|eff |)2

+2μd (|ed|)2 + 2μff (|eff |)2
)

= V + γ
1

ρ∗
(
(1 + η)ρ2W 2

+2

(
1+

1

η

)(
μd (|ed|)2 + μff (|eff |)2

))
.

(49)

Denote σd
U (s) :=γ(2/ρ∗)(1+(1/η))μd(s)2 and σff

U (s) :=γ(2/
ρ∗)(1 + (1/η))μff (s)2 for s ≥ 0 and notice that (1/ρ∗)(1 +

η)ρ2 < ρ∗ since η ∈ (0, (ρ∗/ρ)2 − 1). Hence, the following
holds according to Claim 1

U (G(q)) ≤V + γρ∗W 2 + σd
U (|ed|) + σff

U (|eff |)
≤V + γφ(τ1)W

2 + σd
U (|ed|) + σff

U (|eff |)
=U(q) + σd

U (|ed|) + σff
U (|eff |) . (50)

We now study the dynamics of U on flows.7 For all κ ∈
Z≥0, τ1 ∈ [0, τ ∗], τ2 ∈ R≥0, w ∈ R

nw and almost all (qx, qe) ∈
Rx ×Re, we have that, in view of Assumptions 2–3 and (41)

〈∇U(q), F (q, w)〉
≤ −εV − εW 2 −H2(qx) + γ2W 2 + σd (|ed|)
+ σff (|eff |) + σw (|w|)
+ γ
(
−2Lφ− γ

(
(1 + η)φ2 + 1

))
W 2

+ 2γφW
(
LW +H(qx) + νd (|ed|) + νff (|eff |)
+νw (|w|))

= −εV − εW 2 −H2(qx) + σd (|ed|)
+ σff (|eff |) + σw (|w|)
+ γ
(
−2Lφ− γ(1 + η)φ2

)
W 2

+ 2γφW
(
LW +H(qx) + νd (|ed|) + νff (|eff |)
+νw (|w|)) . (51)

We are going to upper bound the term on the last line of
the inequality above. Using that 2ab ≤ a2 + b2 for a, b ∈ R,
we obtain 2γφWH(qx) ≤ γ2φ2W 2 +H2(qx) and, using that
2ab ≤ (η/3)a2 + (3/η)b2 for a, b ∈ R, yields

2γφW
(
νd (|ed|) + νff (|eff |) + νw (|w|)

)
= 2γφWνd (|ed|) + 2γφWνff (|eff |) + 2γφWνw (|w|)
≤ η

3
γ2φ2W 2 +

3

η
νd (|ed|)2 +

η

3
γ2φ2W 2 +

3

η
νff (|eff |)2

+
η

3
γ2φ2W 2 +

3

η
νw (|w|)2

= ηγ2φ2W 2 +
3

η

(
νd (|ed|)2 + νff (|eff |)2+νw (|w|)2

)
.

(52)

Going back to (51), we derive that

〈∇U(q), F (q, w)〉
≤ −εV − εW 2 −H2(qx) + σd (|ed|)
+ σff (|eff |) + σw (|w|)
+ γ
(
−2Lφ− γ(1 + η)φ2

)
W 2

+ 2γφLW 2 + γ2φ2W 2 +H2(qx)

+ ηγ2φ2W 2 +
3

η

(
νd (|ed|)2 + νff (|eff |)2

+νw (|w|)2
)

= −εV − εW 2 + σd (|ed|) + σff (|eff |)
+ σw (|w|) + 3

η

(
νd (|ed|)2 + νff (|eff |)2

+νw (|w|)2
)
. (53)

7We consider 〈∇U(q), F (q, w)〉 with some abuse of notation since U is not
(almost everywhere) differentiable a priori with respect to κ. However, this is
justified by the fact that κ̇ = 0, see (11).
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Therefore, there exists ε̃ > 0 according to Claim 1 (take ε̃ ∈
(0, εmin{1, (ρ∗/γ)})) such that

〈∇U(q), F (q, w)〉 ≤ −ε̃U(q) + ςdU (|ed|) + ςffU (|eff |)

+ςwU (|w|) (54)

with ςdU (s) := σd(s) + (3/η)νd(s)2, ςffU (s) := σff (s) +
(3/η)νff (s)2, ςwU (s) := σw(s) + (3/η)νw(s)2 for s ≥ 0.

Let (q, w) be a solution pair to system (42). From (54), by
invoking standard comparison principles for continuous-time
systems, we obtain that, for (t1, 0) ∈ domq

U (q(t1, 0)) ≤ exp(−ε̃t1)U (q(0, 0)) + ε̃−1
(
ςdU

(
‖ed‖(t1,0)

)

+ςffU

(
‖eff‖(t1,0)

)
+ ςwU

(
‖w‖(t1,0)

))
. (55)

On the other hand, from (50), for (t1, 1) ∈ domq

U (q(t1, 1)) ≤ U (q(t1, 0)) + σd
U

(
‖ed‖(t1,0)

)

+σff
U

(
‖eff‖(t1,0)

)
. (56)

By induction, we have that, for (t, j) ∈ domq

U (q(t, j))

≤ exp(−ε̃t)U (q(0, 0)) + σ̄w
U

(
‖w‖(t,j)

)
+
(
σ̄d
U

(
‖ed‖(t,j)

)
+ σ̄ff

U

(
‖eff‖(t,j)

))

×
j−1∑
k=0

exp(−ε̃υ)k

≤ exp(−ε̃t)U (q(0, 0)) + σ̄w
U

(
‖w‖(t,j)

)
+
(
σ̄d
U

(
‖ed‖(t,j)

)
+σ̄ff

U

(
‖eff‖(t,j)

)) 1

1− exp(−ε̃υ)

(57)

where σ̄d
U(s)=σd

U(s)+ε̃−1ςdU(s), σ̄ff
U (s)=σff

U (s)+ε̃−1ςffU (s)
and σ̄w

U (s) = ε̃−1ςwU (s) for s ≥ 0. On the other hand, using (44)
in (57), we obtain |(ξ(t, j), e(t, j))| ≤α−1

U (exp(−ε̃t)αU (|(qx(0,
0), qe(0, 0))|)+σ̄w

U(‖w‖(t,j))+(σ̄d
U (‖ed‖(t,j))+σ̄ff

U (‖eff‖(t,j)))
(1/(1− exp(−ε̃υ)))). By using several times the fact that
χ(a+ b) ≤ χ(2a) + χ(2b) for any χ ∈ K∞ and a, b ≥ 0, we
obtain the desired result (17).

We now prove the last part of Theorem 1. We only con-
sider δd without loss of generality and let s ≥ 0. We have
that (17) holds with δd(s) = α−1

U ((4/(1− exp(−ε̃υ)))σ̄d
U (s)).

It has to be noted that any upper bound of α−1
U ((4/(1−

exp(−ε̃υ)))σ̄d
U (s)) can be taken to be δd in (17). Thus, we will

derive upper bounds for δd which are of the desired form. Using
the definition of σ̄d

U given after (57), we obtain

δd(s) = α−1
U

(
4

1− exp(−ε̃υ)

(
σd
U (s) + ε̃−1ςdU (s)

))
(58)

which gives, in view of the definition of σd
U and ςdU , respec-

tively, given after (49) and (54)

δd(s) = α−1
U

(
4

1− exp(−ε̃υ)

[
γ
2

ρ∗

(
1 +

1

η

)
μd(s)2

+ε̃−1

(
σd(s) +

3

η
νd(s)2

)])
. (59)

The function δd depends on the MATI τ ∗ although that is not
obvious from (59) because this dependence is hidden in the
constants ρ∗ and η. Thus, we will remove the dependence of δd

on ρ∗. We know that ρ∗ > ρ. Therefore, noting that αU (s) =
min{αV (s/2), ρ

∗αW (s/2)} ≥min{αV (s/2), ραW (s/2)} =:
α̃U (s) (in view of the definition of αU given below (44)) and
since we are working with strictly increasing functions

δd(s) ≤ α̃−1
U

(
4

1− exp(−ε̃υ)

[
γ
2

ρ

(
1 +

1

η

)
μd(s)2

+ε̃−1

(
σd(s) +

3

η
νd(s)2

)])
. (60)

The constant ε̃ satisfies ε̃ ∈ (0, εmin{1, (ρ∗/γ)}), see above
(54). However, since ρ∗>ρ, we can take ε̃∈(0, εmin{1, (ρ/
γ)}). In that way, (60) becomes independent of ρ∗. We write
η=θ(τ ∗)−1 for some strictly positive function θ : R≥0→R>0,
in that way (60) becomes

δd(s)≤ α̃−1
U

⎛
⎝ 4

1−exp(−εmin
{
1, ρ

γ

}
υ)

[
γ
2

ρ
(1+θ(τ ∗))μd(s)2

+
1

εmin
{
1, ρ

γ

} (σd(s) + 3θ(τ ∗)νd(s)2
)⎤⎦
⎞
⎠ . (61)

As a consequence, by applying several times the property
χ(a+ b) ≤ χ(2a) + χ(2b) for any χ ∈ K∞ and a, b ≥ 0, we
obtain that δd(s) ≤ ψ(υ−1)(δ̃(s) + ϕ(τ ∗)δ̄(s)) ≤ (1 + ϕ(τ ∗))
ψ(υ−1)δ(s), where δ̃, δ̄ ∈ K∞, ϕ : R≥0 → R>0 and δ(s) :=
max{δ̃(s), δ̄(s)}. �

Sketch of Proof of Proposition 1: Property (17) holds accord-
ing to Theorem 1. We then just have to use (18) in (17) and (19)
and to combine the obtained inequalities to deduce that (20)
holds on the domain of the solution. �

Proof of Proposition 2: We define the function W : Z≥0 ×
R

ne → R≥0 as W : (κ, e) �→ W(κ, ep − ed, 0, efb, 0), which
is locally Lipschitz in view of item (ii) of Proposition 2.
From (22), we deduce that the first line of (13) is ensured
with αW (s) = αW(s) and αW (s) = αW(s) for s ≥ 0. More-
over, for system (11) we have that W (κ+, e+) = W(κ+, e+p −
e+d , 0, e

+
fb, 0)−W(κ+, e+)+ W(κ+, e+). Using κ+ = κ+ 1

from (11) and (23), we obtain

W (κ+, e+) ≤W
(
κ+, e+p − e+d , 0, e

+
fb, 0

)
−W(κ+, e+)

+ ρW(κ, e)

=W(κ+, e+p − e+d , 0, e
+
fb, 0)−W(κ+, e+)

+ ρW(κ, e)− ρW(κ, ep − ed, 0, efb, 0)

+ ρW(κ, ep − ed, 0, efb, 0). (62)
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Since item (ii) of Proposition 2 is satisfied and by recalling that
e = (ep, ed, efb, eff ), we have that W(κ, ep − ed, 0, efb, 0)−
W(κ, e) =W(κ, ep−ed, 0, efb, 0)−W(κ, ep, ed, efb, eff ) ≤
M |(ed, ed, eff )| using the mean value theorem (since W is
locally Lipschitz in e). Similarly, we derive W(κ+, e+p −e+d , 0,

e+fb, 0)−W(κ+, e+) ≤ M |(e+d , e
+
d , e

+
ff )|. In view of item (i) of

Proposition 2, we know that |e+d |≤|ed| and |e+ff |≤|eff |; con-

sequently W(κ+, e+p − e+d , 0, e
+
fb, 0)−W(κ+, e+) ≤ M |(ed,

ed, eff )|. As a consequence, in view of (62), we obtain

W (κ+, e+) ≤M |(ed, ed, eff )|+ ρM |(ed, ed, eff )|
+ ρW(κ, ep − ed, 0, efb, 0)

≤ρW (κ, e) + 2M(1 + ρ)|ed|+M(1 + ρ)|eff |
(63)

and the second line of (13) is verified with ρ = ρ, μd(s) =
2M(1 + ρ)s and μff (s) = M(1 + ρ)s for s ≥ 0. �

Proof of Proposition 3: For the RR protocol, we can write
(see (9) or Section III in [4])

hp(κ, ep) = (I−Ψp(κ)) ep
hd(κ, ed) = (I−Ψd(κ)) ed

hfb(κ, efb) = (I−Ψfb(κ)) efb (64)

where Ψp,Ψd,Ψfb are diagonal matrices whose diagonals are
composed of 0 and 1.

We consider W (κ, e) =
√∑∞

i=κ |φ(i, κ, e)|2 where
φ(i, κ, e) is the solution to the following system at time i
starting at time κ with initial condition e:

ē+ =

(
hp(κ, eξ)

hfb(κ, efb)

)
=

(
(I−Ψp(κ)) eξ
(I−Ψfb(κ)) efb

)
=: h̄e(κ, e). (65)

By following the same lines as in the proof of Proposition
4 in [4] since system (65) is dead-beat stable in � steps and
|φ(i, κ, e)| ≤ |e| for all i ≥ κ ≥ 0 and e ∈ R

ne , we deduce
that the first line of (13) holds with αW (s) = s, αW (s) =

√
�s

for s ≥ 0 in view of Proposition 4 in [4]. We now show
that the second line of (13) is guaranteed: W (κ+ 1, he

(κ, e, ed, eff )) =
√∑∞

i=κ+1 |φ(i, κ+ 1, he(κ, e, ed, eff ))|2 =√∑∞
i=κ+1 |φ(i, κ+ 1, h̄e(κ, e) + Δhe(κ, e, ed, eff ))|2 where

he is introduced in Section IV and Δhe(κ, e, ed, eff )=he(κ, e,
ed, eff )− h̄e(κ, e). Due to the linearity of φ in its third
argument in view of (65), we have that φ(i, κ+ 1, h̄e(κ, e) +
Δhe(κ, e, ed, eff ))=φ(i, κ+ 1, h̄e(κ, e))+φ(i, κ+1,Δhe(κ,
e, ed, eff )). In that way, we derive, using that

√
a+ b ≤√

a+
√
b for a, b ∈ R≥0

W (κ+ 1, he(κ, e, ed, eff ))

=

√√√√ ∞∑
i=κ+1

∣∣φ (i, κ+ 1, h̄e(κ, e)
)∣∣2

+

√√√√ ∞∑
i=κ+1

|φ (i, κ+1,Δhe(κ, e, ed, eff ))|2. (66)

Denote R(κ, e) =
∑∞

i=κ |φ(i, κ, e)|2; using the fact that
φ(i, i, e) = e

R
(
κ+ 1, h̄e(κ, e)

)
=

∞∑
i=κ+1

∣∣φ (i, κ+ 1, h̄e(κ, e)
)∣∣2

=
∞∑
i=κ

|φ(i, κ, e)|2−|e|2 = R(κ, e)−|e|2.

(67)

Now, we observe that R(κ, e) = W 2(κ, e) ≤ �|e|2 and thus
R(κ+1, h̄e(κ, e))≤R(κ, e)−(1/�)R(κ, e)= ((�−1)/�)R(κ, e)
which implies

W
(
κ+ 1, h̄e(κ, e)

)
=

√√√√ ∞∑
i=κ+1

∣∣φ (i, κ+ 1, h̄e(κ, e)
)∣∣2

≤
√

�− 1

�
W (κ, e). (68)

On the other hand, we notice that |φ(i, κ+ 1,Δhe(κ, e, ed,
eff ))| ≤ |Δhe(κ, e, ed, eff )| in view of (64) and the fact that
Ψp and Ψd are diagonal matrices whose diagonals are com-
posed of 0 and 1. As a consequence, we have that

he(κ, e, ed, eff ) =

(
(I−Ψp(κ)) ep − (I−Ψd(κ)) ed

(I−Ψfb(κ)) efb

)

=

(
(I−Ψp(κ)) eξ + (Ψd(κ)−Ψp(κ)) ed

(I−Ψfb(κ)) efb

)
.

Hence

Δhe(κ, e, ed, eff ) =

(
(I−Ψp(κ)) eξ+(Ψd(κ)−Ψp(κ)) ed

(I−Ψfb(κ)) efb

)

−
(

(I−Ψp(κ)) eξ
(I−Ψfb(κ)) efb

)

=

(
(Ψd(κ)−Ψp(κ)) ed

0

)
. (69)

Therefore |φ(i, κ+ 1,Δhe(κ, e, ed, eff ))|≤|(Ψd(κ)−Ψp(κ))
ed| ≤ |Ψd(κ)−Ψp(κ)||ed|. Since Ψp(κ) and Ψd(κ) are di-
agonal matrices whose diagonal components are 0 or 1, we
deduce that |Ψp(κ)−Ψd(κ)| ≤ 1. In that way, we obtain
that |Δhe(κ, e, ed, eff )|≤|ed|. As a consequence, |φ(i, κ+1,
Δhe(κ, e, ed, eff ))| ≤ |ed|. Combining this point with the fact
that system (65) is dead-beat stable in � steps, we obtain√√√√ ∞∑

i=κ+1

|φ (i, κ+ 1,Δhe(κ, e, ed, eff ))|2 ≤
√
�|ed|. (70)

Therefore, in view of (66), (68) and (70), W (κ+1, he(κ, e, ed,
eff ))≤

√
((�−1)/�)W (i, e)+

√
�|ed|. Hence the second line of

(13) holds with ρ =
√
(�− 1)/�, μd(s) =

√
�s and μff (s) = 0

for s ≥ 0.
We now show that the second line of (13) holds with μd = 0

if and only if hp = hd.
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(⇐): By setting Ψp = Ψd, we see from (69) that Δhe = 0 in
(68) and we obtain the desired result by following the reasoning
above.
(⇒): We proceed by contradiction and suppose Ψp �= Ψd

and Assumption 1 holds with μd = 0. Then, according to (13)
and since W (κ, e) ≤

√
�|e|, we know that there exists β ∈

KL such that for any (e(0), ed(0), eff (0)) ∈ R
ne+ned

+neu ,
κ(0) ∈ Z≥0, the solutions to e+ = he(κ, e, ed, eff ) satisfy for
any j ∈ Z≥0: |e(j)| ≤ β(|e(0)|, j), from which we deduce that
for e(0) = 0 and any (ed(0), eff (0)) ∈ R

ned
+neu and κ(0) ∈

Z≥0, |e(1)| = 0. On the other hand, Ψp �= Ψd means that there
exists at least one component of ed denoted eid that is not
assigned to the same node as eip. Without loss of generality, we
suppose that i is the only such node. Take eξ(0) = 0, ekd(0) = 0
if k �= i, eid(0) �= 0 which implies that ekp(0) = 0 if k �= i and
eip(0)= eid(0). Consider efb(0)= 0, eff (0)= 0 and κ(0)= 0.
In view of (64), we have that e+ξ = (I−Ψp(κ))eξ + (Ψd(κ)−
Ψp(κ))ed and e+fb = (I−Ψfb(κ))efb. Consequently eξ(1) =
(I−Ψp(0))eξ(0)+(Ψd(0)−Ψp(0))ed(0) = (Ψd(0)−Ψp(0))
ed(0) and efb(1) = (I−Ψfb(0))efb(0) = 0. Since all the
network-induced errors components are initialized at 0 except
eip(0) and eid(0), we can equivalently assume that either eip or eid
is reset to 0 at the first transmission instant. We assume that it is
eid. In that way, the ith diagonal component of Ψd is equal to 1
while the ith diagonal component of Ψp is equal to 0, since eip
and eid are not associated to the same node. As a consequence,
since Ψp and Ψd are diagonal matrices and in view of the
definition of ed(0), (Ψd(0)−Ψp(0))ed(0) �= 0. Hence, e(1) �=
0 which contradicts |e(1)| = 0. Hence, Assumption 1 only
holds with μd = 0 when Ψp = Ψd, i.e., when hp = hd. �
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