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Abstract— Small inter-vehicle distances can increase traffic
throughput on highways. Human drivers are not able to drive
safely under such conditions. To this aim, cooperative adaptive
cruise control (CACC) systems have been developed, which
require vehicles to communicate with each other through a wire-
less communication network. By communicating control-relevant
information, the vehicles equipped with the CACC system are
able to react more quickly to disturbances caused by preceding
vehicles and, therefore, are able to maintain the desired (small)
inter-vehicle distance while avoiding string instability. String
stability relates to the propagation of the effect of disturbance on
system states over the vehicle string. Commonly used approaches
to design controllers yielding string stability, involve an iterative
process requiring an a priori designed controller with a priori
defined communication topology. The main contribution of this
paper is to propose a synthesis strategy for both local controllers
and the communication structure, while guaranteeing string
stability for infinite-length vehicular strings. The obtained results
are illustrated by model-based case studies.

Index Terms— Vehicular strings, string stability, optimal
control.

I. INTRODUCTION

ECENTLY, the capacity of highways has turned out to be

a limiting factor for traffic throughput, which regularly
causes traffic jams. The road capacity can be increased by
reducing the inter-vehicle distance while maintaining the same
velocity level. Since this would be unsafe in case of human
drivers, vehicle automation in longitudinal direction is required
to ensure traffic safety while pursuing a reduction of the inter-
vehicle distance. Adaptive Cruise Control (ACC) is an example
of such longitudinal vehicle automation [7], [8]. Currently,
ACC functionality is widespread and available in numerous
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commercial vehicles. ACC-equipped vehicles automatically
keep a desired distance to the preceding vehicle, or in the
absence of one, realize a desired velocity [24]. For the purpose
of ACC, the inter-vehicle distance and the relative velocity to
the preceding vehicle is measured by a radar or a scanning
laser (lidar). The current ACC systems primarily focus on
driving comfort and, to a smaller degree, on traffic safety.
Therefore, relatively large inter-vehicle distances are adopted
in commercially available systems, thereby limiting traffic
throughput for ACC-based systems [22].

A more advanced version of ACC is called Cooperative
Adaptive Cruise Control (CACC). Vehicles, that are equipped
with CACC, not only measure the relative distance and
velocity with respect to the preceding vehicle, but can also
communicate to other CACC instrumented vehicles by means
of a wireless network. The additional information obtained
through wireless communication is a key enabler for the design
of other controllers that allow for smaller inter-vehicular
distances, while still guaranteeing string stability (in com-
parison to ACC) [15], [16], [23]. An additional advantage of
CACC is that the fuel consumption will be reduced because
variations in velocity are decreased. Moreover, small inter-
vehicle distances reduce the aerodynamic drag, in particular
for trucks and therewith can reduce a significant reduction in
fuel consumption, as in [1].

In the automation of vehicular strings, the ability to atten-
vate the effect of disturbances along the string is a key
requirement. Namely, so-called ghost traffic jams are gen-
erally the consequence of the amplification of the effects
of disturbances (e.g. induced by human drivers) along the
vehicle string. The property related to the attenuation of
the effects of disturbances along the vehicle string in
upstream direction is often referred to as string stability
(see [9], [11]-[13]). Contrary to conventional stability defi-
nitions for dynamical systems, which are concerned with the
evolution of system responses over time, string stability for
vehicle strings focuses on the propagation of system states
over the vehicle index. Different definitions of string stability
are given in the literature (e.g. see [17], [18], [20]), focusing on
a specific type of perturbations or on specific interconnection
topologies. In [20], for instance, a Lyapunov stability approach
is used to analyze string stability, which only focuses on initial
condition perturbations. As another example, string stability
definitions in the frequency domain are employed to analyze
string stability in the presence of external perturbations, see
e.g. [16]-[18].
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Three commonly used definitions for string stability are
the time-domain definition [21], the frequency-domain defi-
nition [13], and the z-domain definition [2], [3]. The time-
domain approach focuses on initial condition perturbations,
while the frequency-domain approach focuses on the amplifi-
cation of (external) disturbances. These two definitions have
been used for analyzing string stability of vehicular strings
with relatively simple and a priori fixed communication
topologies (e.g. one vehicle look-ahead [13]). However, apply-
ing time-domain or frequency-domain definitions of string
stability to spatially invariant system models of infinite vehicle
strings makes the stability analysis rather intricate for com-
plicated vehicle interconnections (communication topologies),
such as multiple vehicles look-ahead topologies, which allow
for both look behind and ahead. Hence, these two approaches
can be used for analyzing string stability of the vehicular
strings with relatively simple and predefined communica-
tion topologies (e.g. one vehicle look-ahead [13]). In these
methods, a controller is typically designed for a predefined
communication topology, where the communication topology
is determined in a heuristic way. Here, the communication
topology refers to the structure of communication in between
vehicles in the CACC setup. In other words, the communi-
cation topology is chosen a priori, which results in exclu-
sion of a larger solution space for the optimal performance.
Subsequently, string stability of the closed-loop system can
be analyzed a posteriori and if it is not string stable, then
another iteration of controller design is required. This may
be a time consuming and non-optimal approach towards the
design of controllers guaranteeing string stability. Therefore,
a co-design approach for vehicle-following controllers and
their underlying communication topology is required, such
that it guarantees string stability of the resulting networked
closed-loop vehicular platooning system. As will be shown
in this paper, the z-domain approach for spatially invariant
system models for (infinite) vehicle strings allows co-design
of controller and communication topology, while none of the
existing methods supports such co-design.

In this paper, we present an approach for the co-design of
the vehicle following controller and the communication topol-
ogy jointly guaranteeing string stability, thereby also providing
insight into the effects of the communication topology on the
controller performance. In the proposed approach, an optimal
control problem setting is considered for an infinite length
vehicle string, in which the vehicle string is considered as
an spatially invariant system in one dimension. Previously,
in [4], the analysis and synthesis of distributed controllers
for spatially interconnected systems are considered for a
class of spatially invariant systems with an ¢;-induced norm
as the performance criterion. In [10], an optimal localized
controller is designed for a vehicular string considered as a
spatially invariant system with communication allowed only
with the immediate neighbors. Moreover, in [5], a state-space
description of systems in which information propagates at
most one unit in space for every unit in time was provided
and relaxations were used to obtain suboptimal controllers.
However, in the existing literature of controller synthesis for
spatially invariant systems, the communication topologies are
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Fig. 1. A string of vehicles.

fixed a priori, hence not exploiting the possibility of co-design
of the controller and the communication topology.

The contribution of the current paper is the development
of a synthesis strategy for both distributed controllers and
the communication topology that guarantees string stability
of the automated vehicular string. To this end, an optimal
control strategy will be employed that is applicable to the
model of the vehicle string dynamics in the so-called, ‘spatial-
frequency domain’. The methodology is tested via simulation
case studies.

The paper is organized as follows. We consider the vehicle
modeling and problem formulation in Section II. The vehicle
string model and the concept of stability in the spatial-
frequency domain (used to assess string stability) are then
presented in Section III. The co-design of the controllers and
communication topology is treated in Section IV. In Section V,
the simulation results are presented for a representative case
study. We conclude the paper in Section VI with a brief
summary of our contributions followed by a discussion.

II. VEHICLE MODELING AND PROBLEM FORMULATION
A. Vehicle Model

Consider a string of vehicles as shown in Fig. 1, where each
vehicle is assigned with an index k increasing in upstream
direction. Here, Ly represents the length of vehicle k and the
absolute position of the rear bumper of vehicle k is denoted by
sk. The distance dy between the vehicle k and the preceding
vehicle k — 1 equals

dy = sg—1 — s — L. (1)
The distance error e is defined as:
ey = dy — dy, 2

where d,; is the desired headway of vehicle £ which will
be defined via a so-called ‘spacing policy’. Assuming tight
vehicle following, where the speed difference between the
vehicles is relatively small compared to the absolute speed,
the desired headway can be formulated as follows [14]:

3)

drx =1 + hiog,

where ry is called the standstill distance and hy is known as the
time gap. A constant time headway spacing policy corresponds
to the case h; = h for all k with & constant.

The dynamic behavior of the vehicles can be modeled with a
single vehicle model by using appropriate low-level vehicle
acceleration controllers that compensate differences in the
vehicles’ dynamics in the string. From now on, we therefore
consider the vehicle string to be homogeneous. We employ a
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simplified vehicle model represented by [19]:

Sg Ok
o | = ag , 4)
ai —t g + 7wy

where vy is the vehicle speed, ay is its acceleration, uy is the
external input being the controlled acceleration, and 7 is a time
constant representing the engine dynamics. However, as the
inter-vehicle distances are more relevant than the absolute
vehicle positions, the vehicle model (4) can be rewritten with
distance dj as a state, instead of the position s, as follows:

dy Vk—1 — Uk
vk | = ag , (5)
ar —‘L'_lak + T_luk

where (1) and (4) were used. From now on, we denote the
state by xi = [dk vk ak]T. The equilibrium state of (5) for
ur = 0 satisfies

di,, Cr Crk
Xy = | Vkey | = | Ok=10y | = | Veq | (6)
ke, 0 0

where Cj is a constant that can be different for each vehicle.
So, (6) expresses that, in the equilibrium state, all vehicles
are moving with equal constant velocity v., and a constant
distance Cy to the preceding vehicle. As a next step, we pursue
a state transformation to perturbation coordinates (ek v,’{ ak),
with respect to the equilibrium state in (6), where ex = dy —
rr — hog, see (2) and (3) with & constant, and v,’{ = U — Deg.
This leads to the following state-space model:

éx Vk—1 — Uk — hag V_y — v — hay

l)]/( = ag = ag . (D
. 1 1

ay —ak + TUk —%ak—}— %uk

The benefit of this state transformation is, firstly, that the con-
stant time headway policy is now embedded in the dynamics
and, secondly, that the vehicle following error ey is an explicit
state.

B. Problem Formulation

Considering a string of vehicles, the goal of automatic
vehicle control is to increase the traffic throughput, which can
be done by decreasing the inter-vehicle distances di. However,
small distances could cause a so-called ‘shockwave’ leading
to a decrease in traffic throughput [13]. In order to achieve
vehicle following behavior (ex(r) — 0 as t — oo with
er as in (2)) while avoiding such ‘shockwaves’, the control
problem consists of two objectives: vehicle following and
string stability.

The vehicle following objective, which is often related to
individual vehicle stability [6], aims to ensure that each vehicle
follows the preceding vehicle at a desired distance in the
absence of perturbations, which relates to the stability property
of (6) for the dynamics (5) in closed loop with a controller
for uy (to be designed). String stability is related to how the
responses of the vehicles to perturbations evolve not only in
time, but also in the vehicle index (i.e., along the string of
vehicles). More precisely, the ability of the string of vehicles

to attenuate the effect of disturbances caused by an arbitrary
vehicle in the string as we move away (in terms of the vehicle
index) from that vehicle, is called string stability. In this paper,
the definition for string stability in the z-domain (see [3])
will be employed. Here, the challenge to be tackled is to
design a stabilizing controller for the vehicular string in the
z-domain with guaranteeing string stability and at the same
time determining a suitable communication topology for the
string. Thereafter, the obtained controllers and communication
topologies in the z-domain have to be transformed into the
spatial domain.

Loosely speaking the z-domain is the discrete ‘frequency
domain’ related to the vehicle index of the (infinite) sequence
of vehicles. In the next section, we introduce the vehicle
string model and the notion of string stability (with respect to
initial condition perturbations) in the z-domain. Next, based
on the resulting z-domain vehicular string model, we present
a co-design approach for the vehicle controllers and the com-
munication topology in Section IV. The z-domain approach
involves the modeling of the vehicular string string as being
infinitely long. In practice, the length of the vehicular string
is clearly bounded. Therefore, in Section IV and V, we show
how the insights obtained through the controller synthesis for
infinite strings can also be used to design controllers inducing
string stability for finite vehicle strings.

III. VEHICULAR STRING MODELING AND STRING
STABILITY IN THE z-DOMAIN

A. Vehicular String Modeling in the z-Domain

Let us now model the (infinite) vehicle string dynamics in
terms of an infinite-dimensional model with spatially invariant
dynamics. Hereto, we employ the following class of infinite-
dimensional systems with spatially invariant dynamics [2]
written in state-space form as follows:

d o0
EXk(t) = j;oo Ak,jx]'(l‘) + Bk,juj(l‘)
w®) = D Cejx;), ®)
Jj=—00

where the vectors xx(t) € R”, ux(t) € R™, and y(t) € R?
denote the state, the control input, and the output vectors of
the k-th subsystem, with k € Z, at time ¢t > 0, respectively.
Moreover, the matrices Ay ; € R"", By_; € R"™™, and
Ci—j € RPX" describe the influence of subsystem j on
subsystem k. System (8) is called spatially invariant since the
influence between subsystems depends only on the difference
between their indices, or, in other words, a shift in the
numbering of the subsystems does not change the overall
dynamics.

Note that vehicular strings with homogeneous vehicle
dynamics, i.e., constant 7 in (7), and constant time gap policy,
i.e., constant hy = h in (3), can be modeled as spatially
invariant systems represented in (8).

It is essential to note that the state space, the input
space, and the output space of system (8) are taken to

be square summable ie. x(¢) = (x())e_o € €2(C"),
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u(t) = W)y € £2(C™), and y(1) = () _y €
€2 (CP), where {,(C’) are the square summable vectors, see
e.g. [3]and (i (1) _o i= (¥, (z),y/OT(z),y/,T(z),...)T for any
wr(t) € C" (see Appendix VI). We stress that the square-
summability assumption will eliminate some states from the
state-space of (8).

For the purpose of the analysis of string stability (see
the end of this section for the formal definition of string
stability) and controller synthesis for string stability (see
Section IV), we subject system (8) to the so-called bilat-
eral Z-transformation, which facilitates the co-design of a
string stable controller and the corresponding communication
topology. The bilateral Z-transformation transforms the vector
x(t) = (xx (1)) _ to the function X (z, ), defined as follows:

o0

@) =Zx0l@) = > u@ ™t ©)
k=—o00

Due to the property of the bilateral Z-transformation, z may
be interpreted as the shift operator. Here, the z variable is not
used as a time shift operator, but as a system (i.e., vehicle)
index shift operator. Now, knowing that Z[x(¢)](z) = X(z, t)
where z = ¢/? for 6 € [0, 27 ], the state-space system (8), can

be rewritten in the z-domain by using:

2| S0 0=z § wor ]

e¢]

Z z Ak—jxj(t) + Br—ju (1) (2)

J=700 k=—o00

(Ak_jxj- (t) + Bk—ju; (Z)) 7k

(Ak_jz_(k_j)xj- )+ Bk_jz_(k_j)uj (t))Z_j

= z z (Aiziixj(t)‘i‘Biziiuj(t))zij
j=—00i=—00
= Z Aiz Z xj(Hz ™ + Z Biz™ Z uj(t)z™’
i=—00 j=—00 i=—00 j=—00
= AR (z. 1) + BR)i(z, 1), (10
where A(z) == 3%° Az and B(z) := 22 Biz ™.

Similar as in (10), the state-space system (8) with output, can
be transformed into the z-domain, leading to the following
system dynamics in the z-domain:

C i = A@H N + B )
V(z, 1) = C(2)¥(z, 1), an

where A, é and C are multiplicative operators, since
their action is pointwise multiplication. Now, £2(C") is iso-
metrically isomorphic! to £,(8D; C")? under the bilateral

Two isometrically isomorphic normed vector spaces share the same struc-
ture, so they are usually identified with each other.

2y € Lr(0D;C) is a mapping from 6D to C" for which Hl/V/\lﬁz < 00
(see Appendix VI).
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Z-transformation, ie., x|y = X 2y@m:cny, Where
oD := {z € C||z| = 1} is the unit circle. Hence, the state
linear system >, (A;, B;, Ci,0) is isometrically isomorphic
to the state linear system . (A, é, C‘, O) on the state-space
L>(6D; C*) with the input and output spaces L2(0D; C™) and
L>(0D; CP), respectively.

In this study, we assume that A, é, and C are all
bounded operators. Here, O(z) defines a bounded oper-
ator from Lr(0D;C") to Lp(0D; C%) if and only if
O € Loo(@D; CX1)3 [3].

Note that the equilibrium state of the system (5) with zero
input uy = 0 is given in (6). For non-zero values of the
equilibrium velocity vey # 0 in (6), Xeq = (xieq)fi_oo ¢
€2(C™), which means that this equilibrium is not in the state-
space unless v,y = 0. Furthermore, a similar statement is
true for Cy (see (6)). Hence, the modified states in (7) are
chosen such that the resulting equilibrium satisfies the square-
summability without loosing the practical feasibility of the
control problem and subsequently the Z-transformation is
applied to system (7), which yields the following vehicle string
model in the z-domain:

d é(z, 1)
— [ 0/(z,0)
dt a(z,t)
0 —1+4+z71 —h\ [é@z,0) 0
={0 o0 1 V)| + (0], (12
o o —1J\a@n 1

which is of the form of %)E(z, 1) = A(x)¥(z,t) + Bii(z, 1)

with a state vector ¥(z, 1) = [¢é(z.t) ¥'(z.0) a(z.r) 17 .

B. String Stability in the z-Domain

Now, the state-space system (8) has been transformed into
z-domain as in (11), and string stability can effectively defined
in the z-domain [2], [3] (also see Appendix VI).

Definition 1 (String stabilizability in the z-domain): Con-

sider an infinite-dimensional model with spatially invariant
dynamics described by (8), such that after application
of the bilateral Z-transformation, it is expressed as sys-
tem (11). Then, the model (8) is called exponentially/
asymptotically stabilizable when there exists a state feed-
back u(t) = — 372 o Li—jx;(t) such that the closed-
loop system is exponentially/asymptotically stable according
to Definitions 5 and 6, where L; and L(z) are related via
Z-transformation (see Appendix VI), where I:(z) is the control
gain in the z-domain associated with the following control law
in the z-domain #i(z, 1) = —L(2)¥(z, 1).
Note that a string-stabilized vehicular string as described in
Definition 1 is equivalent to a string that not only attenuates
any introduced initial condition perturbation (with respect to
the equilibrium) in time, but also over the vehicle index.
In other words, deviations from an equilibrium state will not
only decrease in time, but the propagation of that disturbance
along the vehicle index will vanish in spatial direction.

39 € Loo(@D; C)is a mapping from 6D to C"** for which 1Pllso < 00
(see Appendix VI).
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IV. OPTIMAL CONTROLLER SYNTHESIS

In this section, we consider the optimal control co-design
with guaranteed string stability for a vehicular problem in the
framework of spatially invariant systems. Definition 1 of string
stabilizability will be used to perform string stability analysis
of infinite vehicle strings and it will serve as a basis for the
synthesis of a co-design strategy for the vehicle controllers
and the underlying communication topology.

A. Optimal Controller Design For the Case
of Spatially Invariant Systems

In order to design an optimal linear quadratic controller,
the pair {/i(z), é} should be stabilizable, which can be
checked by analyzing the controllability matrix. Using the
Popov-Belevitch-Hautus stabilizability condition [3], it can be
shown that the pair {A =1, é} is not exponentially stabilizable.
However, as we will show below, we can still employ optimal
controller synthesis to asymptotically stabilize system (12)
and consequently render system (7) asymptotically (string)
stable [25].

To design a controller in the z-domain, the following cost
function is considered:

. 1 2r o0 . % v .
j=L / #e0 1)" Oe?) #e. 1)
271' 0 0
+ie’?, )" R(e'?) i(e!?, 1)dt a0, (13)

in which Q(e/?) > 0, R(e/?) > 0 for all § in [0,27] and
x* denotes the complex conjugate transpose of a vector x.
Then, in order to minimize J , the following Algebraic Riccati
Equation

PAGR) +A(R) P(2)

—P()BRG) BB+ 0(2) =0, (14)

has to be solved pointwise in the complex domain C where
z=e% 0 c[0,2z], and P(z) = P(z)* > 0 with P(z)"
being the complex conjugate transpose of [V’(z). Here, the state
feedback controller gain is I:(z) = Iéflé*f)(z) for u(z,1) =
—L(z)%(z, 1). Consequently, the matrix P(z) is of the form

P11 P12 P13
D12 P22 P23
D13 D23 D33

where p;; is the complex conjugate of p;;. Without loss of
generality, the weighting matrices Q and R are chosen to be
diagonal as follows:

v

P(z) = , pi €R, p;j eC, i#j, (15)

5 quu 0 0 5
Q@)= 0 g 0], R@@=r, (16)
0 0 g33

where g;; € Rso and r € R.o. Here, é is chosen to
be diagonal to penalize the states independently, which is
necessary in order to take care of present singularities as will
now be explained.

As can be seen in (12), for z = 1 the derivatives of
the first two states have an algebraic relation (%é(l,t) =
—h %5’(1, t)). Therefore, for z = 1, only one of the first two
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Fig. 2. Elements p;; of the solution to the Algebraic Riccati Equation 15(z)
for the system (12) with the weighting matrices (17) (exact vs. least-squares
approximation of degree 9) with parameter values # = 2 and 7 = 0.1 for
z=el% 0 €[0,2x].

states should be weighed in the weighting matrix Q(z) of the
cost function (13):

) 10 0\
Q@)= [01-z"20|, R=1, a7
0o 0 1

where, the weighting matrices are chosen such that satisfying
the constant time headway policy (ex(r) — 0) is considered
to be more important than the velocity error (v,’( @® — 0.
By solving the Riccati equation (14), a solution to the opti-
mization problem of minimizing J can be found.

The solution }V’(z) of the Riccati equation is illustrated
in Fig. 2 (exact values) for parameter values 7 = 2 and
7 = 0.1. The closed-loop poles are shown in Fig. 3 (exact
values). Since there exists only one pole at the origin for z = 1,
the second condition (ii) in the Theorem VI, i.e., a countable
number of poles on the imaginary axis, is satisfied and the
closed-loop system is asymptotically (string) stable.

B. Determining the Communication Topology By Means of
Approximation

As can be seen in Fig. 2, the analytical solution to the
corresponding ARE is not easy to compute. However, the solu-
tions in Fig. 2 seem nicely shaped, which suggests that
the elements can be approximated by low-order algebraic
equations in terms of z. To this end, each of the elements of
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Fig. 3. Closed-loop poles for the system (12) with the weighting matrices (17)
with z = e/, 6 € [0,2x]. Comparison of poles obtained by least-squares
approximation of degree 9 (four vehicles look-ahead/look-behind) compared
to their exact values (all-to-all communication).

p (z) (the 3 x 3 matrix function which is a solution to ARE)
has to be approximated using a least-squares approach. Here,
we denote the order of this approximation by n, which results
by considering integer order of z varying between —n and
n, ie., z7",...,7", in the least-squares method with degree
2n + 1. The order of approximation n, directly affects both
the state feedback and the communication topology. Namely,
the state feedback operator is of the form L(z) R B* P(z)
(or Lapprox(z) =R'B* Papprox(z))» in which Papprox(z) =
> _,ciz'. Moreover, n is the order of approximation and
determines the commumcatlon topology, i.e., n vehicles look-
ahead/behind. So, as R and B are z- -independent, only the
non-zero elements of Pappmx (z) determine the communication
topology. For instance, the closed-loop poles and solutions to
the corresponding ARE for a four vehicles look-ahead/look-
behind are demonstrated in Fig. 3 and 2, respectively. The
approximated solution ﬁappmx (z) is plotted in Fig. 2 as well
as the exact solution Iv’(z), which indicates that the approx-
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z = 1. Clearly, Fig. 3 illustrates that also the closed-loop
poles match well and that the truncated communication topol-
ogy generates closed-loop (string) stability properties closely
resembling those of the controller based on the exact solution
with the all-to-all communication topology. Note that, for
a poorly designed approximation, we may end up with an
asymptotically unstable system, even though at z = 1 the
approximation is exact. Hence, the stability has to be assessed
a posteriori, and subsequently the approximation has to be
adapted if required.

C. Lower-Order Approximation For the
Communication Topology

Above, we used a least-squares approximation of degree
9z 4 ...,2%...,7Y, corresponding to four vehicles look-
ahead/ look-behind topology, which approximates the exact
solution well. In practice, it may be desirable, e.g., due to
bandwidth or range limitations of the (wireless) communi-
cation network, to limit the communication to even fewer
neighboring vehicles. A co-design of controller and such
reduced communication topology may be directly obtained by
reducing the order of approximation of }V’(z). Consequently,
a tradeoff will arise from such further approximation in the
sense that this will cause the closed-loop system to deviate
more from its nominal optimal performance as realized by the
infinite-dimensional controller.

For the communication topology of one vehicle look-ahead/
look-behind (n = 1) each of the elements of Iv’(z)
can be approximated by a least-squares approximation of
degree 3 z 1, 20, zh.

As can be seen in Fig. 4, even though the closed-loop
eigenvalue map corresponding to the approximated controller
has been distorted slightly, all eigenvalues are still in the left
half complex plane resulting in asymptotic string stability. The
corresponding solution for the algebraic Riccati equation has
the following form (18), as shown at the bottom of this page,
where the numerical values are as follows:

imation, involving a four vehicles look-ahead/look-behind _ _
topology, closely resembles the exact solution involving an 1.0961  0.6050 —0.0985
all-to-all communication structure. Note that the least-squares A= 06050 27916 0.1025
approximations of p;; and p;;, are chosen such that at 8 =0 | —0.0985 0.1025  0.0611 |
(z = 1), the approximations are exact. Consequently, for the [0.1298  0.0136  —0.0172]
exact as well as for the approximated solution, the intersection B = {0.5437 —0.2335 —0.0862 |. (19)
of the eigenvalue map with the imaginary axis occurs at | 0.0157  —0.0164 —0.0031 |
5 an +puz+ynz !t an+poz+yngt ain+ szt iz
P@) = [an+pni+ini! an+pni+rn! an+pun+yn!
a3+ Pz + 7132 a4 Bni+iniT! s+ Pz + oy
an +puz+ynz !t an+poz+yngt ain+ sz + iz
= a2+ 7nz+ Bz an+Bui+yn' a4 Bnz+ s
a3+ 732+ Paz™! a4 sz + Bnz! asz+ Pasz+ ez
ain an a3 P Pz Pis Yino vz Y13
=|an an an|+z|7n2 Bn Bu|+z' | B2 . ym|=A+zB+77'B (18)
a1z 023 033 713 723 P33 Bz Pz 33
A= B:= B*:=
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Fig. 4. Closed-loop poles for the system (12) with the weighting matrices (17)
with z = e/ H, 6 € [0,27] obtained by least-squares approximation of
degree 3 (one vehicle look-ahead/look-behind) compared to their exact values
(all-to-all communication).

The approximated solution Iv’appmx (z) is plotted in Fig. 5
together with the exact solution P(z), where slight deviations
are noticeable. However, as mentioned before, as long as the
closed-loop poles are not in the open right half plane we
can ignore these differences, at least for (string) stability.
Finally, the controller can be written as follows:

u(z, 1) = L(z)x(z 1)
L) = KB PG

= R'B*(A+zB+77'8%). (20)

D. Implications For the Control of
Finite-Length Vehicle Strings

The state feedback u(z) designed in the z-domain can
be interpreted in the spatial domain based on the degree
of z. For instance, (20) can be transformed into the spatial
domain via an inverse z-transform and show the dependency
of each car to a vehicle in front and behind. Therefore,
for any chosen communication topology, we can transform
the obtained controller i(z) to the spatial domain and apply
it on individual vehicles in a finite string of vehicles. One
issue with this approach is the fact that there exist vehicles
with non-existing neighbors at both ends of the finite string.
So, for instance with the one vehicle look-ahead/look-behind
communication topology, the first and last vehicles each miss
one neighbor. One approach to overcome this difficulty is
to assume the existence of a number of virtual vehicles at
both ends of the string. Here, we adopt a different viewpoint.
Namely, for long strings we can choose to ignore the non-
existing vehicles such that the vehicles on both ends operate
only based on available information from their neighbors. This
results in different closed-loop dynamics at both ends of the
string, while the main part of the string is still behaving as an
infinite string. We will present a related case study in the next
section.

Im
Im
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0.8 1 1.2 1.4

0.02

Im
Im
1

-0.02

-0.12 -0.1 -0.08  -0.06 2.4 2.6 2.8 3 3.2
Re Re

(d)
x1073

4 — Exact
- - Approximation

g ) g0 -
= ! =
,
’ -2
-4
0 0.05 01 015 0.2 0.055 0.06 0.065
Re Re
©) ®

Fig. 5. Elements p;; of the solution to the Algebraic Riccati Equation 15(1)
for the system (12) with the weighting matrices (17) (exact vs. least-squares
approximation of degree 3) with parameter values # = 2 and 7 = 0.1 for
z=el?, 9el0,2x].

V. SIMULATION RESULTS
A. Infinite-Length String Case Study

In this set of simulations, first we consider an infinite-length
string of vehicles and apply the three pairs of synthesized
controllers and topologies from section IV, involving the
all-to-all topology, the four vehicles look-ahead/look-behind
topology, and the one vehicle look-ahead/ look-behind topol-
ogy, respectively. Here, we assume that the vehicles in the
string are initially in their equilibrium points except for one
vehicle, which experiences an initial condition perturbation,
where without loss of generality we may assume that the
perturbed vehicle has index k& = 0, i.e., x,(0) = 0 for all
k # 0. Then, we need to transform the initial condition vector
into the z-domain. To this aim, a bilateral Z-transformation (9)
is applied to the initial condition vector as follows:

(@]
=ZxOl@) = D w%O0):z*

k=—00

*(z,0) =x0(0). (21
Thereafter, we design the LQR controller with all-to-all com-
munication using A(z) and B in (12), and é(z) and R
in (17) to solve (14), which results in Iv’(z) and therefore
the state feedback gain I:(z). Then, by using x(z, 0) in (21),
we simulate the string’s closed-loop behavior in the z-domain,
i.e., to obtain X(z, 7). Finally, we can retrieve the equivalent
spatial states of any vehicle k& by means of the inverse
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Fig. 6. Simulation results for an infinite string with all-to-all communica-

tion topology resulted from the exact solution of (14). The perturbation is
introduced for vehicle k = 0 at + = 0. The density map is logarithmic.

bilateral Z-transformation:

1 . _
wlt) = 5 JRCUESE
2
R R WL
27Z'j 0 ’
2

=— [ %, nel%ao0. (22)
0

2w
For these simulations, we investigate the absolute value of the
response in terms of the distance, velocity, and acceleration
in two domains, namely, the time and the spatial index for
the perturbed vehicle as well as a number of immediate
neighbors in both directions. According to the definition of
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Fig. 7. Transient behavior of the vehicles with all-to-all communication
topology resulted from the exact solution of (14), where the middle vehicle
with index k = 0 is disturbed at t = 0 [s].

string stability, we expect the introduced disturbances to decay
asymptotically in both dimensions. The simulation results for
the case with all-to-all communication topology are illustrated
in Fig. 6. Note that the density map is chosen to be logarithmic
to magnify the evolution of disturbance in both directions.
As can be seen, the introduced disturbances in vehicle k = 0
at time 0 [s], will decay along the time axis as well as the
spatial index axis for all three states. Furthermore, the transient
(in time) behavior of the disturbed vehicle (k = 0) along with
ten adjacent vehicles of the string, i.e., five in front and five
in behind, is captured in Fig. 7. This confirms that the states
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Fig. 8. Comparison between the simulation results for an infinite string of = Fig. 9. Comparison between the simulation results for a finite string of

vehicles with three different communication topologies, namely, all-to-all,
four vehicles look-ahead/look-behind, and one vehicle look-ahead/
look-behind.

indeed converge to zero. Similar graphs can be obtained for
the other communication topologies.

To compare these three communication topologies, we may
consider the signal 2-norm of the response of each vehi-
cle with respect to time, i.e., |lex(r)ll2, v ()2, lax(®)ll2.
The results are demonstrated in Fig. 8, which confirms
that all responses are decaying along the spatial dimension.
As can be seen, the simulation results of the four vehicles

vehicles with three different communication topologies, namely, all-to-all,
four vehicles look-ahead/look-behind, and one vehicle look-ahead/
look-behind.

look-ahead/look-behind topology are very close to the
all-to-all case compared to the one vehicle look-ahead/
look-behind case. In that sense, the four vehicles look-ahead/
look-behind strategy can be seen as a good approximation of
the all-to-all strategy. Moreover, the disturbance has a small
influence in the forward direction, i.e., for negative k, and
mainly travels in the reverse (backward) direction because
of the asymmetrical string dynamics in (12). In other words,
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since the dynamics of each vehicle in the string is strongly
dependent on the dynamics of the vehicle directly in
front (see (7)), the perturbations tend to travel in one direction.
Therefore, although the communication is necessary in both
directions for the string stability, the direction in which the
perturbations are attenuated is dominated by the presence
of the existing coupling with the directly preceding vehicle.
Hence, the effects of any disturbance on any vehicle will not
significantly affect the vehicles in front of it as can be seen
in Fig. 6-8.

B. Finite-Length Vehicle String Case Study

We have considered a finite length string of length
25 and employed the three pairs of controllers and topologies
designed for the infinite vehicle string, with the same initial
conditions as used in Fig. 8. The results are demonstrated
in Fig. 9. Clearly, Fig. 9 shows that the response decays away
from the vehicle k = 0 at which the (initial condition) per-
turbation occurs. Nevertheless, the differences corresponding
topologies in Fig. 8 and Fig. 9 are noticeable at the end of
vehicle string, which are due to the lack of information from
non-existing vehicles. Note that, similar to the infinite string
case in Fig. 6-7, the transient responses for the finite case will
also converge to zero as t — 00.

C. Discussion

In these simulations, we employed the suggested co-design
strategy in Section IV to synthesize controllers with different
communication topologies for the infinite-length string with
guaranteed string stability. On top of that, the results were
also applied to a finite-length vehicle string with limited
communication at the string ends, where no neighbors are
present. For long finite strings the response will resemble
the infinite-length string case, which is an indication that
the suggested co-design strategy can also be useful for the
finite-length vehicle strings.

VI. CONCLUSIONS

It is known that string stability is an essential require-
ment for the design of vehicle following control systems
that aim for short-distance following. However, commonly
used approaches for analyzing string stability of a vehicular
string require an already designed controller with a priori-
defined communication topology. In this paper, we presented
an approach for the co-design of the vehicle following con-
troller and the communication topology jointly guaranteeing
string stability, thus obtaining direct and clear insight into
the effects of the communication topology on the controller
performance. In this approach, the optimal control problem is
considered for an infinite length vehicle string in which the
vehicle string is considered as an spatially invariant system
in one dimension. By solving this control problem (both in
an exact an approximative sense) feedback controllers and
communication topologies (varying from all-to-all to single
and multiple vehicles look-ahead/ look-behind strategies) are
designed simultaneously, such that asymptotic (string) stability

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

is guaranteed. Simulation result show the effectiveness of
the proposed approach. Finally, it is shown that the resulting
designs also have merit in the scope of finite-length vehicle
strings.

APPENDIX A
DEFINITIONS
Let x(1) = ((1)2_o = (xfoo,...,xfl,x()’,xf,...,xlo)T be a
vector consisting of subvectors xi(t) € C" with k € Z. The
vector x is said to be square summable when it lies in the £»
state space, denoted by x(¢) € £>2(C"), i.e.
Definition 2 ({,-state space):

0(C") = {x(t) = ()2 _oo | xx() € C", Ix(D)]le, < 00},
(23)

where ||.||¢, is called £>-norm and it is given by

oo

PR ERGI

k=—o00

lx@lle, = (24)

> ly;|> for any arbitrary vector

: 2

Wlth ” l// ||(C)l

w1

w2
w=| .| eC.

Wn
By D = {ze€C]||z|] <1}, we denote the unit disk and
0D = {z € C | |z| = 1} denotes its boundary, the unit circle.
For the given state-space £, (C"), the corresponding frequency-
domain space equals to:

Definition 3 (Lo-state space):

Lo(0D; C") = {x : 0D — C" | |¥llz, < oo}, (25)
where |.||z, is called £>-norm and it is given by
I .
1%z, = \/ o /0 1% (e79) 1%, d6. (26)

Note that we sometimes write z € 0D, whereas other times
we use its parametrization, z = el? 9 e [0, 27).
The Loo-space for the operator A(z) is defined as

Definition 4 (Loo-space):

Loo(0D; C™™) = {A : 0D — C™™ |
1Al = ess supg_p=az 14 (¢77) Il < 001, (27)

where the norm ||A|| is defined as ||A|| = ./ Amax (A*A),

i.e. the square root of the largest eigenvalue of the positive-
semidefinite matrix A*A (A* denotes the complex conjugate
transpose of A) and it is called the ‘largest singular value’ of
the matrix A.

APPENDIX B
STABILITY PROPERTIES IN THE z-DOMAIN

Let us first study stability of the autonomous differential
equation in the z-domain

d y
Ei(z, 1) = A(@)x(z, 1), t>0, (28)
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where z € 0D and X(z,t) € Lp(0D;C") for all t.
Exponential stability in the z-domain of system (28) is defined
below.

Definition 5 (Exponential stability in the z-domain):
The system (28) is exponentially stable in L£,(oD; C") if
and only if there exist positive constants M and o such
that

1% (z, )l £y emicmy < Me™ 1%z, 0)ll yomiemys  (29)
for V¢t > 0.

The next theorem states a necessary and sufficient condition
for the exponential stability of (28) [3].

Theorem 1 (Condition for exponential stability in the
z-domain): Consider the system (28) with Ac Loo(0D; C™*M)
and let A(z) be continuous in z € dD. Then (28) is exponen-
tially stable if and only if for all 8 € [0, 2z ], the matrix A(ej ‘9)
is exponentially stable. The matrix A(el?) is exponentially

stable if and only if

sup (30)

{Real z(A(ef"’))} <0,
0€[0,27]

where det (41 — A (¢/%)) = 0 for some 6 € [0,27].
In other words, the real part of all the eigenvalues of
/i(ej‘g) for all & € [0,2z] must be in the open left-half
plane.
Asymptotic stability can also be defined for the system (28)
as follows.

Definition 6 (Asymptotic stability in the z-domain): The
system (28) is asymptotically stable if and only if

lim [1¥(z, 1)l 2y0m:0m =0 VE(z, 0) € £20D; €. (31)
A condition for asymptotic stability of (28) are formalized in
the next theorem [3].

Theorem 2 (Condition for asymptotic stability in the
z-domain): The system (28) is asymptotically stable if i)

1) Real A(A(e/?)) < 0 for all @ € [0, 2], and

Real /I(A(eje)) = 0 for at most a countable number of
0 €[0,2x]. o
2) SUPge(0,271,:>0 ”eA(ejo)t” < 00.
Here, the second condition (ii) - which guarantees finite
overshoot - is satisfied if
min [Ak(A(’”) = (A7) >0 k #1,
0€[0,27]
where k,I = 1,...,n. In (32), /lk(fi(ejg)) denotes the k-th
eigenvalue of A(ej 7y at a fixed 6 € [0,2x]. In other words,
if (32) is satisfied, then fi(ej %) has n distinct eigenvalues for
any given 6 € [0, 2x].

(32)
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