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Abstract—Piezo actuators are used in high-precision systems
that require nanometer accuracy. In this paper, we consider a nano-
motion stage driven by a walking piezo actuator, which contains
four bimorph piezo legs. We propose a (model-based) optimization
method to derive waveforms that result in optimal driving proper-
ties of the walking piezo motor. A model of the stage and motor is
developed incorporating the switching behavior of the drive legs,
the contact deformation, and stick-slip effects between the legs
and the stage. The friction-based driving principle of the motor is
modeled using a set-valued friction model, resulting in a model in
terms of differential-algebraic inclusions. For this model, we de-
veloped a dedicated numerical time-stepping solver. Experiments
show a good model accuracy in both the drive direction and the
perpendicular direction. The validated model is used in an opti-
mization, resulting in waveforms with optimal driving properties
of the stage at constant velocity. Besides the model-based optimiza-
tion, also a direct experimental data-based waveform optimization
is performed. Experiments with the optimized waveforms show
that compared to existing sinusoidal and asymmetric waveforms
in literature the driving properties can be significantly improved
by the model-based waveforms and even further by the data-based
waveforms.

Index Terms—Dynamical modeling, input optimization,
non-smooth dynamics, piezo actuators.

I. INTRODUCTION

P IEZO actuators are used in high-precision systems that re-
quire nanometer accuracy due to their attractive properties,

such as good reproducibility, high stiffness, and fast response.
Stepping piezo actuators are able to drive nano-motion stages
at constant velocities in the order of nanometers per second to
millimeters per second. To obtain good positioning and tracking
performance of the stages, a driving principle of the stepping
piezo actuators with a continuous actuation and smooth transi-
tions between the driving piezo legs is desired.
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In this paper, we consider a nano-motion stage driven by a
walking piezo actuator. The walking piezo actuator employs
four bimorph piezo legs to drive the stage in pairs of two.
The orbits of the drive legs are defined by the electric drive
waveforms to the motor. With the currently used sinusoidal and
asymmetric waveforms [1], no satisfactory driving properties
are obtained; stick-slip effects and different leg velocities at the
transfer between the driving pairs of legs limit the actuation of
the piezo legs at a constant velocity and result in a nonsmooth
stage behavior. To reduce the effect of these performance lim-
iting factors [2], a model-based approach is followed to obtain
new actuator driver software. In this paper, we develop a model
of the nano-motion stage and walking piezo actuator, which is
experimentally validated and used to derive new waveforms by
means of optimization techniques.

The model of the nano-motion stage with the piezo motor
includes the alternating nature of the walking movement of the
piezo legs, the contact dynamics, and the stick-slip effects be-
tween the motor and the stage. Although the piezo legs contain
some hysteresis, in most applications nearly linear operating
conditions are selected [3]. Therefore, in this paper, hysteresis
is not taken into account. An overview of models for contact dy-
namics for an ultrasonic piezo motor is given in [4]. The contact
between the piezo legs and the drive strip of the nano-motion
stage is modeled using a (one-sided) nonlinear contact stiffness.
The driving principle of the walking piezo motor is based on
friction. Therefore, accurate modeling of the friction between
the stage and motor is important. In [5], three different friction
models are compared for a friction drive piezo actuator. It is
found that the variation of the friction force due to a variation
in normal force should be taken into account. To model the fric-
tion force, which depends on the normal forces, and to properly
model stiction, a set-valued friction model is used [6]–[8].

Numerical simulation of the dynamic model, including the
set-valued friction model could be performed by smoothening
of the set-valued nonlinearity, but this leads to (nonunique) ap-
proximations and stiff differential equations [9]. Event driven
methods [10] are not favorable for our application since we split
the model of the piezo-driven nano-motion stage in a model in
the drive direction and a model in the perpendicular direction, of
which simulation results at each time step have to be combined.
Furthermore, the model results are compared to experimental
data at an equidistant sampling grid. Since we are interested
in the effect of friction on the global dynamics, but not in ex-
act timing information of stick-slip transitions, we exploit time-
stepping methods to perform numerical simulations with the dy-
namic model, including the set-valued friction model [9], [11].
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Here, we formulate the model in terms of a differential-algebraic
inclusion, for which we develop a dedicated time-stepping
solver. The model and numerical solver can be used for the
optimization of the waveforms to the piezo legs to optimize the
legs orbit design.

In the literature, several algorithms have been described for
waveform optimization. In [12], a computationally efficient
real-time trajectory optimization technique is proposed. Op-
timal input signals are derived in [13] for systems in which
part of the trajectory is chosen fixed. Although interesting,
these methods are not adopted in this paper since, firstly, in
our problem the optimization is performed offline and as a
consequence computational efficiency is not really an issue,
and, secondly, the input signals to be designed are completely
free.

Waveforms for piezo devices have already been studied in
literature. In [14], triangular, rectangular, and sinusoidal wave-
forms for an inchworm actuator are compared. The sinusoidal
and triangular waveforms perform best. The period time and
slopes of triangular driving waveforms are optimized for maxi-
mum velocity in [15]. In [16], possible trajectories for a walking
micro-robot employing six bimorph piezo legs are described.
However, no trajectory optimization for a specific goal is per-
formed. In [17], iterative learning control of two parameters is
applied to obtain a smooth stepping function for a piezo step-
per with six legs. To the authors’ best knowledge, no trajectory
optimization for bimorph walking piezo motors has been de-
scribed yet in literature. In our previous work [1], we proposed
asymmetric waveforms, which improve the driving properties
of the bimorph walking piezo motor. The optimized waveforms
derived in this paper will be compared to these asymmetric
waveforms.

To find the global optimum for the optimization cost functions
as considered in this paper, which are nonlinear and non-convex
in the optimization parameters, stochastic methods are preferred
over nonlinear gradient-based methods. Since the success of
such algorithms is problem dependent, genetic algorithms (GA)
[18], [19], simulated annealing (SA) [20], and two algorithms
of particle swarm optimization (PSO) [21]–[23] are tested. For
each method, also a two-phase approach is used, i.e., the global
optimization is followed by a local gradient-based optimization
[24], [25].

The contributions of this paper are threefold. Firstly, a model
of the nano-motion stage driven by the walking piezo actua-
tor, including the switching behavior of the piezo actuator and
the contact dynamics and stick-slip behavior between the piezo
motor and the stage, is presented. Secondly, a dedicated time-
stepping solver is developed for the derived model, which is
described by a set of differential-algebraic inclusions. Finally,
optimal waveforms are derived by means of a model-based and
a data-based optimization.

This paper is organized as follows. In Section II, the ex-
perimental setup will be discussed in more detail. The model
and time-stepping solver will be presented in Section III. The
model identification and validation will be shown in Section IV.
Section V contains the waveform optimizations. Finally, con-
clusions will be drawn in Section VI.

Fig. 1. Nano-motion stage driven by the walking piezo actuator.

Fig. 2. Schematic working principle of the walking piezo motor. Only the
driving electrode to the piezo stacks is shown, the ground electrodes on the
individual stacks are omitted.

II. EXPERIMENTAL SETUP

The one degree-of-freedom (DOF) nano-motion stage, as
shown in Fig. 1, is equipped with a roller cage bearing to mini-
mize the amount of friction in the stage movement. The position
of the stage in x-direction is measured using a linear incremental
encoder with a resolution of 0.64 nm. The displacement of the
back of the motor housing is measured using a capacitive sensor
with a resolution of 0.44 nm and a root-mean-square (rms) value
of the noise of 1.6 nm. The motor is aligned with the drive strip
of the stage using a dedicated motor suspension, as described
in [1]. The drive pads of the piezo motor are pressed against the
drive strip by two preload springs with a total preload force of
55 N.

The walking piezo motor contains four bimorph piezoelectric
legs, which work together in pairs of two to drive the nano-
motion stage, as shown in Fig. 2. Each leg contains two electri-
cally separated piezo stacks. Each stack is driven by an electric
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waveform ui(t) (V), i ∈ {1, 2, 3, 4}, which position the tips of
the piezo legs in the (xm , ym )-plane (see Fig. 1). Applying equal
voltages to the piezo stacks of one leg causes the leg to extend in
ym -direction. Different voltages introduce a bending of the leg
in xm -direction. The relative positions of the tips of the leg pairs
1 (legs A and D) and 2 (legs B and C) in x- and y-directions
can be written as [2], [26]

x1,2 = cx(u1,3(t) − u2,4(t))

y1,2 = cy (u1,3(t) + u2,4(t)) (1)

where cx (m/V) and cy (m/V) are the constant bending and
extension coefficients, respectively.

The leg orbits are defined by choice of the waveforms ui(t)
(V), i ∈ {1, 2, 3, 4} in (1). Periodic alternating leg orbits are
obtained with periodic waveforms [1]. Due to the preload, at
least one pair of legs is in contact with the drive strip of the
stage at all times.

The stage of Fig. 1 with the walking piezo actuator can track
constant velocity set points ranging from nanometers per second
to millimeters per second with an accuracy of nanometers to
micrometers. Furthermore, point-to-point movement over 5 nm
to the complete stroke of the stage can be made with a final
static error below encoder resolution [1].

III. MODELING

This section contains the model of the walking piezo actuator
and the nano-motion stage. First, the contact dynamics between
the piezo legs and the stage are discussed, after which the models
are presented. Since the model is described by a differential
inclusion, we develop a dedicated time-stepping solver for the
numerical simulations.

At low-stage velocities, the errors due to the shape of the
input waveforms to the piezo motor are dominant over other
errors, which are more evident at higher frequencies, e.g., due
to measurement disturbances or system dynamics. Therefore,
the model will be used for the waveform optimization at low-
stage velocities, corresponding to low-drive frequencies of the
piezo legs. The purpose of the model is to accurately describe
the behavior of the system for frequencies f < 50 Hz, under
the assumption that the stochastic disturbances and the high-
frequency disturbances introduced by the hitting of the legs on
the stage do not determine the performance. Also no fast dy-
namic effects are expected since the frequency range of interest
is a factor ten below the first resonance frequency as present in
the measured frequency response function (FRF) at 543 Hz (see
Section IV and [1]).

Since the piezo legs are actuated in pairs by two input voltages
as described in (1) and under the assumption that the legs in each
pair are identical, each pair of legs can be lumped into a single
leg. The leg positions are decomposed in orthogonal x- and y-
displacements. Due to the decoupling of the x- and y-directions
and the design of the motor suspension [1], the motor housing
is assumed to move only in y-direction. Therefore, the model
is split into two separate models for the x- and y-directions,
respectively. This allows to compute the normal forces between
the legs and the drive strip of the stage from the model in y-

Fig. 3. Contact deformation, FEM model (∗), Hertz contact (dark gray, dash-
dotted), linear fit (light gray, dashed), and nonlinear fit (black, solid).

direction, which can then be used as an input for the model in
x-direction to evaluate the friction forces between the legs and
stage in x-direction.

The voltage-actuated piezo legs are modeled as mass-spring-
damper systems, analogous to existing piezo models [27]–[30].
In [2], we showed that the resonance frequencies of the piezo
legs itself are located at frequencies f > 215 kHz, which is
above the frequency range of interest for this model. The inter-
nal dynamics of the piezo legs can therefore be neglected. Since
experiments show that the extensions of the different pairs of
legs in (x, y)-directions are different and asymmetric, the static
model of [2] and (1) is slightly extended by incorporating addi-
tional bending and extension coefficients as

x1(t) = cx1 u1(t) − cx2 u2(t)

y1(t) = cy1 u1(t) + cy2 u2(t)

x2(t) = cx3 u3(t) − cx4 u4(t)

y2(t) = cy3 u3(t) + cy4 u4(t) (2)

where x1 and x2 are, respectively, the x-positions of the first
and second pair of legs and y1 and y2 are the corresponding
positions of the leg models in y-direction.

A. Contact Dynamics

Due to the preload springs at least one pair of legs is in
contact with the stage at all times. However, this contact is not
rigid. The contact deformation is assumed to exist in y-direction
only and is modeled by a spring with stiffness kc1 , 2 , which
may nonlinearly depend on the contact deformation. The static
contact deformation obtained by a finite-element method (FEM)
model of the aluminium oxide tip of piezo legs and aluminium
oxide drive strip of the stage with physical dimensions is shown
in Fig. 3. A Hertzian contact model for a cylinder on a flat
surface [31], [32] equals

yc =
2Fcλ

L

(
1 + ln

(
L3

2λFcR

))
(3)
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Fig. 4. Model of the system in x-direction.

where yc (m) is the displacement, Fc (N) is the force, L = 3 mm
is the contact length, R = 0.2 mm is the radius of the cylinder,
and λ = (1 − ν2)/πE, with ν = 0.24 the Poisson’s ratio and
E = 377 GPa the Young’s modulus of the aluminium oxide
material. The Hertzian contact model (3) resembles the contact
deformation of the FEM model for contact forces Fc < 10 N,
as shown in Fig. 3. Since the actual contact forces are larger,
the Hertzian contact model is not applicable for this application.
Also, a linear stiffness model is fitted through the FEM data, see
Fig. 3, which does also not give satisfactory model accuracy.
Therefore, the following nonlinear restoring force model

Fc =
(

yc

q1

)1/q2

(4)

is fitted to the FEM data to obtain the parameter estimates
q1 = 1.77 × 10−8 and q2 = 0.705.

The experimentally identified friction between the piezo legs
and the stage in x-direction, obtained by measuring the angle
at which the tilted stage with known mass starts sliding [31],
showed a large variation, possibly due to the orientation of the
contact surfaces between legs and motor at a microscopic level,
environmental conditions or contamination of the sliding sur-
faces [4], [31]. Therefore, we confine ourselves to an elemen-
tary set-valued Coulomb friction model, which however does
describe stick-slip phenomena

λ ∈ μFN Sign(v) (5)

where μ is the friction coefficient, FN1 , 2 (N ) is the normal force
in the two pairs of piezo legs, v (m/s) is the relative sliding
velocity between the sliding surfaces and the set-valued sign
function is defined by

Sign(x) =

⎧⎨
⎩

{−1}, for x < 0
[−1, 1], for x = 0
{1}, for x > 0

(6)

Finally, experiments showed that the friction in the bearings is
negligible.

B. Model x-Direction

The model for the x-direction is shown in Fig. 4. Since the
mass of the piezo legs is very small compared to the mass
of the stage, the legs are modeled as mass-less elements with
stiffness kx1 , 2 (N/m) and damping dx1 , 2 (Ns/m). The subscripts
1, 2 denote the leg pair. The force exerted by the piezo legs in
x-direction due to the applied voltages to the stacks of the legs

equals

Fx1 = kx1 x1 = kx1 (cx1 u1(t) − cx2 u2(t))

Fx2 = kx2 x2 = kx2 (cx3 u3(t) − cx4 u4(t)) (7)

where we used (2).
In Fig. 4, the position of the stage is denoted by xs (m) and

the positions of the leg pairs by x1,2 (m). Let the mass of the
stage be represented by Ms (kg) and the friction forces between
the pairs and the stage by λ1,2 (N), which depend on the normal
forces of the leg pairs in y-direction and are described by the set-
valued friction model (5). The equations of motion for the model
in x-direction incorporate the spring-damper model, reflecting
the passive flexibility and dissipation properties of the legs, the
applied forces Fx1 , 2 due to the applied voltages as in (7) and the
friction forces λ1,2 , and are given by the following differential
inclusions

Msẍs = λ1 + λ2

kx1 x1 + dx1 ẋ1 = Fx1 − λ1

kx2 x2 + dx2 ẋ2 = Fx2 − λ2 (8)

where the friction forces λ1,2 in (8) satisfy the following set-
valued force laws:

λ1 ∈ μFN1 Sign(ẋ1 − ẋs)

λ2 ∈ μFN2 Sign(ẋ2 − ẋs) (9)

in which the set-valued sign function is defined by (6). The first
equation of (8) describes the equation of motion for the stage and
the latter two the equilibrium equations for the mass-less legs.
The set-valued nature of the friction forces λ1 , λ2 (9) between
the leg, and the stage allows for a non-zero friction force at zero
relative velocity. The latter fact implies that real sticking (zero
relative velocity) is modeled.

C. Model y-Direction

A schematic representation of the system in y-direction is
shown in Fig. 5(a). From top to bottom, the roller bearings are
indicated by a spring kb (N/m) and damper db (Ns/m). The
contact dynamics are depicted as a nonlinear one-sided spring
kc1 , 2 (N/m). The piezo legs are shown as spring-damper systems
with spring ky1 , 2 (N/m) and damper dy1 , 2 (Ns/m). The motor
housing is represented by the mass Mh (kg). Finally, the preload
spring is denoted by kp (N/m).

An FRF measurement in y-direction from the input voltages
to the piezo legs to the measured displacement of the hous-
ing shows a purely static gain for frequencies f < 500 Hz.
Since we require the model to be accurate up to a frequency of
50 Hz, inertial effects related to Ms are omitted in the model.
Furthermore, since kb � kc1 , 2 , the stiffness of the bearing kb

is neglected in the model in y-direction. The compression of
the preload springs due to the movement of the housing in y-
direction is maximally 0.03% for a maximal motor displacement
of 1 μm and a compression of the preload springs of 3 mm. The
resulting variation in preload force is assumed to be negligibly
small. Therefore, the preload springs are modeled as a constant
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Fig. 5. Schematic representation and model of the system in y-direction.
(a) Schematic representation. (b) Model y-direction.

preload force Fp . This leads to the model in y-direction, as
shown in Fig. 5(b).

Using (2), the exerted forces by the piezo legs in y-direction
due to the applied voltages equal

Fy1 = ky1 y1 = ky1 (cy1 u1(t) + cy2 u2(t))

Fy2 = ky2 y2 = ky2 (cy3 u3(t) + cy4 u4(t)). (10)

The equations of motion of the model in y-direction are given
by

ky1 (yh − y1) + dy1 (ẏh − ẏ1) = Fc1 (y1) − Fy1

ky2 (yh − y2) + dy2 (ẏh − ẏ2) = Fc2 (y2) − Fy2 (11)

where the forces Fy1 and Fy2 exerted by the piezo legs due to
the applied voltages follow from (10). The contact forces Fc1

and Fc2 are coupled through the motor housing and the constant
given preload force Fp . Depending on the contact properties
between the leg pairs and the stage, the preload force is divided
over the contact forces Fc1 , 2 of one or two leg pairs dependent
on their elongation.

The preload force Fp is equal to the sum of the two contact
forces Fc1 , 2

Fp = Fc1 (y1) + Fc2 (y2). (12)

The forces in the one-sided contact springs as function of the
elongation of both leg pairs in y-direction can be calculated
using (4) as

Fc1 , 2 (y1,2) =

⎧⎨
⎩ 2

(
y1,2

q1

)1/q2

, if y1,2 ≥ 0

0, if y1,2 < 0.

(13)

The factor two is added since one leg in the model represents a
pair of legs, i.e., Fc1 , 2 = 2Fc . The coupling between the mod-
els in x- and y-directions follow from the contact forces as
FN1 , 2 = Fc1 , 2 .

D. Numerical Methods

In this section, the methods used for the numerical simula-
tions of the models in x- and y-directions are described. To fa-
cilitate the coupling between the models in x- and y-directions,
fixed time solvers with a time step Δt = 0.25 ms are chosen
for the simulations. The choice of the time step is a tradeoff be-
tween accuracy and calculation time of the simulation. Let the
start of a time-step be denoted by tA , then the end time equals
tE = tA + Δt.

For the simulations in x-direction, the normal forces FN1 , 2

are required. Solvers for differential-algebraic equations can be
used to simulate the model in y-direction [33], of which we omit
a description for the sake of brevity. The obtained normal forces
FN1 , 2 from the simulation in y-direction are subsequently used
in the simulation of the model in x-direction.

The model in x-direction, described by (8) and (9), is in the
form of a set of differential inclusions, which can be simulated
using a time-stepping solver [11]. A dedicated time-stepping
algorithm is developed to simulate the specific problem of
Fig. 4, including the mass-less leg elements. Using a backward
Euler discretization scheme for the time derivatives ẋs and ẋ1,2 ,
the equations of motion (8) can be discretized as follows:

ẋs,E = ẋs,A +
(λ1 + λ2)Δt

Ms

x1,E =
dx1 x1,A + (Fx1 − λ1)Δt

dx1 + kx1 Δt

x2,E =
dx2 x2,A + (Fx2 − λ2)Δt

dx2 + kx2 Δt

xs,E = xs,A + ẋs,E Δt (14)

where Δt is the fixed time-step and the subscripts ·A and ·E
denote the values at the start and end times of the fixed step
iteration, respectively. The discretized version of the friction
law (9) is given by

λ1 ∈ μFN1 sign
(

x1,E − x1,A

Δt
− ẋs,E

)

λ2 ∈ μFN2 sign
(

x2,E − x2,A

Δt
− ẋs,E

)
. (15)

The iteration scheme for the dedicated time-stepping solver at
each time-step is as follows.

1) Gather the known coordinates xs,A , ẋs,A , x1,A and x2,A ,
and actuator forces Fx1 and Fx2 at the beginning of each
time instant, i.e., at time tA .

2) Simulate the model in y-direction to retrieve the normal
forces FN1 , 2 at the corresponding time instant.

3) Take the friction forces λ1,2 from the previous time step
as an initial estimate for the current time step.

4) Using a root finding algorithm, e.g., a fixed point iteration,
compute the friction forces in the following iterative loop
where the superscript K denotes the iteration number.

a) Evaluate x1,E , x2,E , xs,E , and ẋs,E from (14) for
given λ1,2 .
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b) Update the friction forces λK +1
1,2 as

λK +1
1 = proxC1

(
λK

1 + r

(
x1,E − x1,A

Δt
− ẋs,E

))

λK +1
2 = proxC2

(
λK

2 + r

(
x2,E − x2,A

Δt
− ẋs,E

))

(16)

where r > 0, Ci = [−μFNi
, μFNi

], i ∈ {1, 2}, is
the set of admissible friction forces and

proxCi
(x) =

⎧⎨
⎩

−μFNi
for x ≤ −μFNi

x for −μFNi
< x < μFNi

μFNi
for x ≥ μFNi

(17)
i ∈ {1, 2}, is the proximal point to the convex set
Ci . Note that the proximal point formulation of the
set-valued friction law in (16) is equivalent to that
in (15) and is introduced to be able to compute λ1 ,
λ2 by solving (16) using a root-finding algorithm.

c) If λK +1
1,2 − λK

1,2 < ε for a given desired accuracy ε,
the simulation step is complete, otherwise continue
to the next iteration at step 4a with the updated
friction forces λ1,2 = λK +1

1,2 .
In principle, the choice for r > 0 is free. The step size of the

fixed point solver is determined by r. For small r the fixed point
iteration is likely to converge but with low-convergence speed,
whereas higher r speeds up the convergence. If r is chosen
too large, the convergence of the scheme may be compromised
(see also [9]). The choice for ε is a tradeoff between convergence
speed of the fixed point iteration and accuracy of the determined
friction forces.

IV. EXPERIMENTAL VALIDATION

This section deals with the identification of the model param-
eters and subsequent validation of the identified models using
experimental data.

A. Parameter Identification

For the parameter identification, it is assumed that the ma-
terial properties for both leg pairs are identical. The con-
stant parameters Pf ∈ {Ms, kx1 , 2 , ky1 , 2 , Fp , q1 , q2} are identi-
fied from separate experiments. Weighting the stage mass yields
Ms = 0.428 kg. The parameters q1 and q2 are fitted to FEM
data of the contact dynamics, as described in Section III-A.
The stiffness of the pairs of legs in y-direction is determined
as ky1 , 2 = EA/L = 3.2 × 108 N/m, where the cross area A =
9 mm2 , the length L = 4 mm, and the modulus of elasticity
E = 70 GPa. The stiffness kx1 , 2 denotes a combined stiffness of
the leg and motor suspension and is determined using the known
mass Ms combined with the first resonance from the measured
FRF in x-direction at 543 Hz, which yields kx1 , 2 = 5.0 × 106

N/m. The preload force Fp = 55 N.
The remaining damping parameters, the bending and ex-

tension coefficients of the legs, and the friction coefficient
are determined using optimization techniques. For this pur-

TABLE I
OBTAINED MODEL PARAMETERS USING PSO OPTIMIZATION OF (18)

pose, experimental data obtained with the nano-motion stage
at a fixed driving frequency of 10 Hz for differently shaped
waveforms is used. The used waveforms are: 1) sinusoidal,
2) asymmetric [1], 3) rhombic waveforms (waveforms that
lead to a tip trajectory with four linear sides of equal
length) with 90◦ phase shift, and 4,5) two manually ob-
tained alternatives of the asymmetric waveforms. The param-
eters P ∈ {dx1 , 2 , dy1 , 2 , cx1 , cx2 , cx3 , cx4 , cy1 , cy2 , cy3 , cy4 , μ}
are obtained by solving the following minimization problem

min
P

f(P ) (18)

with

f(P ) =
5∑

i=1

{rms (r̄w − r̂w (P )) + |(r̄w (t0) − r̂w (P, t0))|}

(19)
where rms(·) denotes the root-mean-square value, | · | the ab-
solute value operator, and w ∈ {1, 2, 3, 4, 5} the waveform
number. Furthermore, r̄w = {x̄w , ȳw} denotes the average ex-
perimental data over ten periods for each individual waveform
number w and r̂w (P ) = {x̂w (P ), ŷw (P )} reflects the model
output. The averaging is performed to minimize the effect of
stochastic disturbances. The second term in the objective func-
tion weights the start points in order to obtain an equal starting
point for the steps of the model compared to the experimental
data. Since the average values of the model and the experimental
data are removed in every iteration due to the relative measure-
ments, the second term also weights the end point of each step
due to the periodicity.

The minimization problem (18) is performed using GA, SA,
and PSO algorithms. The PSO algorithm [22], [23] appears to
be best suitable for the identification problem at hand, i.e., with
the PSO algorithm results the lowest objective function value
f(P ) is obtained the most times for 200 runs of the optimization
problem.

Since the results of the model in y-direction are required for
the model in x-direction, first the identification is performed in
y-direction after which the x-direction is identified. The iden-
tified model parameter values are given in Table I. When com-
paring the bending and extension coefficients of the different
legs, it can be seen that the coefficients for the second pair are
smaller than for the first pair, indicating that this pair makes
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TABLE II
SIZES OF THE LEG TRAJECTORIES AND MODEL ERRORS OF THE DIFFERENT

WAVEFORMS AT 10 HZ, WAVEFORMS 1–5 ARE USED FOR THE MODEL

IDENTIFICATION AND WAVEFORMS 6–9 FOR THE MODEL VALIDATION

smaller steps. Different values are also obtained for the bending
and extension coefficients within one pair as described by (2),
indicating an asymmetric step shape.

The sizes of the leg trajectories as obtained with the differ-
ent identification waveforms 1–5 in the experiments and in the
simulations with the identified model are given in Table II. The
model shows a good match with the experimentally obtained
sizes of all waveform types.

B. Model Validation

The experimental results contain stochastic disturbances as
well as disturbances caused by the roughness of the drive strip,
contamination, etc. Therefore, the model response, obtained
with the developed time-stepping solver of Section III-D, is
compared to the experimental data of 200 periods for each
waveform. The model errors are defined as ex = x̄ − x̂ and
ey = ȳ − ŷ, where ·̄ denotes the average measurement over the
different periods and ·̂ the simulated model output. The data
are offset to an average value equal to zero since only relative
measurements are performed.

For the validation of the model, four additional waveforms,
other than those used for the identification, are used. The wave-
forms numbered 6–8 are different, manually obtained variations
of the asymmetric waveforms [1]. Waveform 9 is a rhombic
waveform with 45◦ phase shift. Furthermore, the performance
of waveforms 6 and 8 is validated for different drive frequen-
cies f ∈ {5, 10, 20} Hz, whereas the identification is performed
only with a drive frequency f = 10 Hz.

The time responses of the model and experiments are com-
pared for the asymmetric waveform w = 7 and rhombic wave-
form w = 9, shown in Fig. 6. The model and experimental
results for the manually obtained alternative asymmetric wave-
form w = 7 are contained in Fig. 7. It can be seen that the model
response overlaps the experimental data of the 200 periods in
both x- and y-directions. The mismatch between the measured
position and the model position around t = 0.09 s is located at
the takeover point, at which the model accuracy is somewhat
limited due to the chosen friction and contact models. In y-
direction, a large deviation in measured position data is visible,
which is caused by the limited accuracy of the measurements
with the capacitive sensor, which is very sensitive to orientation

Fig. 6. Input voltages ui , i ∈ {1, 2, 3, 4} of the verification waveforms w = 7
and w = 9, u1 (black, solid), u2 (gray, solid), u3 (black, dashed), u4 (gray,
dashed). (a) Validation waveform w = 7. (b) Rhombic waveform w = 9.

Fig. 7. Measured (solid, light-gray) and model (dashed, black) positions, er-
rors (solid, dark gray) and CPSDs of the position and error signals in x- and
y-directions for validation waveform w = 7. (a) x-direction. (b) y-direction.

errors and tilt of the motor housing. The cumulative power spec-
tral densities (CPSDs) in the bottom figures show the accuracy
of the model by the low CPSDs of the errors ex and ey . For
frequencies f → ∞, the CPSDs converge to the squared rms
values of the signals.

The model also accurately describes the system response for
non-harmonic waveforms such as rhombic waveforms (w = 9),
as can be seen in Fig. 8. The CPSDs in the bottom figures of
Fig. 8 show no increase in the errors at frequencies f > 50 Hz,
so above the drive frequency of the experiments with which the
model is identified. This confirms the assumption that the system
performance is not determined by high-frequency disturbances.

The rms values of the errors in x- and y-directions for all
identification and validation waveforms are shown in Fig. 9.
The variation in the rms error over all 200 periods is also shown.
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Fig. 8. Measured (solid, light-gray) and model (dashed, black) positions, er-
rors (solid, dark-gray) and CPSDs of the position and error signals in x- and
y-directions for validation waveform w = 9. (a) x-direction. (b) y-direction.

Fig. 9. Model errors ex (μm) and ey (μm) for various identification and
verification waveforms with waveform driving frequencies fα ∈ {5, 10, 20}
Hz.

The average rms errors and sizes of the leg trajectories for the
different waveforms are contained in Table II for a driving fre-
quency of 10 Hz. The model describes the experimental data for
all waveforms with an accuracy of 93% in x-direction and with
an accuracy of 80% in y-direction. Note that the reduced model
accuracy in y-direction is present for all identification and vali-
dation waveforms. Fig. 9 also shows that the model describes the
experimental data obtained at drive frequencies f ∈ {5, 20} Hz

with the same accuracy. The model accuracy is approximately
equal for the identification and validation waveforms. This is
because the used validation waveforms show a large correla-
tion with some of the identification waveforms. The verification
waveforms w = {6, 7, 8} are similar to the identification wave-
forms w = {4, 5} in the sense that all are described by fourth-
order Fourier series. Furthermore, the validation waveform
w = 9 and the identification waveform w = 3 are both rhombic
waveforms, but with a different phase.

With all waveforms (sinusoidal, asymmetric, rhombic, and
manual waveforms used for the model identification and valida-
tion) stick-slip effects between the piezo legs and the stage are
observed in the simulation results. Since slip between the legs
and the drive surface of the stage affects the stage velocity and
determines the quality of the waveforms to achieve the desired
performance, it is important to include stick-slip in the model
used for the waveform optimization.

V. WAVEFORM OPTIMIZATION

The model derived in Section IV can be used to optimize
the waveforms for driving the walking piezo motor with dif-
ferent objective functions such as minimal energy, minimal
driving frequency, maximum step size. In this research, we
focus on optimizing the shape of the tip trajectories through
the input waveforms to obtain a constant stage velocity. First,
a model-based waveform optimization will be discussed, fol-
lowed by a data-based experimental waveform optimization.
The (dis)advantages of both methods are shown by means of
experiments. The chosen reference velocity for the waveform
optimization equals ẋr = 50 μm/s, which is chosen such that
the required nominal drive frequency to achieve the reference
velocity with asymmetric waveforms [1] is in the frequency
range where the model is accurate.

A. Model-Based Waveform Optimization

The shape of the waveforms ui (V), i ∈ {1, 2, 3, 4} is cho-
sen to be specified by eight equidistant points on one period
α ∈ [0, 2π] rad. The optimization parameters ξ contain these
eight points of each waveform that has to be optimized. Spec-
ifying each individual waveform ui , i ∈ {1, 2, 3, 4} by eight
separate points would require ξ = 32 waveform parameters to
be optimized. By adding dependencies between the waveforms,
this number can be reduced at the cost of less freedom in the
optimization.

From the optimization parameters ξi , i ∈ {1, 2, 3, 4}, of each
waveform, the input voltages to the stacks are obtained by fitting
a Fourier series model of order n = 4 in a least squares sense
through the optimized points on one period described by ξi as

{a∗
k,i , b

∗
k,i} = arg min

ak , i ,bk , i

(ξi − û(α, ak,i , bk,i)) (20)

where ak,i and bk,i are the Fourier coefficients and the Fourier
series model

û(α, ak,i , bk,i) =
n∑

k=0

ak,i cos(kα) + bk,i sin(kα). (21)
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The waveforms ui , i ∈ {1, 2, 3, 4} for each iteration of the op-
timization now follow from (21) with the fitted Fourier coeffi-
cients a∗

k,i and b∗k,i , i.e., ui(α) = û(α, a∗
k,i , b

∗
k,i). The Fourier se-

ries model is chosen because the waveforms should describe pe-
riodic signals and since the frequency content is limited, thereby
avoiding excitation of high-frequency dynamics. By changing
the shapes of the waveforms, the leg orbits change and thus the
drive properties of the motor.

One might argue that direct optimization of the Fourier coef-
ficients, i.e., ξi = {ak,i , bk,i} would give the same results. Al-
though direct optimization of the Fourier coefficients is possible
and both sets of optimization parameters ξi could describe the
same waveforms, different optimization problems are solved.
The two sets of optimization points ξ1 and ξ2 of waveforms
u1 and u2 directly describe eight points on the leg orbits of leg
pair 1 as described by (1). A change of one of the eight points on
the waveforms directly influences the optimized leg orbit. This
direct relation of the optimization parameters to the leg orbits
is not present when optimizing the Fourier coefficients ak,i , bk,i

since a change of one of these parameters changes a harmonic
component in the waveform throughout the complete period of
the waveform and thus on the complete leg orbit.

The goal of the optimization is twofold, namely, to design
waveforms that, firstly, are able to accurately drive the stage at
a given reference velocity and, secondly, minimize slip between
the legs and stage to prevent wear of the drive surfaces and to
optimize the efficiency of the actuator. Intuitively, one would
choose the velocity error between the reference velocity and the
obtained stage velocity of the model, i.e., ev = ẋr − ẋs , to be
minimized in the waveform optimization. This would however
only address the first criterion and may lead to waveforms in-
troducing extensive amounts of slip. Therefore, we opt for an
objective function incorporating the leg velocities. The differ-
ence between the velocity of the legs and the reference velocity
is minimized when the legs are in proximity of the stage. The
desired clearance between the legs and the drive strip at which
the relative velocity between legs and stage should be zero is
denoted by δy, where δy = 0 denotes the model-based contact
point and δy < 0 denotes an open distance between the legs
and the drive strip. Note that by minimizing the occurrence of
slip by optimizing the legs velocities when they are close to or
in contact with the stage, we are effectively optimizing for the
stage velocity as well.

Let the amplitudes of the points on the waveforms be con-
tained in ξ. The optimization problem can now be formulated
as

min
ξ

g(ξ) (22)

with

g(ξ) = rms(ẋr − ẋ∗
1(ξ)) + rms(ẋr − ẋ∗

2(ξ)) (23)

where the weighted leg velocities based on the desired clearance
δy equal

ẋ∗
1,2(ξ) =

{
ẋ1,2(ξ), if y1,2 ≥ δy
0, if y1,2 < δy.

(24)

Fig. 10. Calculation objective function.

If the leg positions y1,2 < 0, the specific legs are not in contact
with the stage. Note that slip is only implicitly minimized by
(22). Slip could be minimized by extending the objective func-
tion (23), e.g., by the error between the individual leg velocities
in the proximity of the stage.

The objective function for each iteration in the optimization is
schematically shown in Fig. 10. For the waveform optimization
of (22) also GA, SA, and PSO algorithms are tested. For this
problem, the lowest objective function value g(ξ) is obtained
the most times for 200 optimization runs using SA [20].

In the next section, the results for a model-based optimization
with eight individual parameters per waveform, i.e., ξ contains
32 parameters, and a clearance of δy = 0.05 μm are shown.
For this optimization, the driving frequency is chosen as the
frequency required to drive the stage at a velocity of 50 μm/s
with the asymmetric waveforms [1]. This leads to a driving
frequency fα = 14 Hz.

B. Validation of New Waveforms

In this section, the results of the experiments with the wave-
forms obtained from the model-based optimization are pre-
sented. The optimal waveforms are shown in Fig. 11. It can
be seen that the shapes of all waveforms are different. This
indicates that the waveform optimization accounts for the dif-
ferences in the piezo legs (see also Table I).

The velocity errors of the simulations and experiments, de-
fined as ev,s = ẋr − ẋs and ev,e = ẋr − ẋe , respectively, are
shown in Fig. 11 for the model-based optimal waveforms. The
velocity ve is obtained from the experiment by numerical dif-
ferentiation of the encoder output and a subsequent anti-causal
filtering of the differentiated signal by a fifth-order low-pass fil-
ter with a cut-off frequency fc = 500 Hz. It can be seen that the
velocity obtained in simulation approximates the desired stage
velocity of 50 μm/s better than the experimentally obtained
velocity.

The rms values of the velocity errors equal rms(ev,s) =
10.24 μm/s and rms(ev,e) = 25.14 μm/s (note that the refer-
ence velocity is 50 μm/s). The cumulative PSDs of the velocity
errors show the difference between simulation and experiment,
which is caused by the model error. The model mismatch is
influenced by the contact dynamics and friction model, both
of which could only be identified with limited accuracy due to
the sensitivity of the capacitive sensor in the current setup. The
influences of even small model errors become more apparent in
the velocity signals.
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Fig. 11. Waveforms, velocity errors obtained with the model (black, dashed)
and experiments (solid, gray) and cumulative PSDs of the errors for the model-
based optimization.

C. Data-Based Waveform Optimization

To eliminate the influence of the model mismatch, also a data-
based experimental waveform optimization is performed. For
this purpose, the simulation in the calculation of the objective
function (see also Fig. 10) is replaced by an experiment with
the nano-motion stage and walking piezo leg actuator. For the
data-based waveform optimization, the leg velocities cannot be
measured. Therefore, for the data-based waveform optimization,
the velocity error between reference and stage is minimized,
resulting in the following data-based objective function for the
optimization problem (22):

g(ξ) = rms(ẋr − ẋs,e(ξ)). (25)

The sampling frequency for the experiments equals 4 kHz.
The obtained waveforms of the data-based optimization are

shown in Fig. 12. Comparison of the waveforms of Figs. 11 and
12 shows that globally the shapes look similar. However, on
a more detailed level there are some differences. The velocity
errors of 200 periods, as shown in Fig. 12, are smaller than the
velocity errors of the model-based waveforms in Fig. 11. The
rms value of the velocity error equals rms(ev,e) = 17.01 μm/s.

D. Discussion

Since the experiments show that the error of the model-based
optimization is larger than the data-based optimization, the latter

Fig. 12. Waveforms, velocity errors and cumulative PSD of the error for the
data-based optimized waveforms.

Fig. 13. Velocity errors for experiments with asymmetric waveforms (light
gray), model-based optimized waveforms (dark gray) and data-based optimized
waveforms (black) for driving frequencies fα ∈ {10, 12, 14, 16, 18, 20} Hz.

is recommended. Alternatively, the derivation of a model that
even more accurately describes the velocity of the stage and
piezo legs could further improve the model-based waveform
optimization results. This is a subject for future research.

In Fig. 13, the velocity errors of experiments at different
driving frequencies fα ∈ {10, 12, 14, 16, 18, 20} Hz are shown
for the asymmetric waveforms of [1], the model-based opti-
mized waveforms, and the data-based waveforms. It can be
seen that both optimized waveforms outperform the asymmetric
waveforms for all driving frequencies. The best performance is
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obtained with the data-based optimized waveforms. A least
squares fit through the experimental data is shown in Fig. 13
by the solid lines. For a velocity of 50 μm/s, the model-based
waveforms outperform the asymmetric waveforms by 24%. The
data-based optimized waveforms reduce the velocity error by
47% compared to the asymmetric waveforms and by 30% com-
pared to the model-based waveforms.

The results shown in this paper are all obtained in open-loop
experiments. Using the walking piezo motor with the optimal
waveforms in a closed-loop setting [1] is expected to further
improve the performance of the nano-motion stage.

By describing each waveform by independent parameters,
more freedom is obtained in the optimization to better account
for the characteristics of the specific motor, thus improving the
results. However, these characteristics might change between
motors. So, the optimal waveforms obtained with more inde-
pendent optimization parameters might not be optimal for a
batch of motors.

The optimized waveforms are described by eight parame-
ters, representing points on one period of the waveforms. The
Fourier series model (20) through the eight points can exceed
the allowable voltage range. If the range is exceeded, linear scal-
ing is applied such that the fitted waveforms do not exceed the
allowable range of ui ∈ [0, 46] V, i ∈ {1, 2, 3, 4}.

Since the used driving frequency and voltage range for the
piezo actuator are relatively small, the effect of hysteresis is
assumed negligibly small and a linear input–output behavior is
assumed. However, although hysteresis is not explicitly taken
into account in the model of Section III, the optimized wave-
forms might still compensate for the hysteresis, since it is present
in the experimental data used for the optimization of the wave-
forms. For higher frequencies, i.e., for rapidly varying reference
signals, hysteresis may not be neglected anymore and should be
added to the model, which is a subject for future research.

VI. CONCLUSION

In this paper, a model for a nano-motion stage driven by a
walking piezo actuator is presented. The model includes the
alternating drive principle of the drive legs of the piezo motor,
the contact dynamics between motor and stage and the stick-
slip behavior between the legs and the stage. Since the driving
principle of the motor depends on friction, it is important that
the exact friction force is known at each time instant. Therefore,
the friction is modeled using a set-valued force law to accom-
modate for nonzero friction forces at zero relative velocity. For
the resulting model, formulated in terms of a differential in-
clusion, we developed a dedicated time-stepping solver. Fur-
thermore, the model is used in a waveform optimization, which
derives optimal leg orbits to improve the driving properties of
the motor. Finally, a data-based waveform optimization was ap-
plied to further improve the driving properties of the motor.

The dedicated time-stepping solver is able to simulate the
model in terms of a set of differential inclusions. The model is
identified using experimental data for different waveforms. The
identification and validation experiments show that the model
describes the experimental data in the driving x-direction with

an accuracy of 93% and in the perpendicular y-direction with
an accuracy of 80% for all tested waveforms.

Waveforms are optimized for a constant stage velocity, using
a model-based optimization. Compared to the asymmetric wave-
forms as derived in earlier work [1], the model-based waveforms
reduce the velocity error by 24%. The reduction is limited by the
accuracy of the velocity as predicted by the model. Therefore,
a data-based waveform optimization is performed using direct
measurements of the stage position. The data-based optimized
waveforms reduce the velocity error by 47% compared to the
asymmetric waveforms and by 30% compared to the model-
based waveforms.

Future work will include the derivation of a model that more
accurately predicts the leg and stage velocities, to further im-
prove the results of the model-based waveform optimization.
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