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Abstract The presence of a communication network in a control loop induces many
imperfections such as varying transmission delays, varying sampling/transmission
intervals, packet loss, communication constraints and quantization effects, which
can degrade the control performance significantly and even lead to instability. Var-
ious techniques have been proposed in the literature for stability analysis and con-
troller design for these so-called networked control systems. The aim of this chapter
is to survey the main research lines in a comprehensive manner.
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1 Introduction

Networked control systems (NCSs) have received considerable attention in recent
years. The interest for NCSs is motivated by many benefits they offer such as the
ease of maintenance and installation, the large flexibility and the low cost. How-
ever, still many issues need to be resolved before all the advantages of wired and
wireless networked control systems can be harvested. Part of the solution will be
formed by improvements of the employed communication networks and protocols,
resulting in increased reliability and reduction of the end-to-end latencies and packet
dropouts. However, the solution cannot be obtained in a (cost-effective) manner by
only improving the communication infrastructure. It is important to take a systems
perspective to overcome these problems and also develop control algorithms that
can deal with communication imperfections and constraints. This latter aspect is
recognized widely in the control community, as evidenced by the many publications
appearing recently, see, e.g., the survey papers [39, 85, 98, 102].

Roughly speaking, the network-induced imperfections and constraints can be cat-
egorized in five types:

(i) Variable sampling/transmission intervals;
(ii) Variable communication delays;

(iii) Packet dropouts caused by the unreliability of the network;
(iv) Communication constraints caused by the sharing of the network by multiple

nodes and the fact that only one node is allowed to transmit its packet per
transmission;

(v) Quantization errors in the signals transmitted over the network due to the finite
word length of the packets.

Basically, the introduction of a communication network in a control loop (see Fig. 1)
modifies the external signals (u,y) of the plant and the controller due to these five
imperfections. Indeed, the control input û going into the plant is no longer equal to
the output u of the controller, and the measured output of the plant y is not exactly
known by the controller that only has access to a ‘networked’ version ŷ of this out-
put. Each of the imperfections has its own particular effect on the network-induced
differences ey := ŷ− y and eu := û− u. Obviously, the presence of these network
phenomena can degrade the performance of the control loop significantly and can
even lead to instability, see, e.g., [11, 14] for an illustrative example. Therefore,
it is of importance to understand how these phenomena influence the closed-loop
stability and performance properties, preferably in a quantitative manner. Since in
any practical communication network all aforementioned network-induced imper-
fections are present, there is a need for analysis and synthesis methods including all
these imperfections. This is especially of importance, considering that the design of
a NCS often requires tradeoffs between the different types. For instance, reducing
quantization errors (and thus transmitting larger or more packets) typically results
in larger transmission delays. To support the designers in making these tradeoffs
to design the complete NCS (plant, controller and network) in an integral fashion,
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Fig. 1 Introduction of a network in a control loop.

tools are needed that provide quantitative information on the consequences of each
of the possible choices in plant, controller and network design.

Although the NCS field is relatively young, various major research lines are al-
ready appearing these days. However, much of the available literature on NCS con-
siders only some of above mentioned types of network phenomena, while ignoring
the other types. The available results need to be extended and integrated to obtain a
framework in which all the network-induced imperfections can be studied simulta-
neously and tradeoffs can be made. This chapter has the aim to provide an overview
of the rapidly growing literature on NCS with a focus on methods for stability anal-
ysis that incorporate several of the above mentioned communication imperfections.
To a lesser extent we will also discuss the stabilization problem. As such, this chap-
ter strives to form the basis for further research that eventually leads to a practically
useful analysis and design framework for control over communication networks.

2 Overview of existing approaches

A categorization of the available literature on stability analysis of NCSs can be done,
firstly, on the basis of the types of network-induced imperfections considered (time-
varying sampling intervals, time-varying delays, packet dropouts, communication
constraints and quantization as mentioned in the introduction), see Section 2.1, and,
secondly, on the modeling and analysis approach adopted to study the stability of
the NCS under these network-induced imperfections, see Section 2.2.

Before categorizing the existing approaches, let us start by noting that two es-
sentially different ways exist to model network-induced uncertainties such as time-
varying sampling intervals, time-varying delays and packet dropouts. The first class
of models assumes (deterministic) bounds on the delays, sampling intervals and the
number of subsequent packet dropouts, without adopting any further assumptions on
the possibly random processes behind the generation of, e.g., sequences of delays or
packet drops. With some abuse of terminology, we will call this the deterministic ap-
proach. A second class of models exist in which information about the stochastic na-
ture of these variables is taken into account, provided this additional information is
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available, which we call the stochastic approach. In this overview, we focus mainly
on deterministic approaches and refer the interested reader to [49, 55, 76, 77, 91, 97]
and the references therein for for stochastic approaches. One observation is that the
cited references for the stochastic approach at present only can handle a finite or
countable number of delays or sampling intervals, while in reality this is often not
the case. Fortunately, recently results are appearing that more realistically consider
delays and sampling intervals as continuous random variables taking possibly an
uncountable number of values, see, for instance, [1, 2, 19, 54, 67, 82].

2.1 The types of network-induced phenomena

Many systematic approaches that analyse stability of NCSs consider only one of
these network-induced imperfections. Indeed, the effects of quantization are studied
in [5, 18, 33, 35, 50, 61, 84], of packet dropouts in [78, 80], of time-varying trans-
mission intervals and delays in [3, 25, 55, 59], and [11, 14, 22, 32, 41, 47, 58, 101],
respectively, and of communication constraints in [4, 17, 44, 46, 71].

References that simultaneously consider two types of network-induced imper-
fections are given in Table 1. Moreover, [62] consider imperfections of type (i), (iv),
(v), [9, 10, 56–58] study simultaneously type (i), (ii), (iii), [63] focuses on type (i),
(iii), (iv), while [26] studies (ii), (iii) and (v). Also [7, 20, 36, 37] studies three types,
namely type (i), (ii), (iv). In addition some of the approaches mentioned in Table
1 that study varying sampling intervals and/or varying communication delays can
be extended to include type (iii) phenomena as well by modeling dropouts as pro-
longations of the maximal sampling interval or delay (cf. also Remark 18 below).
Another subtle though important distinction between existing works incorporating
varying delays is whether only small delays or also large delays (delays smaller or
larger, respectively, than the sampling interval) are considered. In this chapter we
will present methods dealing with both cases.

By recent unifications of the work in [62] and [36, 37] a framework is obtained
in [34] that can model and analyze the five imperfections simultaneously. Although
certain restrictive assumptions are adopted in [34] (regarding, e.g., the small delay
case and the usage of particular quantizers), it is the first framework that includes
all five of the mentioned network-induced imperfections.

Table 1 References that study NCS with two network-induced imperfections simultaneously.

& (ii) (iii) (iv)

(i) [42, 93, 94] [6, 21, 64, 83, 88, 89]

(iii) [13, 27, 31, 52, 100] –

(iv) [45] -

(v) [51] [86]
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2.2 Different approaches in modeling/analysis of NCS

We distinguish three different approaches towards the modeling, stability analysis
and controller synthesis for NCS:

1. Work on the discrete-time approach, see e.g [10, 14, 22, 25, 27, 42, 70, 72, 90,
92, 93, 96, 101, 102], has mainly focussed on linear NCS. The first step is to
construct discrete-time representations of the sampled-data NCS system (which
for linear systems can be done exactly), leading to an uncertain discrete-
time system in which the uncertainties appear in an exponential form (due
to discretization). The discrete-time modeling approaches can be further cat-
egorized by time-driven or event-driven models. In time-driven models the
continuous-time model is integrated from sample/transmission time to the next
sample/transmission time, while in event-driven models integration is done
from each event time (being control updates times, sample times, etc), see, e.g.,
[42] for the latter. Here we will mainly focus on time-driven linear NCS models.
Next, to construct models suitable for stability analysis, polytopic overapproxi-
mation or embedding techniques are used to capture the exponential uncertain-
ties. Various methods have been proposed to do this (some with fixed approx-
imation error, others with tuning parameters to make the approximation more
tight). The resulting polytopic models, possibly also having norm-bounded un-
certainty, can then be used in a robust stability analysis, often based on linear
matrix inequalities (LMIs), to guarantee the stability of the discrete-time NCS
model.
The final step is to guarantee that also the intersample behavior is stable, such
that stability of the true sampled-data NCS model can be concluded. This ap-
proach allows to consider discrete-time controllers, although by discretizing
continuous-time controllers they can be incorporated as well. Typically, this
approach is applied to NCS with linear plants and controllers since in that case
exact discrete-time models can be derived, although recently new results have
been obtained that apply to NCS with nonlinear plants and controllers based on
approximate discretizations, see [95]. We will discuss the approach for “linear
NCS” in more detail in Sections 3.2 and 4.2;

2. The sampled-data approach uses continuous-time models that describe the
sampled-data NCS dynamics in the continuous-time domain (so without ex-
ploiting any form of discretization) and perform stability analysis and con-
troller synthesis based on these sampled-data NCS models directly. Fridman
et al. [24] applied a descriptor system approach to model the sampled-data
dynamics of systems with varying sampling intervals in terms of (infinite-
dimensional) delay-differential equations (DDEs) and study their stability based
on the Lyapunov-Krasovskii functional method. In [26, 99, 100], this approach
is used for the stability analysis of NCSs with time-varying delays and con-
stant sampling intervals, using (linear) matrix inequality-based techniques. The
recent results in [26] show how varying delays, quantization and dropouts can
be formulated in one framework based on DDEs, and stability analysis and H∞
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control design methods, based on LMIs, are presented. However, Mirkin [53]
showed that the use of such an approach for digital control systems neglects
the piecewise constant nature of the control signal due to the zero-order-hold
mechanism thereby introducing conservatism when exploiting such modeling
for stability analysis. More specifically, the conservatism is introduced by the
fact that the zero-order hold and delay jointly introduce a particular linearly
increasing time-varying delay within each control update interval (sometimes
indicated by the sawtooth behavior of the delay), whereas in the modeling ap-
proach mentioned above it is replaced by an arbitrary bounded time-varying
delay.
An alternative approach, proposed in [57–59, 93, 94], is based on impulsive
DDEs and does take into account the piecewise constant nature of the control
signal due to the zero-order-hold mechanism. It has been shown by [53] that
this approach is less conservative than the descriptor approach. More specif-
ically, the impulsive DDEs are based on introducing impulses (discontinuous
updates) at the moment new information arrives at the controller or the plant. In
this manner the true behavior of the underlying NCS is captured. As also noted
in [59], the usage of infinite-dimensional DDE models and Lyapunov function-
als to analyze the stability of essentially finite-dimensional sampled-data NCS
does not seem to offer any advantage. The approach in [57, 93] is able to deal si-
multaneously with time-varying delays and time-varying sampling intervals but
does not explicitly include packet dropouts in the model (although they might
be considered as variations in the sampling intervals or delays). Here, we will
focus mainly on the approach towards the modeling and stability analysis us-
ing impulsive DDEs. We call this the sampled-data approach, which allows the
consideration of discrete-time controllers and nonlinear plants. However, con-
structive stability conditions have only been obtained for linear NCS. We will
discuss this approach in Section 3.3;

3. In the so-called continuous-time or emulation approach, see [17, 36, 37, 63, 64,
88, 89], a continuous-time controller is designed to stabilize the continuous-
time plant in the absence of network-induced imperfections. Next, the stability
analysis is based on a sampled-data model of the NCS (in the form of a hy-
brid system) and allows to quantify the level of network-induced uncertainty
(in terms of, e.g., the maximal allowable sampling/transmission interval and/or
maximal allowable delay) for which the NCS inherits the stability properties
from the closed-loop system without the network. This approach is applicable
to a wide class of nonlinear NCS, since well-developed tools for the design of
(nonlinear) controllers for nonlinear plants can be employed. A drawback is the
fact that the controller is formulated in continuous time, whereas for NCS one
typically designs the controller in discrete time. We will discuss this approach
in detail in Section 4.1.

Summarizing, the discrete-time approach considers discrete-time controllers (or
discretized continuous-time controllers) and a discrete-time NCS model, while the
sampled-data approach also considers discrete-time controllers, but has a continuous-
time (sampled-data) NCS model. Finally, the continuous-time (emulation) approach
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focuses on continuous-time controllers using a continuous-time (sampled-data)
NCS model. Within all these different approaches different techniques towards sta-
bility analysis are used. While the discrete-time approach uses common quadratic or
parameter-dependent Lyapunov functions for the discrete-time model, the continuous-
time (emulation) approach uses continuous-time Lyapunov functions constructed by
combining separate Lyapunov functions for the network-free closed-loop system on
the hand and the network protocol on the other hand (or, alternatively, adopting di-
rectly small gain arguments). The sampled-data approaches exploits extensions of
Lyapunov-Krasovskii function(al)s. We will discuss these methods in details in the
following sections, where we start with NCS without communication constraints
and scheduling protocols (Section 3) and treat the case with communication con-
straints in Section 4. In this chapter, we will not pay any attention to quantization ef-
fects as these are extensively covered in the Chapter in this book written by Hideaki
Ishii.

3 NCS with delays, varying sampling intervals and packet loss

In Section 3.1, we discuss a general description of a single-loop NCS with time-
varying sampling intervals, delays and packet dropouts. In Section 3.2, we discuss
a discrete-time approach towards the modeling, stability analysis and controller de-
sign for these NCS. Finally, in Section 3.3, we present a continuous-time approach
towards the modeling and stability analysis for these systems exploiting models in
terms of impulsive DDEs.

3.1 Description of the NCS

In this section, we present a fairly general description of a NCS including delays
larger than the uncertain and time-varying sampling intervals and packet dropouts.
It is based on the developments in [10] (see also [13, 14]). We choose this level of
generality for the reason that the application of the stability techniques presented
later can encompass all these types of network-induced phenomena.

The NCS is depicted schematically in Fig. 2. It consists of a linear continuous-
time plant

ẋ(t) = Ax(t)+Bu∗(t) (1)

with A ∈ Rn×n and B ∈ Rn×m, and a discrete-time static time-invariant controller,
which are connected over a communication network that induces network delays
(τsc and τca). The state measurements (y(t) = x(t)) are sampled resulting in the
sampling time instants sk given by:
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Fig. 2 Schematic overview of the NCS with variable sampling intervals, network delays and packet
dropouts.

s0 = 0 and sk =
k−1

∑
i=0

hi for k ≥ 1, (2)

which are non-equidistantly spaced in time due to the time-varying sampling inter-
vals hk > 0. The sequence of sampling instants s0,s1,s2, . . . is strictly increasing in
the sense that sk+1 > sk, for all k ∈ N. The notation yk := y(sk) denotes the k-th
sampled value of y, xk := x(sk) the k-th sampled value of the state and uk the control
value corresponding to yk = xk. Packet drops may occur (see Fig. 2) and are modeled
by the parameter mk. This parameter denotes whether or not a packet is dropped:

mk =
{

0, if yk and uk are received
1, if yk and/or uk is lost. (3)

In (3), we make no distinction between packet dropouts that occur in the sensor-
to-controller connection and the controller-to-actuator connection in the network.
This can be justified by realizing that, for static controllers, the effect of the packet
dropouts on the control updates implemented on the plant is the same in both cases.
Indeed, for packet dropouts between the sensor and the controller no new control
update is computed and thus no new control input is sent to the actuator. In the case
of packet dropouts between the controller and the actuator no new control update
is received by the actuator either. Finally, the zero-order-hold (ZOH) function (in
Fig. 2) is applied to transform the discrete-time control value uk to a continuous-
time control input u∗(t) being the actual actuation signal of the plant.

In the model, both the varying computation time (τc
k ), needed to evaluate the con-

troller, and the network-induced delays, i.e. the sensor-to-controller delay (τsc
k ) and

the controller-to-actuator delay (τca
k ), are taken into account. The sensor is assumed

to act in a time-driven fashion (i.e., sampling occurs at the times sk defined in (2))
and both the controller and the actuator act in an event-driven fashion (i.e., respond-
ing instantaneously to newly arrived data). Furthermore, we consider that not all the
data is used due to packet dropouts and message rejection, i.e. the effect that more
recent control data is available before older arrives and therefore the older data is ne-
glected. Under these assumptions, all three delays can be captured by a single delay
τk := τsc

k + τc
k + τca

k , see also [66, 102]. To include these effects in the continuous-
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time model, define the parameter k∗(t) that denotes the index of the most recent
control input that is available at time t as k∗(t) := max{k ∈N|sk +τk ≤ t ∧ mk = 0}.
The continuous-time model of the plant of the NCS is then given by

ẋ(t) = Ax(t)+Bu∗(t) (4a)
u∗(t) = uk∗(t). (4b)

Here, we assume that the most recent control input remains active in the plant if a
packet is dropped. Note that in some NCS setups one also use the different policy
to set the control input to 0 in case dropout occurs instead of holding the previous
control value, see, e.g., [74].

The delays are assumed to be bounded and contained in the interval [τmin,τmax],
the sampling interval are bounded and contained in the interval [hmin,hmax] and the
number of subsequent packet dropouts is upper bounded by δ . The latter means that

k

∑
v=k−δ

mv ≤ δ , (5)

for all k ∈ N as this guarantees that from the control inputs uk−δ
, uk−δ+1, . . . ,uk

at least one is implemented. In summary, the class S of admissible sequences
{(sk,τk,mk)}k∈N can be described as follows:

S :=
{
{(sk,τk,mk)}k∈N| hmin ≤ sk+1− sk ≤ hmax,

s0 = 0, τmin ≤ τk ≤ τmax,
k

∑
v=k−δ

mv ≤ δ ,∀k ∈ N
}

,

(6)

which includes variable sampling intervals, small and large delays, and packet
dropouts. Note that in this case we allow for large delays in the sense that τk might
be larger than hk.

3.2 Discrete-time modeling approaches

3.2.1 The exact discrete-time NCS model

To arrive at a discrete-time description of the NCS, the equation (4b) of the
continuous-time control input u∗(t) is reformulated to indicate explicitly which con-
trol inputs ul are active in the sampling interval [sk,sk+1). Such a reformulation is
needed to derive the discrete-time NCS model, which will ultimately be employed
in the stability analysis and controller synthesis methods.

Lemma 1. Consider the continuous-time NCS as defined in (4) and the admissible
sequences of sampling instants, delays, and packet dropouts as defined in (6). Define
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d := b τmin
hmax
c, the largest integer smaller than or equal to τmin

hmax
and d := d τmax

hmin
e, the

smallest integer larger than or equal to τmax
hmin

. Then, the control action u∗(t) in the
sampling interval [sk,sk+1) is described by

u∗(t) = uk+ j−d−δ
for t ∈ [sk + tk

j ,sk + tk
j+1), (7)

where the actuation update instants tk
j ∈ [0,hk] are defined as

tk
j = min

{
max{0,τk+ j−d−δ

−
k−1

∑
l=k+ j−δ−d

hl}+mk+ j−d−δ
hmax,

max{0,τk+ j−d−δ+1−
k−1

∑
l=k+ j+1−δ−d

hl}+mk+ j−d−δ+1hmax,

. . . ,max{0,τk−d−
k−1

∑
l=k−d

hl}+mk−dhmax,hk

}
,

(8)

with tk
j ≤ tk

j+1 and j ∈ {0,1, . . . ,d + δ − d} (see Fig. 3). Moreover, 0 = tk
0 ≤ tk

1 ≤
. . .≤ tk

d+δ−d
≤ tk

d+δ−d+1
:= hk.

Proof. The proof is given in [10], see also [9, 14]. �

Note that the above lemma first of all indicates that the only control values that
can be active in the interval [sk,sk+1] are uk−d−δ

, . . . ,uk−d . Secondly, (7) indicates
that uk+ j−d−δ

is active in [sk +tk
j ,sk +tk

j+1). Note that when tk
j = tk

j+1 this essentially
means that the value uk+ j−d−δ

is not active in the interval [sk,sk+1] (e.g. due to
a dropout or more recent information arriving earlier). The exact values of tk

j are
determined by the exact realization of the delays, sampling intervals and dropouts
as present in the right-hand side of (8).

Based on Lemma 1, a discrete-time NCS model can be obtained now by exact
integration of (4) leading to

xk+1 = eAhk xk +
d+δ−d

∑
j=0

∫ hk−tk
j

hk−tk
j+1

eAsdsBuk+ j−d−δ
(9)

with tk
j as defined in Lemma 1.

Let θk denote the vector of uncertain parameters consisting of the sampling in-
terval and the actuation update instants

θk := (hk, tk
1 , . . . , t

k
d+δ−d

). (10)

Using now the lifted state vector

ξk =
(

xT
k uT

k−1 . . . uT
k−d−δ

)T
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Fig. 3 Graphical interpretation of the actuation update instants tk
j .

that includes the current system state and past system inputs, we obtain the lifted
model

ξk+1 = Ã(θk)ξk + B̃(θk)uk, (11)

where

Ã(θk) =



Λ(θk) Md+δ−1(θk) Md+δ−2(θk) . . . M1(θk) M0(θk)
0 0 0 . . . 0 0
0 I 0 . . . 0 0
...

. . .
. . .

. . .
...

...
...

. . .
. . . 0 0

0 . . . . . . 0 I 0


and

B̃(θk) =


Md+δ

(θk)
I
0
...
0


with Λ(θk) = eAhk and

M j(θk) =


∫ hk−tk

j

hk−tk
j+1

eAsdsB if 0≤ j ≤ d +δ −d,

0 if d +δ −d < j ≤ d +δ .

(12)

Remark 1. Essentially, the uncertainty parameters mk−d̄−δ̄
, . . . ,mk−δ are included

implicitly into the parameter θk using the expressions (8) for the actuation update
times. When we will derive upper and lower bounds on tk

j , this induces some con-
servatism if packet dropouts are present. However, the advantage of not including
mk−d̄−δ̄

, . . . ,mk−δ explicitly in θk is that the number of uncertainty parameters is
smaller thereby reducing the complexity of the stability analysis. Alternative mod-
els for dropouts are discussed and compared in [75] (see also Remark 18).
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Fig. 4 Schematic overview of the motor-roller example.

Remark 2. In the above model set-up a time-driven modeling paradigm (exact inte-
gration from sample instant to sample instant) was adopted. An alternative discrete-
time modeling approach was proposed in [42], which uses an event-driven paradigm
(integrating from event instant to event instant, where the events include sampling,
updating of control values, etc.).

To illustrate the developments so far, let us consider the following example.

Example 1. The example consists of a second-order motion control example, ob-
tained from the document printing domain. In particular, a single motor driving a
roller-pair is considered, as depicted in Fig. 4, which obeys the dynamics:

ẍs =
qrR

JM +q2JR
u, (13)

with JM = 1.95 ·10−5kgm2 the inertia of the motor, JR = 6.5 ·10−5 kgm2 the inertia
of the roller-pair, rR = 14 ·10−3 m the radius of the roller, q = 0.2 the transmission
ratio between motor and upper roller, xs the sheet position and u the motor torque.

The continuous-time state-space representation of (13) is given by (1), with A =[
0 1
0 0

]
, B =

[
0
b

]
, with b := qrR

JM+q2JR
= 126.7 (kgm)−1, and x(t) =

[
xs(t) ẋs(t)

]T . For

the sake of simplicity, consider the case that the sampling interval h is constant, the
delays τk ∈ [τmin,τmax] , ∀k ∈ N, τmin = 0 and τmax = h (i.e. the small delay case
with d = 1, d = 0) and δ̄ = 0 (no packet dropouts). The exact discrete-time model
can be written in the form (11), where the extended discrete-time state consists of
the state of continuous-time model and the previous control action (due to the small
delay): ξk =

[
xT

k uT
k−1
]T . Moreover, the uncertain parameter θk = tk

1 = τk (see (8)),
since the small delay case is considered, a constant sampling interval and no packet
dropouts. The (uncertain) matrices in (11) are given by

Λ = eAh =
[

1 h
0 1

]
, M0(τk) =

[ b
2

(
h2− (h− τk)2

)
b(h− (h− τk))

]
,

M1(τk) =
∫ h

0
eAsdsB−M0(τk) =

[ 1
2 b(h− τk)2

b(h− τk)

] (14)
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and the overall model (11) reduces to

ξk+1 = Ã(θk)ξk + B̃(θk)uk (15a)

=
(

Λ M0(τk)
0 0

)
ξk +

(
M1(τk)

1

)
uk (15b)

=

1 h b
2

(
h2− (h− τk)2

)
0 1 b(h− (h− τk))
0 0 0

ξk +

 1
2 b(h− τk)2

b(h− τk)
1

uk. (15c)

The latter equalities show clearly that we are dealing with a parameter-varying linear
systems, in which one can observe the basic terms h−τk and (h−τk)2 as uncertainty
terms. We will now present a general procedure how to find and overapproximate
these uncertainty terms such that the system becomes amendable for stability anal-
ysis and controller synthesis.

3.2.2 The polytopic overapproximation

A first step towards the stability analysis is transforming the bounds on the delays,
sampling intervals and dropouts (τmin, τmax, hmin, hmax and δ̄ ) to upper and lower
bounds on tk

j . These computations are done in [9, 10] and lead to bounds t j,min, t j,max,
i.e., tk

j ∈ [t j,min, t j,max] for all k ∈ N, see [9, 10] for the exact expressions. Together
with the fact that hk ∈ [hmin,hmax], one can define the uncertainty set

Θ = {θk ∈ Rd+δ−d+1 |hk ∈ [hmin,hmax], tk
j ∈ [t j,min, t j,max],

1≤ j ≤ d +δ −d,0≤ tk
1 ≤ . . .≤ tk

d+δ−d
≤ hk}, (16)

such that θk ∈Θ for all k ∈ N.
The stability analysis for the uncertain system (11) with the uncertainty pa-

rameter θk ∈ Θ (given a discrete-time controller such as a lifted state feedback
uk = −Kξk) is now essentially a robust stability analysis problem. The obstruction
to apply various robust stability techniques directly is that the uncertainty appears
in an exponential fashion as observed from the form of M j(θk) and Λ(θk). To ren-
der the formulation (11) amendable for robust stability analysis, overapproximation
techniques can be employed to embed the original model (as tight as possible) in a
“larger” model that has useful structural properties such as discrete-time polytopic
models with (or without) additional norm-bounded uncertainties. If robust stabil-
ity (or other properties) can be proven for this polytopic overapproximation, then
this also implies the robust stability of the original discrete-time NCS model. As
these polytopic models are suitable for the application of available robust stability
methods, this provides a means to tackle the NCS stability analysis problem.

In the literature, many different ways of constructing such polytopic embeddings
of the uncertain system are proposed: overapproximation techniques are based on
interval matrices [11], the real Jordan form [10, 12–14, 68], the Taylor series [41],
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gridding and norm-bounding [21, 25, 72, 79, 81], and the Cayley-Hamilton theorem
[28, 29]. There are also some approaches that are related to gridding and norm-
bounding such as [3, 22] in which essentially one grid point is taken corresponding
to one nominal sampling interval or nominal delay and the variation of sampling in-
tervals/delays is captured in the norm-bounded uncertainties. Typically, [21, 25, 72,
79, 81] use more grid points to reduce the size of the norm-bounded uncertainties
and thereby the conservatism of the overapproximation and resulting stability con-
ditions. For the sake of brevity, we will only discuss only one of these overapprox-
imation techniques to illustrate the ideas. We opt here to use the real Jordan form
approach as adopted in [10, 12–14]. For a comprehensive overview and comparison
of these overapproximation techniques we refer the interested reader to [38].

Real Jordan form

To derive the stability analysis and control synthesis conditions, the model (11) is
rewritten using the real Jordan form [43] of the continuous-time system matrix A.
Basically, the state matrix is expressed as A = T JT−1 with J the real Jordan form
and T an invertible matrix. This leads to a generic model of the form

ξk+1 =

(
F0 +

ζ

∑
i=1

αi(θk)Fi

)
ξk +

(
G0 +

ζ

∑
i=1

αi(θk)Gi

)
uk (17)

with θk defined in (10) and ζ = (d +δ −d +1)ν the number of time-varying func-
tions αi. Here, ν is the degree of the minimal polynomial qmin of A. Note that the
minimal polynomial of A is the monic polynomial p of smallest degree that satisfies
p(A) = 0. The minimal polynomial can be easily obtained [43] from the (complex)
Jordan form. Actually, ν is equal to the sum of all the maximal dimensions of the
complex Jordan blocks corresponding to all the distinct eigenvalues of A. Clearly,
ν ≤ n, where n is the dimension of the state vector x. Note that ν = n when the geo-
metric multiplicity of each distinct eigenvalue of A is equal to one and ν < n when
the geometric multiplicity of an eigenvalue is larger than one. A typical function
αi(θk) is of the form (hk− tk

j )
leλ (hk−tk

j ), when λ is a real eigenvalue of A, and of the

form (hk− tk
j )

lea(hk−tk
j ) cos(b(hk− tk

j )) or (hk− tk
j )

lea(hk−tk
j ) sin(b(hk− tk

j )) when λ

is a complex eigenvalue (λ = a + bi) of A with l = 0,1 . . . ,r j, where r j is related
to the size of the Jordan blocks corresponding to λ . For more details on the use of
the real Jordan form to obtain the NCS model, the reader is referred to [38] or to
Appendix B in [9].

Using bounds on the uncertain parameters θk = (hk, tk
1 , . . . , t

k
d+δ−d

) described by
the set Θ in (16) the set of matrix pairs

FG =

{(
F0 +

ζ

∑
i=1

αi(θ)Fi,G0 +
ζ

∑
i=1

αi(θ)Gi

)
| θ ∈Θ

}
(18)
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can be formulated that contains all possible matrix combinations in (17) and thus
also in (11). Based on this infinite set FG of matrices, stability analysis (for a
given controller) and the design of stabilizing controllers can be carried out for the
NCS (4). To overcome the infinite dimension of the set FG , a polytopic overap-
proximation of the set is used. Denote the maximum and minimum value of αi(θk),
respectively, by

α i = max
θk∈Θ

αi(θk), α i = min
θk∈Θ

αi(θk) (19)

with Θ defined in (16). Then the set of matrices FG , given in (18), is a subset of
co(HFG), where ’co’ denotes the convex hull and HFG is the finite set of matrix
pairs given by

HFG =

{(
(F0 +

ζ

∑
i=1

αiFi),(G0 +
ζ

∑
i=1

αiGi)
)

: αi ∈ {α i,α i}, i = 1,2, . . . ,ζ

}
.

(20)

The set of vertices HFG is written as HFG = {(HF, j,HG, j) | j = 1,2, . . . ,2ζ} for
enumeration purposes later. Hence, we have that

FG ⊆ co(HFG) := {
ζ

∑
j=1

β j(HF, j,HG, j) | β = (β1, . . . ,βζ )T ∈ B}, (21)

where

B := {β ∈ Rζ |
ζ

∑
j=1

β j = 1 and β j ≥ 0 for all j = 1, . . . ,ζ}. (22)

Hence, we obtain the polytopic system

ξk+1 = (F0 +
ζ

∑
j=1

β
k
j Fj)ξk +(G0 +

ζ

∑
j=1

β
k
j G j)uk (23)

with β k ∈ B for each k ∈N. Due to (21) any input/state trajectory generated by (11)
for some sequence {θk}k∈N with θk ∈Θ , k ∈ N is also an input/state trajectory of
(23) for some sequence {β k}k∈N with β k ∈ B, k ∈ N.

Example 2. Revisit the motion control system as in Example 1. We take h = 0.001
constant, τmin = 0, τmax = h and δ = 0, which leads to the exact discrete-time rep-
resentation is given by (15). Let us now illustrate the procedure for convex overap-
proximation based on the real Jordan form, as explicated above, using this example.
The exact discrete-time model (15) can be written in the form (17), with the uncer-
tain functions α1(τk) = h− τk and α2(τk) = (h− τk)2, and
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F0 =

1 h b
2 h2

0 1 bh
0 0 0

 , G0 =

0
0
1


F1 =

0 0 0
0 0 −b
0 0 0

 , G1 =

0
b
0


F2 =

0 0 − 1
2 b

0 0 0
0 0 0

 , G2 =

 1
2 b
0
0

 .

(24)

Hence, the number of uncertain functions αi is ζ = 2.
In order to illustrate the conservatism introduced by the overapproximation of the

set of matrices FG in (18) by the convex hull of the set of matrices HFG in (20),
it is important to realize that the only uncertain matrix in the discrete-time system
(15) is the matrix (2×1)-matrix M0(τk) given in (14). Namely, M1(τk) in (15) can be
written as M1(τk) =

∫ h
0 eAsdsB−M0(τk), see (14). The matrix M0(τk) can be written

as follows in terms of the uncertain functions:

M0(τk) =
[ 1

2 b(h2−α2(τk))
b(h−α1(τk))

]
. (25)

Now, the overapproximation of FG by the convex hull of HFG basically means
overapproximating {M0(τ) | τ ∈ [τmin,τmax]}, with τmin = 0 and τmax = h, by the
convex hull of the following set of four (2ζ = 4) generators:

M0,1 =
[ 1

2 b
(
h2− (h− τmax)2

)
b(h− (h− τmax))

]
=
[ 1

2 bh2

bh

]
M0,2 =

[ 1
2 b
(
h2− (h− τmin)2

)
b(h− (h− τmax))

]
=
[

0
bh

]
M0,3 =

[ 1
2 b
(
h2− (h− τmax)2

)
b(h− (h− τmin))

]
=
[ 1

2 bh2

0

]
M0,4 =

[ 1
2 b
(
h2− (h− τmin)2

)
b(h− (h− τmin))

]
=
[

0
0

]
.

(26)

The polytopic overapproximation is visualized in Fig. 5.

3.2.3 Stability analysis

In this section, we consider the stability analysis of the NCS (11) (or equiva-
lently (17)) in closed-loop with a state feedback controller. From a control design
perspective, when dealing with a system such as (11), it is natural to design a state
feedback controller using the full lifted state variable ξk of the model (11), i.e.,
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Fig. 5 Overapproximation of the set of 2× 1-matrix {M0(τ) | τ ∈ [τmin,τmax]} of exponential
uncertainties (M0[1,1] on the horizontal axis and M0[2,1] on the vertical axis) for h = 0.001 ms
and τk ∈ [0,h]. The circles indicate the vertices M0,i, i = 1,2,3,4, defined in (26) and the gray area
the convex hull of these vertices.

uk =−Kξk. (27)

However, from the point of view of the NCS (4), this is equivalent to using a dy-
namical controller of the form

uk =−K0xk−K1uk−1 . . .−Kd+δ
uk−d−δ

.

The use of such a dynamic control law requires a reconsideration of the assump-
tion made earlier that allowed, amongst others, to lump all the delays τsc

k ,τc
k and

τca
k in one parameter τk (see Section 3.1). Using a dynamic control law as in (27)

actually leads to more restrictive assumptions on the network setup: no packet
dropout is allowed between the sensor and the controller and yk should always
arrive at the controller after the moment that uk−1 is sent to the actuator, i.e.
sk + τsc

k > sk−1 + τsc
k−1 + τc

k−1. For example, in the case of a packet dropout, it is
possible that yk = xk does not arrive at the controller and thus uk cannot be com-
puted with the consequence that the controller (27) cannot be updated beyond the
k-th update. Therefore, a deadlock in the controller can occur and the worst-case
scenario would be that control updates are never sent to the actuator (although one
could propose heuristic solutions to overcome this situation, which would compli-
cate the structure of the controller and its analysis and synthesis). Such deadlocks
cannot occur for genuine static state feedbacks of the form

uk =−K̄xk =−
[
K̄ 0
]

ξk =:−Kξk (28)
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and the more restrictive assumptions, as mentioned above, are not needed. This
greatly enhances its applicability. For this reason, in the controller synthesis section
we will focus on the design of a controller in the form (28), and we will provide
references for the design of lifted state feedbacks as in (27), see Remark 7. However,
the design of state feedbacks as in (28) requires the design of a structured feedback
gain K =

[
K̄ 0
]
, which is known to be a notoriously difficult problem. A solution

for this hard problem will be provided. However, we first derive stability conditions
for the NCS given a state feedback as in (27) or (28). In the stability analysis it
is assumed implicitly that in case the lifted state feedback controller (27) is used
the more restrictive assumptions on the network setup, as mentioned above, are
satisfied.

The closed-loop system resulting from interconnecting (11) and (27) can be for-
mulated as follows:

ξk+1 = Ãcl(θk)ξk with Ãcl(θk) =
(
Ã(θk)− B̃(θk)K

)
, (29)

with θk ∈Θ for all k ∈ N, or equivalently, after exploiting the real Jordan form as
in (17), as

ξk+1 = Fcl(θk)ξk, (30)

with

Fcl(θk) =

[
(F0−G0K)+

ζ

∑
i=1

αi(θk)(Fi−GiK)

]
ξk. (31)

Clearly, Fcl(θk) ∈Fcl , k ∈ N, where

Fcl =

{(
F0−G0K

)
+

ζ

∑
i=1

αi(θ)
(

Fi−GiK
)
|θ ∈Θ

}
. (32)

Given the fact that FG ⊆ co(HFG) with FG as in (18) and HFG as in (20), it
follows that

Fcl ⊆ co
(
HFcl

)
(33)

with

HFcl =

{(
F0−G0K

)
+

ζ

∑
i=1

αi

(
Fi−GiK

)
: αi ∈ {α i,α i}, i = 1,2, . . . ,ζ

}
. (34)

We will also write the set of vertices HFcl as HFcl = {HFcl , j | j = 1,2, . . . ,2ζ} for
enumeration purposes. Hence,

Fcl ⊆ co{HFcl ,1, . . . ,HFcl ,2ζ }. (35)

Using the finite set HFcl of 2ζ vertices, a finite number of LMI-based stability con-
ditions can be formulated using [15, 16]. The resulting stability characterization for
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the closed-loop system (29) using parameter-dependent Lyapunov functions is given
in the following theorem in which we use the notation � and ≺ to indicate positive
definiteness and negative definiteness, respectively, of a matrix.

Theorem 1. Consider the discrete-time NCS model (11) and the state feedback con-
troller (27), with the network-induced uncertainties θk ∈Θ , ∀k ∈ N, and Θ defined
in (16). If there exist matrices Pj = PT

j � 0, j = 1,2, . . . ,2ζ , that satisfy

HT
Fcl , jPlHFcl , j−Pj ≺ 0, for all j, l ∈ {1,2, . . . ,2ζ}, (36)

with HFcl , j ∈HFcl , j = 1,2, . . . ,2ζ , and HFcl defined in (34), then the origin of the
closed-loop NCS system (11), (27) is a globally exponentially stable (GES) equilib-
rium point.

Proof. The proof is a direct consequence of the results in [10, 14, 40]. �

Remark 3. It can be shown that under the conditions of Theorem 1 also the inter-
sample behavior is bounded, see e.g. [9–11, 14]. Using the results in [65], this also
implies that the equilibrium point x = 0 of the sampled-data NCS (4), (7), (8), (27)
is GES.

Remark 4. This theorem exploits the following Lyapunov function

V (ξk,β
k) = ξ

T
k P(β k)ξk (37)

based on the inclusion (35), which guarantees that (30) can be overapproximated by
the polytopic system

ξk+1 = (
2ζ

∑
j=1

β
k
j HFcl , j)ξk (38)

with β k ∈B, k∈N, and B defined in (22). The parameter-dependent Lyapunov func-
tion V (ξk,β

k) is then given by ξ T
k P(β k)ξk = ξ T

k ∑
2ζ

j=1 β k
j Pjξk. In [10, 40] it is shown

that if the LMIs in the above theorem are satisfied then they imply the existence of
a Lyapunov-Krasovskii functional (LKF) of the form

V (xk, . . . ,xk−d−δ
,θk) =

d+δ

∑
i=0

d+δ

∑
j=0

xT
k−iQ

i, j(θk)xk− j, (39)

which is the most general (discrete-time) LKF that can be obtained using quadratic
forms. Notice that when using this approach based on parameter-dependent quadratic
Lyapunov functions the conservative upper bounds in the difference of the LKF,
which are usually encountered in the literature to arrive at LKF-based stability con-
ditions in LMI form, are avoided.

Remark 5. The case of a common quadratic Lyapunov function (CQLF) V (ξk) =
ξ T

k Pξk is a particular case of this theorem by taking Pj = P, j = 1, . . . ,2ζ .
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3.2.4 Design of stabilizing controllers

As already briefly mentioned, the main difficulty to synthesize a genuine state feed-
back (28) is that it results in a structured control synthesis problem, i.e., a control law
(27) needs to be designed with a specific structure, K =

(
K 0m×(d+δ )m

)
. A solution

to this structured controller synthesis problem is to apply the approach presented in
[69]. Moreover, as was already exploited for the stability analysis problem above,
such an approach allows for the use of a parameter-dependent Lyapunov function
[15] that might result in less conservative controller synthesis results than the use
of a common quadratic Lyapunov function. LMI conditions for synthesis of state
feedback controllers as in (28) are given in the next theorem.

Theorem 2. Consider the NCS model (4), and (28), and its discrete-time represen-
tation (11), (28) for sequences of sampling instants, delays, and packet dropouts
σ ∈S with S as in (6). Consider the equivalent representation (17) based on the
Jordan form of A and the set of vertices HFG defined in (20).

If there exist symmetric positive definite matrices Yj ∈ R(n+(d+δ )m)×(n+(d+δ )m),

a matrix Z ∈ Rm×n, matrices X j =
(

X1 0
X2, j X3, j

)
, with X1 ∈ Rn×n, X2, j ∈ R(d+δ )m×n,

X3, j ∈ R(d+δ )m×(d+δ )m, j = 1,2, . . . ,2ζ , that satisfy(
X j +XT

j −Yj XT
j HT

F, j−
(
Z 0
)T HT

G, j
HF, jX j−HG, j

(
Z 0
)

Yl

)
� 0, (40)

for all j, l ∈
{

1,2, . . . ,2ζ

}
, then the closed-loop NCS (4) and (28) with K = ZX−1

1

is globally exponentially stable (GES) for sequences of sampling instants, delays,
and packet dropouts σ ∈S .

Proof. For the proof, see [10].

Note that in the above theorem the stability is directly formulated for the
continuous-time NCS model (4) and (28) using the ideas in Remark 3.

Remark 6. The case of a common quadratic Lyapunov function (CQLF) V (ξ ) =
ξ T

k Pξk is a particular case of this theorem by taking Yj = Y , for all j = 1, . . . ,2ζ ,
with P = Y−1.

Remark 7. If one is still interested in using a lifted state feedback (27) despite the
mentioned disadvantages, then Theorem 2 can be modified by replacing the matrices
X j j = 1,2, . . . ,ζ by a constant matrix X without a specific structure and replacing(
Z 0
)

by Z. The extended state feedback controller is obtained then by K = ZX−1.

Remark 8. The derived discrete-time models based on polytopic overapproxima-
tions as in (23) are suitable for control design using model predictive control (MPC)
as well. For instance, the MPC techniques in [48] can be used for this purpose as
was indicated in [28, 29].
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Remark 9. The design of output-based dynamic discrete-time controllers that result
in stable closed-loop NCSs is at present an unsolved problem. Due to the adopted
polytopic overapproximations, the problem is basically a design problem for a ro-
bustly stabilizing output-based dynamic controller for polytopic systems, which is
considered to be hard problem in the literature. The stability analysis for these type
of controllers (under small delay assumptions) is solved, even in the presence of
communication constraints, see Section 4.2 below.

Remark 10. Here, we only presented results on the stability and stabilization of
NCSs. However, extensions exist that provide constructive LMI conditions guar-
anteeing input-to-state stability, see [93, 94]. In [93, 94] the input-to-state stability
property is exploited to solve the (approximate) tracking problem for linear NCS
with time-varying (small) delays and time-varying sampling intervals.

Example 3. Consider again Example 1. As a first instance, assume that the sensor
sampling interval h = 1 ms is constant and that the controller is given by (28) with
K̄ =

(
50 K2

)
. The controller gains K2 that stabilize the system with time-varying

delays τk ∈ [0,τmax], with τmax ≤ 2h, are determined using Theorem 1 for the case
of a common quadratic Lyapunov function, resulting in the gray area in Fig. 6. In
other words for a fixed value of K2 the NCS is stable for all τk ∈ [0,τmax] as long
as τmax lies in the gray area for the corresponding value of K2. Clearly, the large
delay case is considered here. To assess the conservatism of the computed stability
region, the stability region for constant time-delays equal to τmax is depicted by the
dash-dotted line in Fig. 6. This comparison reveals the fact that the stability bound is
hardly conservative for this example, as the stability region for time-varying delays
should always lie within the stability region for constant delays. In Fig. 6, also a

Fig. 6 Stability region in terms of K2 and time-varying delays τk ∈ [0,τmax] (for h = 1ms, K1 = 50)
for Theorem 1, with a common quadratic Lyapunov function, and for constant delays equal to τmax.
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periodic delay sequence τ1, τ2, τ1, τ2, . . ., with τ1 = 0.2h and τ2 = 0.6h, is depicted
which has been shown in [11, 14] to induce instability. The latter observation is
another indicator for the fact that the stability boundary for uncertain, time-varying
delays as in Figure 6 is hardly conservative.

For more examples, illustrating both Theorems 1 and 2 including the case includ-
ing packet dropouts and the exploitation of parameter-dependent Lyapunov func-
tions, we refer the interested reader to [9, 10, 13, 75].

3.3 Sampled-data modeling approaches

In this section, we discuss a modeling and analysis approach for NCS with de-
lays, time-varying sampling intervals and packet dropouts as developed in [57–59].
Herein, the sampled-data NCS model is formulated in terms of so-called impulsive
delay-differential equations (DDEs). Before going into details, we would like to
make the following observations:

• This approach studies the stability of the sampled-data NCS without exploiting
any form of discretization of a continuous-time plant model as in the discrete-
time approach;

• The model in terms of impulsive DDEs shows great similarity with the modeling
of the sampled-data NCS using the hybrid systems formalism, see, e.g., [6, 34, 36,
37, 63, 64], as will be discussed in Section 4.1. However, the continuous-time ap-
proach described in Section 4.1 is an emulation-type approach, where controllers
are designed in continuous-time, whereas here discrete-time (state feedback) con-
trollers are considered and included directly in the sampled-data NCS model.
Also the sampled-data approach using impulsive DDEs has not incorporated the
presence of communication constraints and the resulting scheduling protocols
as has been done in the continuous-time approach, see [6, 34, 36, 37, 63, 64] and
Section 4.1.

• The modeling framework of impulsive DDEs in principle allows to consider non-
linear systems for which stability results for nonlinear impulsive DDEs have been
presented, e.g., in [58, 59]. However, only for the case of linear NCS construc-
tive LMI-based stability conditions have been formulated. The continuous-time
approach in Section 4.1 (see [6, 34, 36, 37, 63, 64]) has stability conditions for
nonlinear NCSs as well.

Consider the linear continuous-time plant (1) and a discrete-time static state
feedback controller as in (28), i.e. uk = −K̄xk. The state measurements xk := x(sk)
are sampled at the sampling instants sk satisfying (2), which are non-equidistantly
spaced in time due to the time-varying sampling intervals hk > 0, with hk ∈
[hmin,hmax] for all k ∈ N. The sequence of sampling instants s0,s1,s2, . . . is strictly
increasing in the sense that sk+1 > sk, for all k ∈ N. As in Section 3.1, it is assumed
that the sensor-to-controller delay, computational delay and controller-to-actuator
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delay can be lumped into a single delay τk, with τk ∈ [τmin,τmax] for all k ∈N. Sum-
marizing, {(sk,τk)}k∈N ∈ S̄ , where

S̄ :=
{
{(sk,τk)}k∈N| hmin ≤ sk+1− sk ≤ hmax,s0 = 0,τk ∈ [τmin,τmax) for all k ∈ N

}
(41)

represents the admissible sequences of sampling times and delays. The uncertainty
set S̄ represents a subset of the uncertainties characterised by S in (6), in which
also packet dropouts where accounted for. Packet dropouts are not considered ex-
plicitly in this approach, but can be accounted for by considering packet drops as
an elongation of the effective sampling interval, see also Remark 18. Let us denote
by rk = sk + τk the k-th control update instant with r0 = τ0. Both the small and
large delay cases can be considered, where we allow the delays τk to be larger than
the sampling intervals hk with the understanding that the sequence of input update
times {r0,r1,r2, . . .} remains strictly increasing. In essence, this means that if a sam-
ple arrives at the destination in an out-of-order fashion (i.e., an old sample arrives
the destination after the most recent one), it should be rejected (and is effectively
deleted from the sequence sk).

Now, the sampled-data NCS system can be formulated as ẋ = Ax+Bu∗(t), x(0) = x0
u∗(t) = uk, rk ≤ t ≤ rk+1,
uk = −K̄xk,

. (42)

Alternatively, the sampled-data NCS system can more compactly be formulated as

ẋ = Ax−BK̄x(sk), rk ≤ t ≤ rk+1, (43)

with initial condition given by x0 and x(s−1).
Let us introduce the definition v1(t) := x(sk) for t ∈ [rk,rk+1), where v1(t)

represents a piece-wise constant signal reflecting a delayed version the most re-
cently sampled state (that is not rejected). Moreover, when we introduce ζ (t) :=[
xT (t) vT

1 (t)
]T , we can write the dynamics of the NCS (42) (or (43)) in the form of

an impulsive DDE of the form

ζ̇ (t) = Fζ (t), t ∈ [rk,rk+1) (44a)

ζ (rk+1) =
[

x(rk+1)
x(sk+1)

]
, k ∈ N (44b)

with ζ (t) right-continuous, the initial condition ζ (0) :=
[
xT (0) xT (s−1)

]T , and

F :=
[

A −BK̄
0 0

]
.

Consider the following positive-definite candidate Lyapunov functional
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V :=xT Px+
∫ t

t−ρ1

(ρ1max− t + s)ẋT (s)R1ẋ(s)ds

+
∫ t

t−ρ2

(ρ2max− t + s)ẋT (s)R2ẋ(s)ds+
∫ t

t−τmin

(τmin− t + s)ẋT (s)R3ẋ(s)ds

+
∫ t−τmin

t−ρ1

(ρ1max− t + s)ẋT (s)R4ẋ(s)ds+(ρ1max− τmin)
∫ t

t−τmin

ẋT (s)R4ẋ(s)ds

+
∫ t

t−τmin

xT (s)Zx(s)ds+(ρ1max−ρ1)(x− v2)T X(x− v2)

(45)

with P, X , Z, Ri, i = 1, . . . ,4, positive definite matrices,

v2(t) := x(rk), ρ1(t) := t− sk, ρ2(t) := t− rk, for rk ≤ t < rk+1,

and
ρ1max := sup

t≥0
ρ1(t), ρ2max := sup

t≥0
ρ2(t).

Note that ρ1(t) and ρ2(t) are sawtooth-like functions of time representing, within a
control update interval, the elapsed time since the last (not rejected) sampling instant
and the elapsed time since the last (not rejected) control update, respectively. The
evolution of this Lyapunov functional is discontinuous at the control update times
rk, due to the jump in ζ in (44b), but a decrease of V over the jump is guaranteed by
construction.

The next theorem formulates LMI-based conditions for global exponential sta-
bility of the NCS (44) for any sequence of sampling instants and delays taken from
the class S̄ as in (41).

Theorem 3. [57, 58] If there exist positive definite matrices P, X, Z, Ri, i = 1, . . . ,4,
and not necessarily symmetric matrices Ni, i = 1, . . . ,4, satisfying the LMIsM1 +(β − τmin)(M2 +M3) τmaxN1 τminN3

∗ −τmaxR1 0
∗ ∗ −τmaxR3

≺ 0, (46a)


M1 +(β − τmin)M2 τmaxN1 τminN3 (β − τmin)(N1 +N2) (β − τmin)N4

∗ −τmaxR1 0 0 0
∗ ∗ −τminR3 0 0
∗ ∗ ∗ −(β − τmin)(R1 +R2) 0
∗ ∗ ∗ ∗ −(β − τmin)R4

≺ 0, (46b)

where β := hmax + τmax, F̄ :=
[
A −BK̄ 0 0

]
,
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M1 :=F̄T [P 0 0 0
]
+


P
0
0
0

 F̄ + τminFT (R1 +R3)F−


I
0
−I
0

X


I
0
−I
0


T

+


I
0
0
0

Z


I
0
0
0


T

−


0
0
0
I

Z


0
0
0
I


T

−N1
[
I −I 0 0

]
−


I
−I
0
0

NT
1 −N2

[
I 0 −I 0

]
−


I
0
−I
0

NT
2

−N3
[
I 0 0 −I

]
−


I
0
0
−I

NT
3 −N4

[
0 −I 0 I

]
−


0
−I
0
I

NT
4 ,

M2 :=F̄T (R1 +R2 +R4)F̄ ,

M3 :=


I
0
−I
0

XF̄ + F̄T X
[
I 0 −I 0

]
,

then, system (44) is globally exponentially stable for any sequence of delays and
sampling instants taken from the class S̄ as in (41).

Proof. For the proof, see [58].

Remark 11. The proof of Theorem 3 exploits stability results for nonlinear impul-
sive DDEs as presented in [58, 59].

Remark 12. The conditions in Theorem 3 do not explicitly depend on the values
of hmin. Consequently, this approach towards modeling NCSs may result in more
conservative conditions in comparison to those obtained using the discrete-time
approach discussed in Section 3.2, when 0� hmin ' hmax. The reason is that the
discrete-time approach can actually exploit the knowledge that hmin > 0.

Remark 13. When considering the control synthesis problem, i.e. when the control
gain K̄ is considered unknown, the LMIs in Theorem 3 generally become bilinear
matrix inequalities (BMIs). However, for the case without delays in [59, 60] LMI-
based control synthesis conditions for static state feedback controllers have been
proposed.

Remark 14. In [57], results on the stability analysis of linear NCS with continuous-
time, dynamic output feedback controllers are presented. Herein, it is assumed that
these continuous-time controllers can be evaluated exactly on the sampling instants
(by exact discretization and some form of time-stamping of the sampled measure-
ments).

Example 4. We now reconsider the motion control example of Example 1 and use it
to compare the discrete-time and sampled-data approach.
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First consider the case of a constant sampling interval h = 0.005 s, but with
time-varying and uncertain delays in the set [0,τmax]. Applying Theorem 3 in a
slightly modified form (for the special case in which a Lyapunov functional (45)
with Z = Ri = 0, i = 1, . . . ,4, is exploited) leads to stability guarantee for the NCS for
a maximal delay up to τmax = 0.33h, see [93, 94]. Comparing this with the discrete-
time approach using Theorem 1 (for the special case of a common quadratic Lya-
punov function) shows that stability can be guaranteed up to a maximal delay of
τmax = 0.94h.

Next, we consider the case in which the sampling interval is variable, i.e., hk ∈
[hmin,hmax], k ∈N and the delay is zero. More specifically, we take hmin = hmax/1.5,
so hmin 6= 0. Using the discrete-time approach in Theorem 1 (for the special case
of a common quadratic Lyapunov function), stability can be assured almost up to
hmax = 1.34× 10−2 s, which is the sampling interval for which the system with a
constant sampling interval (and no delay) becomes unstable. This fact shows that the
proposed discrete-time stability conditions as in Theorem 1 are not conservative in
this example. Using the impulsive DDE approach, stability can only be guaranteed
up to hmax = 9× 10−3 s. Hence, for this motion control example the discrete-time
approach clearly outperforms the sampled-data approach as far as the characterisa-
tion of stability is concerned.

Remark 15. In [93, 94], an extension of Theorem 3 (for the special case that Z =
Ri = 0, i = 1, . . . ,4), guarantees input-to-state stability in the face of perturbations.
This extension is exploited to solve the (approximate) tracking problem for NCS
with time-varying delays and sampling intervals. It is important to note that the
input-to-state stability gains from additive perturbations to the states of the NCS
provided by the impulsive DDE modeling approach are much tighter than those
obtained using the discrete-time modeling and analysis approach as shown in [93,
94]. The conservatism in the estimates of the input-to-state stability gain using the
discrete-time approach are mainly due to the conservative upperbounding of the
intersample behavior. In this respect it seems that the impulsive DDE approach is
beneficial in studying such performance related issues.

4 NCS including communication constraints

In this section we will discuss stability analysis approaches that incorporate com-
munication constraints. Specifically, communication is constrained in the sense that
the number of control inputs and measured outputs that can be transmitted over a
network is limited. At each transmission time only one of the nodes consisting of
particular actuators and/or sensors will obtain access to the network to communi-
cate its data. Which node obtains access is determined by a scheduling protocol.
As we will see this complicates the description and the analysis of the NCS con-
siderably. The communication constraints and protocol will actually introduce (ad-
ditional) discrete effects in the problem, which will require modeling and stability
analysis techniques from the hybrid systems domain [30, 87].
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We will present a continuous-time/emulation approach in Section 4.1 and a
discrete-time approach in Section 4.2. Both approaches have their own advantages
and disadvantages as we will conclude at the end.

4.1 Continuous-time (emulation) approaches

In this section, we introduce the continuous-time model that will be used to describe
NCSs including communication constraints as well as varying transmission intervals
and transmission delays. Dropouts and quantization effects can be included as dis-
cussed in [34] and in Remark 18, but for the ease of exposition we will not consider
them below. The model that we discuss in this section was derived in [36, 37] and
forms an extension of the NCS models used before in [63] that were motivated by
the work in [89]. The emulation approach is characterized by the design procedure
that , first, a stabilizing continuous-time controller for the continuous-time plant is
designed (ignoring any network effects). Next, we study under which network ef-
fects (level of delays, size of sampling interval lengths, type of protocol used for
the communication scheduling) the NCS inherits the stability properties from the
network-free continuous-time closed-loop system.

4.1.1 Description of the NCS

Consider the continuous-time plant

ẋp = fp(xp, û), y = gp(xp) (47)

that is sampled. Here, xp ∈ Rnp denotes the state of the plant, û ∈ Rnu denotes the
most recent control values available at the plant and y ∈ Rny is the output of the
plant. The controller is given by

ẋc = fc(xc, ŷ), u = gc(xc), (48)

where the variable xc ∈ Rnc is the state of the controller, ŷ ∈ Rny is the most re-
cent output measurement of the plant that is available at the controller and u ∈ Rnu

denotes the control input. At times tk, k ∈ N, (parts of) the input u at the con-
troller and/or the output y at the plant are sampled and transmitted over the net-
work. The transmission times satisfy 0 ≤ t0 < t1 < t2 < .. .. Even stronger, we as-
sume that there exists a δ > 0 such that the transmission intervals tk+1− tk satisfy
δ ≤ tk+1− tk ≤ hmati for all k ∈ N, where hmati denotes the maximally allowable
transmission interval (MATI). At each transmission time tk, k ∈ N, the protocol de-
termines which of the nodes j ∈ {1,2, . . . ,N} is granted access to the network. Each
node corresponds to a collection of sensors or actuators. The sensors/actuators cor-
responding to the node, which is granted access, collect their values in y(tk) or u(tk)
that will be sent over the communication channel. They will arrive after a transmis-
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Fig. 7 Illustration of a typical evolution of y and ŷ for 2 nodes.

sion delay of τk time units at the controller or actuator, respectively. This results
in updates of the corresponding entries in ŷ or û at the arrival times tk + τk, k ∈ N,
which were denoted by rk in the previous section. The situation described above is
illustrated for y and ŷ in Fig. 7 for the situation that there are two nodes and for
which the nodes get access to the network in an alternating sequence.

It is assumed that there are bounds on the maximal delay in the sense that τk ∈
[0,τmad ], k ∈ N, where 0 ≤ τmad ≤ hmati is the maximally allowable delay (MAD).
In particular, we will use the following standing assumption in the sequel.

Assumption 4 The transmission times satisfy δ ≤ tk+1− tk < hmati, k ∈ N and the
delays satisfy 0≤ τk ≤min{τmad , tk+1− tk}, k ∈N, where δ ∈ (0,hmati] is arbitrary.

This assumption implies that each transmitted packet arrives before the next sam-
ple is taken meaning that only the small delay case is considered here1. In various
situations τk ≤ hk := tk+1−tk, k ∈N is a realistic assumption. Indeed, if two or more
nodes are sharing one communication channel and one of the nodes is transmitting
its data, the channel is busy and hence other nodes cannot access the network, which
guarantees τk ≤ hk = tk+1− tk, k ∈ N.

Remark 16. Compared to the notation in the previous section we have that hmax =
hmati and hmin = δ , which can actually be chosen arbitrarily close to 0. For the delays
we have that τmin = 0 and τmax = τmad . We used here the terms MATI and MAD
(hmati and τmad) as done in the literature [6, 34, 36, 37, 63, 64] on the continuous-
time approach.

The updates of ŷ and û satisfy

ŷ((tk + τk)+) = y(tk)+hy(k,e(tk)) (49a)
û((tk + τk)+) = u(tk)+hu(k,e(tk)) (49b)

1 Extensions of this continuous-time approach including large delays do not exist to this date.
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at tk +τk, where e denotes the vector (ey,eu) := (eT
y ,eT

u )T with ey := ŷ−y, eu := û−u
and hu and hy are update functions related to the protocol. Hence, e ∈ Rne with
ne = ny + nu. If the NCS has N nodes, then the error vector e can be partitioned as
e = (eT

1 ,eT
2 , . . . ,eT

N)T . The update functions hy and hu are related to the protocol of
which we give two well-known examples below. Typically when the j-th node gets
access to the network at some transmission time tk the corresponding values in ŷ and
û have a jump at tk + τk to the corresponding transmitted values in y(tk) and u(tk),
since the quantization effects are assumed to be negligible. For instance, when y j is
transmitted at time tk, it holds that hy, j(k,e(tk)) = 0 meaning that ŷ j((tk + τk)+) =
y j(tk). However, for reasons of generality, more freedom is allowed in the protocols
given by h = (hy,hu) := (hT

y ,hT
u )T . Two well-known examples are the Round Robin

(RR) protocol the Try-Once-Discard (TOD) protocol (sometimes also called the
maximum-error-first protocol). For 2 nodes the RR protocol is given by

h(k,e) =



(
0
e2

)
, if k = 0,2,4,6, . . .(

e1

0

)
, if k = 1,3,5,7, . . .

Hence, the two nodes get access to the network in an alternating fashion: When the
transmission counter is even the first node gets access, when the counter is odd the
second node can send its data. As such, the RR protocol is a static protocol in the
sense that the order of the nodes is fixed. In contrast, the TOD protocol is a dynamic
scheduling protocol, which is given for two nodes by

h(k,e) =



(
0
e2

)
, if |e1| ≥ |e2|(

e1

0

)
, if |e2|> |e1|,

Here | · | denotes the Euclidean norm in Rn and later we will also use 〈·, ·〉 as the
corresponding inner product. Hence, the TOD protocol gives access to the node with
the largest difference between the latest transmitted value of the corresponding in-
puts/outputs and the current value of these inputs/outputs. Indeed, the node with the
largest network-induced error ei is allowed to transmit its signal values. Extensions
of these protocols to more than 2 nodes are straightforward.

In between the updates of the values of ŷ and û, the network is assumed to oper-
ate in a zero-order-hold (ZOH) fashion, meaning that the values of ŷ and û remain
constant in between the updating times tk + τk and tk+1 + τk+1:

˙̂y = 0, ˙̂u = 0. (50)

To compute the resets of e at the update or arrival times {ti +τk}k∈N, we proceed
as follows:
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ey((tk + τk)+) = ŷ((tk + τk)+)− y(tk + τk) = y(tk)+hy(k,e(tk))− y(tk + τk)
= hy(k,e(tk))+ y(tk)− ŷ(tk)︸ ︷︷ ︸

−e(tk)

+ ŷ(tk + τk)− y(tk + τk)︸ ︷︷ ︸
e(tk+τk)

= hy(k,e(tk))− e(tk)+ e(tk + τk).

In the third equality it is used that ŷ(tsi) = ŷ(tsi + τk), which holds due to the ZOH
character of the network.

A similar derivation holds for eu, leading to the following model for the NCS:

ẋ(t) = f (x(t),e(t))
ė(t) = g(x(t),e(t))

}
t ∈ [tk, tk + τk) (51a)

e((tk + τk)+) = h(k,e(tk))− e(tk)+ e(tk + τk), (51b)

where x = (xp,xc) ∈Rnx with nx = np +nc, f , g are appropriately defined functions
depending on fp, gp, fc and gc and h = (hy,hu). See [63] for the explicit expressions
of f and g.

Remark 17. The model (51) reduces to the model used in [63, 64] in absence of
delays, i.e. τk = 0 for all k ∈ N. Indeed, then (51) becomes

ẋ(t) = f (x(t),e(t))
ė(t) = g(x(t),e(t))

}
t ∈ [tsi , tsi + τk) (52a)

e(t+k ) = h(k,e(tk)). (52b)

Assumption 5 f and g are continuous and h is locally bounded. �

Observe that the system ẋ = f (x,0) is the closed-loop system (47)-(48) without
the network (e = 0).

The stability problem that is considered is formulated as follows.

Problem 1. Suppose that the controller (48) was designed for the plant (47) render-
ing the continuous-time closed loop (47)-(48) (or equivalently, ẋ = f (x,0)) stable in
some sense. Determine the value of hmati and τmad so that the NCS given by (51) is
stable as well when the transmission intervals and delays satisfy Assumption 4. �

Remark 18. Of course, there are certain extensions that can be made to the above
setup. The inclusion of packet dropouts is relatively easy, if one models them as
prolongations of the transmission interval. Indeed, if we assume that there is a bound
δ̄ ∈N on the maximum number of successive dropouts, the stability bounds derived
below are still valid for the MATI given by h′mati := hmati

δ̄+1
, where hmati is the obtained

MATI for the dropout-free case.

Remark 19. In case h(k,e) = 0 for all k ∈ N and e ∈ Rne , the above model es-
sentially reduces to a sampled-data systems (without communication constraints)
with a continuous-time controller. In this particular case the impulsive DDE in the
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sampled-data approach of Section 3.3 (see Remark 14) and the continuous-time
NCS model as presented here are related.

4.1.2 Reformulation in a hybrid system framework

To facilitate the stability analysis, the above NCS model is transformed into the
hybrid system framework as developed in [30]. To do so, the auxiliary variables
s ∈ Rn, κ ∈ N, τ ∈ R≥0 and ` ∈ {0,1} are introduced to reformulate the model in
terms of so-called flow equations and reset equations. The variable s is an auxiliary
variable containing the memory in (51b) storing the value h(k,e(tk))− e(tk) for the
update of e at the update instant tk + τk, κ is a counter keeping track of the number
of the transmission, τ is a timer to constrain both the transmission interval as well as
the transmission delay and ` is a Boolean keeping track whether the next event is a
transmission event or an update event. To be precise, when ` = 0 the next event will
be related to transmission and when ` = 1 the next event will be an update. Note
that here explicit use is made of the fact that only small delays are considered.

The hybrid system ΣNCS is given by the flow equations

ẋ = f (x,e)
ė = g(x,e)
ṡ = 0
κ̇ = 0
τ̇ = 1
˙̀ = 0


(` = 0∧ τ ∈ [0,hmati])∨ (` = 1∧ τ ∈ [0,τmad ]) (53)

and the reset equations are obtained by combining the “transmission reset relations,”
active at the transmission instants {tk}k∈N, and the “update reset relations”, active at
the update instants {tk + τk}k∈N, given by

(x+,e+,s+,τ+,κ+, `+) = G(x,e,s,τ,κ, `), when
(` = 0∧ τ ∈ [δ ,hmati])∨ (` = 1∧ τ ∈ [0,τmad ]) (54)

with G given by the transmission resets (when ` = 0)

G(x,e,s,τ,κ,0) = (x,e,h(κ,e)− e,0,κ +1,1) (55)

and the update resets (when ` = 1)

G(x,e,s,τ,κ,1) = (x,s+ e,−s− e,τ,κ,0). (56)

4.1.3 Lyapunov-based stability analysis

A Lyapunov function for ΣNCS will be constructed based on the following conditions
for the reset part (the protocol) and the flow part of the system.



32 W.P.M.H. Heemels and N. van de Wouw

Conditions on the reset part

Condition 6 The protocol given by h is UGES (uniformly globally exponentially
stable), meaning that there exists a function W : N×Rne → R≥0 that is locally
Lipschitz in its second argument such that

αW |e| ≤W (κ,e)≤ αW |e| (57a)
W (κ +1,h(κ,e))≤ λW (κ,e) (57b)

for constants 0 < αW ≤ αW and 0 < λ < 1. �

Additionally it is assumed here that

W (κ +1,e)≤ λWW (κ,e) (58)

for some constant λW ≥ 1 and that for almost all e ∈ Rne and all κ ∈ N∣∣∣∣∂W
∂e

(κ,e)
∣∣∣∣≤M1 (59)

for some constant M1 > 0. For all protocols discussed in [6, 63, 88, 89] such Lya-
punov functions and corresponding constants exist. For instance, if N is the number

of nodes in the network, for the RR protocol λRR =
√

N−1
N , αWRR

= 1, αWRR =
√

N,

λWRR =
√

N, M1,RR =
√

N and for the TOD protocol λTOD =
√

N−1
N , αWTOD

=
αWTOD = 1, λWTOD = 1, M1,TOD = 1. In particular WTOD(i,e) = |e|. See [37, 63]
for the proofs.

Conditions on the flow part

The following growth condition on the flow of the NCS model (51) is used:

|g(x,e)| ≤ mx(x)+Me|e|, (60)

where mx : Rnx → R≥0 and Me ≥ 0 is a constant. Moreover, the following is addi-
tionally used.

Condition 7 There exists a locally Lipschitz continuous function V : Rnx → R≥0
satisfying the bounds

αV (|x|)≤V (x)≤ αV (|x|) (61)

for some K∞-functions2 αV and αV , and the condition

2 A function α : R+ → R+ is called a K -function, if it is continuous, strictly increasing and
α(0) = 0. A K -function α is called a K∞-function if α(s)→ ∞ if s→ ∞. Examples of K∞-
functions are α(s) = csλ for some c > 0 and λ > 0.
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〈∇V (x), f (x,e)〉 ≤ −m2
x(x)−ρ(|x|)+(γ2− ε)W 2(κ,e) (62)

for almost all x ∈ Rnx and all e ∈ Rne with ρ ∈K∞, for some γ > 0 and 0 < ε <
max{γ2,1}.

Essentially, the condition above is a Lyapunov-based formulation for the system
ẋ = f (x,e) to have an L2 gain [73] from W 2(κ,e) to m2

x(x) strictly smaller than γ

together with global asymptotic stability in case e = 0.

Stability result

Lumping the above parameters into four new ones given by

L0 =
M1Me

αW
; L1 =

M1MeλW

λαW
; γ0 = M1γ; γ1 =

M1γλW

λ
(63)

we can provide the following conditions on MAD and MATI to guarantee stability
of ΣNCS. Indeed, consider now the differential equations

φ̇0 = −2L0φ0− γ0(φ 2
0 +1) (64a)

φ̇1 = −2L1φ1− γ0(φ 2
1 +

γ2
1

γ2
0
). (64b)

Observe that the solutions to these differential equations are strictly decreasing as
long as φ`(τ)≥ 0, ` = 0,1. Define the equilibrium set as

E := {(x,e,s,κ,τ, `) | x = 0, e = s = 0} .

Theorem 8. Consider the system ΣNCS such that Assumptions 4 and 5 are satisfied.
Let Condition 6 with (58) and (59) and Condition 7 with (60) hold. Suppose hmati ≥
τmad ≥ 0 satisfy

φ0(τ) ≥ λ
2
φ1(0) for all 0≤ τ ≤ hmati (65a)

φ1(τ) ≥ φ0(τ) for all 0≤ τ ≤ τmad (65b)

for solutions φ0 and φ1 of (64) corresponding to certain chosen initial conditions
φ`(0) > 0, ` = 0,1, with φ1(0)≥ φ0(0)≥ λ 2φ1(0)≥ 0 and φ0(hmati) > 0. Then for
the system ΣNCS the set E is uniformly globally asymptotically stable (UGAS). �

The proof is based on constructing Lyapunov functions U(ξ ) for ΣNCS, using the
solutions φ0 and φ1 to (64), that satisfy U(ξ +)≤U(ξ ) at reset times and U̇(ξ ) < 0
during flow. See [37] for the proof and the exact definition of UGAS of E , which
implies (next to Lyapunov stability of E ) that x(t)→ 0, e(t)→ 0 and s(t)→ 0, when
t→ ∞.

From the above theorem quantitative numbers for hmati and τmad can be obtained
by constructing the solutions to (64) for certain initial conditions. Computing the τ
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the solutionsφℓ, ℓ = 0, 1, to (16) for initial conditions
φ0(0) = 1.4142 andφ1(0) = 1.6142. The solutionsφℓ, ℓ =
0, 1 are determined using Matlab/Simulink. The condition
(17a) indicates thatτmati is determined by the intersection
of φ0 and the constant line with valueλ2φ1(0) and condition
(17b) states thatτmad is determined by the intersection ofφ0

andφ1 (as long asφ0(0) ≤ φ1(0)). For the specific situation
depicted in Fig. 2 this would result inτmati = 0.008794
and τmad = 0.005062, meaning that UGES is guaranteed
for transmission intervals up to0.008794 and transmission
delays up to0.005062. Interestingly, the initial conditions
of both functionsφ0 and φ1 can be used to make design
tradeoffs. For instance, by takingφ1(0) larger, the allowable
delays become larger (as the solid line indicated by ‘o’ shifts
upwards), while the maximum transmission interval becomes
smaller as the dashed line indicated by ‘•’ will shift upwards
as well causing its intersection withφ0 (dotted line indicated
by ‘+’) to occur for a lower value ofτ . For instance,
by taking φ0(0) = φ1(0) = λ−1

TOD =
√

2, we recover
exactly the delay-free results in [1] withτmad = 0 and
τmati = 0.0108. Hence, once the hypotheses of Theorem V.2
are satisfied, different combinations of MATI and MAD can
be obtained leading to tradeoff curves. Repeating step 5
for various increasing values ofφ1(0), while keepingφ0(0)
equal toλ−1

TOD =
√

2, provides the graph in Fig. 3, where
the particular pointτmati = 0.008794 andτmad = 0.005062
corresponding to Fig. 2 is highlighted. A similar reasoning
can be used for the RR protocol. This leads toL0 = 15.7300,
L1 = 31.4600, γ0 = 22.5093 and γ1 = 45.0185 with the
tradeoff curve between MATI and MAD as in Fig. 3. These
tradeoff curves can be used to impose conditions or select
a suitable network with certain communication delay and
bandwidth requirements.

Also different protocols can be compared with respect to
each other. In Fig. 3, it is seen that for the task of stabilization
of the unstable batch reactor the TOD protocol outperforms
the RR protocol in the sense that it can allow for larger
delays and larger transmission intervals.
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VIII. C ONCLUSIONS

In this paper we presented a framework for studying
the stability of a NCS, which involves communication con-
straints (only one node accessing the network per transmis-
sion), varying transmission intervals and varying transmis-
sion delays. Based on a newly developed model, an ex-
plicit procedure was presented for computing bounds on the
maximally allowable transmission interval and delay (MATI
and MAD) such that the NCS is guaranteed to be globally
asymptotically stable. The application of the results on a
benchmark example showed how tradeoff curves between
MATI and MAD can be computed providing designers of
NCSs with proper tools to support their design choices.
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Fig. 8 Illustration of how the solutions φ`, ` = 0,1, lead to MAD and MATI.

value of the intersection of φ0 and the constant line λ 2φ1(0) provides hmati according
to (65a), while the intersection of φ0 and φ1 gives a value for τmad due to (65b). In
Fig. 8 this is illustrated. Different values of the initial conditions φ0(0) and φ1(0)
lead, of course, to different solutions φ0 and φ1 of the differential equations (64) and
thus different hmati and τmad . As a result, tradeoff curves between hmati and τmad can
be obtained that indicate when stability of the NCS is still guaranteed. This will be
illustrated below for the benchmark example of the batch reactor. Before showing
the example, a systematic procedure to determine these tradeoff curves is provided.

Systematic procedure for the determination of MATI and MAD

The main steps in the procedure to compute the tradeoff curves between MATI and
MAD are given as follows:

Procedure 9 Given ΣNCS apply the following steps:

1. Construct a Lyapunov function W for the UGES protocol as in Condition 6
with the constants αW , αW , λ , λW and M1 as in (57), (58) and (59). Suitable
Lyapunov functions and the corresponding constants are available for many
protocols in the literature [37, 63, 64];

2. Compute the function mx and the constant Me as in (60) bounding g as in (51);
3. Compute for ẋ = f (x,e) in the NCS model (51) the L2 gain from W (κ,e) to

mx(x) in the sense that (61)-(62) is satisfied for a (storage) function V for some
small 0 < ε < max{γ2,1} and ρ ∈K∞. When f is linear, this can be done using
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LMIs. Of course, here the ‘emulated’ controller should guarantee that such a
property is satisfied;

4. Use now (63) to obtain L0, L1, γ0 and γ1;
5. For initial conditions φ0(0) and φ1(0) with λ 2φ1(0) ≤ φ0(0) < φ1(0) compute

(numerically) the solutions φ0 and φ1 to (64) and find (the largest values of)
hmati and τmad such that (65) are satisfied. The largest values can be found by
determining the intersection of φ0 and φ1 (giving τmad) and the intersection of
φ0 with λ 2φ1(0) (giving hmati). Repeat this step for various values of the initial
conditions thereby obtaining various combinations of hmati and τmad leading to
tradeoff curves.

This procedure is systematic in nature and can consequently be applied in a straight-
forward manner.

Delay-free results

In the above setting taken from [36, 37] both varying hk and τk are allowed. The case
without delays (τmad = 0) has been treated in the earlier works [6, 63, 64, 88, 89].
Basically, the least conservative of them, being [6], uses slightly weaker versions of
Condition 6, Condition 7 and〈

∂W
∂e

(κ,e),g(x,e)
〉
≤ LW (κ,e)+mx(x) (66)

for all κ ∈ N and almost all e ∈ Rne . Instead of four parameters as in (63) they only
have the parameters γ and L next to λ to determine hmati (as τmad = 0). Also the
two differential equations that are formulated in (64) reduce to only one differential
equation given by

φ̇ =−2Lφ − γ(φ 2 +1) (67)

and they choose the initial condition φ(0) = λ−1. The conditions (65) reduce to
φ(τ) ≥ λ for all 0 ≤ τ ≤ hmati to guarantee stability of ΣNCS. Hence, the value of
τ for which φ(τ) = λ determines the hmati that can be guaranteed. Interestingly,
due to the fact that there is only one differential equation, hmati can be analytically
computed and results in

hmati =


1
Lr arctan( r(1−λ )

2 λ

1+λ
( γ

L )+1+λ
), γ > L

1−λ

L(1+λ ) , γ = L
1
Lr arctanh( r(1−λ )

2 λ

1+λ
( γ

L )+1+λ
), γ < L,

(68)

where r =
√
|( γ

L )2−1|.
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Application to the benchmark example of the batch reactor

In this part the discussed results are applied to the case study of the batch reactor,
which has developed over the years as a benchmark example in NCSs [6, 63, 89].
The functions in the NCS (51) for the batch reactor are given by the linear functions
f (x,e,w) = A11x+A12e and g(x,e,w) = A21x+A22e in which the numerical values
for Ai j, i, j = 1,2, are provided in [63, 89] and given by

A11 =


1.3800 −0.2077 6.7150 −5.6760 0 0
−0.5814 −15.6480 0 0.6750 −11.3580 0
−14.6630 2.0010 −22.3840 21.6230 −2.2720 −25.1680

0.0480 2.0010 1.3430 −2.1040 −2.2720 0
0 1.0000 0 0 0 0

1.0000 0 1.0000 −1.0000 0 0

 ;

A12 =


0 0
0 −11.3580

−15.7300 −2.2720
0 −2.2720
0 1.0000

1.0000 0

 ;

A21 =
(

13.3310 0.2077 17.0120 −18.0510 0 25.1680
0.5814 15.6480 0 −0.6750 11.3580 0

)
;

A22 =
(

15.7300 0
0 11.3580

)
.

The batch reactor, which is open-loop unstable, has nu = 2 inputs, ny = 2 outputs,
np = 4 plant states and nc = 2 controller states and N = 2 nodes (only the outputs are
assumed to be sent over the network). See [63, 89] for more details on this example.

For all the technical details of the application of Procedure 9 to this benchmark
example the reader is referred to [36, 37]. Here we show only the outcomes. Fig. 9
shows the stability regions in terms of MAD and MATI for the TOD and the RR
protocols for the batch reactor as can be proven on the basis of the above results.
Interestingly, this shows tradeoff curves between MAD and MATI: a larger MAD
requires a smaller MATI in order to guarantee stability. In addition, the delay-free
results as obtained in [6], which improved the earlier bounds in [63], are exactly
recovered. These delay-free results amount for the TOD protocol to τmad = 0 and
hmati = 0.0108 and for the RR protocol to τmad = 0 and hmati = 0.0090. Next to
finding tradeoffs between MAD and MATI, different protocols can be compared
with respect to each other. In Fig. 9, it is apparent that for the task of stabilization
of the unstable batch reactor the TOD protocol outperforms the RR protocol in the
sense that it can allow for larger delays and larger transmission intervals. Note that
in Fig. 9 the particular combination τmati = 0.008794 and τmad = 0.005062 corre-
sponding to Fig. 8 is highlighted.
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the solutionsφℓ, ℓ = 0, 1, to (16) for initial conditions
φ0(0) = 1.4142 andφ1(0) = 1.6142. The solutionsφℓ, ℓ =
0, 1 are determined using Matlab/Simulink. The condition
(17a) indicates thatτmati is determined by the intersection
of φ0 and the constant line with valueλ2φ1(0) and condition
(17b) states thatτmad is determined by the intersection ofφ0

andφ1 (as long asφ0(0) ≤ φ1(0)). For the specific situation
depicted in Fig. 2 this would result inτmati = 0.008794
and τmad = 0.005062, meaning that UGES is guaranteed
for transmission intervals up to0.008794 and transmission
delays up to0.005062. Interestingly, the initial conditions
of both functionsφ0 and φ1 can be used to make design
tradeoffs. For instance, by takingφ1(0) larger, the allowable
delays become larger (as the solid line indicated by ‘o’ shifts
upwards), while the maximum transmission interval becomes
smaller as the dashed line indicated by ‘•’ will shift upwards
as well causing its intersection withφ0 (dotted line indicated
by ‘+’) to occur for a lower value ofτ . For instance,
by taking φ0(0) = φ1(0) = λ−1

TOD =
√

2, we recover
exactly the delay-free results in [1] withτmad = 0 and
τmati = 0.0108. Hence, once the hypotheses of Theorem V.2
are satisfied, different combinations of MATI and MAD can
be obtained leading to tradeoff curves. Repeating step 5
for various increasing values ofφ1(0), while keepingφ0(0)
equal toλ−1

TOD =
√

2, provides the graph in Fig. 3, where
the particular pointτmati = 0.008794 andτmad = 0.005062
corresponding to Fig. 2 is highlighted. A similar reasoning
can be used for the RR protocol. This leads toL0 = 15.7300,
L1 = 31.4600, γ0 = 22.5093 and γ1 = 45.0185 with the
tradeoff curve between MATI and MAD as in Fig. 3. These
tradeoff curves can be used to impose conditions or select
a suitable network with certain communication delay and
bandwidth requirements.

Also different protocols can be compared with respect to
each other. In Fig. 3, it is seen that for the task of stabilization
of the unstable batch reactor the TOD protocol outperforms
the RR protocol in the sense that it can allow for larger
delays and larger transmission intervals.
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VIII. C ONCLUSIONS

In this paper we presented a framework for studying
the stability of a NCS, which involves communication con-
straints (only one node accessing the network per transmis-
sion), varying transmission intervals and varying transmis-
sion delays. Based on a newly developed model, an ex-
plicit procedure was presented for computing bounds on the
maximally allowable transmission interval and delay (MATI
and MAD) such that the NCS is guaranteed to be globally
asymptotically stable. The application of the results on a
benchmark example showed how tradeoff curves between
MATI and MAD can be computed providing designers of
NCSs with proper tools to support their design choices.
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Fig. 10 Tradeoff curves between MATI and MAD for various levels of the L2 gain of the NCS
with the TOD protocol.

Extension of these results to include guarantees on disturbance attenuation prop-
erties in the sense of Lp gains from certain disturbance inputs to to-be-controlled
outputs are reported as well in [36, 37]. In case of the batch reactor this would yield
results as depicted in Fig. 10 for the L2 gain. This picture shows tradeoffs between
the network properties MAD and MATI on the one hand and control performance in
terms of L2 gain from a specific disturbance input to a controlled output variable.
These tradeoff curves are very useful for control and network designers to make
well founded design decisions.
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4.2 Discrete-time approach

The continuous-time (emulation) approach as presented in Section 4.1 applies to
general continuous-time nonlinear plants and controllers. However, it does not in-
clude the possibility of allowing the controller to be formulated in discrete time. The
case of discrete-time controllers has been considered in [17], where however, a fixed
transmission interval and no delay are assumed. Another feature of the continuous-
time approach is that the lower bounds on the transmission intervals hk and delays
τk are always equal to zero (i.e., hk ∈ (δ ,hmati], τk ∈ [0,τmad], where δ could be
chosen arbitrarily close to 0). The ability to handle discrete-time controllers and
nonzero lower bounds on the transmission intervals and delays is highly relevant
from a practical point of view, because controllers are typically implemented in a
digital and, thus, discrete-time form. Furthermore, finite communication bandwidth
introduces nonzero lower bounds on the transmission intervals and transmission de-
lays. The discrete-time approach surveyed here (see [20, 21]) studies these highly
relevant situations as well, although be it in a linear context. The linearity property
is exploited in the stability analysis and leads to less conservative results than the
continuous-time approach. However, note that the continuous-time approach can ac-
commodate for NCSs based on nonlinear plants and controllers and general (UGES)
protocols, a feature that the discrete-time approach does not offer.

4.2.1 The exact discrete-time NCS model

As mentioned, the discrete-time approach applies in a linear context, which means
that (47) is replaced by the linear time-invariant (LTI) continuous-time plant given
by

ẋp(t) = Apxp(t)+Bpû(t)
y(t) = Cpxp(t), (69)

where xp ∈ Rnp denotes the state of the plant, û ∈ Rnu the most recently received
control variable, y ∈ Rny the (measured) output of the plant and t ∈ R+ the time.
The controller, also an LTI system, is assumed to be given in either continuous time
by

ẋc(t) = Acxc(t)+Bcŷ(t)
u(t) = Ccxc(t)+Dcŷ(t), (70a)

or in discrete time by

xc
k+1 = Acxc

k +Bcŷk

u(tk) = Ccxc
k +Dcŷ(tk). (70b)
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Fig. 11 Illustration of a typical evolution of y and ŷ.

In parallel with Section 4.1 (only subscripts becoming superscripts, as subscripts
are used to indicate the counter k of the discrete-time step), xc ∈ Rnc denotes the
state of the controller, ŷ ∈ Rny the most recently received output of the plant and
u ∈ Rnu denotes the controller output. At transmission instant tk,k ∈ N, (parts of)
the outputs of the plant y(tk) and controller u(tk) are sampled and are transmitted
over the network. It is assumed that they arrive at instant rk = tk + τk, called the
arrival instant, where τk denotes the communication delay. The situation described
above is illustrated in Fig. 11. In the case of a discrete-time controller (70b), the
states of the controller xc

k+1 are updated using ŷk := limt↓rk ŷ(t), directly after ŷ is
updated. Note that in this case, the update of xc

k+1 in (70b) has to be performed in
the time interval (rk, tk+1].

The functioning of the network will now be explained in more detail by defining
these ‘most recently received’ ŷ and û exactly. As in the continuous-time (emulation)
approach in Section 4.1, the plant is equipped with sensors and actuators that are
grouped into N nodes. At each transmission instant tk, k ∈ N, one node, denoted
by σk ∈ {1, . . . ,N}, obtains access to the network and transmits its corresponding
values. These transmitted values are received and implemented on the controller or
the plant at arrival instant rk. As was assumed in Section 4.1, a transmission only
occurs after the previous transmission has arrived, i.e., tk+1 > rk > tk, for all k ∈ N.
In other words, also here the small delay case is treated in the sense that the delay is
smaller than the transmission interval τk ≤ hk := tk+1− tk. After each transmission
and reception, the values in ŷ and û are updated using the newly received values,
while the other values in ŷ and û remain the same, as no additional information has
been received for them. This leads to the constrained data exchange expressed as{

ŷ(t) = Γ
y

σk y(tk)+(I−Γ
y

σk)ŷ(tk)
û(t) = Γ

u
σk

u(tk)+(I−Γ
u

σk
)û(tk)

(71)

for all t ∈ (rk,rk+1], where Γσk := diag
(
Γ

y
σk ,Γ

u
σk

)
is the diagonal matrix given by

Γi = diag
(
γi,1, . . . ,γi,ny+nu

)
, (72)
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where σk = i and the elements γi, j, j ∈ {1, . . . ,ny}, are equal to one, if plant output
y j is in node i, elements γi, j+ny , j ∈ {1, . . . ,nu}, are equal to one, if controller output
u j is in node i, and are zero elsewhere. Note that (71) is directly related to (49)
in the continuous-time approach with hy(k,ey(tk)) = (I−Γ

y
σk)e(tk), hu(k,e(tk)) =

(I−Γ u
σk

)eu(tk), ey(t) = ŷ(t)− y(t) and eu(t) = û(t)−u(t).
The value of σk ∈ {1, . . . ,N} in (71) indicates which node is given access to the

network at transmission instant tk, k ∈ N. Indeed, (71) reflects that the values in
û and ŷ corresponding to node σk are updated just after rk, with the correspond-
ing transmitted values at time tk, while the others remain the same. A scheduling
protocol determines the sequence (σ0,σ1, . . .) such as the Round Robin and Try-
Once-Discard protocols discussed earlier.

The transmission instants tk, as well as the arrival instants rk, k ∈ N are not nec-
essarily distributed equidistantly in time. Hence, both the transmission intervals
hk := tk+1− tk and the transmission delays τk := rk− tk are varying in time, as is
also illustrated in Fig. 11. It is assumed that the variations in the transmission inter-
val and delays are bounded and are contained in the sets [hmin,hmax] and [τmin,τmax],
respectively, with hmax ≥ hmin ≥ 0 and τmax ≥ τmin ≥ 0. Since it is assumed that each
transmission delay τk is smaller than the corresponding transmission interval hk, it
holds that (hk,τk) ∈Ψ , for all k ∈ N, where

Ψ :=
{
(h,τ) ∈ R2 | h ∈ [hmin,hmax],τ ∈ [τmin,min{h,τmax})

}
. (73)

Note that in comparison with Section 4.1, hmati would correspond to hmax and
τmad to τmax. However, in Section 4.1 it was assumed that τmin = 0 and hmin = δ ,
where δ could be chosen arbitrarily small, due to the emulation type of approach,
while that is not the case here. Therefore, here the different notation using hmin,
hmax, τmin and τmax is used.

To analyse stability of the NCS described above, it is transformed into a discrete-
time model. In this framework, a discrete-time equivalent of (69) is needed. Addi-
tionally, when a continuous-time controller is used, also a discretization of (70a) is
needed. To arrive at this description, define the network-induced error as{

ey(t) := ŷ(t)− y(t)
eu(t) := û(t)−u(t).

(74)

By exact discretization of (69) and/or (70a) a discrete-time switched uncertain
system can be obtained that describes the evolution of the states between tk and
tk+1 = tk + hk. In order to do so, define xp

k := xp(tk), uk := u(tk), ûk := limt↓rk û(t)
and eu

k := eu(tk). This results in three different models each describing a particular
NCS. The first and the second model cover the situation where both the plant and
the controller outputs are transmitted over the network, differing by the fact that the
controller is given by (70a) and (70b), respectively. In the third model, it is assumed
that the controller is given by (70a) and that only the plant outputs y are transmitted
over the network and u are sent continuously via an ideal nonnetworked connection.
This particular case is included, because it is often used in examples in NCS liter-
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ature, e.g., for the benchmark example of the batch reactor as discussed before in
Section 4.1.

The NCS model with continuous-time controller (70a)

For an NCS having continuous-time controller (70a), the complete NCS model is
obtained by combining (71), (74) with exact discretizations of plant (69) and con-
troller (70a) and defining

x̄k :=
[
xp>

k xc>
k ey>

k eu>
k

]>
. (75)

This results in the discrete-time model

x̄k+1 =
[

Ahk +Ehk BDC Ehk BD−Ehk−τk BΓσk

C(I−Ahk −Ehk BDC) I−D−1Γσk +C(Ehk−τk BΓσk −Ehk BD)

]
︸ ︷︷ ︸

=:Ãσk ,hk ,τk

x̄k (76)

in which Ãσk,hk,τk ∈ Rn×n, with n = np +nc +ny +nu, and

Ahk := diag(eAphk ,eAchk), B :=
[

0 Bp

Bc 0

]
,C := diag(Cp,Cc), (78a)

D :=
[

I 0
Dc I

]
, Eρ := diag(

∫
ρ

0
eApsds,

∫
ρ

0
eAcsds), ρ ∈ R. (78b)

The NCS model with discrete-time controller (70b)

For an NCS having controller (70b), the complete NCS model is obtained by
combining (70b), (71), (74), and an exact discretization of the continuous-time
plant (69), also resulting in (76), in which now

Ahk := diag(eAphk ,Ac), B :=
[

0 Bp

Bc 0

]
,C := diag(Cp,Cc), (79a)

D :=
[

I 0
Dc I

]
, Eρ := diag(

∫
ρ

0
eApsds, I), ρ ∈ R. (79b)
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The NCS model if only y is transmitted over the network

In this case it is assumed that only the outputs of the plant are transmitted over the
network and the controller communicates its values continuously and without delay.
Therefore it holds that u(t) = û(t), for all t ∈ R+, which allows the combination of
(69) and (70a) into[

ẋp(t)
ẋc(t)

]
=
[

Ap BpCc

0 Ac

][
xp(t)
xc(t)

]
+
[

BpDc

Bc

]
ŷ(t). (80)

Since ŷ is still updated according to (71), the evolution of the states between tk and
tk+1 = tk +hk can also be described by exact discretization. In this case, (75) reduces
to

x̄k :=
[
xp>

k xc>
k ey>

k

]>
, (81)

resulting in (76), in which

Ahk := e
[

Ap BpCc

0 Ac

]
hk , B :=

[
BpDc

Bc

]
, C :=

[
Cp 0

]
, (82a)

D := I, Eρ :=
∫

ρ

0
e
[

Ap BpCc

0 Ac

]
sds, ρ ∈ R. (82b)

Protocols as a Switching Function

Based on the previous modeling steps, the NCS is reformulated as the discrete-time
switched uncertain system (76). In this framework, protocols are considered as the
switching function determining σk. The two protocols mentioned before, namely the
Try-Once-Discard (TOD) and the Round-Robin (RR) protocol, are considered and
generalized into the classes of ‘quadratic’ and ‘periodic’ protocols, respectively.

A quadratic protocol is a protocol, for which the switching function can be writ-
ten as

σk = arg min
i=1,...,N

x̄>k Pix̄k, (83)

where Pi, i ∈ {1, . . . ,N}, are certain given matrices. In fact, the TOD protocol be-
longs to this class of protocols, see [20, 21].

A periodic protocol is a protocol that satisfies for some Ñ ∈ N

σk+Ñ = σk (84)

for all k ∈ N. Ñ is then called the period of the protocol. Clearly, the RR protocol
belongs to this class.

The above modeling approach now provides a description of the NCS system in
the form of a discrete-time switched linear uncertain system given by (76) and one of
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the protocols, characterized by (83) or (84). The system switches between N linear
uncertain systems and the switching is due to the fact that only one node accesses
the network at each transmission instant. The uncertainty is caused by the fact that
the transmission intervals and the transmission delays (hk,τk) ∈Ψ are varying over
time.

Remark 20. If there is only one node N = 1 and Γi = I, the setting of Section 3.2 for
the case of small delays is recovered. If in addition, τmax = 0 and hmin = hmax, then
the NCS reduces to a standard sampled-data system (in case of a continuous-time
plant and discrete-time controller), see, e.g., [8, 23].

4.2.2 The polytopic overapproximation

As in the case without communication constraints (see Section 3.2), also in the NCS
models derived in the previous section the uncertainty appears in an exponential
manner (see the terms Ahk , Ahk−τk , Ehk and Ehk−τk in (76)). To convert these descrip-
tions into a suitable form for robust stability analysis, a polytopic overapproxima-
tion method is exploited. Essentially any of the available overapproximation meth-
ods (e.g., the one based on the real Jordan form discussed before) can be applied.
However, in [20], in which the above modeling is presented, a combination of grid-
ding and norm-bounding is combined into a new and efficient method. The gridding
method in [20] has the advantage that if the exact discrete-time model (so before
the overapproximation) is exponentially stable proven by a parameter-dependent
quadratic Lyapunov function [15], then the overapproximated polytopic system with
a sufficiently dense set of grid points in Ψ also has a parameter-dependent quadratic
Lyapunov function. The Lyapunov function for the polytopic system can then be
found by LMIs. In other words, if the original NCS system is “quadratically stable,”
then the LMIs derived in [20] will prove this for a sufficiently dense gridding. The
reader is referred to [20, 21] for full details. Actually, in a recent paper [38] a com-
parison was made between the various polytopic overapproximation methods and it
was argued that the gridding method of [20, 21] has the most favorable properties of
the studied methods.

4.2.3 Application to the batch reactor

The exact same setup will be analyzed as for the continuous-time approach in Sub-
section 4.1.3 and focus on the TOD and RR protocol and assume that the controller
is directly connected to the actuator, i.e., only the (two) outputs are transmitted via
the network. Using the LMIs as in [20] the aim is to construct combinations of
hmax and τmax for which the NCS is stable, and it is assumed that τmin = 0 and
hmin = 10−4. This results in tradeoff curves, as shown in Fig. 12. These tradeoff
curves can be used to impose or select a suitable network with certain communi-
cation delay and bandwidth requirements. Note that bandwidth is inversely propor-
tional with the transmission interval.
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Fig. 12 Tradeoff curves between allowable transmission intervals and transmission delays for two
different protocols, where “continuous− time′′ refers to the approach in Section 4.1, while the
other curves refer to the discrete-time approach as discussed in Section 4.2.

Moreover, in Fig 12, also the tradeoff curves as obtained for the continuous-time
approach (Subsection 4.1.3) are given. It can be observed that the discrete-time ap-
proach provides less conservative results than the continuous-time approach (at least
for this example). More interestingly, in case there is no delay, i.e., τmin = τmax = 0,
the maximum allowable transmission interval hmax obtained in [6], which provide
the least conservative results known in literature so far, was hmax = 0.0108, while the
discrete-time approach results in hmax = 0.066. In [89], the largest hmax for which
stability can be guaranteed was estimated (using simulations) to be approximately
0.08 for the TOD protocol, so the result of hmax = 0.066 as found here already
approaches this value accurately. Furthermore, for the RR protocol, [6] provides
the bound hmax = 0.009 in the delay-free case, while the discrete-time approach
yields stability for hmax = 0.064. Also in [89], for a constant transmission interval,
i.e. hmin = hmax, the bound 0.0657 was obtained for the RR protocol. Obviously, the
case where the transmission interval is constant, provides an upper bound on the true
maximum allowable transmission interval (MATI). Therefore, one can conclude that
for this example, the discrete-time methodology reduces conservatism significantly
in comparison to existing approaches including the continuous-time approach dis-
cussed in Section 4.1. Furthermore, even approximates known estimates of the true
MATI (hmati = hmax) closely. In addition, the discrete-time approach applies to situ-
ations (non-zero lower bounds and discrete-time controllers, see [20] for examples)
that cannot be handled by the continuous-time methodologies.
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4.3 Comparison of discrete-time and continuous-time approaches

Interestingly, both the discrete-time and the continuous-time approaches exploit a
NCS model that is intrinsically of a hybrid nature. The continuous-time (emulation)
approach results in hybrid inclusions with flows and resets [30], while the discrete-
time approach uses uncertain switched linear systems that are overapproximated by
uncertain switched polytopic systems.

There are some clear (dis)advantages of both methods. The continuous-time (em-
ulation) approach as presented in Subsection 4.1 applies to general continuous-time
nonlinear plants and controllers, and general (UGES) protocols. In addition, in the
continuous-time approach Lp gain analysis of the original continuous-time NCS
can be done in a straightforward manner (see [37]), while this not true for the
discrete-time approach. However, the continuous-time approach does not allow for
discrete-time controllers and cannot handle nonzero lower bounds on the transmis-
sion intervals hk and delays τk. The discrete-time approach as discussed in Subsec-
tion 4.2 can allow for both continuous-time and discrete-time controllers and non-
zero lowerbounds on delays and transmission intervals. However, it applies to the
case of linear plants and controllers and specific protocols (periodic and quadratic
protocols) only, although it can do this in a significantly less conservative manner
as the “general-purpose” continuous-time approach.

5 Conclusions

In this overview we discussed various approaches to the modeling, stability analysis
and stabilizing controller synthesis of NCSs with varying delays, varying transmis-
sion intervals, packet dropouts and communication constraints. The methods dis-
cussed in this chapter all assume hard bounds on the size of the varying delays,
transmission intervals and the maximal number of subsequent dropouts. Roughly
speaking, three main lines can be distinguished, as summarized below.

(i) The discrete-time approach is based on a discrete-time NCS model, which can
be used for both discrete-time and continuous-time linear controllers and lin-
ear plants. LMI-based stability conditions are derived by using common or
parameter-dependent quadratic Lyapunov function for an overapproximated
polytopic model. Different methods are available for performing the polytopic
overapproximation of the discretized NCS model in which the delay and sam-
pling interval uncertainties appear in an exponential fashion, see [38]. Within
this research line the largest number of network-induced imperfections are
treated in [20] that includes varying sampling intervals and delays, dropouts
and communication constraints. Both discrete-time and continuous-time con-
trollers can be handled. However, in [20] only delays smaller than the sam-
pling interval are considered. For the most comprehensive discrete-time ap-
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proach including large delays, but without communication constraints, we re-
fer to [10, 14].

(ii) The sampled-data approach uses (impulsive) delay-differential equations de-
scribing continuous-time sampled-data NCS models with discrete-time con-
trollers. Extensions of the classical Lyapunov-Krasovskii functionals are ex-
ploited to give stability guarantees for linear plants and controllers. The con-
ditions also result in LMIs. Communication constraints have not (yet) been
treated using (impulsive) delay-differential equations.

(iii) The continuous-time (emulation) approach studies continuous-time sampled-
data NCS models with continuous-time controllers. Continuous-time Lya-
punov functions are constructed by combining individual Lyapunov functions
of the network-free closed-loop system and the network protocol (or adopting
directly small gain arguments) to assess stability of the NCS. Typically only
continuous-time controllers are treated at present, however both controller and
plant can be nonlinear.

Although already three main research lines of NCSs exist for stability analysis
(where we did not even discuss the stochastic approaches) and many papers are
written, at present there are almost no complete frameworks that can handle all the
5 mentioned network-induced imperfections: (i) Variable sampling/transmission in-
tervals; (ii) variable communication delays; (iii) Packet dropouts (iv) Communica-
tion constraints; (v) Quantization errors. Only recently one approach was presented
in [34] that includes all 5 imperfections under quite restricted conditions (small de-
lay case, particular quantizers, continuous-time controllers, etc.) The availability of
a complete analysis and design frameworks based on either one of the main lines as
discussed in this chapter or possibly on a completely new line, would be desirable.
At present such a framework is not available, certainly not with the analysis and
design techniques implemented in suitable software tools. One of the goals of this
chapter was to survey the main techniques and discuss the open problems, which
will hopefully stimulate further research in this direction in order to develop this
envisioned framework and toolset in the near future.

Particular attention should be given to controller design methods, considering
that for the three main lines these methods are still rather limited and extensions
are needed. Indeed, most of the design techniques lead to static feedback con-
trollers, while in industrial practice there is a strong need for output-based dynamic
controllers. In the discrete-time approach ordinary and lifted state feedback con-
trollers could be designed using LMI conditions, while in the emulation approach,
continuous-time controllers are synthesized based on the network-free nonlinear
system using any available method for the design of stabilizing controllers for non-
linear systems, which is in general a nontrivial task. As the emulation design does
not incorporate any information on the network, it is hard to design controllers that
are stabilizing and performing for sufficiently long delays and transmission inter-
vals, although one can aim at obtaining favorable properties through the presented
stability conditions. In addition, one might wonder if continuous-time controllers are
useful in practical problems as most NCS setups will require digital discrete-time
controllers that are tailored towards non-zero lower bounds on delays and transmis-



Stability and Stabilization of Networked Control Systems 47

sion intervals. Of course, one option is to implement the continuous-time controller
using numerical integration schemes, however it is unclear if these controllers will
have the desired properties in the end. A clear advantage of the emulation-based
results is the fact that the results can employed to tackle nonlinear NCSs, whereas
the results for the discrete-time approach are generally limited to the case of lin-
ear plants. Given the benefits of the discrete-time approach in terms of designing
discrete-time controllers tailored to deal with non-zero sampling intervals an de-
lays, it would be interesting to pursue the development of a discrete-time framework
for nonlinear NCSs as well. Also for the sampled-data approach constructive design
methods seem to be missing in the literature, certainly in an efficient form. Although
in the discrete-time efficient LMI-based synthesis conditions for state feedbacks
were given, as mentioned before, the design of output-based dynamic controllers is
still an open problem. Observer-based control design might provide attractive so-
lutions, especially since the observer might also be used to compensate for delays,
varying sampling times and packet losses. In summary, one can state that the con-
troller design and controller/protocol co-design techniques for NCSs are still in their
infancy and deserve a lot of attention in the years to come.
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64. Nešić, D., Teel, A.: Input-to-state stability of networked control systems. Automatica 40,
2121–2128 (2004)
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