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Abstract

In this paper, the controlled synchronisation problem for identical continuous
piecewise affine (PWA) systems is addressed. Due to the switching nature of
these systems, strategies common for controlled synchronisation can not be
used. In this paper, an observer-based output-feedback control design solv-
ing the master-slave synchronisation problem for two PWA systems is pro-
posed. The design of these dynamic controllers is based on the idea of, on
the one hand, rendering the slave system convergent by means of feedback
(which makes all its solutions converge to each other) and, on the other hand,
guaranteeing that the closed-loop slave system has a bounded solution cor-
responding to zero synchronisation error. This implies that all solutions of
the closed-loop slave system converge to this bounded solution with zero syn-
chronisation error. The results are illustrated by application to a master-slave
synchronisation problem of two mechanical systems with one-sided restoring
characteristics.

1 Introduction

Synchronisation of dynamical systems has received considerable interest be-
cause of the wide variety of systems in which synchronisation can occur
or is desirable, e.g. in secure communication [1], biological systems [2],
(electro-)mechanical systems [3], such as rotor dynamic systems or cooperat-
ing robots [4]. Many more illustrative examples can be found in [5]. Different
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kinds of synchronisation [6] can be defined; namely, natural synchronisation,
which is established without interaction between the systems involved, self-
synchronisation, which occurs due to a proper coupling between the systems
while this coupling is inherently in the system and not enforced externally,
and controlled synchronisation, which implies synchronisation enforced by ac-
tive control. This paper deals with the controlled synchronisation problem for
continuous PWA systems. Another distinction between different types of syn-
chronisation can be made in terms of the variables being synchronised. One
can speak of phase synchronisation, see e.g. [7], when the responses of the sys-
tems only comply in terms of a certain phase variable. Here, we will discuss
full-state synchronisation, which implies the exact correspondence of all the
states of the system. Other notions of synchronisation are partial synchronisa-
tion [8, 9, 10], in which only part of the state of the systems synchronise, and
generalised synchronisation, in which correspondence of certain functionals of
the state is established [6].

The controlled synchronisation problem can be divided into the master-
slave synchronisation problem and the mutual synchronisation problem. In
the master-slave variant, which is considered here, the slave system is unidi-
rectionally coupled (by means of control) to the master system, whereas in
mutual synchronisation a bilateral coupling ensures adaptation of the systems
with respect to each other [11]. Many results on controlled synchronisation
exist, e.g. [6, 12, 13, 14, 4], where both state-feedback and (observer-based)
dynamic output-feedback control strategies are proposed. In [14, 15], the con-
trolled synchronisation problem is considered in the scope of the regulator
problem and in [16, 17] the strong link between the synchronisation prob-
lem and the observer design problem is illuminated. Robustness issues with
respect to differences between the systems to be synchronised are treated
in [13, 18, 19]. Furthermore, the synchronisation of chaotic oscillators has re-
ceived a huge amount of attention, e.g. in [1, 13] and many other publications.

Currently, PWA systems are receiving wide attention due to the fact that
the PWA framework [20] provides a means to describe dynamic systems
exhibiting switching between a multitude of linear dynamic regimes. Such
switching can be due to piecewise-linear characteristics such as dead-zone,
saturation, hysteresis or relays. A common strategy in achieving synchronisa-
tion is the stabilisation of the error dynamics between the systems to be syn-
chronised. One could then think of translating the controlled synchronisation
problem for PWA systems into some stabilisation problem for PWA systems
and subsequently applying known results for the stabilization of PWA sys-
tems, see for example [21, 22, 23, 24, 25]. As we will illuminate in the next
section, the switching nature of the vector-field of PWA systems seriously
complicates such an approach. Some PWA systems can be represented in the
form of a Lur’e system (as is the case for the famous Chua circuit), for which
the master-slave synchronisation problem is considered in [12, 26, 27, 13]. It
is also worth mentioning the work in [28] on state-feedback tracking control
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of bimodal PWA systems, since master-slave synchronisation and tracking are
closely related problems.

Here, we propose a different approach towards the controlled synchroni-
sation problem for general continuous PWA systems. In this approach, the
notion of convergence plays a central role. A system, which is excited by an
input, is called convergent if it has a unique globally asymptotically stable
solution that is bounded on the whole time axis. Obviously, if such a solution
does exist, all other solutions, regardless of their initial conditions, converge to
this solution, which can be considered as a steady-state solution [29, 30]. Sim-
ilar notions describing the property of solutions converging to each other are
studied in literature. The notion of contraction has been introduced in [31]
(see also references therein). An operator-based approach towards studying
the property that all solutions of a system converge to each other is pursued
in [32, 33]. In [34], a Lyapunov approach has been developed to study both
the global uniform asymptotic stability of all solutions of a system (in [34],
this property is called incremental stability) and the so-called incremental
input-to-state stability property, which is compatible with the input-to-state
stability approach (see e.g. [35]). In the scope of synchronisation we use the
convergence property in the following way. The design of the synchronising
controllers is based on the idea of, on the one hand, rendering the closed-
loop slave system convergent by means of feedback (which means that all its
solutions converge to each other) and, on the other hand, guaranteeing that
the closed-loop slave system has a bounded solution corresponding to zero
synchronisation error. This implies that all solutions of the closed-loop slave
system converge to the synchronising solution.

The paper is structured as follows. In Section 2, the problem of master-
slave synchronisation of PWA systems is stated and it is illuminated that
the common approach of synthesising synchronising controllers by provid-
ing asymptotically stable error dynamics does not lead to tractable solutions
due to the switching nature of PWA systems. The notions of convergence
and input-state convergence are introduced and sufficient conditions for these
properties for PWA systems are proposed in Section 3. The latter properties
are used in Section 4 to design state- and (observer-based) dynamic output
feedback controllers achieving synchronisation. An illustrative example of the
master-slave synchronisation of two mechanical systems with one-sided restor-
ing characteristics is presented in Section 5 and Section 6 gives concluding
remarks.

2 Problem Formulation

Consider the state space R
n to be divided into polyhedral cells Λi, i = 1, . . . , l,

by hyperplanes given by equations of the form HT
j x + hj = 0, for some

Hj ∈ R
n and hj ∈ R, j = 1, . . . , k. We will consider the master PWA system

to be of the form:
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ẋm = Aix
m + bi + Bum(t) for xm ∈ Λi, i = 1, . . . , l,

ym = Cxm
(1)

and the slave system of the form

ẋs = Aix
s + bi + Bus for xs ∈ Λi, i = 1, . . . , l,

ys = Cxs.
(2)

Here B ∈ R
n×m, C ∈ R

q×n, Ai ∈ R
n×n and bi ∈ R

n, i = 1, . . . , l, are con-
stant matrices and vectors, respectively. The vectors xm ∈ R

n and xs ∈ R
n

represent the state of the master and slave system, respectively, the vectors
ym ∈ R

q and ys ∈ R
q are the corresponding measured outputs, um(t) is a

time-dependent input of the master system and the vector us ∈ R
m is the con-

trol input for the slave system. The hyperplanes HT
j x + hj = 0, j = 1, . . . , k,

are the switching surfaces for both systems. Now, we adopt the following
assumptions:

Assumption 1 The right-hand sides of (1) and (2) are continuous in the
corresponding states.

It is known (see e.g. [15]) that this assumption can be formalized in the (nec-
essary and sufficient) requirement that for any two cells Λi and Λj having a

common boundary HT
ijx + hij = 0 the corresponding matrices Ai and Aj

and the vectors bi and bj satisfy the equalities

GijH
T
ij = Ai − Aj

Gijhij = bi − bj ,
(3)

for some vector Gij ∈ R
n.

Assumption 2 The input um(t) of the master system and the corresponding
solutions xm(t) are bounded for t ≥ 0.

The problem considered in this work is formulated as follows:

Master-slave synchronisation Design a control law for us for the slave
system that, based on information on the measured outputs ys and ym

and the input um(t) of the master system, renders xs(t) → xm(t) as
t → ∞ and the states of the closed-loop slave system are bounded.

As mentioned in the introduction, a common strategy in achieving syn-
chronisation is the stabilisation of the error dynamics between the master
and slave systems. The topic of stabilisation of PWA systems is currently
receiving wide attention. One could then think of translating the controlled
synchronisation problem into some stabilisation problem and subsequently ap-
plying known results for the stabilization of PWA systems. Yet, this common
way of solving the problem does not lead to tractable solutions. In order to
illustrate this, let us consider the master-slave synchronisation problem for
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systems (1), (2) as formulated above for the simplest case in which the entire
states of both the master and slave system are measured, i.e. ym = xm and
ys = xs, and see how this problem would be approached in a conventional
way. The first step in this approach would be to decompose the control law
into a feedforward part um(t) and a feedback part ufb(x

s,xm(t)):

us(xs,xm(t),um(t)) = um(t) + ufb(x
s,xm(t)). (4)

This results in the following closed-loop slave system:

ẋs = Aix
s+bi+Bum(t)+Bufb(x

s,xm(t)) for xs ∈ Λi, i = 1, . . . , l. (5)

The feedforward ensures that a solution xs(t), t > t0, of the closed-loop
slave system (5) will match the solution of the master system if it matches
the solution of the master system at t = t0, i.e. if xs(t0) = xm(t0) (and if
ufb(x

m(t),xm(t)) = 0). In other words, the feedforward generates the solu-
tion of the master system xm(t) in the slave system (2).

Subsequently, asymptotic synchronisation is assured by designing the feed-
back part ufb(x

s,xm(t)) such that ufb(x
m,xm) = 0 and the dynamics of the

synchronisation error e = xs − xm are globally asymptotically stable. These
error dynamics follow from (1) and (5):

ė = Ai(e + xm(t)) − Ajx
m(t) + (bi − bj) + Bufb,

for (e + xm(t)) ∈ Λi, i = 1, . . . , l,

and xm(t) ∈ Λj , j = 1, . . . , l.

(6)

Now, the problem in this approach for PWA systems lies in the fact that
the error-dynamics in (6) not only switches when the state xs of the slave
system switches from one polyhedral cell to another but also when the state
xm(t) of the master system switches from one polyhedral cell to another. Con-
sequently, the error dynamics is described by (potentially) l2 different vector
fields (which vector field applies depends on e and xm(t), see (6)). More-
over, one should realise that these dynamics are time-varying. This combined
switching and time-varying nature seriously complicates the stability analysis
of the equilibrium point e = 0 of (6) and keeps one from applying stan-
dard stability analysis methods for PWA systems. This can be illustrated by
considering a Lyapunov-based stability argument using for example a positive-
definite quadratic Lyapunov function candidate of the form:

V = eT Pe with P = P T > 0. (7)

The time-derivative of this function V obeys:

V̇ =eT (AiP + PAi) e

+
(

(bi − bj)
T + uT

fbB
T + (xm)T (t)(Ai − Aj)

T
)

Pe

+ eT P ((bi − bj) + Bufb + (Ai − Aj)x
m(t)) ,

for (e + xm(t)) ∈ Λi, i = 1, . . . , l and xm(t) ∈ Λj , j = 1, . . . , l.

(8)
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Clearly, the design of the feedback law ufb guaranteeing the negative-definiteness

of V̇ , satisfying (8), becomes a rather cumbersome task. The latter exposition
aims at clarifying that the master-slave synchronisation problem for PWA sys-
tems, on the one hand, can not be tackled by applying known techniques for
master-slave synchronisation of smooth systems and, on the other hand, it is
significantly more complex than the stabilisation problem for PWA systems.

This example motivates our study of the master-slave synchronisation
problem for PWA systems. Here, we will propose a new approach to this prob-
lem based on the notion of convergent systems [29, 30], which is introduced
in the next section.

3 Convergent Systems

In this section, we will briefly discuss the definition of convergence, certain
properties of convergent systems and sufficient conditions for convergence of
non-smooth, continuous piecewise affine systems. The definitions presented
here extend the definition given in [29]. Consider the system

ẋ = f(x, t), (9)

where x ∈ R
n, t ∈ R and f(x, t) is locally Lipschitz in x and piecewise

continuous in t.

Definition 1. System (9) is said to be

• convergent if there exists a solution x̄(t) satisfying the following conditions:
(i) x̄(t) is defined and bounded for all t ∈ R,
(ii) x̄(t) is globally asymptotically stable.

• uniformly convergent if it is convergent and x̄(t) is globally uniformly
asymptotically stable.

• exponentially convergent if it is convergent and x̄(t) is globally exponen-
tially stable.

The solution x̄(t) is called a steady-state solution. As follows from the
definition of convergence, any solution of a convergent system “forgets” its
initial condition and converges to some steady-state solution. This, in turn,
implies that any two solutions x1(t) and x2(t) converge to each other, i.e.
|x1(t) − x2(t)| → 0 as t → +∞.

In the scope of our problem setting of controlled synchronisation, the time-
dependency is due to some input determined by the time-dependent trajectory
of the master system (e.g. xm(t) and um(t) in (5)). Below we will consider
convergence properties for systems with inputs. So, instead of systems of the
form (9), we consider systems of the form

ẋ = f(x,w), (10)
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with state x ∈ R
n and input w ∈ R

d. The function f(x,w) is locally Lipschitz
in x and continuous in w. In the sequel, we will consider the class PCd of
piecewise continuous inputs w(t) : R → R

d which are bounded on R. Below
we define the convergence property for systems with inputs.

Definition 2. System (10) is said to be (uniformly, exponentially) convergent
if it is (uniformly, exponentially) convergent for every input w ∈ PCd. In order
to emphasize the dependency on the input w(t), the steady-state solution is
denoted by x̄w(t).

In the scope of synchronisation problems, inputs are usually defined not
on the whole time axis R, but only for t ≥ 0. For this case, we can formulate
the following property.

Property 1 ([15]). If a convergent system (10) is excited by an input w(t),
that is defined and bounded only for t ≥ 0 (rather than for t ∈ R), then any
two solutions x1(t) and x2(t) of (10) satisfy | x1(t) − x2(t) |→ 0 as t → ∞.

The next definition extends the uniform convergence property to the input-
to-state stability framework.

Definition 3. System (10) is said to be input-to-state convergent if it is uni-
formly convergent and for every input w ∈ PCd system (10) is input-to-state
stable (ISS) with respect to the steady-state solution x̄w(t), i.e. there exist a
KL-function β(r, s) and a K∞-function γ(r) such that any solution z(t) of
system (10) corresponding to some input ŵ(t) := w(t) + ∆w(t) satisfies

|x(t) − x̄w(t)| ≤ β(|x(t0) − x̄w(t0)|, t − t0) + γ( sup
t0≤τ≤t

|∆w(τ)|). (11)

In general, the functions β(r, s) and γ(r) may depend on the particular input
w(t).

Similar to the conventional ISS property, the property of input-to-state con-
vergence is especially useful for studying convergence properties of intercon-
nected systems. One can easily show that the parallel interconnection of (ex-
ponentially, uniformly, input-to-state) convergent systems is again an (expo-
nentially, uniformly, input-to-state) convergent system. A series connection
of two input-to-state convergent systems, see Figure 1, is an input-to-state
convergent system, as stated in the next property.

Property 2 ([36, 37]). Consider the system

{

ẋ1 = f1(x1,x2,w), x1 ∈ R
n1

ẋ2 = f2(x2,w), x2 ∈ R
n2 .

(12)

Suppose the x1-subsystem, with (x2,w) as inputs, is input-to-state convergent
and the x2-subsystem, with w as an input, is input-to-state convergent. Then,
system (12) is input-to-state convergent.
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w

w

x1

x2

f1

f2

Fig. 1: Series connection of two systems
with inputs.

w

w

x1

x2

f1

f2

Fig. 2: Bidirectionally interconnected
systems with inputs.

The next property deals with bidirectionally interconnected input-to-state
convergent systems, see Figure 2.

Property 3 ([36, 37]). Consider the system
{

ẋ1 = f1(x1,x2,w), x1 ∈ R
n1

ẋ2 = f2(x1,x2,w), x2 ∈ R
n2 .

(13)

Suppose the x1-subsystem with (x2,w) as inputs is input-to-state convergent.
Assume that there exists a class KL function βx2

(r, s) such that for any input
(x1,w) ∈ PCn1+d any solution of the x2-subsystem satisfies

|x2(t)| ≤ βx2
(|x2(t0)|, t − t0).

Then the interconnected system (13) is input-to-state convergent.

Remark 1. Property 3 can be used for establishing the separation principle
for input-to-state convergent systems. This will be used in Section 4 to design
synchronising output feedback controllers. In that context, system (13) repre-
sents a system in closed loop with a state-feedback controller and an observer
generating state estimates for this controller. The x2-subsystem corresponds
to the observer error dynamics.

Now, we present sufficient conditions for exponential convergence and
input-to-state convergence for the class of continuous PWA systems consid-
ered here. Consider a PWA system of the form:

ẋ = Ãix + b̃i + B̃w for x ∈ Λ̃i, i = 1, . . . , l, (14)

with Ãi, b̃i, i = 1, . . . , l, and B̃ some matrices of appropriate dimensions and
Λ̃i, i = 1, . . . , l, are the polyhedral cells defined in Section 2.

Theorem 1 ([36],[38]). Consider system (14) and assume that the right-
hand side of (14) is continuous in x. If there exists a positive definite matrix
P = P T > 0 such that

PÃi + Ã
T

i P < 0, i = 1, . . . , l, (15)

then system (14), with w as input, is exponentially convergent and input-to-
state convergent.
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In [38], the following technical lemma is proven, which will be used in the next
section to construct output-feedback synchronising controllers for the master-
slave system (1), (2). We denote the right-hand side of (14) by f(x,w), i.e.
f(x,w) := Ãix + b̃i + B̃w for x ∈ Λ̃i, i = 1, . . . , l.

Lemma 1 ([36],[38]). Under the conditions of Theorem 1 it holds that

(x1 − x2)
T P (f(x1,w) − f(x2,w)) ≤ −α(x1 − x2)

T P (x1 − x2). (16)

for all x1,x2 ∈ R
n, w ∈ R

d, for some α > 0 and for the matrix P satisfy-
ing (15).

4 State- and output-feedback design

Let us now propose a convergence-based design of synchronising controllers
that avoid explicitly investigating the stability of the synchronisation error-
dynamics and thus avoids a cumbersome stability analysis as illustrated in
section 2. Since we take into account that, for both the master and the slave
system, we do not have the entire state available for measurement, we will
present an observer-based output-feedback control design.

The main idea of this convergence-based controller design is to find a
controller that guarantees two properties:

a. the closed-loop slave system has a bounded solution along which the syn-
chronisation error (xs − xm(t)) is identically zero,

b. the closed-loop slave system is uniformly convergent.

Condition b guarantees that any two solutions of the closed-loop slave sys-
tem converge to each other (see Property 1). Together with condition a, this
guarantees that all solutions of the closed-loop slave system converge to the
bounded solution along which the synchronisation error is identically zero, i.e.
the synchronisation control goal is achieved.

Let us first adopt the perspective that the entire state vectors of both
systems can be measured, i.e. C = I in (1) and (2), where I is an n × n-
identity matrix. Then, we propose the following synchronising control law for
the slave system, incorporating a linear synchronisation error feedback law:

u(xs,xm(t),um(t)) = um(t) + K (xs − xm(t)) , (17)

with K ∈ R
m×n a constant feedback gain matrix to be designed. The follow-

ing lemma poses conditions (in the form of LMIs) under which asymptotic
synchronisation is achieved with controller (17).

Lemma 2. Consider the master-slave system (1), (2), with C = I, satisfying
Assumptions 1 and 2. If the LMI

Pc = P
T
c > 0,

AiPc + PcA
T
i + BY + Y

T BT < 0, i = 1, . . . , l,
(18)
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is feasible, then system (2) with the controller (17), with K := YP
−1
c and

xm(t) and um(t) as inputs, is input-to-state convergent. Moreover, the syn-
chronisation error (xs(t) − xm(t)) converges to zero as t → ∞.

Proof. The closed-loop slave system has the form

ẋs = (Ai + BK)xs +bi +Bum(t)−BKxm(t) for xs ∈ Λi, i = 1, . . . , l.

(19)

Since the right-hand side of system (2) is continuous, the right-hand side of
the closed-loop slave system (19) is also continuous. Since the LMI (18) is
feasible, for the matrix K := YP

−1
c it holds that

P
−1
c (Ai + BK) + (Ai + BK)T P

−1
c < 0, i = 1, . . . , l.

Therefore, the closed-loop slave system (19) satisfies the conditions of Theo-
rem 1 with the matrix P := P

−1
c > 0. Hence, system (19) with (um(t),xm(t))

as inputs is input-to-state convergent and exponentially convergent. The fact
that xs(t) ≡ xm(t) is a solution of the closed-loop slave system (19) implies,
by Property 1, that xs(t) − xm(t) converges to zero as t → ∞. �

Remark 2. If system (19) would have an extra input BK∆x(t), then under
the conditions of Lemma 2 the closed-loop slave system is input-to-state con-
vergent with respect to the inputs xm(t), um(t) and ∆x(t). This fact will be
used later on.

Remark 3. The closed-loop slave system (19) satisfies the conditions of The-
orem 1, which by Lemma 1 implies that the quadratic Lyapunov function
V (x1,x2) = 1

2 (x1 − x2)
T P (x1 − x2) satisfies the inequality V̇ ≤ −2αV , for

any two solutions x1(t) and x2(t) of the closed-loop slave system. By taking
x1 = xs and x2 = xm, one can easily see that V is a quadratic Lyapunov
function of the form (7) for the synchronisation error-dynamics (6). Here,
we have constructed this quadratic Lyapunov function using the convergence
property. Still, the proof of the existence of such a Lyapunov function and the
corresponding feedback law from expression (8) directly is significantly more
difficult.

The linear static error-feedback design in (17) can easily be extended to
more sophisticated linear dynamic error feedback laws, while LMIs similar to
those in (18) can be formulated to guarantee input-to-state convergence and
exponential convergence of the resulting closed-loop slave system.

Let us now turn to the case in which only the respective outputs ym, ys of
the master and slave systems are measured. We will propose an observer-based
output-feedback design for the slave system. Here, we adopt an approach also
taken in [4]. See Figure 3 for a block diagram of the entire controlled master-
slave system. The first step is the design of observers for the (switching)
PWA slave system (2). Note that the same observer design can be used for
the master system, since the systems are identical. Hereto, we use an observer
design proposed in the next lemma:
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PWA PWA

+

+

+

-

um(t)

usufb ys

ym
x̂

m

x̂
s

Feedback
Master

Master

Slave

Slave

Observer

Observer

Fig. 3: Block diagram of the controlled master slave system.

Lemma 3. Consider slave system (2) satisfying Assumption 1. If the LMI

Po = P
T
o > 0,

PoAi + AT
i Po + XC + CT

X
T < 0, i = 1, . . . l,

(20)

is feasible, then the system

˙̂xs = Aix̂
s + bi + Bus + L(ŷs − ys), x̂

s ∈ Λi,

ŷ
s = Cx̂

s, i = 1, . . . , l,
(21)

with L := P
−1
o X , is an observer for system (2) with globally exponentially sta-

ble error dynamics. The observer dynamics (21) is input-to-state convergent
with respect to the inputs us and ys. Denote ∆xs := x̂

s − xs (the observer
error). Moreover, the observer error dynamics

∆ẋs = g(xs + ∆xs,us) − g(xs,us), (22)

where g(xs,us) := Aix
s +bi +Bus +LCxs for xs ∈ Λi, i = 1, . . . , l, is such

that for any bounded xs(t) and any feedback us = us(∆xs, t) all solutions of
system (22) satisfy

|∆xs(t)| ≤ ce−a(t−t0)|∆xs(t0)|, (23)

where the numbers c > 0 and a > 0 are independent of xs(t) and us =
us(∆xs, t).

Proof. Let us first prove the second part of the lemma. Consider the function
g(xs,us). After unifying the terms containing xs, we obtain g(xs,us) :=
(Ai + LC)xs + bi + Bus for xs ∈ Λi, i = 1, . . . , l. Since the right-hand
side of system (2) is continuous, g(xs,us) is also a continuous piecewise-
affine function. Moreover, since the LMI (20) is feasible, for P := Po and
L := P

−1
o X it holds that

P (Ai + LC) + (Ai + LC)T P < 0, i = 1, . . . , l.
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Hence, by Theorem 1 system (21) is input-to-state convergent with respect to
the inputs us and ys. Applying Lemma 1 to the function g(xs,us), we obtain

∆xsT

P (g(xs + ∆xs,us) − g(xs,us)) ≤ −a∆xsT

P∆xs (24)

for all xs, ∆xs and us and some constant a > 0 independent of xs, ∆xs and

us. Consider the function V (∆xs) := 1/2∆xsT

P∆xs. The derivative of this
function along solutions of system (22) satisfies

dV

dt
= ∆xsT

P (g(xs + ∆xs,us)− g(xs,us))≤−2aV (∆xs).

This inequality, in turn, implies that there exists c > 0 depending only on
the matrix P such that if xs(t) is defined for all t ≥ t0 then the solution
∆xs(t) is also defined for all t ≥ t0 and satisfies (23). It remains to show
that system (21) is an observer for system (2). Denote ∆xs := x̂

s − xs(t).
Since xs(t) is a solution of system (2), ∆xs(t) satisfies equation (22). By
the previous analysis, we obtain that ∆xs(t) satisfies (23). Therefore, the
observation error ∆xs exponentially tends to zero. �

It should be stressed once more that, since the master and the slave system are
identical, the observer (21), with the output injection matrix L satisfying (20),
is also an observer for the master system (of course using ym instead of ys).

Note that this observer guarantees exponentially stable observer error dy-
namics and does not require knowledge on the moment of switching of the
system. We note that if system (2) can be represented as a Lur’e system, one
can also use the circle criterion-based observer design from [39], see also [40].
These observer designs are more general than (21). For general PWA systems,
one can also extend the observer design in (21) based on the ideas from [39]
and [40]; however, we will not pursue such an extension in this paper.

Lemma 2 shows how to design a state feedback controller which, based
on xm and xs, achieves the synchronisation goal. Lemma 3 provides observer
designs to asymptotically reconstruct xm and xs from the measured outputs
ym and ys. In fact, a combination of these controller and observers gives us an
output feedback synchronising controller as stated in the following theorem.

Theorem 2. Consider the master-slave system (1), (2) satisfying Assump-
tions 1 and 2. Suppose the LMIs (18) and (20) are feasible. Denote K :=
YP

−1
c and L := P

−1
o X . Then, the slave system (2) in closed loop with the

controller

˙̂xm = Aix̂
m + bi + Bum + L(ŷm − ym), x̂

m ∈ Λi, i = 1, . . . , l,

ŷ
m = Cx̂

m,

˙̂xs = Aix̂
s + bi + Bus + L(ŷs − ys), x̂

s ∈ Λi, i = 1, . . . , l,

ŷ
s = Cx̂

s,

us = K (x̂s − x̂
m) + um,

(25)
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is input-to-state convergent with respect to the inputs ym(t) and um(t). More-
over, the synchronisation error (xs(t) − xm(t)) converges to zero as t → ∞,
i.e. synchronisation is achieved asymptotically.

Proof. In the coordinates (x̂m,∆xs,xs), the equations of the closed-loop slave
system are given by the first equation in (25) and

ẋs = (Ai + BK)xs + bi + BK∆xs + Bum −BKx̂
m, for xs ∈ Λi, (26)

∆ẋs = g(xs + ∆xs,us) − g(xs,us), (27)

us = K (xs + ∆xs − x̂
m) + um, (28)

with the function g as defined before. By the choice of the control gain K

satisfying LMIs (18), system (26) with (∆xs,um, x̂m) as inputs is input-to-
state convergent (see Lemma 2). By the choice of the observer gain L, for any
bounded inputs xs, x̂

m, um and for the feedback law (28), any solution of
system (27), (28) satisfies

|∆xs(t)| ≤ ce−a(t−t0)|∆xs(t0)|, (29)

where the numbers c > 0 and a > 0 are independent of xs(t), x̂
m(t) and

um(t) (see Lemma 3). Applying Property 3, we obtain that the system defined
by (26), (27) and (28) is input-to-state-convergent with respect to the inputs
um(t) and x̂

m(t).
Next, we consider another interconnected system consisting of the se-

ries connection of the system defined by (26), (27) and (28) and the ob-
server for the master system. By choice of the observer gain L, the ob-
server for the master system is input-to-state convergent with respect to
the inputs um and ym. Therefore, by Property 2, this series connection is
input-to-state convergent with respect to the inputs um and ym. Notice that
(x̂m(t), x̂s(t),xs(t)) = (xm(t),xm(t),xm(t)) is a solution of the closed-loop
slave system. It is bounded due to Assumption 2. Therefore, by Property 1,
(x̂m(t), x̂m(t),xs(t)) → (xm(t),xm(t),xm(t)) as t → ∞ and, as a conse-
quence, xs(t) − xm(t) → 0 as t → ∞, i.e. asymptotic synchronisation is
achieved. �

Remark 4. The results in Theorem 2 for the master-slave synchronisation of
two PWA systems can be readily exploited to design synchronising dynamic
output-feedback controllers for an interconnected system of PWA systems,
where the connectivity has a tree-like structure, see Figure 4. In that case,
we address the problem of synchronising all systems by coupling (through
active control) each system to its neighbour up in the tree. For the sake
of brevity, we will omit a formal statement here, however, a sketch of the
idea is given below. For every slave system in the tree, the control design
can be decomposed into a feedforward part uff and a feedback part ufb.
The feedback control design for every slave system in the tree involves a
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Master PWA

Slave PWASlave PWA Slave PWA

Slave PWASlave PWASlave PWA

Fig. 4: Interconnected system of PWA systems with a tree-like connectivity struc-
ture.

linear synchronisation error feedback of the form usi

fb = K(x̂si − x̂
m) for

slave systems i directly coupled to the master system and u
sj

fb = K(x̂sj −

x̂
si) for any slave system j coupled to slave system i up in the tree (the

gain matrices K and output injection matrices L may differ as long as the
LMIs (18) and (20) are satisfied). This control design renders each closed-loop
slave system input-to-state convergent. Note that the interconnected chains
of closed-loop slave systems are also input-to-state convergent due to the fact
that a series connection of two input-to-state convergent system is also input-
to-state convergent, see Property 2. Consequently, all solutions of the total
interconnected system converge to each other as t → ∞. The feedforward
designs for the slave systems should now ensure that this solution coincides
with the synchronising solution. Suitable choices for the feedforward design
are for example u

sj

ff = um(t) for all slave systems or usi

ff = um(t) for slave

systems i directly coupled to the master system and u
sj

ff = usi for any slave
system j coupled to slave system i up in the tree (where usi is the total
control input for slave system i). Then, the closed-loop interconnected system
exhibits a solution for which all systems are synchronised. Consequently, all
closed-loop systems in the tree-like interconnection structure asymptotically
synchronise.

5 An Illustrative Example

In this section, an example illustrating the theory presented in this paper is
given. The example concerns the master-slave synchronisation of two identical
PWA systems. Every system is a two-degree-of-freedom (2DOF) mechanical
system with one-sided restoring characteristics as depicted in Figure 5. An
engineering motivation for studying such models can be recognised in syn-
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chronising control of wire bonders; in this context the mass-spring-damper
combinations reflect the dynamics of wire bonder and the one-sided spring
reflects the flexibility of the workpiece. Each system consists of two masses
m1 and m2 interconnected by a linear spring-damper combination with stiff-
ness k and damping coefficient c1. Mass m1 also experiences a damping force
due to a linear damper attached to the fixed world with damping coefficient
c2. Moreover, mass m2 experiences a gap d > 0 before hitting the one-sided
spring with stiffness coefficient knl. Mass m1 of the master system is driven
by a time-dependent forcing um(t) = A sin(ωt) while the slave system is ac-
tuated by a control force us. The displacements of masses m1 and m2 of the
master system are denoted by zm

1 and zm
2 , respectively, and their respective

velocities by żm
1 and żm

2 . The displacements of the masses m1 and m2 of the
slave system are denoted by zs

1 and zs
2, respectively, and their respective ve-

locities by żs
1 and żs

2. Moreover, for both systems only the position z1 of mass
m1 is available for measurement. The master system can be written in the
form (1) and the slave system can be written in the form (2), with n = 4,
l = 2, m = k = q = 1 and the state vectors defined by xi =

[

zi
1 żi

1 zi
2 żi

2

]

,
i ∈ {m, s}. Moreover, Λi

1 = {xi | xi
3 ≥ d}, Λ2 = {xi | xi

3 < d}, i ∈ {m, s},

b1 =
[

0 0 0 knld
m2

]T

, b2 = 0, B =
[

0 1
m1

0 0
]T

, C =
[

1 0 0 0
]

,

A1 =









0 1 0 0
− k

m1

− c1+c2

m1

k
m1

c1

m1

0 0 0 1
k

m2

c1

m1

−k+knl

m2

− c1

m2









, (30)

and

Master PWA

Slave PWA

d

d

k

k

c1

c1

c2

c2

m1

m1

m2

m2

knl

knl

zm
1 zm

2

zs
1 zs

2

um(t)

us

Fig. 5: Master-slave system consisting of two two-degree-of-freedom mass-spring-
damper systems with one-sided restoring characteristics.
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A2 =









0 1 0 0
− k

m1

− c1+c2

m1

k
m1

c1

m1

0 0 0 1
k

m2

c1

m1

− k
m2

− c1

m2









. (31)

Now we adopt the controller design as in (25), see Theorem 2. We adopt the
following parameter setting: m1 = m2 = 1, c1 = c2 = 2, k = knl = 10,
d = 0.01, A = 0.02 and ω = 1.5. A solution to the LMIs (18) is represented
by

Pc =









115.7.0 −376.5 1.8 31.8
−376.5 1395.9 −17.1 −226.8

1.8 −17.1 51.7 −65.8
31.8 −226.8 −65.8 782.8









, K =
[

111.5 30.1 19.4 7.4
]

(32)

and a solution to the LMIs (20) is represented by

Po =









1575.2 −158.6 −737.6 −24.2
−158.6 69.1 −140.5 13.9
−737.6 −140.5 1639.5 −40.0
−24.2 13.9 −40.0 100.7









, L =









20.9676
110.1598
18.6509
−4.4789









. (33)

Herewith, all conditions of Theorem 2 are satisfied and synchronisation of
the systems is achieved. A simulation with the initial conditions xm(0) =
[

0 0.01 0 0.01
]T

for the master system, x̂
m(0) =

[

0.01 0.01 0.01 0.01
]T

for

the observer of the master system, xs(0) =
[

0.005 0 0.01 0.01
]T

for the slave

system and x̂
s(0) =

[

0 0 0 −0.01
]T

for the observer of the slave system is per-
formed. In Figures 6-9, the resulting time series for the states x1 to x4 of both
the master and the slave system are compared. Moreover, in Figures 10 and 11,

Fig. 6: Position of mass m1 for master
and slave systems: Synchronisa-
tion is achieved.

Fig. 7: Position of mass m2 for master
system and slave system: Syn-
chronisation is achieved.
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Fig. 8: Velocity of mass m1 for master
and slave systems: Synchronisa-
tion is achieved.

Fig. 9: Velocity of mass m2 for master
system and slave system: Syn-
chronisation is achieved.

Fig. 10: Synchronisation errors in posi-
tions of masses m1 and m2.

Fig. 11: Synchronisation errors in veloci-
ties of masses m1 and m2.

the corresponding synchronisation errors are displayed. Clearly, asymptotic
synchronisation is achieved.

6 Conclusions

In this paper, the controlled synchronisation problem for identical continu-
ous piecewise affine (PWA) systems is addressed. It is shown that due to the
switching nature of these systems conventional strategies for controlled syn-
chronisation, which are commonly based on stabilising the synchronisation
error dynamics, lead to highly complex stabilisation problems. This complex-
ity is due to, firstly, the fact that the error dynamics switches not only on
the state of the slave system but also on the state of the master system,
and, secondly, the fact that the error dynamics is time-dependent, where the
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time-dependency is due to the time-dependent state trajectories of the master
system (which are a priori unknown).

We consider the master-slave synchronisation problem for two PWA sys-
tems with an arbitrary number polyhedral cells. An observer-based output-
feedback control design solving this problem is proposed. The design of these
dynamic controllers is based on the idea of, on the one hand, rendering the
closed-loop slave system convergent by means of feedback (which means that
all its solutions converge to each other) and, on the other hand, guaranteeing
that the closed-loop slave system has a bounded solution corresponding to
zero synchronisation error. This implies that all solutions of the closed-loop
slave system converge to this bounded solution with zero synchronisation er-
ror. This convergence-based approach avoids explicitly dealing with building
up a stabilisation argument for the time-dependent switching synchronisation
error dynamics.

This result can be used to address the controlled synchronisation problem
for interconnected PWA systems with a tree-like structure. The results are il-
lustrated by application to the master-slave synchronisation of two mechanical
systems with one-sided restoring characteristics.
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