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Alternative Methods in Spectral Factorization.
A Modeling and Design Tool

Spectral factorization can be used to recover the complex transfer function of a linear, causal, stable, minimum-phase
system from merely its amplitude information. Two different approaches are presented, resulting in two consistent ex-
pressions for the complex transfer function. Firstly, an approach using Fourier theory is followed (PAPOULIS, 1977;
PRIESTLEY, 1981). Secondly, a new approach using potential theory results is presented. Spectral factorization can be
successfully used as a modeling tool. Moreover, its capability to serve as a design tool is emphasized. These fields of
application are illustrated by means of examples.
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1. Introduction

Let H(s), s € C, be the Laplace transform of the impulse response h(t), t € R, of a causal and stable, linear time-
invariant system. Furthermore, the system satisfies the minimum phase property, i.e., the inverse system is causal and
stable as well. So, a negative real number a exists such that H(s) is analytic and has no zeros in the domain
G = {s € €| Re(s) > a}. Let us introduce the function

Alw)=H(jo) H' (jo) = |H(jo), o €R, (1)

where H* is the complex conjugate of H. In the following sections we show that the transfer function H (s) of a causal
and stable system satisfying the minimum-phase property is uniquely determined by the value of arg(H(0)) and the
function A(w) in (1) provided that A(w) satisfies the Paley-Wiener condition
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We discuss two alternative constructions of H(s), given the function A(w) and arg(H(0)). In section 2, we describe a

construction using Fourier theory, whereas in section 3 a construction based on two-dimensional potential theory is

presented. In section 4, the method of spectral factorization is applied to illustrate its aptitude as a modeling and

design tool. Some conclusions are presented in section 5.

2. Construction of the transfer function H(s) using Fourier theory

Let us consider the function W(s):=H'(s)/H(s), s € G, which is analytic on the domain G. Hence, the function

s R V(s) .
V(s):= [ W(E) d, with contour in G, is also analytic on G. If we define H(s):= H(0) Z( v H(s) =1 on G and, there-
fore, O s
H(s) = eV OHBOR sHO) Z o) g (3)
with ¢(s) analytic on G and unique modulo 27j. Furthermore, in view of (1),
Alw) = Ri@) or Re(c(jw)) =1 n(A(w)), o€R. (4)

In view of (3) the problem to be solved consists of the construction of an analytic function ¢(s) on G satisfying (4) and
Im(¢(0)) = arg(H(0)) . ()

We show that ¢(s) on G is uniquely determined by (4) and (5) modulo 27j. As stated in the introduction, this is done
in the present section using Fourier theory.
Hereto, we transform the complex s-plane into the complex z-plane using the Mébius transformation
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The imaginary axis in the s-plane corresponds to the unit circle in the z-plane such that

% arctan(e) w€R and z:e’9<—>s:fjtan5, —r<O<m. (7)
Furthermore, the half plane Re(s) > 0 corresponds to the interior domain |z| < 1 of the unit circle. We translate the
problem described in (4) and (5) from the s-plane to the z-plane as follows. Construct a function C(z), which is
analytic for |z| < 1, such that

S=jw—z=e

() =Re(C(e?)) :% In <A (tan g)) , —m<O<m, and arg(H(0))=Im(C(1)). (8)

The relation between ¢(s) and C(z) follows from (6) and (7):

c(s):C(l_s), Re(s) > 0, C’(z):c(l_Z), 4 <1,

1+s 1+z2

(9)
) , 6
c(jow) = C(e~% arctan(e)y w€R, and C(’) =c (—j tan 5) , —r<f<um.
T [o¢)
) " [In A(w)] .
It follows from the Paley-Wiener condition (2) that | |r(8)| d6 = Tro? dw # co. So, we can write 7(0) as a
o0 —7T —0oQ
Fourier series: (0) = > 7, ¢ —x < 0 < 7, where the Fourier coefficients r,,, n = 0, +1, 2 ..., are given by
1 3 1 T
n=g- j r(0) e "% dh = — j 7(8) cos (nd) db, (10)
-
since r(0) is real and even. Hence, r, = r_, € R, n =0, £1, £2,.... The function
00
Cz) =ro+2, 2"+ jarg(H(0)), || < 1, (11)
n=1

is analytic for |z| < 1, and
Re(C(e)) =1 [C(e?) + C* ()] =1 [ro 42 e g2 kel = S g, e = (),
n=1 n=1 n=—00 (12)
Im(C(1)) = arg(H(0)).

So, the function C(z) in (11) satisfies (8) and therefore C(z) is the unique solution of the problem described in (8).
We now summarize the result of this section. Use (3), (9), and (11) to conclude

00 1 o n
H(s) =exp (7‘0 +25m, (1—_._!:> +3J arg(H(O))) , Re(s) > 0. (13)
n=1
Use (7) and (13) to obtain
H(jw) = exp <ro +2 3 p, e Hnactan(@) 4 ; arg(H(O))) , w <€ R. (14)
n=1
Finally, from (8) and (10) we get
R POV (nf) do (15)
=g [ In an - cos(n ,
0
for n =0,1,2,.... The numerical calculation of the coefficients r, can be performed efficiently using a Fast-Fourier-

Transform (FFT) algorithm.

3. Construction of the transfer function H(s) by methods from potential theory

In this section, we discuss an alternative construction of the transfer function H(s) starting with the problem for-
mulated in (4) and (5). Write c(s) = c(z + jy) = u(z,y) + jv(x,v), (z,y) € R?, where u(z,y) = Re(c(s)) and v(z,y)
=Im(c(s)). According to (4) and (5) we have

u(0,y) = % In(A(y)), y€R, and v(0,0)=arg(H(0)). (16)
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Since c(s) is analytic for Re(s) > 0, the function u(x,y) is harmonic in the domain D = {(z,y) € R*|z > 0}, i.e.,
u satisfies the two-dimensional potential (Laplace) equation on D (SCHWARTZ et al., 1960). The harmonic function u
is given on the boundary of D, i.e. on the y-axis; see (16). Using Green’s function, we can solve the Dirichlet problem
to calculate the harmonic function u on D from its values on the boundary of D. From standard calculations we obtain

wawz—jumm%§mwmwm, (z.5) € D. (17)

—0o0

Herein, Green’s function G,(&,#;2,y) in the point (&,#) corresponding to the source point (z,y) € D and vanishing on
the boundary of D is given by

) = I E-2"+(n-y’ .
G (&may) =-—1 <(§+x)2+(n_y)2>, (z,y) € D. (18)

4

From (16), (17), and (18) we get
1T z In(A(y))

u(z,y) = — o y)2 dn, (z,y) € D. (19)

2
It follows from the Paley-Wiener condition (2) that the integral in (19) converges for all (x,y) € D. Using the Cauchy-
Riemann differential equations to calculate v(z,y) = Im(c(s)) from u(x,y) = Re(c(s)), we obtain

e =gy [ P g, @yen, (20)

in which § follows from (16), i.e. § = arg(H(0)). Using elementary calculations, we conclude that ¢(s) = ¢(z + jy) can
be expressed as

c(s)

1 [ (mA@n+y)  gn A(y+n)
J ( ln(

T om 1+ 2 22+ A(y—n))) dn + j arg(H(0)), (z,y) € D. (21)

From (3) and (21) we conclude

H(jew) = o0%) = /A{@) exp 2i J % h(%) dy+jarg(HO) |,  weR. (22)
0

4. Applications

In this section, two applications of the spectral factorization method will be presented. The first application will mainly
illuminate the modeling potential of the method. The second application will illustrate its suitability to tackle design-
related problems.

It should be noted that the input data for the spectral factorization method concern the amplitude of the trans-
fer function. In practice, these data, originating from experiments or numerical simulations, will mostly have a limited
level of accuracy due to statistical, numerical, or measurement errors. In the following examples, however, the ampli-
tude data will be taken from an existing, exact, analytical model. This enables us to isolate the numerical error that
the spectral factorization algorithm introduces in its application as a modeling tool. In the construction of the transfer
function using Fourier theory (see section 2), these errors are due to, firstly, the limited accuracy of the FFT-algorithm
that is used to compute the coefficients r, in (15) and, secondly, the finite approximation of the sum in (14). When
applying the construction based on potential theory results, the error stems from the numerical approximation of the
integral in (22). The first example will show that these errors can be ensured to be very small. In general, the errors in
the available amplitude data will be significantly larger than the numerical errors introduced by the factorization algo-
rithm. Furthermore, data concerning the amplitude of the transfer function will generally (at least in modeling applica-
tions) be available only up to a certain frequency wm... However, the spectral factorization method requires data up to
very high frequencies (theoretically up to infinitely high frequencies). Consequently, amplitude data will have to be
generated artificially for @ > @p.. In general, the order of the transfer function can be estimated from the data for
® < Wpax. FOr @ > 0y the former data can be supplemented with data following the correct order. It should be
noted that use of the correct order is crucial with respect to the accuracy of the spectral factorization estimate. In the
following examples, however, exact amplitude information is available up to infinite frequencies. The actual results of
the following examples are computed using the method described in section 3. Application of the algorithm based on
Fourier theory leads to completely consistent results.
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Fig. 1. Comparison of H,(jo) and H,(jw) in a Nyquist plot Fig. 2. The error |H,(jw) — H,(jw)]

In the first example, a single-degree-of-freedom, linear, causal, stable, minimum-phase system is considered with the
frequency response function H(jw) depending upon the angular frequency w as follows: H,(jo) = (w2 — »? +2 jCw,w) "
Here, w,, is the undamped eigenfrequency and ¢ is the dimensionless, viscous damping coefficient. The amplitude infor-
mation used in the spectral factorization algorithm is given by A,(w) = |H,(jw)|*. Using data taken from A,(w), the
spectral factorization algorithm is applied using a convergence criterion for the computation of the integral in (22).
This results in an estimate H,(jo) for the frequency response function. In Fig. 1 both H,(jw) and ﬁv(ja)) are depicted
in a Nyquist plot for discrete @ values. Fig. 2 shows that the error |H,(jw) — H,(jw)| is very small and confirms the
high quality of the spectral factorization estimate FL,( jw). Moreover, the error, displayed in Fig. 2, can be reduced even
further when more numerical effort is done to estimate the integral in (22) with higher accuracy. This example clearly
illustrates the modeling qualities of the spectral factorization method. It should be noted that, in the application of
(22), the error |H,(jw)| — |H,(jow)| is absent by nature of the reconstruction.

In the second example, the viscous damping (of the first example) is replaced by hysteretic damping. The fre-
quency response function is then given by Hj(jw) = (0? — »® + jhd)fl. CRANDALL (1997) has shown that this system
is non-causal; the response anticipates the excitation. It is, therefore, clear that the complex frequency response func-
tion Hj,(jw), produced by the spectral factorization algorithm, will absolutely not resemble Hj,(jw), since Hy(jw) repre-
sents a causal system. So, here spectral factorization is not used as modeling technique but as a tool to design a linear,
stable, causal, minimum-phase system that is identical to Hy(jw) as far as the amplitude is concerned. Fig. 3 shows
both Hp(jw) and H, (jw) in a Nyquist plot and clearly visualizes the difference between these frequency response func-
tions. Since the difference is merely a matter of phase, Fig. 4 depicts the phase ¢ of both frequency response functions.
Of course, Figs. 3 and 4 raise interesting questions towards explaining the actual difference between Hj(w) and I‘:Th(a)).
However, these questions lie beyond the scope of this paper.
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Fig. 3. Comparison of Hj(jw) and Hp(jw) in a Nyquist plot Fig. 4. Comparison of phase of Hy,(jw) and Hy(jw)

5. Conclusions

This paper gives a thorough and detailed description and evaluation of the spectral factorization method. Its ability to
recover the complex transfer function of a linear causal, stable, minimum-phase system (including phase information)
from merely amplitude information is illuminated.
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Two different expressions concerning this transfer function are derived. Firstly, a solution path using Fourier
theory is followed. Secondly, a new approach, using potential theory results, is introduced. These two results are found
to be consistent when applying their resulting expressions.

Furthermore, it needs to be stressed that the possible applications are twofold. Firstly, spectral factorization can
be used as a modeling tool; namely, the complex transfer function of an existing system can be recovered given input
and output auto power spectra. Secondly, it can be successfully used as a tool to design a linear, causal, stable, mini-
mum-phase system given the desired spectral characteristics of the system to be designed. Both fields of applications

are illustrated by means of examples.

Moreover, it should be mentioned that the results can be forced to high levels of accuracy at rather low computa-
tional costs. Consequently, the accuracy of the result will generally not depend on the numerical errors of the spectral
factorization algorithm, but the accuracy of the used amplitude information will be of major importance.
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