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Alternative Methods in Spectral Factorization.
A Modeling and Design Tool

Spectral factorization can be used to recover the complex transfer function of a linear, causal, stable, minimum-phase
system from merely its amplitude information. Two different approaches are presented, resulting in two consistent ex-
pressions for the complex transfer function. Firstly, an approach using Fourier theory is followed ðPapoulis, 1977;
Priestley, 1981Þ. Secondly, a new approach using potential theory results is presented. Spectral factorization can be
successfully used as a modeling tool. Moreover, its capability to serve as a design tool is emphasized. These fields of
application are illustrated by means of examples.
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1. Introduction

Let HðsÞ, s 2 C, be the Laplace transform of the impulse response hðtÞ, t 2 R, of a causal and stable, linear time-
invariant system. Furthermore, the system satisfies the minimum phase property, i.e., the inverse system is causal and
stable as well. So, a negative real number a exists such that HðsÞ is analytic and has no zeros in the domain
G ¼ fs 2 C j ReðsÞ > ag. Let us introduce the function

AðwÞ ::¼HðjwÞ H*ðjwÞ ¼ jHðjwÞj2 ; w 2 R ; ð1Þ

where H* is the complex conjugate of H. In the following sections we show that the transfer function HðsÞ of a causal
and stable system satisfying the minimum-phase property is uniquely determined by the value of argðHð0ÞÞ and the
function AðwÞ in (1) provided that AðwÞ satisfies the Paley-Wiener condition

ð1

1

jln AðwÞj
1 þ w2

dw 6¼ 1 : ð2Þ

We discuss two alternative constructions of HðsÞ, given the function AðwÞ and argðHð0ÞÞ. In section 2, we describe a
construction using Fourier theory, whereas in section 3 a construction based on two-dimensional potential theory is
presented. In section 4, the method of spectral factorization is applied to illustrate its aptitude as a modeling and
design tool. Some conclusions are presented in section 5.

2. Construction of the transfer function H(s) using Fourier theory

Let us consider the function WðsÞ ::¼H 0ðsÞ=HðsÞ, s 2 G, which is analytic on the domain G. Hence, the function

V ðsÞ ::¼
Ðs
0

WðxÞ dx, with contour in G, is also analytic on G. If we define ĤHðsÞ ::¼Hð0Þ eV ðsÞ

HðsÞ, ĤHðsÞ ¼ 1 on G and, there-
fore,

HðsÞ ¼ eV ðsÞþlnjHð0Þjþj argðHð0ÞÞ ::¼ ecðsÞ ; s 2 G ; ð3Þ

with cðsÞ analytic on G and unique modulo 2pj. Furthermore, in view of (1),

AðwÞ ¼ e2 ReðcðjwÞÞ or ReðcðjwÞÞ ¼ 1
2 lnðAðwÞÞ ; w 2 R : ð4Þ

In view of (3) the problem to be solved consists of the construction of an analytic function cðsÞ on G satisfying (4) and

Imðcð0ÞÞ ¼ argðHð0ÞÞ : ð5Þ

We show that cðsÞ on G is uniquely determined by (4) and (5) modulo 2pj. As stated in the introduction, this is done
in the present section using Fourier theory.

Hereto, we transform the complex s-plane into the complex z-plane using the M€oobius transformation

z ¼ 1 
 s

1 þ s
; s ¼ 1 
 z

1 þ z
: ð6Þ
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The imaginary axis in the s-plane corresponds to the unit circle in the z-plane such that

s ¼ jw $ z ¼ e
2j arctanðwÞ ; w 2 R and z ¼ ejq $ s ¼ 
j tan
q

2
; 
p < q < p : ð7Þ

Furthermore, the half plane ReðsÞ > 0 corresponds to the interior domain jzj < 1 of the unit circle. We translate the
problem described in (4) and (5) from the s-plane to the z-plane as follows. Construct a function CðzÞ, which is
analytic for jzj < 1, such that

rðqÞ ::¼ReðCðejqÞÞ ¼ 1

2
ln A tan

q

2

� �� �
; 
p < q < p ; and argðHð0ÞÞ ¼ ImðCð1ÞÞ : ð8Þ

The relation between cðsÞ and CðzÞ follows from (6) and (7):

cðsÞ ¼ C
1 
 s

1 þ s

� �
; ReðsÞ > 0 ; CðzÞ ¼ c

1 
 z

1 þ z

� �
; jzj < 1 ;

cðjwÞ ¼ Cðe
2j arctanðwÞÞ ; w 2 R ; and CðejqÞ ¼ c 
j tan
q

2

� �
; 
p < q < p :

ð9Þ

It follows from the Paley-Wiener condition (2) that

ðp

p

jrðqÞj dq ¼
ð1


1

jln AðwÞj
1 þ w2

dw 6¼ 1. So, we can write rðqÞ as a

Fourier series: rðqÞ ¼
P1

n¼
1
rn ejnq, 
p < q < p, where the Fourier coefficients rn, n ¼ 0, �1, �2 ; . . . ; are given by

rn ¼ 1

2p

ðp

p

rðqÞ e
njq dq ¼ 1

p

ðp
0

rðqÞ cos ðnqÞ dq ; ð10Þ

since rðqÞ is real and even. Hence, rn ¼ r
n 2 R, n ¼ 0; �1; �2; . . .. The function

CðzÞ ¼ r0 þ 2
P1
n¼1

rnz
n þ j argðHð0ÞÞ ; jzj < 1 ; ð11Þ

is analytic for jzj < 1, and

ReðCðejqÞÞ ¼ 1
2 ½CðejqÞ þ C*ðejqÞ� ¼ 1

2 r0 þ 2
P1
n¼1

rn ejnq þ r0 þ 2
P1
n¼1

r*n e
jnq

� �
¼

P1
n¼
1

rn ejnq ¼ rðqÞ ;

ImðCð1ÞÞ ¼ argðHð0ÞÞ :
ð12Þ

So, the function CðzÞ in (11) satisfies (8) and therefore CðzÞ is the unique solution of the problem described in (8).
We now summarize the result of this section. Use (3), (9), and (11) to conclude

HðsÞ ¼ exp r0 þ 2
P1
n¼1

rn
1 
 s

1 þ s

� �n

þ j argðHð0ÞÞ
� �

; ReðsÞ > 0 : ð13Þ

Use (7) and (13) to obtain

HðjwÞ ¼ exp r0 þ 2
P1
n¼1

rn e
2jn arctanðwÞ þ j argðHð0ÞÞ
� �

; w 2 R : ð14Þ

Finally, from (8) and (10) we get

rn ¼ 1

2p

ðp
0

ln A tan
q

2

� �� �
cosðnqÞ dq ; ð15Þ

for n ¼ 0; 1; 2; . . .. The numerical calculation of the coefficients rn can be performed efficiently using a Fast-Fourier-
Transform (FFT) algorithm.

3. Construction of the transfer function H(s) by methods from potential theory

In this section, we discuss an alternative construction of the transfer function HðsÞ starting with the problem for-
mulated in (4) and (5). Write cðsÞ ¼ cðxþ jyÞ ¼ uðx; yÞ þ jvðx; yÞ, ðx; yÞ 2 R2, where uðx; yÞ ¼ ReðcðsÞÞ and vðx; yÞ
¼ ImðcðsÞÞ. According to (4) and (5) we have

uð0; yÞ ¼ 1
2 lnðAðyÞÞ ; y 2 R ; and vð0; 0Þ ¼ argðHð0ÞÞ : ð16Þ
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Since cðsÞ is analytic for ReðsÞ > 0, the function uðx; yÞ is harmonic in the domain D ¼ fðx; yÞ 2 R2 j x > 0g, i.e.,
u satisfies the two-dimensional potential (Laplace) equation on D (Schwartz et al., 1960). The harmonic function u
is given on the boundary of D, i.e. on the y-axis; see (16). Using Green’s function, we can solve the Dirichlet problem
to calculate the harmonic function u on D from its values on the boundary of D. From standard calculations we obtain

uðx; yÞ ¼ 

ð1


1

uð0; hÞ @Gr

@x
ð0; h;x; yÞ dh ; ðx; yÞ 2 D : ð17Þ

Herein, Green’s function Grðx; h;x; yÞ in the point ðx; hÞ corresponding to the source point ðx; yÞ 2 D and vanishing on
the boundary of D is given by

Grðx; h;x; yÞ ¼ 1

4p
ln

ðx 
 xÞ2 þ ðh 
 yÞ2

ðx þ xÞ2 þ ðh 
 yÞ2

 !
; ðx; yÞ 2 D : ð18Þ

From (16), (17), and (18) we get

uðx; yÞ ¼ 1

2p

ð1

1

x lnðAðhÞÞ
x2 þ ðh 
 yÞ2

dh ; ðx; yÞ 2 D : ð19Þ

It follows from the Paley-Wiener condition (2) that the integral in (19) converges for all ðx; yÞ 2 D. Using the Cauchy-
Riemann differential equations to calculate vðx; yÞ ¼ ImðcðsÞÞ from uðx; yÞ ¼ ReðcðsÞÞ, we obtain

vðx; yÞ ¼ 1

2p

ð1

1

ðh 
 yÞ lnðAðhÞÞ
x2 þ ðh 
 yÞ2

dh þ b ; ðx; yÞ 2 D ; ð20Þ

in which b follows from (16), i.e. b ¼ argðHð0ÞÞ. Using elementary calculations, we conclude that cðsÞ ¼ cðxþ jyÞ can
be expressed as

cðsÞ ¼ 1

2p

ð1

1

lnðAðxh þ yÞÞ
1 þ h2

þ jh

x2 þ h2
ln

Aðyþ hÞ
Aðy
 hÞ

� �� �
dh þ j argðHð0ÞÞ ; ðx; yÞ 2 D : ð21Þ

From (3) and (21) we conclude

HðjwÞ ¼ ecðjwÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
AðwÞ

p
exp

j

2p

ð1
0

1

h
ln

Aðw þ hÞ
Aðw 
 hÞ

� �
dh þ j argðHð0ÞÞ

0
@

1
A ; w 2 R : ð22Þ

4. Applications

In this section, two applications of the spectral factorization method will be presented. The first application will mainly
illuminate the modeling potential of the method. The second application will illustrate its suitability to tackle design-
related problems.

It should be noted that the input data for the spectral factorization method concern the amplitude of the trans-
fer function. In practice, these data, originating from experiments or numerical simulations, will mostly have a limited
level of accuracy due to statistical, numerical, or measurement errors. In the following examples, however, the ampli-
tude data will be taken from an existing, exact, analytical model. This enables us to isolate the numerical error that
the spectral factorization algorithm introduces in its application as a modeling tool. In the construction of the transfer
function using Fourier theory (see section 2), these errors are due to, firstly, the limited accuracy of the FFT-algorithm
that is used to compute the coefficients rn in (15) and, secondly, the finite approximation of the sum in (14). When
applying the construction based on potential theory results, the error stems from the numerical approximation of the
integral in (22). The first example will show that these errors can be ensured to be very small. In general, the errors in
the available amplitude data will be significantly larger than the numerical errors introduced by the factorization algo-
rithm. Furthermore, data concerning the amplitude of the transfer function will generally (at least in modeling applica-
tions) be available only up to a certain frequency wmax. However, the spectral factorization method requires data up to
very high frequencies (theoretically up to infinitely high frequencies). Consequently, amplitude data will have to be
generated artificially for w > wmax. In general, the order of the transfer function can be estimated from the data for
w < wmax. For w > wmax the former data can be supplemented with data following the correct order. It should be
noted that use of the correct order is crucial with respect to the accuracy of the spectral factorization estimate. In the
following examples, however, exact amplitude information is available up to infinite frequencies. The actual results of
the following examples are computed using the method described in section 3. Application of the algorithm based on
Fourier theory leads to completely consistent results.
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In the first example, a single-degree-of-freedom, linear, causal, stable, minimum-phase system is considered with the
frequency response function HðjwÞ depending upon the angular frequency w as follows: HvðjwÞ ¼ ðw2

n 
 w2 þ 2jzwnwÞ
1.
Here, wn is the undamped eigenfrequency and z is the dimensionless, viscous damping coefficient. The amplitude infor-
mation used in the spectral factorization algorithm is given by AvðwÞ ¼ jHvðjwÞj2. Using data taken from AvðwÞ, the
spectral factorization algorithm is applied using a convergence criterion for the computation of the integral in (22).
This results in an estimate ĤHvðjwÞ for the frequency response function. In Fig. 1 both HvðjwÞ and ĤHvðjwÞ are depicted
in a Nyquist plot for discrete w values. Fig. 2 shows that the error jĤHvðjwÞ 
HvðjwÞj is very small and confirms the
high quality of the spectral factorization estimate ĤHvðjwÞ. Moreover, the error, displayed in Fig. 2, can be reduced even
further when more numerical effort is done to estimate the integral in (22) with higher accuracy. This example clearly
illustrates the modeling qualities of the spectral factorization method. It should be noted that, in the application of
(22), the error jĤHvðjwÞj 
 jHvðjwÞj is absent by nature of the reconstruction.

In the second example, the viscous damping (of the first example) is replaced by hysteretic damping. The fre-
quency response function is then given by HhðjwÞ ¼ ðw2

n 
 w2 þ jhdÞ
1. Crandall (1997) has shown that this system
is non-causal; the response anticipates the excitation. It is, therefore, clear that the complex frequency response func-
tion ĤHhðjwÞ, produced by the spectral factorization algorithm, will absolutely not resemble HhðjwÞ, since ĤHhðjwÞ repre-
sents a causal system. So, here spectral factorization is not used as modeling technique but as a tool to design a linear,
stable, causal, minimum-phase system that is identical to HhðjwÞ as far as the amplitude is concerned. Fig. 3 shows
both HhðjwÞ and ĤHhðjwÞ in a Nyquist plot and clearly visualizes the difference between these frequency response func-
tions. Since the difference is merely a matter of phase, Fig. 4 depicts the phase f of both frequency response functions.
Of course, Figs. 3 and 4 raise interesting questions towards explaining the actual difference between HhðwÞ and ĤHhðwÞ.
However, these questions lie beyond the scope of this paper.

5. Conclusions

This paper gives a thorough and detailed description and evaluation of the spectral factorization method. Its ability to
recover the complex transfer function of a linear causal, stable, minimum-phase system (including phase information)
from merely amplitude information is illuminated.
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Fig. 1. Comparison of ĤHvðjwÞ and HvðjwÞ in a Nyquist plot Fig. 2. The error jĤHvðjwÞ 
HvðjwÞj

Fig. 3. Comparison of ĤHhðjwÞ and HhðjwÞ in a Nyquist plot Fig. 4. Comparison of phase of ĤHhðjwÞ and HhðjwÞ



Two different expressions concerning this transfer function are derived. Firstly, a solution path using Fourier
theory is followed. Secondly, a new approach, using potential theory results, is introduced. These two results are found
to be consistent when applying their resulting expressions.

Furthermore, it needs to be stressed that the possible applications are twofold. Firstly, spectral factorization can
be used as a modeling tool; namely, the complex transfer function of an existing system can be recovered given input
and output auto power spectra. Secondly, it can be successfully used as a tool to design a linear, causal, stable, mini-
mum-phase system given the desired spectral characteristics of the system to be designed. Both fields of applications
are illustrated by means of examples.

Moreover, it should be mentioned that the results can be forced to high levels of accuracy at rather low computa-
tional costs. Consequently, the accuracy of the result will generally not depend on the numerical errors of the spectral
factorization algorithm, but the accuracy of the used amplitude information will be of major importance.
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