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Chapter 1

Introduction

Abstract – In this introductory chapter, the research of this thesis is motivated. In particular,

a different perspective on high performance control of linear (motion) systems is proposed by

exploiting hybrid controllers instead of linear controllers. To motivate this paradigm shift

towards hybrid control, linear control of linear (motion) systems together with its advantages

and disadvantages will be (briefly) discussed in Section 1.1. In Section 1.2, the use of hybrid

control for linear (motion) systems will be discussed along with the potential advantages that

hybrid control can offer compared to linear control. The objectives and contributions of this

thesis are presented in Section 1.3, followed by the outline of this thesis in Section 1.4.

1.1 Linear control of linear motion systems

High-tech mechatronic systems, such as wafer scanners, printers, pick-and-place
machines, electron microscopes, etc., have to perform their (motion) tasks with
increasingly high performance demands on precision, throughput, etc., thereby
requiring the utmost of the current mechatronic designs. In order to meet these
stringent performance requirements, feedback/feedforward controllers are essen-
tial in any of these high-tech applications. To allow for a good interaction with
feedback/feedforward controllers, the (mechanical) design of these systems is
highly optimized such that their dynamic behavior can be regarded as approxi-
mately linear. Hence, in the scope of such applications linear (motion) systems
form an important class of (motion) systems, which motivates the focus on this
type of systems in this thesis.

The vast majority of linear (motion) systems are being controlled by lin-
ear proportional-integral-derivative (PID) type controllers, which are based on
the present (P), past (I) and future (D) control error, see, e.g., Åström and
Hägglund (2001), and can easily be designed using data-based frequency-domain
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loop-shaping techniques, see Franklin et al. (2006); Skogestad and Postlethwaite
(2005); Steinbuch and Norg (1998). In fact, in industry there is a strong demand
for such data-based techniques for controller design and analysis, i.e., employ-
ing measured signals instead of parametric models, see, e.g., Steinbuch et al.
(2005). It is therefore that loop-shaping techniques are widely used in industry
as they allow the control engineer to design linear controllers for both stabil-
ity and performance using the (measured) frequency response of the open-loop
transfer function (by means of a Nyquist diagram), or via closed-loop frequency
response functions such as the sensitivity function S and the complementary
sensitivity function T . Although linear controllers can be easily designed us-
ing loop-shaping techniques and the linear plant models can be rather easily
obtained from experiments, the resulting linear (PID-like) controllers have the
drawback that they suffer from inherent fundamental limitations leading to in-
evitable control design trade-offs, see Freudenberg et al. (2000); Seron et al.
(1997). For instance, it is well-known that |S| and |T | cannot both be small at
the same frequency, which leads to trade-offs between desirable control properties
such as disturbance attenuation (S small) and noise reduction (T small) at each
frequency. This is closely related to one of the most well-known fundamental
limitations in classical linear control theory, namely the ‘waterbed-effect’. The
waterbed-effect states that increasing the bandwidth of an linear time-invariant
(LTI) control system will improve the low-frequency (frequencies below the band-
width) tracking and disturbance attenuation properties, but it will also increase
the sensitivity to high-frequency (frequencies above the bandwidth) disturbances
and measurement noise. In linear systems, the waterbed-effect is inevitable and
holds irrespective of which method is used to design the LTI controller, be it via
classical loop-shaping techniques or using a systematic LTI controller synthesis
like an H∞-design, see, e.g., Zhou et al. (1996).

A second fundamental limitation is imposed by Bode’s gain-phase relation-
ship, see, e.g., Freudenberg et al. (2000); Seron et al. (1997), which states that
for an LTI stable minimum phase transfer function, the phase of its frequency
response function (FRF) is uniquely determined by the magnitude of the fre-
quency response and vice versa. As a result, the gain and phase properties of a
closed-loop control system cannot be designed independently from each other,
which often results in inevitable design conflicts based on the desired perfor-
mance specifications set by the control engineer. For example, it is impossible
to add integral action to a feedback control system, typically included to achieve
zero steady-state errors, without introducing the negative effect of phase lag as
well. Another fundamental limitation, which applies to the majority of motion
systems, is given by the fact that for a stable closed-loop system, the error step
response necessarily overshoots if the open-loop transfer function of the linear
plant with LTI controller contains a double integrator, see, e.g., (Seron et al.,
1997, Theorem 1.3.2).

Due to the ever increasing performance demands on speed and accuracy of
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Fig. 1.1. Schematic representation of two different performance view-
points: (a) transient performance and (b) steady-state performance.

high-tech mechatronic systems, the fundamental limitations in LTI control, as-
sociated with the inevitable design trade-offs mentioned above, are becoming
serious barriers for the design of controllers meeting future performance specifi-
cations. Therefore, this thesis proposes a paradigm shift towards a larger class of
controllers, namely hybrid/nonlinear controllers, in order to achieve performance
goals that are not achievable by LTI control. In Section 1.2, this controller class
will be introduced.

Let us first briefly discuss two different viewpoints on performance that are
taken in this thesis: Steady-state performance and transient performance. The
latter is often expressed in terms of performance measures such as overshoot, rise-
time and settling-time, and quantified in terms of the time-domain response to
step-inputs (or step-disturbances) acting on the system, see Fig. 1.1(a). Steady-
state performance is quantified based on the steady-state response of the system
due to external perturbations acting on the system, after transient effects have
vanished, see Fig. 1.1(b). In the linear context, steady-state performance can
easily be assessed analytically through frequency response functions, such as, for
example, the sensitivity and complementary sensitivity functions. However, this
result relies on the superposition principle and the property that a linear sta-
ble system exhibits, for each bounded disturbance, a unique bounded globally
asymptotically stable solution, to which all solutions converge, irrespective of
the initial condition. Unfortunately, such favorable properties do not extend to
the hybrid/nonlinear domain in general. In fact, for arbitrary disturbances non-
linear systems generally exhibit multiple steady-state solutions, which hampers
an accurate and unique performance assessment. As a result, one often resorts
to use performance measures in terms of bounds on norms of the state/output
evolution, such as the ones based on the ISS-gain, see Sontag and Wang (1995)
and the L2-gain, see van der Schaft (1999). In this respect, note that both these
performance measures apply to linear systems as well (in the linear context the
L2-gain is equal to the so-called H∞-norm).

In optimal control for linear (motion) systems, one is interested in finding a
controller that results in minimizing a particular norm, e.g., H2-, H∞- and L1
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are commonly used, of a transfer function from a certain input signal to a certain
output signal. In Stoorvogel (1995), the L1 optimal control problem is considered
for linear systems in which the author shows that a nonlinear controller can
outperform a linear controller when minimizing the L1-norm. However, for H∞-
based techniques (targeting the worst-case L2-gain from inputs to outputs) for
LTI systems, it is known that there exists no nonlinear (possibly time-varying)
controller which yields a lower L2-gain than the optimal linear controller, see
Khargonekar and Poolla (1986). Moreover, an H∞-design guarantees that the
L2-gain of a system is smaller than a certain value for whole classes of disturbance
and reference signals, which may be a too conservative view on performance
for the particular disturbance and reference signals acting on the system under
study. In addition, disturbance characteristics or performance specifications
may be non-stationary, e.g., during different phases of a motion task or different
modes of operation of a positioning system, undermining the optimality of a
linear control solution. Hence, it is therefore highly important to formulate
appropriate (and specific) performance measures that can discriminate between
linear and hybrid controllers based on the practical control design problem at
hand.

The following example considers the working principle of an industrial pick-
and-place machine in order to motivate that fundamental limitations in LTI
control may lead to several controller design trade-offs.

Example 1.1. Pick-and-place machines are used to place electrical components,
such as resistors, capacitors, integrated circuits etc., with a high speed and high
precision on a printed circuit board (PCB). These PCBs are, in turn, used in a
large variety of applications, such as, high-end consumer electronics, computers,
medical equipment, etc. After the pick-and-place machine has placed the PCB
within the working area of the placement head, the working principle of the place-
ment head can be separated into three main steps. In the first step the placement
head picks up an electrical component using, for instance, a vacuum pipette. In
the second step, the placement head is navigated to a pre-described position on
the PCB, where it should place the component. Finally, in the third step, the
component is placed on the PCB as soon as all positioning tolerances are met.
Based on the working principle, the following design tradeoffs for control can be
formulated.

• Steady-state performance versus (fast) convergence to an error
bound. In order to achieve an optimal machine throughput, it is important
to start the third step as soon as possible. Namely, the actual placement of
the electrical component on the PCB in the third step can only be finalized
when the closed-loop error, related to transients induced in step two, has
converged within a pre-described error bound. Due to the presence of ex-
ternal disturbances, integral action in the controller is necessary in order
to achieve zero steady-state errors. However, this comes inevitably at the
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cost of a decrease in transient performance (in terms of overshoot to step
inputs, and, hence, a slower convergence to the specified error bound).

• Different modes of operation. The modes of operation can roughly
be divided into two categories: A standstill mode (step one and three) re-
quiring a high accuracy, and a fast-motion mode (step two) requiring a
high velocity (throughput). During standstill, a low bandwidth controller
is preferable in order not to amplify high-frequency disturbances; however,
during fast movements, a high-bandwidth controller is preferable to achieve
good tracking performance.

Example 1.1 pinpoints/indicates two relevant situations in which LTI feed-
back control inevitably results in a compromise, and thus a suboptimal control
solution. This calls for allowing a larger class of controllers beyond the LTI
strategies to provide improved control solutions that meet the future specifica-
tions. Therefore, in this thesis we consider a larger class of controllers being
hybrid/nonlinear controllers. The main objective of this thesis is to explore how
such controllers can offer the desired performance improvements (compared to
LTI control).

1.2 Hybrid control for linear (motion) systems

Hybrid controllers consist of a dynamical system with interacting continuous
and discrete (or non-smooth) components. To a control engineer accustomed to
linear techniques, it might be counterintuitive to introduce nonlinearities into
an otherwise smooth (and linear) feedback control system. However, the de-
sire to push the performance of a linear control system beyond the achievable
boundaries, and thus relieving the the fundamental limitations imposed by LTI
feedback control motivate non-conventional and hybrid control solution. Indeed,
the use of nonlinear controller components (that are intentionally designed by
us as control engineers), offers the necessary design freedom to overcome these
fundamental limitations.

In literature, numerous results have been presented that show the potential
of a hybrid/nonlinear controller to outperform LTI feedback controllers for linear
(motion) systems. This is highlighted in the concise literature overview below.

One of the most well-known hybrid control strategies to improve the transient
performance of linear (motion) systems is reset control. A reset controller is an
LTI control system of which the state, or a subset of the state is reset to a certain
value (usually zero) whenever appropriate algebraic conditions on its input and
output are satisfied. Reset control has its origin in 1958 by the introduction of the
so-called Clegg integrator, see Clegg (1958). The Clegg integrator was proposed
to overcome the inherent performance limitation in LTI control related to a
balance between settling time and overshoot. Despite its potential, reset control
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was not considered further until the mid-70s by the work of Horowitz et al.,
see Horowitz and Rosenbaum (1975); Krishnan and Horowitz (1974). Especially
in the last two decades, it has regained attention in both theoretically oriented
research, see e.g., Aangenent et al. (2010); Baños and Barreiro (2012); Beker
et al. (2004); Loquen et al. (2008); Nešić et al. (2011); Prieur et al. (2013), as
well as in application-oriented research, see, e.g., Baños and Barreiro (2012);
Panni et al. (2014); Zheng et al. (2000).

Another hybrid control strategy that focusses on the integral action of the
controller in order to improve the transient performance is given in Feuer et al.
(1997), in which a switched integral controller is proposed for an LTI plant
consisting of an integrator. In Heertjes and Vardar (2013), a sliding mode con-
troller with a saturated integrator is studied, which essentially switches between
proportional-derivative (PD) control and proportional-integral-derivative (PID)
control in order to limit the overshoot while still achieving a zero steady-state
error. In a similar context, the concept of composite nonlinear feedback in Lin
et al. (1998) combines two linear control laws with a nonlinear tuning function
to improve the transient response of second-order LTI systems. The split-path
nonlinear (SPAN) filter has been introduced in 1966 by Foster et al. (1966), and
was designed as a phase lead filter that does not cause magnitude amplification.
In Aangenent et al. (2005); Fong and Szeto (1980); Foster et al. (1966); Zoss
et al. (1968), it was experimentally demonstrated that a controller with such
a nonlinear SPAN filter can outperform its linear counterpart with respect to
overshoot to a step response, and hence, can improve the transient performance
of linear (motion) systems. In Hespanha and Morse (2002), the authors propose
a switched controller to a similar problem as mentioned before in Example 1.1,
i.e., the control of a complex system where conflicting requirements make a single
LTI controller less desirable. In Narendra and Balakrishnan (1997), the authors
focus on improving the transient performance of adaptive systems, while Eker
and Malmborg (1999) considers a switched controller that is able to improve
both the transient performance as well as the steady-state performance of linear
systems.

As opposed to linear controllers, the design and tuning of hybrid controllers is
often rather complex and requires additional expertise of the control engineer. In
this context, it is important to mention that control engineers (in industry) are
often used to analyze performance, and to design stabilizing controllers, based on
‘linear’ frequency-domain characteristics of a closed-loop control system, such as
the sensitivity function and complementary sensitivity function, as already men-
tioned shortly before. In fact, all previously mentioned hybrid/nonlinear control
strategies have in common that closed-loop stability cannot be verified anymore
using ‘linear’ tools such as the Nyquist stability theorem, see, e.g., Franklin et al.
(2006); Skogestad and Postlethwaite (2005). Often, their design and analysis re-
quires accurate parametric models and solving linear matrix inequalities (LMIs),
which, from an industrial point-of-view, introduces considerable design complex-
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ity and is not easily embraced as it does not connect to the state-of-the-art of
industrial design tools.

An exception is found in the use of variable-gain control (VGC), see Heert-
jes and Steinbuch (2004). In VGC, the design and analysis can be based on
easy-to-obtain measured frequency response functions (FRFs) characterizing the
system dynamics. The concept of VGC has already been successfully applied in
numerous industrial applications to improve the (transient and/or steady-state)
performance of linear (motion) systems, see, e.g., Armstrong et al. (2001); Heert-
jes and Nijmeijer (2012); Heertjes et al. (2013, 2009); Hunnekens et al. (2015a);
van de Wouw et al. (2008); Zheng et al. (2005). The acceptance of VGC in
industry hinges on the fact that these controllers are fairly intuitive for (mo-
tion) control engineers as their design has strong connections to techniques they
are accustomed to. Indeed, the linear part of these controllers can be designed
using frequency-domain loop-shaping techniques, the add-on nonlinear part of-
ten relates in a clear way to the underlying linear controllers, and closed-loop
stability can be verified using (measured) frequency response data. As an ex-
ample, the use of VGC has been used to overcome similar LTI control design
trade-offs as those considered in Example 1.1. For instance, the work in Heert-
jes and Nijmeijer (2012); Heertjes et al. (2009); van de Wouw et al. (2008) deals
with balancing trade-offs between low-frequency tracking properties and sensi-
tivity to high-frequency disturbances. In this respect, VGC offers the possibility
to provide additional control gain in case of large servo errors (typically stem-
ming from low-frequency disturbances), while for small servo errors (typically
stemming from high-frequency disturbances and measurement noise) less (or no)
additional gain is applied. The other control design trade-off in Example 1.1,
i.e., deteriorating the transient response of a (motion) system by including inte-
gral action in the controller, is considered in Hunnekens et al. (2015b). In that
paper, the authors propose a variable-gain integral controller (VGIC) that limits
the integral action if the error exceeds a certain threshold, thereby limiting, in
turn, the amount of overshoot.

1.3 Objectives and contributions

The concise literature overview in Section 1.2 suggests that hybrid controllers
offer opportunities to improve the performance of linear (motion) systems com-
pared to LTI controllers. For the design of such hybrid controllers, it is a known
fact that ‘classical’ steady-state performance measures, such as the L2-gain and
ISS-gain, in a controller design criterion for a linear (motion) system will not
likely favor hybrid controllers over linear ones (although the characterization of
these measures given a hybrid/nonlinear controlled system remains to be impor-
tant). It is therefore important to formulate appropriate (and hence, specific)
performance measures that can discriminate between linear and hybrid con-
trollers based on the practical control design problem at hand. In addition, in
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order to enhance their (industrial) acceptance, there is a need for design and
analysis tools for hybrid controllers that bridge the gap between hybrid sys-
tems theory (with formal stability guarantees) and industrial control practice,
commonly exploiting frequency-domain design tools and non-parametric models,
e.g., easy-to-obtain measured FRF descriptions of the (motion) system dynam-
ics. Summarizing, the general objectives of this thesis can be stated as follows:

(I) The development of novel hybrid/nonlinear controllers to improve the
transient and/or steady-state performance of linear motion systems which
are applicable to industrial high-tech systems;

(II) The development of novel techniques to analyze stability and performance
of hybrid systems, preferably by exploiting frequency-domain design tools
and non-parametric models;

(III) Experimental and industrial validation of the proposed controllers and
techniques.

1.3.1 Contributions of the thesis

The main contributions of this thesis can be summarized in terms of contribu-
tions on these three general objectives, which will be further detailed below.

Objective (I): Novel hybrid controller designs that connect to the
industrial practice and result in an improved performance.

In this thesis, several novel hybrid controllers are proposed of which the asso-
ciated design is intuitive for (motion) control engineers in industrial practice.
In Chapter 2, a switched controller architecture is presented for motion sys-
tems that exhibit, from a control point-of-view, position-dependent dynamics
as a result of varying sensor configurations. All individual components (except
the time-varying gain) of the resulting controller can be designed using classi-
cal frequency-domain loop-shaping techniques. Compared to the current linear
control solution, an improved transient and steady-state performance is realized.

In Chapter 3, a novel ‘bandwidth-on-demand’ variable-gain control strategy
is proposed that allows for a varying ‘bandwidth’ of the feedback controller.
Easy-to-use tuning guidelines are presented for the design of such a ‘bandwidth-
on-demand’ controller, which are intuitive for (motion) control engineers because
all linear components can be designed using frequency-domain loop-shaping and
a guideline to design the time-varying gain is provided. The ability to vary
the ‘bandwidth’ online is advantageous if the motion system is subject to time-
varying, and reference-dependent, performance requirements as this feature al-
lows to balance trade-offs between low-frequency tracking performance and sen-
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sitivity to higher-frequency disturbances in a favorable manner compared to LTI
control solutions.

Chapter 5, revisits the concept of the split-path nonlinear filter and intro-
duces a novel variant: The split-path nonlinear integrator (SPANI). This non-
linear control strategy focuses on improving the transient performance in terms
or reducing overshoot, while still ensuring a zero steady-state error in the pres-
ence of constant external disturbances. The SPANI is easy to design as it allows
the control engineer to design a linear integrator in parallel to a nominal lin-
ear controller, which can be done using classical frequency-domain loop-shaping
techniques, and then simply replace the linear integrator by a SPANI with the
same gain.

Objective (II): Novel techniques to analyze stability and performance
of hybrid systems.

The contributions on this topic are twofold and can be categorized by ‘data-
based’ conditions and ‘LMI-based’ conditions.

Three of the five chapters of this thesis present (novel) conditions to verify
stability and performance of hybrid systems, and are based on easy-to-obtain
measured frequency response data. In particular, the stability conditions for the
switched controller architecture in Chapter 2, for the ‘bandwidth-on-demand’
controller in Chapter 3, and for reset controllers in Chapter 4, are all graphically
verifiable based on measured frequency response data.

In Chapter 5, a formal stability analysis is presented for the feedback con-
trol configuration with SPANI based on a hybrid dynamical system model for
the closed-loop dynamics. Based on this hybrid modeling formalism, sufficient
Lyapunov-based stability conditions are provided in terms of linear matrix in-
equalities, which also prove to be useful in the design of the SPANI.

Chapter 6 focusses on a particular hybrid system class that is useful for the
modeling and analysis of more recent popular control application domains, such
as event-triggered control (ETC) systems, see, e.g., Heemels et al. (2012) for
a recent overview, reset control systems (RCS) and networked control systems
(NCS), see, e.g., Bemporad et al. (2010); Hespanha et al. (2007). This chap-
ter also provides novel LMI-based conditions to analyze the stability and the
L2-performance of the hybrid systems under study using trajectory-dependent
Lyapunov/storage functions as a technical novelty.

Objective (III): Validation on industrial benchmark systems.

Several industrial benchmark systems are considered in this thesis in order to
validate the proposed hybrid controllers and/or analysis techniques. In Chap-
ter 2, the proposed switched controller is experimentally validated on a motion
system used in the lithographic industry. In Chapter 3, the effectiveness of the
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proposed controller with ‘bandwidth-on-demand’ characteristics is experimen-
tally demonstrated using an industrial nano-positioning motion system. The
practical applicability of the data-based stability conditions for reset control
systems is demonstrated through experiments on an industrial piezo-actuated
motion system used in the lithography industry. Finally, Chapter 5 considers a
model-based case study of a positioning operation of an industrial pick-and-place
machine to validate the proposed split-path nonlinear integrator (SPANI).

1.3.2 Contributions of the individual chapters

Chapter 2 presents a novel scheduled controller design that allows to switch
between two LTI controllers based on the actual position of the system. The
motivation for such a switched controller architecture stems from a case study
of a motion stage used in the lithography industry that exhibits, from a control
point-of-view, position-dependent dynamics as a result of varying sensor con-
figurations. An important feature of the proposed architecture is the fact that
all individual filters (LTI controllers) can be designed using classical frequency-
domain loop-shaping techniques. Moreover, graphical conditions based on (mea-
sured) frequency-domain data are provided under which closed-loop stability can
be guaranteed irrespective of how the switching between the two LTI controllers
occurs in time. The effectiveness of the proposed scheduling technique, as a
way to improve both transient and steady-state performance compared to the
state-of-the-art industrial LTI control solution, is demonstrated by means of
experiments on a high-precision industrial motion stage.

Chapter 3 introduces a novel variable-gain control strategy that allows to
vary the ‘bandwidth’ of the feedback controller online. The ability to vary the
‘bandwidth’ of the resulting controller online is advantageous in case the motion
system is subject to time-varying, and reference-dependent, performance require-
ments. In fact, this feature allows us to balance between low-frequency tracking
performance and sensitivity to higher-frequency disturbances in a much better
way than LTI controller design, which typically requires a compromise between
these conflicting design goals thereby limiting the overall performance. The
variable-gain controller consists of frequency-domain loop-shaped linear filters
and a variable-gain element. The gain of this element depends on reference in-
formation and determines the desired reference-dependent ‘bandwidth’ of the re-
sulting controller. Controller design guidelines and data-based frequency-domain
conditions to verify stability and convergence of the closed-loop system are pre-
sented. These guidelines and conditions result in an overall design and tuning
of the ‘bandwidth-on-demand’ variable-gain control strategy that is intuitive
for control engineers. The intuitive design and the ability of the ‘bandwidth-
on-demand’ controller to outperform LTI controllers are emphasized through
experiments on an industrial nano-positioning motion system.
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Chapter 4 presents new (sufficient) stability conditions for reset control sys-
tems based on measured frequency response data. These results are the first
data-based stability conditions for reset control systems, which can contribute
to the industrial acceptance of these high-potential nonlinear controllers. The
applicability of these novel conditions and the effectiveness of the reset control
strategy are illustrated by experiments on an industrial piezo-actuated motion
system.

Chapter 5 revisits an ‘old’ hybrid control concept consisting of a so-called
split-path nonlinear filter (SPAN filter). The SPAN filter incorporates non-
smooth (and thus nonlinear) elements, such as the absolute value function and
the sign function, into an otherwise linear control loop. This filter was first
introduced in 1966, see Foster et al. (1966), in which the authors aimed to
circumvent the classical Bode gain-phase relationship in linear control. The goal
in Foster et al. (1966) has been to design a filter which could add phase to a
control system (such as a lead filter) without the negative effect of an increased
high-frequency gain. In Chapter 5, a different goal is pursued by focussing on the
trade-off induced by including integral action in the control loop, namely, it is
impossible to add integral action to a feedback control system, typically included
to achieve zero steady-state errors, without introducing the negative effect of
phase lag. In this chapter, a novel variant of the SPAN filter is introduced,
namely, the split-path nonlinear integrator (the SPANI), with the aim to reduce
the amount of overshoot in a transient response (by appropriately modulating
magnitude and sign information of the integral action in the hybrid controller),
while still allowing to remove the effect of constant disturbances acting on the
system. A hybrid switched dynamical system framework is used to model the
SPANI control configuration, in closed loop with a linear plant, which allows for
a formal stability analysis of the closed-loop system in terms of linear matrix
inequalities (LMIs). The effectiveness of the SPANI is investigated through
a model-based study of positioning operations in an industrial pick-and-place
machine.

In Chapter 6, a particular class of hybrid systems with periodic time-triggered
jump conditions is considered in which the jump map has a piecewise linear
character. The unifying modeling capabilities, and hence the relevance, of this
hybrid systems class is demonstrated by modeling control systems arising in three
relevant application domains being: Event-triggered control (ETC) systems, see,
e.g., Heemels et al. (2012), reset control systems (RCS) and networked control
systems (NCS), see, e.g., Bemporad et al. (2010); Hespanha et al. (2007), in this
hybrid framework. In fact, the unifying modeling character of this chapter is
instrumental in enabling the transfer of results between the diverse application
domains. Moreover, new tools are presented for the analysis of stability and the
L2-gain properties of these hybrid systems. The effectiveness of the proposed
modeling and analysis techniques is illustrated by means of a RCS example.
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1.4 Outline of this thesis

The outline of this thesis is as follows. Next to the main chapters (2-6) that
contain the new contributions of this work and were outlined above, the conclu-
sions and recommendations for future work are presented in Chapter 7. Finally,
the mathematical proofs and some additional technical notation are reported
in Appendix A. The main chapters (2-6) in this thesis are based on research
papers. Therefore, they are self contained and can be read independently from
one another.



Chapter 2

Scheduled controller design for
systems with two switching

sensor configurations

Abstract – In this chapter, we consider a hybrid system consisting of a motion stage that

exhibits, from a control point-of-view, position-dependent dynamics as a result of varying

sensor configurations. A scheduled controller design is proposed that is intuitive for control

engineers as all individual filters can be obtained using classical frequency-domain loop-shaping

techniques thereby connecting to the industrial motion control practice. Moreover, data-based

graphical conditions are provided in the frequency-domain under which closed-loop stability

can be verified irrespective of how the switching between the controllers occurs in time. The

effectiveness of the proposed scheduling technique, as a way to improve both transient and

steady-state performance compared to the current state-of-the-art industrial control solution,

is demonstrated by means of experiments on a high-precision industrial motion stage.

2.1 Introduction

High-precision motion stages, such as positioning devices used in the semi-
conductor industry, are subject to ever increasing requirements on stage acceler-
ation (throughput) and positioning accuracy (imaging quality), see, e.g., Butler
(2011). As a result, the influence of structural mode deformation in these stages
cannot be neglected. The sensor configuration, i.e., the amount and location of
the sensors used in the measurement system, yields a specific characterization of
these structural dynamics and is therefore essential for control. In many practical
situations, the availability of sensors depends on the position of the motion stage

This chapter is based on van Loon et al. (2015d).
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as individual sensors can become ‘out of range’ as a result of physical limitations
on their operating ranges. As a result, the sensor configuration may vary as a
function of the stage position, which essentially makes the stage, from a control
point-of-view, a switched system, see Liberzon (2003), or a position-dependent
dynamical system. This complicates the overall design significantly, certainly if
the design techniques have to connect to the state-of-the-art industrial control
context. In fact, an important open problem is the design of control systems for
dynamical systems with switching sensor configurations based on, for industry
important, tools such as frequency-domain loop-shaping techniques, see, e.g.,
Skogestad and Postlethwaite (2005); Steinbuch and Norg (1998). The major ad-
vantage of these tools is that they do not necessarily require parametric models
but can be based on easy-to-obtain (and accurate) measured frequency response
functions (FRFs) characterizing the motion stage dynamics. In the context of
switched systems, this forms a tremendous challenge for which many existing
approaches do not meet the desired design requirements.

In industry, the problem of position-dependent dynamics is often dealt with
by means of robust control design, see e.g., van de Wal et al. (2002), in which the
authors propose an H∞-controller for this purpose. Although such an approach
meets the desired industrial design requirements, it often results in conservatism
because (a) one single linear time-invariant (LTI) controller is active within the
whole range of operation, and (b) due to the inherent classical performance
trade-offs in LTI feedback control systems, see, e.g., Freudenberg et al. (2000);
Seron et al. (1997). To overcome these limitations, several (nonlinear) control
techniques exist in the literature that can adapt the controller dynamics accord-
ing to the on-line measured actual position of the system. One such technique
is referred to as gain scheduling, see, e.g., Leith and Leithead (2000); Rugh and
Shamma (2000). In gain scheduling, the designer typically selects a finite grid
of operating points within the whole range of operation. For each of these op-
erating points FRFs are identified, and based on these FRFs, dedicated local
LTI controllers are designed which are implemented by interpolation. Although
the design and implementation is intuitive for control engineers, no construc-
tive results exist to formally and systematically guarantee stability and perfor-
mance of the closed-loop gain-scheduled system, especially under fast parameter
variations. Another technique is linear parameter varying (LPV) control, see,
e.g., Dinh et al. (2005); Groot Wassink et al. (2005); Scherer (2001); Shamma
and Athans (1991), which yields parameter-dependent controllers. This tech-
nique typically requires a parametric model that describes how the dynamics
of a system varies as a function of the position. Compared to our approach,
in which the design relies on easy-to-measure FRFs of the motion system, ob-
taining such parametric models is time-consuming and often they are still not
accurate enough to properly describe the system dynamics. Opposed to gain
scheduling, the synthesis of LPV controllers yields a priori guaranteed stability
and performance properties of the LPV controlled system. However, contrary
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to our proposed graphical data-based conditions to verify closed-loop stability,
LPV control requires solving linear matrix inequalities (LMIs), which from an
industrial point-of-view is not easy to adopt as it does not connect to the state-of-
the-art industrial design. Also many designs for the control of switched systems,
see, e.g., Deaecto et al. (2011); Heemels et al. (2010); Liberzon (2003) require ac-
curate parametric models and LMI-based designs that are not so easily embraced
by control engineers in industry. As a consequence, there is often a need for de-
sign tools for switched systems, such as the class of dynamical systems with
position-dependent switching of sensor configurations studied in this chapter,
that bridge the gap between hybrid systems theory (with formal stability guar-
antees) and industrial control practice, commonly exploiting frequency-domain
design tools and non-parametric models, e.g., measured FRF descriptions of the
motion system dynamics.

In this chapter, we provide a solution for such an exemplary problem in
the context of an industrial motion stage for the lithography industry. In par-
ticular, we will adopt a scheduled controller architecture that, based on the
on-line measured actual position of the system, switches between two dedicated
(local) LTI controllers. Moreover, we will show that the overall design of the
proposed controller is intuitive for control engineers because, (a) all individual
LTI controllers can be designed using classical frequency-domain loop-shaping
techniques based on measured FRFs, (b) graphical data-based conditions are
provided to verify closed-loop stability under arbitrary switching, and (c) the
control architecture allows for implementation of all components in a standard
motion control software environment. The practical feasibility of the proposed
approach is emphasized by means of a case study on an industrial wafer motion
stage, which is also used to demonstrate the potential of the proposed scheduled
controller by experimental results, including the improvements it provides with
respect to the state-of-the-art industrial control solution.

The remainder of the chapter is organized as follows. In Section 2.2, we
provide the problem formulation and introduce the plant model in the form of a
switched system. In Section 2.3, the proposed control design is introduced and
in Section 2.4 conditions for stability are provided. Finally, experimental results
are given in Section 2.5 and we will end with conclusions in Section 2.6.

2.2 Problem formulation and system description

In this chapter, we consider the problem of high-performance control of linear
time-invariant (LTI) systems subject to position-dependent switching of sensor
configurations as a result of physical limitations of sensor operating ranges. The
problem itself is described in Section 2.2.1 and is inspired by an industrial wafer
stage system. The modeling of such a system is discussed in Section 2.2.2, and
the current industrial solution to deal with this problem is discussed in Section
2.2.3.
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Fig. 2.1. Schematic representation of a wafer stage (right picture taken
from van Herpen (2014)).

2.2.1 Introduction to the problem

In this section, we consider a wafer stage system that is schematically depicted
in Fig. 2.1 and Fig. 2.2. A wafer stage is a module of a wafer scanner, which is
a device used to expose silicon wafers to a light source from an optical column
as part of the production process of integrated circuits (ICs), see, e.g., Butler
(2011); Martinez and Edgar (2006). The positioning-module (PM) supports a
wafer and positions this wafer with respect to the light source in both scanning
(x, y) and focus (z) direction. The light path enters the stage in negative z-
direction at a fixed (x, y)-position (typically the center of the depicted stage).
In this respect, the so-called point-of-interest (POI) is defined as the intersection
between the light path with the surface of the wafer, see Fig. 2.2. This POI is
time-varying because the wafer is subject to exposure via a meander-like pattern
in the (x, y)-plane.

Our goal is to control the POI such that it tracks the meander-like reference
setpoint, see Fig. 2.1, with a high accuracy. However, the true position of the
POI is not directly measurable and can only be estimated based on sensor infor-
mation. The estimation of the POI is called the point-of-control (POC) and will
be used for closed-loop servo control, which makes that the availability of actual
sensor information, provided by the measurement system, is crucial for feedback
control. For the considered wafer stage, the measurement system consists of four
gridplates and four sensors. These sensors are mounted on the PM (indicated
by the black dots in Fig. 2.1 and Fig. 2.2) and provide two measurements each
(the 2D encoders measure a horizontal and vertical displacement, see Fig. 2.2).
The square hole surrounded by the gridplates is to enable exposure of the wafer
to the light source. However, due to this hole, each of the four sensors can enter
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Fig. 2.2. Schematic representation of a wafer stage in 2D. In this figure,
(a) represents the situation where a sensor is out-of-range, and (b) and (c)
represent rigid body behavior and non-rigid body behavior, respectively.

an ‘out-of-range’ state depending on the position of the PM with respect to the
gridplates, see Fig. 2.1 and Fig. 2.2. As a result, the measurement system has
five local sensor configurations, namely, one that uses all four sensors, while the
other four use a (different) set of three sensors. To make this more precise, we
define the range of operation Θ ⊂ R2, i.e., the region in the (x, y)-plane where
the wafer stage can operate, and a position vector θ(t) ∈ Θ, denoting the actual
position of the PM at time t ∈ R≥0. We define regions Λi ⊆ Θ, i = 1, 2, . . . , n,
where each of the sensor configurations is available. Moreover, it holds that
∪ni=1Λi = Θ, and these regions might be overlapping. In fact, in our case with
n = 5, they are schematically depicted in Fig. 2.3(a). In this figure, the subset
in which all four sensors are available is denoted by Λ2, and the subsets in which
only three sensors are available are Λi, i ∈ {1, 3, 4, 5}.

Remark 2.1. All four sensors are available in region Λ2, which implies that
also the other configurations are available.

Based on the outcome of all available sensors, which each provide two mea-
surements, the displacement of the PM along the orthogonal coordinate system
as in Fig. 2.1, in which the six DOFs of motion are defined, is obtained using
coordinate transformations. In this coordinate system, the dynamics along each
axis, reconstructed by the measurement system, consists of a rigid body mode
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Fig. 2.3. Schematic representation of the subdivision of the range of
operation Θ into regions Λ1,Λ2, . . . ,Λn, with (a) n = 5, and (b) n = 2, in
the (x, y)-plane. The thick black line in Fig. 2(b) represents the location
of the setpoint, as considered in Section 2.5.2, in the (x, y)-plane.

and a number of structural modes. In the ideal case, this structural mode be-
havior should be suppressed by the control system as these structural dynamics
complicate the estimation of the exact position of the POI, i.e., when the stage
behaves as a rigid body mode we typically have POC = POI, see Fig. 2.2(b), and
non-rigid body behavior usually causes POC 6= POI, see Fig. 2.2(c). However,
due to the limited amount of actuators (six actuators for six modes), feedback
control is limited to the control of the rigid body modes only, which is com-
mon practice in industrial motion control, see also Butler (2011); van de Wal
et al. (2002). To this extent, the measurement system should provide a good
six DOF rigid body position estimate as this enables us to achieve an as high
as possible controller bandwidth and, as a result, the POC can better track the
meander-like reference setpoint. When θ ∈ Λ2, all four sensors are available and,
hence, the measurement system provides eight measurements while only the six
rigid body modes are estimated. This is referred to as over-sensing and enables
the ‘removal’ of structural mode behavior in the output, i.e., the appearance
of some structural modes are unobservable in the output used for controlling
the system. When transferring from region Λ2 to region Λi, i ∈ {1, 3, 4, 5}, one
of the 4 sensors becomes invalid, and as a result, the effect of these structural
mode deformations becomes visible in the output, thereby making the rigid body
position estimate worse compared to the situation in which all four sensors are
available.
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2.2.2 Switched system formulation

In this chapter, we focus on controlling the POC in z-direction only, in which the
loss of sensor information results in a less accurate rigid body position estimate,
as described above. In fact, because the input to the controller is observed by a
switched set of sensors depending on the position of the stage in the (x, y)-plane,
the z-dynamics exhibits, from a control (input-output) point-of-view, position
dependent dynamics1. As a result, a switched system representation is obtained,
which can be modeled by means of different output matrices CPi , i = 1, 2, . . . , 5.
To be precise, the z-dynamics of the motion stage can be represented by a single-
input-multi-output (SIMO) switched system of the form

Σsw :





ẋP = APxP +BPuP

yPi =

{
CPixP when θ ∈ Λi

∅ when θ /∈ Λi,

(2.1)

with input uP ∈ R, state vector xP ∈ RnP with nP the number of states, and
output yPi ∈ R, i = 1, 2, . . . , 5, indicating the i-th measured output that is active
in its corresponding region Λi. When θ /∈ Λi the output yPi is not available,
which is indicated by yPi = ∅.

Due to to (2.1), we can associate2 5 local LTI systems to their corresponding
regions Λi, i ∈ {1, 2, . . . , 5}, which can also be described by the corresponding
single-input-single-output (SISO) transfer functions

Pi(s) =
yPi(s)
uP(s)

(2.2)

with i = 1, 2, . . . , 5 and s ∈ C. Note that all Pi(s), i = 1, 2, . . . , 5, share at least
two poles at s = 0 (because we consider a motion system) and possibly some
other dynamics. This allows us to express (2.2) as

Pi(s) = F(s)∆Pi(s), (2.3)

in which the shared plant dynamics are represented by F(s) and the remaining
dynamics by ∆Pi(s), i ∈ {1, 2, . . . , 5}. Note that for the (motion) systems that
we consider, ∆Pi(s), i ∈ {1, 2, . . . , 5} contains stable dynamics only.

To illustrate the possible differences in observed dynamic behavior, consider
the regions Λi, i = 1, 2, in Fig. 2.3(a), for which FRF measurements of the local
plants Pi(jω), ω ∈ R, i = 1, 2, are given in Fig. 2.4. Recall that, for θ ∈ Λ2,
some structural modes are unobservable in the output due to over-sensing, and

1In this respect, it is important to note that the z-dynamics itself does not depend on the
position.

2Due to the fact that the sensors/encoders are placed at fixed locations on the PM, the
local LTI plant descriptions Pi(s), s ∈ C, corresponding to each fixed sensor set do not depend
on the position θ within its corresponding region Λi, i ∈ {1, 2, . . . , 5}.
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Fig. 2.4. FRF measurements of the local plants Pi(jω), ω ∈ R, i = 1, 2.

as a result, two structural modes, which appear in P1(jω), are absent in P2(jω).
To be precise, these modes are the torsion mode at ±1150 Hz, and a bending
mode at ±1900 Hz, see Fig. 2.4.

2.2.3 Industrial state-of-the-art control design

In industry, control design for systems described by (2.1) often consists of two
steps. First, a single LTI controller C(s), s ∈ C, which results in an asymptoti-
cally stable closed-loop system for all 5 individual local LTI plants P1, . . . ,P5,
is designed based on 5 local FRFs using frequency-domain loop-shaping tech-
niques. Subsequently, in order to use this SISO LTI controller C(s) with (2.1),
based on the switching outputs yP1

, yP2
, . . . , yP5

, an output scheduling law is
introduced, such that from (2.1) the following SISO LPV system results

ẋP = APxP +BPuP (2.4a)

yP =

n∑

i=1

φi(θ)CPixP , (2.4b)

with yP ∈ R, and φi(θ) ∈ [0, 1], i = 1, 2, . . . , 5, position-dependent output

scheduling parameters that satisfy
∑5
i=1 φi(θ) = 1, and φi(θ) = 0 when θ /∈ Λi

for i = 1, 2, . . . , 5. Although appealing for industry, this control solution has two
significant drawbacks:
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(1) There is no a priori guarantee for stability of the closed-loop connection of
plant (2.4) with LTI controller C(s) for all θ(t) ∈ Θ varying over time;

(2) The control of all local plants with one robust LTI controller C(s) potentially
limits performance.

In the remainder of this chapter, we assume that P1 can be used to describe
the plants Pi, i = 1, 3, 4, 5 in Fig. 2.3(a), and hence, i = 1, 2 in (2.1) (see
Fig. 2.3(b)). A scheduled controller design for i = 1, 2, . . . , 5 is a topic of
ongoing research, for which the design presented here forms a first important
and fundamental step.

Remark 2.2. In the special case of i = 1, 2, the regions Λi, i = 1, 2, are
described by Λ1 := Θ and Λ2 ⊂ Θ, see Remark 2.1, and depicted schematically
in Fig. 2.3(b). Hence, for i = 1, 2, one can take φ1(θ) = 1 and φ2(θ) = 0,
θ ∈ Θ, (as yP1

is available for all θ ∈ Θ, i.e., Λ1 = Θ) in (2.4) and design one
LTI controller C(s), s ∈ C, based on the plant P1(s). This would remove the
previously mentioned drawback (1), still leaving drawback (2).

2.3 Scheduled controller design

In this section, we present a scheduled controller architecture with the aim to
switch between two LTI controllers Ci(s), i = 1, 2, based on the actual position
θ ∈ Θ. The proposed scheduled controller architecture, which is schematically
depicted in Fig. 2.5, results in an effective controller C2(s) (designed based on
P2(jω)) when θ ∈ Λ2, and results in C1(s) (designed based on P1(jω)) otherwise.
Consider Fig. 2.5, in which r ∈ R denotes the reference signal, d ∈ R an unknown
but bounded disturbance, and Σsw is given by (2.1) with n = 2, Λ1 = Θ, and
Λ2 ⊂ Θ. The position-dependent scheduling gain is denoted by α(θ) and can
take values in [0, 1]. Moreover, the (non)availability of yP2

in (2.1), and Fig. 2.5
is modeled via the position-dependent indicator function

β(θ) =

{
1 when θ ∈ Λ2

0 when θ /∈ Λ2.
(2.5)

The to-be-designed filters C∆(s) and C2(s) in Fig. 2.5 are both LTI and can be
designed using classical frequency-domain loop-shaping techniques. The proce-
dure to do so is as follows. The first step in designing these filters is to design
dedicated LTI controllers C1(s) and C2(s), s ∈ C, based on measured FRF data
of the local plants P1(jω) and P2(jω), ω ∈ R, respectively. These LTI controllers
typically consist of the following linear filters: A PID-type filter, a second-order
low pass filter, and a number of notch filters. Because both Ci(s), i = 1, 2,
contain a PID-type filter, they share at least one pole at s = 0 (due to the
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Fig. 2.5. Schematic representation of the feedback loop with SIMO plant
Σsw, as in (2.1), and the proposed scheduled controller.

integrator) and possibly some other dynamics. In the second step, the shared
dynamics are collected in an LTI filter H(s) such that

Ci(s) = H(s)∆Ci(s), (2.6)

in which ∆Ci(s), i = 1, 2, contain the remaining controller dynamics. This allows
us to design the LTI filter C∆(s) in Fig. 2.5 as

C∆(s) = ∆−1
C2 (s)∆C1(s). (2.7)

Design criterion 1. The LTI controllers Ci(s), i = 1, 2, are designed such that
they do not contain non-minimum phase zeros and have an equal relative degree,
although their state dimensions may vary. The filter H(s) is designed such that
no pole-zero cancelations take place in (2.6), and as a result, in (2.7).

Note that by Design criterion 1, C∆(s) as in (2.7) is a proper filter, i.e., its
relative degree is zero. This follows from the fact that Ci(s), i = 1, 2, have an
equal relative degree and, consequently, so do ∆Ci(s), i = 1, 2.

Remark 2.3. The series connection

C2(s)C∆(s) = H(s)∆C2(s)∆−1
C2 (s)∆C1(s)

= C1(s) (2.8)

has pole-zero cancelations if C2(s) 6= H(s), i.e., the poles/zeros of ∆C2(s) are
canceled. However, by Design criterion 1, ∆C2(s)∆−1

C2 (s) involves no unstable
pole-zero cancelations, i.e., the filter ∆C2(s) does not contain any unstable poles,
nor non-minimum phase zeros.

The proposed controller structure in Fig. 2.5 has all the shared controller dy-
namicsH(s) active irrespective of the value of the switching function α(θ), which
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is advantageous for bumpless transfer and integrator windup, see Zaccarian and
Teel (2002). Moreover, by designing

α(θ) = 0 when θ /∈ Λ2, (2.9)

we have that β(θ) = 1 if α(θ) 6= 0, and thus

eC2(t) = α(θ(t))r(t)− α(θ(t))yP2
(t) + (1− α(θ(t)))uC∆(t). (2.10)

As a result, the closed-loop system of Fig. 2.5 can be treated as a feedback
connection between an LTI system and a (to be designed) variable gain α :
θ → [0, 1], and hence belongs to the class of Lur’e-type systems, see e.g., Khalil
(2000). The linear dynamical part of the Lur’e-type system description of the
closed-loop system is given by

G(s) =
P2(s)C2(s)− P1(s)C1(s)

1 + P1(s)C1(s)
, (2.11)

denoting the transfer function between ‘input’ w and ‘output’ ζ, in feedback
with a variable gain element α : θ → [0, 1]. In order to derive a state-space
description of the closed-loop dynamics, we introduce the state-space realization
of C2, given by

C2 :

{
ẋC2 = AC2xC2 +BC2eC2
uC2 = CC2xC2 ,

(2.12)

in which xC2 ∈ RnC2 with nC2 the number of states, and e1, eC2 , uC2 ∈ R, and
the state-space realization of C∆, given by

C∆ :

{
ẋC∆ = AC∆xC∆ +BC∆e1

uC∆ = CC∆xC∆ +DC∆e1,
(2.13)

in which xC∆ ∈ RnC∆ with nC∆ the number of states, and uC∆ ∈ R. A realization
of the closed-loop dynamics in state-space form can be obtained by collecting
the individual state-space models of Σsw as in (2.1), (2.12) and (2.13) in one
overall model given as follows

ẋ = Ax+Bw + Fv (2.14a)

ζ = Cx+Dvv (2.14b)

w = −α(θ)ζ, (2.14c)

with x := [x>P x>C2 x>C∆ ]> ∈ Rn, external inputs v = [r d]> ∈ Rnv , and matrices
given by

[
A B F
C Dv

]
=




AP BPCC2 0 0 0 BP
−BC2DC∆CP1

AC2 BC2CC∆ −BC2 BC2DC∆ 0
−BC∆CP1

0 AC∆ 0 BC∆ 0
DC∆CP1

− CP2
0 −CC∆ 1−DC∆ 0


 .

(2.15)
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Note that the state-space model (2.14) can be a non-minimal realization for the
transfer-function (2.11) due to possible pole-zero cancelations, see Remark 2.3.

2.4 Stability analysis

In this section, we present graphical data-based conditions to verify input-to-
state stability (ISS), see Arcak and Teel (2002); Sontag and Wang (1995), of
the closed-loop system as in Fig. 2.5 for every α : θ → [0, 1] independent of
how α(θ(t)) depends on time t ∈ R≥0. But first, we want to emphasize that the
system matrix A of the system (2.14) is Hurwitz by proper controller design.

Proposition 2.1. The system matrix A of the system (2.14) is Hurwitz under
the following conditions:

(i) The open-loop O1(jω) = P1(jω)C1(jω) satisfies the Nyquist stability crite-
rion, see Skogestad and Postlethwaite (2005), for all ω ∈ R;

(ii) Design criterion 1 holds;

(iii) The controller C1(s) does not cancel any unstable dynamics (if present) in
P1(s), i.e., P1(s)C1(s) has no unstable pole-zero cancelation.

Proof. The proof can be found in A.1.1.

The following theorem poses sufficient conditions under which global expo-
nential stability (GES) of the equilibrium x∗ = 0 is guaranteed for zero inputs.
Moreover, the same conditions guarantee that the system (2.14) is ISS with
respect to r and d. See Sontag and Wang (1995) for the exact definition of ISS.

Theorem 2.2. Consider the system (2.14) with variable gain α(θ(t)) ∈ [0, 1],
t ∈ R≥0. Suppose that

(I) The system matrix A is Hurwitz;

(II) There exist a constant ρ > 1 such that the transfer function G(jω) satisfies

1

ρ
+Re(G(j∞)) > 0, (2.16)

and

1

ρ
+Re(G(jω)) > 0 for all ω ∈ R. (2.17)

Then the equilibrium point x∗ = 0 of the system (2.14) is GES (when r = 0 and
d = 0), and the system (2.14) is ISS with respect to r and d.
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Proof. The proof can be found in Appendix A.1.2.

Theorem 2.2 is based on the circle criterion, see, e.g., Khalil (2000), which
offers data-based graphical frequency-domain conditions to assess closed-loop
stability of systems of the form (2.14), see, e.g., Heertjes and Steinbuch (2004);
Heertjes et al. (2009); Hunnekens et al. (2015b). The circle criterion in its stan-
dard form, see Khalil (2000), requires minimality of the system (2.14). However,
due to our proposed controller structure minimality of the system (2.14) is lost,
see Remark 2.3. Nevertheless, under the mild Design criterion 1, we obtain that
A is Hurwitz (according to Proposition 2.1), which together with the circle crite-
rion condition in (II) leads to GES and ISS even though the minimality condition
is not satisfied. Although there exist some literature on the circle criterion for
non-minimal systems, see Brogliato et al. (2007) and references therein, none of
them could directly be applied to our case. Still, the circle condition presented
in Yakubovich et al. (2004) seems related to our result in Theorem 2.2, since no
explicit requirement regarding minimality is stated. Unfortunately, no formal
proof was found in Yakubovich et al. (2004) showing that minimality is not nec-
essary. Therefore, we provided a formal proof of the circle criterion in case of
non-minimal systems based on the additional requirement in hypothesis (I).

2.5 Experimental results on a wafer stage

In this section, the proposed scheduled controller approach is applied to control
the z-axis of the motion stage as introduced in Section 2.2.1.

2.5.1 Design of the proposed scheduled controller

The scheduled controller is exactly implemented as represented in the block-
scheme given in Fig. 2.5, in which the switching of α : θ → [0, 1] is currently
implemented by a discontinuous switch given by

α(θ) =

{
1 when θ ∈ Λ2

0 when θ 6∈ Λ2.
(2.18)

The LTI controllers Ci(s), i = 1, 2, are loop-shaped based on the corresponding
plant FRFs Pi(jω), i = 1, 2, see Fig. 2.4. Both controllers consist of a PID filter,
a second-order low pass filter, and a limited number of notch filters. Bode plots
of Ci(s), i = 1, 2, are depicted in Fig. 2.6. In this case study, the structure of
both controllers is almost identical except for one additional notch filter in C1(s),
necessary to compensate for the structural mode around ±1150 Hz in P1(jω)
(which is absent in P2(jω)), see Fig. 2.4. Without the phase lag introduced by
this additional notch filter, C2(s) can have a higher gain for frequencies below
the bandwidth, thereby increasing the tracking performance. Stability of each
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Fig. 2.6. Bode plots of the controllers Ci(jω), i = 1, 2.
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individual/local closed loop is verified by means of the Nyquist criterion, see
Skogestad and Postlethwaite (2005) and Fig. 2.7, which shows robust stability
given a modulus margin of approximately 8 dB. Consequently, the conditions of
Proposition 2.1 are met, thereby satisfying condition (I) of Theorem 2.2. The
final step in the design is to verify the circle criterion condition (II) in Theorem
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Fig. 2.9. Position setpoint trajecory of y-axis and scheduling borders.

2.2. Let us first note that condition (2.16) is trivial for many motion systems,
since G(jω) → 0 for ω → ∞. The second condition (2.17) is verified by means
of Fig. 2.8, which represents the Nyquist diagram of G(jω) as in (2.11), showing
that Re(G(jω)) > − 1

ρ , for some ρ > 1 is met for all ω ∈ R. In this respect, note

that the user can influence Re(G(jω)) by means of the design of Ci(s), i = 1, 2,
and thus the circle criterion condition (II).

2.5.2 Experimental results

In this section, the proposed scheduled controller approach is applied to control
the z-axis of the motion stage as introduced in Section 2.2.1. Moreover, we
compare the obtained results with those using a SISO LTI controller C(s) as
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described in Section 2.2.3, which is selected as C(s) = C1(s). The setpoint
used during the experiments consists of a trajectory in y-direction, depicted
schematically in the (x, y)-plane by the thick black line in Fig. 2.3(b), and is
given in Fig. 2.9.

In the lithographic industry, the accuracy of the wafer stage is often expressed
in terms of overlay and imaging quality, see Butler (2011). Let us first consider
overlay, which is the ability of the wafer stage to expose two images exactly
on top of each other. In this respect, the moving average (MA) performance
measure is of central interest as this forms a measure of the average position
error of the wafer stage during exposure, which, in turn determines the location
where the image is placed on the wafer. The MA represents the lower-frequency
part of the error, and is defined as

MA :=
1

Te

∫ Te
2

−Te2
e(t)dt, (2.19)

in which Te represents the exposure time, and e(t) represents the position error
of the z-axis as a function of time t. The second quality measure is the imag-
ing quality, which is directly affected by the accuracy of the positioning of the
wafer stage, i.e., position errors reduce the contrast. In this respect, the moving
standard deviation (MSD) performance measure is of central interest, which is
defined as

MSD :=

√√√√ 1

Te

∫ Te
2

−Te2
(e(t)−MA)

2
dt, (2.20)

and represents the higher-frequency part of the positioning error. Therefore, is
a direct measure of high frequency noise suppression. The MA and MSD of the
positioning error are depicted in Fig. 2.10 and Fig. 2.11, respectively. In both
figures, the yellow surface represents the situation in which α(θ) = 1, whereas
α(θ) = 0 elsewhere. Clearly, both the MA as well as the MSD are reduced using
our proposed scheduled controller. This can be further clarified by considering
Fig. 2.12, which shows the cumulative power spectral density (CPSD) of the
tracking error response of the z-axis for both control strategies. In this figure, we
see a performance increase over the complete frequency range which, intuitively,
can be explained as follows. For frequencies below the closed-loop bandwidth
(±300 Hz), this is a result of the higher feedback gain of C2(s). For frequencies
above the bandwidth, this is due to the absence of two structural modes that
appear in P1(jω), at ±1150 Hz and at ±1900 Hz, which do not appear in P2(jω),
see Fig. 2.4.

Remark 2.4. Note that the discontinuous switching might excite high frequency
plant dynamics, and therefore, changing α(θ(t)) in a smooth manner could per-
haps improve the results even further.
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surface and α(θ) = 0 elsewhere.
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2.6 Conclusions

In this chapter, we proposed a novel scheduling controller architecture for dy-
namical systems with position-dependent switching sensor configurations in the
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context of an industrial wafer stage. Based on the actual measured position of
the motion system, dedicated (local) linear time-invariant (LTI) controllers are
switched on or off. To meet the requirements from industry, these LTI controllers
are designed using classical frequency-domain loop-shaping techniques based on
measured frequency response functions (FRFs), and are implementable in a stan-
dard software environment. Moreover, easy-to-handle data-based conditions are
presented that allow the user to verify whether the scheduled feedback control
system is input-to-state stable with respect to external disturbances, measure-
ment noise and reference signals, irrespective of how the switching between the
controllers occurs in time. In fact, these frequency-domain conditions are based
on a generalized form of the circle criterion for which minimality of the under-
lying system is not required. The practical feasibility of the proposed controller
scheduling architecture, as well as the ability to outperform the state-of-the-art
industrial control solution, has been experimentally demonstrated on an indus-
trial wafer stage system.



Chapter 3

Bandwidth-on-demand motion
control with a nano-positioning

application

Abstract – In this chapter we introduce a ‘bandwidth-on-demand’ variable-gain control strat-

egy that allows for a varying bandwidth of the feedback controller. The proposed controller

architecture can achieve improved performance given time-varying, reference-dependent per-

formance requirements compared to linear time-invariant control suffering from design trade-

offs between low-frequency tracking performance and sensitivity to higher-frequency distur-

bances. The variable-gain controller consists of frequency-domain loop-shaped linear filters

and a variable-gain element. The gain of this element depends on reference information and

determines the desired reference-dependent bandwidth of the resulting controller. Controller

design guidelines and data-based frequency-domain conditions to verify stability and conver-

gence of the closed-loop system are presented. These guidelines and conditions render the

overall design and tuning of the ‘bandwidth-on-demand’ variable-gain control strategy intu-

itive for control engineers. This fact, together with the ability of the ‘bandwidth-on-demand’

controller to outperform linear time-invariant controllers, is emphasized through experiments

on an industrial nano-positioning motion system.

3.1 Introduction

The increasing performance demands on speed, accuracy, throughput, etc., of
today’s high-precision motion systems require them to operate under diverse
modes of operation, each having their own specific set of performance require-
ments. If this comes with the presence of multiple disturbance sources, active

This chapter is based on van Loon et al. (2015c).
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in various frequency ranges, this poses a challenging control design task. This is
due to the fact that the vast majority of controller designs techniques generally
relies on classical linear control theory in which fundamental design trade-offs
are inherently present. Namely, increasing the bandwidth of the controlled sys-
tem improves the low-frequency disturbance rejection properties, and, hence,
the tracking-performance, but due to the waterbed effect, this also results in
a larger sensitivity to higher-frequency disturbances (i.e., around and/or above
the bandwidth), see, e.g., Freudenberg et al. (2000); Seron et al. (1997). This
fundamental trade-off can already be challenging when just one mode of oper-
ation is considered, but this is severely aggravated when high performance is
required in multiple modes of operation because this generally means that the
control objectives vary over time, e.g., depend on the reference. As an exam-
ple, consider Fig. 3.1, which depicts a typical reference trajectory applied in
many industrial positioning systems, such as pick-and-place machinery, metrol-
ogy stages, lithographic systems, copiers, etc. During standstill (the reference
is constant), high-frequency disturbance sources are often dominant over low-
frequency disturbance sources, such that a low bandwidth of the controlled sys-
tem is desired in order not to amplify these high-frequency disturbances. On the
other hand, when the reference is changing low-frequency disturbances play a
dominant role in the closed-loop error, and, hence, a high bandwidth is preferred
to achieve good tracking performance. Due to fundamental limitations in linear
time-invariant (LTI) feedback control, the design of one LTI controller typically
requires a compromise between these conflicting design goals thereby limiting
the overall performance achievements of the controlled system.

In this chapter, we propose a variable-gain control strategy that allows for
a reference-dependent, and thus time-varying, ‘bandwidth’ of the feedback con-
troller. By taking on-line reference information into account, this feature al-
lows to ‘anticipate’ on the required ‘bandwidth’ for each mode of operation.
This allows, contrary to LTI control, to deal with the conflicting control objec-
tives induced by reference-dependent dominance of multiple disturbance sources
that are acting in various frequency ranges. The proposed controller consists of
frequency-domain loop-shaped linear filters and a variable-gain element, with its
gain depending on reference information and inducing the desired ‘bandwidth’ of
the resulting controller. The proposed controller structure supports the design
of all the linear components of the variable-gain controller configuration us-
ing well-known (frequency-domain) loop-shaping techniques, see, e.g., Steinbuch
and Norg (1998). It therefore connects to the state-of-the-art industrial motion
control setting, in which easy-to-measure frequency response functions (FRFs)
play an important role in the controller design, e.g., by using frequency-domain
loop-shaping techniques.

The concept of variable-gain control has already been successfully applied in
numerous industrial applications to improve the performance of (linear) motion
systems, see, e.g., Armstrong et al. (2001); Heertjes and Nijmeijer (2012); Heert-
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Fig. 3.1. Schematic representation of a possible controller design trade-
off. The upper figure shows a typical reference trajectory versus time, the
lower figure a possible corresponding error profile corrupted by multiple
(high/low frequency) disturbance sources. In the shaded gray areas, high
frequency disturbances are dominant, thereby requiring a low bandwidth
of the controlled system. However, during movements (corresponding
to the white area) low frequency disturbances are dominant and a high
bandwidth is preferred in order to improve the tracking performance.

jes et al. (2009); Hunnekens et al. (2015a); van de Wouw et al. (2008); Zheng
et al. (2005). In fact, the use of variable-gain control to target similar LTI
control design trade-offs as considered in this chapter, i.e., balancing trade-offs
between low-frequency tracking properties and sensitivity to higher-frequency
disturbances, has been considered in e.g., Heertjes and Nijmeijer (2012); Heert-
jes et al. (2009); van de Wouw et al. (2008). The novelty in our approach lies
in the fact that we couple this fundamental trade-off to time-varying control ob-
jectives depending on on-line reference information, which makes it possible to
design a time-varying controller with a ‘bandwidth-on-demand’ characteristic.

Other techniques that can deal with the considered trade-off are, e.g., linear
parameter varying (LPV) control, see, e.g., Dinh et al. (2005); Groot Wassink
et al. (2005); Scherer (2001); Shamma and Athans (1991) and switched controller
design, see, e.g., Deaecto et al. (2011); Hespanha and Morse (2002); Liberzon
(2003); Narendra and Balakrishnan (1997). LPV control allows to construct
parameter-dependent controllers with a similar ‘bandwidth-on-demand’ charac-
teristic as our proposed variable-gain controller. This can be done by construct-
ing the LPV controller such that it can vary its controller parameters as a func-
tion of the on-line reference information. The downside of such an approach,
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compared to the control design proposed in this chapter, is that it requires
a parametric plant model and the synthesis of these LPV controllers requires
solving linear matrix inequalities (LMIs), which both are less desirable from a
practical point-of view. Switched controllers are designed such that they are able
to switch between several LTI controllers, depending on some switching func-
tion which may depend on reference information. However, this approach has
several disadvantages compared to the variable-gain controller proposed here.
For instance, one has to prevent undesired large transients at the moment of
switching, the so-called bumpless transfer problem, see, e.g., Zaccarian and Teel
(2002) and references therein. Moreover, many designs for the synthesis and con-
trol of switched systems, see, e.g., Deaecto et al. (2011); Heemels et al. (2010);
Liberzon (2003), require, similar to LPV control, accurate parametric models
and LMI-based designs that are not so easily embraced by control engineers in
industry.

Summarizing, the main contributions of this chapter are as follows. Firstly,
a novel reference-dependent variable-gain control strategy is introduced that has
a ‘bandwidth-on-demand’ characteristic. Secondly, easy-to-use design guidelines
are presented as well as graphical data-based conditions to verify stability and
convergence of the variable-gain controlled closed-loop system. Thirdly, the
entire design process and its potential to outperform LTI controllers are experi-
mentally demonstrated on an industrial case study of a nano-positioning motion
stage.

The outline of this chapter is as follows. Section 3.2 considers the motivation
of this work and presents the proposed control architecture. In Section 3.3, data-
based conditions to assess stability and convergence of the closed-loop system are
provided together with design guidelines. In Section 3.4, we discuss an industrial
case study of a nano-positioning motion stage and show how the analysis and
design guidelines presented in Section 3.3 can be applied in practice. Moreover,
the ability of the ‘bandwidth-on-demand’ strategy to outperform LTI controllers
(with a fixed bandwidth) is demonstrated by means of experimental results on a
nano-positioning motion stage. Finally, in Section 3.5, we end with conclusions.

3.1.1 Nomenclature

The following notational conventions will be used. Let N, R, R≥0, C denote
the set of non-negative integers, real numbers, nonnegative real numbers and
complex numbers, respectively, and Rn denote the space of n-dimensional vectors
with the standard Euclidean norm denoted by ‖ · ‖. The real part of a complex
variable z is denoted by Re(z). The Laplace transform of a signal x : R≥0 → Rn
is denoted by L{x} and s ∈ C denotes the Laplace variable.
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3.2 Reference-dependent variable-gain control: a
‘bandwidth-on-demand’ approach

In this section, a reference-dependent variable-gain control strategy will be pro-
posed that enables a ‘bandwidth-on-demand’ characteristic of the resulting feed-
back controller. In Section 3.2.1, we provide a further motivation for such a
hybrid controller. A description of a generic motion control system including
the proposed add-on reference-dependent variable-gain controller will be given
in Section 3.2.2.

Let us first make precise what is meant by bandwidth given its prominent
role in this chapter. Consider therefore the linear feedback control configuration
in Fig. 3.2 with linear plant P(s), s ∈ C, and a linear controller C(s). The
bandwidth ωb is defined as the frequency ω ∈ R where the magnitude of the
open-loop |P(jω)C(jω)| crosses 1 from above for the first time, see, e.g., Skoges-
tad and Postlethwaite (2005). By definition, bandwidth is a linear time-invariant
(LTI) concept and, hence, does not apply to our proposed time-varying control
strategy. Nevertheless, with abuse of definition, we will use the term ‘band-
width’ in this chapter but use quotation marks to avoid confusion with the
LTI case. Moreover, from this point onward we sometimes use the terms ‘low-
bandwidth/high-bandwidth’ controller to denote a controller that results in a
low/high bandwidth, respectively.

3.2.1 Motivation for a ‘bandwidth-on-demand’ controller

Consider Fig. 3.2, which represents a classical LTI feedback controlled system.
In this figure, e := r−y−η denotes the tracking error between the reference sig-
nal r, the output y of the single-input-single-output (SISO) linear time-invariant
(LTI) plant P(s), s ∈ C, and the measurement noise η. The SISO LTI controller
is given by C(s), and di and do denote unknown, bounded input/output distur-
bances, respectively.

Let us for now only focus on the closed-loop error e, and by doing so, two
transfer functions are of central interest. The first one is the sensitivity function

S(s) :=
1

1 + P(s)C(s) , (3.1)

which represents the closed-loop transfer from (i) the reference signal r, (ii) the
output disturbance do, and (iii) the measurement noise η, to the error signal
e. As such, it reflects the ability of the controller to reduce the servo error
e under the external inputs r, do and η and, therefore, forms a key qualifier in
assessing closed-loop performance. The second function of interest is the process
sensitivity function

Sp(s) := − P(s)

1 + P(s)C(s) , (3.2)
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P(s)−
r e

di

y

η

do

C(s)

Fig. 3.2. Schematic representation of a classical LTI feedback controlled
system.
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Fig. 3.3. Schematic representation of the Bode magnitude plot for the
sensitivity function S(jω) and process sensitivity function Sp(jω), for
both a low-bandwidth ωb (solid) as well as a high-bandwidth ωb (dashed)
situation.

which represents the closed-loop transfer between the input disturbance di to
the error signal e. Fig. 3.3 shows a schematic representation of the Bode magni-
tude plot for the sensitivity function S(jω) and the process sensitivity function
Sp(jω) for a typical motion control setting, ω ∈ R. By using loop-shaping tech-
niques, see, e.g., Steinbuch and Norg (1998), the design of the LTI feedback
controller Clbw(jω) in the frequency domain aims to attain the desired shape
for the frequency response of S(jω) and Sp(jω), such that sufficient robustness
margins, reference tracking, disturbance rejection properties, etc., are obtained.

In classical (motion) control, the bandwidth ωb is normally chosen as high
as possible for performance reasons. Indeed, a high bandwidth is advantageous
for low-frequency (frequencies below the bandwidth) disturbance rejection and,
hence, results in a good tracking performance. This is illustrated in Fig. 3.3.
For a bandwidth ωb,1, disturbances with a frequency content that is contained
in the frequency range Ωd,1 are suppressed, while for a higher bandwidth ωb,2
this frequency range is obviously much broader and given by Ωd,2. By the
waterbed-effect, it is known that the area of sensitivity suppression is compen-
sated by an area of sensitivity increase at higher frequencies. In particular, a
higher bandwidth will result in a peak (|S(jω)| >> 1) at higher frequencies,
see Fig. 3.3. High frequency disturbances such as sensor noise η and actuator
noise di,act have a frequency content that is typically contained in Ωd,2 in Fig.
3.3. In case of bandwidth’s ωb,1 and ωb,2, such disturbances will likely have a
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Clbw(s) P(s)

F(s)α(v) −u

−
r e

di

y

Variable gain control part

Reference-dependent variable gain controller Cvg

η

do

Fig. 3.4. Schematic representation of the reference-dependent variable-
gain controlled system.

similar effect on the closed-loop error e, see Fig. 3.3. However, in case ‘high-
frequency’ disturbances have frequency content that is not much higher than the
bandwidth, e.g., if the frequency content of these disturbances is contained in the
frequency range Ωd,1, this will inevitably result in control design trade-offs. Dur-
ing time-varying reference motion, the low-frequency disturbances will likely be
dominant over the high-frequency disturbances, and, as a result, the bandwidth
ωb,2 is still preferable. However, what if accuracy is not only required during
movements (i.e., reference tracking), but also at standstill/low reference veloci-
ties? At standstill/low-velocities, it is clearly advantageous to have a bandwidth
ωb,1 because disturbances in the frequency range Ωd,1 will not be amplified. In
practice, this trade-off results in the design of an LTI feedback controller that
achieves at best a compromise among these conflicting design goals such that a
reasonable performance is obtained given these inherent system design limita-
tions.

As we will demonstrate in this chapter, the proposed reference-dependent
variable-gain control method, that will be formally introduced in the following
section, allows for a reference-dependent ‘bandwidth’ of the feedback controller,
i.e., the ‘bandwidth’ (and thereby the controller) is varied on-line based on a re-
lation between the preferred bandwidth and the actual reference characteristics.

3.2.2 Description of the control configuration

The overall reference-dependent feedback control configuration as proposed in
this chapter is shown in Fig. 3.4. It consists of a standard LTI feedback con-
trolled system, similar as in Fig. 3.2 with C(s) = Clbw(s), augmented with an
add-on variable gain control part. This variable gain part of the total controller
Cvg consists of an LTI shaping filter F(s), and a time-varying variable gain
α(v(t)) depending on a scheduling variable v(t), t ∈ R≥0, which is related to
characteristics of the reference signal. In this chapter, and in particular in Sec-
tion 3.4, we will use the reference velocity as scheduling variable, i.e., v(t) = ṙ(t),
although other options are imaginable as well. For instance, the variable gain
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could depend on the reference position, i.e., v(t) = r(t), on the acceleration,
i.e., v(t) = r̈(t), etc. The process of extracting the relevant information, e.g.,
v(t) = ṙ(t), from the reference signal r is indicated by the dashed box in Fig.
3.4. Note that for the particular choices mentioned, the reference information is
not required to be known in advance. The variable gain element is given by a
mapping α : R→ [0, ᾱ], where ᾱ ∈ R>0 denotes the maximum value. Let us first
consider the situation where α ∈ [0, ᾱ] is a fixed gain, and study the following
cases (α = 0 and α ∈ (0, ᾱ]):

1. If α = 0, we have a linear control scheme with linear controller Cfvg(s) =
Clbw(s);

2. For a fixed α ∈ (0, ᾱ], we have a linear control scheme with controller

Cfvg(s) = (1 + αF(s))Clbw(s). (3.3)

Remark 3.1. The reference-dependent variable-gain controller reduces only to
an LTI controller for fixed values of α. Therefore, we denote it by Cfvg(s) only
when α is fixed, and use Cvg with α(v(t)) varying over time otherwise.

The introduction of this variable gain allows us to deal with the conflicting
design criteria as described in the introduction and discussed in detail in Section
3.2.1, i.e., preferring a controller that results in a low bandwidth ωb over a
controller that results in a higher bandwidth ωb < ωb ≤ ωb, or vise versa,
depending on actual reference information. In fact, by assigning α(v(t)) = 0
to the situation where a low bandwidth is preferable, the user can loop-shape
the controller Clbw(s) such that the best possible performance is obtained for
this particular situation. On the other hand, the proposed structure of the
reference-dependent variable-gain controller Cvg allows that, by proper design of
the variable gain element α : R → [0, ᾱ] and the linear filter F(s) (see below
in Section 3.3.2), the ‘bandwidth’ ωb of the variable-gain controller Cfvg(s) (for
fixed values of α) will gradually increase (and can take values in [ωb, ωb]) for
increasing values of α ∈ [0, ᾱ].

3.3 Stability conditions and design guidelines

In this section, we present data-based graphical conditions to verify stability and
convergence (Demidovich (1961); Pavlov et al. (2006)) of the closed-loop system
as in Fig. 3.4 for every α : R → [0, ᾱ] and any choice of scheduling variable v.
Hence, the stability will be guaranteed independent of how α(v(t)) depends on
time as long as it takes values in [0, ᾱ]. Moreover, general design guidelines are
provided in section 3.3.2.
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3.3.1 Stability and convergence

The system as in Fig. 3.4 belongs to the class of Lur’e-type systems, see, e.g.,
Khalil (2000), as depicted schematically in Fig. 3.5. Such systems consist of
a linear dynamical part in feedback with with a time-varying, but memoryless,
variable gain element given (in this case) by ϕ(v(t), e). Consider therefore Fig.
3.5, in which the linear part is given by

L{e} = Geu(s)L{u}+ Gew(s)L{w}, (3.4)

where the external inputs are denoted by w = [r d>]> ∈ Rnw , with reference
input r ∈ R and a vector d = [d>i d>o η]> ∈ Rnd containing the external distur-
bances. In (3.4), the transfer function between ‘input’ u and ‘output’ e, see Fig.
3.5, is given by

Geu(s) = F(s)
P(s)Clbw(s)

1 + P(s)Clbw(s)︸ ︷︷ ︸
=:T (s)

, (3.5)

in which T (s) represents the complementary sensitivity function, and the trans-
fer function between the external inputs w and e is given by

Gew(s) =
[
S(s) −Sp(s) −S(s) −S(s)

]
, (3.6)

in which S(s) and Sp(s) are given in (3.1) and (3.2), respectively, with C(s) =
Clbw(s). The closed-loop dynamics can be represented in state-space form as

ẋ = Ax+Bu+Bww (3.7a)

e = Cx+Dww (3.7b)

u = −ϕ(v, e) (3.7c)

with state x ∈ Rnx , (A,B,C) minimal such that Geu(s) = C(sI − A)−1B,
and Gew(s) = C(sI − A)−1Bw + Dw with I an identity matrix of appropriate
dimensions. Finally, the variable gain in Fig. 3.5 depends on the reference via

ϕ(v, e) = α(v)e, (3.8)

for all v ∈ R and e ∈ R.
If (the origin of the) the system (3.7), (3.8) is asymptotically stable for a fixed

value of α (in absence of external disturbances, i.e., w = 0), it is known (via linear
system theory) that it exhibits a unique, bounded, and globally asymptotically
stable steady-state solution (irrespective of the initial condition) for any bounded
external variables, see, e.g., Hespanha (2009). Clearly, such a property does not
hold in general for nonlinear systems such as the closed-loop system with the
variable gain as studied here. However, here we establish conditions such that
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ẋ = Ax+Bu+Bww

e = Cx+Dww

ϕ(v, e)

d e

u
−

r{
w

Fig. 3.5. Schematic representation of a Lur’e-type description of the
reference-dependent variable-gain controlled system.

these favorable properties can be guaranteed for systems with time-varying gains
α(v(t)), independent of the particular reference r (recall that v(t) = ṙ(t)). In the
literature, such a property is called convergence, see Demidovich (1961); Pavlov
et al. (2006). Before we provide conditions to ensure that our proposed variable-
gain control design renders the closed-loop system (3.7), (3.8) convergent, we
first provide a formal definition of a convergent system. Therefore, consider a
general nonlinear system description of the form

ẋ = f(x,w, t) (3.9)

with state x ∈ Rnx and input w ∈ Rnw . The function f(x,w, t) is locally
Lipschitz in x, continuous in w and piecewise continuous in t. Moreover, the
inputs w(t) are assumed to be piecewise continuous functions of time defined for
all t ∈ R.

Definition 3.1. Demidovich (1961); Pavlov et al. (2006) System (3.9) is said
to be

• convergent if there exists a solution x̄w(t) such that

(i) x̄w(t) is defined for all t ∈ R and bounded for all t ∈ R,

(ii) x̄w(t) is globally asymptotically stable;

• exponentially convergent if it is convergent and x̄w(t) is globally exponen-
tially stable.

In Definition 3.1, the solution x̄w(t) (which depends on the input w(t)) de-
notes the steady-state solution of the system (3.9). It states that any solution of
a convergent system converges to a bounded steady-state solution, independent
of its initial conditions. For exponentially convergent systems, this steady-state
solution is also unique, see Pavlov et al. (2006). Being able to ensure conver-
gence of the variable-gain controlled system (3.7), (3.8) is advantageous from a
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stability, a performance and a design point-of-view. Namely, convergence im-
plies firstly, stability for any reference and disturbance realization, and secondly,
the existence of a unique steady-state solution. The latter property allows for a
unique steady-state performance evaluation in the face of disturbances, and, as
such, it also results in an easier design and tuning of the variable-gain controller
Cvg. The following conditions are sufficient to establish that a system of the
form (3.7), (3.8) is exponentially convergent.

Theorem 3.1. Consider system (3.7) with ϕ(v, e) given by (3.8), in which α :
R→ [0, ᾱ] for some ᾱ ∈ R>0. Suppose that

(I) The system matrix A is Hurwitz;

(II) The frequency response function Geu(jω) as in (3.6) satisfies

1

ᾱ
+Re(Geu(j∞)) > 0, (3.10)

and

1

ᾱ
+Re(Geu(jω)) > 0 for all ω ∈ R. (3.11)

Then, system (3.7), (3.8) is exponentially convergent.

Proof. The proof can be found in Appendix A.2.1.

Remark 3.2. Condition (I) of Theorem 3.1 will be satisfied by proper controller
design of Clbw(s). This is due to the fact that if the open-loop P(s)Clbw(s) satisfies
the Nyquist stability criterion, see, e.g., Skogestad and Postlethwaite (2005), the
complementary sensitivity function T (s) has all its poles located in the complex
left half plane (LHP). In addition, if the shaping filter F(s) is designed such that
it has no unstable poles, the transfer function Geu(s) as in (3.6) will have all its
poles located in the LHP as well. As a result, the system matrix A of (3.7) will
be a Hurwitz matrix. Moreover, note that for many motion systems Geu(jω)→ 0
for ω →∞, resulting in condition (3.10) being satisfied automatically.

3.3.2 Design and tuning guidelines

In this section, we present a systematic design approach of a reference-dependent
variable-gain controller Cvg as in Fig. 3.4, where we assume that a plant model
P(s) is available, e.g., identified based on measured frequency response data.
This approach consists of four steps.

Step 1: Study the control trade-off.
The first step consists of studying the control design trade-off in greater de-
tail, which can be done in a model-based environment as well as by means of
experiments. The following knowledge is required to perform this study:
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• The minimum and maximum scheduling variable under which the system
needs to operate, i.e., determine v and v such that v(t) ∈ [v, v] for all
t ∈ R≥0;

• A performance measure J(v, ωb) depending on the scheduling variable v
and the bandwidth ωb, typically related to the application at hand (in this
chapter, we assume that a low J corresponds to a good performance);

• [In case of a model-based study] A (rough) estimation of the types, and the
corresponding frequency ranges, of the disturbances acting on the system,
i.e., di, do and η in Fig. 3.2.

Consider the model structure as in Fig. 3.2 in which (in case of a model-
based study) we use the estimated plant model P(s). First, we define a grid
of constant scheduling variables vc,i, i = 1, 2, . . . , n, satisfying vc,i ∈ [v, v] with
v = vc,1 < vc,2 < . . . < vc,n−1 < vc,n = v. Moreover, we design m LTI con-
trollers Cj(s) (see Fig. 3.2) with each a different bandwidth ωb,j , j = 1, 2, . . . ,m.
Then, for each of these constant scheduling variables vc,i, i = 1, 2, . . . , n, we
evaluate the performance for each of these LTI controllers Cj(s), j = 1, 2, . . . ,m.
This allows us to (approximately) characterize the performance as a function
of the bandwidth for each vc,i, i = 1, 2, . . . , n. This results in ‘performance’
curves as schematically depicted in Fig. 3.6. This figure represents the control
design trade-off because each particular value vc,i for the scheduling variable
will typically show optimal performance (minima in Fig. 3.6, indicated by the
black dots) for a different bandwidth ωb. We denote this ‘optimal bandwidth’
by ωb,opt,i for the corresponding scheduling variable vc,i, and is given by

ωb,opt,i = arg min
ωb

J(vc,i, ωb), (3.12)

for i = 1, 2, . . . , n.

Step 2: Design of a low-bandwidth and high-bandwidth controller Clbw(s)
and Chbw(s), respectively.
Based on Step 1, we select the desired low bandwidth ωb as

ωb = min
i=1,2,...,n

ωb,opt,i, (3.13)

and design the corresponding LTI controller Clbw(s). In Step 4, we will ensure
that the variable-gain controller Cfvg(s) represents Clbw(s) if α(v) = 0. The LTI
controller Chbw(s) is designed1 such that the highest achievable bandwidth ωb
is obtained under sufficient robustness margins2, such as gain margin, modulus
margin, phase margin etc., see, e.g., Skogestad and Postlethwaite (2005). This

1Note that both Clbw(s) and Chbw(s) can be designed using well-known frequency-domain
loop-shaping techniques, see, e.g., Steinbuch and Norg (1998).

2In this respect, note that (in general) ωb 6= maxi=1,2,...,n ωb,opt,i.
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Fig. 3.6. Schematic representation of a possible control trade-off for
a range of constant scheduling variables vc,i, i = 1, 2 . . . , n, in the set
vc,i ∈ [v, v] with vc,1 = v and vc,n = v.

high-bandwidth controller Chbw(s) is the ‘target’ controller for the high gain
situation, i.e., when α(v) = ᾱ we aim to approximate Chbw(s) with our variable
gain controller Cfvg(s). How to achieve this will be discussed in the next step.

Step 3: Design the linear filter F(s) and determine the maximum allowable
gain ᾱ.
Once ωb and ωb have been determined in Step 2, we will design F(s) and ᾱ with
the aim to vary the ‘bandwidth’ ωb of the resulting controller Cvg on-line in the
set [ωb, ωb], depending on the scheduling variables v. The control architecture
of the proposed variable-gain controller as in Fig. 3.4 results in Cfvg(s) = Clbw(s)
for the limit case α = 0. For the other limit case, α = ᾱ, we aim to design F(s),
and determine ᾱ, such that

(1 + ᾱF(s))Clbw(s) = Chbw(s). (3.14)

When satisfying (3.14) exactly, we obtain values of ᾱ and F(s) (which is normal-
ized to gain 1 when jω = 0) corresponding to an ‘optimal high-gain situation’,
satisfying

ᾱoptFopt(s) =
Chbw(s)

Clbw(s)
− 1. (3.15)

From (3.15) and the normalization Fopt(jω) = 1 when jω = 0, ᾱopt and Fopt(s)
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Fig. 3.7. Schematic representation of a possible relation between the
scheduling variables vc ∈ [v, v], and the desired bandwidth ωb,vg ∈
[ωb, ω

new
b ] of the variable gain controller Cvg.

can be determined uniquely. However, this optimal choice might not always be
practically feasible due to the following reasons:

1. This approach does not guarantee a priori the closed-loop stability of (3.7),
(3.8), for the obtained ᾱopt and Fopt(s);

2. This approach of fixing ᾱ and F(s) leaves the designer with no possibilities
to influence the shape of Geu(jω) as in (3.6), e.g., through the manual
shaping of F(s), in order to satisfy the circle criterion condition (3.11)
leading to stability and convergence guarantees, see, e.g., Heertjes et al.
(2005); van de Wouw et al. (2008);

3. If the difference between the low-bandwidth ωb and high-bandwidth ωb
is large, this approach might yield a high gain ᾱopt. Consequently, for
such high values of ᾱopt, we have that 1

ᾱopt
→ 0. Therefore, in such cases,

the frequency response function Geu(jω) as in (3.6), with ᾱ = ᾱopt and
F(s) = Fopt(s), is required to be (almost) positive real in order to satisfy
the conditions of Theorem 3.1, which in many (motion control) cases is a
too strict requirement.

Therefore, it is often better to design the filter F(s) manually by loop-shaping
techniques, in which Fopt(s) resulting from (3.15) can be used as a target design.
In this respect, if (3.14) is not exactly satisfied for the resulting F(s) and ᾱ, the
target bandwidth ωb can most probably not be attained anymore. Therefore,
from this point onward, the bandwidth of the resulting controller Cfvg(s) = (1 +
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ᾱF(s))Clbw(s) is denoted by ωnewb , for which it typically holds that ωnewb ≤ ωb.
How to apply this approach will be demonstrated in Section 3.4.2.

Step 4: Design the ‘reference-to-gain’ mapping α : [v, v]→ [0, ᾱ].
The last step in the design of a reference-dependent variable-gain controller Cvg
is to design the mapping α : [v, v] → [0, ᾱ]. We start by establishing a relation
between the ‘bandwidth’ ωb of Cvg as a function of α ∈ [0, ᾱ]. Note that, for
fixed values of α, the controller Cfvg(s) as in (3.3) (in which the shaping filter
F(s) and maximal gain ᾱ follow from Step 3) is linear and that the resulting
bandwidth can be straightforwardly assessed. In particular, for each αi ∈ [0, ᾱ],
i = 1, 2, . . . , n, on a discrete grid, we assess the corresponding bandwidth ωb,i,
i = 1, 2, . . . , n. By interpolation, the relation

ωb = Hbw(α) (3.16)

can be approximately determined for all α ∈ [0, ᾱ]. Here we assume that the
map Hbw : [0, ᾱ] → [ωb, ω

new
b ] is strictly monotone (although one can also deal

with other situations). Then, the desired ‘reference-to-gain’ mapping α : [v, v]→
[0, ᾱ] is given by

α(v) = arg min
0≤α≤ᾱ

J(v,Hbw(α)). (3.17)

Remark 3.3. An alternative (perhaps more intuitive but less general) approach
to design the mapping α : [v, v]→ [0, ᾱ] comprises three steps:

1. First, we establish a relation between the scheduling variable v ∈ [v, v] and
the ‘desired bandwidth’ ωb,vg ∈ [ωb, ω

new
b ], of the variable-gain controller

Cvg. Based on the analysis in Step 1 (resulting in an optimal bandwidth
ωb,opt as a function of the scheduling variable vc), Step 2 (resulting in
a minimum and maximum attainable bandwidth ωb, ωb, respectively), and
Step 3 (resulting in a new maximum attainable bandwidth ωnewb ), this
relation is given by

ωb,vg(v) = arg min
ωb≤ωb≤ωnewb

J(v, ωb). (3.18)

Note that the values in (3.18) for v = vc1 , vc2 , . . . , vcn are determined based
on the curves computed in Step 1, see Fig. 3.6, while interpolation is used
to obtain the values for wb,vg(v) in between. This is schematically depicted
in Fig. 3.7. Note that, for those ωb,opt,i > ωnewb , i ∈ {1, 2, . . . , n}, we
typically take ωnewb (see Fig. 3.6 and Fig. 3.7), and thus ωb,vg(vi) =
min(ωb,opt,i, ω

new
b ), i ∈ {1, 2, . . . , n}, because a higher bandwidth cannot be

obtained due to robust stability reasons;

2. In the second step, we establish a relation between the ‘bandwidth’ ωb of
Cvg as a function of α ∈ [0, ᾱ]. This has been detailed above in Step 4,
and resulted in the expression (3.16), in which Hbw is required to be strictly
monotone;
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3. The third part consists of combining both relations (constructed in parts
1) and 2) above), which yields the desired ‘reference-to-gain’ mapping α :
[v, v]→ [0, ᾱ], and is given by

α(v) = H−1
bw (ωb,vg(v)). (3.19)

In this respect, (3.17) is more general and does not even require the strict mono-
tonicity of Hbw as in (3.16).

Remark 3.4. The proposed first part in Step 4 (i.e., establishing a relation be-
tween the scheduling variable v and the ‘desired bandwidth’ ωb,vg) is a ‘guideline’
of a possible design procedure. Especially when a model-based study is performed
in Step 1, it depends on the accuracy of the obtained model and the disturbance
identification. Nevertheless, it provides the user with valuable insights on how
the ‘bandwidth’ ωb,vg of the variable-gain controller Cvg should vary as a func-
tion of the scheduling variable v. Of course, the user can re-design (parts of)
this relation, e.g., based on experimental knowledge, if desirable. Note that this
will not jeopardize stability and convergence of the system (3.7), (3.8) as long as
α(v(t)) ∈ [0, ᾱ], t ∈ R≥0 due to the stability and convergence guarantees obtained
in Step 3.

3.4 Case-study on an industrial nano-positioning
motion system

The nano-positioning motion system considered in this chapter is an experi-
mental setup of a high-precision motion system that requires movements with
velocities ranging from standstill, to nanometers per second (nm/s), to even
millimeters per second (mm/s), all with (sub)nanometer resolution. The nano-
positioning motion system has several key modes of operation, namely: (i)
standstill, (ii) constant velocities in a broad range, and (iii) fast (user-operated)
point-to-point movements. Due to the presence of multiple disturbance sources
in various frequency ranges (depending also on the mode of operation), this
results in conflicting control design trade-offs. As such, this nano-positioning
motion system forms a relevant case-study to validate the practical feasibility
of the proposed ‘bandwidth-on-demand’ variable-gain control strategy, see also
Section 3.2.1.

The experimental setup will be discussed in Section 3.4.1. The design3 of
a reference-dependent variable-gain controller, using the guidelines presented
in Section 3.3.2, will be discussed in Section 3.4.2, after which we present the
experimental results in Section 3.4.3.

3To protect the interests of the manufacturer, we can not provide concrete information
about the reference velocities (and thus scheduling variables v) and the disturbance modeling.
For the same reason, all figures in this section have either been scaled or use blank axes in
terms of units.
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3.4.1 Nano-positioning motion stage

The nano-positioning motion system is driven by piezoelectric actuators and
controlled by an xPC Target system coupled to a host computer, which allows
us to execute Matlab/Simulink controller implementations in real-time. The
experimental setup is positioned on a vibration isolation table, and equipped
with a 1st-order 100 Hz low-pass actuation filter Pact(s) in the hardware to filter
off high-frequency actuator noise. This low-pass actuation filter Pact(s) is given
by the transfer function

Pact(s) =
1

1
2π100s+ 1

. (3.20)

The measured frequency response functions of the plant Pn(jω) with and without
the additional low-pass filter, i.e., Pn(jω)Pact(jω) and Pn(jω), respectively, are
depicted in Fig. 3.8. This shows that the plant Pn(jω) behaves as a rigid-body
system in the frequency range of interest. Moreover, Fig. 3.8 reveals the presence
of a significant, and thus bandwidth-limiting, delay.

The experimental nano-positioning motion setup operates in a lab-environment
instead of in its dedicated application. Therefore, additional disturbances are
emulated to recover the real situation in the application as much as possible.
Based on measurement data, an output disturbance do,add = H(s)ε has been
identified, where the magnitude of H(jω) is depicted in Fig. 3.9 and ε is nor-
mally distributed white noise with zero mean and variance λ2

ε = (2 ·10−9)2. As a
result, a controlled experiment is created that allows us to analyze the influence
of the bandwidth ωb on the performance measure as realistically as possible.

3.4.2 Design of a reference-dependent variable-gain con-
troller

To illustrate the intuitive design of a reference-dependent variable-gain con-
troller, we follow the design process using the guidelines presented in Section
3.3.2, in which, from this point onward, the scheduling variable is taken as the
reference velocity, i.e., v(t) = ṙ(t), t ∈ R≥0.

Step 1 in the design: In this step, we study the control design trade-off in
a model-based environment. Consider therefore Fig. 3.2, in which the plant is
given by P(s) = Pn(s)Pact(s), with Pn(s) a 2nd-order LTI model identified on
measured FRF data, see Fig. 3.8, and Pact(s) as in (3.20).

Next, the following information is employed:

• The minimum reference velocity is v = 0;

• The following disturbances are acting on the system:

– Sensor noise η, modeled as white noise with zero mean and variance
λ2
η = (10−9)2;
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Fig. 3.8. Measured frequency response functions of: the nano-motion
stage Pn(jω) (solid blue), the nano-motion stage with additional hardware
actuation filter Pn(jω)Pact(jω) (dashed red) and of the identified 2nd-
order plant model (dash-dotted black).

– Actuator noise di,act modeled as white noise with zero mean and

variance λ2
di,act

= (
√

10−19)2;

– Periodic impact disturbances di,p that depend on the reference veloc-
ity v, which are induced by piezoelectric actuators;

– Environmental disturbances do,add = H(s)ε, where H(s) is depicted
in Fig. 3.9 and ε is normally distributed white noise with zero mean
and variance λ2

ε = (2 · 10−9)2.

• The performance measure is taken as the mean square of the error, which
is given for a N × 1 vector e by

eMS :=
1

N

N∑

i=1

|ei|2. (3.21)

Next, a range of constant velocities vc,i, i = 1, 2, . . . , 11, are created in the set
vc,i ∈ [0, v], and 21 LTI controllers Cj(s) are designed each having a different
bandwidth, j = 1, 2, . . . , 21. These controllers all consist of the same types of
linear filters, namely a lead filter, integrator and 2nd-order low-pass filter, and
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Fig. 3.9. Bode magnitude plot of the disturbance filter H(jω).

Table 3.1. Variables of the individual LTI controllers Cj(s) as function
of the bandwidth ωb,j (in Hz), j = 1, 2, . . . ,m.

Component Variables

Lead fle1,j = 1
4ωb,j , fle2,j = 4ωb,j

Integrator fI,j = 1
9ωb,j

2nd-order low-pass fl,j = 6ωb,j

are given by

Cj(s) = kp,j

{
s+ 2πfI,j

s

}{ 1
2πfle1,j

s+ 1

1
2πfle2,j

s+ 1

}{
1

1
(2πfl,j)2 s2 + 1

2πfl,j
s+ 1

}
,

(3.22)

where the parameters, which depend on the bandwidth ωb,j , are given in Table
3.1, with j = 1, 2, . . . , 21. By shaping the gains kp,j to the appropriate value,
21 controllers with a different bandwidth ωb,j ∈ [5, 25] Hz, j = 1, 2, . . . , 21 have
been designed. Then, following the procedure of Step 1, the performance as
a function of the bandwidth for each vc,i, i = 1, 2, . . . , 11, is characterized and
depicted in Fig. 3.10. This shows us that indeed the ‘optimal bandwidth’ ωb,opt,i
increases for increasing reference velocities vc,i, i = 1, 2, . . . , 11.

Step 2 in the design: The low-bandwidth is chosen as ωb = 5 Hz. The con-
troller design of Clbw(s) is based on the plant Pn(s)Pact(s), thereby explicitly
taking the hardware actuation filter Pact(s) into account. The hardware actu-
ation filter has a cut-off frequency of 100 Hz, which does not pose limitations
on achieving a bandwidth of ωb = 5 Hz. However, Pact(s) does poses severe
limitations on the maximum achievable bandwidth. Therefore, Pact(s) was re-
moved from the setup and thus not included in the controller design of Chbw(s),
i.e., this is based on the plant Pn(s) only. In order to make a fair compar-
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Fig. 3.10. Mean square of the closed-loop error eMS , at various constant
reference velocities vc,i as a function of the bandwidth ωb. The black dots
denote the minima of each curve, and thus the optimal bandwidth ωb,opt,i
for each particular reference velocity, i = 1, 2, . . . , 11.

ison with the low-bandwidth situation, an additional 1st-order low-pass filter
Pact,hbw(s) is digitally included in the design of Chbw(s). This filter Pact,hbw(s)
is designed with cut-off frequency 20ωb Hz, i.e., with the same ratio compared
to the low-bandwidth (5 Hz) situation (20ωb = 100 Hz). This finally results
in a high-bandwidth controller Chbw(s) that achieves a bandwidth of ωb = 20
Hz. Fig. 3.11 depicts the resulting open-loop frequency response functions of
Pn(jω)Pact(jω)Clbw(jω) and Pn(jω)Pact,hbw(jω)Chbw(jω), showing that a band-
width of 5 Hz and 20 Hz is achieved, respectively.

In this respect, it is important to emphasize that the hardware actuation filter
Pact(s) will be included during the experiments with the variable-gain controller.
In Step 3, we will explicitly taking this into account during the design of the
shaping filter F(s).

Step 3 in the design: In this step, we will first determine the shaping filter
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Fopt(s) and maximal gain ᾱopt for the ‘optimal high-gain situation’. Because the
actuation filter Pact(s) will be present in the hardware during the experiments
with the reference-dependent variable-gain controller Cvg, we take this explicitly
into account in the design of the shaping filter Fopt(s) (and later in F(s)) in
order to make a fair comparison with Chbw(s) for high values of α. By doing so,
the optimal gain ᾱopt and optimal shaping filter Fopt(s) follow from

ᾱoptFopt(s) =
Pact,hbw(s)Chbw(s)

Pact(s)Clbw(s)
− 1. (3.23)

This results in a gain ᾱopt = 129 and a shaping filter Fopt(s) (which is normalized
to gain 1 when jω = 0) as depicted in Fig. 3.12. It was already argued in Section
3.3.2 that this approach might result in a (too) high gain ᾱopt such that satisfying
the circle criterion condition of Theorem 3.1 is hard. Indeed, as indicated in Fig.
3.13, the solid green line intersects the dashed-green line and, hence, we do not
satisfy Re(Fopt(jω)T (jω)) > − 1

129 for all ω ∈ R, for T (jω) as in (3.6) with
P(jω) = Pn(jω)Pact(jω). Nevertheless, Fopt(s) forms a good starting point
for the manual design of F(s). Closer inspection of Fig. 3.12 shows that the
filter F(s) should have a −1 slope in the frequency range ∼ [0.7, 6] Hz, which
basically represents the shift of the integrator to higher frequencies, which is
realized by designing an appropriate lag filter. In the frequency range ∼ [30, 105]
Hz we observe a +3 slope in Fig. 3.12, which is realized by adding three lead
filters. These create phase lead around the high bandwidth by ‘canceling’ the
2nd-order low-pass filter in Clbw(s) and the 1st-order low-pass actuation filter
Pact(s) around those frequencies. Finally, in order to satisfy the circle criterion
condition (3.11), a notch filter is added to fine-tune the shape of Re(Geu(jω)).
This can be done graphically by means of a Nyquist diagram of Geu(jω) as
in (3.6), with P(jω) = Pn(jω)Pact(jω). This tuning/loop-shaping procedure
results in the shaping filter F(s) as depicted by the dashed line in Fig. 3.12, and
which is given by the following transfer function:

F(s) =

{ 1
2π26s+ 1

1
2π105s+ 1

}{ 1
2π30s+ 1

1
2π110s+ 1

}2{ 1
2π6s+ 1
1

2π0.5s+ 1

}

×
{

1
(2π26.5)2 s

2 + 2·0.85
2π26.5s+ 1

1
(2π80)2 s2 + 2·1.3

2π80s+ 1

}
. (3.24)

Based on the circle criterion condition (3.11), the maximal gain is selected as
ᾱ = 29, thereby allowing for some robustness margin, see Fig. 3.13, which
shows that the solid red line stays on the right of the dashed-red line with
some margin. Once the circle criterion condition (3.11) has been verified, i.e.,
Re(Geu(jω)) > − 1

29 for all ω ∈ R, and realizing that Geu(jω) → 0 for ω → ∞,
condition (II) of Theorem 3.1 is satisfied. In order to verify condition (I), note
that the low-bandwidth controller Clbw(s) is designed such that the open-loop
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Fig. 3.11. Measured open-loop frequency response functions using the
low bandwidth controller, i.e., Pn(jω)Pact(jω)Clbw(jω), the high band-
width controller, i.e., Pn(jω)Pact,hbw(jω)Chbw(jω), and the reference-
dependent variable-gain controller i.e., Pn(jω)Pact(jω)Cfvg(jω), for fixed
α = 29 (note that for α = 0 we obtain Pn(jω)Pact(jω)Clbw(jω)).

Pn(s)Pact(s)Clbw(s) satisfies the Nyquist stability criterion, see, e.g., Skogestad
and Postlethwaite (2005). Since the shaping filter F(s) as in (3.24) has no
unstable poles, we also satisfy condition (I) of Theorem 3.1, see Remark 3.2.
Hence, we can conclude that all conditions of Theorem 3.1 are being satisfied,
which guarantees that the designed reference-dependent variable-gain controlled
system is exponentially convergent, independent of how the gain α(v(t)) ∈ [0, 29],
t ∈ R≥0, varies over time.

Due to the proposed design of Cvg, the open-loop frequency response of
Pn(s)Pact(s)Cfvg(s) (for α = 0) is exactly equal to Pn(s)Pact(s)Clbw(s). However,

this does not apply to the high-gain case, i.e., Pn(s)Pact(s)Cfvg(s) for α = 29 is
not equal to Pn(s)Pact,hbw(s)Chbw(s), see Fig. 3.11. This is because the shaping
filter F(s) 6= Fopt(s), but was shaped manually to satisfy the closed-loop sta-
bility and convergence conditions of Theorem 3.1. In fact, for α = ᾱ = 29, the
reference-dependent variable-gain controller is able to achieve a bandwidth of 18
Hz, which is sufficiently close to the desired bandwidth of 20 Hz using Chbw(s)
(see Fig. 3.10).

Step 4 in the design: The ‘reference-to-gain’ mapping α : [0, v] → [0, 29] is
obtained4 by following the three design parts listed in Step 4. The ‘reference-to-

4The resulting mapping from Step 4 is slightly adjusted on the basis of some experiments.
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Fig. 3.12. Bode plot of the shaping filters F(s) and Fopt(s).

gain’ mapping α : [0, v]→ [0, 29] that is used during the experiments is depicted
in Fig. 3.14.

3.4.3 Experimental results

Let us start with presenting the results of the performance analysis of the mea-
sured steady-state error e, depicted in Fig. 3.15. The analysis is performed
for constant reference velocities v(t) = vc, for all t ∈ R≥0, using the two linear
controllers Clbw(s) and Chbw(s) and the reference-dependent variable-gain con-
troller Cfvg(s) as in (3.3) for different fixed values of α ∈ [0, 29]. Note that for
each velocity vc there exists a corresponding α ∈ [0, 29], see Fig. 3.14. Let us
first focus on low velocities vc in the range [0, 0.1 · v], see the zoom plot in Fig.
3.15. Clearly, in this range both the low-bandwidth controller Clbw(s) as well
as the reference-dependent variable-gain controller Cfvg(s) perform better than
the high-bandwidth controller Chbw(s) as their mean square error eMS is signifi-
cantly lower (at vc = 0) or, at worst, (approximately) equal (at vc = 0.1 · v). At
standstill, we achieve (approximately) the same performance with the variable-
gain controller Cfvg(s) (with α = 0) as for Clbw(s), while compared to Chbw(s),
the performance is increased by ∼ 66%. This is due to the fact that for this case,
the disturbances do,add, di,a and η are being dominant, which are more ampli-

This is due to the fact that a model-based study in Step 1 might not result in the most
optimal relation between the reference velocity and the ‘optimal bandwidth’, see Remark 3.4,
requiring some additional fine-tuning.
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Fig. 3.13. Nyquist diagram for Geu(jω) as in (3.6) for three cases: No
shaping filter F(s) (solid blue), with shaping filter F(s) as in (3.24) (solid
red) and with the optimal shaping filter Fopt(s) (solid green). The circle
criterion condition Re(F(jω)T (jω)) > − 1

ᾱ , is met for all ω ∈ R with F(s)
as in (3.24) and ᾱ = 29.
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Fig. 3.14. The relationship between the reference velocity v (represented
in % of v) and α.

fied in the high-bandwidth situation. The increase in performance compared to
the high-bandwidth situation is also clearly visible in the time-domain, see Fig.
3.16, which shows the measured steady-state error at standstill.

Fig. 3.15 also demonstrates that the higher the reference velocity vc, the more
beneficial it is to have a higher bandwidth controller. This is due to the fact that
for increasing reference velocities the periodic disturbance dp due to the piezo-
electric actuator becomes more influential and eventually dominant over do,add,
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Fig. 3.15. Performance measure of the measured steady-state error e of
the nano-motion system during 20 constant velocities vc in the range [0, v]
(represented in % of v).

di,a and η. The effect of this disturbance is suppressed by increasing the gain
α, and as a result, the ‘bandwidth’ ωb of the variable-gain controller Cvg. With
this in mind, let us now focus in Fig. 3.15 on the velocities vc in the range [0.1 ·
v, v]. As expected, the low-bandwidth controller Clbw(s) performs worst, since
its bandwidth of 5 Hz is too low to suppress the periodic impact disturbances
dp caused by the piezo actuators. The high-bandwidth controller Chbw(s) and
our reference-dependent variable-gain controller Cfvg(s) show an approximately
similar performance, which is superior compared to that of Clbw(s).

Fig. 3.17 shows the measured steady-state error at a high constant velocity of
v for which the low-frequency periodic disturbance dp is dominant. The perfor-
mance of the high-bandwidth controller Chbw(s) and the variable-gain controller
Cfvg(s) are comparable, as was already indicated in Fig. 3.15. It is clear that
the periodic impact disturbances dp are much better suppressed by Chbw(s) and
Cfvg(s) than using the low-bandwidth controller Clbw(s).

The previous results were obtained for constant reference velocities, result-
ing in fixed values of α and, hence, a comparison between Clbw(s) and Chbw(s)
with a linear controller Cfvg(s). However, it is (also) important to compare the
behavior for time-varying velocity profiles, which is depicted in Fig. 3.18. This
figure shows the time-domain error behavior for a constant acceleration, start-
ing from v(t) = 0 until we move at v(t) = v for approximately 5 sec, and then
moving back to v(t) = 0. Indeed, as indicated in Fig. 3.18, the performance
using Cvg for low velocities is comparable with using Clbw(s), while for high ve-
locities the performance of Cvg is similar to Chbw(s). This demonstrates that the
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Fig. 3.16. Measured steady-state error e of the nano-motion system
during standstill, i.e., velocity vc = 0.
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Fig. 3.17. Measured steady-state error e of the nano-motion system
during a constant velocity vc = v.

proposed reference-dependent variable-gain controller Cvg is able to deal with
reference-dependent conflicting control design trade-offs. In fact, the experi-
ments show that the variable-gain controller Cvg can achieve ‘the best of both
worlds’, referring to preferring a controller that results in a low bandwidth ωb
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Fig. 3.18. Time-domain performance analysis, moving from v(t) = 0 to
v(t) = v with a constant acceleration, and back to v(t) = 0.

over a controller that results in a high bandwidth ωb, or vise versa, depending
on the actual reference information.

3.5 Conclusions

In this chapter, we proposed a novel reference-dependent variable-gain control
strategy that allows for a varying ‘bandwidth’ of the feedback controller in order
to deal with reference-dependent conflicting control design trade-offs between
low-frequency tracking and high-frequency noise suppression. A complete de-
sign framework for such reference-dependent variable-gain controllers has been
presented, in which most of the design steps involve the usage of state-of-practice
frequency-domain loop-shaping tools. This design feature, together with graphi-
cal data-based conditions to verify stability and convergence of the variable gain
controlled closed-loop system, makes the analysis and design intuitive for control
engineers and, as such, connects to the industrial control engineering practice.
The design framework has been applied to an industrial nano-positioning motion
system with diverse modes of operation, characterized by particular reference
velocities, and all having their own specific performance requirement. Despite
the challenging and conflicting control goals, it has been experimentally demon-
strated that the proposed reference-dependent variable-gain controller indeed has
the ability to outperform (fixed bandwidth) linear time-invariant controllers.





Chapter 4

Frequency-domain tools for
stability analysis of reset control

systems

Abstract – The potential of reset controllers to improve the transient performance of linear

(motion) systems has been extensively demonstrated in the literature. The design and stability

analysis of these reset controllers generally rely on the availability of parametric models and

on the numerical solution of linear matrix inequalities. Both these aspects may hamper the

application of reset control in industrial settings. To remove these hurdles and stimulate

broader application of reset control techniques in practice, we present new sufficient conditions,

based on measured frequency response data on the system to be controlled, to verify input-

to-state stability of closed-loop reset control systems. The effectiveness of these conditions is

demonstrated through experiments on an industrial piezo-actuated motion system.

4.1 Introduction

A reset controller is a linear time-invariant (LTI) control system of which the
state, or a part of the state is reset to a certain value (usually zero) whenever
appropriate algebraic conditions on its input and output are satisfied. Reset
controllers were proposed in 1958, see Clegg (1958), in order to overcome the in-
herent performance limitations of linear feedback controllers imposed by Bode’s
gain-phase relationship. Especially in the last two decades, reset control has
regained attention from the control community in both theoretically oriented
research, see e.g., Aangenent et al. (2010); Baños and Barreiro (2012); Beker
et al. (2004); Nešić et al. (2008); Prieur et al. (2013), as well as in applications

This chapter is based on van Loon et al. (2015a).
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Baños and Barreiro (2012); Heertjes et al. (2015); Panni et al. (2014); Zheng
et al. (2000). However, despite the potential of a reset controller to improve the
transient performance of linear systems, reset controllers are often not so easily
embraced by (motion) control engineers in industry. To a large extent, this is
caused by the fact that the vast majority of existing tools for the stability anal-
ysis and the design of reset controllers rely on parametric models and on solving
linear matrix inequalities using those models. As such, they do not interface
well with the current industrial (motion) control design practice, in which typi-
cally frequency-domain tools and non-parametric models are exploited, see, e.g.,
Butler (2011). Therefore, an important open problem is to obtain easy-to-use,
‘industry-friendly’ design tools for reset control systems using frequency-domain
techniques as a basis.

In this chapter, we contribute to solving this important open problem and fo-
cus, in particular, on deriving stability conditions that are graphically verifiable
on the basis of measured frequency response data concerning the system dynam-
ics. These conditions apply, amongst others, to the reset condition employed in
Aangenent et al. (2010); Forni et al. (2011); Nešić et al. (2008); Zaccarian et al.
(2011), and have some connections to recent developments in variable gain con-
trol (VGC), see, e.g., Heertjes and Steinbuch (2004); Hunnekens et al. (2015b);
van de Wouw et al. (2008). In VGC, the use of the circle criterion, see, e.g.,
Khalil (2000), is central in obtaining stability conditions based on frequency-
domain system models. A key step in this approach for VGC is to write the
closed-loop system as a so-called Lur’e-type system, i.e., a feedback intercon-
nection of an LTI dynamical system and a static memoryless nonlinearity, see
Khalil (2000). Unfortunately, such an approach it not directly applicable to re-
set controllers as the closed-loop system would be an interconnection of an LTI
dynamical system and a reset controller. This is not a (true) Lur’e-type system
as the reset controller (as opposed to the VGC element) consists of a dynamical
system that exhibits discontinuities (jumps) in the state variables rather than
a static memoryless element. As such, applying Lur’e-type stability arguments
calls for a new perspective on reset control systems which we will provide in this
chapter by abstracting away from the internal dynamics of the reset controller
and focusing instead on its input/output behavior, that can be confined to a
certain sector bound, see Khalil (2000). This sector bound can subsequently be
employed in a circle criterion-like condition. We will formally prove that this
will yield sufficient conditions to assess input-to-state stability (ISS), see Cai
and Teel (2009); Sontag and Wang (1995), of reset control systems (including
the internal dynamics) by evaluating (measured) frequency response data.

The outline of this chapter is as follows. In Section 4.2, we present the
control architecture. In Section 4.3, we present our main results. In Section
4.4, we discuss an industrial case study and demonstrate the applicability of the
presented results in practice. Finally in Section 4.5, we provide the conclusions.
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4.1.1 Nomenclature

The following notational conventions will be used. Let N, R, R≥0, C denote
the set of non-negative integers, real numbers, nonnegative real numbers and
complex numbers, respectively. The Laplace transform of a signal x : R≥0 →
Rn, is denoted by L{x} and s ∈ C denotes the Laplace variable. A function
γ : R≥0 → R≥0 belongs to class-K if it is continuous, zero at zero, and strictly
increasing. A function β : R≥0 × R≥0 → R≥0 belongs to class-KL if β(·, t) is of
class-K for each t ≥ 0, and, β(s, ·) is decreasing and satisfies limt→0 β(s, t) = 0
for each s ≥ 0.

4.2 System description and problem formulation

4.2.1 Hybrid closed-loop model

We will mainly focus on the single-input-single-output (SISO) control archi-
tecture as depicted in Fig. 4.1, although our results are applicable to other
configurations as well, see Remark 4.5 below. The closed-loop system in Fig.
4.1 consists of a linear time-invariant (LTI) plant given by the transfer function
P(s), s ∈ C, a nominal LTI controller with transfer function C(s), reference
r ∈ R, output yp ∈ R, tracking error e := r − yp ∈ R and external disturbances
d ∈ Rnd . In this figure, R denotes a reset controller, which is modeled in terms
of the hybrid system formalism of Goebel et al. (2012) as

R :





ẋr = f(xr, e) if (e,−u) ∈ F
x+
r = g(xr) if (e,−u) ∈ J
u = −Crxr

(4.1a)

with state xr ∈ Rnr , controller output u ∈ R, and where the flow map f in
(4.1a) is given for xr ∈ Rnr and e ∈ R by

f(xr, e) = Arxr +Bre, (4.1b)

and the jump map g in (4.1a) is given for xr ∈ Rnr by

g(xr) = 0. (4.1c)

Here, Ar, Br, Cr are constant real matrices of appropriate dimensions. In (4.1),
flow of the reset controller state xr occurs when the input/output pair (e,−u)
is in the flow set F given by

F := {(e,−u) ∈ R2 | eu ≤ − 1
αu

2} (4.2a)

with α ∈ (0,∞], and state resets occur when the input/output pair (e,−u) is in
the jump set J given by

J := {(e,−u) ∈ R2 | eu ≥ − 1
αu

2}. (4.2b)
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P(s)e ypr

−

R −u
d

C(s)
H

Fig. 4.1. Schematic representation of a reset control scheme.

For a schematically representation of the flow set F and jump set J , see Fig.
4.2(a). In this respect, note that for α = ∞, the flow set F is the region cor-
responding to eu ≤ 0. Later, the concept of hybrid time domains and solutions
(solution pairs) of hybrid systems of the form (4.1), (4.2) will be used, which are
defined for a general class of hybrid systems with inputs in Appendix A.3.1 for
convenience of the reader. For more details on this hybrid modeling framework
we refer the reader to Cai and Teel (2009); Goebel et al. (2012).

Remark 4.1. The general class of reset controllers in (4.1), (4.2) encompasses
two of the most well-known reset controllers in the literature, i.e., the Clegg
integrator and the First-Order-Reset-Element (FORE). Namely, these can be
can be modeled as in (4.1) using

Clegg integrator : (Ar, Br, Cr) = (0, ωi, 1), (4.3)

FORE : (Ar, Br, Cr) = (β, ωi, 1), (4.4)

in which nr = 1, ωi ∈ R≥0 represents the integrator gain, and β ∈ R denotes
the single pole of the FORE, see, e.g., Zaccarian et al. (2005) and the references
therein. By selecting α = ∞, the reset condition applied in Aangenent et al.
(2010); Forni et al. (2011); Nešić et al. (2008); Zaccarian et al. (2005) can be
modeled in (4.2).

Let us adopt the following assumption on the reset controller (4.1), (4.2).

Assumption 4.1. The pair (Ar, Cr) is detectable.

Remark 4.2. Note that Assumption 4.1 is trivially satisfied for the Clegg inte-
grator and the FORE because they are both one dimensional systems (nr = 1),
see Remark 4.1.

The closed-loop system in Fig. 4.1 can be written as a feedback interconnec-
tion between an LTI dynamical system H and the reset controller R, as depicted
in Fig. 4.2(b). In Fig. 4.2(b), the LTI dynamical system H is given by

H :

{
ξ̇ = Aξ +Bu+Bww (4.5a)

e = Cξ +Dww (4.5b)
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Fig. 4.2. (a) Schematic representation of the flow set F and jump set J ,
(b) Feedback interconnection between an LTI dynamical system H as in
(4.5) and R as in (4.1), (4.2).

with state ξ ∈ Rnξ containing the states of both the plant P(s) as well as
those of the nominal LTI controller C(s), and the external inputs are denoted
by w = [r d>]> ∈ Rnw . Moreover, it is assumed that (A,B,C) is minimal such
that

L{e} = Geu(s)L{u}+ Gew(s)L{w}, (4.6)

in which the transfer function between ‘input’ u and ‘output’ e, see Fig. 4.2(b),
is given by

Geu(s) = C(sI −A)−1B =
P(s)C(s)

1 + P(s)C(s) , (4.7)

and the transfer function between the external inputs w and e is given by

Gew(s) = C(sI −A)−1Bw +Dw

=
[

1
1+P(s)C(s)

−P(s)
1+P(s)C(s)

]
. (4.8)

The closed-loop system in Fig. 4.2(b) with H as in (4.5), and R as in (4.1),
(4.2), can be written as the hybrid model

Σr :





ẋ = Āx+ B̄w, if (e,−u) ∈ F , (4.9a)

x+ = Ārx, if (e,−u) ∈ J , (4.9b)

u = −C̄rx (4.9c)

e = C̄x+Dww (4.9d)
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with augmented state vector x := [ξ> x>r ]> ∈ Rnξ+nr and

Ā =

[
A −BCr
BrC Ar

]
, B̄ =

[
Bw
BrDw

]
, Ār =

[
Inξ 0
0 0

]
, C̄r =

[
0 Cr

]
,

and C̄ =
[
C 0

]
. (4.9e)

4.2.2 Problem formulation

The objective of this chapter is to derive sufficient conditions to assess (input-
to-state) stability of the hybrid system (4.9) with (4.2), based on (measured)
frequency response data of the linear part Geu(jω), ω ∈ R, of the closed-loop
system dynamics.

4.3 Frequency-domain tools for stability analy-
sis

In this section, we present our main result consisting of novel data-based condi-
tions guaranteeing input-to-state stability (ISS), see Cai and Teel (2009); Sontag
and Wang (1995), for reset control systems described by (4.9) with (4.2). There-
fore, we employ the following definition of ISS.

Definition 4.1. The closed-loop hybrid system Σr as in (4.9) with (4.2), is
said to be input-to-state stable (ISS), if for any solution x to (4.9), (4.2) for
disturbance w, with supt domx = ∞, it holds that for all (t, j) ∈ domx there
exist a KL function β and K function γ such that

‖x(t, j)‖ ≤ β(‖x(0, 0)‖, t) + γ
(
‖w[0,t]‖∞

)
(4.10)

for all t ∈ R≥0.

Remark 4.3. Our definition of ISS differs from the definition of ISS for hybrid
systems as in Cai and Teel (2009). First, we are primarily interested in the
evolution of the state x over continuous time t only, and less at ‘reset/jump’
instances, see Cai and Teel (2009); Goebel et al. (2012). Second, Definition
4.1 only applies to a solution x to (4.9) with (4.2) for a disturbance w, that is
unbounded in the t direction, i.e., supt domx = ∞. Unfortunately, we cannot
formally guarantee that the hybrid system (4.9) with (4.2) is persistently flowing,
i.e., meaning that all maximal solution pairs (x,w) have unbounded domains in
the t direction. However, this can be guaranteed by including temporal regular-
ization, see, e.g., Forni et al. (2011); Nešić et al. (2008); Zaccarian et al. (2011)
in (4.1), (4.2). Including such time-regularized condition might be natural in our
proposed approach, as, the results in Forni et al. (2011); Nešić et al. (2008), in-
dicate that the input/output pair (e,−u) of R as in (4.1), (4.2) might be still
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confined to a (slightly) larger sector [0, ᾱ], with ᾱ ≥ α (depending on the distur-
bances). However, additional research is required to confirm the validity of the
above line of thoughts, and to transform it into a systematic design procedure.

Our main result is presented next in the form of a theorem.

Theorem 4.1. Consider the system (4.9) with (4.2) and fixed α ∈ (0,∞], and
let Assumption 4.1 hold. Then, system the (4.9) with (4.2) is ISS according to
Definition 4.1 if the following conditions are satisfied:

(I) The system matrix A of (4.5) is Hurwitz;

(II) The transfer function Geu as in (4.8) satisfies

1

α
+Re(Geu(j∞)) > 0 (4.11)

and

1

α
+Re(Geu(jω)) > 0 for all ω ∈ R. (4.12)

Proof. The proof can be found in Appendix A.3.2.

Remark 4.4. Considering the conditions in Theorem 4.1, the following remarks
are in place:

1. Condition (I) will be satisfied by design of a stabilizing feedback controller
C(s). This is due to the fact that if the open-loop P(s)C(s) satisfies the
Nyquist stability criterion, see, e.g., Skogestad and Postlethwaite (2005),
Geu(s) as in (4.8) (which represents the complementary sensitivity func-
tion) has all its poles located in the complex left half plane (LHP) and the
system matrix A of (4.5) will be Hurwitz;

2. For many (motion) systems Geu(jω)→ 0 for ω →∞, resulting in condition
(4.11) being satisfied automatically;

3. The frequency-domain circle-criterion condition (4.12) can be verified graph-
ically in a Nyquist diagram using (measured) frequency response data. We
care to stress that this represents the power of the conditions in Theorem
4.1 in terms of practical applicability, which will be illustrated using an
industrial case study in Section 4.4.

Remark 4.5. Note that our conditions are not limited to control configurations
as depicted in Fig. 4.1. Consider for instance the configuration as in Fig. 4.3,
which is commonly used in the literature, see, e.g., Aangenent et al. (2010);
Beker et al. (2004); Nešić et al. (2008); Zaccarian et al. (2011). In such a case,
the conditions of Theorem 4.1 still apply for Geu(s) = P(s)C(s). However, for
many (motion) systems, the conditions in Theorem 4.1 will not yield feasible
results in case Geu(s) = P(s)C(s) since, e.g., the open-loop P(s)C(s) is not
allowed to contain any integrators.
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Fig. 4.3. Schematic representation of a reset control scheme.

Remark 4.6. Our results in Theorem 4.1 show some analogies with the results
in Carrasco et al. (2010). In Carrasco et al. (2010), the concept of passivity has
been used to analyze stability of reset systems. Key in their work is the fact that
a (full) reset system retains the passivity properties of its underlying base system,
i.e., the system without the reset part. As a result, L2-stability conditions are
posed which can be verified in the frequency domain.

4.4 Case-study on an industrial piezo-actuated
motion system

In this section, we demonstrate the effectiveness of our newly proposed stability
conditions by considering an industrial case study of the control of the z-axis of
a piezo-actuated motion system that is used in the lithography industry.

4.4.1 Problem setting

During the process of wafer scanning, light from an (extreme) ultra-violate source
travels through an optical path, see, e.g., Butler (2011). This optical path in-
cludes a reticle, containing a blueprint of the integrated circuits to be processed,
and a lens system. The lens system consists of several lens elements that are
individually controlled by piezo actuators during the scanning process. Due
to the limited stroke of the piezo actuators, a calibration, or so-called ‘shuffle
motion’, needs to be performed whenever stroke limitations occur (which may
happen more than once during a full wafer exposure). The duration of such a
shuffle motion should be kept as small as possible because it compromises ma-
chine throughput, i.e., the amount of wafers that can be processed per unit of
time is decreased because the scanning process is interrupted during a shuffle
motion. Moreover, also from a control point-of-view the occurrence of a shuffle
motion poses potential problems. Namely, during a shuffle motion the piezo-
actuated system operates in an open-loop mode such that after the shuffle, i.e.,
when closing the loop again, the motion system (which then operates in scan-
ning mode) suffers from an initial value problem. This problem becomes even
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Fig. 4.4. Measured frequency response function of the lens system in
z-direction.

more pronounced in view of the disturbance rejection properties required during
scanning mode, for which a proportional (double) integral controller (PI2D), i.e.,
a controller with two integrators, is preferred over PID control with one integra-
tor, while (additional) integral action deteriorates the transient performance to
errors induced by the shuffle motion.

4.4.2 Controller design

In this section, we will design a reset controller of the form (4.1), (4.2), which
consists of an LTI controller with integral action combined with an additional
Clegg integrator. The motivation for such a reset controller stems from the
problem setting, i.e., due to the double integral action it is expected that good
disturbance attenuation properties are maintained during a scanning motion,
while the transient behavior is expected to be improved compared to a PI2D
controller because one of the two integrators is allowed to reset its buffer. In
order to compare the obtained results, also two LTI controllers are designed,
namely, a PID and a PI2D controller. All three controllers can be implemented
in the control architecture as in Fig. 4.1, while the design process (of all three
considered controllers) will be entirely based on measured frequency-domain
data.

Consider Fig. 4.4, which depicts the measured frequency response function
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(FRF) of the plant P(jω), ω ∈ R. Based on this plant FRF, the nominal con-
troller C(s), s ∈ C, of Fig. 4.1 is designed using classical loop-shaping techniques,
see, e.g., Skogestad and Postlethwaite (2005); Steinbuch and Norg (1998), and
is given by

C(s) = Cpid(s)Cn,1(s)Cn,2(s)Clp(s), (4.13)

which consists of a series connection between a PID controller Cpid(s), two notch
filters Cn,i(s), i = 1, 2, and a second-order low-pass filter Clp(s). We consider the
following three controllers:

1. An LTI PID-type controller CPID(s) := C(s), with C(s) as in (4.13). This
results in the control architecture as in Fig. 4.1 in which R is absent;

2. An LTI PI2D-type controller CPI2D(s) := Ci(s)C(s), with C(s) as in (4.13)
designed in series with an additional lag filter

Ci(s) =
s+ ωi
s

=
ωi
s

+ 1, (4.14)

in which ωi ∈ R>0 denotes the integrator cut-off frequency. This results
in the control architecture as in Fig. 4.1 in which R = ωi

s (and thus
represents an LTI integrator);

3. A reset controller CR. In its basis, this controller is similar to the CPI2D(s)
controller (thus with the same ωi ∈ R>0 and C(s) as in (4.13)), with the
essential difference that R is not LTI but represents a Clegg integrator.
This yields the control architecture as in Fig. 4.1 with R given by (4.1),
(4.2), in which α ∈ (0,∞] is yet to be determined and (Ar, Br, Cr) =
(0, ωi, 1), see, e.g., (4.3).

Closed-loop stability using both LTI controllers, i.e., the CPID(s) and CPI2D(s)
controller, can be verified using standard linear arguments, e.g., using the Nyquist
stability criterion, see Skogestad and Postlethwaite (2005). Here, we will only
discuss how our newly proposed conditions in Theorem 4.1 can help in assess-
ing closed-loop stability for the controller CR. These conditions are verified
as follows: the satisfaction of Assumption 4.1 is rather trivial, since the Clegg
integrator is a one-dimensional system. Condition (I) will be satisfied by de-
sign of a stabilizing feedback controller C(s) as in (4.13), see also Remark 4.4.
The first requirement of condition (II), i.e., (4.11), is satisfied as Geu(jω) → 0
for ω → ∞. Finally, the circle criterion condition (4.12), which is verified by
means of the Nyquist diagram of Geu(jω) in Fig. 4.5. This figure shows that
Re(Geu(jω)) > − 1

α , for α ∈ (0, 2.17] is met for all ω ∈ R. In the remainder of
this case study, we take α = 2.17 resulting that the input/output pair (e, u) of
R as in (4.1), (4.2) is confined to the sector [0, 2.17].
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Fig. 4.5. Nyquist diagram of Geu(jω) showing that the circle criterion
condition Re(Geu(jω)) > − 1

α , is met for all ω ∈ R with α = 2.17.

4.4.3 Experimental verification

In this section, we present experimental results in the form of the moving average
(MA) filtered error response1, which is defined as follows:

MA :=
1

Te

∫ Te
2

−Te2
e(t)dt, (4.15)

in which Te represents the exposure time, and e(t) represents the position error
of the z-axis as a function of time t.

Remark 4.7. Note that time-regularization, see Remark 4.3, occurs naturally
in most practical (sampled-data) implementations of systems of the form (4.9)
with (4.2), see, e.g., Chapter 6 of this thesis.

Consider Figs. 4.6 and 4.7 in which the measurement results are depicted
during scanning motion and shuffle motion, respectively. Both figures show the
MA filtered error responses for four different controller configurations, namely:
CPID(s), CPI2D(s), and CR with α ∈ {2.17,∞}.

Let us first focus on the resulting error responses using both linear controllers.
During scanning motion CPI2D(s) clearly shows favorable disturbance rejection
properties as it forces the MA filtered error response towards zero during the

1The use of MA filtered error responses is common practice in the lithography industry, see,
e.g., Butler (2011). Note, however, that the actual time instances of reset are not immediately
detectable from these filtered error responses.
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Fig. 4.6. Moving average (MA) filtered error responses during a scanning
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Fig. 4.7. Moving average (MA) filtered error responses during a shuffle
motion under different controller configurations.

critical interval, which indicated by the yellow surface in Fig. 4.6. However, dur-
ing a shuffle motion, the CPI2D(s) controller induces significantly more overshoot
and a larger settling time compared to the CPID(s) controller.

These results exemplary one of the most well-known linear control design
trade-offs, i.e., adding integral action to a feedback control system improves the
disturbance rejection properties at a cost of a decrease in transient performance
(in terms of an increase in overshoot and settling time), see, e.g., Seron et al.
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(1997). By considering CR instead, and hence, allowing one of the integrators
to reset its buffer whenever eu ≥ − 1

αu
2, we aim to achieve ‘the best of both

worlds’, i.e., maintaining the disturbance rejection properties associated with
a double integrator, while the transient response is comparable to a controller
with a single integrator. Consider therefore again Figs. 4.6 and 4.7. These
figures reveal that CR with α = ∞ results in comparable disturbance rejection
properties as CPI2D(s), while its overshoot and settling behavior is much better.
However, closed-loop stability is only guaranteed for all α ∈ (0, 2.17]. So let
us focus on the MA filtered error responses of CR with α = 2.17. Fig. 4.7
shows that the overshoot and settling is comparable to CR with α =∞, but its
disturbance rejection properties are worse. This can be explained by the fact
that the smaller the value of α, the sooner the reset controller resets its buffer,
while this buffer (integral action) is actually necessary to suppress the effect
of the disturbance. Nevertheless, the disturbance rejection properties are still
better compared to the CPID(s) controller.

4.5 Conclusions

In this chapter, we presented novel conditions for the input-to-state stability of
reset control systems that allow for verification based on (measured) frequency
response data of the linear part of the closed-loop system. An industrial piezo-
actuated motion system has been used to demonstrate the effectiveness and user-
friendliness of these conditions. This is because we have shown that closed-loop
stability of the reset control system was verified using easy-to-obtain frequency
response data, and hence, without the necessity of an (accurate) parametric
system model and numerically solving LMIs. As such, these new results may
contribute to the industrial acceptance of reset controllers, which in itself provide
great opportunities in increasing the performance of linear (motion) systems.





Chapter 5

Split-path nonlinear integral
control for transient performance

improvement

Abstract – In this chapter, we introduce the split-path nonlinear integrator (SPANI) as a

novel nonlinear filter designed to improve the transient performance of linear systems in terms

of overshoot, while preserving good rise-time and settling behavior. In particular, this nonlinear

controller targets the well-known trade-off induced by integral action, which removes steady-

state errors due to constant external disturbances, but deteriorates transient performance in

terms of increased overshoot. The rationale behind the proposed SPANI filter is to ensure that

the integral action has, at all times, the same sign as the closed-loop error signal, which, as we

will show, enables a reduction in overshoot thereby leading to an overall improved transient

performance. The resulting closed-loop dynamics is modeled by a hybrid dynamical system,

and provide sufficient Lyapunov-based conditions for stability. Furthermore, we illustrate the

effectiveness, the design and the tuning of the proposed controller in a benchmark simulation

study of an industrial pick-and-place machine.

5.1 Introduction

In classical linear control theory, it is well-known that Bode’s gain-phase rela-
tionship causes a hard limitation on achievable performance trade-offs in lin-
ear time-invariant (LTI) feedback control systems, see, e.g., Freudenberg et al.
(2000); Seron et al. (1997). The related interdependence between gain and phase
is often in conflict with the desired performance specification set by the control

This chapter is based on van Loon et al. (2015b) and has been published as a preliminary
version in Hunnekens (2014).
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engineer. For example, it is impossible to add integral action to a feedback
control system, typically included to achieve zero steady-state errors, without
introducing the negative effect of phase lag. It was the fundamental gain-phase
relationship for LTI systems that motivated W.C. Foster and co-workers in 1966
to develop the split-path nonlinear (SPAN) filter, in which they intended to de-
sign the gain and phase characteristics separately Foster et al. (1966). Another
fundamental limitation is given by the fact that for a stable closed-loop system,
the error step response necessarily overshoots if the open-loop transfer function
of the linear plant with LTI controller contains a double integrator, see, e.g.,
(Seron et al., 1997, Theorem 1.3.2). The latter fundamental limitation applies
to the majority of motion systems (of which the industrial benchmark study in
this chapter is an example).

In Aangenent et al. (2005); Fong and Szeto (1980); Foster et al. (1966); Stein-
buch et al. (2005); Zoss et al. (1968), the SPAN filter was designed as a phase lead
filter that does not cause magnitude amplification. It was shown that a controller
with such a nonlinear SPAN filter can outperform its linear counterpart with re-
spect to overshoot to a step response. In this chapter, we also aim to achieve
the same objective, namely, enhancing transient performance of linear (motion)
systems in terms of overshoot, but we will propose a variant/extension to the
SPAN filter, which we will call the split-path nonlinear integrator (SPANI). In
contrast to the SPAN filter as in Aangenent et al. (2005); Fong and Szeto (1980);
Foster et al. (1966); Steinbuch et al. (2005); Zoss et al. (1968), the SPANI is a
nonlinear integrator that enforces the integral action to take the same sign as
the closed-loop error signal, thereby limiting the amount of overshoot and, as
a result, improving the transient performance while still guaranteeing a zero
steady-state error in the presence of a constant reference and disturbance signal.

Several other hybrid/nonlinear control strategies for improving the transient
performance for linear systems have been proposed in the literature, see Hun-
nekens (2014) for a recent overview. In this respect, we would like to mention
reset control because it exhibits interesting analogies with the SPANI controller
proposed in this chapter. Firstly, reset control has also been introduced quite
some time ago in 1958 Clegg (1958), but especially in the last two decades, it has
regained attention in both theoretically oriented research, see e.g., Aangenent
et al. (2010); Baños and Barreiro (2012); Beker et al. (2004); Nešić et al. (2011);
Prieur et al. (2013), as well as in applications Baños and Barreiro (2012); Panni
et al. (2014); Zheng et al. (2000). Secondly, both strategies have the common
feature of using a switching surface (or region) to trigger a change in the control
signal, which leads to the injection of discontinuous control signals into an oth-
erwise smooth (and linear) feedback system. Distinctively, reset control employs
the same (linear) control law on both sides of the switching surface and a state
reset takes place on the switching surface, whereas we will show that due to the
construction of the SPANI filter, the dynamics changes after a switch and no
state reset takes place. Another important difference is that a reset controller
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is not capable of achieving a zero-steady state error in the presence of constant
reference and disturbance signals, see, e.g., Baños and Barreiro (2012), while the
SPANI comes with such guarantees. We will furthermore demonstrate that the
proposed (output feedback) controller structure supports the design of all the
linear components of the SPANI controlled system using well-known (frequency-
domain) loop-shaping techniques. Consequently, the specifically chosen control
structure enhances the applicability to industrial control practice since it allows
the control engineer to loop-shape the (linear part of the) controller such that
it has favorable disturbance attenuation properties, while the SPANI serves as
a hybrid add-on element that improves the transient performance.

It is well-known that many nonlinear control strategies have in common
that closed-loop stability cannot be verified anymore using ‘linear’ tools such as
the Nyquist stability theorem (except in specific cases, see Hunnekens (2014)).
Hence, the importance of the development of other testable stability conditions
is evident. Despite this fact, none of the works that considered SPAN filters, e.g.,
Aangenent et al. (2005); Fong and Szeto (1980); Foster et al. (1966); Steinbuch
et al. (2005); Zoss et al. (1968), provided such results thus far. In this chapter,
we propose, therefore, the first testable Lyapunov-based stability conditions for
a feedback control system including the newly proposed SPANI controller.

The chapter is organized as follows. In Section 5.2, we introduce and mo-
tivate the proposed SPANI filter. Subsequently, in Section 5.3, we model the
resulting closed-loop system as a hybrid system, for which in Section 5.4 stability
conditions are provided. In Section 5.5, we illustrate the potential of the pro-
posed nonlinear control strategy using a model-based benchmark example of an
industrial pick-and-place machine. Finally, we end with conclusions in Section
5.6.

5.1.1 Nomenclature

The following notational conventions will be used. Let R denote the set of real
numbers and Rn the n-fold Cartesian product R × . . . × R with the standard
Euclidean norm denoted by ‖ · ‖. We use ∧, ∨ to denote the logical ‘and’, ‘or’
operator, respectively. For a matrix S ∈ Rn×m, we denote by imS := {Sv | v ∈
Rm} the image of S, and by kerS := {x ∈ Rm |Sx = 0} its kernel. For two
subspaces V, W of Rn, we use V + W = {v + w | v ∈ V, w ∈ W} to denote the
direct sum, and write V ⊕W = Rn when V + W = Rn and V ∩W = {0}. We
call a matrix P ∈ Rn×n positive definite and write P � 0, if P is symmetric (i.e.,
P = P>) and x>Px > 0 for all x 6= 0. Similarly, we call P ≺ 0 negative definite
when −P is positive definite. For brevity, we write symmetric matrices of the

form
[
A B

B> C

]
as
[
A B
? C

]
. An n× n identity matrix is denoted by In×n, and Ok×l

denotes a k × l matrix with all zero entries. The distance of a vector x ∈ Rn to
a set A ⊂ Rn is defined by ‖x‖A := infy∈A ‖x− y‖.



76
Chapter 5. Split-path nonlinear integral control for transient performance

improvement

5.2 Split-path nonlinear integrator

In Section 5.2.1, we will briefly revisit the original SPAN filter, and, based on
these historical developments, propose a new variation/extension to this filter
called/being the SPANI filter. Additionally, in Section 5.2.2, a description of
the complete feedback control system will be given.

5.2.1 Introduction and motivation of the SPANI filter

Originally, the key motivation behind the development of the SPAN filter was
to obtain a filter in which the gain and phase could be designed independently
Foster et al. (1966). To achieve such favorable properties, the input signal of
the filter, being the closed-loop error e, is divided into two separate branches
of which the outputs are multiplied in order to form the control signal us, as
schematically depicted in Fig. 5.1. The lower branch contains a sign element,
which removes all magnitude information as its output is either ±1, thereby
retaining the phase information. The opposite holds for the upper branch as it
contains an absolute value element thereby removing all sign information and
retaining only the magnitude information. Moreover, both branches contain a
linear filter Hi(s), i ∈ {1, 2}, s ∈ C. In Aangenent et al. (2005); Fong and Szeto
(1980); Foster et al. (1966); Zoss et al. (1968), the authors use filters of the form
H1(s) = 1/(s + τ1) (lag filter) and H2(s) = (s + τ2)/(s + τ3) (lead filter), with
the aim to add phase lead without magnitude amplification.

In this chapter, we use the concept of the SPAN filter to propose a new
nonlinear controller with the goal to improve the transient performance of linear
(motion) systems, which is quantified in terms of overshoot to step responses
of the closed-loop system, while still guaranteeing a zero steady-state error in
the presence of a constant reference and disturbance signal. For that purpose,
we select a linear integrator for H1(s), i.e., H1(s) = ωi/s, and take H2(s) = 1.
We call this nonlinear filter the split-path nonlinear integrator (SPANI), which
is schematically represented in the dashed rectangle in Fig. 5.2, with ε = 0.
The rationale behind the design of this SPANI filter can be best understood by
considering a step response (or the response to a step disturbance) of a system
containing integral control. In order to achieve a zero steady-state error, the
integrator integrates the error e over time resulting in build-up of the integral
buffer. As soon as the error e becomes zero, i.e., e = 0, the integrator still
has the integrated error stored in its state. Due to the phase lag introduced
by the integrator, it takes some time to empty this buffer, causing the error to
overshoot. In contrast to a linear integrator, the SPANI enforces the integral
action to take the same sign as the error signal, due to the presence of the
absolute value and the sign element, see Fig. 5.2. This results in non-smooth
behavior at the time instant when e = 0, i.e., an instantaneous switch of the sign
of the integral action takes place, thereby inducing a reduction in overshoot.



5.2 Split-path nonlinear integrator 77

H1(s)

us

SPAN

e

H2(s)

Fig. 5.1. Schematic representation of the SPAN filter.

P(s)Cnom(s)e u

us

uc

d

ypr

SPANI

−

ωi
s

ε

xI

Fig. 5.2. Feedback loop with plant P(s), linear controller Cnom(s) and
the proposed SPANI controller.

5.2.2 Description of the control system

The overall feedback configuration used in this chapter is shown in Fig. 5.2.
In this figure, e := r − yp is the tracking error between the reference signal r
and the output yp of the plant with transfer function P(s), s ∈ C. Moreover,
d denotes an unknown, bounded input disturbance and u := uc + us the total
control input, which consists of the control input uc produced by the linear
controller with transfer function Cnom(s) and the control input us of the SPANI.
The linear part of the closed-loop system consists of a single-input-single-output
(SISO) LTI plant

P :

{
ẋp = Apxp +Bpu+Bpd

yp = Cpxp
(5.1)

with state xp ∈ Rnp , and a SISO LTI nominal controller

Cnom :

{
ẋc = Acxc +Bce

uc = Ccxc +Dce
(5.2)

with state xc ∈ Rnc . The state (and output) of the integrator CI(s) = ωi/s, with
gain ωi ∈ R>0, is defined by xI ∈ R. The sign-function in the lower branch of
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xI

e

us = −xI

us = −xI

us = +xI

us = +xI

(e∗, x∗
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(a) SPANI with ε = 0

xI

e

us = −xI

us = −xI us = +xI

us = +xI

−1
ε

(e∗, x∗
I)

(b) SPANI with ε > 0

Fig. 5.3. Schematic representation of the control action of the SPANI in
the (e, xI)-plane.

the SPANI, see Fig. 5.2, is formally defined as

sign(e, xI) =





1 if e > 0,

1 if e = 0 and xI ≥ 0,

− 1 if e = 0 and xI < 0,

− 1 if e < 0,

(5.3)

which shows that when e = 0, we have us = +xI (the dependence of the sign-
function on xI is denoted by the dashed arrow in Fig. 5.2). The SPANI controller
as in Fig. 5.2 can be modeled as a switched system with dynamics

SPANI :





ẋI = ωie

us =

{
+xI if xI(εxI + e) ≥ 0

−xI if xI(εxI + e) < 0,

(5.4)

in which xI ∈ R denotes the state of the integrator in the SPANI controller and
ε ∈ R≥0. For ε = 0, we recover the situation as considered in Section 5.2.1, i.e.,
a filter that enforces the integral action to take the exact same sign as the error
signal. For such a case, the situation where the ‘default’ integrator is active (us =
+xI) corresponds to exI ≥ 0 and the situation where the integrator has negative
sign (us = −xI) corresponds to exI < 0, see Fig. 5.3(a) for a representation in
the (e, xI)-plane. The SPANI as in (5.4) therefore represents a more general class
of SPANI controllers, in which the (typically small) parameter ε is associated
with tilting of one of the switching boundaries, see Fig. 5.3(b), and is included to
create a SPANI controller with favorable robustness properties compared to the
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SPANI with ε = 0 (which is closer to the classical SPAN filter). The latter claim
can be intuitively explained as follows. Consider Fig. 5.3 and focus first on the
SPANI with ε = 0, i.e., Fig. 5.3(a). Note that the desired equilibrium point, with
xI having the equilibrium value x∗I and e having the equilibrium value e∗ = 0, i.e.,
(e, xI) = (e∗, x∗I), is located exactly on the switching plane, see Fig 5.3(a). Note
in this respect that since e∗ = 0 is enforced by the integral action, it typically
requires integral action (x∗I 6= 0) to achieve such zero steady-state error, e.g., if
constant disturbances are present. Given the fact that the desired equilibrium is
on a switching boundary, small perturbations around this equilibrium may cause
the dynamics to switch, resulting in an instantaneous change of sign of us. This
might result in a large number of consecutive switches, which is highly undesired
in many applications. By introducing the tilting parameter ε, we ensure that
the equilibrium is located strictly inside the set where xI(εxI + e) ≥ 0, see Fig.
5.3(b). As a consequence, we ensure that, locally around the equilibrium, no
switching occurs. In Section 5.4, we present conditions that can help in making
an appropriate choice for ε.

Although the tilting parameter ε creates robustness locally around the equi-
librium, we cannot provide such guarantees around the switching plane in the
remaining part of the state-space. In fact, we will demonstrate in Section 5.5.2
that in certain situations multiple consecutive switchings can occur. In order
to prevent such undesired behavior from happening, a minimal dwell-time ar-
gument, see, e.g., Hespanha and Morse (1999); Solo (1994), is adopted in the
switching function of the SPANI as in (5.4). This will be made more specific
and precise in the next section.

5.3 Hybrid system modeling

In this section, we model the closed-loop system as discussed in Section 5.2.2,
see Fig. 5.2, in the hybrid system formalism of Goebel et al. (2012), resulting in
the description

χ̇ = f(χ,w), if χ ∈ F , (5.5a)

χ+ = g(χ), if χ ∈ J , (5.5b)

where χ ∈ Rnχ is the state, w ∈ Rnw an exogenous input, F ⊆ Rnχ and J ⊆ Rnχ
are the flow set and jump set, respectively, f : F → Rnχ and g : J → Rnχ are
the flow and jump map, respectively, and χ+ denotes the value of the state
directly after the reset. For the analysis results in this chapter, the signals
w are typically constant such that the standard notions related to the hybrid
framework of Goebel et al. (2012), such as the concept of hybrid time domains
and solutions of (5.5), are applicable. These are reported in Appendix A.4.1 for
convenience of the reader. For more details on this hybrid modeling framework
we refer to Goebel et al. (2012).
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To obtain a complete closed-loop model of the feedback configuration in
Fig. 5.2, we use the interconnections e = r − yp and u = uc + us, combine
(5.1), (5.2) and (5.4), and define the state-vector x := [x>p x>c x>I ]> ∈ Rn, with
n = np + nc + 1. Moreover, we introduce a timer variable τ ∈ R≥0 and Boolean
` ∈ {0, 1}, and define the augmented state vector χ := [x> τ `]> ∈ Θ, with
Θ := Rnx × R≥0 × {0, 1} ∈ Rnx+2 and w = [r d]> ∈ R2. Then, the flow map f
in (5.5a) is given by

f(χ,w)=





[
(Ā1x+B̄rr+B̄dd)>, 1, 0

]>
, when `=0

[
(Ā2x+B̄rr+B̄dd)>, 1, 0

]>
, when `=1

(5.6a)

with

Ā1 :=



Ap −BpDcCp BpCc +Bp
−BcCp Ac 0
−ωiCp 0 0


, B̄r :=



BpDc

Bc
ωi


, (5.6b)

Ā2 :=



Ap −BpDcCp BpCc −Bp
−BcCp Ac 0
−ωiCp 0 0


, B̄d :=



Bp
0
0


. (5.6c)

We assume that, by proper design, the linear controller Cnom(s)+CI(s), see Fig.
5.2, is stabilizing and, as a result, the matrix Ā1 is Hurwitz. However, due to
the ‘wrong’ sign of the integral action, Ā2 will in general not be Hurwitz. In
(5.5), flow according to χ̇ = f(χ,w), occurs when the state χ is in the flow set
given by

F :=
{
χ ∈ Θ |

(
` = 0 ∧

(
xI(εxI + e) ≥ 0 ∨

0 ≤ τ ≤ τD
))
∨
(
` = 1 ∧ xI(εxI + e) ≤ 0

)}
, (5.6d)

in which τD ∈ R≥0. Note that the state-dependent switching rule of the SPANI
controller, see (5.4), is augmented with a minimal dwell-time argument, see, e.g.,
Hespanha and Morse (1999); Solo (1994). To be precise, we only include this
time restriction in the first mode (when ` = 0) in which the stable Ā1-dynamics
is active and force the system to stay in this mode for at least τD ∈ R≥0 time
units. In the second mode (when ` = 1), in which the unstable Ā2-dynamics is
active, no time restrictions are imposed.

The jump map g in (5.5b) is given by

g(χ) :=
[
x>, 0, 1− `

]>
, (5.6e)

and the jump set is given by

J :=
{
χ ∈ Θ |

(
` = 0 ∧

(
xI(εxI + e) ≤ 0 ∧ τ ≥ τD

))

∨
(
` = 1 ∧ xI(εxI + e) ≥ 0

)}
. (5.6f)
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Note that τD > 0 guarantees that there can be at most two consecutive jumps
at one continuous time t ∈ R≥0. In particular, for any solution φ to the hybrid
system (F , f,J , g) and for any (t, j) ∈ domφ, it holds that (t′, j + 2) ∈ domφ
implies t′ ≥ t+ τD.

5.4 Stability analysis

In this section, we consider constant (step) references r(t) = rc, t ∈ R≥0, and
constant disturbances d(t) = dc, t ∈ R≥0, and present LMI-based stability
conditions for the hybrid system as in (5.5), (5.6). In order to do so, let us
define the equilibrium set A of the hybrid system (5.5), (5.6), for which we
would like to prove global exponential stability (GES), as follows

A := {χ ∈ F ∪ J |x = x∗}, (5.7)

in which x∗ denotes the equilibrium point satisfying

Ā1x
∗ + B̄rrc + B̄ddc = 0. (5.8)

Note that, x∗ (and thus A) depends on the choice of rc and dc. Moreover,
from (5.4) it follows that e∗ = 0 in the equilibrium x∗, such that the equilibrium
indeed conforms to the Ā1-dynamics for ε > 0, and therefore satisfies (5.8). Note
furthermore that since the system matrix Ā1 is Hurwitz, and thus invertible,
(5.8) has one unique solution x∗ for fixed rc ∈ R and dc ∈ R.

Theorem 5.1 below poses sufficient conditions under which GES of the set A
can be guaranteed for the hybrid system (5.5), (5.6). Consequently, under these
conditions the exact tracking of the constant reference value rc, and disturbance
rejection of the constant disturbance value dc, is guaranteed. Hereto, let us
define what is meant by GES of the set A in this chapter, and introduce some
notational conventions used in Theorem 5.1.

Definition 5.1. The set A is said to be GES for the system (5.5), (5.6) with
r(t) = rc and d(t) = dc, t ∈ R≥0, if there exist a ρ ∈ R>0 and µ ∈ R>0, such
that for all χ(0, 0) ∈ F ∪ J , it holds that the corresponding solutions χ(t, j) to
(5.5), (5.6) satisfy ‖χ(t, j)‖A ≤ ρe−µt‖χ(0, 0)‖A for all (t, j) ∈ domχ.

Remark 5.1. Note that due to the dwell time condition with τD > 0, Definition
5.1 is in fact equivalent to the definition of GES of A in Teel et al. (2013), see
Appendix A.4.2 for a proof. This can be seen by using that for a solution φ to
(5.5), (5.6) it holds that j ≤ 2 t

τD
+ 2 for any (t, j) ∈ domφ. Nevertheless, we

use Definition 5.1 as we are more interested in the evolution of the state χ over
continuous time t.
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The matrix Q ∈ R(n+2)×(n+2) is defined by

Q :=



Ā>2 P + PĀ2 PĀdĀ

−1
1 B̄r PĀdĀ

−1
1 B̄d

? 0 0
? ? 0


 (5.9)

with Ād := Ā1 − Ā2 and a free matrix P ∈ Rn×n. Furthermore, the matrix
R̄ ∈ R(n+2)×(n+2) is defined by

R̄ :=




0 0 − 1
2C
>
p − 1

2γrC
>
p − 1

2γdC
>
p

? 0 0 0 0
? ? ε εγr εγd
? ? ? εγ2

r εγrγd
? ? ? ? εγ2

d



, (5.10)

for scalars

γr = −
[
O1×np O1×nc 1

]
Ā−1

1 B̄r (5.11)

γd = −
[
O1×np O1×nc 1

]
Ā−1

1 B̄d, (5.12)

related to the integral state in equilibrium

x∗I = γrrc + γddc. (5.13)

Finally, let the matrix M ∈ R(n+2)×(n+1) be given by

M :=



In×n On×1

O2×n

[
γr
γd

]

. (5.14)

Theorem 5.1. Consider the hybrid system given by (5.5), (5.6), in which ε > 0
is fixed and τD > 0, and the set A given by (5.7). If there exist a positive definite
matrix P ∈ Rn×n and a constant α ∈ R≥0 satisfying

Ā>1 P + PĀ1 ≺ 0 (5.15)

M>
(
Q− αR̄

)
M ≺ 0, (5.16)

then the set A, with r(t) = rc and d(t) = dc, t ∈ R≥0, is GES for the hybrid
system (5.5), (5.6).

Proof. The proof can be found in Appendix A.4.3.

Remark 5.2. Theorem 5.1 guarantees that solutions of the closed-loop system
converge exponentially (as a function of continuous time t) to the set on which
e = 0 for all τD > 0 and r(t) = rc, d(t) = dc, t ∈ R≥0. In addition, for τD = 0
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the closed-loop dynamics can be represented by a continuous-time switched linear
system given by

ẋ=

{
Ā1x+B̄rr+B̄dd if xI(εxI+e)≥0 (5.17a)

Ā2x+B̄rr+B̄dd if xI(εxI+e)<0, (5.17b)

with output yp = Cpxp. In such switched systems, sliding modes can occur
when the vector fields on both sides of the switching surface point towards each
other, see, e.g., Filippov (1988); Leine and Nijmeijer (2004). However, it can be
shown that, based on a Lyapunov analysis of the convex combination between the
dynamics on both sides of the switching plane, the occurrence of sliding modes
(if they exist) does not change the GES of A under the hypothesis of Theorem
5.1. For details, see Hunnekens (2014).

5.5 Case study on a pick-and-place machine

In this section, we consider a simulation study based on an industrial pick-and-
place machine used to place electrical components, such as resistors, capacitors,
integrated circuits etc., with a high speed and high precision on a printed circuit
board (PCB). The working principle of a pick-and-place machine is as follows:
The first step is to place the PCB within the working area of the placement
head, in the second step the placement head picks up an electrical component,
and in the third step the placement head is navigated to a pre-described position
on the PCB where it should place the component. Finally, in the fourth step,
the component is placed on the PCB as soon as all positioning tolerances are
met. In this case study, we focus particulary on the third step with the goal to
enable the fourth step to start as soon as possible. Namely, the placement of
the electrical component on the PCB in the fourth step can only be finalized
when the closed-loop error e, related to step three, has converged within a pre-
described error bound. Therefore, our objective is to study if we can increase the
machine throughput by achieving a faster convergence of the closed-loop error
to its specified error bound by replacing the linear integrator CI(s) by a SPANI
of the form (5.4) (with the same integrator gain ωI).

5.5.1 Simulation model

A schematic representation of the simulation model is depicted in Fig. 5.4.
In this figure, the plant P(s) is identified based on measured frequency re-
sponse data, resulting in a 4th-order model. The plant will be controlled by a
proportional-integral-derivative (PID)-type controller Cnom(s) + CI(s), in which
Cnom(s) consists of a PD-controller and a 2nd-order low-pass filter. Addition-
ally, as in many industrial motion controllers, acceleration feedforward is used,
with gain m that represents the estimated plant mass, to compensate for the
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identified 4th-order plant model P(s)

Fig. 5.4. Schematic representation of the simulation model.

low-frequency rigid-body plant dynamics. Cogging forces, which are position-
dependent force disturbances caused by the magnetic interaction between the
permanent magnets and the motor coils, are known to be the main disturbance
source in this particular application. Based on identification experiments, we
modeled this cogging disturbance force as a sinusoidal position-dependent force
given by

Fc(yp) = AFc sin
(
δp
2πyp + φFc

)
, (5.18)

in which AFc denotes the maximum cogging force, δp the pitch between the
magnets and φFc a phase shift tuned on the basis of measurement data.

Remark 5.3. Although there exist feedforward techniques that can compensate
for such (repetitive) cogging force disturbances, for instance using iterative learn-
ing control, see e.g., Janssens et al. (2013); van Berkel et al. (2007), or look-up
tables, these disturbances vary from machine to machine and often manufactur-
ers do not have the resources to implement such techniques on each machine
separately. Moreover, the vast majority of industrial applications will be subject
to disturbances that cannot be easily identified, and thus perfectly compensated
for by feedforward control. Hence, integral action in the controller is still neces-
sary in order to achieve zero steady-state errors.

In the following sections, we compare the transient performance of a linear
controller with a controller in which the linear integrator is replaced by a SPANI.
In Section 5.5.2, we consider the situation in which no dwell-time is included,
i.e., τD = 0. We show that the transient performance will increase by using a
SPANI, but also that τD = 0 might yield some undesired behavior in certain
situations. In Section 5.5.3, we demonstrate that this undesired behavior can be
prevented by including dwell-time restrictions as already introduced in Section
5.3.
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5.5.2 Transient performance comparison with τD = 0

In this section, we take τD = 0 and study the response for two 4th-order ref-
erence trajectories corresponding to two different positions on the PCB where
the electrical component should be placed, i.e., the first reference trajectory
has an end position of 200 mm and the second of 105 mm. Note that due to
the position-dependent cogging forces, this results in two different disturbance
situations that the SPANI controller will have to cope with.

Let us first consider the reference with an end position of 200 mm. Fig.
5.5 shows the error1 profiles using; a linear controller (dash-dotted blue), and
in solid black the error profile obtained if we replace the linear integrator CI
by a SPANI of the form (5.4) (with the same gain ωI) and ε = 0.0115. This
value for ε is motivated by the conditions of Theorem 5.1 and Remark 5.2.
In fact, by verifying these conditions we can guarantee that the equilibrium
x∗ of (5.17) is GES for all ε ≥ 0.0115. As indicated in Fig. 5.5, compared
to the linear case, an improved, and asymptotically stable, response can be
obtained using a SPANI. Note that with ‘improved’, we mean both a reduction in
overshoot and a faster convergence to the error bound (depicted by the horizontal
dotted lines). This is in correspondence with the two performance objectives
previously defined in Section 5.5.1. Firstly, we observe a significant overshoot
reduction of ∼ 20% almost immediately after the pick-and-place robot reaches
its end-position (∼ 0.443 s in Fig. 5.5), while an even more significant overshoot
reduction is achieved in the response around t = 0.3 s, see the smaller figure
inside Fig. 5.5. Secondly, almost immediately after the pick-and-place robot
reaches its end-position (∼ 0.443 s in Fig. 5.5) the error signal of the system
with SPANI has converged within the error bound, thereby again outperforming
the linear controller. These performance improvements are achieved by only two
switches (in the region of interest) of the SPANI filter, see Fig. 5.6 in which the
total control signal u = uc + us is depicted.

Remark 5.4. It is known that discontinuous control signals can excite high-
frequency resonances typically present in motion systems and may result in ac-
tuator wear. One can therefore decide to ‘smoothen’ such signals by, for instance,
using low-pass filters. This, however, will also inevitably lead to a decrease in
potential performance benefits and, again a careful trade-off has to be made de-
pending on the specifications at hand.

Let us now consider the reference profile with an end position of 105 mm.
The error profiles of the linear controller and the nominal controller with SPANI
and ε = 0.0115 are depicted in Fig. 5.7(a), which again indicates that the SPANI
controller outperforms the linear controller with respect to overshoot (by ∼ 43%
in this case) and convergence within the error bound. However, it also reveals
the following undesired behavior:

1To protect the interests of the manufacturer, all figures in this section have either been
scaled or use blank axes in terms of units.
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Fig. 5.5. Error profile for the region of interest using a 4th-order reference
trajectory with an end position of 200 mm. For the sake of clarity, a
scaled acceleration profile is shown in green and a smaller figure is added
showing the entire time span in which the region of interest is indicated
by the dashed rectangle.

• For t ∈ [0.43, 0.48]: The error shows fast oscillatory behavior, resulting
from a large number of switches;

• For t ∈ [0.48, 0.52]: An unexpected ‘peak’ in the error signal occurs while
we expect to converge smoothly towards e = 0.

Both these phenomena are undesired and can be explained by considering Fig.
5.7(b-c), in which we consider the (e, xI)-plot Fig. 5.7(b), and the integral ac-
tion xI and the output us of the SPANI versus time in Fig. 5.7(c). In these
figures, the equilibrium point is depicted by point C, which, for this particular
disturbance situation, requires positive integral action (∼ x∗I = 0.286) to com-
pensate for the cogging disturbance force at the setpoint. However, as indicated
in Fig. 5.7(b-c), the integral action xI has the wrong sign (up till point B).
Still, up to point A in Fig. 5.7(b-c), the SPANI output us delivers, by means
of many switches in the control signal us, on average enough integral action to
approximately compensate for the cogging disturbance. However, after point A
in the figure, |xI | is too small such that the SPANI cannot compensate for the
cogging disturbance anymore. This results in a build-up of error, causing the
peak in the error signal as depicted in Fig. 5.7(a) and Fig. 5.7(b-c). Eventually,
after point B in Fig. 5.7, the integral state xI becomes positive and converges
to the equilibrium in point C.
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Fig. 5.6. Total control signal for the linear controller Cnom + CI , and for
Cnom + SPANI.

5.5.3 Transient performance comparison with τD > 0

In this section, we show that adding a minimal dwell-time condition τD > 0, as
discussed in Section 5.3, can alleviate this undesired behavior. Including dwell-
time logic in the switching condition of the SPANI filter requires the tuning of the
new parameter τD, which according to Theorem 5.1 cannot cause instability of
the set A. Simulation results for such a SPANI filter with dwell-time restriction
are depicted in Fig. 5.8 using τD = 0.0063 s. The working principle of the new
switching rule can be explained best by considering Fig. 5.8(b), in which the
(e, xI)-plane is shown. In point D, the response of the SPANI-controlled system
reaches the switching plane for the first time and switches from mode 1 (red)
to mode 2 (green) following the Ā2-dynamics. We stay in this mode until we
reach the switching plane again at point E, where we switch back to mode 1.
Apparently, the vector field of the Ā1-dynamics directs towards the switching
plane but at the moment of crossing (point F) the dwell-time condition τ ≥ τD
is not yet satisfied. Hence, no switch takes place and it takes until point G at
which the dwell-time condition is satisfied. At that moment in time, we do not
satisfy the condition xI(εxI + e) ≥ 0, resulting in a switch to mode 2.

Let us now compare this result to the previous situation, i.e., as depicted in
Fig. 5.7. Concentrating first on Figs. 5.7(b) and 5.8(b), we observe that up to
point F the error profiles are identical2. As a result, the first peak in the error

2This applies in general for sufficiently small τD such that at point D in Fig. 5.8(b), we
satisfy the dwell-time condition τ ≥ τD.
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Fig. 5.7. (a) Error profile for the region of interest using a 4th-order
reference trajectory with an end position of 105 mm. (b) Error e versus
integral action xI . (c) Time versus output us of the SPANI and integral
action xI .

profiles (around ∼ 0.42 s) of Figs. 5.7(a) and 5.8(a) is identical. However, for
sufficiently large τD, this does not apply to the second peak (around ∼ 0.43 s)
in the error profile. This can be explained by considering point F; for the case
τD = 0 a switch to mode 2 takes place at point F causing an immediate change
in the vector field. However, for the case with τD = 0.0063, no switch takes place
up till point G, thereby causing the system to reside longer in mode 1, which, in
turn, causes the error to overshoot more in this particular situation. Therefore,
including such dwell-time logic into the switching condition might result in a
(slight) decrease of potential transient performance benefits. Nevertheless, it is
clear from Fig. 5.8 that the dwell-time condition prevents the undesirably large
number of switches in the control signal as in Fig. 5.7(c) for the case τD = 0. Not
only the number of switches has decreased, see Fig. 5.8(c), the error profile also
now gradually converges to e = 0 without the occurrence of a sudden unwanted
peak (compare Figs. 5.7(a) and 5.8(a)).

Remark 5.5. By increasing the dwell-time parameter τD, the stable Ā1-dynamics
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Fig. 5.8. (a) Error profile for the region of interest using a 4th-order
reference trajectory with an end position of 105 mm. (b) Error e versus
integral action xI . (c) Time versus output us of the SPANI and integral
action xI .

is active for a longer time. In fact, for τD =∞, the linear, and stabilizing, con-
troller Cnom(s) + CI(s) is active for all times t ∈ R≥0. Hence, the undesired
behavior as discussed in this section, see Fig. 5.7, can be prevented by select-
ing the dwell-time parameter τD sufficiently large. From an overshoot-reduction
point of view, however, a small τD is favorable, leading to a design trade-off as
before.

5.5.4 Final note

The main motivation for and the rationale behind the design of the SPANI is
to improve the transient performance of linear systems by reducing overshoot,
which is successfully demonstrated in this section. It is important to note that,
in general, it is hard to give any guarantees on the settling behavior. In the
benchmark study presented in this section, we satisfied both our objectives, i.e.,
reducing overshoot and a faster convergence to an error bound. The secondary
objective can not always be guaranteed and it depends on the tuning of the
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dwell-time parameter τD and the disturbance situation at hand. However, the
primary objective of reducing overshoot is satisfied in all (considered) cases.

5.6 Conclusions

In this chapter, we proposed the split-path nonlinear integrator (SPANI) as a
novel variation/extension to a nonlinear filter that was originally introduced
in the late 1960s. The SPANI is especially designed for transient performance
improvement of linear systems. In particular, we focussed on the transient per-
formance improvement in terms of overshoot to step responses, while being able
to achieve zero steady-state errors in the presence of constant disturbances. By
means of simulations it was demonstrated that, in particular situations, the
SPANI controller can indeed outperform its linear counterpart. Moreover, a
formal stability analysis was presented for this novel feedback control configura-
tion with SPANI based on a hybrid dynamical system model for the closed-loop
dynamics. Based on this hybrid modeling formalism, sufficient Lyapunov-based
stability conditions have been provided in terms of linear matrix inequalities.
These conditions proved to be useful in the design of the SPANI. A nice ad-
ditional feature of the SPANI is that it is easy to apply in industrial practice
as all the individual components of the proposed nonlinear controller can be
synthesized using classical loop-shaping techniques. By presenting a fundamen-
tal modeling framework based on hybrid models and corresponding stability
analysis tools, and also showing both the advantages and disadvantages of the
SPANI controller, a complete design framework for SPANI controllers has been
laid down. As such, we hope that this work inspires others to consider SPANI
controllers for their specific control problems, and if needed, develop their own
variations. This is particularly important as the design of nonlinear/hybrid con-
trollers outperforming linear controllers remains to be a challenging problem of
high industrial relevance.



Chapter 6

Improved L2-gain analysis for a
class of hybrid systems

Abstract – In this chapter, we consider a special class of hybrid systems with periodic

time-triggered jump conditions, and in which the jump map has a piecewise linear character.

This hybrid systems class forms a relevant field of study as different control applications can

be modeled in this hybrid system framework, including reset control, networked control and

event-triggered control systems. After showing the unifying modeling character of this class

of dynamical systems, we are interested in analyzing stability and L2-gain properties and we

present novel conditions to do so which are significantly less conservative than the existing ones

in literature. The effectiveness of the proposed modeling and analysis techniques is illustrated

by means of a reset control example.

6.1 Introduction

Hybrid systems, see Goebel et al. (2012), combine continuous dynamics, often
called flow dynamics and represented by ordinary differential equations on the
one hand, and discrete dynamics, which are sometimes captured through jump
dynamics and represented by instantaneous jumps/resets of states on the other
hand. In this chapter, we are interested in a particular class of hybrid systems
with periodic time-triggered jump conditions and piecewise linear (PWL) jump
maps. This class of hybrid systems finds its use in a broad spectrum of control
applications including reset control, see, e.g., Aangenent et al. (2010); Baños
and Barreiro (2012); Beker et al. (2004); Guo et al. (2012); Loquen et al. (2008);
Nešić et al. (2008); Zaccarian et al. (2011), event-triggered control, see, e.g.,
Heemels et al. (2013, 2012); Lunze and Lehmann (2010); Tabuada (2007), and

This chapter is based on van Loon et al. (2014).
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a particular class of networked control systems Dačić and Nešić (2007); Donkers
et al. (2011); Hespanha et al. (2007); Walsh et al. (2002), as we will highlight
in this chapter. In particular, we show that all three application classes can be
modeled in the considered hybrid modeling framework.

Besides showing the unifying modeling character of the studied class of hy-
brid systems, we are also interested in the stability and L2-gain analysis of
these dynamical systems. The latter is an important performance measure for
many situations, and has already attracted quite some attention in the liter-
ature, see, e.g., Dai et al. (2010); Goebel et al. (2009); Heemels et al. (2013)
and Aangenent et al. (2010); Loquen et al. (2008); Nešić et al. (2008); Zaccarian
et al. (2011) for related classes of hybrid systems. Especially the work in Dai
et al. (2010); Heemels et al. (2013) focused on the hybrid systems class with
periodic time-triggered jump conditions and exploited common quadratic timer-
dependent Lyapunov/storage functions based on solutions to Riccati differential
equations, i.e., Lyapunov/storage functions that depend on a timer state, see,
e.g., van der Schaft (1999). This analysis led to conditions based on linear ma-
trix inequalities (LMIs) for obtaining upper bounds on the L2-gain. In fact,
in this chapter we employ a similar analysis but instead of using a common
quadratic timer-dependent Lyapunov/storage function, we propose to use more
versatile timer-dependent piecewise quadratic (PWQ) Lyapunov/storage func-
tions, thereby providing improved conditions for L2-gain estimates compared to
the existing ones in literature. In contrast to the standard use of PWQ Lyapunov
functions, see, e.g., Johansson and Rantzer (1998), due to the presence of both
flow and jump dynamics, and the timer dependence of the Lyapunov/storage
function for the L2-gain analysis, new proof techniques are needed. In partic-
ular, the proof of our main result is based on using trajectory-dependent Lya-
punov/storage functions in the sense that the functions do not only depend on
the actual value of the state, but also on (future) disturbance values. In order to
show that the realized conditions result in better estimates of the L2-gain than
the existing ones in Heemels et al. (2013), we will provide a numerical example
that indeed illustrates the realized improvements.

Summarizing, the contribution of this chapter is twofold. First, we will show
that the presented hybrid systems framework covers a broad variety of control
applications, thereby demonstrating the unifying character of the hybrid systems
class under study. The second contribution is formed by providing improved L2-
gain estimates compared to the existing ones in literature.

The remainder of the chapter is organized as follows. In Section 6.2, we
introduce a general representation of the hybrid modeling framework that we
study in this chapter, and provide the problem formulation. In Section 6.3, we
show how two control applications can be modeled in this unifying framework.
The main result on improved conditions to analyze the stability and L2-gain
properties of the hybrid system under study is presented in Section 6.4, and
the effectiveness of the conditions is demonstrated using a numerical example in
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Section 6.5. Finally, we end with conclusions in Section 6.6.

6.1.1 Nomenclature

The following notational conventions will be used. Let N, R denote the set of non-
negative integers and real numbers, respectively. We call a matrix P ∈ Rn×n
positive definite and write P � 0, if P = P> and x>Px > 0 for all x 6= 0.
Similarly, we call P ∈ Rn×n negative definite, and write P ≺ 0, when P = P>

and x>Px < 0 for all x 6= 0. We use In to denote the identity matrix with

dimensions n×n. For brevity, we write symmetric matrices of the form
[
A B

B> C

]

sometimes as
[
A B
? C

]
. Furthermore, a function φ : R≥0 → R≥0 is a class K∞

function if it is zero at zero, continuous, strictly increasing and unbounded, i.e.,
lims→∞ φ(s) =∞.

6.2 Hybrid model class and problem formulation

In this chapter, we study the class of hybrid systems given by

d

dt

[
ξ
τ

]
=

[
Aξ +Bw

1

]
, when τ ∈ [0, h] (6.1a)

[
ξ+

τ+

]
=





[
J1ξ

0

]
, when τ = h and ξ>Qξ > 0

[
J2ξ

0

]
, when τ = h and ξ>Qξ ≤ 0

(6.1b)

z = Cξ +Dw. (6.1c)

The states of this hybrid system consist of ξ ∈ Rnξ and a timer variable τ ∈ R≥0.
The variable w ∈ Rnw denotes the disturbance input and z the performance out-
put. Moreover, A, B, C, D, J1, J2, Q are constant real matrices of appropriate
dimensions and h ∈ R>0 is a positive timer threshold.

Interpreting the dynamics of (6.1), which is done in the sense of Goebel
et al. (2012), reveals that (6.1) has periodic time-triggered jump conditions,
i.e., jumps take place at times kh, k ∈ N. Note that this guarantees, amongst
others, that the hybrid system (6.1) produces global solutions, i.e., defined on
t ∈ [0,∞), and Zeno behavior, see, e.g., Goebel et al. (2012), does not occur.
Moreover, the jump map is a (possibly discontinuous) piecewise linear (PWL)
map given by (6.1b), and in between the jumps the system flows according to the
differential equations in (6.1a). This class of systems includes the closed-loop
systems arising from reset control systems in Guo et al. (2012), and periodic
event-triggered control (PETC) for linear systems in Heemels et al. (2013), and
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many more. How the two mentioned applications can be modeled in this unifying
framework is discussed in detail in Section 6.3 below.

Remark 6.1. The hybrid system (6.1) can be seen as a sampled-data or time-
regularized version of the hybrid system

ξ̇ = Aξ +Bw, when ξ>Qξ > 0 (6.2a)

ξ+ = Jξ, when ξ>Qξ ≤ 0. (6.2b)

Indeed, if we take in (6.1) J1 = Inξ and J2 = J , the resulting hybrid model can
be seen as an implementation of the jump rule in (6.2b) but only verified at the
times tk = kh, k ∈ N. Such regularizations are often used when (6.2) might
exhibit Zeno behavior, see, e.g., Guo et al. (2012); Heemels et al. (2013); Nešić
et al. (2008); Zaccarian et al. (2011) (the occurrence of Zeno behavior in systems
as in (6.2) has been investigated in Borgers and Heemels (2014)). Clearly, its
‘sampled-data’ version of the form (6.1) has no such behavior, which therefore
has analysis and implementation advantages.

Remark 6.2. Note that the hybrid system (6.1) has a PWL jump map with
only two regions specified by ξ>Qξ > 0 and ξ>Qξ ≤ 0, respectively. However,
the modeling and analysis provided below can easily be extended to conewise linear
jump maps with more than 2 regions.

In this chapter, we are, besides showing the (unifying) modeling character
of the class of systems described by (6.1), also interested in the stability and
L2-gain analysis of these systems. These properties are formally defined below.

Definition 6.1. The hybrid system (6.1) is said to be globally exponentially
stable (GES), if there exist c > 0 and ρ > 0 such that for any initial condition
ξ(0) = ξ0 ∈ Rnξ all corresponding solutions to (6.1) with τ(0) ∈ [0, h] and w = 0
satisfy ‖ξ(t)‖ ≤ ce−ρt‖ξ0‖ for all t ∈ R≥0. In this case, we call ρ a (lower bound
on the) decay rate.

Definition 6.2. The hybrid system (6.1) is said to have an L2-gain from w
to z smaller than or equal to γ, if there is a K∞ function δ : Rnξ → R≥0

such that for any w ∈ L2, any initial state ξ(0) = ξ0 ∈ Rnξ , and τ(0) ∈ [0, h],
the corresponding solution to (6.1) satisfies ‖z‖L2

≤ δ(ξ0) + γ‖w‖L2
, where L2

denotes the set of square-integrable functions and ‖ · ‖L2 the corresponding L2-
norm.

Before presenting new techniques to analyze GES and the L2-gain, we will
first show the unifying modeling capabilities of the model class (6.1).

6.3 Unified modeling framework

In this section, we will consider three different control applications and show
that they can be written in the hybrid system framework given by (6.1).
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6.3.1 Periodic event-triggered control systems

The first domain of application is event-triggered control (ETC), see, e.g., Lunze
and Lehmann (2010); Tabuada (2007), Heemels et al. (2013) for some recent ap-
proaches, and Heemels et al. (2012) for a recent overview. ETC is a control
strategy that is designed to reduce the amount of computations and communi-
cations in a feedback control system by updating and communicating sensor and
actuator data only when needed to guarantee stability or performance proper-
ties. The ETC strategy that we consider in this chapter is recently proposed in
Heemels et al. (2013) as a novel ETC strategy for linear systems that combines
ideas from periodic sampled-data control and ETC, leading to so-called periodic
event-triggered control (PETC) systems. In PETC, the event-triggering condi-
tion is verified periodically in time instead of continuously as in standard ETC,
see, e.g., Lunze and Lehmann (2010); Tabuada (2007). Hence, at every sampling
interval it is decided whether or not new measurements and control signals need
to be computed and transmitted.

In the PETC setting of Heemels et al. (2013) that we consider in this chapter,
the plant is given by a continuous linear time-invariant (LTI) system of the form

{
ẋp = Apxp +Bpuu+Bpww

y = Cpxp,
(6.3)

where xp ∈ Rnp denotes the state of the plant, u ∈ Rnu the control input and
y ∈ Rny the plant output. The plant in (6.3) is controlled in an event-triggered
feedback fashion using the following state-feedback controller

u(t) = Kx̂p(t), for t ∈ R≥0, (6.4)

where x̂p ∈ Rnp is a left-continuous signal1, given for t ∈ (tk, tk+1], k ∈ N, by

x̂p(t) =

{
xp(tk), when ξ(tk)>Qξ(tk) > 0,

x̂p(tk), when ξ(tk)>Qξ(tk) ≤ 0,
(6.5)

where ξ := [x>p x̂>p ]> and tk, k ∈ N, are the sampling times, which are pe-
riodic in the sense that tk = kh, k ∈ N, with h > 0 the sampling interval.
Fig. 6.1 shows a schematic representation of the PETC configuration that we
consider in this chapter. In this figure, x̂p(t) denotes the most recently trans-
mitted measurement of the state xp(t) to the controller. Whether or not xp(t) is
transmitted is based on an event-triggering condition. In particular, if at time
tk it holds that ξ>(tk)Qξ(tk) > 0, the current state xp(tk) is transmitted to the
controller and x̂p, and as a consequence u, are updated accordingly. If, however,
ξ>(tk)Qξ(tk) ≤ 0, the current state information is not sent to the controller and
x̂p and u are kept the same for (at least) another sampling interval. In Heemels

1A signal x : R≥0 → Rn is called left-continuous, if for all t > 0, lims↑tx(s) = x(t).
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Controller
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periodic
event-triggering
condition

Fig. 6.1. Schematic representation of an event-triggered control system.

et al. (2013) it was shown that such quadratic event-triggering conditions form
a relevant class of triggering conditions because many popular event trigger-
ing conditions can be written in this form. For instance, an event-triggering
condition of the form

‖x̂p(tk)− xp(tk)‖ > σ‖xp(tk)‖, (6.6)

with σ > 0, can be used to determine whether, at time tk, it is required to
transmit xp(tk) to the controller, or that the latest sent value x̂p(tk) is still
adequate. Clearly, condition (6.6) can be written in the quadratic form of (6.5)
by taking

Q =

[
(1− σ2)Inp −Inp
−Inp Inp

]
. (6.7)

The complete model of the PETC system can be captured in the hybrid system
format of (6.1), by combining (6.3), (6.4) and (6.5), where we obtain

A =

[
Ap BpuK
0 0

]
, B =

[
Bpw

0

]
, J1 =

[
Inp 0
Inp 0

]
,

and J2 = Inξ with nξ = 2np. In addition to the state feedback controller in
(6.4), one can also use dynamic output-feedback PETC controllers and output-
based event-triggering conditions, see Heemels et al. (2013), in a straightforward
fashion.

6.3.2 Reset control systems

A second domain of applications of the class of hybrid systems that we consider
in this chapter is formed by reset control. Reset control is a discontinuous control
strategy designed as a means to overcome the fundamental limitations of linear
feedback by allowing to reset the controller state, or subset of states, whenever
certain conditions on its input and output are satisfied, see, e.g., Aangenent
et al. (2010); Beker et al. (2004); Nešić et al. (2008); Zaccarian et al. (2011). In
all afore-cited papers the reset condition is monitored continuously, while in Guo
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et al. (2012) the authors proposed to verify the reset condition at discrete-time
instances. In other words, at every sampling time tk = kh, k ∈ N, with sampling
interval h > 0, it is decided whether or not a reset takes place. This periodic
reset verification can be modeled in the hybrid systems class (6.1). In order to
show this, we consider reset controllers, to control systems of the form (6.3), of
the type

d

dt

[
xc
τ

]
=

[
Acxc +Bce

1

]
, when τ ∈ [0, h] (6.8a)

[
x+
c

τ+

]
=





[
xc

0

]
, when τ = h and ξ>Qξ > 0

[
Rcxc

0

]
, when τ = h and ξ>Qξ ≤ 0

(6.8b)

u = Ccxc +Dce, (6.8c)

where xc ∈ Rnc denotes the continuous state of the controller and x+
c its value

after a reset, Rc ∈ Rnc×nc is the reset matrix and e := r − y ∈ R is the
error between the reference signal r and the output of the plant y. Moreover,
ξ := [x>p x̂>c ]> is an augmented state vector containing plant and controller
states. The reset condition that we employ in this chapter is based on the
sign of the product between the error e and controller input u ∈ R, which was
originally proposed in Zaccarian et al. (2005)2. In particular, the reset controller
(6.8) acts like a linear controller whenever its input e and output u have the same
sign, i.e., e>u > 0, and it resets its output otherwise. This reset condition can
be represented, for the case r = 0, in terms of a general quadratic relation as in
(6.8b), with

Q =

[
Cp 0

−DcCp Cc

]> [
0 −1
−1 0

] [
Cp 0

−DcCp Cc

]
. (6.9)

Remark 6.3. Note that two well-known reset controllers, namely, the Clegg
integrator and the first-order reset element (FORE), see, e.g., Zaccarian et al.
(2005) and the references therein, can be modeled as in (6.8), if implemented in
a periodic time-triggered manner, using

Clegg integrator :

[
Ac Bc
Cc Dc

]
=

[
0 1
1 0

]
, (6.10)

FORE :

[
Ac Bc
Cc Dc

]
=

[
−β 1
1 0

]
, (6.11)

in which β ∈ R denotes the single pole of the FORE.

2In Zaccarian et al. (2005), the reset condition is verified in continuous time, so not at
discrete times tk = kh, k ∈ N for some h > 0.
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Plant

Controlleru

û y

ŷ

communication network

Fig. 6.2. Schematic representation of a networked control system.

The interconnection of the reset control system (6.8) and plant (6.3) can
be written in the hybrid system format of (6.1), with augmented state vector
ξ = [x>p x>c ]>, in which

A =

[
Ap −BpuDcCp BpuCc
−BcCp Ac

]
, B =

[
Bpw

0

]
, J2 =

[
Inp 0
0 Rc

]
,

and J1 = Inξ with nξ = np + nc.

Remark 6.4. By showing that the PETC applications in Heemels et al. (2013)
and periodic reset control systems in Guo et al. (2012) fit in the same framework
(6.1), it is possible to use the stability conditions of Heemels et al. (2013) for
PETC in the context of reset control in Guo et al. (2012), which actually provides
less conservative stability conditions than used in Guo et al. (2012), cf. (Heemels
et al., 2013, Theorem III.4) with (Guo et al., 2012, Proposition 4). Transforming
results from one application domain to another is one particular advantage of
using a unifying modeling framework.

6.3.3 Networked control systems

The third domain of application that we consider in this chapter consist of net-
worked control systems (NCSs), see, e.g, Hespanha et al. (2007) for an overview.
An NCS is a control system in which the control loops are closed over a real-time
communication network, which is schematically depicted in Fig. 6.2. In this fig-
ure, y ∈ Rny denotes the plant output and ŷ ∈ Rny its so-called ‘networked’
version, i.e., the most recent output measurements of the plant that are avail-
able at the controller. The control output is denoted by u ∈ Rnu and the most
recent control output available at the plant (actuators) is given by û ∈ Rnu .

In the remainder of this section, we will show that the hybrid system model
(6.1) also captures a specific class of NCSs with constant transmission intervals
and a shared network with dynamic protocols, as, for instance, studied in Dačić
and Nešić (2007); Donkers et al. (2011); Walsh et al. (2002). Such NCS configu-
rations can be modeled in the framework (6.1) by considering plants of the form
(6.3), in which the control input u is replaced by its networked version û. The
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output-feedback controller with state xc ∈ Rnc is assumed to be given in either
continuous-time by

{
ẋc = Acxc +Bcŷ

u = Ccxc +Dcŷ,
(6.12)

or in discrete time (with abuse of notation) by

{
xc(tk+1) = Acxc(tk) +Bcŷ(tk)

u(t) = Ccxc(tk) +Dcŷ(tk−1),
(6.13)

for all t ∈ (tk, tk+1], where we adopt a zero-order-hold (ZOH) assumption. The
network-induced errors are defined as follows:

e =

[
ey
eu

]
:=

[
ŷ − y
û− u

]
, (6.14)

and describe the difference between the most recently received information at
the controller/actuators and the current value of the plant/controller output,
respectively. The network itself is assumed to operate in a ZOH fashion in
between the updates of the values ŷ and û, i.e., ˙̂y = 0 and ˙̂u = 0 between update
times. We consider the case where the plant is equipped with ny sensors and nu
actuators that are grouped into N nodes. At the transmission/update times tk,
k ∈ N, the updates satisfy

{
ŷ(t+k ) = Γyσky(tk) + (I − Γyσk)ŷ(tk)

û(t+k ) = Γuσku(tk) + (I − Γuσk)û(tk).
(6.15)

In (6.15), Γi :=diag(Γyi ,Γ
u
i ), i={1, . . . , N}, are diagonal matrices given by

Γi = diag(γi,1, . . . , γi,ny+nu), in which the elements γi,j , with i∈{1, . . . , N} and
j ∈ {1, . . . , ny}, are equal to one, if plant output yj is in node i and are zero
elsewhere, and elements γi,j+ny , with i ∈ {1, . . . , N} and j ∈ {1, . . . , nu}, are
equal to one, if controller output uj is in node i and are zero elsewhere. In
the modeling framework, network protocols determine at a transmission/update
time tk, k ∈ N, which node is allowed access to the network in order to update
its values. This is exactly captured in (6.15) when node σk ∈ {1, . . . , N} gets
access. The hybrid framework (6.1) especially allows one to study quadratic
network protocols, see, e.g., Dačić and Nešić (2007); Donkers et al. (2011); Walsh
et al. (2002), of the form

σk = arg min ξ>(tk)Riξ(tk), (6.16)

for all i ∈ {1, . . . , N}, in which Ri, i ∈ {1, . . . , N} are certain given matrices
and ξ = [x>p x>c e>y e>u ]>. In fact, the well-known try-once-discard (TOD)
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protocol, see Walsh et al. (2002), belongs to this particular class of protocols. In
this protocol, the node with the largest network-induced error is granted access
to the network in order to update its values, which is defined by

σk = arg maxi∈{1,...,N} ‖Γie(tk)‖2. (6.17)

For simplicity, let us only consider two nodes (although the extension to
N > 2 nodes can be done in a straightforward fashion, see also Remark 6.2)
and continuous-time controllers of the type (6.12). The complete model of the
NCS can be written in the hybrid system format of (6.1), by combining (6.3),
(6.12), (6.14) and (6.16), in which the augmented state vector is defined as
ξ = [x>p x>c e>y e>u ]>, and the updates are according to

[
ξ+

τ+

]
=





[
J1ξ

0

]
, when τ = h and ξ>R1ξ ≤ ξ>R2ξ,

[
J2ξ

0

]
, when τ = h and ξ>R2ξ ≤ ξ>R1ξ,

(6.18)

and the matrices in (6.1) are given by

A =




Ap +BpuDcCp BpuCc BpuDc Bpu
BcCp Ac Bc 0

−Cp(Ap +BpuDcCp) −CpBpuCc −CpBpuDc −CpBpu
−CcBcCp −CcAc −CcBc 0


,

B =




Bpw
0

−CpBpw
0


 and Ji =

[
I 0
0 I − Γi

]
, for i ∈ {1, 2}.

6.4 Stability and L2-gain analysis of the hybrid
system

In this section, we present improved conditions to analyze stability and per-
formance of the hybrid system (6.1). As these conditions build upon results
presented in (Heemels et al., 2013, Section III.A), we first briefly recall this
analysis and refer to Heemels et al. (2013) for more details.

6.4.1 Riccati-based analysis

In Heemels et al. (2013), an L2-gain analysis is performed on systems of the
form (6.1), which is based on a Lyapunov/storage function V (ξ, τ), see van der
Schaft (1999), satisfying

d
dtV ≤ −2ρV − γ−2z>z + w>w, (6.19)
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during the flow (6.1a), and

V (J1ξ, 0) ≤ V (ξ, h), for all ξ with ξ>Qξ > 0, (6.20a)

V (J2ξ, 0) ≤ V (ξ, h), for all ξ with ξ>Qξ ≤ 0, (6.20b)

during jumps (6.1b). From these conditions, we can guarantee that the L2-gain
from w to z is smaller than or equal to γ. In Heemels et al. (2013), V (ξ, τ) was
chosen of the form

V (ξ, τ) = ξ>P (τ)ξ, (6.21)

where P : [0, h] → Rnξ×nξ with P (τ) � 0 for τ ∈ [0, h], is selected to satisfy the
Riccati differential equation (where we omitted τ for compactness of notation)

d
dτ P = −A>P − PA− 2ρP − γ−2C>C

− (PB + γ−2C>D)M(B>P + γ−2D>C), (6.22)

provided the solution exists on [0, h] for a desired convergence rate ρ > 0, in
which M := (I − γ−2D>D)−1 is assumed to exist and to be positive definite,
which means that γ2 > λmax(D>D). It is proven in Heemels et al. (2013) that
this choice for the matrix function P guarantees satisfaction of the ‘flow condi-
tion’ (6.19). The ‘jump condition’ (6.20) is guaranteed by LMI-based conditions,
which were obtained by relating P0 := P (0) to Ph := P (h) and lead to a proper
value of the boundary value Ph. This was done by introducing the Hamiltonian
matrix

H :=

[
A+ ρI + γ−2BMD>C BMB>

−C>LC −(A+ ρI + γ−2BMD>C)>

]
, (6.23)

in which L := (γ2I −DD>)−1. Moreover, the matrix exponential

F (τ) := e−Hτ =

[
F11(τ) F12(τ)
F21(τ) F22(τ)

]
(6.24)

was defined, which enables the computation of the explicit solution to the Riccati
differential equation (6.22), yielding

P0 = (F21(h) + F22(h)Ph) (F11(h) + F12(h)Ph)
−1
, (6.25)

provided that the solution (6.25) is well defined on the interval [0, h], see, e.g.,
Başar and Bernhard (1991). To guarantee this, in Heemels et al. (2013) the
following assumption was adopted.

Assumption 6.1. F11(τ) is invertible for all τ ∈ [0, h].

Let us also introduce the notation F̄11 := F11(h), F̄12 := F12(h), F̄21 :=
F21(h) and F̄22 := F22(h), and the matrix S̄ that satisfies S̄S̄> := −F̄−1

11 F̄12. The
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matrix S̄ exists under Assumption 6.1, because this assumption will guarantee
that the matrix −F̄−1

11 F̄12 is positive semi-definite, see the proof of (Heemels
et al., 2013, Theorem III.2). In Heemels et al. (2013), the following result was
presented in which the LMIs were derived guaranteeing (6.20) by using (6.25)
(note that compared to the LMIs in Heemels et al. (2013), here an additional
Schur complement has been used).

Theorem 6.1. (Heemels et al. (2013)) Consider the hybrid system (6.1) and
let ρ > 0 and γ >

√
λmax(D>D) be given. Assume that Assumption 6.1 holds

and that there exist a matrix Ph � 0, and scalars µi ≥ 0, i ∈ {1, 2}, such that

[
Ph + (−1)iµiQ− J>i F̄21F̄

−1
11 Ji − J>i F̄−>11 PhF̄

−1
11 Ji J

>
i F̄
−>
11 PhS

? I − S>PhS

]
� 0, (6.26)

Then, the hybrid system (6.1) is GES with convergence rate ρ (when w = 0) and
has an L2-gain from w to z smaller than or equal to γ.

The conditions (6.26) guarantee indeed that (6.20) holds, and (6.19) and
(6.20) together can be used to establish GES and an L2-gain smaller than or
equal to γ.

6.4.2 Main result on novel L2-gain conditions

The analysis in Heemels et al. (2013), as briefly recalled above, is based on the
existence of a common quadratic timer-dependent Lyapunov/storage function
as in (6.21). The novelty in our improved conditions lies in the fact that we
will use a more versatile timer-dependent piecewise quadratic Lyapunov/storage
function, see, e.g., Ferrari-Trecate et al. (2002); Johansson and Rantzer (1998),
based on the regions

Ωi :=
{
ξ∈ Rnξ

∣∣ ξ>Xiξ ≥ 0
}
, (6.27)

where the symmetric matricesXi, i ∈ {1, . . . , N}, are such that {Ω1,Ω2, . . . ,ΩN}
forms a partition of Rnξ , i.e., ∪Ni=1Ωi = Rnξ and the intersection of Ωi and Ωj ,
i, j ∈ {1, . . . , N}, is of zero measure. We assume that {ξ ∈ Rnξ | ξ>Qξ ≤ 0} ⊆⋃N1

i=1 Ωi and {ξ ∈ Rnξ | ξ>Qξ ≥ 0} ⊆ ⋃Ni=N1+1 Ωi.
Note that the construction of a Lyapunov/storage function for the hybrid

system (6.1) is less straightforward if compared to the more classical case of
discrete-time and continuous-time piecewise affine systems (see Ferrari-Trecate
et al. (2002); Johansson and Rantzer (1998)). This is due to the presence of
both flow and jump dynamics and the fact that the jumps do depend both on
time and the state. To introduce the storage function, we need the following
notation. We denote by ξ̄(t, ξ0, w) the solution to ξ̇ = Aξ + Bw at time t with
ξ(0) = ξ0 and input w ∈ L2. Given w ∈ L2 and some fixed t ∈ R≥0, we denote
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by wt the time-shifted signal given by wt(s) = w(s + t) for s ≥ 0. We propose
now to use the timer-dependent PWQ storage function given by

W (ξ, τ, w, t) = ξ>P̄i(τ)ξ if ξ̄(h− τ, ξ, wt) ∈ Ωi, (6.28)

where P̄i(τ), for each i ∈ {1, . . . , N}, is a solution to the Riccati differential
equation

d
dτ P̄i = −A>P̄i − P̄iA− 2ρP̄i − γ−2C>C

− (P̄iB + γ−2C>D)M(B>P̄i + γ−2D>C), (6.29)

for a desired convergence rate ρ > 0, satisfying P̄i(h) = Pi, where the posi-
tive definite matrices Pi, i ∈ {1, . . . , N}, are chosen according to solutions of
the LMIs presented in Theorem 6.2 below. Interestingly, note that the value
of W (ξ, τ, w, t) at time t (given τ) depends on ξ and w |[t,t+h−τ ] and thus on
future disturbance values. The state dependence is only at the present time,
i.e., on ξ(t), while the dependence on the future disturbance is only in select-
ing the index ‘i’ in (6.28). In particular, the sector Ωi at the next sampling
instant ((k + 1)h, k ∈ N) determines ‘i’, which remains constant in between
two consecutive jump times, i.e., in the entire interval [kh, (k + 1)h). As such,
we have a trajectory/disturbance-dependent Lyapunov/storage function. Thus
the trajectory-dependency of the Lyapunov/storage function deviates from the
common results in the literature on dissipativity or L2-gain analysis as there
the Lyapunov/storage function typically depends only on the current state (or
sometimes time), but not on future values of the disturbances/state. As a conse-
quence, the interpretation of W as a genuine Lyapunov/storage function is less
natural. We merely use it as a function (or functional) to establish the desired
L2-gain properties in the mathematical proof, see also Remark 6.5 below.

Theorem 6.2. Let γ >
√
λmax(D>D), N1 < N , and Assumption 6.1 hold.

Suppose that there exist matrices Pi = P>i , i ∈ {1, . . . , N}, and scalars µi,j ≥ 0,
i, j ∈ {1, . . . , N}, satisfying



Pi − µi,jXi J

>
1 F̄
−>
11 PjS̄ J>1 (F̄21F̄

−1
11 + F̄−>11 PjF̄

−1
11 )

? I − S̄>PjS̄ 0

? ? F̄21F̄
−1
11 + F̄−>11 PjF̄

−1
11


 � 0 (6.30a)

for all i ∈ {N1 + 1, . . . , N}, j ∈ {1, . . . , N}, and



Pi − µi,jXi J

>
2 F̄
−>
11 PjS̄ J>2 (F̄21F̄

−1
11 + F̄−>11 PjF̄

−1
11 )

? I − S̄>PjS̄ 0

? ? F̄21F̄
−1
11 + F̄−>11 PjF̄

−1
11


 � 0 (6.30b)

for all i ∈ {1, . . . , N1}, j ∈ {1, . . . , N}, and

Pi � 0, for all i ∈ {1, . . . , N}. (6.30c)



104 Chapter 6. Improved L2-gain analysis for a class of hybrid systems

Then, the hybrid system (6.1) is GES with convergence rate ρ (when w = 0) and
has an L2-gain from w to z smaller than or equal to γ.

Proof. The proof can be found in Appendix A.5.1.

Remark 6.5. Let us provide some more intuition behind our main result in
Theorem 6.2. In this respect, an important observation is that feasibility of
(6.26) not only implies that the hybrid system (6.1) is L2-stable with an upper
bound on the L2-gain given by γ, it is equivalent to a check of `2-stability with
gain less than or equal to 1, for the following discrete-time PWL system

ξk+1 =

{
F̄−1

11 J1ξk + Swk if ξ>k Qξk > 0

F̄−1
11 J2ξk + Swk if ξ>k Qξk ≤ 0

(6.31a)

zk =

{
C̃J1ξk if ξ>k Qξk > 0

C̃J2ξk if ξ>k Qξk ≤ 0,
(6.31b)

in which C̃ satisfies C̃>C̃ := F̄12F̄
−1
11 , using a common quadratic Lyapunov/storage

function and only one S-procedure relaxation (i.e., relaxation (ii) below).
In general, we can obtain less conservative conditions for the `2-gain for

a discrete-time PWL system (6.31) than the conditions (6.26) only using a
common quadratic storage function. This is mainly because the analysis for
a discrete-time PWL system allows us to apply, instead of a common Lya-
punov/storage function, a more versatile piecewise quadratic Lyapunov/storage
function, see Ferrari-Trecate et al. (2002); Johansson and Rantzer (1998) of the
form

V (ξ) = ξ>Piξ if ξ ∈ Ωi, (6.32)

for i ∈ {1, . . . , N} and Ωi as in (6.27), and in addition, regional information
can be used to relax the analysis even more, i.e.,

(i) : require that Pi is only positive definite in its corresponding sector, i.e.,
Pi − κiXi � 0 for all i ∈ {1, . . . , N} and κi ≥ 0;

(ii) : relaxation related to the current time instant, i.e., if V (ξk) = ξ>k Piξk it
holds that ξ>k Xiξk ≥ 0;

(iii) : relaxation related to the next the time instant, i.e., if V (ξk+1) = ξ>k+1Pjξk+1

it holds that ξ>k+1Xjξk+1 ≥ 0.

The LMI conditions (6.30) in Theorem correspond to an `2-gain analysis for
the discrete-time PWL system (6.31) with gain less than or equal to 1, using
a Lyapunov/storage function of the form (6.32) and one S-procedure relaxation
based on (ii). We are able to connect this to an L2-gain analysis of (6.1) by using
a trajectory/disturbance-dependent Lyapunov/storage function as in (6.28), in
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which the dependence on the future disturbance is only in selecting the index ‘i’
in (6.28) (which remains constant in between two consecutive jump times, i.e.,
in the entire interval [kh, (k + 1)h)) while the state dependence is only at the
present time, i.e., on ξ(t).

Although in Theorem 6.2 above we were able to use the relaxation (ii), we
could not prove the result using the other relaxations (i) and (iii). Inspired by this
observation, in Heemels et al. (2015a,b) the authors show, by adopting lifting-
based techniques, the complete equivalence between the L2-gain determination
of (6.1) and the `2-gain characterization through (6.31). In such a case, all
relaxations (i), (ii) and (iii) may be applied.

6.5 Reset control example

In this section, we illustrate the improvement of the presented theory using a
numerical example taken from Nešić et al. (2008). In this example, the plant
consists of an integrator system of the form (6.3) with

[
Ap Bpu Bpw Cp

]
=
[

0 1 1 1
]
, (6.33)

and tk = kh, k ∈ N, with sampling interval h = 0.1, which is controlled by
a FORE of the form (6.8) and (6.11). The partition we use of the state-space
into N number of sectors as in (6.27) is inspired by Aangenent et al. (2010);
Zaccarian et al. (2005) and based on defining the angles φi = [− sin(θi) cos(θi)]

>

for θi = iπ
N , i ∈ {0, 1, . . . , N}, such that we can define the following sector

matrices Si = φi(−φi−1)> + φi−1(−φi)>. This allows us to form the symmetric
matrices Xi of (6.27) as follows:

Xi =

[
Cp 0

−DcCp Cc

]>
Si

[
Cp 0

−DcCp Cc

]
, (6.34)

for all i ∈ {1, . . . , N}. In the remainder of this example, we select N1 = 5 and
N = 10.

In Fig. 6.3, the L2-gain is represented as a function of the pole β of the
FORE. The dashed line is obtained by the existing conditions in Heemels et al.
(2013), see Theorem 6.1 using a common Lyapunov/storage function as in (6.21).
The solid curve is obtained using the conditions of Theorem 6.2. From these
curves it can be concluded that the results of Theorem 6.2 provide a significant
improvement compared to the existing approach based on a common quadratic
Lyapunov/storage function. In fact, for β > 0 the existing approach could not
even establish a finite L2-gain, while the new approach presented here leads to
such guarantees.
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Fig. 6.3. L2-gain as function of the pole β of the FORE.

6.6 Conclusions

In this chapter, we have considered a particular class of hybrid systems with
periodic time-triggered jump conditions and piecewise linear jump maps. The
relevance of this framework is demonstrated by showing that a wide variety of
control applications in the domains of reset control, event-triggered control, and
networked control systems, can be captured in this framework. Interestingly,
the unifying character of the framework can enable the transfer of results be-
tween the diverse application domains (see, e.g., Remark 6.4). In addition, we
provided improved conditions to analyze the stability and the L2-performance of
the hybrid systems under study using trajectory-dependent Lyapunov/storage
functions as a technical novelty. The new conditions include the existing ones as
a special case, and, hence, will never provide worse estimates of the L2-gain. In
fact, using a numerical example it was shown that these new conditions result
in (significantly) better estimates for the L2-gain compared to the existing ones
in the literature.



Chapter 7

Conclusions and
recommendations

7.1 Conclusions

In this thesis, hybrid control of linear (motion) systems has been considered. In
the Introduction of this thesis (see Section 1.3), the general objectives of this
thesis were stated as follows:

(I) The development of novel hybrid/nonlinear controllers to improve the
transient and/or steady-state performance of linear motion systems which
are applicable to industrial high-tech systems;

(II) The development of novel techniques to analyze stability and performance
of hybrid systems, preferably by exploiting frequency-domain design tools
and non-parametric models;

(III) Experimental and industrial validation of the proposed controllers and
techniques.

The main contributions of this thesis can be summarized in terms of contri-
butions on these three general objectives, which will be further detailed below.

Objective (I): Novel hybrid controller designs that connect to the
industrial practice and result in an improved performance.

In Chapter 2, a novel scheduled controller architecture was proposed for dy-
namical systems with position-dependent switching sensor configurations. The
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proposed controller architecture has the favorable property that all individ-
ual components (except the time-varying gain) can be designed using classi-
cal frequency-domain loop-shaping techniques. Moreover, it was shown that,
compared to the current state-of-practice linear control solutions, an improved
transient and steady-state performance could be obtained.

In Chapter 3, a novel reference-dependent variable-gain control strategy was
proposed that allows for a varying ‘bandwidth’ of the feedback controller in or-
der to deal with reference-dependent conflicting control design trade-offs between
low-frequency tracking and high-frequency noise suppression. All linear compo-
nents of this controller can be designed using frequency-domain loop-shaping
techniques for which easy-to-use tuning guidelines have been presented as well
as a guideline to design the time-varying gain.

In Chapter 5, the concept of the split-path nonlinear filter was revisited
and a novel variant was introduced, namely, the split-path nonlinear integrator
(SPANI), which is especially designed for transient performance improvement
of linear systems. The presented design tools for the SPANI connect to in-
dustrial practice in the sense that these allow the control engineer to design a
linear integrator in parallel to a nominal linear controller, e.g., using classical
frequency-domain loop-shaping techniques, and then to simply replace the linear
integrator by a SPANI with the same gain.

Objective (II): Novel techniques to analyze stability and performance
of hybrid systems.

The contributions on this topic can be categorized by ‘data-based’ conditions
and ‘LMI-based’ conditions for stability and performance analysis.

The stability conditions in the Chapters 2, 3 and 4 are all data-based. In
particular, the stability conditions for: The novel switched controller architecture
in Chapter 2, the novel ‘bandwidth-on-demand’ controller in Chapter 3, and
reset control systems (RCSs) in Chapter 4, are all graphically verifiable based on
measured frequency response data of the (linear part of the) dynamical system.

In the Chapters 5 and 6, novel LMI-based conditions are presented to assess
stability and/or L2-performance of two particular classes of hybrid systems. The
LMI-based stability conditions presented in Chapter 5 are based on a hybrid
dynamical system model for the closed-loop dynamics with SPANI, and also
proved to be useful in the design of a SPANI. In Chapter 6, we focussed on a
particular hybrid system class and showed the unifying modeling capabilities by
modeling three different control application domains, namely, event-triggered
control (ETC) systems, see, e.g., Heemels et al. (2012), reset control systems
(RCS) and networked control systems (NCS), see, e.g., Bemporad et al. (2010);
Hespanha et al. (2007), in this framework. Moreover, we provided novel LMI-
based conditions to analyze the stability and characterize the L2-performance of
the hybrid systems under study.
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Objective (III): Validation on industrial benchmark systems.

Several industrial benchmark systems have been considered in this thesis in or-
der to validate the proposed hybrid controllers and/or analysis techniques. In
Chapter 2, the proposed switched controller has been experimentally validated
on a motion system used in the lithography industry. In Chapter 3, the effec-
tiveness of the proposed controller with a ‘bandwidth-on-demand’ characteristic
has been experimentally demonstrated using an industrial nano-positioning mo-
tion system. In Chapter 4, the novel graphical data-based stability analysis
conditions for reset control systems have been applied to an industrial piezo-
actuated motion system used in the lithography industry. Finally in Chapter
5, a model-based case study of a positioning operation of an industrial pick-
and-place machine has been used to validate our proposed split-path nonlinear
integrator (SPANI).

Linear control techniques offer the control engineer a powerful, easy-to-use
and insightful toolkit to design appropriate controllers for linear (motion) sys-
tems. Therefore, they are the logical first solution to try when feedback control is
required. However, when the achievable performance of a linear control system
is not meeting the requirements due to the inherent fundamental limitations,
this thesis offers new solutions to overcome this situation. Indeed, in this thesis,
we have shown that, depending on the specific (industrial) situation at hand, the
use of nonlinear components may offer the necessary design freedom to overcome
these fundamental limitations. In this respect, the three novel hybrid controllers
that have been developed in this thesis, i.e., the scheduled controller in Chapter
2, the ‘bandwidth-on-demand’ controller in Chapter 3 and the SPANI in Chap-
ter 5, together with their designs guidelines and analysis techniques, can be of
great value. In fact, the analysis and design of these novel hybrid/nonlinear con-
trollers is supported, to a great extend, on easy-to-obtain (measured) frequency
response data. In addition, this thesis presents the first results on data-based
stability conditions for reset control systems. We project that such, for indus-
try, favorable aspects will contribute towards a greater (industrial) acceptance
of hybrid/nonlinear control designs.

The obtained results in Chapters 2-5, are all ‘application-driven’ and meant
for industrial use. In this respect, the results in Chapter 6 have a more generic
nature. Firstly, the unifying modeling character of this chapter is instrumental in
enabling the transfer of results between the diverse control application domains,
such as event-triggered control systems, reset control systems and networked
control systems. Secondly, new tools are presented for the analysis of stability
and the L2-gain properties of these hybrid systems, which given the increasing
popularity of these type of control systems, can be valuable contributions for
control engineers.

Still, many of the existing hybrid/nonlinear controller designs in the litera-
ture, of which the three developed novel controller designs in this thesis form no
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exception, are rather specific. This is due to the fact that their designs often de-
pend on the different performance objectives, disturbance situations and (indus-
trial) applications at hand. Therefore, additional research is in order to develop
systematic methods for the design and analysis of hybrid/nonlinear controllers,
for instance by providing guidelines when to use which type of hybrid/noninear
controller technique. Hopefully, such advancements, which are necessary in order
to raise hybrid/nonlinear control towards a more generic level, can be supported
by the results obtained in this thesis.

As a final note, the author expresses the wish that this thesis also provides
awareness among control engineers about the high-potential that hybrid/nonlinear
controller solutions may offer, and that the design and analysis of such controllers
not necessarily implies a much more difficult design process, but that it might
be even closely connected to techniques that (industrial) control engineers are
accustomed to.

7.2 Recommendations

In this section, recommendations for future research are given, starting with
thise that are based on each individual chapter.

Chapter 2. In this chapter, we constructed a switched controller on the basis
of two plant descriptions in which we employed the standing assumption that
the plants descriptions corresponding to the regions with sensor loss could be
regarded as equal. However, in many practical situations those (four) plant
descriptions will show differences. In order to improve the performance even
further, it would be good to study if the proposed scheduled controller structure
allows to deal with five plant descriptions as well, i.e., Pi(s), s ∈ C, based on
the regions Λi, i = 1, 2, . . . , 5, as in Fig. 2.3(a). In this respect, the most chal-
lenging aspect is to preserve the favorable frequency-domain based design and
analysis tools. It is expected that the design aspect can remain unchanged, i.e.,
frequency-domain loop-shaping techniques can still be used to design individual
controllers based on the plant descriptions Pi(s), i = 1, 2, . . . , 5. However, ex-
tending the graphical data-based stability conditions towards such a case is less
trivial. Nevertheless, it is a fact that switches always take place when θ ∈ Λ2,
i.e., within the area in which all four sensors are available, which allows us to
construct four transfer functions Gi(s), i = 1, 2, 3, 4 as in (2.11). The question
that should be answered is if it is possible to prove that closed-loop stability can
be verified by checking four circle criterion-like conditions as in Theorem 2.2,
hereby taking in mind that the four individual circle criterion-like conditions
are based on the Kalman-Yakubovic-Popov criterion (i.e., we probably cannot
guarantee the existence of a common Lyapunov function). In this respect, based
on a dwell-time reasoning, see Hespanha and Morse (1999), it is interesting to
study if we can prove that we always stay sufficiently long in the area in which
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all four sensors are available such that the transient effects caused by the switch
have vanished (and we have reached a steady-state) before another switch takes
place. Currently, this is a topic of ongoing research.

Chapter 3. The design and tuning of the shaping filter F(s), s ∈ C, is crucial
for both stability as well as for performance of the ‘bandwidth-on-demand’ con-
troller. It is expected that the design of this filter, which in the current approach
requires some heuristic tuning, becomes more involved when the high-bandwidth
LTI controller is more complex compared to the low-bandwidth LTI controller,
e.g., which can be the case for plants with high residual behavior. It is therefore
recommended to study if it is possible to construct a more systematic design
approach for the design of this filter.

Chapter 4. The most important recommendation is to include temporal
regularization in the reset controller (4.1) with (4.2), see also Remark 4.3. It
is in the line of expectation that this should be possible, as, according to Forni
et al. (2011); Nešić et al. (2008), the input/output pair (e,−u) of R as in (4.1)
with (4.2) is still confined to a (slightly) larger region despite the presence of
the time regularization. Additional research is required to verify this line of
reasoning and transform it into a systematic design procedure. Currently, this
is a topic of ongoing research.

A second recommendation concerns the possible level of conservatism of the
presented data-based stability conditions. Compared to the LMI-based condi-
tions proposed in Zaccarian et al. (2011), our conditions yield both advantages
as well as disadvantages. The main advantage is clear, namely the demand from
industry for easy-to-use data-based conditions for RCSs which do not require
parametric models. Moreover, for systems with larger state dimensions, LMI-
based conditions often require numerical ‘tricks’, such as balancing of matrices,
in order to yield feasible results. The presented frequency-domain conditions
do not suffer from these aspects, although one disadvantage can be the possible
level of conservatism. The LMI-based conditions in Zaccarian et al. (2011) are
based on piecewise-quadratic Lyapunov functions, thereby potentially offering
more freedom compared to our conditions, which rely on the Kalman-Yakubovic-
Popov criterion and thus the existence of a single Lyapunov function. Therefore,
it would be interesting to study if our data-based stability conditions can be re-
laxed, while maintaining the (for industry) favorable verification method based
on measured frequency response data.

Chapter 5. One modification to the SPANI filter could be the inclusion of a
lead-filter in the phase-branch. This would allow to ‘anticipate’ on a switch in
the integral action, i.e., a switch in the integral action happens prior to the error
becoming zero, which possibly could lead to a further improvement in reducing
the amount of overshoot. Additional research is required on how to appropriate
tune such a lead filter, and on how to include such a filter in the current stability
conditions.
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Chapter 6. In many hybrid control applications, there is a need to prevent
the occurrence of so-called ‘Zeno behavior’, i.e., infinitely many discrete-time
events in a finite time interval, which can be realized by the inclusion of tem-
poral regularization, see also Remark 6.1. Given the importance of several ap-
plications, such as reset control systems, event-triggered control systems, etc.,
there is a need for computing such a minimal inter-event time, i.e., the time
period in between to consecutive discrete-time events guaranteeing unbounded
(hybrid) solutions, while simultaneously guarantee certain stability and Lp-gain
properties from disturbance inputs to performance outputs. In the current lit-
erature, the closest results in this context are published in Nešić et al. (2008).
However, in their examples the minimal inter-event time bounds are never con-
cretely computed, and their techniques are merely used as tools for existence
of such a positive threshold. The techniques/results of Chapter 6, and their
extensions towards lifting in Heemels et al. (2015a,b), open the door to con-
struct novel tools for computing minimal inter-event times for time-regularized
hybrid systems as discussed in Remark 6.1, while simultaneously guaranteeing
certain stability and Lp-gain properties from disturbance inputs to performance
outputs. Currently, this is a topic of ongoing research.

A final more generic recommendation, which has already briefly been men-
tioned in the conclusions, is to explore towards more general systematic design
procedures for hybrid/nonlinear controllers. This is because many of the existing
hybrid/nonlinear controller designs in the literature are based on specific: per-
formance objectives, disturbance situations and (industrial) applications. For a
control engineer searching for new solutions to overcome the fundamental limita-
tions in LTI control, this requires extensive knowledge of the current literature.
Therefore, the development of a so-called ‘hybrid control recipe book’ is recom-
mended. This would provide the control engineer with easy-to-follow guidelines
of which type of hybrid/nonlinear control solution would be suitable/preferable
for the particular control design problem at hand. It is expected that such devel-
opments will further enhance the practical applicability of these high-potential
control solutions.
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A.1 Appendices of Chapter 2

A.1.1 Proof of Proposition 2.1

Proof. The proof consists of two steps. In the first step, we will demonstrate
that, under the hypothesis of the proposition, no unstable pole-zero cancelations
occur in open-loop. In the second step, we show that no unstable pole-zero
cancelations occur when closing the loop.

Step 1: Due to the proposed controller architecture, pole-zero cancelations
only occur in O1(s), which is given by

O1(s) = P1(s)C2(s)C∆(s)

= P1(s)H(s) ∆C2(s)∆−1
C2 (s)

︸ ︷︷ ︸
cancelation

∆C1(s)

= P1(s)C1(s). (A.1)

Note that this implies that we have to verify that no unstable pole-zero cance-
lations occur in:

1) ∆−1
C2 (s)∆C2(s);

2) C1(s), i.e., (2.6) with i = 1;

3) P1(s)C1(s).

Conditions 1) and 2) are satisfied by (ii), i.e., by Design criterion 1, and condition
3) is true due to (iii). As a result, no unstable pole-zero cancelations occur in
the open-loop (A.1).

Step 2: In this step, we will prove that no unstable pole-zero cancelations
occur when closing the loop. In order to do so, let us first consider the (non-
minimal) state-space realization of (A.1) is given by

ẋ = AO1
x+BO1

e1 (A.2a)

yP1
= CO1

x, (A.2b)

and the similarity transformation q = T−1x, for some nonsingular matrix T ,
that transforms (A.2) into its Kalman decomposition given by

q̇ = ĀO1
q + B̄O1

e1 (A.3a)

yP1
= C̄O1

q, (A.3b)

with ĀO1
= T−1AO1

T , B̄O1
= T−1BO1

and C̄O1
= CO1

T , in which

[
ĀO1

B̄O1

C̄O1

]
=




A11 0 0 0 0
A21 A22 0 0 B2

A31 0 A33 0 0
A41 A42 A43 A44 B4

C1 C2 0 0




(A.4)
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and O1(s) = C2(sI − A22)−1B2. Due to the lower triangular structure of ĀO1
,

its eigenvalues are given by the eigenvalues of the diagonal matrices A11, A22,
A33, and A44. Note that the eigenvalues related to pole-zero cancelations are
related to the eigenvalues of A11, A33, and A44, which are all Hurwitz because no
unstable pole-zero cancelations occur in (A.1) (as was already concluded in Step
1 ). Let us close the loop and, therefore, focus on the complementary sensitivity
function T (transfer from r to yP1

), which is given in state space description by

q̇ = ĀT q + B̄T r

yP1 = C̄T q,
(A.5)

in which

[
ĀT B̄T
C̄T

]
=




A11 0 0 0 0
A21 −B2C1 A22 −B2C2 0 0 B2

A31 0 A33 0 0
A41 −B4C1 A42 −B4C2 A43 A44 B4

C1 C2 0 0



, (A.6)

and T (s) = C2(sI − (A22 − B2C2))−1B2. By condition (i), A22 − B2C2 is a
Hurwitz matrix. Using the lower triangular structure of ĀT , and the previous
observation that A11, A33, and A44 are Hurwitz, it follows that ĀT is a Hurwitz
matrix. With the similarity transformation q = T−1x, we know that (A.5) is
algebraic equivalent to the realization of T resulting from Fig. 2.5, using (2.1)
and (2.6) with i = 1 (or (2.6) with i = 2 and (2.7)), which is given by

ẋ = Ax+Br (A.7)

yP1
= CT x, (A.8)

with CT :=
[
CP1

0 0
]
, and A, B are given by (2.15).

A.1.2 Proof of Theorem 2.2

Proof. Consider a similarity transformation ξ = T−1x, using a nonsingular ma-
trix T , that transforms (A,B,C) of system (2.14) into the Kalman decomposition

ξ̇1 = Ã11ξ1 + F̃1v (A.9a)

ξ̇2 = Ã21ξ1 + Ã22ξ2 + B̃2w + F̃2v (A.9b)

ξ̇3 = Ã31ξ1 + Ã33ξ3 + F̃3v (A.9c)

ξ̇4 = Ã41ξ1 + Ã42ξ2 + Ã43ξ3 + Ã44ξ4 + B̃4w + F̃4v (A.9d)

with output

ζ = C̃1ξ1 + C̃2ξ2 +Dvv (A.9e)
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and input

w = −α(θ)ζ. (A.9f)

Note that by hypothesis (I), the matrices Ã11, Ã22, Ã33 and Ã44 (suppose they
are present) are Hurwitz (due to the lower triangular structure).

In the remainder of the proof, we show that for each subsystem (A.9) there
exists an ISS Lyapunov function (ISSLF) Vi(ξi) = ξ>i Piξi, Pi = P>i � 0, i =
1, 2, 3, 4. Clearly, Vi satisfies

λmin(Pi)‖ξi‖2 ≤ Vi(ξi) ≤ λmax(Pi)‖ξi‖2, (A.10)

in which λmin(Pi), λmax(Pi) denotes the minimum eigenvalue and the maximum
eigenvalue of Pi, i = 1, 2, 3, 4, respectively. Combining the existence of such
ISSLF for each subsystem using a cascade-like argument, see Sontag (2008),
implies that the complete system (A.9) is ISS with respect to v. In fact, we will
construct an ISSLF for the overall system (2.14).

Subsystem 1: Since Ã11 is Hurwitz, there exist a quadratic positive definite
ISSLF satisfying (A.10) for i = 1, and

V̇1 ≤ −c1‖ξ1‖2 + γ1‖v‖2 (A.11)

with c1, γ1 > 0.

Subsystem 2: Note that G(s) = C̃2

(
sI − Ã22

)−1

B̃2 as subsystem 2 corre-

sponds to the observable and controllable part of the system (2.14). Hence, using
the Kalman-Yakubovich-Popov lemma, see Khalil (2000), and under hypothesis
(II) of the theorem, there exist matrices L, P2 = P>2 � 0, and a positive constant
ε2 such that

Ã>22P2 + P2Ã22 = −L>L− ε2P2 (A.12a)

P2B̃2 = C̃>2 −
√

2
ρL
>. (A.12b)

Let us take V2(ξ2) = ξ>2 P2ξ2 as a candidate ISSLF, satisfying (A.10) for i = 2,
and for which the time derivative yields

V̇2 = ξ>2 (Ã>22P2 + P2Ã22)ξ2 + 2ξ>2 P2B̃2w + 2ξ>2 P2Ã21ξ1 + 2ξ>2 P2F̃2v (A.13)

(A.12)
= −ε2V2 − ξ>2 L>Lξ2 + 2ξ>2

(
C̃>2 −

√
2
ρL
>
)
w + 2ξ>2 P2Ã21ξ1

+ 2ξ>2 P2F̃2v (A.14)

(A.9e)
= −ε2V2 − ξ>2 L>Lξ2 + 2ζw − 2ξ>1 C̃

>
1 w − 2v>D>v w + 2

√
2
ρξ
>
2 L
>w

+ 2ξ>2 P2Ã21ξ1 + 2ξ>2 P2F̃2v. (A.15)
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Using w = −α(θ)ζ, with α(θ) ∈ [0, 1], this yields

V̇2≤− ε2V2 − ξ>2 L>Lξ2 − 2w2 − 2ξ>1 C̃
>
1 w − 2v>D>v w + 2

√
2
ρξ
>
2 L
>w

+ 2ξ>2 P2Ã21ξ1 + 2ξ>2 P2F̃2v (A.16)

=− ε2V2 −
[
Lξ2 +

√
2
ρw
]>[

Lξ2 +
√

2
ρw
]
−
(

2− 2
ρ

)

︸ ︷︷ ︸
=:φ

w2 − 2ξ>1 C̃
>
1 w

− 2v>D>v w + 2ξ>2 P2Ã21ξ1 + 2ξ>2 P2F̃2v (A.17)

≤− ε2V2 − φw2 − 2ξ>1 C̃
>
1 w − 2v>D>v w + 2ξ>2 P2Ã21ξ1 + 2ξ>2 P2F̃2v (A.18)

(A.10)

≤ −κ2‖ξ2‖2 − φw2 − 2ξ>1 C̃
>
1 w − 2v>D>v w + 2ξ>2 P2Ã21ξ1 + 2ξ>2 P2F̃2v

(A.19)

for κ2 := ε2λmin(P2) > 0, and where we used that −2w2 = − 2
ρw

2 −
(

2− 2
ρ

)
w2

for ρ 6= 0. In fact, according to the hypothesis of the theorem, ρ > 1, which

yields φ =
(

2− 2
ρ

)
> 0. Using the relation 2ab ≤ δa2 + 1

δ b
2, which holds for all

a, b ∈ R and all δ > 0, we obtain

V̇2 ≤− c2‖ξ2‖2 − cw‖w‖2 + ĉ2‖ξ1‖2 + γ2‖v‖2 (A.20)

≤− c2‖ξ2‖2 + ĉ2‖ξ1‖2 + γ2‖v‖2 (A.21)

for some c2, cw, ĉ2, γ2 > 0. Hence, V2 is indeed an ISSLF for subsystem 2 with
respect to v and ξ1. Consequently, one can show based on (A.11) and (A.21)
that V12 := µ1V1 +V2, for µ1 > 0 sufficiently large, is an ISSLF for the cascaded
system comprising of subsystems 1 and 2, the dynamics of which is given by

[
ξ̇1
ξ̇2

]
=

[
Ã11ξ1 + F̃1v

Ã21ξ1 + Ã22ξ2 + B̃2w + F̃2v

]
(A.22)

and (A.9f), (A.9e). Indeed, for sufficiently large µ1 we would obtain that

V̇12 ≤ −c12‖ξ1‖2 − c12‖ξ2‖2 + γ12‖v‖2, (A.23)

for some c12, γ12 > 0.
Subsystem 3: Since Ã33 is Hurwitz, there exists a quadratic positive definite

ISSLF satisfying (A.10) for i = 3, and

V̇3 ≤ −c3‖ξ3‖2 + ĉ3‖ξ1‖2 + γ3‖v‖2 (A.24)

with c3, ĉ3, γ3 > 0. Based on (A.23) and (A.24) we can easily see that V123 :=
µ2V12 + V3, for sufficiently large µ2 > 0, satisfies

V̇123 ≤ −c123‖ξ1‖2 − c123‖ξ2‖2 − c123‖ξ3‖2 + γ123‖v‖2, (A.25)
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for some c123, γ123 > 0, and hence is an ISSLF for the cascaded system consisting
of subsystems 1, 2, 3, the dynamics of which is given by



ξ̇1
ξ̇2
ξ̇3


 =




Ã11ξ1 + F̃1v

Ã21ξ1 + Ã22ξ2 + B̃2w + F̃2v

Ã31ξ1 + Ã33ξ3 + F̃3v


 (A.26)

and (A.9f), (A.9e).
Subsystem 4: Since Ã44 is Hurwitz, there exist a quadratic positive definite

ISSLF satisfying (A.10) for i = 4, and

V̇4 ≤ −c4‖ξ4‖2 + ĉ4‖ξ1‖2 + c̄4‖ξ2‖2 + c̃4‖ξ3‖2 + γ4‖v‖2 (A.27)

with c4, ĉ4, c̄4, c̃4, γ4 > 0. Based on (A.25) and (A.27), we can establish that
V1234 := µ3V123 + V4, for sufficiently large µ3 > 0, satisfies

V̇1234 ≤− c1234‖ξ1‖2 − c1234‖ξ2‖2 − c1234‖ξ3‖2 − c1234‖ξ4‖2 + γ1234‖v‖2,
(A.28)

for some c1234, γ1234 > 0, and hence is an ISSLF for the cascaded systems con-
sisting of subsystem 1, 2, 3, 4, the dynamics of which is given by




ξ̇1
ξ̇2
ξ̇3
ξ̇4


 =




Ã11ξ1 + F̃1v

Ã21ξ1 + Ã22ξ2 + B̃2w + F̃2v

Ã31ξ1 + Ã33ξ3 + F̃3v

Ã41ξ1 + Ã42ξ2 + Ã43ξ3 + Ã44ξ4 + +B̃4w + F̃4v


 (A.29)

and (A.9f), (A.9e). According to Sontag (2008); Sontag and Wang (1995), this
establishes ISS of the Lur’e system (A.29), (A.9f), (A.9e), with respect to v,
which completes the proof.
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A.2 Appendix of Chapter 3

A.2.1 Proof of Theorem 3.1

Proof. The proof basically follows the reasoning of the proof in Pavlov et al.
(2006); van de Wouw et al. (2008); Yakubovich (1964), with the minor exception
that in our system ϕ(v, e) as in (3.8) depends on the scheduling variable v(t),
t ∈ R. We note that a key step of the proof of Pavlov et al. (2006); van de Wouw
et al. (2008); Yakubovich (1964) consists of proving incremental stability, i.e.,
showing that two solutions x1 : R→ Rnx and x2 : R→ Rnx subject to the same
scheduling variable v and external inputs d, but with different initial conditions,
converge to each other. It is essential for this part of the proof to observe that
α(v(t)), t ∈ R, is exactly the same for both solutions given the external inputs
(including r and thus v).
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A.3 Appendix of Chapter 4

A.3.1 Hybrid systems notation

According to Goebel et al. (2012), solutions of (4.9), (4.2) are defined on hy-
brid time domains as follows. A compact hybrid time domain is a set E =⋃J−1
j=0 [tj , tj+1] × {j} ⊂ R≥0 × N with J ∈ N>0 and 0 = t0 ≤ t1 ≤ · · · ≤ tJ . A

hybrid time domain is a set E ⊂ R≥0×N such that E ∩ ([0, T ]×{0, . . . , J}) is a
compact hybrid time domain for each (T, J) ∈ E. A hybrid signal is a function
defined on a hybrid time domain. A hybrid signal w : domw → Rnw is a hybrid
input if w(·, j) is Lebesgue measurable and locally essentially bounded for each j
(note that the class of disturbance signals w(t, j) is in fact a larger class than we
typically consider, namely w(t)). A hybrid signal x : domx → Rnx is a hybrid
arc if x(·, j) is locally absolutely continuous for each j.

A hybrid arc x : domx → X for an input w : domw → W is a solution x
to (4.9), (4.2) if domx = domw, (x(0, 0), w(0, 0)) ∈ F ∪ J , and

1. for all j ∈ N and almost all (t, j) ∈ domx

ẋ(t, j) = Āx(t, j) + B̄w(t), and (x(t, j), w(t)) ∈ F

2. for all (t, j) ∈ domx such that (t, j + 1) ∈ domx

x(t, j + 1) = Ārx(t, j), and (x(t, j), w(t)) ∈ J .

A.3.2 Proof of Theorem 4.1

Proof. A smooth function W : Rnξ+nr → R is an ISS-Lyapunov (ISSLF) func-
tion, see Cai and Teel (2009), for the system (4.9) with (4.2), if it satisfies, for
κi > 0, i = 1, 2, . . . , 4, the following conditions

κ1‖x‖2 ≤W (x) ≤ κ2‖x‖2 (A.30a)

Ẇ (x) ≤ −κ3‖x‖2 + κ4‖w‖2 for all x ∈ F (A.30b)

W (x+) ≤W (x) for all x ∈ J . (A.30c)

In the remainder of the proof, we demonstrate the existence of such a function
W (under the hypothesis of the theorem) by the following four steps:

• Step 1: We disregard the internal dynamics of R and exploit the fact that
the input/output pairs (e,−u) ofR satisfy the sector condition eu ≤ − 1

αu
2

by the grace of the form of F and J in (4.2). Let us therefore introduce
the following auxiliary (base nonlinear) system

Σbns :




H :

{
ξ̇ = Aξ +Bu+Bww

e = Cξ +Dww

u = −φ(e)

(A.31)
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e
w

−
u H

Σbns

φ(·)

Fig. A.1. Lur’e-type system description of Σbns as in (A.31).

in which φ(e) satisfies the following sector condition

0 ≤ φ(e)

e
≤ α, (A.32)

for all e ∈ R, e 6= 0, see Fig. A.1 for a schematic representation. In the
remainder of this first step, we use the circle criterion to prove that the
system Σbns admits an ISS Lyapunov function (ISSLF) V : Rnξ → R, see
Sontag and Wang (1995);

• Step 2: We show that the detectability condition in Assumption 4.1 can
be converted to a Lyapunov-like function Vr : Rnr → R;

• Step 3: We show that the resulting V of Step 1 and Vr of Step 2 can be
combined into a function W : Rnξ+nr → R, and that we satisfy the ISSLF
condition during flow, i.e., (A.30b);

• Step 4: We show that the ISSLF constructed in Step 3 does not increase
during resets, thereby also satisfying the ISSLF condition during jumps,
i.e., (A.30c). This allows us to construct a bound on the norm of the
total state as in (4.10) (for ease of notation, we construct a bound on x(t)
dropping the ‘j’, see also Remark 4.3).

Step 1 : We will show that there exists an ISSLF V (ξ) = 1
2ξ
>Pξ with P =

P> � 0 for the auxiliary system (A.31). Using the Kalman-Yakubovich-Popov
lemma, see Khalil (2000), under hypothesis (I) and (II) of the theorem and
minimality of (A,B,C), there exist matrices L, P = P> � 0, and a positive
constant ε such that

A>P + PA = −L>L− εP (A.33a)

PB = C> −
√

2
αL
>. (A.33b)
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Let us take V (ξ) = 1
2ξ
>Pξ as a candidate ISSLF, satisfying

λmin(P )‖ξ‖2 ≤ V (ξ) ≤ λmax(P )‖ξ‖2, (A.34)

in which λmin(P ) and λmax(P ) denote the minimum eigenvalue and the max-
imum eigenvalue of P , respectively, and for which the time derivative along
solutions of (4.5) satisfies

V̇ = 1
2ξ
>(A>P + PA)ξ + ξ>PBu+ ξ>PBww

(A.33)
= − ε2V − 1

2ξ
>L>Lξ + ξ>C>u− ξ>L>

√
2
αu+ ξ>PBww

(4.5b)
= − ε2V − 1

2ξ
>L>Lξ + e>u− w>D>wu− ξ>L>

√
2
αu+ ξ>PBww. (A.35)

Using the sector condition e>u ≤ − 1
αu

2 imposed on the flow by the form of F
in (4.2a), this yields

V̇ ≤ − ε2V − 1
2ξ
>L>Lξ − 1

αu
2 − w>D>wu− ξ>L>

√
2
αu+ ξ>PBww

= − ε2V − 1
2

(
Lξ +

√
2
αu

)>(
Lξ +

√
2
αu

)
+
(
ξ>PBw − u>Dw

)
w

≤ − ε2V +
(
ξ>PBw − u>Dw

)
w. (A.36)

Note that

(
ξ>PBw − u>Dw

)
w ≤ ‖Bww‖‖ξ>P‖+ ‖Dw‖‖uw‖
≤ λmax(P )‖Bw‖‖w‖‖ξ‖+ ‖Dw‖‖u‖‖w‖
≤ λmax(P )‖Bw‖‖w‖‖ξ‖+ α‖Dw‖‖Cξ +Dww‖‖w‖
≤ c1‖w‖‖ξ‖+ c2‖w‖2, (A.37)

where we explicitly used that ‖u‖ ≤ α‖e‖ which follows from e>u ≤ − 1
αu

2, with
c1 := λmax(P )‖Bw‖ + α‖Dw‖‖C‖ > 0 and c2 := α‖Dw‖2 > 0. Moreover, note
that

c1‖w‖‖ξ‖+ c2‖w‖2 ≤ c21δ1‖w‖2 + c2‖w‖2 + 1
δ1
‖ξ‖2 (A.38)

for any δ1 > 0. Using (A.37) and (A.38) in (A.36) yields

V̇ ≤ −c3‖ξ‖2 + c4‖w‖2 (A.39)

with c3 :=
(
ελmin(P )

2 − 1
δ1

)
and c4 := (c21δ1 + c2), which implies that, for suffi-

ciently large δ1, V is indeed an ISSLF for system H in (4.5) with respect to the
input w.
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Step 2 : Assumption 4.1 implies that there exist a matrix gain K such that
Ar + KCr is Hurwitz, see, e.g., Hespanha (2009). Consequently, there exists a
Pr = P>r � 0 such that the following matrix equality holds

(Ar +KCr)
>Pr + Pr(Ar +KCr) = −I. (A.40)

Let us take Vr(xr) = x>r Prxr with Pr = P>r � 0 as a candidate Lyapunov
function for the system (4.1) with input e during flow, satisfying

λmin(Pr)‖xr‖2 ≤ Vr(xr) ≤ λmax(Pr)‖xr‖2. (A.41)

The time-derivative of Vr along the flow dynamics of R satisfies

V̇r = x>r
(
A>r Pr + PrAr

)
xr + 2x>r PrBre. (A.42)

Note that (A.40) implies

x>r
(
A>r Pr + PrAr

)
xr = −‖xr‖2 − 2x>r C

>
r K

>Prxr

= −‖xr‖2 + 2u>K>Prxr

≤ −‖xr‖2 + 2‖u‖‖K‖λmax(Pr)‖xr‖
= −‖xr‖2 + c5‖u‖‖xr‖
≤ −c6‖xr‖2 + c7‖u‖2 (A.43)

with c5 := 2λmax(Pr)‖K‖ > 0, c6 := (1− 1
δ2

) > 0 for δ2 > 1 and c7 := c25δ2 > 0.
Using (A.43) in (A.42) yields

V̇r ≤ −c6‖xr‖2 + c7‖u‖2 + 2x>r PrBre

≤ −c6‖xr‖2 + c7‖u‖2 + 2λmax(Pr)‖xr‖‖Br‖‖e‖
= −c6‖xr‖2 + c7‖u‖2 + c8‖e‖‖xr‖
≤ −c9‖xr‖2 + c7‖u‖2 + c10‖e‖2 (A.44)

with c8 := 2λmax(Pr)‖Br‖ > 0, c9 := c6 − 1
δ3

, for δ3 > 0 and c10 := c28δ3 > 0.

Using ‖u‖ ≤ α‖e‖ which follows from e>u ≤ − 1
αu

2, see (4.2a), this yields

V̇r ≤ −c9‖xr‖2 + c11‖e‖2
(4.5b)

≤ −c9‖xr‖2 + c12‖ξ‖2 + c13‖w‖2 (A.45)

with c11 := α2c7 + c10 > 0, c12 := c11(‖C‖2 + 1
δ4

) > 0 for δ4 > 0 and c13 :=

c11(4δ4‖C‖2‖Dw‖2 + ‖Dw‖2) > 0.
Step 3 : Let us construct the following candidate ISSLF

W (ξ, xr) = V (ξ) + µVr(xr) = x>Pwx, (A.46)
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for some µ > 0 and Pw = diag(P, µPr), satisfying

λmin(Pw)‖x‖2 ≤W (x) ≤ λmax(Pw)‖x‖2, (A.47)

thereby satisfying (A.30a) with κ1 = λmin(Pw) and κ2 = λmax(Pw). The time-
derivative of W along flow of (4.9), (4.2) satisfies

Ẇ = V̇ + µV̇r

≤ −(c3 − µc12)‖ξ‖2 − µc9‖xr‖2 + (c4 + µc13)‖w‖2

≤ −κ3‖x‖2 + κ4‖w‖2 (A.48)

with κ3 := min((c3 − µc12), µc9), κ4 := c4 + µc13, and for sufficiently small µ
such that (c3−µc12) > 0. Hence, W (ξ, xr) satisfies (A.30b) and is an ISSLF for
the hybrid system (4.9) during flow.

Step 4 : Due to (4.1) the ISSLF constructed in Step 3 satisfies

W (ξ+, 0) ≤W (ξ, xr) (A.49)

during jumps of (4.9), (4.2). Consequently, for a solution x to (4.9), (4.2), with
input disturbance w, that is unbounded in the t direction, and by combining
(A.47), (A.48) and (A.49) (in which we take the conservative bound W (ξ+, 0) =
W (ξ, xr) at jumps), and using similar arguments as in Cai and Teel (2009);
Sontag and Wang (1995), we have that

W (x(t)) ≤ −σ1W for ‖x‖ ≥ σ2‖w‖,
≤ max

{
e−σ1tW (x(0)), σ3‖w[0,t]‖∞

}
(A.50)

with σ1 := 1
2λmax(Pw)κ3, σ2 :=

√
2κ3κ4, with σ3 := λmax(Pw)σ2, for all t ∈ R≥0.

Consequently,

‖x(t)‖ ≤
√

λmax(Pw)
λmin(Pw) e

−σ1

2 t‖x(0)‖+
√

σ3

λmin(Pw)

√
‖w[0,t]‖∞. (A.51)

The latter inequality shows that the system (4.9), (4.2) is ISS according to
Definition 4.1. This completes the proof.
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A.4 Appendices of Chapter 5

A.4.1 Hybrid systems notation

According to Goebel et al. (2012), a set E ⊂ R≥0 ×N is a compact hybrid time
domain if E = ∪J−1

j=0 ([tj , tj+1], j) for some finite sequence of times 0 = t0 ≤
t1 ≤ t2, . . . ≤ tJ . It is a hybrid time domain if for all (T, J) ∈ E, E ∩ ([0, T ] ×
{0, 1, . . . , J}) is a compact hybrid time domain. A function φ : E → Rn is a
hybrid arc if E is a hybrid time domain and if for each j ∈ N, the function
t→ φ(t, j) is locally absolutely continuous on the interval Ij = {t : (t, j)) ∈ E}.
A hybrid arc φ is a solution to the hybrid system (F , f,J , g) if φ(0, 0) ∈ F̄ ∪J ,
and

1. for all j ∈ N such that Ij = {t : (t, j) ∈ domφ} has nonempty interior

φ(t, j) ∈ F for all t ∈ intIj

φ̇(t, j) ∈ f(φ(t, j), w(t)) for almost all t ∈ Ij

2. for all (t, j) ∈ domφ such that (t, j + 1) ∈ domφ,

φ(t, j) ∈ J ,
φ(t, j + 1) ∈ g(φ(t, j)).

A.4.2 Proof of statement Remark 5.1

Proof. Due to the dwell time condition based on τD > 0, the definition of GES
of A that we employ in this chapter, i.e., the solution φ to the hybrid system
satisfies

‖χ(t, j)‖A ≤ ρe−µt‖χ(0, 0)‖A (A.52)

for all (t, j) ∈ domχ, is in fact equivalent to the definition of GES of A in Teel
et al. (2013), i.e., the solution φ to the hybrid system satisfies

‖χ(t, j)‖A ≤ ρ̂e−µ̂(t+j)‖χ(0, 0)‖A (A.53)

for all (t, j) ∈ domχ. Note that GES of A in the sense of Teel et al. (2013)
obviously implies our notion of GES. To demonstrate the reverse, note that we
can obtain the following relation

j ≤ 2
t

τD
+ 2, (A.54)

and as a result

−t ≤ τD
2

(2− j), (A.55)
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t0,1,2 t3,4,5 t6,7,8 t9,10,11

Fig. A.2. Schematic representation of a hybrid time domain for a worst
case situation.

which holds for any (t, j) ∈ domχ. In this respect, the hybrid time domain
depicted in Fig. A.2 might be useful. This figure schematically represents the
worst case situation, i.e., two consecutive jumps at t0 and two consecutive jumps
after τD time instances. Let us now consider (A.52)

‖χ(t, j)‖A ≤ ρe−µt‖χ(0, 0)‖A
= ρe−

µ
2 te−

µ
2 t‖χ(0, 0)‖A

(A.55)

≤ ρe
µ
2
τD
2 (2−j)e−

µ
2 t‖χ(0, 0)‖A,

which shows us that (A.53) is obtained with ρ̂ := ρe
µτD

2 and µ̂ := min{µτD4 , µ2 }
This completes the proof.

A.4.3 Proof of Theorem 5.1

Proof. We start the proof by introducing the coordinate transformation x̃ :=
[x̃>p x̃>c x̃>I ]> = x− x∗, and as a result ‖χ‖A = ‖x̃‖.

Next, we will prove that W (χ) = V (x̃) = x̃>Px̃, with P =P>�0, satisfying
(5.15)-(5.16), is a Lyapunov function for the hybrid system (5.5), (5.6). To do
so, first observe that

c1‖x̃‖2 ≤W (χ) ≤ c2‖x̃‖2, (A.56)

for some c2 ≥ c1 > 0, since P = P> � 0. Second, we are going to show that
during flow, we have that, along the solutions of (5.5), (5.6),

〈∇W (χ), f(χ)〉 ≤ − c3‖x̃‖2
(A.56)

≤ − c4W (χ) for all χ ∈ F , (A.57)
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for some c3 > 0, c4 = c3
c2
> 0. To show this, we consider two cases. The first

case is given by

χ ∈ Θ with ` = 0 ∧ (xI(εxI + e) ≥ 0 ∨ 0 ≤ τ ≤ τD) , (A.58)

in which

˙̃x = Ā1x̃. (A.59)

Hence, we obtain that along solutions

V̇ = x̃>
(
Ā>1 P + PĀ1

)
x̃ ≤ −c5‖x̃‖2, (A.60)

for some c5 > 0, due to (5.15).
The second case is given by

χ ∈ Θ with ` = 1 ∧ xI(εxI + e) < 0, (A.61)

in which

˙̃x = Ā2x̃− Ādx∗, (A.62)

where we used Ād := Ā1 − Ā2, and (5.8). Note that we can express xI(εxI + e)
into the transformed coordinates as follows

ψ(x̃, x∗) := (x̃I + x∗I)(εx̃I + εx∗I − Cpx̃p), (A.63)

using e = rc − Cpxp = rc − Cp(x̃p + x∗p) = −Cpx̃p, since rc − Cpx∗p = e∗ = 0.

Let us introduce the augmented vector x̃a := [x̃> rc dc]
>, and use (5.11), (5.12)

to express x∗I in terms of rc and dc, as in (5.13). This allows us to write the
switching function ψ(x̃, x∗) in (A.63) in a quadratic form ψ(x̃a) = x̃>a R̄x̃a (with
some slight abuse of notation), where R̄ is as defined in (5.10). Now we obtain

V̇ = x̃>
(
Ā>2 P + PĀ2

)
x̃− x∗>Ā>d Px̃− x̃>PĀdx∗,

= x̃>a Qx̃a, (A.64)

for Q as defined in (5.9). Hence, we need to show that there exists a c6 > 0 such
that

x̃>a Qx̃a ≤ −c6‖x̃‖2, when ` = 1 ∧ ψ(x̃a) < 0. (A.65)

To prove this, observe that, for M defined in (5.14) and imH ⊆ kerQ with H
defined as

H :=
[
O1×n −γd γr

]>
, (A.66)
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in which γd 6= 0 and γr 6= 0, it holds that imM ⊕ imH = Rn. Hence, we can
write x̃a = Mm̃+ h for some m̃ ∈ R(n+1)×1 and h ∈ imH. These facts lead to

x̃>a Qx̃a = (Mm̃+ h)>Q(Mm̃+ h)

= m̃>M>QMm̃ (A.67)

in which we used imH ⊆ kerQ (and thus Qh = 0). In addition, note that,
x̃>a R̄x̃a < 0 implies that m̃>M>R̄Mm̃ < 0, because imH ⊆ kerR̄ (and thus
R̄h = 0). Hence, for the case where ` = 1 and x̃>a R̄x̃a < 0 we obtain

m̃>M>QMm̃ ≤ m̃>M>(Q− αR̄)Mm̃

(5.16)

≤ −c7‖m̃‖2, (A.68)

for some c7 > 0, α ≥ 0. Using now that ‖m̃‖ ≥ c8‖Mm̃‖ for some c8 > 0, due
to M having full column rank, and ‖Mm̃‖ ≥ ‖x̃‖, in view of the form of M , we
obtain (A.65) for c6 = c7c8 > 0, as desired. This establishes (A.57) in which
c3 = min{c5, c6}.

As a last step, we study the behavior during jumps, which leads to

W (g(χ))−W (χ) = 0 for all χ ∈ J , (A.69)

due to (5.6e). This, together with the fact that τD > 0 guarantees that there can
be at most two consecutive jumps, and thus the hybrid time domain of solutions
φ to (5.5), (5.6) are unbounded in the t-direction, i.e., sup{t | (t, j) ∈ domφ} =
∞. This implies that along a solution χ of the hybrid system (5.5), (5.6), the
inequality in (A.57) and (A.69) combined imply

W (χ(t, j)) ≤ e−c4tW (χ(0, 0)), (A.70)

for all (t, j) ∈ domχ and all t ∈ R≥0. Hence, GES, in the sense of Definition
5.1, of the set A of the hybrid system (5.5), (5.6) for r(t) = rc and d(t) = dc,

t ∈ R≥0, is obtained with ρ =
√

c2
c1

and µ = 1
2c4. This completes the proof.
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A.5 Appendix of Chapter 6

A.5.1 Proof of Theorem 6.2

Proof. The proof will exploit the Lyapunov/storage function as provided in
(6.28) given a fixed initial state ξ(0) = ξ0 ∈ Rnξ , w ∈ L2 and τ(0) = 0. Now we
will prove three important facts.
(i) Under Assumption 6.1, W as in (6.28) is a well-defined Lyapunov/storage
function candidate for all τ ∈ [0, h]. Following the proof of Theorem III.2 of
Heemels et al. (2013), and especially eqn. (63) of Heemels et al. (2013), we have
that

P̄i(h− τ) = F̄21(τ)F̄−1
11 (τ) + F̄−>11 (τ)

(
P̄i(h)+

P̄i(h)S̄(τ)
(
I − S̄(τ)>P̄i(h)S̄(τ)

)−1
S̄(τ)>P̄i(h)

)
F̄−1

11 (τ) (A.71)

for which we have that P̄i(h) = Pi, i ∈ {1, . . . , N}.
Requiring P̄i(h − τ) to be well defined for all τ ∈ [0, h] is equivalent to the

existence of
(
I − S(τ)>P̄i(h)S(τ)

)−1
for all τ ∈ [0, h], as indicated by (A.71).

This can be established by following the reasoning in (Heemels et al., 2013, Proof
of Theorem III.2).

(ii) During flow it holds that Ẇ ≤ −2ρW −γ−2z>z+w>w. This is implied
by the fact that each component storage function ξ>P̄i(τ)ξ, i ∈ {1, . . . , N},
satisfies the Riccati differential equation (6.22) that implies the mentioned dissi-
pation inequality during flow, see, e.g., Heemels et al. (2013). It is important to
observe that due to the particular construction of W in (6.28) it holds that for
each k ∈ N there exists an i ∈ {1, 2, . . . , N} such that for all t ∈ (kh, (k + 1)h)
W (ξ, τ, w, t) = ξ>P̄i(τ)ξ. Hence, the value of i in (6.28) changes only during
jumps.

(iii) During jumps the Lyapunov/storage function W does not increase i.e.,

W (J1ξ, 0, w, t) ≤W (ξ, h, w, t), for all ξ ∈ Ωi, (A.72)

with i ∈ {N1 + 1, . . . , N}, and

W (J2ξ, 0, w, t) ≤W (ξ, h, w, t), for all ξ ∈ Ωi, (A.73)

with i ∈ {1, . . . , N1}. This is implied by feasibility of the conditions of Theorem
6.2, see (Heemels et al., 2013, Proof of Theorem III.2).

Combining the above three facts, and using L2-gain techniques as in van der
Schaft (1999), we can guarantee GES of (6.1) (in case w = 0), and that the
L2-gain of (6.1) is smaller than or equal to γ. Let w ∈ L2 be given. From item
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(i), and following the reasoning in (Heemels et al., 2013, Proof of Theorem III.2),
we have that

c1‖ξ‖2 ≤W (ξ, τ, w, t) ≤ c2‖ξ‖2, (A.74)

for some 0 < c1 ≤ c2 for all τ ∈ [0, h] and all ξ ∈ Rnξ . Conditions (ii) and (iii)
combined guarantee that

W (ξ(t), τ(t), w, t)−W (ξ0, 0, w, 0) ≤
∫ t

0

[
− γ−2‖z‖2 + ‖w‖2

]
dt, (A.75)

which by using that W (ξ(t), τ(t), w, t) ≥ 0 and letting t→∞ gives

−W (ξ0, 0, w, 0) ≤
∫ ∞

0

[
− γ−2‖z‖2 + ‖w‖2

]
dt. (A.76)

Due to the inequality (A.74), we can bound W (ξ0, 0, w, 0) ≤ c2‖ξ0‖2, and thus
obtain

∫ ∞

0

‖z‖2dt ≤ c2γ2‖ξ0‖2 + γ2

∫ ∞

0

‖w‖2dt. (A.77)

Consequently, we have that ‖z‖L2
≤ γ
√
c2‖ξ0‖ + γ‖w‖L2

. This completes the
proof.
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Åström, K. J. and Hägglund, T. (2001). The future of PID control. Contr. Eng.
Practice, 9(11):1163–1175.

Baños, A. and Barreiro, A. (2012). Reset Control Systems.
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Summary

This thesis considers the analysis and design of hybrid/nonlinear controllers
with the aim to improve the performance of linear (motion) systems. The ever
increasing performance demands on the speed and accuracy of industrial (mo-
tion) systems require essential control engineering innovations. Nevertheless,
the vast majority of state-of-practice controller designs rely on classical linear
control theory, which hampers the necessary improvements as linear controllers
suffer from inherent fundamental performance limitations. These performance
limitations will, especially in case of conflicting control goals, lead to a design
compromise and thus result in a suboptimal control solution. In this thesis,
we therefore consider a larger controller class consisting of hybrid/nonlinear
controllers. Compared to linear controllers, these controllers provide more con-
troller design freedom that enables the possibility to overcome the fundamental
limitations in linear control. However, despite their potential, nonlinear/hybrid
controllers are often not so easily embraced by control engineers in industry.
Namely, many design and analysis techniques for such controllers do not con-
nect to the current industrial control practice, in which frequency-domain design
tools and non-parametric models are commonly exploited. As such, an important
open problem is the design of hybrid/nonlinear controllers for linear (motion)
systems, using frequency-domain loop-shaping techniques as a basis.

This thesis develops four novel hybrid/nonlinear controllers that all have
the ability to outperform linear controllers, and all allow the user to employ
measured frequency response data of the plant as a basis for the controller design.

First, we present a novel switched controller architecture for motion sys-
tems that exhibit, from a control point-of-view, position-dependent dynamics
as a result of varying sensor configurations. All individual components (ex-
cept the time-varying gain) of the resulting controller architecture can be de-
signed using classical frequency-domain loop-shaping techniques. Moreover, the
presented stability conditions are graphically verifiable based on measured fre-
quency response data. Its effectiveness, in terms of improving both transient and
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steady-state performance compared to the current state-of-the-art linear control
solution, is demonstrated by means of real-time experiments on a high-precision
industrial motion stage.

Second, we present a technique that allows for a reference-dependent varying
‘bandwidth’ of the feedback controller. By taking actual reference information
into account, this novel design allows to automatically adapt the ‘bandwidth’ of
the control system on-line, which is advantageous if the motion system is subject
to time-varying, and reference-dependent, performance requirements. Namely,
this feature allows us to balance trade-offs between low-frequency tracking per-
formance and sensitivity to higher-frequency disturbances in a favorable manner
when compared to (fixed bandwidth) linear control solutions. Easy-to-use design
guidelines and stability analysis techniques are presented for the design of such a
‘bandwidth-on-demand’ controller, which are based on employing measured fre-
quency response data of the plant. The effectiveness of this control strategy to
outperform (fixed bandwidth) linear control solutions is demonstrated by means
of experiments on an industrial nano-positioning motion setup.

Third, reset control is another nonlinear/hybrid control technique that is
considered in this thesis. In the literature, many results exist that demonstrate
the potential of a reset controller to improve the transient performance of linear
(motion) systems. The vast majority of these results rely in their design and
analysis on parametric models and on solving linear matrix inequalities (LMIs).
In this thesis, we have established new conditions, based on measured frequency
response data, to verify stability of the closed-loop reset control system. The
practical applicability of these data-based stability conditions for reset control
systems is demonstrated through experiments on an industrial piezo-actuated
motion system used in the lithography industry.

Fourth, this thesis also presents a split-path nonlinear integrator (SPANI),
which is a novel variant of the split-path nonlinear filter introduced in the late
1960s. The SPANI has been developed with the aim to improve the transient
performance of linear systems by appropriate modulation of the magnitude and
phase of the integral part of the controller, while still ensuring a zero steady-
state error in the presence of constant external disturbances. In the basis, the
design of the SPANI can be performed using classical frequency-domain loop-
shaping techniques by designing a linear integrator in parallel to a nominal linear
controller, and then replacing the linear integrator by a SPANI with the same
gain. In addition, many situations require the tuning of an additional (scalar)
parameter, for which the presented LMI-based stability conditions may serve as
a guideline. The effectiveness of this control strategy, as a way to improve the
transient performance, is demonstrated using a model-based benchmark study
on an industrial pick-and-place machine.

Besides the above contributions on the development of new hybrid/nonlinear
control techniques, this thesis also considers a particular class of hybrid systems
with periodic time-triggered jump conditions. We demonstrate the relevance
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of this hybrid modeling framework by, firstly, modeling three application do-
mains, consisting of event-triggered control systems, reset control systems and
networked control systems, in this framework and, secondly, showing that the
unifying modeling character is instrumental in enabling the transfer of results
between the diverse application domains. Moreover, new LMI-based conditions
are presented to analyze the stability and the L2-performance of the hybrid
dynamical systems under study using trajectory-dependent Lyapunov/storage
functions as a technical novelty. These conditions result in a tighter estimate
on an important steady-state performance measure, the L2-gain between dis-
turbance inputs and performance outputs, compared to the existing conditions
found in the literature.

The contributions of this thesis support the design of hybrid/nonlinear con-
trollers that have the ability to outperform linear controllers. By demonstrating
their potential and by presenting analysis and design techniques that connect to
the current industrial practice, this thesis aims to contribute to the industrial
acceptance of such controllers.





Societal summary

High-tech mechatronic systems, such as wafer scanners, printers, pick-and-place
machines, electron microscopes, et cetera, constitute an important economic
value worldwide and especially for the Netherlands. Nowadays, these high-tech
systems have to perform their (motion) tasks while complying with increasingly
high performance demands on precision and throughput. In order to meet these
stringent performance requirements, feedback controllers are essential in all of
these high-tech applications. The vast majority of the current controller de-
signs in industry rely on classical linear control theory. However, limiting the
controller design space in this way obstructs achieving the required improve-
ments due to the fact that linear controllers suffer from inherent fundamental
performance limitations. These performance limitations will, especially in case
of conflicting control goals, lead to a design compromise and thus a suboptimal
control solution.

In this research, a larger controller class, consisting of hybrid/nonlinear con-
trollers, is considered to overcome the fundamental limitations in linear control.
In particular, four novel hybrid/nonlinear controllers are presented accompanied
by systematic analysis and design methods that all have strong connections to
the current industrial practice. By means of experimental results on industrial
wafer stages and on a nano-positioning motion system, together with an exten-
sive case study on an industrial pick-and-place machine, the practical feasibility
of these controllers as well as their ability to outperform linear control solutions
has been demonstrated. Therefore, this research may contribute to a wider
spread of these high-potential hybrid/nonlinear controllers in industry.





Samenvatting

Dit proefschrift beschouwt het ontwerp en de analyse van hybride/niet-lineaire
regelaars met als doel de prestatie van lineaire (positioneer)systemen te verbete-
ren. De alsmaar voortdurende eisen ten aanzien van snelheid en nauwkeurigheid
van industriële (positioneer)systemen vraagt om essentiële innovaties ten aanzien
van het actief regelen van deze systemen. Toch zijn de meeste regelsystemen in
de huidige praktijk nog steeds gebaseerd op klassieke lineaire regeltheorie, wat de
noodzakelijke verbeteringen hindert doordat deze lineaire regelaars onderhevig
zijn aan fundamentele prestatie beperkingen. Deze beperkingen zullen, zeker in
het geval van conflicterende regeldoelen, leiden tot compromis in het ontwerp,
en als gevolg daarvan een suboptimale regeloplossing. Het is daarom dat dit
proefschrift een grotere klasse regelaars beschouwt, bestaande uit hybride/niet-
lineaire regelaars. Deze regelaars bieden meer ontwerp vrijheid ten opzichte van
lineaire regelaars wat ons in staat stelt om de fundamentele beperkingen in line-
aire regeltheorie te overwinnen. Echter, ondanks het grote potentieel dat deze
klasse regelaars te bieden heeft worden ze nog niet veelvuldig toegepast door
regeltechnici in de industrie. Een van de redenen hiervoor is dat de meeste ont-
werp en analyse methoden voor deze regelaars gebruik maken van parametrische
systeem modellen en het numeriek oplossen van lineaire matrix ongelijkheden
(LMIs), wat niet aansluit bij de frequentiedomein gebaseerde technieken waar
veel regeltechnici in de dagelijkse praktijk mee van doen hebben. Het is daarom
belangrijk om hybride/niet-lineaire regelaars te ontwikkelen waarbij frequentie-
domein loop-shaping technieken kunnen worden gebruikt als een basis voor het
regelaarontwerp.

Dit proefschrift presenteert vier nieuwe hybride/niet-lineaire regelaars die
ten opzichte van lineaire regelaars allemaal in staat zijn om een betere prestatie
te behalen, en waarbij een groot deel van het regelaarontwerp uitgevoerd kan
worden met behulp van gemeten frequentie response data van het systeem.

Als eerste presenteren we een nieuwe geschakelde regelaarstructuur voor sys-
temen die, vanuit het oogpunt van de regelaar, onderhevig zijn aan positieafhan-
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kelijke dynamica als gevolg van variërende sensor combinaties. Alle individuele
componenten (behalve de tijdsvariërende gain) van de resulterende regelaarstruc-
tuur kunnen worden ontworpen met behulp van frequentiedomein loop-shaping
regelaarontwerp technieken. Daarnaast kunnen de bijbehorende stabiliteitcon-
dities geverifieerd worden door middel van gemeten frequentie response data.
Door middel van experimentele resultaten, behaald op een industrieel positio-
neersysteem, demonstreren we dat de nieuw ontworpen hybride regelaar ons in
staat stelt om zowel een betere transiënte als steady-state prestatie te behalen
ten opzichte van het huidige lineaire regelaarontwerp.

Als tweede presenteren we een techniek die ons in staat stelt om de ‘band-
breedte’ van de regelaar online te laten variëren op basis van actuele referentie
informatie. Dit is met name voordelig als het (positioneer)systeem onderhevig
is aan tijdvariërende, en referentie afhankelijke, prestatie eisen. Namelijk, verge-
leken met (vaste bandbreedte) lineaire regelaars stelt deze techniek ons in staat
om op een gunstigere manier om te gaan met afwegingen tussen laagfrequent
volggedrag en gevoeligheid voor hoogfrequente verstoringen. Zowel de ontwerp-
technieken als de stabiliteitanalyse van deze ‘bandwidth-on-demand’ regelaar
zijn gebaseerd op gemeten frequentie response data van het systeem, en sluiten
daardoor aan op de wensen vanuit de praktijk. Door middel van experimentele
resultaten op een industrieel positioneersysteem demonstreren we dat deze hy-
bride regelaar in staat is de prestatie van een lineair regelsysteem te overtreffen.

Dit proefschrift beschouwt ook zogenaamde ‘reset’ regelaars. In de literatuur
bestaat een veelvoud aan resultaten waarin wordt aangetoond dat reset regelaars
in staan zijn om de transiënte prestatie van lineaire (positioneer)systemen te
verbeteren. Echter, in al deze resultaten is het ontwerp en analyse van deze
regelaars gebaseerd op parametrische modellen en het oplossen van LMIs. In dit
proefschrift presenteren wij nieuwe technieken, gebaseerd op gemeten frequentie
response data, om de stabiliteit van (positioneer)systemen met reset regelaar
te verifiëren. Daarnaast kunnen deze data-gebaseerde technieken ook waardevol
zijn voor het ontwerp van deze regelaars. De praktische toepasbaarheid van deze
technieken is gedemonstreerd door middel van experimentele resultaten op een
industrieel positioneersysteem dat gebruikt wordt in de lithografie industrie.

In dit proefschrift is ook een nieuwe variant op een ‘split-path’ niet-lineair
filter ontwikkeld, namelijk de ‘split-path’ niet-lineaire integrator (SPANI). De
SPANI is ontwikkeld om de transiënte prestatie van lineaire (positioneer)systemen
te verbeteren door middel van passende modulatie van de magnitude- en teken-
informatie van het integrerende deel van de regelaar. Het ontwerp van de SPANI
kan voor een groot deel worden uitgevoerd met behulp van frequentiedomein
loop-shaping technieken door een lineaire integrator parallel aan een nominale
regelaar te ontwerpen. Vervolgens kan de lineaire integrator worden vervangen
door de SPANI met behoudt van gain. Echter, in de meeste gevallen zal er
een additionele papameter getuned moeten worden waarvoor de door ons ge-
presenteerde stabiliteitcondities kunnen dienen als handleiding. De effectiviteit
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van deze regelstrategie wordt gedemonstreerd op een simulatievoorbeeld van een
industriële ‘pick-and-place’ machine.

Naast de contributies op het gebied van de ontwikkeling van nieuwe hybride/
niet-lineaire regelaars, draagt dit proefschrift ook bij aan een modelleer- en
analyse-raamwerk voor een bepaalde klasse van hybride systemen met perio-
dieke tijd-getriggerde reset condities. Allereerst demonstreren we de relevatie
van dit modelleer-raamwerk door drie applicatie domeinen, bestaande uit event-
triggered control systemen, reset control systemen en networked control sys-
temen, hierin te modeleren. Daarnaast demonstreren we dat het verenigende
modelleer karakter ons in staat stelt om resultaten van een afzonderlijk appli-
catie domein naar de andere over te dragen. Verder presenteren we ook nieuwe
LMI gebaseerde technieken om de stabiliteit en prestatie in termen van L2-gain
(tusssen verstorings ingangen en prestatie uitgangen) te verifiëren. Door middel
van een simulatievoorbeeld van een reset regelsysteem demonstreren we dat deze
nieuwe condities ons in staat stellen om striktere afschattingen van de L2-gain
te verkrijgen ten opzichte van de bestaande condities in de literatuur.

Samenvattend, de contributies van dit proefschrift dragen bij aan het ont-
werp en de analyse van hybride/niet-lineaire regelaars voor lineaire (positio-
neer)systemen. Het is aangetoond dat deze regelaars de potentie bieden om
een betere prestatie te behalen ten opzichte van lineaire regelaars. Daarnaast
presenteert dit proefschrift verschillende analyse en ontwerp methodieken die
aansluiten met de hedendaagse praktijk in de industrie. Hopelijk kan dit proef-
schrift daardoor de acceptatie van dergelijke regelaars in industriële toepassingen
bespoedigen.
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