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Chapter 1

Introduction

This thesis presents the research activities carried out in the HYDRA project in
the framework of Marie Skodowska-Curie Innovative Training Networks (ITN-
EID). HYDRA has received funding from the European Union’s Horizon 2020
research and innovation program under grant agreement No 675731. The main
goal of this thesis is to develop different Model Order Reduction (MOR) tech-
niques with specific objectives. These MOR methods lead to fit-for-purpose mod-
els to support drilling operations. Specifically, in this thesis, the effort is directed
towards developing MOR techniques for hydraulics simulation for Managed Pres-
sure Drilling (MPD) applications. In this chapter, the research activities are mo-
tivated and different steps to reach to the final goal of the project are explained.
These steps can be summarized as: i) developing a new hydraulics model for
MPD together with new numerical techniques, ii) developing efficient model order
reduction techniques with error estimates, and iii) introducing port-Hamiltonian
(pH) formulations of the hydraulics models to preserve key properties after re-
duction. Finally, the outline of the thesis concludes this chapter.

1.1 Motivation

To this date, human need for energy has been ever increasing. Among all energy
resources, fossil energy has been resolving most of this need. Obtaining abun-
dant fossil energy, especially through burning gas and oil, requires drilling into
reservoirs (a formation of rock in which oil and gas has been trapped). This
process consists in drilling a hole into the ground until a targeted reservoir is
reached. The hole is created by rotating a cutting device, called drill bit, at-
tached to the end of a heavy thick-walled pipe called the drillstring. During the
drilling operation, a drilling fluid, usually known as mud, is pumped through the
drillstring, exits through the drill bit nozzles with high velocity and pressure,
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Figure 1.1: Schematic representation of a drilling rig (left) and different pressure
zones (right).

cools and lubricates the bit and the drillstring, and carries drilled cuttings to the
surface. The main function of the drilling mud is to build a barrier between the
reservoir and the wellbore by providing a hydrostatic pressure, added to the fric-
tional pressure drop in the annular space between the drillstring and wellbore.
The section of the well that is exposed to the reservoir is called “open hole”
(see Figure 1.1). Controlling pressure in the open hole is a major challenge in
drilling.

Fulfilling the ever-increasing demand for fossil energy requires investigation
and exploitation of difficult-to-drill reservoirs. Drilling to reach oil and gas in
such reservoirs meets many challenges, regarding safety, environmental and eco-
nomical risks. In particular, pressure control in such wells is highly critical as
explained below. To control the pressure in the open hole (called downhole pres-
sure), three pressure constraints, as denoted in Figure 1.1, should be considered:

I. Collapse pressure: A pressure profile constraint for the downhole pressure
below which the well collapses, which should be avoided at all times;

II. Pore pressure: This is the pressure of the fluid trapped in the reservoir.
When the downhole pressure is less than the pore pressure (i.e., for an
underbalanced well), the fluid from the reservoir flows into the wellbore
and, if not controlled properly, such scenario might lead to an explosion
at the surface in case of a gas reservoir, such as the one happened in
Deepwater Horizon drilling rig in Gulf of Mexico, 2010;

III. Fracture pressure: If the downhole pressure exceeds the fracture pressure,
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the expensive mud penetrates into the formation and decreases the pro-
ductivity of the reservoir.

Difficult-to-drill reservoirs are formations for which the pore and fracture
pressures are very close to each other. In a safe drilling scenario, the downhole
pressure profile has to be driven between the path of the pore and fracture pres-
sure (called drilling window, see Figure 1.1), which is highly challenging if this
window is narrow. A drilling technique called Managed Pressure Drilling (MPD)
with improved well control capabilities has been recently developed to keep the
downhole pressure under control. MPD differs from conventional drilling tech-
niques by installing a Rotating Control Device (RCD) at the top of the well to
create a seal around the drillstring, which, together with a back-pressure choke,
enables manipulating the downhole pressure indirectly. This is sometimes also
coupled with a dedicated back-pressure pump to enable control even when the
main pump is shut off. In MPD, the slope of the pressure profile can be modi-
fied by either changing the pump flow rate (which is not used in practice) or by
changing the mud density. More importantly, the starting point of the profile
can be shifted by manipulating the opening of a valve installed at the top of the
well, called a choke manifold. This control input affects the downhole pressure
in a matter of seconds; i.e., much faster than non-MPD control inputs such as
changing the mud density. This feature of MPD is also often used to handle
uncertainties in the assumed physical parameters of the reservoir that enables
the driller (or the automatic controller) to better and more quickly react to the
scenario that is actually encountered.

To control the downhole pressure accurately in MPD, an accurate virtual
drilling simulator is required, in which the hydraulics (pressure and flow evolu-
tion of the drilling mud in the drill-string and the annulus) in the well is modeled
and can be simulated. This enables 1) virtual drilling scenario testing and 2)
the use of model-based control techniques for MPD. To construct models for
MPD that are both highly predictive/accurate and of reduced complexity, we
face three challenges in constructing an MPD model for such a purpose: 1) De-
veloping an accurate model and simulation platform for hydraulics in MPD, 2)
Improving the computational efficiency of the simulation platform through ap-
plication of Model Order Reduction (MOR) techniques, 3) Developing a math-
ematical framework to introduce special structure in the MPD model. This
structure then can be used to preserve key properties of the system dynamics
while reducing the dimension of the system model.

1.2 Modeling for Managed Pressure Drilling

In support of MPD application, advanced tools for virtual drilling scenario test-
ing are needed, especially during the drilling operations to evaluate the effects of
a potential action without risks. To model the flow inside the drillstring, which
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contains single-phase flow in MPD, isothermal Euler equations are usually em-
ployed [115]. To analyze the flow inside the annulus, hyperbolic sets of Partial
Differential Equations (PDEs) such as the Drift Flux Model (DFM) and the
Two-Fluid Model (TFM) are employed [5], [69]. A critical issue in MPD model-
ing is the discontinuous cross-sectional area of the wellbore and the drillstring.
The mathematical model should be able to capture the physics induced by this
feature. The models introduced in [103], [151] take this aspect into account ac-
curately. However, solving these models numerically is challenging due to the
discontinuous features of the solution. Another challenge in modeling MPD is to
connect the two models in the drillstring and annulus correctly, which has not
been dealt with extensively in the literature. Especially at the interconnection of
the drillstring and annulus, a switching dynamics of a Non-Return Valve (NRV)
is present, which allows the mud to flow only from the drillstring to the annulus,
not vice versa. This further challenges the modeling of MPD operations.

After constructing a reliable model for MPD on the infinite-dimensional level,
an accurate numerical technique should be employed to discretize the dynamical
model and obtain a finite-dimensional model representation as a basis for simu-
lation studies. Highly nonlinear schemes [50], [69] are employed to discretize the
PDEs over space and time and to predict the evolution of pressure and velocity.
There are many techniques in the literature to numerically solve the isothermal
Euler equations and the DFM in case of constant cross-sectional area [69], [83].
However, presence of area discontinuity in MPD model leads to discontinuities in
the state solution of the coupled system. This introduces new challenges in the
numerical technique to solve MPD. The method in [103] captures this effect for
the Euler equations; however, such a method for the DFM is not available in the
literature and the DFM with discontinuous cross-sectional area should be tackled
by introducing a new numerical technique. Another challenge of the numerical
scheme is the correct implementation of the boundary conditions together with
the switching dynamics of the NRV. While many studies use the extrapolation
method to compute necessary variables at the boundaries of a coupled system
[5], the method in [69], [71] introduces transformed version of Euler equations
and the DFM along their characteristics. These new PDEs are then discretized
to correctly enforce the boundary conditions. However, combining these equa-
tions at the interconnection of the isothermal Euler equations and the DFM
while taking the NRV into account is still an open challenge.

Although the MPD model at the infinite-dimensional level takes into ac-
count the effect of source terms, such as friction and gravity, correctly, the main
challenge emerges at the finite-dimensional level after numerical discretization.
Significant contributions of the source terms may lead to a drift of the numerical
solution from the actual solution. For Euler equations in case of zero flow with
only gravity, many numerical approaches, which are called well-balanced, have
been proposed to satisfy the steady-state solution [100]. In case of non-zero flow
and again with only gravity, few studies have been carried out [46]. Euler equa-
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tions with both gravity and friction and also DFM lack a well-balanced solver
in the literature.

In safety-critical applications such as drilling for oil and gas, a model has to
be validated against field data. For Euler equations and DFM separately, many
studies have been carried out to validate these models only against experimental
data [5], [37]. There is a gap in the literature to validate an MPD model in case
of single- and multi-phase flows against data directly collected from a real-life
well.

The discretization yields a system of state-space models with high number
of equations and unknowns. Simulating this system requires high demands con-
cerning hardware and computation times. Moreover, the solution of the system
has to be computed several times for different parameter configurations (so-
called multi-query scenario). Let us assume that the different parameters, such
as pump discharge, can be represented by a multi-dimensional parameter µ and
the corresponding solution of the system by UN (µ). In the multi-query setting,
the long computational time of these simulations in the forward analysis (see Fig-
ure 1.2 top) renders the well planning longer and increases the non-productive
time of the drilling. On the other hand, the controller in MPD usually requires
a reference pressure profile for the choke pcref. This reference pressure can be
generated via solving an inverse problem by knowing the reference pressure pro-
file for the downhole pressure pdhref together with the measure choke pressure
pc, the downhole pressure pdh, and the pump pressure pp. This information can
be fed into the inverse problem solver as an input (see Figure 1.2 bottom). In
real-time setting, if the simulations in the inverse analysis are expensive to run,
the computation time exceeds the sampling time of the sensors and this might
lead to instability of the closed-loop system. Moreover, the state-space model
obtained after the discretization is of high dimension, rendering model-based
controller design infeasible. This can be seen as another motivation for model
order reduction.

To summarize, the main challenges that are tackled within Part I are: i)
proposing a numerical technique for the DFM with discontinuous cross-section,
ii) developing an MPD model by interconnecting appropriate models of single-
and multi-phase flow models via MPD equipment, iii) validating the MPD model
under single- and multi-phase flow against real field-data, and finally, iv) devel-
oping a numerical method to predict the accurate steady-state solutions in the
presence of significant contributions of source terms.

1.3 Model Order Reduction

To control the downhole pressure in the desired region, via a model-based con-
troller, a computationally fast and trustworthy simulator or a low-complexity
model for the hydraulics in the well is required. Therefore, accelerating the
simulator is vital.
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Figure 1.2: Time-consuming simulations for MPD, forward analysis (top), in-
verse analysis (bottom).

To attain faster than real-time simulations and develop models to be used
in multi-query setting, the model complexity and the dimension of the system
of equations should be reduced. The reduced-order model generated by this re-
duction should be accurate enough to capture the most important aspects of the
physics involved in the original model. In the MPD context, the most impor-
tant feature to be preserved is the distributed nature of the pressure dynamics.
In this thesis, MOR approaches are used to develop a fit-for-purpose model for
simulation of single- and two-phase flow in drilling.

Discretized models for MPD yield parametric models, to be simulated from
scratch for any change in the parameters. These parameters can address geo-
metrical features of the well or the mud properties. Therefore, a method should
be used that exploits the parameter dependency of the model to gain maximum
efficiency. In this thesis, we are mainly concerned with a class of model reduction
techniques for parametric PDEs, so-called Reduced Basis (RB) methods. These
methods yield low-dimensional parametric models typically leading to fast and
accurate numerical simulations, suitable for multi-query and real-time scenar-
ios. However, this acceleration in the simulation comes with a price: errors in
approximating the solutions. For the RB method, two aspects are pivotal: first,
basis generation to project the full-order space onto a lower-order space, and
second, a certification or an estimation of the error induced by the reduction
procedure.

Let us assume that the parameters µ introduced in the last section lie in a
set D, i.e., µ ∈ D ⊂ Rb, where b denotes the number of varying parameters.
The parametric solution UN (µ) originates from a standard, high-dimensional
solution space of dimension N (e.g., originating from finite-volume discretiza-
tion). Frequently, the output quantity yN (µ) of the model is more of interest
than the full state solution. Particularly for MPD, this quantity of interest is the
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Figure 1.3: Solution manifold and the RB approximation for a case with two
varying parameters µ = {µ1, µ2}.

pressure profile in the open hole section. To circumvent the computation of the
high-dimensional UN (µ), the RB method provides a low-dimensional, and hence
rapidly computable, approximation for the parametric solution, called UN (µ).
This solution originates from solving a system of N equations. This paves the
way for the fast approximation of the output yN (µ). The main assumption
behind the RB method is the fact that the solution manifold, i.e., the set of
parametric solutions of the system, often can be well approximated by a low-
dimensional subspace. In RB-methods, one popular way is the construction of
this subspace from the snapshots of the full-order model for a suitable set of
parameter values µi, i ∈ {1, · · · , k}. The most popular method to extract the
basis functions for this subspace is Proper Orthogonal Decomposition (POD)
[117]. However, POD requires the solution for all parameter values in the dis-
crete parameter domain, rendering its application limited. An alternative is to
approximate the space of solutions, which requires a careful choice of the pa-
rameters µi by the greedy algorithm [65]. After the construction of the space,
the reduced model is obtained, e.g., by Galerkin projection [31], and provides an
approximation UN (µ) of the solution and an approximation yN (µ) of the output
quantity of interest. See Figure 1.3 for an illustration of the RB-approximation
scenario.

The computational procedure in RB methods is decomposed in an offline and
online phase as shown in Figure 1.4. During the offline phase, performed only
once, the basis functions for the low-dimensional space are generated and further
auxiliary operators are precomputed, mostly based on the affine decomposable
nature of the system [84]. These basis functions are obtained based on the solu-
tion of the full-order model with respect to parameter settings µi, i ∈ {1, · · · , k}.
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Figure 1.4: Offline and online phases in the RB approximation.

The offline phase is typically expensive as it entails several simulations of the
full-order model (red blocks in Figure 1.4). Then, in the online phase, for any
new varying parameter µ∗, the approximate output is provided rapidly (shown
by green blocks in Figure 1.4). The computational complexity of the online phase
should not depend on the dimension of the high-dimensional space. Hence, the
computational complexity of the online phase will reduce depending on the di-
mension of the low-order model. This dimension should be chosen in a trade-off
between the required speedup in the simulation and the desired accuracy of the
RB solution. Notably, the computational efficiency of RB pays off in the online
phase, where the solution for many new parameters is demanded. This is gen-
erally required in the optimization procedure and multi-query settings. If the
solution of the system is only needed few times, it is suggested to directly use
the full-order model solution [84].

The RB method is well developed for linear systems with Dirichlet bound-
ary conditions [89]. For nonlinear systems, RB is usually coupled with the
Empirical Interpolation Method (EIM) [59]. However, inclusion of nonlinear
state-dependent boundary conditions in RB is challenging and, in MPD, non-
linear state-dependent boundary conditions play a crucial rule in the overall
dynamics.

In addition to the reduction strategy, rapidly computable, effective and rig-
orous error bounds and estimates are necessary to quantify the error in the state
or output due to the order reduction [89]. The advantage of such error bounds
and estimates are twofold. First, without having access to a reliable error bound
and estimate, to run the greedy algorithm, the high-fidelity solution for all mem-
bers of the discretized parameter domain is required to compute the actual error
induced by reduction. This is time consuming and also memory demanding. By
introducing a good error bound or estimate, instead of finding the actual error,
a bound or an estimate of this value is provided cheaply to choose the parame-
ters in the greedy algorithm. This accelerates the offline phase and also reduces
the memory demand to save the solution for all members of the discretized
parameter domain [84]. Second, the solution obtained in the online phase is
certified and the error loss is approximated or bounded [182]. Such certificates
have a key role in 1) making a well-informed tradeoff between model complexity
and model accuracy and 2) providing confidence on the trustworthiness of the
reduced-order model for the user. Error bounds and estimates in RB method
are tailored for specific systems [84], [182]. Beyond these systems, error bounds
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and estimates either are typically conservative or exponentially increases over
time. Error estimates for general nonlinear systems are missing in the literature.

To summarize, Part II tackles i) tailoring the RB method for systems with
nonlinearly state-dependent boundary conditions, ii) developing error estimates
for systems with local and distributed nonlinearities, and finally, iii) approxi-
mating MPD-related hydraulics by the RB method while taking into account
the area discontinuity as a varying parameter.

1.4 Port-Hamiltonian Systems

It has been observed that the RB methods do not preserve stability in the multi-
phase flow scenario of interest. Therefore, MOR techniques which preserve key
properties of the system such as stability are necessary, which is currently lacking
in the RB context.

Many complex systems are modeled by a network of different subsystems,
each having their underlying mathematical model representations. Energy-based
modeling of each of these subsystems can yield a port-Hamiltonian (pH) repre-
sentation, providing a modular framework for multi-physics and interconnected
systems. PH systems have recently received a lot of attention for modeling phys-
ical phenomena governed by nonlinear PDEs and ordinary differential equations
[64], [153]. In general, a pH system is a system of the following form:

∂tz = (J (z)−R(z)) δzH(z), (1.1)

where t represents time, z := z(t, x) is the state of the system, x is the spatial co-
ordinate, J (z) is a formally skew-adjoint operator describing the interconnection
of different parts of the system, R(z) is a positive semi-definite matrix describ-
ing the power loss in the system, H(z) is a scalar-valued functional describing
the energy of the system and δ denote the variational derivative. The operator
J (z) usually contains differential operators such as ∂x. System (1.1) requires
a suitable set of boundary conditions to allow non-zero energy flow through
the boundary and guarantee power preservation of the system [64]. Moreover,
structure-preserving methods for discretization and model order reduction of
infinite-dimensional pH systems can preserve certain original system-theoretic
properties such as stability and passivity [64]. In addition, a pH realization
offers a suitable description of the components for the modeling, analysis and
controller design [64] while taking the infinite-dimensional nature of the dy-
namics into account. Generally, the Hamiltonian functional H defined in pH
framework represents a good candidate for the Lyapunov function, rendering
the physics-based control design and the stability proof more tangible [119]. A
key property of pH systems is that, if the interconnection of the pH subsystems is
performed in a power-preserving manner [42], [64], it preserves the pH structure
of the coupled (aggregated) system. The key point in aggregating different pH
subsystems is the identification of the interconnection structure and casting this
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interconnection into a power-preserving structure. Isothermal Euler equations
are proved to have a pH structure [181]; however, investigation of the pH struc-
ture in DFM and TFM is missing in the literature. Moreover, interconnection
of the isothermal Euler equations and DFM or TFM is lacking in the literature.

1.5 Objectives and Contributions

From the overview of the state of the art presented in the previous sections and
the related open challenges, the following research objectives are pursued in this
thesis:

1. Modeling, numerical techniques for simulation and model validation for
MPD:

• Developing a model accurately representing all dynamics involved in
MPD,

• Proposing a numerical solver to take into account the effect of area
discontinuity in pipes,

• Developing a numerical solver for the MPD model,

• Validation of the MPD model against the field data,

• Proposing a numerical technique to approximate the steady-state so-
lutions more accurately.

2. Model order reduction of the MPD model together with error estimates:

• Developing model order reduction techniques for the MPD model,

• Proposing error estimates to approximate the error induced by reduc-
tion.

3. Investigating pH structure for MPD model:

• Constructing an MPD model with pH structure.

Due to the different objectives of this thesis, it has been divided into three
parts with different contributions, which are detailed below.

In Part I, the focus lies on the modeling, numerical simulation and validation
for MPD. To this end, a numerical solver for the DFM with discontinuous cross
section is developed. This numerical solver can be applied to any Godunov-type
scheme to account for the discontinuous features in the geometry of drillstring
and annulus. To further extend our numerical solver to simulate fluid flows
for MPD, characteristics boundary conditions of the drillstring and annulus are
coupled at the location of drilling bit. At this location, a dynamical NRV is
designed, which blocks the drilling mud flow from annulus to drillstring. To
validate the results of the numerical solver, simulation results are compared to
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the data gathered from real drilling wells in case of single-phase flow, liquid
influx and gas influx. To accommodate the liquid influx effect, a new reservoir
model is developed and coupled with the MPD dynamics. Finally, to take into
account the effect of significant source terms, a new upgrade procedure for first-
order Godunov-type schemes has been introduced. This upgrade is tailored for
the isothermal Euler equations and the DFM in the presence of laminar friction
and gravity.

Model order reduction and developing error estimates are the themes of Part
II. To be able to capture the nonlinear and state-dependent boundary conditions
involved in MPD, a new RB ansatz together with an interconnection between
the boundary dynamics and internal dynamics has been proposed. This method
exactly enforces the boundary conditions at the ROM level without generating
non-physical spikes in the solution at the boundaries, which the classical ansatz
does. For the first time, the developed RB method is applied to the MPD with
single-phase flow while considering the location and numbers of area disconti-
nuities as a varying parameter. The effect of this varying parameter is taken
into account by enriching the RB functions with local basis functions. This local
enrichment truly captures the physics induced by the discontinuous features. In
case of single-phase flow, the internal dynamics is linear and the only nonlineari-
ties appear at the boundaries. Therefore, the interconnection of these dynamics
can be formulated as a Lur’e-type system. To reduce the dimensionality, the
linear (internal) system is reduced while the finite and low dimension of bound-
ary dynamics is not changed. Exploiting the linear structure of the internal
dynamics and also the `2-gain notion, we have proposed a new error estimate
for linear systems coupled with systems with local nonlinearities. To extend
the error estimate to systems with distributed nonlinearities, a new perspective
on the coupling between RB and EIM through Lur’e-type systems is proposed.
However, for the existence of this error estimate, a small-gain condition should
be satisfied, which significantly restricts the range of state values in the simula-
tions. This motivated the introduction of a hierarchical empirical error estimate
which does not suffer from such restrictions.

Part III is dedicated to pH system modelling for MPD. RB methods do not
preserve stability through reduction [89]. For the case of DFM, the application
of RB and EIM leads to an unstable system. To circumvent this issue, for the
first time, a pH framework is developed for the TFM and DFM. Then, the pH
formalism of isothermal Euler equations and the TFM are coupled together via
MPD equipment models to construct an aggregated MPD model. To preserve
power through the pH MPD model, a condition, based on the velocity of the
drilling mud before and after the drilling bit, is derived to render the drilling
bit model dissipative. The platform proposed in this thesis can be used as a
stepping stone for a controller design based on energy methods for MPD.
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1.6 Organization of the thesis

The thesis has been organized in three parts. In the first part, MPD modeling is
explained and the challenges for its numerical approximation are elaborated. In
the second part, the MOR techniques are developed together with error estimates
and the novel RB method is applied to MPD models. Finally, in the last part,
pH formulations of the models used in MPD are developed and are connected
together to build an aggregated pH model for MPD.

Particularly, MPD can be characterized by interconnection of subsystems
governed by a single-phase flow in the drillstring and a two-phase flow in the
annulus, and, mathematical models governed by nonlinear ordinary differential
equations or static equations [128]. A single-phase flow is usually modelled by
the isothermal Euler equations, which obey a pH formalism [181]. For two-phase
flow modelling, the Two-Fluid Model (TFM) and the Drift Flux Model (DFM)
are typically employed [5]. We show that the TFM and a DFM without slippage
between the two phases can also be cast in the pH formalism [15]. Drilling with
MPD is composed of single- and two-phase flow pH realizations, which can be
interconnected via MPD equipment (bit) in a power-preserving manner to form
an aggregated pH system. We show that the drilling bit model connecting the
drillstring and the annulus is conditionally power-preserving.

1.6.1 Part I: Modeling and Validation of Multi-phase Flow

Hydraulics for MPD consists of a single-phase flow in the drillstring and a po-
tentially multi-phase flow model in the annulus, connected through nonlinear
equations of the bit. Boundary conditions of such systems are described by
the MPD equipment. However, the MPD model cannot be numerically solved
by classical numerical methods due to, i) discontinuous well geometry, ii) es-
sential contribution of frictional and gravitational source terms, iii) nonlinear
state-dependent boundary conditions containing switching dynamics. In Part I,
a model and its corresponding numerical approach are presented to deal with
these challenges. Moreover, the model and its numerical solution are validated
against field data obtained from real-world drilling wells in this part. Therefore,
Part I consists of:

• Chapter 2: A Godunov-type Scheme for the Drift Flux Model
with Variable Cross Section

– In this chapter, a numerical solver is proposed to take into account
the discontinuous geometry of the pipelines for multi-phase flow. This
method enforces some algebraic relations at the location of the area
discontinuity, which resolves the non-physical spikes generated by
classical solvers at these locations.
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• Chapter 3: A Well-Balanced Godunov-Type Scheme for the
Isothermal Euler Equations and the Drift Flux Model with Lam-
inar Friction and Gravitation

– A new method is developed here to tackle the significant effect of
source terms in both single- and multi-phase flow models. Laminar
friction and gravity source terms are included in the isothermal Euler
equation and the DFM. The proposed method enforces algebraic con-
straints from the physical steady-steady solutions, which brings about
significant accuracy increase in steady-state prediction compared to
classical solvers. The method presented here can be applied to any
Godunov-type schemes.

• Chapter 4: Modelling and numerical implementation of managed
pressure drilling systems for the assessment of pressure control
systems

– The methodology developed in Chapter 2 is extended to simulate hy-
draulics in MPD. Dealing with nonlinear boundary conditions is an-
other main focus of this chapter. The switching dynamics for the NRV
is proposed here. Moreover, validation of the MPD model against the
field data in case of single-phase flow is carried out in this chapter.

• Chapter 5: Model Validation for Multi-phase Flow

– This chapter completes the validation of the model proposed in the
previous chapter. In the current chapter, the MPD model in case of
multi-phase flow is validated against the field data. This is carried
out by exploiting data gathered from liquid-liquid flow and liquid-gas
flow. In case of liquid-liquid flow, a novel reservoir model is proposed
which accurately predicts the field data.

1.6.2 Part II: Model Order Reduction

The numerical simulation of hydraulics in MPD is computationally expensive
to be run in real time and in a multi-query setting. Therefore, the model is
not suitable for the optimization of drilling plans or simulation-based controller
design. To enable these features, MOR of the parameterized model for MPD is
beneficial. In this part, the RB method tailored for MPD in case of single-phase
flow is explained in three chapters:

• Chapter 6: Error estimation in reduced basis method for systems
with time-varying and nonlinear boundary conditions

– In this chapter, the RB method is utilized for the reduction of single-
phase flow models. To deal with the highly nonlinear, state-dependent
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boundary conditions employed in MPD, a modified version of the RB
method has been proposed. To quantify the accuracy loss due to the
reduction, a new error estimate is developed based on a Lur’e type
model formulation for the discretized model, which can be efficiently
extended to other systems of such a form. Results show that the new
RB ansatz does not generate non-physical results at the boundaries
and the error estimate approximates the actual error with a high
accuracy.

• Chapter 7: Error estimates for model order reduction of Burgers’
equation

– The existence condition of the error estimate developed in the previ-
ous chapter is not always satisfied when highly nonlinear terms are
present in the system of equations. To enlarge the existence condition
for such error estimate for nonlinear systems, a loop transformation
has been conducted in this chapter. Moreover, to generalize the pro-
posed approach to highly nonlinear systems and also for systems with
distributed nonlinearities, a new hierarchical error estimate based on
two ROM solutions with two different levels of accuracy has been
proposed based on the available simulation data in the RB method.

• Chapter 8: Reduced Basis Method for Managed Pressure
Drilling Based on a Model with Local Nonlinearities

– In this chapter, a new RB method has been developed to capture
discontinuous features of the drilling well geometry for single-phase
scenarios. This is done by the enrichment of the RB space by ba-
sis functions with local support. Simulations confirm that this new
method captures the physics in MPD in the presence of discontinuous
well geometry.

1.6.3 Part III: Port-Hamiltonian Systems

The RB method works well for the case of single-phase flow as the system is
almost linear except at the boundaries. For the multi-phase flow model, apply-
ing RB method to the model obtained after discretization typically generates
an unstable reduced-order system, possibly induced by the high complexity of
multi-phase flow models. One way to circumvent this issue is to formulate the
multi-phase flow model in a pH formalism and apply structure-preserving MOR
techniques to the obtained model, thereby avoiding such issues related to unsta-
ble reduced-order models. In this part, we set up a framework to generate such
pH-based model formulations in the two chapters mentioned below.

• Chapter 9: Port-Hamiltonian Formulation of Two-phase Flow
Models
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– In this chapter, pH model formulations are proposed for multi-phase
flow models, the TFM and DFM, used in MPD modeling.

• Chapter 10: Power-Preserving Interconnection of Single- and
Two-Phase Flow Models for Managed Pressure Drilling

– The pH models, developed in the previous chapter, are interconnected
in a power-preserving manner, yielding an aggregated pH system
model for MPD. To render the aggregated system power-preserving,
a condition is derived on the drilling bit model.

1.7 Publications

The content of this thesis is mostly built upon the publications of the author
during the 4 years of the PhD study. These publications are listed below.

Remark 1.1. It might be the case that other authors of the following papers
include the same paper as part of their thesis.

1.7.1 First-Authored papers

The contributions of the candidate have been published in the following journal
papers and conference papers with peer review as the first author.

Journal papers

• M.H. Abbasi, S. Naderi Lordejani, N. Velmurugan, C. Berg, L. Iapichino,
W.H.A. Schilders, N. van de Wouw, A Godunov-type Scheme for the
Drift Flux Model with Variable Cross Section, Journal of Petroleum
Science and Engineering, Volume 179, August 2019, Pages 796-813.

• M.H. Abbasi, S. Naderi Lordejani, C. Berg, L. Iapichino, W.H.A.
Schilders, N. van de Wouw, An Approximate Well-Balanced
Godunov-Type Scheme for the Isothermal Euler Equations and
the Drift Flux Model with Laminar Friction and Gravitation, In-
ternational Journal for Numerical Methods in Fluids, in press, 2020.

• M.H. Abbasi, L. Iapichino, B. Besselink, W.H.A. Schilders, N. van de
Wouw, Error estimation in reduced basis method for systems with
time-varying and nonlinear boundary conditions, Computer Meth-
ods in Applied Mechanics and Engineering, Volume 360, 1 March 2020,
112688.

• M.H. Abbasi, S. Naderi Lordejani, L. Iapichino, W.H.A. Schilders,
N. van de Wouw, Reduced Basis Method for Managed Pressure
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Drilling Based on a Model with Local Nonlinearities, International
Journal for Numerical Methods in Engineering, in press, 2020.

• M.H. Abbasi, L. Iapichino, W.H.A. Schilders, N. van de Wouw, A Data-
based Stability-preserving Model Order Reduction Method for
Hyperbolic Partial Differential Equations, Submitted to SIAM Jour-
nal on Control and Optimization, 2020.

• M.H. Abbasi, L. Iapichino, W.H.A. Schilders, N. van de Wouw, A Non-
Intrusive Stable Model Order Reduction Method for Drift Flux
Model, In preparation.

Conference papers

• M.H. Abbasi, L. Iapichino, B. Besselink, W.H.A. Schilders, N. van de
Wouw, Error estimates for model order reduction of Burgers’
equation, IFAC World Congress, Berlin, Germany, July 2020.

• M.H. Abbasi, H. Bansal, H. Zwart, L. Iapichino, W.H.A. Schilders, N.
van de Wouw, Power-Preserving Interconnection of Single- and
Two-Phase Flow Models for Managed Pressure Drilling, American
Control Conference, Denver, U.S.A., July 2020, Pages 3097-3102.

1.7.2 Co-Authored papers

In addition, the candidate has contributed as co-author to the following journal
papers and conference papers with peer review. The specific contribution of the
author to these publications are explained in detail.

Journal papers

• S. Naderi Lordejani, B. Besselink, M.H. Abbasi, G. -O. Kaasa, W.H.A.
Schilders, N. van de Wouw, Control-oriented modelling for managed
pressure drilling automation using model order reduction, IEEE
Transactions on Control Systems Technology, in press, 2020,

– Modeling, numerical implementation and simulations corresponding
to the full-order model are performed in collaboration with S. Naderi
Lordejani. The model order reduction development and the corre-
sponding simulations are solely the contribution of S. Naderi Lorde-
jani.

• S. Naderi Lordejani, M.H. Abbasi, N. Velmurugan, C. Berg, J.A.
Stakvik, B. Besselink, L. Iapichino, F. Di Meglio, W.H.A. Schilders, N. van
de Wouw, Modelling and numerical implementation of managed
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pressure drilling systems for the assessment of pressure control
systems, SPE Drilling & Completion, in press, 2020,

– Modeling, numerical implementation and simulations are performed
in collaboration with S. Naderi Lordejani and N. Velmurugan. The
validation of the single-phase flow model against the field data is solely
the contribution of S. Naderi Lordejani.

• H. Bansal, P. Schulze, M.H. Abbasi, H. Zwart, L. Iapichino, W.H.A.
Schilders, N. van de Wouw, Port-Hamiltonian Formulation of Two-
phase Flow Models, Submitted to Systems & Control Letters, 2020,

– Derivation of the Hamiltonian functional, rewriting the two-fluid
model in terms of only four primitive variables and the numerical
simulations are the contribution of the author.

Conference papers

• S. Naderi Lordejani, B. Besselink, M.H. Abbasi, G. -O. Kaasa, W.H.A.
Schilders, N. van de Wouw, Model order reduction for managed pres-
sure drilling systems based on a model with local nonlinearities,
IFAC-PapersOnLine, Volume 51 (8), January 2018, Pages 50-55,

– Modeling, numerical implementation and simulations corresponding
to the full-order model are performed in collaboration with S. Naderi
Lordejani. The model order reduction development and the corre-
sponding simulations are solely the contribution of S. Naderi Lorde-
jani.
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Part I

Modeling and Validation of
Multi-phase Flow

This part concerns the modelling of MPD-related hydraulics, to be used
for model order reduction in the subsequent parts of the thesis. Here, a new
technique to capture the effect of the discontinuous cross-sectional area of a pipe
on a multi-phase flow is discussed and compared to existing techniques in the
literature. Apparent from the results, other techniques in literature generate
non-physical results at the location of area discontinuity while the proposed
technique captures the physics induced by this feature accurately. The order of
accuracy of the scheme is also investigated.

Next, the correct approximation of steady-state solution in the presence of
powerful source terms is studied. Steady-state solutions play a crucial role in
the decision-making process of industrial systems and thus should be computed
accurately. We propose an upgrade of first-order Godunov-type schemes to pre-
dict the steady-state solution significantly more accurately than the original
Godunov-type scheme for single- and two-phase flow models. The upgrade is
applied to Rusanov scheme and tested over illustrative test cases of zero and
non-zero mass flow rates.

To enable MPD simulations and interconnect the drillstring and annulus in-
ternal dynamics, state-dependent and nonlinear boundary conditions involved
in MPD are investigated. U-tube modeling of MPD is carried out by connecting
two pipes with discontinuous cross-sectional areas, representing drillstring and
annulus, via these boundary conditions. The aggregated MPD model success-
fully simulates MPD-relevant scenarios such as kick circulation. Moreover, its
accurate prediction is validated against field data for single-phase flow scenarios.

To enable the simulation of liquid influx, the MPD model is extended to
simulate liquid-liquid flow as well. A new reservoir model for the case of liquid
influx is also introduced and coupled to the MPD. The coupled model is then
validated against liquid and gas influx scenarios. Results show that the MPD
model is capable of reproducing the field data accurately through adjusting the
uncertain parameters in the model.





Chapter 2

A Godunov-type Scheme for the Drift Flux
Model with Variable Cross Section

This paper presents a modification of a classical Godunov-type scheme for the
numerical simulation of a two-phase flow in a pipe with a piecewise constant
cross-sectional area. This type of flow can occur in wellbores during drilling for
oil and gas as well as after well completion. Contrary to classical finite-volume
schemes, the numerical scheme proposed in this paper captures the steady-state
solution of the system without generating non-physical discontinuities in the nu-
merical solution close to the locations of discontinuities in the cross-section.
Moreover, the proposed scheme can be extended to problems with piecewise con-
tinuous cross-sectional area. This extension is achieved by discretization of the
area along the spatial domain and converting the piecewise continuous area into
a piecewise constant area. The proposed scheme reduces to the classical scheme
when the cross-sectional area is constant along the spatial domain. For the pur-
pose of computational efficiency, the modification to the classical scheme is only
applied at the locations of area variation and the numerical solver reduces to the
classical scheme where the cross-sectional area is constant. It is also shown that
the proposed scheme can be effectively used to simulate two-phase flows arising
from the perturbation of the steady-state solution. The effectiveness of the pro-
posed scheme is shown through illustrative numerical simulations. Finally, it
should be noted that the proposed scheme retains the same order of accuracy as
the underlying classical scheme.

This chapter is based on “M.H. Abbasi, S.Naderi Lordejani, N.Velmurugan, C.Berg,
L.Iapichino, W.H.A.Schilders, N.van de Wouw, A Godunov-type Scheme for the Drift Flux
Model with Variable Cross Section, Journal of Petroleum Science and Engineering, Volume
179, August 2019, Pages 796-813”.
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2.1 Introduction

Reliable models and accurate numerical solutions for single- and two-phase flows
are necessary for many industrial applications, such as drilling for oil and gas
and flow in fuel bundles and pipelines [86], [120], [132]. Modeling of the transient
behavior of the flow dynamics in these industrial systems plays a crucial role in
the design, decision making and control of such systems. For the simulation of
two-phase flows, the one-dimensional Drift Flux Model (DFM), which is consti-
tuted by a set of first-order nonlinear hyperbolic partial differential equations,
has gained attention [69], [72] due to its balance between predictive capabilities
and simplicity. Compared to the two-fluid model, the DFM is favorable from a
numerical simulation perspective [127]. In addition, the DFM remains hyper-
bolic over a wider region of the variables and it is also more accurate than the
two-fluid model in homogeneous two-phase regimes [127].

In many industrial applications, the computational domain, typically a pipe,
frequently has a variable cross-sectional area along its length. In particular,
a drilling well experiences discontinuities in the cross-sectional area [93] as
schematically illustrated in Figure 2.1. These area discontinuities affect the res-
onance frequency of the wave propagation effects inside the system, especially
the rapid pressure dynamics. If this phenomenon is not considered, the model
may lose its predictive capacity. Moreover, in the scope of controller design for
Managed Pressure Drilling (MPD), the system performance may seriously dete-
riorate when such effects are not appropriately represented in the model. Hence,
a model that accounts for such phenomena is required.

Two-phase flow in a pipe with variable cross-sectional area increases the
complexity of the governing model and, subsequently, its numerical solution as
a non-conservative term is added to the governing equations [57]. This means
that after adding this term, all derivatives over the spatial variable cannot be
gathered into a single differential term.

Classical finite-volume schemes are suitable for numerical simulation of con-
servative hyperbolic PDEs, such as the DFM with a constant cross-sectional area
[67], [72], [172]. However, these classical methods cannot be effectively used
to solve non-conservative PDE models, such as the DFM with variable cross-
sectional area [103]. A common approach to incorporate the area variation is to
treat the non-conservative term as a source term [169]. This treatment leads to
non-physical and numerical spikes in the numerical solution and, subsequently,
this approach cannot be reliably used [103].

Addressing the issue of the presence of non-conservative terms in mathemat-
ical models of various systems in the scope of numerical implementation is an
active research area. Different methods have been developed for the simulation
of the behavior of a single-phase flow in a pipe with a variable cross-sectional
area. Instead of treating the non-conservative term as an additional source term,
a modification to the Rusanov scheme [171] has been proposed in [49] to capture
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Figure 2.1: The discontinuous cross-section of area in a real drilling well with
diameters shown in inch and depths shown in meter (as common in the drilling
community). The path of the fluid is marked by black arrows. The data is
extracted from [93].

the steady-state solution of the Euler equations. However, this method is not
well-balanced in the presence of non-zero flow in the system, i.e., the numerical
solution does not preserve the steady-state solution for non-zero flow scenarios.
A model-based modification of the input arguments of the finite-volume scheme
has also been introduced in [57], [88], [103]. All the mentioned works deal with
the variable cross-sectional area in single-phase flow systems while two-phase
flows frequently occur in many realistic industrial applications [37], [86], [120],
[132].

To the best of the authors’ knowledge, the effect of non-conservative terms
in two-phase flow models has been studied only to a rather limited extent
for conservative shock capturing schemes. As an example, in [167], the non-
conservativeness in the two-fluid model originating from the state variables is
considered. However, the non-conservativeness originating from the variable
cross-sectional area is not discussed. Therefore, this paper focuses on developing
a reliable numerical approach for the DFM capturing the effects of variations in
the cross-sectional area by introducing a model-based scheme, inspired by [103].

The results of this paper can be used to simulate the flow of gas and liquid
mixtures in pipelines. In particular, this kind of flow is common in the up-
stream, midstream and downstream sector of the oil and gas industry. As in
the upstream sector, for any drilling well, the understanding of the flow (and
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pressure) dynamics in the drill-string and annulus is essential. Herein, the drill-
string consists of a series of drill pipes and the bottom hole assembly (assembly
of heavy weight drill pipes and mud motors). Together these system compo-
nents represent a drastically varying flow path, both inside the drill-string and
the annulus (refer to Figure 2.1). In drilling operations for oil and gas, multi-
phase fluid flow arises in several cases, such as gas influx into the annulus or
during under-balanced drilling where the gas is also present in the drill-string in
addition to the annulus. Moreover, the proposed method can be used to validate
hydraulics models in a drilling well with the DFM, as an extension to [37]. In
many studies for the DFM validation in a drilling well, such as e.g. the one in
[37], the effect of area discontinuity has been ignored. However, dealing with the
field data, the effects of these discontinuities should be taken into account and
the developments in this paper support this. The work of this paper can then be
used to support the operational design of MPD-based operations and controller
design for MPD. In the midstream operations, multi-zone completion designs,
using a liner or an open-hole in combination with tubings, pose a multi-phase
flow scenario in a pipe with potentially variable cross-sectional area during the
production phase. In the downstream sector, the refining and separation of the
natural gas and crude oil can be simulated using the results of this paper.

Contributions of this paper are provided in two areas. First, this paper
reviews the current techniques to deal with non-conservative terms within single-
phase flow. These techniques, which are not applicable for the DFM, are adapted
for the DFM. Secondly, new approaches within the context of the DFM are
introduced to deal with the non-conservative term induced by the variable cross-
sectional area. Since the goal of this paper is to evaluate the merit of the scheme
in capturing the effects of area variation, the effect of source terms such as friction
and gravity has not been considered. The evaluation of the scheme in the absence
of the source term is a common practice in the finite-volume community [103],
[105], [114]. In addition, considering source terms raises the issue of the well-
balancedness [38], which is beyond the scope of this paper. Incorporating these
additional source terms is the subject of future works.

The structure of this paper is as follows. In Section 2.2, an overview of
the model is given together with a comparison between the conservative and
non-conservative DFM and the corresponding eigenvalue analysis is performed.
Various methodologies to deal with the non-conservative term are proposed in
Section 2.3. In Section 2.4, the effectiveness of the different variable cross-
section treatments in preserving the steady-state solution is evaluated through
numerical tests and, subsequently, transient simulations are performed. Finally,
conclusions and recommendations for future works are presented in Section 2.5.
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2.2 Two-Phase Flow Model

In this section, the DFM in case of constant and variable cross-sectional area
is presented. Eigenvalue analysis is performed for the non-conservative system
with variable cross-sectional area. Since the dynamics originating from the per-
turbation to the steady states are of numerical interest in this study, the steady-
state solution is also presented in this section. Next, the necessary boundary
conditions for both the transient and the steady-state model are defined.

2.2.1 Introduction to the Drift Flux Model

The Drift Flux Model is widely used to describe the behavior of two-phase flow
systems [5], [69], [94], [185]. It consists of two mass balance equations, one for
each phase, and one combined momentum balance equation for the mixture of
the phases. The governing equations for one-dimensional systems are given by

∂(αlρl)

∂t
+
∂(αlρlul)

∂x
= 0, (2.1a)

∂(αgρg)

∂t
+
∂(αgρgug)

∂x
= 0, (2.1b)

∂(αlρlul + αgρgug)

∂t
+
∂(αlρlu

2
l + αgρgu

2
g + p)

∂x
= 0, (2.1c)

where α(t, x), ρ(t, x), u(t, x) and p(t, x) are, respectively, the volume fraction,
density, velocity and pressure, which are functions of time t and the one-
dimensional spatial coordinate x. The subscripts l and g denote the liquid and
gas, respectively. Noteworthy, the DFM is based on the assumption of mechan-
ical equilibrium between the two phases, i.e., the pressure of the gas and the
pressure of the liquid are equal. The DFM as in (2.1) contains seven variables
while it is expressed in only three equations. Thus, four other equations, called
closure relationships, are required to, potentially, uniquely solve the system of
equations. The most widely used closure relationships are listed below [69], [91]:

αl + αg − 1 = 0, (2.2)

ug − (Kumix + S) = 0, (2.3)

p− ρgc2g = 0, (2.4)

p−
(
(ρl − ρ0)c2l + p0

)
= 0. (2.5)

Equation (2.2) implies that every section of the pipe is filled up with a mixture
of the liquid and gas. The slip law (2.3), showing a static relation between
the velocity of the gas and the liquid, compensates for the fact that only one
momentum balance is included in the DFM. Here, K and S are, respectively,
the distribution coefficient and the drift velocity of the gas relative to the liquid
defined according to the flow regime [30], [142] and umix = αlul + αgug is the
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velocity of the mixture. Equations (2.4) and (2.5) represent the equation of state
(EOS) for the gas and liquid phases, respectively. cl and cg are the speeds of
sound in the liquid and gas phases, which can be assumed to be constants or be
functions of other variables, such as pressure. Finally, ρ0 and p0 are, respectively,
the reference values for density and pressure around which the EOS for the liquid
has been linearized.

Model (2.1) is based on the assumption that the cross-section is constant all
along the spatial domain. When this does not hold, the DFM in (2.1) should be
modified in order to take into account the cross-sectional variations. By including
a variable cross-sectional area along the computational domain, A = A(x), as
used in [151], the system (2.1) changes to

∂(αlρlA)

∂t
+
∂(αlρlulA)

∂x
= 0, (2.6a)

∂(αgρgA)

∂t
+
∂(αgρgugA)

∂x
= 0, (2.6b)

∂ ((αlρlul + αgρgug)A)

∂t
+
∂
(
(αlρlu

2
l + αgρgu

2
g + p)A

)
∂x

= p
∂A

∂x
, (2.6c)

∂A

∂t
= 0. (2.6d)

Equation (2.6d) is trivial and it is only added to enable the eigenvalue analysis
presented later. Notably, system (2.1) can be written in the conservative form
while system (2.6) cannot be written in such a form due to the presence of the
term p∂A/∂x (in (2.6c), all terms concerning spatial derivatives of the state
variables cannot be gathered in one single term and therefore the system (2.6)
is non-conservative). Therefore, the area variation included in (2.6) significantly
affects the solution, in particular the wave reflection pattern inside the domain
of a pipe with a discontinuous area. For this type of cross-sectional character-
istics, the term p∂A/∂x becomes an impulsive force per unit length acting on
a infinitesimally small spatial interval. This means that when a fluid particle
passes a location with discontinuity in the area, it experiences an excessively
large force (an impulsive force) for an infinitesimally short period of time that
leads to a finite change in the momentum of the particle. The effect of such
impulsive forces can not be captured appropriately by the classical finite-volume
schemes. Therefore, other methods are needed to solve this system of equations.

In the following section, an eigenvalue analysis of the system (2.6) is carried
out to explain the effect of a variable cross-sectional area on the solution.

2.2.2 Eigenvalue Analysis of the non-conservative DFM

To perform the eigenvalue analysis, Q := [αg ul p A]T is defined as the state
variable vector and by inserting the closure laws into the PDEs (2.6), the system
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in (2.6) can be rewritten in a compact form as follows:

J1(Q)
∂Q

∂t
+ J2(Q)

∂Q

∂x
= 0, (2.7)

where the concise representation of J1 and J2 (by partially inserting the closure
laws) are as below

J1(Q) =


−ρl 0
ρg 0

ρgug − ρlul + αgρg
K ((K − 1)ul + S)

(1−Kαg)2 αlρl + αgρg
Kαl

(1−Kαg)
0 0

αl
c2l

0

αg
c2g

0

αlul
c2l

+
αgug
c2g

0

0 1

 ,

J2(Q) =



−ρlul αlρl
αlul
c2l

αlρlul
A

ρg
ug −Kαgul
(1−Kαg)

αgρg
Kαl

(1−Kαg)
αgug
c2g

αgρgug
A

a31 a32
αlu

2
l

c2l
+
αgu

2
g

c2g
+ 1 0

0 0 0 0


.

(2.8)

where

a31 = ρgu
2
g − ρlu2

l + 2αgρgug
K ((K − 1)ul + S)

(1−Kαg)2
,

a32 = 2αlρlul + 2αgρgug
Kαl

(1−Kαg)
.

It should be noted that although the area is a known variable, it is considered
to be one of the states of the system to facilitate the analyses and to enable
writing system (2.6) in the format of (2.7). This is the main reason for keeping
the last trivial equation in system (2.6). For the DFM, the eigenvalues of the
matrix J−1

1 J2 have the following form [69]:

λ1 = ul + ω, λ2 = ug, λ3 = ul − ω, λ4 = 0, (2.9)
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where ω is the speed of sound in the mixture of the gas and the liquid [69]. In
case of no-slip, i.e., K = 1, S = 0, after computing the eigenvalues and casting
the results into the format of (2.9), the speed of sound in the mixture can be
analytically written as follows known as Wood or Wallis speed of sound [56],
[178]:

ω = clcg

√
ρlρg

ρ̄(αgρlc2l + αlρgc2g)
, (2.10)

with ρ̄ = αlρl + αgρg.
In the case when slip occurs between the two phases, computing the analytical

speed of sound in the mixture is complex, if not impossible. Thus, simplified
surrogates for the speed of sound have been suggested; for instance the surrogate
in [69] is introduced for cases with αgρg � αlρl and 0 < αg < 1 as below:

ω '
√

p

αgρl(1−Kαg)
. (2.11)

Notably, although the gas and the liquid phase play a symmetric role in (2.6),
the contribution of the phases are non-symmetric in the eigenvalues (2.9) due
to the closure laws (2.2)-(2.5). For a detailed analysis of the eigenvalue problem
of the conservative DFM, the reader may refer to [58]. The eigenvalue λ4 shows
that there is a stationary wave in the computational domain that becomes visible
when the cross-sectional area is discontinuous and ∂A/∂x becomes closer to the
impulse function.

Remark 2.1. Equation (2.11) becomes ill-posed when αg tends to zero or
Kαg → 1. When K > 1, the singular point even occurs for αg < 1. In these
cases, other surrogate formulations should be used [94], which has not been stud-
ied in this paper.

Remark 2.2. In some special cases, the speed of sound ω becomes very low, even
less than cg, in the presence of both phases. However, in the special application
of drilling for oil and gas, phase velocities are still lower than ω and the flow is
subsonic. Henceforth, we only consider subsonic flows.

In general, dynamics of the problems studied in this paper are the pertur-
bation dynamics with respect to the steady-state solution. Thus, finding the
steady-state solution is the first step towards solving this type of problems.

2.2.3 Steady-state solution

For obtaining the analytical steady-state solution of system (2.6), the partial
derivatives of the variables with respect to time is set to zero and the following
system of equations should be solved:

∂(αlρlulA)

∂x
= 0, (2.12a)
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∂(αgρgugA)

∂x
= 0, (2.12b)

∂
(

(αlρlu
2
l + αgρgu

2
g + p)A

)
∂x

= p
∂A

∂x
. (2.12c)

By embedding (2.12a) and (2.12b) into (2.12c), simplified governing equations
are obtained as in (2.13)

∂(αlρlulA)

∂x
= 0, (2.13a)

∂(αgρgugA)

∂x
= 0, (2.13b)

αlρlulA
∂ul
∂x

+ αgρgugA
∂ug
∂x

+A
∂p

∂x
= 0. (2.13c)

After inserting the closure laws and considering the slip law (2.3), the steady-
state solution of the new state variable W := [ul ug αg p]T is governed by
the system of equations:

M(W,x)
∂W

∂x
= E(W,x), (2.14)

where the concise representation of M and E (by partially inserting the closure
laws) are as below

M(W,x) =



−K(1− αg) 1−Kαg K(ul − ug)
(1− αg)(

p− p0

c2l
+ ρ0)A 0 −(

p− p0

c2l
+ ρ0)ulA

0 αg
p

c2g
A

p

c2g
ugA

(1− αg)(
p− p0

c2l
+ ρ0)ulA αg

p

c2g
ugA 0

0
(1− αg)ulA

c2l

αg
ugA

c2g
A

 ,

E(W,x) =



0

−(1− αg)(
p− p0

c2l
+ ρ0)ul

∂A

∂x

−αg
p

c2g
ug
∂A

∂x

−
(

(1− αg)(
p− p0

c2l
+ ρ0)u2

l + αg
p

c2g
u2
g

)∂A
∂x


. (2.15)
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Notably, the term ∂A/∂x represents an impulsive term at the discontinuities
of A(x), which leads to discontinuities in the steady-state solution of W . To
solve this system for discontinuous function A(x), left- or right-continuity of the
function should be specified to be able to define the area at any location.

The initial condition for the simulations in the presence of area variation is the
solution of (2.14)-(2.15) unless otherwise mentioned. If a system starts from its
unique steady-state solution, the numerical solution should remain on the same
solution afterwards. Therefore, a significant discrepancy between the numerical
simulation and the steady-state initial condition reveals the poor performance of
the scheme, which may be hard to diagnose in dynamical simulations. Thus, this
test is a powerful measure for assessing the necessary performance of a scheme,
i.e., predicting the correct steady-state solution.

Equations (2.14)-(2.15) represent a two-point boundary value problem due
to the boundary conditions specified at both ends, which are detailed in the next
section.

2.2.4 Boundary conditions

As three PDEs are involved in the system of (2.14), three physical boundary
conditions have to be specified. For subsonic flow, it is typical to set a specific
mass flow rate of the liquid and the gas at the left boundary (at x = 0) and
a pressure at the right boundary (at x = L) [69], [71]. Henceforth, the mass
flow rate of the liquid and gas are, respectively, denoted by ṁl and ṁg (i.e.,
ṁl := αlρlulA and ṁg := αgρgugA), and the pressure at the right boundary is
denoted by pR.

However, for finding the numerical solution of system (2.6), all conservative
variables should be prescribed at the boundaries. Since the number of conserva-
tive variables at each boundary is more than the number of physical boundary
conditions, additional conditions at the boundary are required to find the unique
solution for the boundary variables. For instance, at the right boundary, only
pressure is prescribed and other variables should be obtained by some compat-
ibility equations. By following the approach described in [71], characteristic
boundary conditions are combined with the physical boundary conditions in or-
der to fulfill all the necessary conditions at the boundaries. The characteristic
boundary equations can be found in [71]. Under the assumption of constant area
only at the boundaries, the characteristic boundary equation corresponding to
the pressure wave propagating in the downstream direction λ1 = ul + ω reads
as:

d

dt
p+ ρlω(ug − ul)

d

dt
αg − ρlαl(ug − ul − ω)

d

dt
ul = 0,

with
d

dt
=

∂

∂t
+ (ul + ω)

∂

∂x
.

(2.16)
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Similarly, for the gas volume wave λ2 = ug, we have:

d

dt
p+

p

αg(1−Kαg)
d

dt
αg = 0, with

d

dt
=

∂

∂t
+ ug

∂

∂x
. (2.17)

Finally, for the pressure wave propagating in the upstream direction λ3 =
ul − ω, we have:

d

dt
p− ρlω(ug − ul)

d

dt
αg − ρlαl(ug − ul + ω)

d

dt
ul = 0,

with
d

dt
=

∂

∂t
+ (ul − ω)

∂

∂x
.

(2.18)

The discrete version of equations (2.16) and (2.17) are solved at the right
boundary and discrete version of equation (2.18) is solved at the left boundary.

Remark 2.3. Before going through the numerical solvers, it should be noted
that, in this paper, the function A(x) is piecewise continuous and it is discretized
over the spatial domain. After such discretization, A(x) becomes piecewise con-
stant as it is constant within each grid cell and the discontinuities occur only
at the interfaces. Then, in the case of discontinuous area, wherever the com-
putation of ∂A/∂x is required, for instance in the steady-state calculations, the
spatial derivative of A(x) is approximated by the finite difference method.

Remark 2.4. Some existing methods to deal with the variable cross-section are
based on adapting the Rusanov scheme [105]. For the sake of a fair comparison,
we also consider the Rusanov scheme as our numerical scheme. However, the
method introduced in this paper is a universal modification that can be used along
with any numerical scheme such as the AUSMV scheme [69].

2.3 Numerical solvers for the DFM with piecewise continuous
cross-section

In this section, different approaches are presented to deal with the non-
conservative term in the DFM; some of which are proposed in this paper and
some are extensions of existing methods for (2.6). The effects of variable cross-
sectional area in the DFM and Euler equations are similar; a stationary wave is
added to the existing waves in both cases. Therefore, the strategies introduced in
different works such as [57], [72], [103], [169] to deal with non-conservative terms
in the Euler equations with area variation are the main source of inspiration for
this work.

For the sake of completeness, some terminologies widely used in the context
of finite-volume method are introduced beforehand. For a general first-order
PDE of the form

∂u

∂t
+

∂

∂x

(
f(u)

)
= S(u, t, x), with t ∈ I = [0,T], x ∈ Ω = [0,L], (2.19)
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Figure 2.2: An illustration of the finite-volume spatial and temporal discretiza-
tion; green block: the desired solution at the next time step, red lines: constant
solutions within each grid cell at the current time step.

u is called the conservative variable, f is called the mathematical flux func-
tion and S is the source term. Furthermore, primitive variables with phys-
ical interpretation are defined, denoted by v. For instance, for the system
(2.1), the conservative variables are u = [αlρl αgρg αlρlul + αgρgug]

T and
primitive variables are any combination of three independent variables, such as
v = [αg ul p]T . Finite-volume discretization is commonly employed to solve
such PDEs by a discretization of the spatial computational domain Ω and the
temporal computational domain I, as shown in Figure 2.2. Assume that we are
interested in the solution at the i-th spatial grid cell at the time step n+ 1 (the
green block in Figure 2.2). First-order Godunov-type schemes numerically solve
(2.19) by

Un+1
i = Uni −

∆t

∆x

(
F (Uni , U

n
i+1)− F (Uni−1, U

n
i )
)

+ ∆t S(Uni , t
n, xi), (2.20)

where Uni is the spatial average of the conservative variable u over i-th cell at
the time instant tn = n∆t, schematically shown at different grid cells by red
lines in Figure 2.2. Similarly, V ni is the spatial average of the primitive variables
v, which will be used later. Also, ∆t and ∆x refer to temporal and spatial
discretization step sizes, respectively.

The numerical flux function F is a scheme-dependent function of the con-
servative variables. The classical Rusanov scheme [171] for the system (2.6)
employs a flux function as below:

F (Uni , U
n
i+1) =

f(Uni+1) + f(Uni )

2
− λni+1/2(Uni+1 − Uni ), (2.21)

with

f = [αlρlulA, αgρgugA, (αlρlu
2
l + αgρgu

2
g + p)A]T , (2.22a)
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U = [αlρlA, αgρgA, (αlρlul + αgρgug)A]T , (2.22b)

and

λni+1/2 =
1

2
max({|unl |+ωn, |ung |}i+1, {|unl |+ωn, |ung |}i), (2.23)

where the operator “max”gives the maximum value of its arguments, and λni+1/2

is the half of maximum local eigenvalue of (2.9) computed at the left-hand and
right-hand side of the interface xi+1/2 at the time instant tn. Below, various
methods for dealing with the non-conservative term are presented.

2.3.1 First approach: source term approximation

The first approach involves considering the non-conservative term in (2.6),
p∂A/∂x, as a source term. In other words in (2.20), the term S(Uni , t

n, xi)
is taken equal to an approximation of (p∂A/∂x)ni , with the conservative variable
vector and mathematical flux function as in (2.22). When the area is discontin-
uous, this source term approaches an impulsive force. Different approaches such
as the one in [169] have tried to approximate this term in different ways.

2.3.2 Second approach: modified Rusanov scheme

The second approach is adopted from [49] for dealing with the non-conservative
Euler equations by modifying the Rusanov scheme. Clain and Rochette in
[49] adapted this scheme to enforce the numerical solution to be steady-state-
preserving for zero flow for the system of the non-conservative Euler equations.
The extension of the approach in [49] to the DFM is as below:

Un+1
i = Uni −

∆t

∆x

((
F (Uni , U

n
i+1) +G−,ni+1/2

)
−
(
F (Uni−1, U

n
i ) +G+,n

i−1/2

))
,

(2.24)

with

F (Uni , U
n
i+1) =

f(Uni+1) + f(Uni )

2
− λni+1/2Ai+1/2× (αlρl)

n
i+1 − (αlρl)

n
i

(αgρg)
n
i+1 − (αgρg)

n
i

(αlρlul + αgρgug)
n
i+1 − (αlρlul + αgρgug)

n
i

 ,
Ai+1/2 = max(Ai+1, Ai),

(2.25)

where Ai is the cross-sectional area at the center of i-th grid cell (it is assumed
that the area is constant within each grid cell and only changes at the interfaces)
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and

G−,ni+1/2 := −Ai+1 −Ai
2

 0
0
pni

 , G+,n
i−1/2 :=

Ai −Ai−1

2

 0
0
pni

 . (2.26)

In other words, the third entry of the following vector which appears in (2.24),

−1

∆x
(G−,ni+1/2 −G

+,n
i−1/2) =

Ai+1 −Ai−1

2∆x

 0
0
pni


approximates the term p∂A/∂x. Clain and Rochette in [49] prove that the
modified scheme is well-balanced in the case of zero flow.

2.3.3 Third approach: novel, modified Rusanov scheme

The third method is inspired by the idea behind the second approach, by ap-
plying further modifications to the scheme in (2.25). The new modification,
proposed here, is motivated by the need to capture the steady-state solution
with a higher accuracy. In the second approach, when evaluated at the steady-
state solution at the presence of flow inside the domain, we obtain Un+1

i 6= Uni ,
and therefore, the numerical solution deviates from the actual steady-state so-
lution. This approach is motivated by enforcing the last entry of Uni , which is(

(αlρlul + αgρgug)A
)n
i
, to be well-balanced. By using the fact that the mass

flow rates of both phases are constant at every location during a steady-state
solution, the new modification of the scheme is introduced by the flux function
as given below:

F (Uni , U
n
i+1)i+1/2 =

f(Uni+1) + f(Uni )

2
− λni+1/2Ai+1/2×

(αlρl)
n
i+1 − (αlρl)

n
i

(αgρg)
n
i+1 − (αgρg)

n
i

(αlρlulA+ αgρgugA)ni+1

Ai+1/2
− (αlρlulA+ αgρgugA)ni

Ai+1/2

 ,
(2.27)

with the same f and U mentioned in the previous section. In this case, while
starting from the steady-state solution, the third entry of the flux function F
computed by (2.27), i.e., (αlρlulA+ αgρgugA)ni+1 − (αlρlulA+ αgρgugA)ni , be-
comes zero; therefore, at least the deviation of the third entry of conservative
variable at the first time-step is zero and this modification outperforms the sec-
ond approach. Similar to the second approach, this scheme reverts to the original
Rusanov scheme when there is no change in the cross-sectional area.
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2.3.4 Fourth approach: model-based modification

The next novel method, proposed here, is obtained through modifying the con-
servative variables before calculating the flux functions that allows one to treat
the non-conservative term in an indirect way, regardless of the type of the Go-
dunov scheme. The underlying idea is inspired by [57], [103] and consists of
defining the solution as follows:

Un+1
i = Uni −

∆t

∆x

(
F (Uni , U

∗,n
i+1)− F (U∗,ni−1, U

n
i )
)
, (2.28)

where U∗i+1 and U∗i−1 are the modified conservative variables, which are hence-
forth called starred conservative variables. All conservative variables U and the
mathematical flux function f (which will be used in the computation of F ) in
this approach are defined according to (2.1), not (2.6), as the effect of area is
included in the starred variables, meaning that

U = [αlρl, αgρg, αlρlul + αgρgug]
T ,

f = [αlρlul, αgρgug, αlρlu
2
l + αgρgu

2
g + p]T .

First of all, an explanation to this approach is provided, and then, the com-
putational steps for computing U∗i+1 and U∗i−1 at the i-th spatial grid cell is
established to obtain the numerical solution by (2.28).

As mentioned in the eigenvalue analysis in Section 2.2.2, a stationary time-
independent wave (corresponding to λ4 in (2.9)) lies in the system that should be
captured by (2.28). To this end, the method proposed in this section is composed
of two steps. In the first step, the effect of the stationary wave generated by
the non-conservative source term is captured. As the stationary waves are time-
independent, steady-state model is employed to reconstruct this type of waves.
In the second step, the effect of the non-stationary waves is taken into account.
The latter waves are governed by (2.1) as the effect of the stationary wave is
already considered in the first step.

This approach is visualized in Figure 2.3, where the first step mentioned
above is denoted by 1© and the second step is denoted by 2©. Assume that
Un+1
i is required (the green block in Figure 2.3). This grid cell is surrounded

by two interfaces at xi+1/2 and xi−1/2. The conservative variables at the right-
hand and left-hand side of the interface i + 1/2 are shown by Ui+1 and Ui,
respectively, in Figure 2.3. Similarly, the left- and right-hand side values for the
interface i−1/2 can be defined. In this approach, the conservative and primitive
variables affecting the solution in the i−th cell, Ui+1 and Ui−1, are modified such
that these variables contain the effect of the stationary waves at the inlet and
outlet of the cell. The starred values are denoted by U∗i+1 and U∗i−1 in Figure 2.3
at level 1©. Now, as the system has a constant area only over the i-th grid cell
and its neighboring cells, classical finite-volume discretization can be applied on
(2.1) at level 1© to obtain the solution at the i-th spatial grid cell. It should be
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Figure 2.3: Finite-volume modification for the fourth approach, model-based
modification.

noted that the area is assumed to be constant over only these three grid-cells
while the area of other grid cells do not affect the solution of the i-th grid cell at
the current time step n+ 1. Therefore, the solution obtained by (2.28) contains
both the effect of the stationary and non-stationary waves.

After providing the intuition how this method works, the framework for find-
ing the starred values is established here. As the stationary waves are time-
independent, the steady-state solution of the non-conservative system (2.6) is
exploited to find algebraic constraints that capture the stationary waves. Re-
calling steady-state equations in (2.13), we have

∂(αlρlulA)

∂x
= 0,

∂(αgρgugA)

∂x
= 0,

A(αlρlul
∂ul
∂x

+ αgρgug
∂ug
∂x

+
∂p

∂x
) = 0.

To find an algebraic relation over the area discontinuity, (2.13) should be inte-
grated over the interface. However, (2.13c) is difficult to be integrated analyt-
ically over the spatial domain and needs more investigation. This differential
equation can be simplified, as shown in the following Lemma 2.5.
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Lemma 2.5. The equation (2.13c) is equivalent to the following equation if both
phases are present in the system:

m̄g(ug
∂ug
∂x

+
1

ρg

∂p

∂x
)+m̄l(ul

∂ul
∂x

+
1

ρl

∂p

∂x
)+

(ul − ug)(m̄gαl
∂ug
∂x
− m̄lαg

∂ul
∂x

) = 0,

(2.29)

where m̄l = Aαlρlul and m̄g = Aαgρgug.

Proof. From (2.13c), we have:

m̄g
∂ug
∂x

+ m̄l
∂ul
∂x

+A
∂p

∂x
= 0.

As variables αlul and αgug are not constantly zero in general due to the presence
of both phases, we can multiply the above equation by these two variables:

αlul(m̄g
∂ug
∂x

+ m̄l
∂ul
∂x

+A
∂p

∂x
) = 0,

αgug(m̄g
∂ug
∂x

+ m̄l
∂ul
∂x

+A
∂p

∂x
) = 0.

Summation of the above equations and using the identity αg + αl = 1 leads to:

m̄gαlul
∂ug
∂x

+ m̄l(1− αg)ul
∂ul
∂x

+Aαlul
∂p

∂x
+m̄g(1− αl)ug

∂ug
∂x

+ m̄lαgug
∂ul
∂x

+

Aαgug
∂p

∂x
= 0.

Rewriting the above relation leads to the claimed equation (2.29).

The relation in (2.29) cannot be simplified further unless additional assump-
tions are made. In the following sections, we analyze the DFM in two categories.

2.3.4.1 DFM without slip

Assume that there is no slip between the two phases, i.e., K = 1 and S = 0 in
(2.3) and subsequently

û := ul = ug. (2.30)

In this case, as ul − ug = 0 in (2.29), system (2.13) changes to:

∂(αlρlûA)

∂x
= 0,

∂(αgρgûA)

∂x
= 0,
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Aαlρlû(û
∂û

∂x
+

1

ρl

∂p

∂x
) +Aαgρgû(û

∂û

∂x
+

1

ρg

∂p

∂x
) = 0.

As ∂p/∂x = c2l ∂ρl/∂x = c2g∂ρg/∂x, the above equation is integrable over x.
Therefore, over the interface, the following set of functions are set to be constant:

αlρlûA = constant, (2.31a)

αgρgûA = constant, (2.31b)

αlρlûA(
û2

2
+ c2l ln ρl) + αgρgûA(

û2

2
+ c2g ln ρg) = constant. (2.31c)

Equations (2.31a)-(2.31b) represent the mass flow continuity at the interface.
Equation (2.31c) governs the rate of energy exchange at the interface. In other
words, the term û2/2 is the kinetic energy per unit mass of each phase. Also,
c2l,g ln ρl,g is the potential energy of the compressible liquid and gas per unit
mass. Therefore, at the interface, the mass and energy continuity should be
preserved.

For instance, for finding U∗M1
from UM1 , we should solve:

(αlρlû)∗M1
AM2

= (αlρlûA)M1
, (2.32a)

(αgρgû)∗M1
AM2

= (αgρgûA)M1
, (2.32b)(

αlρlû(
û2

2
+ c2l ln ρl) + αgρgû(

û2

2
+ c2g ln ρg)

)∗
M1

AM2
=(

αlρlûA(
û2

2
+ c2l ln ρl) + αgρgûA(

û2

2
+ c2g ln ρg)

)
M1

,

(2.32c)

where M1 and M2 refer to two neighboring cells, see Algorithm 1 for more details.
However, when the slip law is not discarded, finding an algebraic relation

becomes hard as the third term (ul−ug)(m̄gαl∂ug/∂x− m̄lαg∂ul/∂x) in (2.29)
is not negligible. In order to extend the applicability of the fourth approach for
cases with slip, extra physical assumptions should be made, which is dealt with
below.

2.3.4.2 DFM with slip

In this case, the analytical integration of the momentum equation (2.13c) is
challenging. In [18], the authors claim that the DFM cannot be endowed with
an entropy pair unless restrictive assumptions such as no-slip are made. This fact
that the integration of the momentum equation is challenging might be related
to the lack of an entropy inequality. Alternatively, here, we try to impose some
physical assumptions to be able to integrate the momentum equation.

It is assumed that at the interfaces of area variation, the ratio of volume
and mass composition of the mixture do not change (in other words, still mass
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continuity is maintained). This assumption is valid when one of the phases is
dominant in volumetric sense in the pipe or the area varies smoothly. Otherwise,
in situations where both phases occupy the space rather equally and the area
variation is sudden, this assumption is less accurate. These two assumptions
result in constant volumetric fraction and mass fraction of each phase at the
interface, respectively. Meaning that at each interface, the following conditions
hold:

αl
αg + αl

= constant =⇒ αl,g = constant, (2.33a)

αlρl
αlρl + αgρg

= constant =⇒ ρl
ρg

= constant. (2.33b)

Then (2.13c) is rewritten as below:

Aρg(αl
ρl
ρg
ul
∂ul
∂x

+ αgug
∂ug
∂x

+
1

ρg

∂p

∂x
) = 0

Aρg 6=0
=⇒

αl
ρl
ρg

u2
l

2
+ αg

u2
g

2
+ c2g ln ρg = constant.

Finally, the set of algebraic constraints under the set of assumptions mentioned
in (2.33) for ρg > 0 is defined as:

αlρlulA = constant, (2.34a)

αgρgugA = constant, (2.34b)

αl
ρl
ρg

u2
l

2
+ αg

u2
g

2
+ c2g ln ρg = constant. (2.34c)

Still the mass continuity exactly helds. The kinetic energy of both phases and
the potential energy of the gaseous phase can still be detected in (2.34c). This
is due to the assumption that we consider that one of the phases is dominant
in space. Therefore, the potential energy due to the expansion of the dominant
phase, here gas, is only reflected in the algebraic relation. Moreover, due to the
assumption of the prevalence of one phase, the area has been disappeared from
(2.34c). We emphasize again if both phases are rather equally present in the
pipe and the area variation is sudden, the relation (2.34c) is not accurate.

Similar to the previous set of assumptions, for finding U∗M1
from UM1

, the
following set of algebraic equations should be solved:

(αlρlul)
∗
M1
AM2

= (αlρlulA)M1
, (2.35a)

(αgρgug)
∗
M1
AM2

= (αgρgugA)M1
, (2.35b)

(αl
ρl
ρg

u2
l

2
+ αg

u2
g

2
+ c2g ln ρg)

∗
M1

= (αl
ρl
ρg

u2
l

2
+ αg

u2
g

2
+ c2g ln ρg)M1 , (2.35c)
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Algorithm 1: Fourth approach: model-based modification

Input: Uni−1, U
n
i , U

n
i+1, Ai−1, Ai, Ai+1

Output: Un+1
i =

(
[αlρl αgρg αlρlul + αgρgug]

T
)n+1

i

1 Compute primitive variables, V ni−1, V
n
i , V

n
i+1, from conservative

variables, Uni−1, U
n
i , U

n
i+1 [169],

2 if Ai+1 6= Ai then
3 Solve (2.32) or (2.35), based on the assumption taken in Section

2.3.4, with M1 = i+ 1 and M2 = i, obtain V ∗,ni+1 and then U∗,ni+1

4 else
5 U∗,ni+1 = Uni+1

6 end if
7 if Ai 6= Ai−1 then
8 Solve (2.32) or (2.35), based on the assumption taken in Section

2.3.4, with M1 = i− 1 and M2 = i, and obtain V ∗,ni−1 and then U∗,ni−1,

9 else
10 U∗,ni−1 = Uni−1

11 end if

12 Compute Un+1
i via (2.28).

where M1 and M2 refer to the neighboring cells, see Algorithm 1 for more details.

All steps involved in the fourth approach are summarized in Algorithm 1.
Now, a justification on the performance of this approach is presented in the
following claims.

Theorem 2.6. For any given U0
i in xi ∈ [0, L] that satisfies (2.13), then Uni =

U0
i ∀ n ∈ N, if no-slip condition (2.30) is assumed to obtain the solution using

Algorithm 1.

Proof. Starting from a steady-state solution U0
i , according to (2.13) and using

(2.31), we have:

(αlρlûA)M2
= (αlρlûA)M1

, (2.36a)

(αgρgûA)M2
= (αgρgûA)M1

, (2.36b)(
αlρlûA(

û2

2
+ c2l ln ρl) + αgρgûA(

û2

2
+ c2g ln ρg)

)
M2

=(
αlρlûA(

û2

2
+ c2l ln ρl) + αgρgûA(

û2

2
+ c2g ln ρg)

)
M1

.

(2.36c)

Comparing equations (2.36) with (2.32) reveals that U∗M1
= UM2 . Using this
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property in (2.28), by replacing M1 and M2 as described in Algorithm 1 yields

Un+1
i = Uni −

∆t

∆x
(F (Uni , U

n
i )− F (Uni , U

n
i )) = Uni . (2.37)

Solving (2.37) recursively yields Uni = U0
i . Thus, the proposed scheme captures

the steady-state solution exactly. For the case with slip and assumptions (2.33),
the scheme captures the steady-state solution only approximately.

Theorem 2.7. In case of constant cross-sectional area, i.e., ∂A/∂x = 0, the
solution Uni obtained from (2.28) is equal to that obtained from (2.20) if no-slip
condition (2.30) is assumed.

Proof. For the case of constant area over two neighboring cells and assuming
no-slip condition, (2.32) reduces to

(αlρlû)∗M1
= (αlρlû)M1

,

(αgρgû)∗M1
= (αgρgû)M1

,(
αlρlû(

û2

2
+ c2l ln ρl) + αgρgû(

û2

2
+ c2g ln ρg)

)∗
M1

=(
αlρlû(

û2

2
+ c2l ln ρl) + αgρgû(

û2

2
+ c2g ln ρg)

)
M1

,

where a candidate solution would be U∗M1
= UM1 . Then, by following Algorithm

1, (2.28) reduces to

Un+1
i = Uni −

∆t

∆x

(
F (Uni , U

n
i+1)− F (Uni−1, U

n
i )
)
.

This is similar to (2.20) with zero source terms (since area is constant and
∂A/∂x = 0) and the modified scheme reverts back to the classical scheme. This
feature is reflected in the Algorithm 1 to accelerate the numerical solution. Again
we should mention that for the case with slip and assumptions (2.33), the scheme
recovers the classical scheme only approximately when the area is constant.

Remark 2.8. After finding the starred values through solving the algebraic con-
straints, the numerical solution of (2.6) can be computed. If the starred-values
are not found, one cannot compute the numerical solution by this method and
other methods should be followed. Since these constraints exploit the steady-state
equation (2.13), there is the possibility that these constraints are not satisfied ei-
ther when starting at initial conditions far from the steady-state solution or when
abrupt perturbations occur inside the domain. Notably, the algebraic constraints
(2.32) and (2.35) may also have multiple solutions. Although the assumption
of starting close to the steady-state solution is restrictive, there are many ap-
plications in the industry for which the analysis of perturbations with respect to
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the steady-state solution is important. In addition, studying the perturbations
of steady-state solution of different systems has been the subject of many other
studies [159], [161]. Moreover, this work can be the first step towards solving the
non-conservative DFM by understanding the restrictions of the current approach.
For a more in-depth discussion on features of the solution of the algebraic con-
straints, refer to Appendix A at the end of this paper, where the procedure to
choose the feasible solution in case of multiple solutions is also explained.

In the following section, numerical results associated to each approach are
discussed.

2.4 Numerical Results

Numerical results in this section are divided into five categories. First, in order to
find the best scheme to solve system (2.6), the methods introduced in Section 2.3
have tested their ability to preserve the steady-state solution of system (2.6) with
a piecewise constant cross-sectional area. Second, the most accurate approach, in
the sense of capturing the steady-state solution, is used to compute the solution
of (2.6) by imposing no variation in cross-sectional area in order to compare
its performance with the solution obtained from the classical scheme of (2.21)
applied to (2.1). Third, the selected approach has been tested for a transient
flow modeling in a horizontal pipe with piecewise constant cross-sectional area.
Fourth, the method is tested on a piecewise continuous cross-sectional area,
both for capturing the steady-state solution and performing transient simulation.
Finally, an error convergence study is performed.

The values of the parameters involved in system (2.6) are summarized in
Table 2.1. The steady-state solution of (2.14) is acquired by the bvp4c solver
of MATLAB. This solver approximates the solution to (2.13) in an iterative way
while considering the boundary values at both ends of the computational domain
[156].

Remark 2.9. In Sections 2.4.1 and 2.4.2 for the fourth approach, lines
2, 4− 7, 9− 11 of Algorithm 1 are ignored to test the performance of the new
model-based modified scheme to automatically recover the classical scheme in lo-
cations where the area is constant. After becoming assure of the performance at
constant area locations, the entire Algorithm 1 is used in other sections.

Remark 2.10. As mentioned before, to make fair comparisons between this ap-
proach and the second and the third approaches introduced in previous sections,

Table 2.1: Test case parameters.
ρ0 p0 ṁl ṁg cg cl

1000 kg/m3 1 bar 0.3 kg/s 0.003 kg/s 316 m/s 1000 m/s
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Figure 2.4: Configuration of the computational domain.

we use the Rusanov scheme as the case study. However, the modification intro-
duced in the fourth approach can be applied to other finite-volume schemes in a
similar manner; only the numerical flux function F in (2.21) should be changed
according to the finite-volume scheme.

Remark 2.11. The Rusanov scheme is subject to the CFL condition

∆t = CFL
∆x

max(|λ1|, |λ2|, |λ3|, |λ4|)
, (2.38)

where λi, i ∈ {1, 2, 3, 4} are given by (2.9). For all simulations in this section,
we estimate max(|λ1|, |λ2|, |λ3|, |λ4|) ≈ cl and set CFL = 1. Then, according to
the chosen ∆x, the temporal discretization ∆t is specified.

Remark 2.12. To the best of authors’ knowledge, no Riemann solution for
the DFM with variable cross-sectional area has been published. Before doing
any transient simulations, the performance of the scheme at the steady state is
evaluated. For transients, the performance of the scheme is assessed against the
classical Rusanov scheme for the case of constant cross sectional area along the
pipe. For a reference solution for piecewise constant area, refer to Appendix B.
For a general piecewise continuous cross-sectional area, no reference solution
exists for transient simulations.

2.4.1 Preservation of the steady-state solution

This section is dedicated to check the steady-state preservation of the numerical
approaches proposed in Section 2.3. Since for the set of algebraic relations (2.31)
in the fourth approach, no slip between the phases is considered, i.e., K = 1 and
S = 0, we apply the same condition in this section to perform a fair comparison
between different approaches. Figure 2.4 shows the computational domain for
this case study that is a horizontal pipe with one discontinuity in diameter along
its length. Moreover, the time horizon is 1 s with discretization steps ∆x = 1
m. The pressure at the right boundary is also pR(t) = 1 bar. It should be noted
as the simulation is stopped at t = 1 s, there are still some transient effects in
the solution.
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Figure 2.5: Liquid phase variables of system (2.6) by using original Rusanov
scheme on variable area and the first approach: source term approximation.

2.4.1.1 First approach: source term approximation

The numerical solution of (2.6) obtained by the first approach mentioned in
Section 2.3.1 in comparison with solution of system (2.13) is shown in Figure
2.5. Clearly, this kind of non-conservative remedy is afflicted by non-physical
peaks at the locations of the discontinuities in the cross-sectional area where the
impulsive force lies. As this method fails to capture the steady-state solution, it
is not selected for further investigation by transient simulations.

2.4.1.2 Second approach: modified Rusanov scheme

After modifying the Rusanov scheme as explained in Section 2.3.2, the solution
of this test cases is shown in Figure 2.6. Clearly, this modification suffers from
non-physical jumps at the locations of the area discontinuities. This should not
be a surprise since this modification is proved in [49] to be well-balanced only
in the case of zero flow inside the domain. However, in the presence of flow,
the performance of this scheme is not necessarily satisfactory in the sense that
it is incapable of preserving the steady-state solution, similar to the presented
results. Therefore, this method is also not studied further in this paper.

2.4.1.3 Third approach: novel, modified Rusanov scheme

The results for the third type of modification is shown in Figure 2.7. Appar-
ently, the results of the new modified Rusanov are better than the first and
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Figure 2.6: Liquid phase variables of system (2.6) by using Rusanov scheme on
variable area and the second approach: modified Rusanov scheme in Section
2.3.2.
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Figure 2.7: Liquid phase variables of system (2.6) by using Rusanov scheme on
variable area and the third approach: novel, modified Rusanov scheme in Section
2.3.3.

second approach in preserving the steady-state solution except for relatively
small discontinuity jumps in the mass flow rate. These jumps are related to the
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Figure 2.8: Liquid phase variables of system (2.6) by using Rusanov scheme on
variable area and the fourth approach, model-based modification, together with
(2.31).

approximation of the integral
∫ xi+1/2

xi−1/2
p ∂A/∂x dx by pi(Ai+1 − Ai−1)/2. This

numerical deficiency pollutes the numerical solutions. Another weakness of this
approach is that by increasing the spatial rate of cross-section variation in the
discretized sense at a certain location (i.e., higher jumps in the cross section
and a larger impulsive force), the solution deviates from the actual steady-state
solution even further. Therefore, this method is also not selected for further
investigation.

2.4.1.4 Fourth approach: model-based modification

The numerical results obtained by using the fourth approach with the set of
algebraic constraints in (2.31) are demonstrated in Figure 2.8. The numerical
results show a significant accuracy in the preservation of the steady-state solution
of the PDEs (2.6). Compared to the previous results, pressure and mass flow
rate are preserved with significantly higher accuracy. The small deviation from
steady-state is due to the error in solving the algebraic relations (2.31).

The simulation results for the set of algebraic constraints in (2.34) are de-
picted in Figure 2.9. This set of assumptions also performs well in capturing
the steady-state solution. As obvious from the top-left side of Figure 2.9, the
gas phase is dominant here and αl, and subsequently αg, change negligibly over
the interface. In addition, due to the very small change of pressure apparent
from bottom-right side of Figure 2.9, the assumption of constant ρl/ρg over the
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Figure 2.9: Liquid phase variables of system (2.6) by using Rusanov scheme on
variable area and the fourth approach, model-based modification, together with
(2.34).

interface is also valid.

Comparing all the results, the last method outperforms the other methods
in capturing the steady-state solution. Therefore, the proposed modification
in Section 2.3.4 together with the set of algebraic constraints (2.31) and (2.34)
has been used for transient simulations. In these simulations, if the no-slip
condition is imposed, the set of algebraic constraints (2.31) is used; otherwise,
the algebraic constraints at the location of area variation are governed by (2.34).
Since this approach uses a model-based modification, it does not suffer from any
non-physical discontinuities in the solution of the state variables.

2.4.2 Comparisons in case of constant area

In this section, the performance of the proposed scheme to accurately character-
ize the dynamic behavior of the system in the case of constant area is analyzed.
In order to do so, the result of the classical Rusanov scheme (2.21) applied to
(2.1) is compared with the result of the model-based modified Rusanov scheme
(2.31) or (2.34) applied to (2.6) in case of constant cross-sectional area. It should
be noted again that the full Algorithm 1 is not implemented here as mentioned
in Remark 2.9.

For the case of constant cross-sectional area, various benchmark tests for
the DFM have been introduced. One well-known benchmark test is the DFM
shock-tube problem, where the parameters of the simulation are taken from [69].
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Figure 2.10: Performance of model-based modified and classical Rusanov scheme
for shock tube test, constant area.

A horizontal pipe with the constant diameter of 0.1 m and length of 100 m is
divided into two sections at the middle length of the pipe. For the left half of
the pipe, the initial data are as below:

αg = 0.55, ul = 10.37 m/s, p = 80450 Pa.

For the right half of the pipe, we set

αg = 0.55, ul = 0.561 m/s, p = 24282 Pa.

In addition, discretization steps are ∆x = 1 m, and K = 1.07 and S = 0.216.
First, we apply the modified Rusanov scheme (2.28) along with (2.34) on

system (2.6) and compare the results with the original Rusanov scheme (2.21)
applied to system (2.1). Both solutions should correspond exactly with each
other, as seen in Figure 2.10. As area is constant, the assumptions made for the
DFM with slip as in (2.33) are valid. Reference solution is obtained on a fine
discretization of ∆x = 0.1 m with the classical Rusanov scheme.

Thus, in order to reduce the computational cost, the algebraic relations of
(2.31) and (2.34) are enforced only at the locations where the cross-section varies.



2.4 Numerical Results 49

At the other locations, we set U∗i+1 = Ui+1 and U∗i−1 = Ui−1 as already noted in
Algorithm 1.

2.4.3 Wave reflection in the presence of piecewise constant
cross section

In this section, transients near the steady-state solution for a flow inside a pipe
with piecewise constant cross-section are analyzed. At the location of discon-
tinuous cross-section, any pressure wave is partially reflected back. Therefore,
presence of the discontinuous cross-section dramatically affects the frequency
response and the natural frequency of the system, which highly depends on the
location and number of area variations. This kind of behavior has to be captured
by the numerical simulation. In this section, the wave reflection behavior in the
model-based modified Rusanov scheme together with (2.31) in both cases of dis-
continuous and constant cross-section of area are compared as another criterion
for assessing the performance of the scheme.

The wave propagation can be excited by variation of a mass flow at the left
boundary or a pressure change at the right boundary. In this simulation, the
pressure at the right boundary pR(t) is increased from 1 bar to 1.2 bar at t = 1
s to initiate a propagating pressure wave inside the domain. Other simulation
parameters are shown in Table 2.1 with K = 1 and S = 0 with the pipe shown in
Figure 2.4. The comparison of pressure wave propagation and reflection between
two boundaries and area discontinuities can be observed in Figure 2.11 and 2.12.

The reference solution is obtained as explained in Appendix B. In Figure
2.11, the reference solution is obtained on a coarse with ∆x = 1 m (the same
spatial resolution as the solution with the modified scheme) and a fine grid with
∆x = 0.1 m. Result of the modified scheme and the reference solution are very
close to each other. It can be observed that the pressure front generated at the
location of discontinuous area (in this case at x = 25 m which is shown by dashed
black line in Figure 2.12) opposes the incoming pressure waves and this front
partially reflects back the pressure waves as obvious from the top part of Figure
2.12 at around t = 3 s and similarly at the other time instants. This feature,
which changes the wave propagation pattern inside the domain, has been well
predicted by the scheme. In case of constant area, no pressure reflection occurs
until the pressure wave reaches the other boundary.

Remark 2.13. This example resembles a choke plugging scenario within man-
aged pressure drilling operations. When the mud gets stuck in the choke installed
at the top of the annulus, the choke pressure experiences a sudden increase. Due
to this pressure increase, a pressure wave propagates inside the annulus, which
can be analyzed similar to the example in this section by adding relevant friction
and gravity source terms into the governing equations.
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Figure 2.11: Effect of discontinuous cross section in pressure reflection (the
variable cross-section is defined in Figure 2.4 for the top case and the constants
cross section is with diameter of 7.5 cm for the bottom case).

Figure 2.12: Space-time graph for pressure [bar] wave reflection pattern;
top:variable cross section as in Figure 2.4, bottom: constant cross section with
diameter of 7.5 cm.
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Figure 2.13: Dimension of the pipe with piecewise continuous cross-section.
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Figure 2.14: Gas velocity at different time instants.

2.4.4 Piecewise continuous cross section

Here, a two-phase flow inside a converging-diverging nozzle is investigated. The
dimensions of the pipe are shown in Figure 2.13. The simulation parameters are
the same as in Section 2.4.3. Figure 2.14 depicts the gas velocity at different
time instants.

The top-left plot in Figure 2.14 shows that the steady-state solution is cap-
tured well by the numerical scheme. Then, by increasing the pressure at the
right boundary, the opposition force at the right boundary lowers the velocity
inside the domain. This test case shows the capability of the proposed scheme
both in capturing the steady-state solution and in the transient simulation of
two-phase flow inside a pipe with piecewise continuous cross section.
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2.4.5 Error convergence analysis

To accurately study the error convergence of the scheme, a test case should
be introduced such that other aspects of the numerical solution does not affect
the accuracy. For instance, ∂A/∂x and the mixture speed of sound ω should be
analytically known. Therefore, a pipe with continuous cross section is selected as
shown in Figure 2.15, which defines ∂A/∂x analytically. To know the analytical
speed of sound, no slip condition is set, i.e., K = 1 and S = 0; then, ω is governed
by (2.10). Other parameters are taken from Table 2.1. Boundary conditions do
not change (pR(t) = 1 bar) and the system remains on its steady-state.

In order to study convergence properties of the scheme, the number of grid-
cells (N) are varied, the problem is solved with the model-based modified Ru-
sanov scheme at other values for ∆x (i.e., other number of grid-cells) and the
solution (here the gas velocity) is compared with the reference solution at the
last time instant, t = 1 s. The error is defined as the relative difference between
numerical gas velocity at the last time instant and the initial gas velocity at all
locations, as in (2.39),

e =
‖ug(x, 1)− ug(x, 0)‖Lr

‖ug(x, 0)‖Lr
, (2.39)

where ‖·‖Lr is the Lr norm of its argument over the spatial domain. The values
for the error indicator (2.39) with increasing the number of the cells are reported
in Table 2.2 and in Figure 2.16 for r = 2,∞. The absolute value of the slope
of each line is also depicted in this figure, confirming that the proposed scheme
does not affect order of accuracy of the underlying scheme (it is well-known that
the classical Rusanov scheme is first order accurate [105]).

The small discrepancy between the order of accuracy at different level of the
number of grid cells is due to the inaccuracy in solving the nonlinear algebraic
constraints (2.31).

All discussions in this paper focused on first-order schemes; the extension to
higher-order scheme can be done, which is beyond the scope of this paper. This
will be the topic of future works.

Figure 2.15: Dimension of the pipe with continuous cross-section to study the
error convergence.
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Table 2.2: Relative error convergence for the model-based, modified Rusanov
scheme.

Number of cells r = 2 r =∞
50 0.012 0.0289
100 0.0061 0.0143
200 0.0031 0.0070
400 0.0015 0.0033
800 0.00076 0.0016

Generally, this approach of dealing with variable cross-sectional area is prob-
lematic when the system (2.6) starts far from steady-state solution or when it
is used for simulating abrupt dynamics. In this setting, an analysis has been
presented in Appendix A.

2.5 Conclusions

This paper studied numerical solvers for the non-conservative Drift Flux Model
in the presence of variable cross-sectional area. Different numerical approaches
have been proposed and compared to the existing approaches in the sense of
accurate preservation of the steady-state solution. It has been shown that one
of the new proposed schemes, the model-based modified scheme, indeed captures

50 100 200 400 800
10-4

10-3

10-2

10-1

Figure 2.16: Relative error convergence by increasing the number of the grid
cells with the model-based modified Rusanov scheme together with (2.31).
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the physical steady-state solution with an acceptable accuracy. The model-based
modified scheme can be applied to piecewise continuous cross-sectional areas as
well. This modified scheme reduces to the classical scheme in case of constant
area and it is also shown that the modified scheme enables simulation of the wave
reflection in case of discontinuous cross-sectional area. It has been numerically
proved that the proposed modification retains the first order of accuracy of the
underlying scheme. Based on the performance of the proposed scheme, it can
be used for simulation of industrial applications such as the hydraulics of two-
phase flow occurring in drilling for oil and gas in a well with discontinuous
cross-sectional area.



Chapter 3

An Approximate Well-Balanced Upgrade of
Godunov-Type Schemes for the Isothermal
Euler Equations and the Drift Flux Model

with Laminar Friction and Gravitation

In this paper, approximate well-balanced finite-volume schemes are developed
for the isothermal Euler equations and the drift flux model, widely used for the
simulation of single- and two-phase flows. The proposed schemes, which are
extensions of classical schemes, effectively enforce the well-balanced property to
obtain a higher accuracy compared to classical schemes for both the isothermal
Euler equations and the drift flux model in case of non-zero flow in the presences
of both laminar friction and gravitation. The approximate well-balanced property
also holds for the case of zero flow for the isothermal Euler equations. This is
achieved by defining a relevant average of the source terms which exploits the
steady-state solution of the system of equations. The new extended schemes
reduce to the original classical scheme in the absence of source terms in the
system of equations. The superiority of the proposed well-balanced schemes to
classical schemes, in terms of accuracy and computational effort, is illustrated by
means of numerical test cases with smooth steady-state solutions. Furthermore,
the new schemes are shown numerically to be approximately first-order accurate.

This chapter is based on “M.H. Abbasi, S.Naderi Lordejani, C.Berg, L.Iapichino,
W.H.A.Schilders, N.van de Wouw, An Approximate Well-Balanced Upgrade of Godunov-
Type Schemes for the Isothermal Euler Equations and the Drift Flux Model with Lam-
inar Friction and Gravitation, International Journal for Numerical Methods in Fluids, in
press, 2020.”
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3.1 Introduction

Numerical simulation of single- and two-phase flows has attracted the atten-
tion of researchers in the past few decades. This interest is invoked by many
associated industrial applications, such as flow dynamics in petroleum refiner-
ies, distillation units, boilers of petrochemical plants and refineries, pipelines for
long-distance transportation of gas and liquid [120] as well as in drilling systems
[132]. Accurate prediction of the steady-state solution of such systems is crucial
in the decision-making process; for instance, pipelines are usually designed to op-
erate in the steady condition [48]. Moreover, mathematical models are used for
leak detection in pipelines by comparing the measurements with the numerical
steady-state solution [102]. This highly relies on the accuracy of the numerical
solution.

In addition, transient multi-phase flows commonly occur in pipelines when
changes in operational conditions, such as inlet and outlet flow rates, and set-
point pressures, are induced. These changes are usually exerted to reach a new
steady condition in the system. All these points dictate that a reliable simulator
should predict not only transients accurately but also the steady-state solution.

Many numerical methods have been used for solving the equations governing
the physics of a phenomenon. When there is no effect from external sources,
these methods are often highly accurate in predicting steady-state behaviors of
the system. However, many realistic industrial systems, such as, e.g., managed
pressure drilling systems, are inevitably affected by external sources such as
friction and gravitation [128]. It has been observed that classical finite-volume
schemes do not preserve the analytical (or the trustworthy numerical) smooth
(i.e., continuous and differentiable) steady-state solution of systems in the pres-
ence of such source terms [25], [38], [133]. To resolve this issue, much effort has
been put into deriving schemes capable of preserving the analytical steady-state
solution. Such schemes are called well-balanced schemes [124], [125].

The isothermal Euler equations (henceforth called Euler equations) [115] and
the Drift Flux Model (DFM) [71] have been widely used for modeling single and
two-phase flows in pipelines. The accuracy of Euler equations and the DFM
for single-phase and two-phase flows in drilling scenarios has been verified by
comparing it to real-life field data [5], [128]. Thus, these models are trustworthy
for simulation of single-phase and two-phase flows in pipelines and in drilling.
Developing well-balanced schemes for Euler equations and the DFM is necessary
to approximate the correct steady behavior of the flow in pipelines. To capture
the analytical steady-state solution of Euler equations, a few studies have been
carried out for special cases [21], [39], [46], [100]. The developed schemes in
these studies are all well-balanced only with respect to gravity, and not friction.
Moreover, the proposed solution in [21], [39], [100] relies on the analytical steady-
state solution, , which is, in general, not available or is computationally expensive
to be computed at each time step. Furthermore, schemes in [21], [39], [100] are
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only well-balanced in case of zero flow (stationary steady-state solutions), which
restricts the applicability of these schemes. Stationary steady-state solution of
Euler equations is, however, much easier to capture compared to moving (non-
zero flow) steady-state solutions as the mass conservation law is automatically
satisfied in the stationary situation. Moreover, the analytical stationary steady-
state solution replicates a trivial hydrostatic solution, which might not be the
most important scenario in drilling for oil and gas and also the transportation
of liquid and gas through pipelines. The solution in [46], although applicable for
moving steady-states, is based on neglecting the diffusive part of Rusanov scheme
[105] when the system is in its steady state (Rusanov scheme then converts to
a centered scheme when their algorithm detects that the system has reached
steady condition). Nonetheless, the diffusive part of this scheme is essential for
the stability of the solution during transients. Moreover, the mechanism that
detects the solution is now steady and the diffusive part should be neglected
is not well explained. Therefore, in this study, a different method is proposed
to solve Euler equations in a well-balanced manner in a general scenario (zero
and non-zero flow) in the presence of both laminar friction and gravitation with
an accuracy much higher than classical schemes; however, our method does
not capture steady-state solution exactly and therefore we recover the actual
steady-state solution approximately. This leads to an approximate well-balanced
scheme. Moreover, we also propose a scheme for the case of two-phase flows
governed by the DFM. To the best of authors’ knowledge, no study has been
performed on capturing the smooth steady-state solution of multi-phase flows,
especially the DFM.

Contrary to Euler equations and the DFM, the shallow water equations have
attracted many researchers for developing a well-balanced scheme [14], [24], [39],
[124], [125]. These efforts were pioneered by developing a well-balanced scheme
for a lake at rest [14], [39], further extended to non-zero velocity with topog-
raphy [125] and friction source terms [124]. In case of non-zero velocity, the
schemes become approximately well-balanced as many assumptions have to be
made. Moreover, the convergence rate of the scheme also reduces due to these
simplifying assumptions [124], [125]. Fortunately, Euler equations [46], the DFM
[69] and the shallow water equations [125] share many common features; for ex-
ample, all three systems are hyperbolic (for the DFM, it is hyperbolic over a wide
region of the state variables [183]) and these systems are typically discretized by
finite-volume techniques. Therefore, we propose to generalize the ideas proposed
for the shallow water equations and extend these techniques to Euler equations
and the DFM. Compared with the studies on shallow water equations, apart
from the application for other classes of PDEs, this study differs in another cru-
cial aspect. In [124], [125], the intermediate values in the approximate Riemann
solver are found to force the system to be approximately well-balanced. Here,
we modify an existing scheme to upgrade it approximately well-balanced. All in
all, this research aims to develop a scheme- and model-dependent framework for
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increasing the accuracy of numerically obtained steady-state solutions of Euler
equations and the DFM. Nonetheless, this approach can be extended straight-
forwardly to other numerical schemes and also to other systems of hyperbolic
PDEs.

This paper is organized as follows. In Section 3.2, Euler equations and the
DFM together with their steady-state solutions are introduced. In Section 3.3,
a methodology to upgrade a finite-volume scheme to become well-balanced is
discussed. Moreover, the application of this methodology to an advection equa-
tion, Euler equations and DFM is elaborated (the exact well-balanced property
of the scheme is proved for the advection equation). In Sections 3.4 and 3.5, the
proposed schemes are supported by illustrative numerical test cases for Euler
equations and the DFM, respectively. In Section 3.6, the error convergence of
the schemes is studied. Finally, Section 3.7 concludes the paper.

3.2 Single- and two-phase flow models

In this section, Euler equations and the DFM, together with the corresponding
steady-state solutions, are introduced.

3.2.1 Isothermal Euler equations

Single-phase flow inside a pipe can be modeled by the isothermal Euler equations
[57]. This system of equations is as follows:

∂w

∂t
+

∂

∂x

(
f(w)

)
=

(
0

q(w, x)

)
, t ∈ [0, T ], x ∈ (0, L), (3.1)

where w, q(w, x) and f(w) are, respectively, the vector of conservative variables,
the source terms and the mathematical flux function defined as

w =

(
ρ
ρu

)
, f(w) =

(
ρu

ρu2 + p

)
, q(w, x) = F (w, x) +G(w, x), (3.2)

with ρ(t, x), u(t, x) and p(t, x) denoting density, velocity and pressure of the
fluid, respectively. The temporal and spatial variables are denoted by t and x
while T and L are the final time of the simulation and the length of the spatial
domain (i.e., the length of the pipe). Moreover, F (w, x) is the laminar friction
and G(w, x) is the gravitational source term. In this paper, we consider

F (w, x) = −32
µ

d2
u, (3.3a)

G(w, x) = −ρg sin θ, (3.3b)

where µ, d, g and θ are, respectively, the viscosity of the fluid, the hydraulic
diameter of the pipe, the gravitational acceleration and the pipe inclination
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with respect to the horizontal plane. System (3.1) is completed by the Equation
Of State (EOS) of the fluid as follows:

p = (ρ− ρ0)c2 + p0, (3.4)

where ρ0 and p0 are the reference density and pressure for defining the EOS of
the fluid and c is the constant speed of sound in the medium occupied by the
fluid. As the dynamics for single-phase flow are now uniquely described, we can
proceed to find a numerical steady-state solution of system (3.1).

3.2.1.1 Steady-state solution of the isothermal Euler equations

The equations describing the steady-state solution are obtained by using
∂w/∂t = 0 in (3.1) and substituting p from (3.4) into (3.1), which read as

dm

dx
= 0, (3.5a)

d

(
m2

ρ
+ c2ρ

)
dx

= q, (3.5b)

where m = ρu is the momentum. For subsonic flows (which is the common
case for drilling applications and transport of gas and liquid), the two boundary
conditions to be specified to solve system (3.5) lead to a two-point Boundary
Value Problem (BVP), which is hard to be solved analytically, especially because
both friction and gravity are present in q. However, this BVP can be solved
numerically by the bvp4c solver of MATLAB. This solver approximates the solution
to (3.5) in an iterative way while considering the boundary values at both ends
of the computational domain [156]. This numerical solution later serves as a
reference solution to evaluate the accuracy of the proposed scheme in predicting
the steady-state solution.

However, due to the nature of the BVP, the steady-state solution is compu-
tationally expensive and thus the approach from [21], [39], [100] is not applicable
here to develop a well-balanced solver for Euler equations. Moreover, since fric-
tion and gravity are present simultaneously and we aim to maintain all charac-
teristics of the scheme (not neglecting the diffusive part), the methodology from
[46] cannot be employed either. Thus, we try to find a more general approach
to develop a well-balanced numerical solver in Section 3.3. Next, we analyze
the steady-state solution in case of only laminar friction and only gravitational
force, which later supports our arguments in Section 3.3.2.2.

Lemma 3.1. The isothermal Euler equations (3.1) with (3.4) for the case of
only friction source term (3.3a) has (a unique or two) steady-state solutions for
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a reference point x0 with ρ(x0) = ρ̂0 and m(x0) = m0 if

−m2
0 ln

m0

c
+m2

0 ln ρ̂0 +
m2

0

2
− ρ̂0

c2

2
+ 32

µ

d2
m0(x− x0) ≤ 0. (3.6)

Proof. In the case of only laminar friction as the source term, (3.5) reads as

dm

dx
= 0, (3.7a)

d

(
m2

ρ
+ c2ρ

)
dx

= −32
µ

d2

m

ρ
, (3.7b)

Since the momentum is constant along the spatial domain in the steady state,
we consider m = m0 and rewrite (3.7b) as follows:

m2
0

d

dx

(
1

ρ

)
+ c2

dρ

dx
= −32

µ

d2

m0

ρ
→ −m2

0

d ln ρ

dx
+
c2

2

dρ2

dx
= −32

µ

d2
m0. (3.8)

Consider x0 ∈ R as a reference point with ρ(x0) = ρ̂0 and integrating (3.8) over
(x0, x) and denoting ρ(x) = ρ, we have:

ζ(ρ;x, x0,m0, ρ̂0) := −m2
0 (ln ρ− ln ρ̂0) +

c2

2

(
ρ2 − ρ̂2

0

)
+ 32

µ

d2
m0(x− x0) = 0.

(3.9)

The minimum of ζ occurs at

dζ

dρ
= −m

2
0

ρ
+ c2ρ = 0→ ρc =

m0

c
. (3.10)

Function ζ is strictly increasing on ρ ∈ (ρc,∞) and decreasing on ρ ∈ (0, ρc).
Therefore, function ζ admits a unique minimum for ρ = ρc. As ζ → ∞ when
ρ→ 0 and ρ→∞, to have any steady solution, ζ(ρc) ≤ 0 must hold. This leads
to the condition (3.6).

Lemma 3.2. The isothermal Euler equations (3.1) with (3.4) for the case of
only gravity source term (3.3b) has (a unique or two) steady-state solutions for
a reference point x0 with ρ(x0) = ρ̂0 and m(x0) = m0 if

c2

2
− m2

0

2ρ2
0

+ c2
(

ln
m0

c
− ln ρ0

)
+ gsinθ(x− x0) ≤ 0. (3.11)

Proof. Similar to Lemma 3.1, we have

m2
0

d

dx

(
1

ρ

)
+ c2

dρ

dx
= −ρg sin θ → m2

0

2

d

dx

(
1

ρ2

)
+ c2

d ln ρ

dx
= −g sin θ. (3.12)
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Consider x0 ∈ R as a reference point with ρ(x0) = ρ̂0 and integrating above over
(x0, x) and showing ρ(x) = ρ, we have:

ζ(ρ;x, x0,m0, ρ̂0) :=
m2

0

2

(
1

ρ2
− 1

ρ̂2
0

)
+ c2 (ln ρ− ln ρ̂0) + g sin θ(x− x0) = 0.

(3.13)

The minimum of ζ occurs at

dζ

dρ
= −m

2
0

ρ3
+
c2

ρ
= 0→ ρc =

m0

c
. (3.14)

Function ζ is strictly increasing on ρ ∈ (ρc,∞) and decreasing on ρ ∈ (0, ρc).
Therefore, function ζ admits a unique minimum for ρ = ρc. As ζ → ∞ when
ρ→ 0 and ρ→∞, to have any steady solution, ζ(ρc) ≤ 0 must hold. This gives
the condition (3.11).

3.2.2 The drift flux model

The DFM is described by the following system of partial differential equations
(PDEs) [127], which describes a two-phase flow inside a pipe:

∂w

∂t
+

∂

∂x

(
f(w)

)
=

 0
0

q(w, x)

 , t ∈ [0, T ], x ∈ (0, L), (3.15)

with

w =

 αlρl
αgρg

αlρlul + αgρgug

 , f(w) =

 αlρlul
αgρgug

αlρlu
2
l + αgρgu

2
g + p

 ,

q(w, x) = F (w, x) +G(w, x),

(3.16)

where the subscripts l and g denote the liquid and gaseous phase, respectively,
and αl(t, x) and αg(t, x) denote the volume fraction of each phase. Frictional
and gravitational terms are given by

F (w, x) = −32
µmix

d2
umix, (3.17a)

G(w, x) = −ρmixg sin θ (3.17b)

with µmix = αlµl + αgµg the mixture viscosity, umix = αlul + αgug the mixture
velocity (αlul and αgug are the superficial velocities of each phase), and ρmix =
αlρl + αgρg the mixture density of the gas and liquid. The DFM is completed
by closure relations, as listed below [69], [91]:

αl + αg − 1 = 0, (3.18a)
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p−
(
(ρl − ρ0) c2l + p0

)
= 0, (3.18b)

p− ρgc2g = 0, (3.18c)

ug − (Kumix + S) = 0, (3.18d)

where K and S are two constant parameters depending on the flow regime [30],
[142]. Moreover, cl and cg are the constant speed of sound in the liquid and gas
medium, respectively. Now, the steady-state solution of system (3.15) can be
computed numerically.

3.2.2.1 Steady-state solution of the DFM

The steady-state solution of the DFM can be obtained by solving the following
system of equations, which is obtained by setting ∂w/∂t = 0 in (3.15):

dml

dx
= 0, (3.19a)

dmg

dx
= 0, (3.19b)

d(mlul +mgug + p)

dx
= q, (3.19c)

where mi = αiρiui, i ∈ {l, g}, is the momentum of phase i. By embedding the
closure relations (3.18) in (3.19), this system, which also leads to a two-point
BVP due to the boundary conditions for subsonic flow, can be solved numeri-
cally. This numerical steady-state solution will be used as the reference solution
to assess the well-balanced property of the numerical solver to be proposed.
Similar to the discussion for Euler equations in Section 3.2.1.1, the approaches
proposed in [100] and [46] cannot be employed for solving system (3.15) and
new approaches should be developed. In the following section, the novel well-
balanced schemes are introduced.

Remark 3.3. Notably, other friction functions rather than laminar friction can
also be studied; however, more complicated frictional source terms complicates
the analysis presented in this paper, if not impossible.

Remark 3.4. The analysis in this paper holds true if the parameters present in
the source terms such as θ, hydraulic diameter and viscosity vary smoothly along
the spatial domain. In this case, the steady-state solution of Euler equations
and the DFM will also be smooth, which will be used in the proofs presented in
Sections 3.3.2.2 and 3.3.2.3. For the sake of simplicity, these parameters are
assumed to be constant in this study.

Remark 3.5. Analysis of the steady-state solution of the DFM in case of only
friction and only gravity, similar to what we did for Euler equations, is compli-
cated, if not impossible.
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3.3 Well-balanced finite-volume scheme

Classical cell-centered finite-volume schemes are reliable for solving systems in
the absence of source terms [69], [105], [115]. When source terms appear in the
governing equations, these numerical methods are no longer well-balanced; i.e.,
the steady-state solutions predicted by the finite-volume solvers differ from the
analytical steady-state solution. As a consequence, the solution of the finite-
volume method deviates from the analytical steady-state solution even when
initialized on the steady-state solution. This deviation can be made smaller by
increasing the number of grid cells to a computationally unfeasible large number
(much more than the required spatial resolution). Here, we propose a method
that can achieve a significantly higher accuracy in predicting the steady-state so-
lution with relatively low number of grid cells. As the method we are suggesting
is scheme-dependent, in this section, first Rusanov scheme [105] is introduced as
a reference classical scheme, and then a modification of the scheme is proposed,
which is able to compute an accurate approximation of the analytical steady-
state solution. Reasons for choosing Rusanov scheme are its simple formulation
compared to other numerical schemes and the independence of its diffusivity
properties on the Courant-Friedrichs-Lewy (CFL) number [105]. These features
yield less complicated nonlinearities. However, the methodology introduced in
this paper can be applied straightforwardly to other Godunov-type schemes as
well.

3.3.1 Rusanov scheme

Let ∆t and ∆x refer to the temporal and spatial discretization intervals over
time and space, respectively. The spatial discretization consists of cells spatially
located between two interfaces (xi−1/2, xi+1/2) with the length of ∆x centered
at xi = xi−1/2 + ∆x/2. Time discretization is performed using a forward Eu-
ler integration method. Finally, first-order Gudonov-type schemes are used to
numerically solve systems (3.1) and (3.15) by

Wn+1
i = Wn

i −
∆t

∆x

(
F(Wn

i ,W
n
i+1)−F(Wn

i−1,W
n
i )
)

+ ∆t q (Wn
i , xi) , (3.20)

where Wn
i and q (Wn

i , xi) are approximate averages of the conservative vari-
ables and the source terms within the i-th cell at the time instant tn := n∆t,
respectively. Variables Wn

i and Wn
i+1 are approximations of the conservative

variables at the left and right sides of the interface xi+1/2 at the time instant
tn, respectively. Moreover, F(·, ·) is the scheme-specific numerical flux function.
Various numerical flux functions have been introduced in the literature [58], [69],
[105], [111], [115], [158]. As a case study, the flux function for Rusanov scheme
is defined as follows

F(Wn
i ,W

n
i+1) =

f(Wn
i ) + f(Wn

i+1)

2
− λn(Wn

i+1 −Wn
i ), (3.21)
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where λn := λ(Wn
i+1,W

n
i ) is half of the absolute value of the largest eigenvalue

of the Jacobian matrix of the system of equations (3.1) or (3.15) (the Jacobian
matrix is ∂ (f(w)) /∂w in these equations). This state-dependent eigenvalue is
is calculated locally at the left and right side of each interfaces. For instance,
for system (3.1),

λ(Wn
i ,W

n
i+1) =

1

2
max(c+ |uni |, c+ |uni+1|), (3.22)

and for system (3.15),

λ(Wn
i ,W

n
i+1) =

1

2
max(ωni + |ulni |, |ugni |, ω

n
i+1 + |ulni+1|, |ugni+1|), (3.23)

with ωni denoting the speed of sound in the mixture of liquid and gas [69]. In
the case of no-slip, i.e., K = 1, S = 0, the speed of sound in the mixture, ωni ,
can be analytically written as follows, known as the Wood or Wallis speed of
sound [56], [178]:

ωni = clcg

√
ρl
n
i ρg

n
i

ρmix
n
i (αgni ρl

n
i c

2
l + αlni ρg

n
i c

2
g)
. (3.24)

When slip occurs between the two phases, computing the analytical sound ve-
locity, due to the effect of slippage between the two phases and its effect on the
wave propagation speed, is mathematically involved, if not impossible. Thus,
simplified surrogates have been suggested in [69] for cases with αgρg � αlρl and
0 < αg < 1, such as

ωni '

√
pni

αgni ρl
n
i (1−Kαgni )

. (3.25)

These surrogates are not exact and may lead to inaccurate solutions. For this
reason, only the case of no-slip is considered in this paper. The reader is referred
to [58], [69] for a detailed analysis of the speed of sound in the mixture of the
gas and liquid.

Remark 3.6. Equation (3.25) becomes ill-posed when αg tends to zero or
Kαg → 1. When K > 1, the singular point even occurs for αg < 1. In
these cases, other surrogate formulations should be used [94], which have not
been studied in this paper.

Remark 3.7. In some special cases, the speed of sound ωni becomes very low,
even less than cg, in the presence of both phases. However, in the relevant
application domain of managed pressure drilling operations for oil and gas, phase
velocities are still lower than the speed of sound in the mixture and the flow is
subsonic. Henceforth, we only consider subsonic flows.
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Remark 3.8. Physical boundary conditions are coupled with the so-called
characteristic-based boundary conditions to obtain the primitive variables at the
boundaries. For more information, refer to [71]. Noteworthy, the method in this
paper is not dependent on the type of the boundary conditions and can be easily
applied to other boundary conditions such as periodic boundary conditions.

After this concise introduction to Rusanov scheme, a novel modification to
this scheme is proposed next to upgrade the solver to be approximately well-
balanced.

3.3.2 Modified Rusanov scheme

In the presence of source terms, the numerical solutions obtained by classical
finite-volume schemes may drift from the actual solution depending on the con-
tribution of the source terms to the solution. Resolving the issue of generat-
ing non-physical steady-state solutions thus requires further adjustments of the
scheme by considering the effects of the source terms, leading to the definition
of a well-balanced scheme. By definition, a well-balanced scheme preserves the
actual steady-state equation [38]. In the following, we introduce a framework for
an approximately well-balanced scheme and provide the motivation for choosing
such a framework. This framework differs from the one in (3.20) in one crucial
aspect: the effects of the source term q (Wn

i , xi) are incorporated in the input
arguments of the numerical flux function F(·, ·). The proposed modification is
inspired by the work in [124]. The applicability of that work is, however, limited
to basic shallow water equations. This paper extends the introduced framework
in that paper to more advanced and generic models, such as the isothermal Euler
equations and DFM.

The proposed structure for the well-balanced scheme: The proposed
well-balanced solver of the PDEs (3.1) and (3.15) has the following structure

Wn+1
i = Wn

i −
∆t

∆x

(
F(Wn

i ,W
∗,n
i+1)−F(W ∗,ni−1,W

n
i )
)
, (3.26)

where F(·, ·) can be any numerical flux function and specifically for this study
it is defined in (3.21) as in Rusanov scheme. Moreover, W ∗,ni±1, henceforth called
the intermediate variable, satisfies a consistency condition defined in [87], [124].
In order to define W ∗,ni±1 uniquely, complementary equations alongside the con-
sistency condition, which are source- and model-dependent, are defined for an
advection equation, for Euler equations (3.1) and for the DFM (3.15) in Sections
3.3.2.1, 3.3.2.2 and 3.3.2.3, respectively. Specifically, the computational steps for
the numerical simulation of Euler equations and the DFM are summarized in
Algorithm 2 and 3. In the following, we provide a motivation for the proposed
structure in (3.26).
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Motivation. Comparing the newly proposed scheme in (3.26) with the classical
one in (3.20) reveals that the effect of the source terms in (3.26) are hidden in
the intermediate variables while in (3.20) the source terms are simply integrated
over a grid cell. The latter leads to an erroneous steady-state prediction, which
originates from the underlying nature of classical schemes that approximate the
source terms with a simple average. The problem in predicting a wrong steady-
state solution is not resolved by using a different time integrator. To resolve this
issue, we embed the effect of the source terms in the intermediate variables in
(3.26) while the intermediate variables satisfy some algebraic constraints derived
from steady-state equations. This aspect is the main difference between this
study and other studies in literature [124], [125], where the intermediate variables
in the approximate Riemann solver have been defined such that the scheme
becomes approximately well-balanced. Instead, we modify an existing scheme
to make it approximately well-balanced.

Consistency. When manipulating the scheme to contain the effect of source
terms, some properties of the scheme should remain intact. Most importantly,
the modified scheme should still simulate the transients accurately. Also, when
reaching the steady-state solution, the analytical steady-state solution should be
approximated as accurately as possible. Besides, the scheme should always be
consistent, i.e., F(Wn

i ,W
n
i ) = f(Wn

i ), which is the case for the original Rusanov
scheme in (3.21). This is also the case for the proposed well-balanced scheme
as we are not changing the definition of the flux function itself, but only modify
its input arguments. Another consistency condition, defined in [87], [124], states
that the average of the conservative variables obtained by the scheme should be
equal to the average over the same cell of the exact solution of the Riemann
problem over a length of ∆x. If we focus on the spatial interval of (xi, xi+1),
this consistency condition imposes the following equality:

xi+1/2∫
xi

Wn+1
i dx+

xi+1∫
xi+1/2

Wn+1
i+1 dx =

xi+1∫
xi

WR
(
Wn
i ,W

n
i+1

)
dx, (3.27)

where WR
(
Wn
i ,W

n
i+1

)
gives the conservative variables at the time instant tn+1

obtained from the exact solution of the Riemann problem at the interface xi+1/2,
which is dependent on the solutions at the neighboring cell of this interface at
time instant tn. Moreover, Wn+1

i is obtained from (3.20) together with (3.21).
To compute the right-hand side of (3.27), the exact solution of the Riemann
problem should be defined over the spatial domain of (xi, xi+1) and in the tem-
poral domain (tn, tn + ∆t). It should be noted that the exact solution varies
continuously over the spatial and temporal coordinate. For obtaining the above
integral for the exact solution of the Riemann problem, one can use the following
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equivalent equation [87]:

1

∆x

xi+1∫
xi

WR
(
Wn
i ,W

n
i+1

)
dx =

1

2
(Wn

i +Wn
i+1)− ∆t

∆x

(
f(Wn

i+1)− f(Wn
i )
)

+

1

∆x

xi+1∫
xi

tn+∆t∫
tn

q
(
WR

(
Wn
i ,W

n
i+1

)
, x
)

dt dx,

(3.28)

where f(·) is the mathematical flux function as in (3.1) or (3.15). The integral
of the numerical solution on the left-hand side of (3.27) depends on the order
of the accuracy of the scheme, i.e., how the solution changes within a grid cell
(for first-order accurate schemes, the solution is constant within a grid cell). We
proceed with the computation below by considering first-order accurate schemes.
This changes the left side of (3.27) to:

1

∆x

(
xi+1/2∫
xi

Wn+1
i dx+

xi+1∫
xi+1/2

Wn+1
i+1 dx

)
=

1

2
(Wn+1

i +Wn+1
i+1 ). (3.29)

By embedding (3.20) into (3.29), we obtain:

1

∆x

 xi+1/2∫
xi

Wn+1
i dx+

xi+1∫
xi+1/2

Wn+1
i+1 dx

 =
1

2
(Wn

i +Wn
i+1)−

∆t

2∆x

(
F(Wn

i+1,W
n
i+2)−(((((

((F(Wn
i ,W

n
i+1) +(((

((((F(Wn
i ,W

n
i+1) −F(Wn

i−1,W
n
i )

)
+

∆t

2

(
q(Wn

i , xi) + q(Wn
i+1, xi+1)

)
.

(3.30)

Now, we propose to accommodate the effects of the source terms q into those
input arguments of the numerical flux functions that are not in the neighborhood
of the interface xi+1/2 (in this case, Wi+2 and Wi−1 and change their subscripts
to enable the solution locally at each interface). This leads to the definition
of the intermediate variables, W ∗,ni+1 and W ∗,ni , that encompass the effect of the
source terms. Embedding these into (3.30) leads to

1

∆x

 xi+1/2∫
xi

Wn+1
i dx+

xi+1∫
xi+1/2

Wn+1
i+1 dx

 =
1

2
(Wn

i +Wn
i+1)−

∆t

2∆x

(
F(Wn

i+1,W
∗,n
i+1)−F(W ∗,ni ,Wn

i )

)
.

(3.31)
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Finally, the consistency equations at each interface are obtained by equating
(3.31) and (3.28):

2
(
f(Wn

i+1)− f(Wn
i )
)
− 2

∆t

xi+1∫
xi

tn+∆t∫
tn

q
(
WR

(
Wn
i ,W

n
i+1

)
, x
)

dx dt =

F(Wn
i+1,W

∗,n
i+1)−F(W ∗,ni ,Wn

i ).

(3.32)

Equation (3.32) is the consistency equation that we consider for the proposed
scheme (3.26).

Remark 3.9. The intermediate variables, W ∗,ni+1 and W ∗,ni introduced in (3.31),
contain the effect of the source terms, q(Wn

i , xi) and q(Wn
i+1, xi+1), and the effect

conservative variables, Wn
i+2 and Wn

i−1. These variables are computed based on
the governing equations of the physical phenomenon and also the source terms,
which will be explained in Sections 3.3.2.1, 3.3.2.2 and 3.3.2.3 for each case
study.

Remark 3.10. In this study, we focus only on first-order schemes. To upgrade
the scheme to second-order, MUSCL approaches (see for example [26]) can be
followed, which will be the topic of future studies.

The main question is how to approximate the integral in (3.32) which contains
the exact solution to the Riemann problem. This can be resolved by exploiting
the governing PDEs that encompass the exact solution, which will be explained
in Sections 3.3.2.2 and 3.3.2.3. Moreover, (3.32) contains many unknowns and
the equation is not uniquely solvable in isolation. All the complementary equa-
tions, necessary to obtain the intermediate variables such as W ∗,ni uniquely, will
be introduced later for each system of equations in Sections 3.3.2.2 and 3.3.2.3.

The unknown terms in (3.32) are the intermediate variables and the average
of the source term (the integral term in (3.32)). The average of source terms
should be determined such that the numerical steady-state solution approxi-
mately recovers the analytical one. Since we do not have the exact solution to
the Riemann problem, we can exploit the original PDEs to find the average of
the source terms. To this end, this average will be approximated by exploiting
the algebraic relations originated from the system of equations (3.1) and (3.15),
which will be clarified in Sections 3.3.2.2 and 3.3.2.3. Henceforth, the integral

1/∆t 1/∆x
xi+1∫
xi

tn+∆t∫
tn

q
(
WR(Wn

i ,W
n
i+1), x

)
dx dt is denoted by Q̄. It should be

noted that this treatment of the scheme is dependent on the nature of the source
terms, which is explained later in the aforementioned sections. The intermedi-
ate variables should be obtained by considering two essential properties that are
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required to be satisfied by the well-balanced solver: consistency with the actual
system and the well-balanced property.

The consistency with the actual system of equations is ensured by satisfying
algebraic relations originating from the steady-state model. These algebraic
relations are obtained in the next section for the isothermal Euler equations
and the DFM. For the well-balanced property, from (3.26), we deduce that the
solution is stationary, Wn+1

i = Wn
i , if the solution is assumed constant within

each grid cell (the underlying scheme is first-order accurate) and W ∗,ni+1 = Wn
i

and W ∗,ni = Wn
i+1. Therefore, we seek W ∗,ni+1 = Wn

i and W ∗,ni−1 = Wn
i as soon

as Wn
i and Wn

i+1 define a steady state. Then, the right-hand side of (3.32)
becomes zero and the left-hand side resembles the steady-state model at the
discrete level. Here, the pair (Wi,Wi+1) is said to define a steady state if the
equations (3.5) and (3.19) are satisfied at the discrete level. Such intermediate
states will enforce the well-balancedness of our scheme. All these properties will
help to define the intermediate variables in Sections 3.3.2.2 and 3.3.2.3.

The idea proposed in [100] consists of modifying the effect of the source term
by knowing the difference between the numerical steady-state solution and the
analytical one. This means that finding the averaged contribution of the source
terms requires finding the analytical steady-state solution, which is however chal-
lenging and expensive due to the BVP structure of the steady-state problem.
Instead, one can use algebraic relations that are valid during the steady state
without prior knowledge of the steady-state solution itself. Now, the methodol-
ogy introduced in [124], [125] is employed and modified for any general scheme
and applied to Euler equations and the DFM. But first, in the following, we
prove that the proposed scheme leads to an exact well-balanced solution for an
advection equation.

Remark 3.11. In this study, we investigate laminar friction characterizations.
In general, the approach in this paper is applicable to turbulent friction functions
as well. However, with turbulent friction, the analysis is highly demanding and
the numerical solution is generally hard to obtain, even in the case of a classical
numerical solver. As a result, the well-balanced solution would be even more
complex.

3.3.2.1 An advection equation with a source term

As Euler equations and DFM are coupled and the corresponding source terms
are sometimes nonlinear with respect to the conservative variables, the analytical
assessment of the performance of the proposed scheme on these equations is
cumbersome if not impossible. Therefore, we provide the assessment for a simple,
though relevant, test case, a scalar PDE governing an advection phenomenon as
below:

∂w

∂t
+
∂w

∂x
= q(w), (3.33)
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where we set q(w) = w for simplicity of the assessment.

Theorem 3.12. Consider the advection equation in (3.33). The numerical so-
lution of this system for q(w) = w obtained by the solver (3.26) with numeri-
cal flux function in (3.21) and the intermediate variables satisfying (3.32) and
∆t/∆x < 1 leads to zero error in approximating the steady-state solution while
the solver (3.20) together with (3.21) yields an erroneous steady-state solution.

Proof. Applying the Rusanov scheme (3.21) yields (λni = 1/2)

F(Wn
i ,W

n
i+1) = Wn

i . (3.34)

The consistency condition (3.32) adapted for this advection equation at any
interface is obtained as follows

2

(
f(Wn

i+1)− f(Wn
i )

)
− 2Q̄∆x = F(Wn

i+1,W
∗,n
i+1)−F(W ∗,ni ,Wn

i ). (3.35)

Embedding (3.34) into the above equation gives,

[W ]− Q̄∆x =
1

2
(Wn

i+1 −W
∗,n
i ). (3.36)

Now, we have to exploit (3.33) in the steady-state condition to compute Q̄, as
below. In steady state, it holds that

Wn
i+1 −Wn

i = Q̄∆x. (3.37)

Moreover, as we know the source term, for the steady-state solution it holds that

dw

dx
= w ⇒ [lnW ] = ∆x⇒Wi+1 = Wie

∆x. (3.38)

Therefore, we can find the expression for Q̄∆x = Wi(e
∆x− 1). Using the Taylor

expansion of e∆x, it can be verified that Q̄∆x is consistent with Wi∆x. Then,
at each interface, (3.36) yields

W ∗,ni = −Wn
i+1 + 2Wn

i e
∆x. (3.39)

Due to the specific form of the advection equation and the Rusanov scheme, the
calculation of W ∗,ni+1 is not required. The proposed well-balanced solver (3.26) is
repeated here:

Wn+1
i = Wn

i −
∆t

∆x

(
F(Wn

i ,W
∗,n
i+1)−F(W ∗,ni−1,W

n
i )
)
. (3.40)

When reaching the exact steady-state profile, the relation Wn+1
i = Wn

i should
hold. We define, ε = Wn+1

i −Wn
i and we compute ε for the advection equation
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with the classical way of dealing with source term as in (3.20) and the proposed
well-balanced way as in (3.26).

For the well-balanced solver (3.26) with the Rusanov scheme (3.21), it holds
that

Wn+1
i = Wn

i −
∆t

∆x

(
F(Wn

i ,W
∗,n
i+1)−F(W ∗,ni−1,W

n
i )
)

= − ∆t

2∆x

(
Wn
i −W

∗,n
i−1

)
.

(3.41)

By incorporating (3.39), we obtain

Wn+1
i =

(
1− ∆t

∆x

)
Wn
i +

∆t

∆x
Wn
i−1e

∆x → εn = −∆t

∆x

(
Wn
i −Wn

i−1e
∆x
)
.

(3.42)

Due to the stability of the scheme and the positive numerical diffusion coefficient
(because of the CFL condition ∆t/∆x < 1) [54], as n → ∞, ε → 0. Therefore
Wn
i = Wn

i−1, which corresponds to the actual steady-state solution (3.38). This
shows that the new proposed scheme will lead to zero error at the actual steady-
state solution and if the solver starts from the analytical steady-state solution, it
remains there. Also, it can be inferred that the only solution of the well-balanced
scheme that yields Wn+1

i = Wn
i is the analytical steady-state solution. Next,

we prove that the classical scheme does not preserve the solution. This is proved
by contradiction.

Recalling the classical solver (3.20) with Rusanov scheme (3.21) as below:

Wn+1
i = Wn

i −
∆t

∆x

(
F
(
Wn
i ,W

n
i+1

)
−F

(
Wn
i−1,W

n
i

))
+ ∆tq(Wn

i ), (3.43)

we obtain

εn = −∆t

∆x
(Wn

i −Wn
i−1) + ∆tWn

i . (3.44)

Then, if the solver starts from the analytical steady-state solution, i.e. Wi =
W0e

i∆x, we obtain,

εn = W0∆tei∆x
(

1− 1

∆x

(
1− e−∆x

))
= W0e

i∆x∆t

(
∆x

2!
+O

(
∆x2

))
6= 0,

(3.45)

Clearly, the right-hand side of (3.45) is non-zero, meaning that Wi = W0e
i∆x is

not the steady-state solution of (3.43). This contradiction completes the proof.
The error in steady state approximation tends to zero only by making the spatial
and temporal grid size (∆x and ∆t) smaller.

Supported by Theorem 3.12, we project that the proposed scheme also leads
to better results for coupled equations such as Euler equations and DFM.
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3.3.2.2 Modified scheme for the isothermal Euler equations

To compute the average source terms Q̄ that satisfy steady-state equations (3.5),
we exploit the discrete version of the steady-state equations. To this end, we
integrate (3.5) at each interface over (xi, xi+1),

mL = mR =: m0, (3.46a)

m2
0

d

dx

(
1

ρ

)
+ c2

dρ

dx
= q =⇒ m2

0

[
1

ρ

]
+ c2 [ρ] = Q̄∆x, (3.46b)

where [·] = (·)R − (·)L denotes the difference of variables between the right
(subscript R) and left (subscript L) side of the interface xi+1/2. Considering
(3.46b), there are two unknowns, m0 and Q̄. In this paper, Q̄ = F̄ + Ḡ where
F̄ and Ḡ are the average of frictional and gravitational source terms. One
more equation is thus required to solve this equation. The steady-state solution
associated to the full source term Q does not admit an algebraic expression in
the presence of both friction and gravity and therefore the source terms should
be decomposed into individual source terms. So, instead of finding Q̄ such that
(3.46b) is satisfied, we find F̄ and Ḡ satisfying other equations with similar
structure to (3.46b), and then set Q̄ = F̄ + Ḡ. It should be noted the Q̄ found
in this way might not satisfy (3.46b) exactly an therefore it leads to some errors
in the steady-state solution. We first explain this step for the friction-related
terms and then for the gravity contribution to the source term. To find consistent
(relevant) source terms F̄ and Ḡ even in transient case, we exploit the discrete
steady-states equations in case of only friction and only gravity, respectively.
These source terms entail defining new parameters in the source terms, which
converge to the corresponding steady values when the system is reaching the
steady condition.

Frictional source terms

Considering only laminar friction (3.3a) in (3.5b), to define an average friction
source term that is consistent with the steady-state equations, we set:

m2
0

d

dx

(
1

ρ

)
+ c2

dρ

dx
= −32

µ

d2

m̄

ρ
=⇒ m2

0ρ
d

dx

(
1

ρ

)
+ c2ρ

dρ

dx
= −32

µ

d2
m̄,

(3.47)

where m̄ can be interpreted as an average of the momentum over the left and
right side of the interface and it should be defined such that it converges to m0

as the solution reaches the steady state. To this end, the following description
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for m̄ is assumed,

m̄ =

 0, if mL = mR = 0
2|mLmR|
|mL|+|mR|

sign(mL +mR), otherwise
,

with sign(a) =

 1, if a > 0,
0, if a = 0,
−1, if a < 0.

(3.48)

This average indeed ensures that when the system reaches its steady state, mL =
mR, then m̄ = mL = mR = m0. By integrating (3.47) over the interval of
(xi, xi+1), we obtain:

−m2
0[ln ρ] +

c2

2
[ρ2] = −32

µ

d2
m̄∆x. (3.49)

When reaching steady-state, m̄ = m0 and (3.49) becomes a discrete version of
(3.8) and the same conditions for the availability of the solution holds as in
Lemma 3.1 (with x0 = xL, x = xR, ρ̂0 = ρL and ρ = ρR). Finally solving
(3.49) gives m0, and by substituting this m0 into (3.46b) in case of only laminar
friction as the source term, we obtain

m2
0

[
1

ρ

]
+ c2[ρ] = F̄∆x. (3.50)

Now, by substituting m0 from (3.49) into (3.50), we obtain

F̄∆x =

c2

2
[ρ2] + 32

µ

d2
m̄∆x

[ln ρ]

[
1

ρ

]
+ c2[ρ]. (3.51)

This source term should be equivalent to (consistent with) the actual friction
source term, which is stated below.

Proposition 1. Under the assumption of smooth (steady and transient) solu-
tion, F̄ obtained in (3.51) is consistent with the actual friction defined in (3.3a).

Proof. For smooth solutions, there exists ρi and ρj with |ρi − ρL|< |ρR − ρL|
and |ρj − ρL|< |ρR − ρL| such that

[ln ρ] =
ρR − ρL

ρi
,

[
1

ρ

]
= −ρR − ρL

ρ2
j

. (3.52)

Substitution of (3.52) in (3.51) yields:

F̄∆x =−
(
c2

2

(
ρ2
R − ρ2

L

)
+ 32

µ

d2
m̄∆x

)
ρi
ρ2
j

+ c2 (ρR − ρL) =

c2 (ρR − ρL)

(
1− ρR + ρL

2

ρi
ρ2
j

)
− 32

µ

d2
m̄∆x

ρi
ρ2
j

.

(3.53)
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For smooths solutions, by increasing the number of the cells, the values of
ρR, ρL, ρi, ρj all converge to a single value, let us say ρ. Then, (3.53) changes to:

F̄∆x = −32
µ

d2

m̄

ρ
∆x. (3.54)

In smooth solutions, it holds that m̄/ρ = u. This proves that under the as-
sumption of smooth solutions, F̄ , obtained from (3.51), indeed approximates
(3.3a).

Gravitational source terms

For the case of only gravitational source term (3.3b), (3.5b) changes to:

m2
0

d

dx
(
1

ρ
) + c2

d

dx
(ρ) = −ρg sin θ =⇒ m2

0

1

ρ

d

dx

(
1

ρ

)
+ c2

1

ρ

d

dx
(ρ) = −g sin θ.

(3.55)

By integrating (3.55) over the interval of (xi, xi+1), we obtain

m2
0

2

[
1

ρ2

]
+ c2[ln ρ] = −g sin θ∆x. (3.56)

Notably, (3.56) is a discrete version of (3.12) and the same conditions for the
availability of the solution holds as in Lemma 3.2 (with x0 = xL, x = xR, ρ̂0 =
ρL and ρ = ρR). After obtaining m0 from the above equation, Ḡ can also be
computed from (3.46b) as follows:

m2
0

[
1

ρ

]
+ c2[ρ] = Ḡ∆x. (3.57)

Finally, we obtain the following expression for Ḡ:

Ḡ∆x = −2
g sin θ∆x+ c2[ln ρ][

1

ρ2

] [
1

ρ

]
+ c2[ρ]. (3.58)

Now, we study the equivalence of this source term with the actual gravitational
source term.

Proposition 2. Under the assumption of smooth (steady and transient) solu-
tion, Ḡ in (3.58) is equivalent to (3.3b).

Proof. Substituting [1/ρ]/[1/ρ2] = ρRρL/(ρR + ρL) to (3.58) leads to

Ḡ∆x = −2
ρRρL
ρR + ρL

g sin θ∆x+ c2 (ρR − ρL)

(
1− 2

ρRρL
ρR + ρL

[ln ρ]

)
. (3.59)
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Increasing the number of the cells for smooth solutions yields ρL, ρR → ρ and
therefore (3.59) changes to:

Ḡ∆x = −ρg sin θ∆x. (3.60)

This proves that under the assumption of smooth solution, the term Ḡ indeed
approximates (3.3b).

Remark 3.13. We note that using Propositions 1-2 allows for the recovery of
the intermediate states for the gravity only if the friction source term vanishes.
Similarly, if the gravity source term vanishes, we recover the intermediate states
for friction only. As a consequence, the computational step yields intermediate
states that are well-balanced for the individual source terms of gravity or friction.
Let us recall that the steady-state relation for (3.5b) with both frictional and
gravitational source terms cannot be written in the form of an algebraic relation.
Therefore, we can only preserve the steady state solution approximately when
both source terms are present. See [124] where a similar approach is used for the
shallow-water equations.

Remark 3.14. Note that the expressions of the averaged source terms (3.51)
and (3.58) have been obtained by considering WL and WR satisfying steady-
state models. Since these expressions only depend on the left and right states
and it has been proved in Propositions 1 and 2 that the averaged source terms
are equivalent to the actual source terms, it is relevant to extend the usage of the
averaged source terms to the case where these states do not define a steady state,
and actually use the well-balanced expressions (3.51) and (3.58) for all WL and
WR.

The average source term is then specified as Q̄ = F̄ + Ḡ. After obtaining the
average source term, the modified scheme can be completed by calculating the
intermediate values m∗L,m

∗
R, ρ

∗
L, ρ
∗
R needed in the modification of the scheme. To

this end, by rewriting the consistency conditions (3.32) for the modified Rusanov
scheme (3.26) and for (3.1), we have:

2[m] =

(
m∗

R +mR

2
− λR

2
(ρ∗R − ρR)

)
−
(
mL +m∗

L

2
− λL

2
(ρL − ρ∗L)

)
, (3.61a)

2

[
m2

ρ
+ c2ρ

]
− 2Q̄∆x =


(
m∗2

R

ρ∗R
+ c2ρ∗R

)
+

(
m2

R

ρR
+ c2ρR

)
2

− λR

2
(m∗

R −mR)

−


(
m2

L

ρL
+ c2ρL

)
+

(
m∗2

L

ρ∗L
+ c2ρ∗L

)
2

− λL

2
(mL −m∗

L)

 .

(3.61b)
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As we are focusing on subsonic scenarios, λL and λR are dominantly governed
by the sound velocity apparent from (3.22) as u� c, not by the state values, we
can consider λ := λL = λR. Although this assumption leads to some errors in
the end, it will significantly simplify the calculations and the nonlinear equations
can be solved more easily by Newton-based methods. Due to the specific form
of the steady-state solution (constant momentum over the spatial domain) and
after [87], we set m∗ := m∗R = m∗L (this choice is also used in case of transients
and helps to satisfy the steady equations more easily). Therefore, the system of
algebraic relations in (3.61) simplifies to

ρ∗R + ρ∗L = ρR + ρL − 3

λ
[m], (3.62a)

3

2

[
m2

ρ
+ c2ρ

]
− 2Q̄∆x =

m∗2

2

(
1

ρ∗R
− 1

ρ∗L

)
− λm∗ +

1

2
c2(ρ∗R − ρ∗L) +

λ

2
(mR +mL).

(3.62b)

Still one more equation is needed to be able to compute the variables uniquely.
This last equation should be defined such that when we are on the steady-state
profile, the intermediate variables satisfy the steady-state equation (and also
should be usable during transients). To do so, we suggest an equation which can
be used both at the steady-states and transients [124]. This is carried out by
adapting the steady equation (3.46b) as follows:

m̄2

[
1

ρ

]
+ c2[ρ] = Q̄∆x =⇒ m̄2

(
1

ρR
− 1

ρL

)
+ c2(ρR − ρL) = Q̄∆x =⇒(

c2 − m̄2

ρRρL

)
(ρR − ρL) = Q̄∆x.

(3.63)

The intermediate values should also satisfy the last relation in the above equation
[124], [125], meaning that:(

c2 − m̄2

ρRρL

)
(ρ∗R − ρ∗L) = Q̄∆x. (3.64)

Now, equations (3.62) and (3.64) form a complete system of equations from
which the intermediate values can be computed. Algorithm 1 summarizes the
procedure for computing the intermediate variables W ∗R,W

∗
L, i.e., the variables

that are required in the numerical scheme (3.26).

Remark 3.15. Due to the high density of the liquid in test cases of this paper,
a negative intermediate density was not observed in our realistic industrial test
cases. Positivity preserving techniques [35] can be used in case of encountering
such problems.

Now, we continue with the DFM and modify the Rusanov scheme corre-
spondingly.
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Algorithm 2: WB-Euler: well-balanced scheme for the Euler equa-
tions

Input: WL,WR at each interface
Output: W ∗L,W

∗
R at the same interface

1 Calculate m̄ from (3.48),
2 Compute F̄ and Ḡ from (3.51) and (3.58), respectively,
3 Set Q̄ = F̄ + Ḡ,
4 Solve (3.62) and (3.64) simultaneously and obtain ρ∗L, ρ

∗
R and m∗,

5 Set W ∗L = [ρ∗L, m
∗]
T

and W ∗R = [ρ∗R, m
∗]
T

.

3.3.2.3 Modified scheme for the DFM

Integrating system (3.19) at each interface over the interval (xi, xi+1), we have:

(ml)L = (ml)R = ml0, (3.65a)

(mg)L = (mg)R = mg0, (3.65b)

ml
2
0

[
1

αlρl

]
+mg

2
0

[
1

αgρg

]
+ [p] = Q̄∆x. (3.65c)

Three unknowns, ml0,mg0 and Q̄, are present in (3.65c). Two more source-
specific equations are thus needed to be coupled with (3.65c) to uniquely find
these unknowns. Since the additional equations are source-dependent, friction
and gravity are treated separately. Similar arguments as put forward for the
isothermal Euler equations also hold here. So, instead of finding Q̄ such that
(3.65c) is satisfied, we find F̄ and Ḡ satisfying other conditions, and then set
Q̄ = F̄ + Ḡ. It should be noted the Q̄ found in this way might not satisfy (3.65c)
exactly. We will first do the decomposition for the friction-related terms and
then for the gravity contribution to the source term. Due to the complicated
nature of the DFM, the following assumption is made only to attain the average
source terms.

Assumption 3.16. [10] Only to obtain the average source terms, it is assumed
that at interfaces of the discrete DFM as in (3.19), the volume and mass com-
position of the mixture do not change.

This assumption is approximately valid when smooth solutions are consid-
ered; otherwise, this assumption is less accurate. Assumption 3.16 results in
constant volumetric fraction and mass fraction of each phase at the interface,
respectively. This implies that at each interface, the following conditions hold:

αl
αg + αl

= constant
αl+αg=1−−−−−−→ αl,g = constant, (3.66a)
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αlρl
αlρl + αgρg

= constant
αl,g=constant−−−−−−−−−→ ρl

ρg
= constant. (3.66b)

This assumption may restrict the applicability of the method to systems with
smooth solutions; however, the analysis of the applicability is beyond the scope
of this study. Again we note that Assumption 3.16 is only used for obtaining
the average source terms and not applied into the DFM (3.15) itself.

Frictional source terms

Considering only friction, from (3.19c), we have:

ml
2
0

d

dx

(
1

αlρl

)
+mg

2
0

d

dx

(
1

αgρg

)
+

dp

dx
= −32

(αlµl + αgµg)

d2
(αlul + αgug).

(3.67)

A similar approach to (3.47) cannot be followed here to find similar algebraic
relations. Therefore, simplifying Assumption 3.16 (equation (3.66)) is consid-
ered. Following [124], rearranging (3.67) and having the constant variables of
(3.66) in mind, we have:

d

dx

 1

ρg

 ml
2
0

αl
ρl
ρg

+
mg

2
0

αg
+ pρg


 = −32

(ᾱlµl + ᾱgµg)

d2

1

ρg

 m̄l(
ρl
ρg

) + m̄g

 ,

(3.68)

where (̄·) represents an average of the variable over the left and right side of the
interface, which is defined similar to (3.48). After some steps of straightforward
computations and integration over each interface, we obtain:

−A [ln ρg] +
c2g
2

[
ρ2
g

]
= B, (3.69)

where

A =
ml

2
0

αl
ρl
ρg

+
mg

2
0

αg
, B = −32

(ᾱlµl + ᾱgµg)

d2

 m̄l(
ρl
ρg

) + m̄g

 . (3.70)

From (3.70), the term B can be computed. By substituting the value of B in
(3.69), the value of A can be computed. Moreover, for computing F̄ in (3.65c)
in the case of only friction using:

ml
2
0

[
1

αlρl

]
+mg

2
0

[
1

αgρg

]
+ [p] = F̄∆x,
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the values of ml0 and mg0 are required. By knowing the value of A, taking
into account the structure of A specified in (3.70) and assumptions (3.66), F̄ is
obtained as follows:

F̄∆x =
A

(ρg)R
− A

(ρg)L
+ [p]. (3.71)

Finally, we obtain

F̄∆x =

[
1

ρg

](
c2g
2

[
ρ2
g

]
−B

)
1

[ln ρg]
+ [p]. (3.72)

Proposition 3. Under the assumption of smooth (steady and transient) solu-
tions, F̄ obtained in (3.72) is approximately equivalent to the actual friction
(3.17a).

Proof. For smooth solution, there exists (ρg)i with |(ρg)i − (ρg)L|< |(ρg)R −
(ρg)L| such that

[ln ρg] =
(ρg)R − (ρg)L

(ρg)i
. (3.73)

Substituting (3.73) and EOS (3.18c) to (3.72) and carrying out some straight-
forward simplification leads to:

F̄∆x =−
c2g
2

(
(ρg)

2
R − (ρg)

2
L

) (ρg)R − (ρg)L
(ρg)R(ρg)L

1

[ln ρg]
+ c2g((ρg)R − (ρg)L)+

B
(ρg)R − (ρg)L

(ρg)R(ρg)L

(ρg)i
(ρg)R − (ρg)L

=c2g((ρg)R − (ρg)L)

(
1−

(
(ρg)

2
R − (ρg)

2
L

)
((ρg)R − (ρg)L)

2(ρg)R(ρg)L [ln ρg]

)
+

B
(ρg)i

(ρg)R(ρg)L
.

(3.74)

By increasing the number of grid cells, (ρg)R, (ρg)L, (ρg)i → ρg. Using this and
also substituting the expression of B from (3.70) leads to:

F̄∆x =
1

ρg
B = −32

(ᾱlµl + ᾱgµg)

d2
∆x

 m̄l

ρg

(
ρl
ρg

) +
m̄g

ρg

 ≈ −32
µmix

d2
umix∆x.

(3.75)
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After obtaining the friction contribution, a similar treatment is applied for
finding the contribution from the gravitational term.

Gravitational source terms

If gravity is the only source term, from (3.19c), we have:

ml
2
0

d

dx

(
1

αlρl

)
+mg

2
0

d

dx

(
1

αgρg

)
+

dp

dx
= −(αlρl + αgρg)g sin θ. (3.76)

Similar to the friction source term and using Assumption 3.16 (equation
(3.66)), we obtain:

A

2

[
1

ρ2
g

]
+ c2g [ln ρg] = B, (3.77)

where

A =
ml

2
0

αl
ρl
ρg

+
mg

2
0

αg
, B = −

(
ᾱl

(
ρl
ρg

)
+ ᾱg

)
g sin θ∆x. (3.78)

All terms including (̄·) are defined similar to the average momentum in Euler
equations by the structure introduced in (3.48). Finally, by computing A and

knowing that ml
2
0

[
1

αlρl

]
+mg

2
0

[
1

αgρg

]
+ [p] = Ḡ∆x, we obtain:

Ḡ∆x =
A

(ρg)R
− A

(ρg)L
+ [p]. (3.79)

Finally, we obtain:

Ḡ∆x =
2[
1

ρ2
g

] (B − c2g [ln ρg]
) [ 1

ρg

]
+ [p]. (3.80)

Proposition 4. Under the assumption of smooth (steady and transient) solu-
tion, Ḡ in (3.80) is approximately equivalent to the actual gravitation source
term (3.17b).

Proof. For smooth solution, there exists (ρg)i with |(ρg)i − (ρg)L|< |(ρg)R −
(ρg)L| such that

[ln ρg] =
(ρg)R − (ρg)L

(ρg)i
. (3.81)
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Substituting (3.81) and EOS (3.18c) to (3.80) and carrying out some straight-
forward simplification leads to:

Ḡ∆x = 2B
(ρg)R(ρg)L

(ρg)R + (ρg)L
− 2c2g

(ρg)R(ρg)L
(ρg)R + (ρg)L

(ρg)R − (ρg)L
(ρg)i

+ c2g ((ρg)R − (ρg)L)

= 2B
(ρg)R(ρg)L

(ρg)R + (ρg)L
+ c2g ((ρg)R − (ρg)L)

(
1− 2(ρg)R(ρg)L

(ρg)i ((ρg)R + (ρg)L)

)
.

(3.82)

By increasing the number of grid cells, (ρg)R, (ρg)L, (ρg)i → ρg. By using this
and also substituting the expression of B from (3.78) leads to:

Ḡ∆x = Bρg = −

(
ᾱlρg

(
ρl
ρg

)
+ ρgᾱg

)
g sin θ ≈ −ρmixg sin θ. (3.83)

This proves that Ḡ is an approximation of (3.17b).

Remark 3.17. Assumption 3.16 is adopted only to find expressions for the
average friction and gravity source terms. These are not applied to the DFM
(3.15) and, from now on, these assumptions are only hidden in F̄ and Ḡ and do
not affect the structure of the governing equations.

The average source term is now specified as Q̄ = F̄ + Ḡ. Following the
same steps introduced in the previous section for Euler equations, we can solve
the following equations, consisting of three consistency equations, one algebraic
steady-state condition and eight closure laws. Following the same line of rea-
soning for Euler equations, after imposing λ := λL = λR, m∗i := (mi)

∗
R = (mi)

∗
L

with i ∈ {l, g}, we have

(αlρl)
∗
R + (αlρl)

∗
L = (αlρl)R + (αlρl)L − 3

[ml]

λ
, (3.84a)

(αgρg)
∗
R + (αgρg)

∗
L = (αgρg)R + (αgρg)L − 3

[mg]

λ
, (3.84b)

1

2

(
m∗l

2

(
1

(αlρl)∗R
− 1

(αlρl)∗L

)
+m∗g

2

(
1

(αgρg)∗R
− 1

(αgρg)∗L

)
+ (p∗R − p∗L)

)
− λ(m∗l +m∗g) +

λ

2
((ml +mg)R + (ml +mg)L) =

3

2

[
m2
l

αlρl
+

m2
g

αgρg
+ p

]
− 2Q̄∆x,

(3.84c)

−m̄2
l

(αlρl)R(αlρl)L
((αlρl)

∗
R − (αlρl)

∗
L)−

−m̄2
g

(αgρg)R(αgρg)L
((αgρg)

∗
R − (αgρg)

∗
L) +

(p∗R − p∗L) = Q̄∆x,

(3.84d)
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(αl + αg)
∗
R = 1, (3.84e)

(αl + αg)
∗
L = 1, (3.84f)

p∗R = ((ρl)
∗
R − ρ0) c2l + p0, (3.84g)

p∗L = ((ρl)
∗
L − ρ0) c2l + p0, (3.84h)

p∗R = (ρg)
∗
Rc

2
g, (3.84i)

p∗L = (ρg)
∗
Lc

2
g, (3.84j)

m∗g
(αgρg)∗L

=

K
m∗l

(ρl)∗L
+ S

1−K(αg)∗L
, (3.84k)

m∗g
(αgρg)∗R

=

K
m∗l

(ρl)∗R
+ S

1−K(αg)∗R
. (3.84l)

The short-hand notation, for instance, (αlρl)
∗
R = (αl)

∗
R(ρl)

∗
R is used to compact

the equations. These twelve equations can be solved simultaneously to compute
the intermediate primitive variables, (αl)

∗
R, (αg)

∗
R, (αl)

∗
L, (αg)

∗
L, (ρl)

∗
R, (ρg)

∗
R,

(ρl)
∗
L, (ρg)

∗
L, p∗R, p∗L, m∗l , m

∗
g. The entire procedure is summarized in Algorithm

2. By running Algorithm 2 for both (WL,WR) at xi+1/2 and at xi−1/2, the
variables that should be substituted into (3.26) are computed.

Now, all the required components for implementing the modified scheme
(3.26) are available and numerical simulations can be obtained.

Remark 3.18. Before going through the numerical examples, it should be noted
that the numerical steady-state solution is calculated point-wise at the center
of the cells while finite-volume solution is the average of solutions over a cell.

Algorithm 3: WB-DFM: Well-balanced scheme for the DFM

Input: WL,WR at each interface
Output: W ∗L,W

∗
R at the interface

1 Compute primitive variables from conservative variables at the left and
right side of the interface,

2 Similar to (3.48), calculate

(
ρl
ρg

)
, ᾱl, ᾱg, m̄l and m̄g

3 Compute F̄ and Ḡ via (3.72) and (3.80), respectively,
4 Set Q̄ = F̄ + Ḡ,
5 Solve the system (3.84a)-(3.84l) simultaneously to obtain the

intermediate primitive variables,

6 Set W ∗L =
[
(αlρl)

∗
L, (αgρg)

∗
L, m

∗
l +m∗g

]T
and

W ∗R =
[
(αlρl)

∗
R, (αgρg)

∗
R, m

∗
l +m∗g

]T
.
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Figure 3.1: Configuration of the computational domain.

However, point-wise values are very close to the average values in the test cases
of this paper as the solution within each grid cell can be approximated by a line.

Remark 3.19. The numerical steady-state reference solution is obtained at the
finite-volume centers, as is the case for the numerical finite-volume solutions.

3.4 Numerical results for single-phase flow

In this section, numerical results of a single-phase flow inside a pipe are shown.
First, preservation of the steady-state solution is considered and then, a tran-
sient simulation from an initial steady-state to another steady-state is carried
out. The values of the parameters involved in system (3.1) are listed in Table
3.1 (qp and pR are the volumetric flow rate of the pump at the left boundary
and pressure at the right boundary, respectively). Figure 3.1 shows the com-
putational domain, which is a vertical pipe with a constant cross-sectional area
with the left boundary at the bottom and the right boundary at the top of the
pipe. For all simulations in this section, we set L = 1000 m and ∆x = 10 m.

Table 3.1: Parameters for the test case of the single-phase flow.
Parameter ρ0 p0 θ pR c g µ

Value 1000 kg/m3 1 bar 90◦ 1 bar 1000 m/s 9.81 m/s2 0.5 Pa.s
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Remark 3.20. The Rusanov scheme is subject to the CFL condition

∆t = CFL
∆x

max(|2λni |, i = 1, · · · , N, n = 1, · · · , Nt)
, (3.85)

where λni is given by (3.22) and N is the number of grid cells and Nt is
the number of time-steps. For all simulations in this section, we estimate
max(|2λni |) = c + 10 and CFL = 0.99. Then, according to the chosen ∆x,
∆t is specified by (3.85).

3.4.1 Preservation of the steady-state solution

In this section, the performance of the well-balanced scheme in terms of the
accuracy of the steady-state profile is evaluated in case of zero and non-zero
flow. The initial condition in the test cases of this section coincides with the
steady-state solution. Results are also compared against the classical Rusanov
scheme. Moreover, we set T = 10 s. After this time instant, the solution varies
negligibly over time (the spatial 2-norm of the solution varies less than 0.1%
relatively over time), indicating that the solution has reached its steady state.

3.4.1.1 Zero flow

Results of simulating a steady system with zero flow are shown in Figures 3.2
and 3.3. The differences between the steady-state velocity and the numerical
velocity of both the well-balanced and the classical schemes at the right bound-
ary are depicted over time in Figure 3.4. This example bears relevance with
the connection scenario commonly performed in the drilling context, which is
shutting down the pump, waiting for the drilling liquid to become stagnant, and
adding a new stand of pipe to the current configuration before resuming drilling
ahead.

In the left plot of Figure 3.2, the classical scheme gives a linear change of mass
flow over the spatial domain in the steady state. This is in contrast with the
physical steady-state solution, i.e., the mass flow rate should be constant over the
spatial length. The slope of the line in that plot is significantly smaller for the
well-balanced scheme, close to zero as the physical governing equations show.
However, the pressure in the well-balanced scheme deviates slightly from the
steady-state solution, in an extent comparable to the classical scheme. As shown
in Figure 3.4, the error for approximating the velocity at the right boundary
in the well-balanced scheme decreases as time evolves. Nonetheless, this error
remains unchanged for the classical scheme.

Most notably, the classical scheme implies that zero mass enters from the
left boundary and approximately 0.004 kg per second exits the pipe from the
right boundary (note that in Figure 3.2, momentum, ρu, at the right boundary

is around 0.5 kg/m
2
s and ṁ = ρuA = 0.5 × π

4
d2 = 0.004 kg/s), meaning that
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Figure 3.2: Comparison of solutions of the well-balanced and the classical scheme
in capturing steady state with zero flow at the left boundary, Euler equations.

the mass inside the pipe decreases 0.004 kg per second, contrary to the physical
governing condition of the test case.

3.4.1.2 Non-zero flow

For simulation scenario with non-zero flow, we set qp = 2000 l/min. Simulating
such a system leads to the results shown in Figures 3.5 and 3.6, where the states
and the error in approximating the correct steady-state solution are depicted,
respectively. Evolution of the error in approximating the velocity at the right
boundary for both schemes is shown in Figure 3.7 over time. This flow scenario
is usually present in the pipeline networks while the flow is pumped from one
location to another under a constant volumetric flow rate. This can also be
observed in drilling with single-phase flow when the rate of penetration is too
low.

Analyzing the results of Figures 3.5 and 3.6 reveals that, in case of non-zero
flow, the well-balanced scheme always outperforms the classical scheme, such
that, its error is considerably lower than that of the classical one. The most
important feature of the well-balanced scheme is the preservation of the mass
flow rate (see the plots related to ρu in Figures 3.5 and 3.6). Figure 3.7 shows
that the well-balanced scheme always remains closer to the analytical steady-
state solution, which further confirms the accuracy of this scheme.
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Figure 3.3: Comparison of difference between the analytical and numerical
steady-state solution of the well-balanced and the classical scheme in captur-
ing steady state with zero flow at the left boundary, Euler equations.
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Figure 3.4: Comparison of the evolution of the error in the steady-state velocity
prediction for the well-balanced and classical scheme with zero flow at the left
boundary, Euler equations.
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Figure 3.5: Comparison of solutions of the well-balanced and the classical scheme
in capturing steady state with non-zero flow at the left boundary, Euler equa-
tions.

3.4.2 Transient simulation scenario

By observing the results of the previous section, it can be inferred that the
well-balanced scheme preserves the steady-state solution with a higher accuracy
compared to the classical scheme. In this section, we numerically verify that the
well-balanced scheme also approximates the correct steady-state solution with a
better accuracy during a transient going from one steady-state to another one
by changing the inputs of the system. To this end, in the previous test case at
t = 10 s, the right boundary pressure changes from pR = 1 bar to pR = 10 bar
and the pump flow rate changes from qp = 2000 l/min to qp = 4000 l/min and
the dynamics is simulated until T = 100 s. After this time instant, the state
variables of the system do not vary with time, i.e., the system has reached its
steady state. This example shows a set-point change in the pipeline networks or
in a drilling operation.

Figures 3.8 and 3.9 show the initial condition and the final steady-state solu-
tion and the numerical steady-state solution of both schemes and the associated
error, respectively. Results show that the well-balanced scheme converges to the
steady states with an error significantly smaller than the classical scheme. The
approximation error of the velocity at the right boundary is depicted in Figure
3.10.
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Figure 3.6: Comparison of difference between the analytical and numerical
steady-state solution of the well-balanced and the classical scheme in captur-
ing steady state with non-zero flow at the left boundary, Euler equations.
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Figure 3.7: Comparison of the evolution of the error in the steady-state velocity
prediction for the well-balanced and classical scheme with non-zero flow at the
left boundary, Euler equations.

The well-balanced scheme captures the new steady-state solution with a lower
error. The small deviation of the well-balanced solver from the steady-state
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Figure 3.8: Comparison of solutions of the well-balanced and the classical scheme
in capturing new steady state, Euler equations.

solution is due to the simplifying assumption made in Assumption 3.16 and also
the simplification mentioned before (3.62). The difference of the accuracy of both
solvers is more striking if we highlight the source contributions by increasing the
nominal density of the liquid (ρ0) or viscosity of the fluid. The same procedure
is carried out for the DFM in the next section.

3.5 Numerical Results for two-phase flow

In this section, numerical results of a two-phase flow inside a pipe, as illustrated
in Figure 3.11, are shown. Similar to Section 3.4, preservation of the steady-
state solution and then a transient simulation are provided. The values of the
parameters involved in system (3.15) are summarized in Table 3.2. It should be
mentioned that ṁl,g = αl,gρl,gul,gA and pR are the mass flow rate of the liquid
and the gas at the left boundary and pressure at the right boundary, respectively,
and A is the cross-sectional area of the pipe.

Figure 3.11 shows the computational domain which is a vertical pipe with a
constant cross-sectional area. For all simulations in this section, we set L = 1000
m and ∆x = 10 m. For the temporal discretization, we use the CFL definition
(3.85) by estimating max(|2λni |) = cl and imposing CFL = 0.99.

As it has been illustrated in [69], the speed of sound in the mixture appeared
in (3.23) affects the solution significantly. As we want to focus on the perfor-
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Figure 3.9: Comparison of errors between analytical and numerical steady-state
solution of the well-balanced and the classical scheme in capturing new steady
state, Euler equations.
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Figure 3.10: Comparison of the evolution of the error in velocity prediction
for the well-balanced and classical scheme in capturing new steady state, Euler
equations.

mance of the well-balanced scheme compared to the classical scheme, we do not
want any other errors rather than source-related errors to affect the numerical
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Figure 3.11: Configuration of the computational domain for the DFM.

solution. As the analytical speed of sound is available only in case of K = 1
and S = 0, these parameters are used for simulations. The effect of choosing the
speed of sound model can be seen by simulating the system with different values
for K and S [30], [142]. Moreover, in this section, only the values related to
the liquid properties are reported in the figures since these values can represent
the entire dynamics. The gas-related properties can be easily obtained from the
liquid-related values by using the closure laws (3.18).

3.5.1 Preservation of the steady state

For the case of zero flow in a two-phase system in a vertical pipe, due to the
density difference of the two phases, the gaseous phase migrates up the pipe and
the liquid goes down along the pipe in a non-horizontal pipe; then, we cannot
have a mixture of the gas and liquid for such a pipe. Moreover, the slip law does
not permit the separation of the gas and the liquid since the velocity of the gas
and liquid have to be equal. Thus, the system does not have any solution for
stationary case of a non-horizontal pipe containing two-phase flow governed by

Table 3.2: Test case parameters.
Parameter ρ0 p0 ṁl ṁg pR K

Value 1000 kg/m3 1 bar 0.3 kg/s 0.03 kg/s 1 bar 1

Parameter cg cl g µg µl S

Value 316 m/s 1000 m/s 9.81 m/s2 5e-4 Pa.s 0.5 Pa.s 0
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Figure 3.12: Comparison of solutions of the well-balanced and the classical
scheme in capturing steady state with non-zero flow at the left boundary, the
DFM.

the DFM without any slip. For the horizontal pipe, both the gravitational and
the friction term are zero and no source term affects the solution. Hence, in this
section, unlike the single-phase flow, only the case of nonzero flow is studied for
assessing the ability of the scheme to retain the equilibrium profile of the system.
Again, the initial condition for the test cases in this section is the steady-state
solution of the system.

3.5.1.1 Nonzero flow for a vertical pipe

Parameter values are mentioned in Table 3.2; besides that, T is set to 100 s.
Comparison of the steady-state solution and the numerical solutions obtained
from the well-balanced and the classical solvers are depicted in Figure 3.12 and
the difference between these solutions and the steady-state solution is shown in
Figure 3.13. Also, the time evolution of the error in approximating the velocity
at the right boundary is shown in Figure 3.14. This scenario can occur in the two-
phase pipelines as well as the flow inside a well-bore during an under-balanced
drilling operation [2].

It can be observed that the well-balanced scheme performs better than the
classical scheme in terms of remaining on the steady-state profile when starting
from the steady initial condition. The effectiveness of the well-balanced scheme
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Figure 3.13: Comparison of errors between the analytical and numerical steady-
state solution of the well-balanced and the classical scheme in capturing steady
state with non-zero flow at the left boundary, the DFM.
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Figure 3.14: Comparison of the evolution of the error in the velocity prediction
for the well-balanced and classical scheme in capturing steady state with non-
zero flow at the left boundary, the DFM.

can be better observed in the plots related to mass flow rate of the liquid (αlρlul
in Figures 3.12 and 3.13). Apparent from these figures, the classical scheme
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generates a non-physical steady-state solution. Pressure and velocity predicted
by the classical scheme deviate from the actual values significantly. Again, in
the steady state, the classical scheme predicts that 0.3 kg of the liquid enters
the pipe per second and around 0.37 kg of the liquid exits the pipe, which is in
contrast with the physical governing equations. The results of the well-balanced
scheme and the actual steady-state solution correspond to each other with a high
accuracy.

Now, the scheme can be tested under transient simulations by going from
one steady initial condition to another steady-state solution.

3.5.2 Transient simulation scenario

Analogous to the case of single-phase flow, boundary conditions are changed to
excite the transients of the systems. At t = 1 s, the values of the mass flow
rates are doubled instantly and the right boundary pressure changes to pR = 2
bar slowly over 10 s. This set-point change can also happen in the two-phase
pipelines and also as a control action to harness the gas migration in a drilling
well.

The results acquired at time instant T = 500 s are shown in Figures 3.15,
3.16 and 3.17. These figures reveal that the well-balanced scheme approximates
the steady-state solution of the system with a higher accuracy compared to the
classical scheme. As the system approaches to the steady condition, the errors
in all state variables also tend to zero over time.

Results presented in Sections 3.4 and 3.5 confirm that the well-balanced
schemes yield more accurate results in both preserving and approximating the
steady-state solution compared to the classical scheme. Moreover, the modified
schemes have also been tested in the case of no source terms (the flow with zero
viscosity in a horizontal pipe), which has shown that it produces the same results
as the classical scheme (these results are not included in the paper). Now, we
can analyze the order of accuracy for the proposed scheme.

3.6 Order of accuracy for the modified scheme

In order to study the error convergence of the proposed scheme, a norm of
the difference between the steady-state solution and the numerical steady-state
solution generated by the proposed schemes is computed. The error-norm is
velocity-based and it is defined as below:

e =

(
N∑
i=1

|u(xi, T )− uss(xi)|r
)1

r

(
N∑
i=1

|uss(xi)|r
)1

r

, (3.86)



3.6 Order of accuracy for the modified scheme 95

0 200 400 600 800 1000
0

0.02

0.04

0.06

0.08

0 200 400 600 800 1000
20

40

60

80

100

0 200 400 600 800 1000
0

2

4

6

0 200 400 600 800 1000
0

2

4

6

8

10

Figure 3.15: Comparison of solutions of the well-balanced and the classical
scheme in capturing new steady state, the DFM.

where N is the number of the grid cells, T , as mentioned earlier, is the last time
instant of the simulation and uss is the steady-state value of the velocity. In this
study, we set r = {2,∞}, meaning that we calculate the spatial 2−norm and
∞−norm of the difference between the trustworthy and the numerical steady-
state solution divided by the spatial 2−norm or ∞−norm of the trustworthy
steady-state solution. In this section, we denote e2 for (3.86) calculated by
r = 2 and e∞ for (3.86) calculated by r =∞. Simulations are performed for the
single- and two-phase flow (u := ug = ul) and the number of grid cells is varied
to analyze the dependency of (3.86) on the number of grid cells.

3.6.1 Single-phase flow

The parameter settings in Section 3.4.1.2 are used for this section. Table 3.3
illustrates the dependency of the steady-state error measure in (3.86) on the
number of grid cells for both the classical and well-balanced (WB in Table 3.3)
schemes. In addition, the CPU time for carrying out these simulations are
also reported in this table. The first-order convergence of the classical Rusanov
scheme is clear [105], as by doubling the number of the grid cells, the error is
divided by two. Moreover, the error associated with the well-balanced scheme
with 100 grid cells is much less than the error of the classical scheme with 1600
grid cells. By extrapolation, the classical scheme with 12, 800 grid cells yields
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Figure 3.16: Comparison of difference between analytical and numerical steady-
state solution of the well-balanced and the classical scheme in capturing new
steady state, the DFM.
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Figure 3.17: Comparison of error evolution for approximating velocity of the
well-balanced and classical scheme in capturing new steady state, the DFM.

the same accuracy as the well-balanced scheme with 100 grid cells while the
well-balanced scheme with 100 grid cells is less expensive than using classical
scheme even with 400 grid cells. This clearly shows the superiority of the well-
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balanced scheme over the classical scheme in correct steady-state calculation.
The proposed scheme is close to first-order accurate. To be precise, its accuracy
is of order of 0.82 on average (see Figure 3.18 ). The main reason for this lower
convergence rate can be attributed to the assumption λ := λL = λR; it seems
that by increasing the number of grid cells, the error related to this assumption
does not reduce linearly and therefore decreases the overall convergence rate of
the proposed scheme. Another reason can be the point-wise calculation of the
reference solution, rather than the average solution over a grid-cell. Approxi-
mating the averaged source terms as the summation of the averaged frictional
and gravitational source terms and also the fact mentioned in Remark 3.9 con-
tribute to this behavior. The data shown in Table 3.3 together with the order of
accuracy can be seen in Figure 3.18. It can be observed that by increasing the
number of grid cells, the incremental order of accuracy (the order of accuracy in
each step of doubling the number of grid cells) does not follow a specific trend.
By going from 100 to 200 grid cells, the error drops even more than a first-order
accurate scheme. Then the order of accuracy decreases and then increases.

3.6.2 Two-phase flow

The parameter settings in Section 3.5.1.1 are used for this section. The effect of
increasing the number of the grid cells on capturing the steady-state solution of
the DFM is reported in Table 3.4 together with the CPU time allocated for the
simulations.

The first-order accuracy of the classical Rusanov scheme can easily be inter-
preted from Table 3.4. Moreover, the error associated with the well-balanced
scheme with 100 grid cells is much less than the error of the classical scheme
with 1600 grid cells. Similarly, by extrapolation, the classical scheme with 12, 800
grid cells generates the same accuracy as the well-balanced scheme with 100 grid
cells while the well-balanced scheme with 100 grid cells is less expensive than

Table 3.3: Error convergence for the Euler equations together with the cpu time
comparison (WB=well-balanced).

Cells 100 200 400 800 1600
e2-classical 3.39e-5 1.69e-5 8.44e-6 4.22e-6 2.11e-6
e2-WB 1.65e-7 7.05e-8 4.77e-8 2.8e-8 1.53e-8

Convergence rate - 1.23 0.57 0.77 0.88
e∞-classical 5.78e-5 2.89e-5 1.45e-5 7.21e-6 3.61e-6
e∞-WB 3.19e-7 1.41e-7 9.21e-8 5.31e-8 2.87e-8

Convergence rate - 1.2 0.62 0.80 0.89
cpu time classical 0.86 s 1.15 s 2.06 s 5.41 s 21.24 s

cpu time WB 1.29 s 2.07 s 5.89 s 15.36 s 52.36 s
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Figure 3.18: Error convergence comparison of the classical and the well-balanced
scheme based on (3.86) with r = 2, WB: well-balanced scheme, LS: Least Square
line passed through the points, Euler equations.

Table 3.4: Error convergence for the DFM together with the cpu time comparison
(WB=well-balanced).

Cells 100 200 400 800 1600
e2-classical 0.17 0.083 0.042 0.021 0.01
e2-WB 7.65e-4 6e-4 4.2e-4 2.44e-4 1.3e-4

Convergence rate - 0.35 0.52 0.79 0.91
e∞-classical 0.24 0.12 0.06 0.03 0.015
e∞-WB 12e-4 8.1e-4 5.6e-4 3.22e-4 1.7e-4

Convergence rate - 0.57 0.54 0.81 0.93
cpu time classical 8.8 s 18 s 40 s 123.4 s 344.7 s

cpu time WB 272 s 978.2 s 3460.4 s 19,055 s 74,451 s

using classical scheme even with 1600 grid cells. Due to the nonlinearity of the
equations in (3.84), the cpu time for the well-balanced scheme is higher than
the classical scheme. This however can be alleviated remarkably by embedding
the linear equations into the nonlinear ones among (3.84), so a smaller set of
equations has to be solved at each time step. In general, the comparison of the
error (3.86) shows the superiority of the well-balanced scheme over the classi-
cal scheme. However, this superiority comes at the expense of reduction in the
error convergence rate; the proposed scheme is of order of 0.65 on average (see
Figure 3.19). The main culprits for this reduction in the convergence rate are
the assumption of λ := λL = λR and the assumption (3.66). Approximating the
averaged source terms as the summation of the averaged frictional and gravi-
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Figure 3.19: Error convergence comparison of the classical and the well-balanced
scheme based on (3.86) with r = 2, WB: well-balanced scheme, LS: Least Square
line passed through the points, the DFM.

tational source terms and also the fact mentioned in Remark 3.9 contribute to
this behavior. The data shown in Table 3.4 together with the order of accuracy
can be seen in Figure 3.19. As can be observed in this figure, by increasing the
number of grid-cells, the incremental order of accuracy increases and becomes
closer to 1. This can be attributed to the fact that by increasing the number
of grid cells, the conservative and primitive variables vary even more smoothly
from one grid cell to another and the set of assumptions (3.66) becomes more
realistic. In the high number of grid cells, the error generated by the assump-
tion λ := λL = λR dominates the error. Similarly, point-wise calculation of the
reference steady-state solution can contribute to this behavior.

3.7 Conclusion

In this paper, a novel extension of the Rusanov scheme has been proposed to
improve the preservation of the steady-state solutions of Euler equations and
the drift flux model. These schemes reduce to the original scheme when there
is no source term. The proposed schemes capture the steady-state solution with
significantly higher accuracy compared to the classical scheme in the presence
of source terms. This is proved for an advection equation with a simple source
term. Various test cases of zero and non-zero flow have been carried out and
the improved performance of the well-balanced schemes has been shown numeri-
cally, both for single-phase and two-phase scenarios. The modification is model-
and scheme-dependent, such that a similar approach can be followed for other
systems of partial differential equations solved by different schemes.
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The well-balanced schemes lead to physical results while this is not the case
for the classical finite-volume schemes in the presence of source terms. This can
be interpreted from the presented results, especially those for the mass flow rate.
Both Euler equations and DFM imply that the mass flow rate along the spatial
domain remains constant in the steady condition. This property is preserved
with significantly higher accuracy in the proposed well-balanced schemes.



Chapter 4

Modelling and numerical implementation of
managed pressure drilling systems for the

assessment of pressure control systems

Automated Managed Pressure Drilling (MPD) is a method to enhance downhole
pressure control performance and safety during drilling operations. It is becom-
ing more common to use model-based simulation for the evaluation of pressure
control systems designed for MPD automation before using those in the field.
This demands a representative hydraulics simulation model which captures the
relevant aspects of a drilling system. This paper presents such a model and,
additionally, an approach to numerically implement that model for simulation
studies. The complexity of this simulation model should be limited to, firstly,
support effective numerical implementation and, secondly and most importantly,
to allow for the analysis of the behaviour and performance of the automated pres-
sure control systems during the controller design phase. To this end, aspects of
a drilling system that can considerably affect the performance of the automated
MPD system are captured in the model. This hydraulics model incorporates both
the distributed and multi-phase flow nature of a drilling system. Moreover, it
captures nonlinear boundary conditions at the inlet of the drillstring, at the drill
bit and choke manifold, and also the variations in the cross-sectional area of

This chapter is based on “S. Naderi Lordejani, M.H. Abbasi, N. Velmurugan, C. Berg,
J.A. Stakvik, B. Besselink, L. Iapichino, F. Di Meglio, W.H.A. Schilders, N. van de Wouw,
Modelling and numerical implementation of managed pressure drilling systems for the
assessment of pressure control systems, SPE Drilling & Completion, in press, 2020”. Mod-
eling, numerical implementation and simulations are performed in a joint work with S. Naderi
Lordejani. The validation of the single-phase flow model against the field data is solely the
contribution of S. Naderi Lordejani.
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the flow path. Model validations against field data from real-life MPD opera-
tions and simulations of industry-relevant scenarios indicate that these aspects
are effectively captured in the model and preserved during the numerical imple-
mentation.

4.1 Introduction

Conventionally, the task of pressure control is accomplished by changing the mud
density during drilling operations. However, this method of controlling the pres-
sure is slow and inaccurate, and it lacks a means of compensating and responding
to transient pressure fluctuations (e.g., occurring during pipe connection opera-
tions or drilling into high-pressure formations). Besides, this method cannot be
used for the drilling of deep wells with narrow drilling windows because of its low
accuracy. To overcome such drawbacks of conventional pressure control meth-
ods, managed pressure drilling (MPD) has been introduced. A main objective of
MPD is to provide a means of fast, accurate and efficient control of the bottom-
hole pressure (BHP), as opposed to conventional methods. As we illustrate in
Fig. 4.1, in MPD, the annulus is sealed off at the top with a rotating control
device to direct the mud flow from the annulus to a choke valve with a variable
opening (see, e.g., [75], [162]). This equipment, which is often accompanied by
a back-pressure pump, pressurizes the fluid inside the wellbore by providing an
active back pressure. The back pressure, and thus the BHP, can be controlled
by manipulating the choke opening. In automated MPD systems, the task of
manipulating the choke opening is primarily performed by an automatic pres-
sure control system. This enhances safety and performance, and reduces drilling
time and cost, see [76]. In particular, if equipped with advanced control sys-
tems, automated MPD can make it possible to handle many well-control events
automatically without operator intervention and using conventional well-control
methods [23].

A control system designed for automated MPD should pass some virtual
and representative test scenarios on a simulation level before it can be used
in the field. This is done because any failure in the drilling system, especially
in the pressure control system, can have catastrophic consequences. Training
new operators for drilling operations and well control incidents in a controlled
environment and also well monitoring are other important reasons for perform-
ing model-based simulation studies in drilling, [40], [176]. However, simulations
performed for training purposes often need to be well-supported by graphical
interfaces, which is not the case when it comes to controller design. These
simulations rely on a mathematical model of the drilling system dynamics, the
complexity of which varies depending on the required purpose. In particular, the
complexity of an MPD model developed for testing pressure controllers should
be limited to facilitate the performance analysis and design of the control system
by neglecting less important system aspects. Such a model, called the simula-
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Figure 4.1: A simplified schematic diagram of a drilling system with MPD equip-
ment.

tion model in this context, should only contain: 1) aspects of a drilling system
considered in the controller designed and, 2) aspects that are not considered in
the controller design but can have detrimental effects on the performance of the
controller. Models used in the controller design are called the design models.
A design model is often much simpler than a simulation model, as it usually
contains only the mass transport dynamics, neglecting the distributed nature of
drilling systems; see, e.g., [2], [60], [99], [134], [140]. Below are listed a number
of the drilling aspects that can be detrimental to an automated MPD system.

• Pressure wave propagation: pressure controllers are usually developed
based on simplified models in which pressure dynamics (i.e., wave propa-
gation effects) are ignored partially [109] or totally [2], [12], [60], [99], [131],
[140], [162]. The essential time scale associated to these dynamics can be
in the range of tens of seconds, or even minutes in the case of gas influx
into the wellbore. Not only can such dynamics deteriorate the control per-
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formance, but they can also cause instability [141], if not accounted for
during the controller design stage;

• Dynamics of the flow in the drillstring: in many cases, e.g., in [1], the
dynamics of the flow in the drillstring (as opposed to the flow through
the annulus), whether fast or slow, are ignored throughout the controller
design stage. This part can, however, have a significant contribution to the
system behaviour, e.g., by changing the location of the major resonance
frequencies of the system or generating additional resonance frequencies.
Thus, the closed-loop performance in practice can be worse than expected
from simulation studies if system aspects imposed by the drillstring are
ignored in the design model;

• Nonlinear behaviour of the drill bit: once the drillstring flow path is ignored
in the design model, the drill bit is replaced by an independent source of
flow. The flow through the bit is, however, nonlinearly dependent on the
pressure drop over the bit. In particular, in the case of standpipe pressure
control during gas influxes, this nonlinearity can be detrimental.

• The variable structure (i.e., switching nature) of the model: this variable
structure is induced mainly by the presence of a non-return valve in the
bottom-hole assembly. During operations such as pipe connection, the
non-return valve usually remains closed, changing the system properties
and behaviour;

• Lastly, variations in the cross-sectional area of the flow path: these varia-
tions, especially those in the annulus, may have significant contribution to
frequency responses of a drilling system. Therefore, if not included in the
design model, these aspects may compromise the control performance.

Other dynamical effects, such as temperature transients, evolve so slowly, see,
e.g., Fig. 14 in [40], that these can be neglected in the simulation model. These
effects may be modelled in terms of uncertainties in the system parameters.
Effects such as well expansion can also be approximately lumped into the system
parameters, see,e.g., [22].

In this paper, we rely on physical simplifications to derive a simulation model
for MPD which is consistent with the modelling choices above. The simulation
of the resulting model is based on a numerical discretization method. As these
numerical methods are incapable of exactly preserving all the characteristics
of the model, particular care should be taken in choosing, developing and using
these numerical methods. Thus, we also provide a dedicated numerical approach
for the simulation of this model.

The majority of existing hydraulics simulation models for drilling are single-
phase models, often based on the (isothermal) Euler model, [108], [129], and two-
phase models, which are often based on either the two-fluid model or the Drift-
Flux Model (DFM), see, e.g., [4], [37], [107], [134], [157], [163], [170]. In MPD
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modelling, it is key to specify the boundary conditions of the system carefully
because exactly these boundary conditions differentiate MPD from conventional
drilling methods and are means of applying control inputs. Moreover, one should
consider the fact that the flow path in a drilling system, from the rig pump to
drill bit all the way up to the choke, experiences discontinuities in its cross-
sectional area. These discontinuities have a considerable contribution to the
transient and steady-state behaviour of the flow and pressure along the flow
path. These issues have not been addressed adequately in the literature. [107]
showed, by means of simulations and experiments on test wells, the predictive
capabilities of the DFM for drilling operations. Though providing an advanced
numerical setting for the simulation of their model, they performed their studies
in a conventional drilling setting, not MPD. They did also not consider variations
in the cross-sectional area of the flow. The work by [179] is similar to [107], but
the drilling model is solved with a different numerical scheme to improve the
solution accuracy. [2] used the DFM as a basis for simulating the annulus, testing
controllers and model complexity reduction for MPD. The issue of variations in
the cross-sectional area was, however, not addressed. A similar hydraulics model
was studied in [170], where only the annulus was considered in the model and an
extrapolation method was used for solving the considered boundary conditions
for simulations. [157] used the two-fluid model for the simulation of the flow
in the annulus. [40] provided a survey on advances in drilling simulators, but
no technical details were given on the underlying mathematical models. In this
paper, we propose a model for two-phase MPD drilling operations based on the
DFM. This model takes all the relevant aspects, mentioned above, into account.

4.1.1 Contributions.

The main contribution of this paper is a simulation platform suitable for evaluat-
ing controller performance for MPD operations, which includes both the physical
model and the tool to implement it. In particular, a comprehensive formulation
of a hydraulics model for MPD-relevant two-phase flow drilling scenarios is pre-
sented first. In this model, interactions between the different parts of a drilling
system are formulated in terms of boundary conditions. The complexity of
the model is limited to contain control relevant hydraulics aspects of a drilling
system dynamics which can in some way be detrimental to the closed-loop per-
formance of an automated MPD. The developed model allows for the simulation
of many drilling scenarios ranging from making pipe connections, choke plugging
and choke swapping, and bit nozzle plugging to liquid and gas influx scenarios.
Then, we provide a numerical approach to support simulation tooling for fast
scenario testing. In particular, we adapt a characteristics-based method to solve
the nonlinear and boundary conditions, and also propose a dynamical model
for the drill bit to circumvent numerical issues which appear at low pump flow
rates. Since the effects of variations in the cross-sectional area of the flow path
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can be significant both on transient and steady-state response of the system,
we explicitly address these variations during the numerical implementations of
the model. Finally, we validate the hydraulics model for relevant MPD scenar-
ios of single-phase flow by comparing it with a set of field data obtained from
commissioning tests of an automated MPD system.

4.1.2 Outline.

The next section is devoted to providing a short introduction to the DFM. Next,
the mathematical modelling of the system is discussed. The steady-state solution
of the model is discussed afterwards. After completing the modelling part, we
present a numerical approach for the implementation of the model, which is later
illustrated by means of a simulation study.

4.2 Drift-flux model

This section provides a short introduction to the DFM [74] as it is the cornerstone
of the MPD model to be developed. Flow behaviour in a transmission line can,
to some extent, be described by the DFM. Because of its relative simplicity yet
favourable capabilities in capturing the pressure and mass transport dynamics
of two-phase flows, the DFM is probably the most widely used model in liter-
ature on control and simulation of two-phase drilling scenarios [4]. Consisting
of two mass conservation equations and one combined momentum conservation
equation, the DFM reads as

∂q

∂t
+
∂f(q)

∂x
= S, (4.1)

with

q =

 q1

q2

q3

 :=

 ρlαl
ρgαg

ρlαlvl + ρgαgvg

 , f :=

 ρlαlvl
ρgαgvg

ρlαlv
2
l + ρgαgv

2
g + p

 ,
S :=

 Γ
−Γ

s(u, t, x)

 .
(4.2)

Here, x ∈ (0, L) and t > 0 are the spatial and time variables, respectively, with
L the length of the computational domain and the well in this case. The volume
fraction, density, velocity and pressure are denoted by α = α(t, x), ρ = ρ(t, x),
v = v(t, x) and p = p(t, x), respectively, where the subscript l denotes the
liquid phase and g refers to the gas phase. The vector of primitive variables
(individual variables which have a clear physical meaning) is indicated by u =
[αl, ρl, vl, αg, ρg, vg, p]

T , while q represents the vector of conservative variables,
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and f(·) is the flux function. The source term is represented by s(u, t, x), and
Γl and Γg model mass exchange between the phases, which are often assumed
to be zero. The source term consisting of a gravitational and frictional term is
given by

s(u, t, x) = ρmg sin (θ)−2ν(u)ρmvm|vm|
D

, (4.3)

where g and θ(x) are the gravitational acceleration and the inclination of the
transmission line with reference to the horizontal direction and D is hydraulic
diameter. Moreover, ρm = αlρl + αgρg and vm = αlvl + αgvg are the mixture
density and velocity, respectively. Here, ν is the Fanning friction factor which is
in general a challenging parameter to determine. It is well-known that drilling
muds in general exhibit non-Newtonian behaviours [147]. There are a number
of models describing these types of flows such as the Herschel-Bulkley, Bing-
ham plastic and the Power Law model. Of these three, the three-parameter
model of Herschel-Bulkley is the most accurate, as it includes the other two
models as special cases. However, the respective equations are highly nonlin-
ear and challenging to solve and, moreover, complex models with too many
parameters are less useful from a control and estimation perspective. Here,
we adapt the two-parameter Power Law model to trade off between complex-
ity and accuracy. In this model, we define the Generalized Reynolds number
as Re = ρmvmDeff/µm,app, where Deff = 4nmD/(3nm + 1) is the effective
diameter and

µm,app = µnmm

(
3nm + 1

4nm

8vm
D

)nm−1

, (4.4)

is the apparent mixture viscosity [147]. Here, nm = αlnl+αg, with nl the liquid
behaviour index, is the mixture behaviour index, and µm = αlml + αgµg, with
µl and µg the liquid and gas viscosity, respectively, is the mixture viscosity. The
Fanning friction factor for laminar flow, when Re < 3250− 1150nm, is given by

ν =
16

Re
, (4.5)

while for the turbulent flow, when Re > 4250− 1150nm, ν is the solution to

1√
ν

+ 4 log

0.27ε

Deff
+

1.26n
−1.2
m(

ν(1−nm2 )Re
)n−0.75

m

 = 0, (4.6)

where ε is the pipe roughness [147]. As can be seen, this equation is highly
nonlinear and no exact explicit solution is currently available to it, thus we
use an approximate solution, see Appendix C. For transition flow, when Re ∈
[3250, 4250] − 1150nm, we compute ν by a linear interpolation from (4.5) and
(4.6). We stress again that one may use a different frictional model depending
on the application and required accuracy, see [116] for a review of these models.
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Remark 4.1. The Power Law model is in general considered as complex when
it comes to the design of controllers and estimators for MPD automation, given
that it is far less common compared to simpler Newtonian models used for these
purposes.

Remark 4.2. Using mixture parameters and variables µm, ρm and vm is a
common approach to extend liquid frictional models to two-phase flows. Likewise,
we have used a mixture behaviour index nm to be able to use the Power Law model
for two-phase flow scenarios.

The DFM is completed by four other equations to be, potentially, solvable
uniquely. These, often known as the closure laws, can be expressed as follows:

p− p0 − c2l (ρl − ρ0) = 0, (4.7a)

p− c2gρg = 0, (4.7b)

αl + αg − 1 = 0, (4.7c)

vg − vl − Φ(u) = 0, (4.7d)

where p0, ρ0, cl and cg are the reference pressure, liquid reference density, sound
velocity in the liquid and sound velocity in the gas, respectively. The first two
equations are, respectively, known as the equations of state for the liquid and
gas. An equation of state describes the state of matter in terms of physical
variables such as temperature, density and pressure. Equations of state can be
rather complex in general, but we here use linear variants approximating only
the relation between pressure and density, as in (4.7a) and (4.7b). We note that
these equations still capture the liquid and gas compressibility. Moreover, the
volume balance between the phases is imposed by (4.7c), and the slip law (4.7d)
describes the relative velocity between the two phases depending on the function
Φ(·). Here, the slip law is given by [96]

Φ(u) = C0(u)vm + Vd(u)− vl, (4.8)

where the C0(·), Vd(·) are the distribution parameter and drift velocity, respec-
tively. Several descriptions, which are mostly obtained based on experiments
and function fitting, for these parameters can be found in the literature. De-
pending on well conditions, mud properties and expected drilling scenarios, a
particular description of these parameters can be selected to be used in the hy-
draulics model, assuming only bubbly and slug flows. For a review of a variety
of descriptions for these parameters and their validity conditions, see [30].

It can be shown that the DFM admits three distinct eigenvalues in a wide
region of the variable space, see [69]. These eigenvalues are λ1 = vg, λ2 = vg−cm,
λ3 = vg + cm, with cm(u) the sound velocity in the mixture. Currently, no exact
analytical expression is available for cm(u). Thus, we use an approximation of
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cm(u) based on the local definition of the bulk moduli, as follows:

cm(u) =

√
βm(u)

ρm(u)
, (4.9)

where βm is mixed bulk modulus, defined as βm =
βlβg

αlβg+αgβl
, with βg = p and

βl = c2l ρl the bulk moduli of gas and liquid, respectively [1], [99].

4.3 MPD Description and Hydraulics Modelling

Consulting Fig. 4.1, an MPD system may be simply regarded as two equivalent
hydraulic transmission lines (or simply pipes) which are connected through a drill
bit in the middle and one of which ends up with a controllable choke valve. The
exposed zone of the annulus (so-called open-hole section) is susceptible to gas
and liquid influx from the surrounding formations that may potentially contain
hydrocarbons. Therefore, to have a good description of the flow and pressure
transients along the flow path, it is necessary to use a multi-phase flow model
for the annulus. However, except in some specific drilling operations, such as
operations performed in underbalanced drilling, it is quite reasonable to use a
single-phase flow model to describe the flow in the drillstring.

4.3.1 Hydraulics modelling.

The DFM, as in (4.1), can be used only for the description of the flow lines
with constant cross-sectional area, while in practice there are variations in the
cross-sectional area of the flow path, due to changes in the diameter of pipes
and open hole, that impact the flow behaviour. This urges the use of a modified
version of the DFM that accounts for the variations in the cross-sectional area.
The modified DFM for the annulus reads as follows [150]:

∂(Aaqa)

∂t
+
∂fa(Aaqa)

∂x
= AaSa +

∂Aa
∂x

Pa, (4.10)

where Aa(x) is the cross-sectional area of the annulus and we have denoted
Pa := [0, 0, pa]T . In this context, a sub/superscript a refers to the annulus and a
d to the drillstring. Compared to the model (4.1), changes in the cross-sectional
area lead especially to the term Pa∂Aa/∂x. We should note that t, x, qa, fa(·)
and Sa are the same as in (4.1) computed from the variables in the annulus.
In the annulus, as illustrated in Fig. 4.1, x = 0 marks the well bottom and
x = L a point in the annulus that is in the same level as the choke. Moreover,
Da = Din− do, with Din the diameter of the annulus and do the outer diameter
of the drillstring, and θa(x) = −θ(L− x).

As will be explained in later sections, we need to switch between the primitive
variables ua and the conservative ones qa to numerically solve the model under
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development. Based on the closure laws in (4.7) and also the relation between
the vectors qa and ua, as in (4.2), we derive the following relation for the pressure
in terms of conservative variables:

pa =
−b+

√
b2 − 4d

2
, (4.11)

where b = ρ0c
2
l − p0 − qa,1 − c2g and d = −(ρ0C

2
l − p0)c2gqa,2. Next, given the

pressure from (4.11), (4.7a) and (4.7b) can be used to compute ρl and ρg, respec-
tively. Next, the definition of qa leads to expressions for the volume fractions:

αl =
qa,1
ρl

, αg =
qa,2
ρg

. (4.12)

Next, we can compute vl using

vl =
qa,3 (1− C0αg)− qa,2Vd

qa,1 + C0αgqa,2
. (4.13)

Then from the slip law (4.7d), with (4.8), we obtain

vg =
C0αlvl + Vd

1− C0αg
. (4.14)

Remark 4.3. Depending on the choice of C0(u) and Vd(u), if these parame-
ters are dependent on vl and vg, then (4.13) and (4.14) can become nonlinear
equations with respect to vl an vg which need to be solved simultaneously using
nonlinear solvers. However, these are often independent of vl and vg.

As already mentioned, the main reason for using a two-phase model for the
annulus is to enable modelling of a gas influx from the formation into the annulus.
On the contrary, it is reasonable to use a single-phase model for describing the
flow behaviour inside the drillstring. It is worth mentioning that there are certain
drilling operations, such as operations in underbalanced drilling, where some rate
of gas is intentionally injected into the drillstring. This gas injection in turn gives
rise to a two-phase medium in the drillstring. The following isothermal Euler
equation accounting for the variations in the cross-sectional area describes the
flow behaviour in the drillstring:

∂(Adqd)

∂t
+
∂fd(Adqd)

∂x
= AdSd +

∂Ad
∂x

Pd, (4.15)

where fd (Adqd) = [Adρv,Adρv
2 +Adpd]

T , Sd(ud, t, x) = [0, sd(ud, t, x)]T , Pd :=
[0, pd]

T . Moreover, ρ = ρ(t, x), v = v(t, x), pd = pd(t, x) are the mud density,
velocity and pressure profiles along the drillstring. The vectors of primitive
and conservative variables are indicated by ud = [ρ, v, pd]

T and qd = [ρ, ρv]T ,
respectively. Moreover, Ad(x) is the cross-sectional area of the drillstring. For
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the drillstring, x = 0 marks a point in the drillstring which is at the same level
as the pump whereas x = L marks its outlet at the bit. To avoid unnecessary
notational complexities, we do not use a subscript to refer to the primitive
variables in the drillstring, except for the pressure. As before, sd is the source
term acting on the flow in the drillstring, and the same model as in (4.3) is used
to determine it, with the mixture variables and parameter reducing to liquid
variables. Moreover, we have Dd = din, with din the inner diameter of the
drillstring, and θd(x) = θ(x). The equation of state considered for the liquid in
the drillstring is the same as (4.7a), the one used in the annulus.

Remark 4.4. It should be noted that (4.15) may be obtained from (4.10) by
setting αg = 0.

4.3.2 Boundary conditions

To potentially be able to solve (4.10) and (4.15) uniquely, one needs to specify
a set of boundary conditions. In this regard, a careful observation of Fig. 4.1
reveals that the hydraulics behaviour of an MPD system is largely dictated
by three main physical boundary conditions, which are the boundaries at the
drillstring inlet, the bit together with the behaviour of the formations around
the open-hole, and the choke valve, as the annulus outlet.

The boundary condition at the drillstring inlet is expressed in a general form
as follows:

fibc (ρ (t, 0) , v (t, 0) , t) = 0, (4.16)

where fibc(·, ·, ·) is the boundary condition at the drillstring inlet, and it is deter-
mined depending on the ongoing drilling operation. For example, during normal
operations, when the drillstring is connected to the mud pump, we can define

fibc := Ad (0) ρ (t, 0) v (t, 0)− Jp (t) , (4.17)

where Jp(t) denotes the mass flow rate of the mud pumped into the drillstring.
It should be noted that in practice we are often provided the pump strokes per
minutes np(t) rather than the mass flow rate. In that case, the mass flow rate can
be computed using Jp (ρ(t, 0), t) = Vpnp(t)ρ(t, 0), where Vp is the volume that
the pump sweeps per stroke. As another example, during a bleed-off operation,
an operation to slowly release the trapped pressure within the drillstring before
detaching it from the top-derive, a valve equation should be used to model
this boundary condition. Next, at the bottom of the well, one can write three
boundary equations, consisting of the bit equation that describes the liquid mass
flow rate through the bit in terms of the pressure drop over the bit, the liquid
mass balance equation between both sides of the bit and the gas balance between
the formations and the annulus, respectively:

Ad(L)ρ(t, L)v(t, L)− cdAn
√

2ρ(t, L)r (pd(t, L)− pa(t, 0)) = 0, (4.18)
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Ad(L)ρ(t, L)v(t, L) + J lr(pa(t, 0), pr)−Aa(0)αl(t, 0)ρl(t, 0)vl(t, 0) = 0, (4.19)

Jgr (pa(t, 0), pr)−Aa(0)αg(t, 0)ρg(t, 0)vg(t, 0) = 0, (4.20)

where the function r(e) =

{
e, if e > 0
0, if e ≤ 0

is used to model the non-return valve

installed above the bit inside the Bottom-Hole Assembly (BHA), An is the ef-
fective area of the bit nozzles and cd is the discharge coefficient. Also, J lr(·, ·)
and Jgr (·, ·) respectively represent the mass flow rates of the liquid and gas ex-
changed between the well-bore and the formations with a pressure pr, known as
the reservoir pressure. Here, we approximate these variables using a linear static
reservoir model as follows (see, e.g., [3]):

J ir = κir (pr − pa(t, 0)) , i ∈ {g, l}, (4.21)

where κi is the production index for the phase i. Coupling with a more intricate
reservoir model is also possible and it can be substituted into (4.21). However,
near well-bore reservoir modelling is out of the scope of this paper. At the top
side of the annulus, the boundary condition is determined by the choke equation
describing the mass flow rate of the mixture through the choke as a function of
the pressure drop over the choke (see, e.g., [61])

0 = Jc(t, ua(t, L))− Jbpp(t)− Juc (ua(t, L)),

Jc(t, ua(t, L)) =

nc∑
i=1

kc,iGi(zc,i(t))
√

2ρm(t, L)r (pa(t, L)− p0),
(4.22)

where kc,i, zc,i and Gi(·) are the choke flow factor, the choke opening and
the choke characteristic of the choke valve i, respectively. Here, nc is the
number of choke valves in the MPD set up and Jbpp(t) is the mass flow rate
from the back-pressure pump. Moreover, Juc = Aa(L)αl(t, L)ρl(t, L)vl(t, L) +
Aa(L)αg(t, L)ρg(t, L)vg(t, L) is the mass flow rate upstream the choke whereas
Jc is that downstream the choke. Again, more accurate models of multi-phase
flow through valve can be derived to replace (4.22).

The combination of Eqs. (4.7)-(4.22) constructs our MPD simulation model.
Specifically, in this model, we have accounted for variations in the cross-sectional
area of the flow path and also the nonlinear boundary conditions of an MPD
system. Now the MPD model has been specified, and next the steady-state
solution of the system can be found based on this model.

4.4 Steady-state solution of the model

Clearly, to be able to solve the MPD model derived in the previous section,
an initial condition is required. As most of the drilling time is occupied by
normal drilling operation, it is reasonable to start a simulation study from a
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drilling ahead condition. In this case, the system shows a steady-state behaviour;
therefore, all the derivatives with respect to the time variable t may be discarded
from the Equations (4.10) and (4.15), resulting in the steady-state differential
equations

dfa(Aaq̄a)

dx
= AaS̄a +

∂Aa
∂x

P̄a,

dfd(Adq̄d)

dx
= AdS̄d +

∂Ad
∂x

P̄d.

(4.23)

Now, using the closure laws (4.7) together with (4.23), we obtain

dȳa(x)

dx
= M−1

a (ȳa)Ha(ȳa, x),

dȳd(x)

dx
= M−1

d (ȳd)Hd(ȳd, x),

(4.24)

where ȳd(x) = [v̄, ρ̄]T , ȳa(x) = [v̄l, v̄g, ᾱg, p̄a]T , with the a bar (i.e., )̄ indicating
the variables and vectors in the steady-state. Moreover,

Ma =


1− ∂Φ

∂v̄g
−1− ∂Φ

∂v̄l
− ∂Φ
∂ᾱg

− ∂Φ
∂p̄a

(1− ᾱg) ρ̄l 0 −ρ̄lv̄l vl(1−ᾱg)

c2l

0 ᾱgρ̄g ρ̄g v̄g
ᾱg v̄g
c2g

(1− ᾱg) ρ̄lv̄l ᾱgρ̄g v̄g 0 1

 , Md =

[
ρ̄ v̄
ρ̄v̄ c2l

]
,

Ha = S̄a −
dAa
dx


0

(1−ᾱg)ρ̄lv̄l
Aa

ᾱg ρ̄g v̄g
Aa
0

 , Hd = S̄d −
1

Ad

dAd
dx

[
ρ̄v̄
0

]
,

(4.25)
with Φ(u) as in (4.8). The boundary conditions of the ordinary differential
equation (4.24) are given by the physical boundary conditions (4.17), (4.18) and
(4.22) in the steady-state conditions:

(Adρ̄v̄)|x=0 − J̄p =0,

(Adρ̄v̄)|x=L − (Aa (1− ᾱg) ρ̄lv̄l)|x=0 + J lf (p̄a(0), p̄r) =0,

Jgf (p̄a(0), p̄r)− (Aaᾱgρ̄g v̄g)|x=0 =0,

(Adρ̄v̄)|x=L −Ancd
√

2ρ̄(L)r (p̄d(L)− p̄a(0)) =0,

(Aaᾱlρ̄lv̄l +Aaᾱgρ̄g v̄g)|x=L + J̄bpp−
nc∑
i=1

kc,iGi(z̄c,i)
√

2ρ̄m(L)r (p̄a(L)− p0) =0.

(4.26)

Eq. (4.24) together with (4.26) construct a two-point boundary value problem
in terms of x as the independent variable.
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Note that the presence of dA/dx, which contains impulses due to area dis-
continuities in A(x), in the steady-state equations (4.24) causes discontinuities
in the steady-state solution. After we have initialized our problem by solving
(4.24), we start with the numerical implementation of the model in the sequel.

The developed model in this paper includes the system dynamics and aspects
that are essential to the control performance. Considering only the control-
relevant aspects of the system in the model keeps its complexity relatively low,
such that it permits, for example, a semi-analytical assessment of its dynamical
properties (an assessment that relies partially on theoretical analyses and par-
tially on numerical analyses). For instance, semi-analytical analyses are used
in [62, Chapter 1]. This type of assessment can be computationally expensive,
if not impossible in the case of high-complexity models. Moreover, simulation
studies performed during the controller design might need to be performed sev-
eral times. Thus, it is important for these simulations to run fast. Moreover,
the relatively low complexity of the model will allow designers and engineers to
more easily identify the reason for or the source of problems in the case of poor
simulation results.

4.5 Numerical implementation

The MPD model derived in the modelling section cannot be solved analytically,
due to its complexity (e.g., infinite-dimensional nature and nonlinearities). To
solve and then use this model for simulation purposes, we employ a numerical
scheme based on a finite-volume method (FVM) discretization. As illustrated
in Fig. 4.2, in FVM [113], the spatial domain of a hyperbolic partial-differential
equation (PDE) is divided into a finite number of control volumes or cells. All the
variables are assumed to have a predefined distribution in each control volume.
As illustrated in the figure, the spatial domain is discretized into N cells denoted
by Gi = (xi−1/2, xi+1/2), i = {1, 2, ..., N}, of length ∆x, with xi+1/2 = i∆x

called the ith cell interface and xi = (i − 1/2)∆x marking the middle point of
that cell. The variable Uni (Qni ) is an approximation of the spatial average of
the vector u(n∆t, x) (q(n∆t, x)) over Gi and the approximate variables at right
and left sides of each interface are indicated by U− and U+, respectively. Here,
∆t is the time discretization step length. A finite volume Godunov-type method
has the following general form [113]:

Qn+1
i = Qni −

∆t

∆x

(
F
(
U+∗
i+1/2, U

−
i+1/2

)
− F

(
U+
i−1/2, U

−∗
i−1/2

))
+ ∆tSni , (4.27)

where F (·, ·), a conventional numerical flux function assuming a fixed cross-
sectional area, is determined by the numerical scheme, and Sni = S(Uni , n∆t, xi)
is the discretized source term. A starred variable U∗, yet to be computed, is
an update of the variable U which accounts for variations in the cross-sectional
area of the flow. Note that, since the same formula as in (4.27) is used for
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Figure 4.2: An illustration of a spatial discretization performed in FVM.

solving both of (4.10) and (4.15), the sub/superscripts a and d are omitted for
readability. The time step size ∆t is determined based on the Courant-Friedrichs-
Lewy (CFL) condition [55]. In particular, the numerical implementation of the
DFM (4.1) has been extensively studied in the last few decades (see, e.g., [71]).
These studies mostly aim at developing accurate but computationally low-cost
numerical schemes for computing the numerical flux function.

To treat the variations in cross-sectional area of the flow path of the MPD
model, the method proposed by [103] for (4.15) and an extension of that method
proposed by [10] for the modified DFM (4.10) are exploited here to compute the
starred variables in (4.27). In this method, we use a coordinate transformation
that gives the equivalent values of the variables in a cell if the geometry of
that cell changes. In particular, when updating the variables in the cell Gi, we
assume that the cells Gi−1 and Gi+1 have the same geometries as Gi and use
this transformation to compute the equivalent of the variables in those cells,
considering this change of geometry. In this way, we are still able to use a
Godunov setting with numerical flux functions as in (4.27) to numerically solve
our MPD simulation model. Following this approach, U+∗

d = [ρ+∗, v+∗]T of the
interface i + 1/2 in the drillstring is obtained through a nonlinear coordinate
transformation that is given in terms of the following system of equations:

ρ+∗v+∗A−d − ρ
+v+A+

d = 0,(
v+∗)2 − (v+

)2
+ c2l ln

(
ρ+∗

ρ+

)2

= 0,
(4.28)

where A− and A+ denote, as illustrated in Fig. 4.2, the cross-sectional area A
immediately at the left and right side of an interface, respectively. Moreover,
U−∗d of the interface i−1/2 is obtained by replacing the superscripts + and − by
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− and +, respectively, in (4.28) and then solving the resulting equation. Next,
U+∗
a for the DFM of the annulus is obtained by a coordinate transformation

given by the following equations together with closure relations (4.7a)-(4.7d)
and (4.8): (

α+∗
l ρ+∗

l v+∗
l

)
A−a −

(
α+
l ρ

+
l v

+
l

)
A+
a =0,(

α+∗
g ρ+∗

g v+∗
g

)
A−a −

(
α+
g ρ

+
g v

+
g

)
A+
a =0,

α+∗
l ρ+∗

l

ρ+∗
g

(
v+∗
l

2

)2

+ α+∗
g

(
v+∗
g

2

)2

−

α+
l ρ

+
l

ρ+
g

(
v+
l

2

)2

− α+
g

(
v+
g

2

)2

+ c2g ln

(
ρ+∗
g

ρ+
g

)2

=0.

(4.29)

As before, U−∗a of the interface i−1/2 is obtained by replacing + and − in (4.29)
with − and +, respectively.

Remark 4.5. A close observation of (4.28) reveals that variations in the pres-
sure profile pd(t, x) in the drillstring due to changes in the cross-sectional area at
the location of these changes are not significant. This is mainly because the mud
velocity v in the drillstring is far smaller than the sound velocity cl. On the con-
trary, when there is gas inside the annulus, variations in the cross-sectional area
can cause considerable variations in the pressure. Given this explanation, with-
out losing much accuracy, we may assume that ρ+∗ = ρ+ for the drillstring and
solve only the mass-balance equation of (4.28), which is linear, for computing
v+∗.

After computing Qn+1
i from (4.27), the vector of primitive variables are com-

puted using (4.11)-(4.14). Then, if a first-order scheme is used, a uniform dis-
tribution is considered for the variables u(n∆t, x) over a cell Gi, thus

û(n∆t, x) = Unj , x ∈ (xi− 1
2
, xi+ 1

2
). (4.30)

When a second-order scheme is used, this approximation is obtained by a linear
interpolation as follows:

û(n∆t, x) = Unj + (ux)
n
j (x− xi) , x ∈ (xi− 1

2
, xi+ 1

2
), (4.31)

where (ux)nj is an approximation of the exact derivatives ∂u(n∆t, x)/∂x at x =
xj , computed using a flux limiter, see, e.g., [165].

Remark 4.6. We reasonably assume that A(x) is piecewise continuous, with
a discontinuity occurring only at a cell interfaces such that A(x) is constant in
each cell Gi (i.e., for x ∈ (xi−1/2, xi+1/2), i ∈ {1, 2, ..., N}).

In the next part of this section, we explain how to combine the implicit
boundary conditions of the problem with the numerical scheme used for updating
the internal domains of the model.
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4.5.1 Boundary conditions treatment.

Expanding the scheme (4.27) for i = 1 and i = N reveals explicit dependencies
on U0 and UN+1, and also implicit dependencies on U−1, UN+2 for the case of
second-order schemes. These variables are required to incorporate the boundary
conditions of the boundary value problem in the described scheme in the previ-
ous section. Extrapolation is a common method for determining the boundary
variables. It is effective and can provide accurate results if there are no source
terms in the model [144]. However, it lacks a sound theoretical support and can
cause large spikes in the solution in the presence of source terms. Contrary to
extrapolation, a method known as the characteristics-based method [51] offers
more accurate and reliable solutions and it also has a more reliable theoretical
foundation. This method involves breaking a two-point boundary value problem
into two initial value problems and solving those separately at their respective
boundaries. Now, by the use of a nonlinear coordinate transformation and ap-
proximations, the DFM with the closure laws (4.7a)-(4.7d) can be decomposed
into its characteristic equations. In this form, two of the PDEs describe the
propagation of the pressure waves, also called fast dynamics of the DFM, inside
the domain and one PDE, called the slow dynamics, describes the migration of
the gas phase. For the DFM (characterizing flow the annulus), these relations
come in the following form, see [71]:

αg(1− C0αg)
d1pa
d1t

+ pa
d1

d1t
αg = 0, (4.32)

d2pa
d2t
− ρlcm (vg − vl)

d2αg
d2t

− ρlαl (vg − vl + cm)
d2vl
d2t

= (vg − vl + cm) sa,

(4.33)
d3pa
d3t

+ ρlcm (vg − vl)
d3αg
d3t

− ρlαl (vg − vl − cm)
d3vl
d3t

= (vg − vl − cm) sa,

(4.34)
where in this case we have defined di

dit
:= ∂

∂t +λa,i
∂
∂x , i = 1, 2, 3, which is a direc-

tional derivative along the vector V = [1, λa,i]
T , with λa,i being an eigenvalue of

the DFM of the annulus. Eqs (4.32)-(4.34) correspond to the gas volume wave
travelling at a speed λa,1 = vg downstream the annulus, the pressure waves prop-
agating at λa,2 = vl− cm upstream the annulus and the pressure wave travelling
at a speed of λa,3 = vl + cm towards the choke, respectively. The characteristic
relations of the isothermal Euler equation describing the single-phase flow in the
drillstring are given by

∂pd
∂t
− λd,1

∂pd
∂x
− clρ

∂v

∂t
− clρλd,1

∂v

∂x
= clsd, (4.35)

∂pd
∂t

+ λd,2
∂pd
∂x

+ clρ
∂v

∂t
+ clρλd,2

∂v

∂x
= −clsd, (4.36)
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where (4.35) corresponds to the pressure wave travelling upstream the flow with
a velocity of λd,1 = v−cl, while (4.36) corresponds to the pressure wave travelling
the opposite direction at a velocity of λd,2 = cl + v.

Remark 4.7. Note that the characteristic relations (4.32)-(4.34) are obtained
under several simplifying assumption such as an incompressible liquid phase,
∂C0(u)/∂u = 0 and ∂Vd(u)/∂u = 0, and that αgρg � αlρl holds, because other-
wise the derivation of such relations is highly challenging, if not impossible. Nat-
urally, these assumptions lead to some degree of inaccuracy in the computation
of the boundary variables. Nonetheless, for small gas volume fractions αg (less
than 0.25) at the boundaries, these assumption are rather realistic, especially
when managed pressure drilling operations are supported by high-performance
kick detectors and pressure control systems that prevent large gas kicks. It is
mentioned that the relations (4.35) and (4.36) are exact.

In the remainder of this section, we propose a method for computing the
boundary variables based on the characteristic relations (4.32)-(4.36) together
with the physical boundary conditions introduced in the previous section.

We solve the drillstring inlet boundary condition in (4.16) together with the
characteristic relation (4.35), forming an initial value problem as

fibc(ρ(t, 0), v(t, 0), t) = 0,

∂pd
∂t
− λd,1

∂pd
∂x
− clρ

∂v

∂t
− clρλd,1

∂v

∂x
= clsd.

(4.37)

This partial differential algebraic equation, if solved at x = 0, gives ud(t, 0) =
[v(t, 0), ρ(t, 0)]T . Finding the analytical solution of this nonlinear partial dif-
ferential algebraic equation is however challenging. Therefore, we solve (4.37)
numerically by performing a first-order Euler discretization (both spatial and
temporal) on (4.37), yielding

fibc(ρ
n
0 , v

n
0 , n∆t) =0,

pnd,0 − p
n−1
d,0

∆t
− clρn−1

1

vn0 − vn−1
0

∆t
=− (λd,1)

n−1
1

pn−1
d,0 − p

n−1
d,1

∆x
−

cl (ρλd,1)
n−1
1

vn−1
0 − vn−1

1

∆x
+ clsd

(
Un−1
d,1 , (n− 1)∆t, 0

)
,

(4.38)
where the variables ρn0 and vn0 , the solutions of (4.38), are approximations of
ρ(n∆t, 0) and v(n∆t, 0), respectively, and the notation (·)ij stands for the term
inside the parentheses evaluated at the time instance i and the point xj in
the special domain. The resulting nonlinear algebraic equation (4.38), together
with the equation of state (4.7a), can be solved with a proper zero-finder algo-
rithm, such as a Newton solver. After this equation is solved, we can compute
Und,0 = [vn0 , ρ

n
0 ]T and Qnd,0 = [ρn0 , ρ

n
0 v

n
0 ]T , as required in (4.27) for the drill-

string. At the bottom of the well, we take a similar approach. At this boundary,
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there are couplings between the boundary variables in the annulus and those
in the drillstring, and nine unknown boundary variables in total with seven
boundary equations and closure laws. These together with the characteristic
equations (4.36) and (4.33) construct an initial value problem that is solved nu-
merically at this boundary to compute the boundary vectors Und,N+1 and Una,0
(and Qnd,N+1 and Qna,0). However, using a numerical method similar to the one
in the previous section is computationally expensive, because it involves solving
a nine-dimensional nonlinear algebraic equation. Moreover, it can cause numer-
ical oscillations when the flow through the bit is close to zero, which is the case
during, e.g., a pipe connection operation. Therefore, here we connect the two
boundaries at both sides of the bit through an intermediate ordinary differential
equation as follows (For the derivation, see Appendix D):

ż(t) '

{
ξ (z(t),∆pdh(t)) , for z(t) > 0,

max(0, ξ (z(t),∆pdh(t))), for z(t) = 0,
(4.39)

where ∆pdh(t) = p(t, L−∆l/2)− pa(t,∆l/2) and

ξ =
2Ad(L)Aa(0)

∆l(Ad(L) +Aa(0))

(
∆pdh −

z2

2ρ(t, L−∆l/2)(Aacd)
2 +

s̄a
Ad(0)

+
s̄d

Aa(L)

)
.

(4.40)
The operator max(·, ·) in (4.39) is used to account for the non-return valve
installed in the drillstring to prevent a back-flow from the annulus into the
drillstring and we take ∆l is a parameter that determines the inertia of the dy-
namics of z(t). Now, using the other characteristic relation in the drillstring and
performing an Euler discretization over space and time, we can approximately
compute the drillstring boundary variables at the bit by solving

zn −Ad(L)ρnN+1v
n
N+1 =0,

pnd,N+1 − p
n−1
d,N+1

∆t
− clρn−1

N

vnN+1 − v
n−1
N+1

∆t
= (λd,2)

n−1
N

pn−1
d,N − p

n−1
d,N+1

∆x
+

cl (ρλd,2)
n−1
N

vn−1
N − vn−1

N+1

∆x
− clsd(Un−1

d,N , (n− 1)∆t, L−∆x/2),

(4.41)
where vnN+1 and ρnN+1 are approximations of the boundary variables v(t, L),
ρ(t, L), respectively, and zn, an approximation of z(n∆t), is obtained from the
time discretization of (4.39) using an Euler method, i.e.,

χj = χj−1 +

{
∆tzξ

(
χj−1,∆pn−1

dh

)
, for χj−1 > 0,

∆tz max(0, ξ
(
χj−1,∆pn−1

dh

)
), for χj−1 = 0,

j = {1, ...,m}.

zn := χm,
(4.42)
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Here, χ is an auxiliary variable such that χ0 = zn−1 and ∆tz is the corresponding
discretization time step length. Note that, to avoid numerical oscillations when
the time step ∆t is large, we can design ∆tz to be smaller than ∆t. To this end,
we set ∆tz = ∆t/m, m ∈ N, where m is chosen to be large enough.

Analogously, we can compute Una,0, as an approximation of ua(n∆t, 0), by
solving the following system of nonlinear algebraic equations as a result of spatial
and temporal discretization of (4.33) using the Euler method with (4.19)-(4.20):

zn + J lr(p
n
a,0, pr)−Aa(0) (αlρlvl)

n
0 =0,

Jgr (pna,0, pr)−Aa(0) (αgρgvg)
n
0 =0,

pna,0 − pn−1
a,0

∆t
−
(
ρlcm

(
vg − vl

))n−1

1

αng,0 − αn−1
g,0

∆t
−

(ρlαl (vg − vl + cm))
n−1
1

vnl,0 − v
n−1
l,0

∆t
=−

(
λa,2

)n−1

1

pn−1
a,1 − p

n−1
a,0

∆x
+

(
λa,2ρlcm

(
vg − vl

))n−1

1

αn−1
g,1 − α

n−1
g,0

∆x
+

(
λa,2ρlαl (vg − vl + cm)

)n−1

1

vn−1
l,1 − vn−1

l,0

∆x
+

(vg − vl + cm)
n−1
1 sa(Un−1

a,1 , (n− 1)∆t, 0).

(4.43)
Note that the above equations need to be solved together with the closure laws
to return (generally) a unique solution. After solving (4.41) and (4.43), we can
compute Qnd,N+1 and Qna,0. At the choke boundary, the initial value problem
consists of the choke equation (4.22), and all closure laws of the DFM (4.7a)-
(4.7d) together with the two characteristic equations (4.32) and (4.34). This
problem is approximated in terms of a nonlinear algebraic equation, similar to
(4.38), using a first-order Euler discretization over space and time domains. The
solution of the resulting algebraic equation is then used to compute Una,N+1 and
Qna,N+1.

Remark 4.8. If a second-order scheme is used, in addition to the boundary
vectors Ua,0 and Ua,N+1, the vectors Ua,−1 and Ua,N+2 also need to be deter-
mined. Although these variables are less crucial than the boundary variables for
the accuracy of the MPD model , the way we compute these can have a signif-
icant impact on the solution. A common approach in this regard is to assume
that Ua,−1 = Ua,0 and Ua,N+2 = Ua,N+1. However, one can use more advanced
approaches such as the one proposed by [145], which comes at a higher compu-
tational expense.
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Figure 4.3: The diameter of the annulus and drillstring of the drilling well used
in the model validation studies.

4.6 Field data comparisons and simulation studies of industry-
relevant scenarios

To evaluate the predictive capabilities of the simulation model and the perfor-
mance of the proposed numerical implementation of the model, simulations and
model validations against experimental data are performed in this section.

4.6.1 Comparisons with field data

We have performed comparisons for single-phase flow scenarios between the hy-
draulics model presented in this paper and field data obtained during commis-
sioning tests of an MPD operation on a real drilling well. These tests were
performed after running casing and before resuming drilling ahead at the length
of 1647 m to adjust the MPD control system. The geometries of the drillstring
and wellbore are reported in Fig. 4.3. The other parameters used in the model
are listed in Table 4.1. The considered measurements correspond to a time
period when the drillstring was stationary. In this experiment, the mass flow
of the mud pumped into the drillstring varies between low, medium and high
values at different rates.
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Table 4.1: Parameters used in the hydraulics model for model validation.

Parameter Symbol Value Unit
Length of the well l 1645 m

Average well inclination θ̄ 1.08 rad
Liquid bulk modulus βl 0.94×109 Pa
Reference pressure p0 105 Pa

Liquid density at p0 ρ0 1210 kg/m3

Number of chokes nc 2 -
Choke flow factor kc1 0.0026 m2

Choke flow factor kc2 0.0026 m2

Liquid viscosity µl 0.177 Pa.s
Liquid behaviour index nl 0.93 -

Bit nozzles area An 5.69×10−4 m2

Bit discharge coefficient cd 0.8 -

In this paper, instead of identifying Gi(zci) as a function of zc,i, we approxi-
mate it as a function of time, i.e., we compute the implicit choke characteristic
G(t) from the measurements and use it in our simulations. In particular, we use
the following relation to approximately compute G(t) :

G(t) =

2∑
i=1

Gi(zc,i) '
Jc(t)

kc,1
√

2ρc(t)r(pc(t)− p0)
, (4.44)

where pc(t) = pa(t, L) and ρc(t) = ρa(t, L) are the measured pump pressure
and flow density upstream the choke, and it is assumed that kc,2 = kc,1. The
choke flow Jc(t) is also a measured variable in this equation. We note that this
relation is directly obtained from the choke equation in (4.22). The pump flow
rate together with the choke opening signals and implicit choke characteristic
G(t) are reported in Fig. 4.4.

In Fig. 4.5, the measured and simulated mass flow rates Jc are plotted in
comparison to the measured pump flow rate Jp. We can observe a good match
between these two signals. Since the entire length of the wellbore was cased
throughout this scenario, we set J lr = 0. Next, we compare the measured and
simulated pressure signals at the choke and pump. In Fig. 4.6, the left side, the
modelled and measured choke pressures pc are compared, where a good match is
observed between the measurements and the model. The quality of this match is
also an indication of the good accuracy of the implicit choke characteristic G(t).
Moreover, by comparing this figure to Fig. 4.5, reporting the flow rates, during
periods when the pump flow is steady, we can observe that transients in the
choke pressure pc correspond to transients in the choke flow Jc. This is due the
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Figure 4.4: Field data: (top) the pump mass flow rate, (bottom) the choke
opening signals zc,1 and zc,2 and the implicit choke characteristic G(t).

compressibility of the mud, which is well captured by the hydraulics model. The
model-based and measured pump pressures pp = pa(t, L) are plotted in Fig. 4.6,
on the right side. We can clearly see a good match between these two signals.
However, there are some discrepancies between the two signals as well. These
discrepancies are primarily due to imperfections in the Power Law model, used
for computing the friction factor. We could expect a higher accuracy by using
more advanced frictional models, such as the Herschel-Bulkley model, but at the
expense of additional computational complexity and one additional parameter
to identify.

A careful observation of the pump and choke pressure measurements reveals
that there is a delay of about 4 seconds between transients in the pump pressure
and those in the choke pressure, which is exactly due to the fact that pressure
waves propagate at the limited speed of sound velocity. These delays are well
captured by the model, which is another indication of the high predictive ca-
pability of the hydraulics model in terms of capturing fast transients and wave
propagation effects. Moreover, in this figure, the high accuracy of the surface
pressure control system of MPD can be well observed, when comparing the mea-
sured choke pressure to its reference.

4.6.2 Simulation studies

In this part, we present simulation studies. The geometries of the drillstring
and the annulus considered in the simulations are reported in Fig. 4.7, and the
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Figure 4.5: A comparison between the measured and modelled choke mass flow
rates, together with the measured pump flow.

Figure 4.6: A comparison between (left) the measured and modelled choke
pressures, together with the reference for the choke pressure as the reference for
the MPD pressure control system, and (right) the measured and modelled pump
pressures.

parameters are listed in Table 4.2. In this section we try, among other things, to
convey the importance of having a simulation model the complexity of which is
and should be kept relatively low by including pressure control-relevant aspects
of an MPD system. This is achieved by demonstrating through simulations that
theoretical analyses based on simple design models and simulation studies are
not always sufficient for obtaining a comprehensive and reliable assessment of an
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Figure 4.7: The diameter and cross-sectional area of the annulus and of the
drillstring considered for the simulation case studies.

MPD pressure control system, and further types of assessments (semi-analytic
assessments for instance) based on a simulation model might be needed. This
type of assessment may itself become impossible if the simulation model includes
irrelevant or less relevant aspects that can cause excessive complexity. However,
these type of assessments are beyond the scope of this paper.

To compute the numerical flux functions Fa(·, ·) in (4.27) for the DFM of
the annulus, a second-order flux-vector-splitting (FVS) scheme is used [69]. For
the drillstring, a first-order upwind scheme [113, Chapter 4] is used to compute
Fd(·, ·) in (4.15). To have a simpler numerical implementation and without
losing much accuracy, we linearized the flux function fd(·) in (4.15). After this
linearization, which is obtained by considering cl � v(x), for all x ∈ (0, L), the
flux function in (4.15) reduces to fTd (qd) = [ρv, c2l ρ], which is now linear in terms
of qd. The maximum value that the time step ∆t can take is determined by the
Courant-Friedrichs-Lewy (CFL) condition, which is a necessary condition for
the convergence of a numerical solution as in (4.27). Here, we use the following
relation to compute the time step:

∆t = CFL
∆x

λ̄
, λ̄ = max{|λa,1|, |λa,2|, |λa,3|, |λd,1|, |λd,2|}, (4.45)

where CFL is called the CFL number that should be less than one [55]. Note
that while one can choose different time steps for the drillstring and the annulus
in computing (4.27), here we choose both to be equal and assume that λ̄ = cl.
For the case when there is gas in the annulus, the time step (4.45) can be highly
conservative (in the sense that it is chosen much smaller than the maximum value



126 Chapter 4. Modeling and Simulation of Hydraulics in MPD

Table 4.2: The simulation parameter values.

Parameter Symbol Value Unit
Length of the well l 4000 m
Well inclination θ(x) π/2 rad

Liquid bulk modulus βl 1.1×109 Pa
Sound speed in gas cg 316 m/s
Reference pressure p0 105 Pa

Liquid density at p0 ρ0 1500 kg/m3

Number of chokes nc 1 -
Choke flow factor kc,1 0.0025 m2

Average velocity Vd 0.5 m/s
Liquid viscosity µl 0.04 Pa.s

Gas viscosity µg 5×10−6 Pa.s
Liquid behaviour index nl 0.95 -

Bit nozzles area An 5.77×10−4 m2

Space discretization step length ∆x 12.5 m
Bit control volume length ∆l 1.5 ∆x m

Gas production index κg 8×10−7 kg/(Pa.s)
Bit discharge coefficient cd 0.8 -

Profile parameter C0 1.1 -
Number of discretization cells N 320 -

CFL number CFL 0.9 -
Discretization parameter m 20 -

it can take) for computing (4.27) for the annulus, causing a diffusive solution
for the annulus. This is because even for small values of αg in a cell, the sound
velocity in that cell can drop substantially.

We perform the simulations for three common and representative drilling
scenarios as described below:

1. As the first case study, we run the implemented model for a choke plug-
ging scenario, that is, a contingency where the choke effective area drops
due to, for example, partial or complete blockage of the orifice by drilling
cuttings. Here, we replicate such a scenario by a sudden decrease in the
choke flow factor kc1 in (4.22) during drilling ahead.

2. Making a pipe connection is a common normal drilling operation that
takes place around every two to ten hours, depending on the rate of pen-
etration. A pipe connection operation entails halting drilling by slowly
ramping down the pump flow to zero and, then, bleeding off the trapped
pressure inside the drillstring by opening a bleed-off valve. Afterwards, the
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top drive is detached from the drillstring, and a new stand of drillpipe is
screwed onto the drillstring. After that, the rig pump flow is ramped up
again, resuming the drilling.

3. Gas influx, or gas kick, and subsequent gas migration in the annulus is
the third scenario that will be studied. A kick usually happens when the
reservoir pressure exceeds the well pressure, which can occur for reasons,
such as drilling into a high-pressure zone, a pressure drop during a pipe
connection or swab and surge effects. We simulate such a scenario by
increasing the reservoir pressure to replicate running into an unexpected
high-pressure zone.

4.6.2.1 Control system:

To maintain the downhole pressure during these scenarios, a simple pressure
control system is used. We design this control system based on a simple lumped-
parameters model in [99]. This model consists of three ordinary differential
equations and in this model wave propagations effect is compromised in exchange
for simplicity. Although this model is derived based on a single-phase flow
assumption, it partially accounts for two-phase scenarios through the parameters
related to the bulk moduli. A comparison between this design model and the
simulation model is provided in Table 4.3.

Table 4.3: Conditions of the simulation model versus the design model.

Model condition Simulation model Design model

Complexity
5 PDEs+

5 closure laws 3 ODEs
Number of dimensions 1D 1D

Number of phases 2 1
liquid-liquid flows yes no
gas-liquid flows yes no

flow compressibility yes no
wave propagation yes no

gas migration yes no
liquid influx yes yes
gas influx yes no

flow pattern transitions yes no
variation in cross sectional area yes no
Isothermal condition assumption yes yes

Radially homogeneous flow assumption yes yes
Axial flow assumption yes yes
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Remark 4.9. The focus of this paper is not on controller design and the used
controller does not necessarily provide a satisfactory pressure control perfor-
mance. The focus is rather on assessing how certain model/system aspects, taken
into account in the proposed model, affect closed-loop system performance.

Following the work by [99], this control system is made up of two parts:
1) a proportional-integral (PI) controller that regulates the surface pressure pc
through the choke opening zc as the control input and 2) an estimator that
generates a reference for the controller from the surface and downhole measure-
ments and also the reference given for the downhole pressure p∗dh. The reference
generator consists of a parametrized model, approximating the surface pressure
based on a given reference for the downhole pressure, and an estimator that gen-
erates an estimate for the parameters of this model. This estimator is designed
with a recursive least square (RLS) method with a forgetting factor, see [130].
Assuming laminar flow, the parametrized model is given by

p∗c(t) = p∗dh(t)− (Jc(t)− Jbpp(t))(1− θf (t))F − (1− θg(t))G, (4.46)

where F =
∫ l

0
32µlρ0

Aa(x)d̄2a(x)
dx and G = g

∫ l
0
ρ0 sin (θa(x)) dx, θf (t) and θg(t) are the

to-be-estimated parameters, the estimates of which are indicated by θ̂f (t) and

θ̂g(t), respectively. Here, we assume that the surface measurements are avail-
able at a high sampling rate while the downhole measurements are performed
at a low rate, which is often the case in realistic drilling scenarios. Here, we
take the downhole sampling period during normal operations to be ∆te = 20
s. In practice, and especially in the case of long wells, there is also some de-
lay in transmitting the downhole measurements to the surface because of using
mud pulse telemetry. However, we here assume that the downhole data are
immediately available after measurement. Moreover, we assume that the only
choke, described by (4.22), has a linear characteristic in its operating range (i.e.,
G1(zc1) = zc1 for 0 ≤ zc1 ≤ 1, and G1(zc1) = 0 and G1(zc1) = 1 for zc1 < 0 and
zc1 > 1, respectively). However, one can consider more complex characteristics
for the choke through G(·).

4.6.3 Results for a choke plugging scenario.

Here, the results for a choke plugging scenario are shown. In this scenario, the
choke flow factor kc drops by 50% from its nominal value at t = 400 s. Because
a laminar flow has weaker damping effects on propagating pressure waves and
an objective of this section is to illustrate distributed aspects of the model, we
consider a laminar flow with nl = 1 along the entire flow path in this scenario.
The corresponding results are reported in Fig. 4.8; on the left side of which
are located the pressure signals, for both the design model and the simulation
model, and on the right side snapshots of the liquid velocity along the flow path
are shown. As seen from the left figure, the overall closed-loop responses in
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Figure 4.8: Simulation results for a choke plugging event: (left) the choke,
downhole and pump pressure signals while comparing the design model to the
simulation model, (right) Snapshots of the spatial velocity profile for the simu-
lation model before and after the event.

both models are similar; the design and simulation models show close dynamical
behaviours in this scenario. The difference between the two models in terms of
the steady-state values of the pressures pc and pp is because the compressibility
of the liquid is not captured in the design model.

The developed simulation model in this paper captures the wave propaga-
tions effects to a large extent and these effects can be clearly observed in the left
figure (for the simulation model) in the time-delays that exist between the time
when the pressure wave is generated at the surface and the times when it affects
the downhole and pump pressures. In addition, the jagged behaviour observed
in the pressure signals in this figure is due the wave propagation effects. A more
insightful illustration of this effect is given in the right figure by the snapshots of
the liquid velocity along the flow path at a variety of time instances. In particu-
lar, this figure illustrates the propagation and reflection of pressure waves when
striking obstacles (such as the bit) and geometrical changes in the flow path.
As can be seen, right before the choke gets plugged, the system is experiencing
a (almost) steady-state condition. When the choke is plugged at t = 400 s, it
causes some fluctuations in the velocity (and also pressure) profiles of the system
that keep propagating along the system afterwards, until those are mitigated on
a longer time scale, due to 1) frictional effects and control suppression and 2)
numerical dissipations.

Summarising, these results show the value of the proposed model in the scope
of the performance evaluation of MPD control systems.
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Figure 4.9: Mass flow rates of the mud pump and the back-pressure pump in
the connection scenario.

4.6.4 Results for a pipe connection scenario.

Next, we present the simulation results in a pipe connection scenario. The
results are presented for two sets of control parameters to further illustrate how
neglecting the fast transients (such as wave propagation effects resulting from
the distributed nature of the system) in the design model can deteriorate the
closed-loop performance.

In this scenario, the mass flow rates of the mud pump and the back-pressure
pump change as in Fig. 4.9. When the pump flow rate reaches a level less than
half its nominal value, we stop sampling the downhole variables and updating the
estimator, to replicate a realistic connection scenario during which the downhole
measurements are not available because of the lack of mud circulation.

We first implement this scenario by considering the set of control parameters,
referred to as the parameter set 1, which are designed to lead to slow and gentle
control signals and a rather slow closed-loop system in terms of recovering from
disturbances such as changes in the pump flow. We report the results of these
simulations in Figs. 4.10 and 4.11. We apply the controller to both the design
model and simulation models. It is observed from Fig. 4.10, that the simulation
model exhibits a transient behaviour that is similar to that of the design model.
This observation indicates that the simulation model reduces to the design model
when the operations are performed slowly, such as in pipe connections. We have
also shown the flow and pressure drop of the bit in Fig. 4.11. As expected, when
the pressure drop is negative (i.e. pd(t, l)−pa(t, 0) < 0) the flow through the bit
becomes zero because of the non-return valve.
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Figure 4.10: Simulation results for a pipe connection scenario for the parameter
set 1: the choke, downhole and pump pressure signals from (left) the design
model and (right) the simulation model.

Figure 4.11: Simulation results for a pipe connection scenario for the parameter
set 1: (left) the pressure drop over the bit and the flow through it, (right) the
adaptive parameters of the estimator.

Results of these simulations can, however, be misleading as it might lead
one to conclude that the distributed nature of a drilling system with MPD need
not be taken into account while designing a pressure controller. To show that
this can be a wrong conclusion and to further highlight the considerable effects
of the distributed nature the system on the closed-loop performance, we repeat
the same simulation scenario, but with the second set of control parameters,
referred to as the parameter set 2, which should lead to faster control signals
and better closed-loop performance in terms of recovering from disturbances.
The results are plotted in Fig. 4.12. As expected, the closed-loop performance
with the design model as the plant has improved. However, the response quality
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Figure 4.12: Simulation results for a pipe connection scenario for the parameter
set 2: the choke, downhole and pump pressure signals from (left) the design
model and (right) the simulation model.

when this controller is applied to the simulation model has degraded unexpect-
edly. This has three important implications: 1) the simulation model is more
realistic than the design model and it provides a more accurate prediction of
the flow and pressure behaviour in a drilling system. 2) One should not rely
only on the theoretical results based on the design model and the simulations
on a high-fidelity simulation model, as those might show perfect performance
in some scenarios and poor performance in yet other scenarios. This can be
because this controller with the parameter set 2 results in closed-loop dynamics
which are too fast that the fast dynamical aspects of the drilling system (such
as the pressure wave propagation effects) are no more negligible. 3) By having
the time scale of the fast dynamics of the system, we can already predict intu-
itively which PI control parameters can result in a poor performance without a
need to perform time-consuming simulations on the simulation model. However,
doing so might be challenging or even impossible when the control system is
more complicated. In such cases, one approach to determine the performance
of the closed-loop system can be carrying out semi-analytical system analyses
together with simulation studies on the simulation hydraulics model, which in-
cludes only the pressure control-aspects of MPD to allow for fast analyses and
also simulations.

4.6.5 Results for a gas influx scenario.

This part illustrates the ability of the hydraulics model in capturing gas in-
flux and migration scenarios in the annulus in a closed-loop setting with MPD.
Throughout this scenario the pump flow rate is kept constant at Jp = 60 kg/s.
A rapid 4% increase in the reservoir pressure pr is applied at t = 400 s, resem-
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bling the scenario of encountering a high pressure zone while drilling. Before
this time, the flow is single-phase all along the flow path. Here, we assume that
we can detect the resulting gas kick and also identify the new reservoir pressure
some time after it begins. Afterwards, a new reference, larger than the reservoir
pressure, is set for the downhole pressure to prevent further gas influxes into the
wellbore. To prevent a potential control failure, this operation, changing p∗dh, is
performed slowly. We should mention that a common practice during a kick is
to control the pump pressure rather than the downhole pressure.

The simulation results are depicted in Figs. 4.13 and 4.14. The choke, down-
hole and pump pressures are shown on the left side in Figs. 4.13. On the right
side of this figure, we illustrate the choke opening together with the parameters
of the estimator. We can clearly observe that when the gas reaches the surface,
it leads to a rapid change in the choke opening. Moreover, the gas expansion in
the annulus causes θ̂g to be increasing, as expected, for some time, given the fact
that gas expansion phenomenon lowers the hydrostatic pressure in the annulus.
Fig. 4.14 gives an illustration of the gas migration and its effects on the flow
rate through the choke. We can see from snapshots of the gas void fraction αg,
on the right side of Fig. 4.14, that as the kick moves closer to the surface it
expands more, due to a lower pressure. The gas expansion is also illustrated
in Fig. 4.15. The gas expansion also increases the mass flow rate of the choke,
as can be clearly observed from Jc(t). On the contrary, when the kick reaches
the surface and starts leaving the annulus through the choke, the mass flow rate
of the choke rapidly drops, starting at around t = 33.5 min. The steady-state
difference between the accumulative mass of the influx and the accumulative
mass of the gas through the choke shows that the used scheme does not exactly
preserve the mass flow rate. In order to obtain more accuracy in this respect,
one may adapt well-balanced schemes that are more capable in preserving the
steady-state response, see, e.g., [45]. In general, this type of scheme is, however,
highly expensive computationally. It is observed that the control system suc-
cessfully, in terms of remaining stable, circulated out the kick in this scenario.
However, it is not unreasonable to expect the failure of the designed control
system in events such as a choke plugging when there is a two-phase flow in the
annulus. The reason for so is large changes in the system behaviour that can
occur in such cases. In particular, even for small amounts of gas void fraction
αg, the sound velocity of the flow in the annulus drops drastically, causing the
fast dynamics of the system not to be regarded as fast any more. This observa-
tion, again, implies the importance of performing a semi-analytical assessment
of the performance of a pressure control system based on simulation models, in
addition to simulation studies.

4.6.6 Simulations starting from a transient state.

In general, drilling systems with automated MPD are close to some steady-
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Figure 4.13: Simulation results for the gas influx scenario: (left) the choke,
downhole and pump pressures, (right) the choke opening with the adaptive pa-
rameters of the estimator.

Figure 4.14: Simulation results for the gas influx scenario: (left) mixed mass
flow rate downstream the choke Jc, mass flow rate of the gas influx Jgf and that
of the gas through the choke Jgc , and accumulative mass of the gas influx and
that of the gas through the choke, (right) snapshots of the gas void fraction αg
along the annulus.

state condition for most of the drilling time. Therefore, it is reasonable to start
the simulation of many drilling scenarios from a steady state of the hydraulics
model. Nonetheless, a reliable MPD control system should also show robustness
to situations where the system is already in a transient state when the control
system takes over the control task. Therefore, in this part, we present simulation
results which have been started from a transient initial condition. To design a
transient initial condition for these simulations, we consider a steady state of
the model without any gas in the wellbore and, then add a pocket of gas to
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Figure 4.15: Simulation results for the gas influx scenario: the total volume of
the gas in the wellbore over time.

Figure 4.16: Simulation results for a transient initial condition: (left) the pump,
downhole and choke pressure signals, (right) snapshots of the gas void fraction
αg along the annulus.

perturb it. The gas migration corresponding to this scenario is reported on the
right side of Fig. 4.16. In this figure, the snapshot caught at the zero time shows
the considered initial condition for αg. The pump, downhole and choke pressure
signals are reported on the left side of Fig. 4.16. These simulations show that
this hydraulics model and the numerical tool can also be used to simulate drilling
scenarios starting from a transient state.
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4.7 Conclusions

A two-phase hydraulics model in the form of a two coupled systems of partial-
differential equations has been derived for managed pressure drilling (MPD). The
model complexity is limited by incorporating only the mass transport, pressure
dynamics and other aspects of an MPD system that can impact the perfor-
mance of a pressure control system in real world drilling scenarios. Therefore,
it provides a basis for evaluating the performance of pressure control systems in
virtual test scenarios. Moreover, an approach has been presented for numerical
implementation of the model. Variations in the cross-sectional area of the flow
path as well as the nonlinear boundary conditions are often not considered in
the control design but do exist in reality and can significantly jeopardize the
performance and stability of a pressure control system. These aspects have been
captured in the model and are accounted for during numerical implementations.
The predictive capability of the model and the performance of the numerical
implementations have been demonstrated through illustrative case studies rep-
resenting a choke plugging, connection and gas influx scenario. Through these
studies, we have also demonstrated the importance of keeping the complexity
of an MPD simulation low. However, the developed model is not suitable for
handling scenarios related to vertical motions of the drillstring, such as washing-
stand and tripping scenarios. Adding this aspect to the model is an ongoing
research. Moreover, we have illustrated the high accuracy of the model by com-
paring it with field data from a real-life drilling well for single-phase scenarios.
A direction of our current work is the further validation of the developed MPD
model in this paper by comparing simulation results and drilling field data for
two-phase flow drilling scenarios.



Chapter 5

Model Validation for Multi-phase Flow

The objective of this chapter is to experimentally validate the MPD model devel-
oped in Chapter 4 in case of liquid and gas influx scenarios. The MPD model
is coupled with a reservoir model and a gas pump to, respectively, simulate a
liquid and a gas influx. For the case of a liquid influx, to obtain a realistic
reservoir model, a new model based on the conservation of mass and momentum
is proposed, which outperforms the existing reservoir models in the literature in
predicting the mass flow rate produced by the reservoir. The proposed model and
the existing models are introduced in this chapter. Some uncertain constants of
these models are identified through an optimization process according to the field
data. For the case of a gas influx, a gas pump with known mass flow rate over
time is (virtually) installed at the bottom of the well to simulate the gas injection
from the reservoir into the annulus (no dynamics is present in this case). The
comparison of the simulation results and the field data shows a close match and
evidences the good predictive capabilities of the model-based simulation platform
developed in Chapter 4.

5.1 Contingencies in MPD automation

Control of contingencies, i.e., unwanted or unforeseen situations during drilling,
is a crucial step in MPD automation. In this chapter, we focus on the validation
of the MPD model developed in Chapter 4 in case of a special contingency, when
the fluid from the formation flows into the annulus, i.e., an influx phenomenon.

The International Association of Drilling Contractors (IADC) defines influx
as the flow of fluids from the formation into the wellbore. An influx can occur
when the operating Bottom-Hole Pressure (BHP) falls below the pore pressure
of the formation. The BHP is maintained intentionally below the pore pressure
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in case of Under Balanced Drilling (UBD) operations. An unintentional or an
unwanted influx during MPD operations is called a kick [173]. The operating
region where an influx or a kick can occur is shown in Figure 4.1 near the bit.
In this region, the mass flow rate from the formation (a reservoir or a fracture)
is denoted by Jg,lr , where the subscript r denotes reservoir and superscripts g, l
refer to gas and liquid, respectively. The approximation of the mass flow rate
from the formation into the well-bore or vice versa is challenging due to the lack
of measurements at the downhole of the wellbore and the lack of a representative
dynamical model.

The influx, migrating up through the annulus, can be divided into two cat-
egories: standard and complex influx. When the influx is purely liquid, it is
categorized as a standard one. When the flow from the formation contains gas,
the gas expands as it is circulated out through the annulus. Moreover, the gas
might dissolve in the liquid and get separated at the top. These features render
this kind of influx complex. In both types of influx, a velocity difference between
the two phases (two different liquids or mixture of gas and liquid) exists, which
should be handled by a slip law between the two phases. This kind of flow is
usually modeled by the DFM [128]. In the remainder of this chapter, we first
analyze the case of liquid influx together with the validation of the model for
such a scenario. Then, similarly, we deal with the case of a gas influx.

5.2 Validation in case of a liquid influx

During a standard drilling scenario, if the volumetric flow rate of the pump is not
changed, the volumetric flow rate through the choke should also remain constant.
If the flow rate through the choke changes significantly while the flow rate of the
pump is constant, this can be related to an influx or loss. If the choke and pump
pressure behave qualitatively similar to each other, this can also be attributed to
a liquid influx. This feature is handy to detect a field data corresponding to this
scenario. In this section, we first provide different techniques for approximating
the influx flow rate exchanged between the wellbore and the formation. Then,
we use an optimization procedure to identify the unknown parameters of the
MPD model and the formation model to render the simulation data and the
field data as close as possible to each other.

5.2.1 Field data for liquid influx

We consider a liquid influx occurring in a well with a short length (600−800 m)
with one discontinuity in the diameter of the drillstring and one discontinuity in
the diameter of the wellbore. We successively study two field data sets from this
well, corresponding to single-phase flow and liquid-liquid two-phase flow. These
field data are gathered from sensors installed at the pump and the location of the
choke manifolds, reading pressure at the pump pp, volumetric flow rate through
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Figure 5.1: Field data for single phase flow (for ”choke-bias”, refer to Remark
5.1).

the pump qp, (common) pressure before the choke manifolds pc, the summation
of volumetric flow rate through the choke manifolds qc and also choke opening
of the choke manifolds A and B installed at the wellhead, zcA and zcB (these
two variables are dimensionless values representing the ratio of the open area for
passing the flow through the valve and the full area).

For the field data of the single-phase scenario, we refer to Figure 5.1. This
represents the case where the influx has not started yet. With this set of data, we
can identify the unknown parameters in the MPD model related to the drilling
equipment such as the bit and also the drilling fluid parameters.

Remark 5.1. In the steady condition of single-phase flow, the mass flow rate
of the choke and the mass flow rate of the pump should be equal. As the mud is
almost incompressible, this equality should also hold for the volumetric flow rate.
However, as the choke pressure is less than the pump pressure, the volumetric
flow rate at the choke should be slightly higher than the volumetric flow rate at
the pump. We use this fact to correct the choke flow rate readings from the
sensors as the flow sensors are not calibrated well at the choke. Results shown
for the liquid influx scenario based on this corrected version of the choke flow
measurements are reported in Figure 5.1 under the legend “choke-bias”.

For the liquid-liquid flow scenario, we refer to Figure 5.2 which represents the
field data after the influx occurrence from a fracture. At t = 600 s, the choke flow
increases compared to its nominal value without changing the drilling condition.
This shows that an influx from the fracture (any separation in the formation)
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Figure 5.2: Field data for liquid-liquid flow.

has entered the wellbore. Due to the almost simultaneous increase of the pump
pressure, choke pressure and the choke flow, this should be a liquid influx, which
in this case is water.

5.2.2 Approximation of the influx flow rate

In this section, we introduce different techniques to approximate the mass or
volumetric flow rate of the liquid influx: a data-based approach and three model-
based approaches.

The data-based technique is based on the field data gathered from different
sensors installed at the wellhead. Therefore, we do not introduce any dynamical
model for the reservoir. This approach is then used as a testbed to qualify
the accuracy of three different dynamical reservoir models, that are used to
approximate the influx flow rate. These models, by replacing the simple static
equation (4.21), interact with the hydraulics in the wellbore.

5.2.2.1 Data-based approach

To approximate the influx/loss flow rate, we consider

qcon = qc − qcnom, (5.1)

where qcnom is the nominal value for the choke flow qc, before the occurrence of
the influx/loss and qcon represents the flow rate of the contingency (either influx
or loss). If qcon > 0, an influx has occurred, otherwise, if qcon < 0, the drilling
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mud has penetrated into the formation and a loss scenario is encountered. The
integration of qcon over time represents the pit gain (i.e., an increase in level of
mud tanks due to an increase in return mud volume). Then, to approximate the
influx mass flow rate J lr, we have

J lr = ρ0conqcon, (5.2)

where ρ0con is the nominal density of the drilling mud in case of loss or the
nominal density of the fluid in the formation in case of an influx.

5.2.2.2 Reservoir/fracture modeling

In contrast to the data-based approach, by assigning a dynamical model to the
formation, the interaction between the wellbore and the formation determines
the influx rate. Here, we assume that the influx comes from a fracture and we
present three simple lumped fracture models to be validated against the field
data. If the field data is obtained in a scenario with an influx coming from a
porous formation, we use the model involving a distributed porous formation
discussed in [174].

First-order fracture model

We denote with pfr the pressure of the fracture far away from the wellbore, with
mfr the mass of the fluid in the fracture, with C the capacitance of the fracture,
with R the resistance of fluid flow from the fracture to the wellbore, and with pdh

the bottom-hole pressure. The interaction between the wellbore and the fracture
is schematically depicted in Figure 5.3. We introduce the following equations
related to the capacitance and the resistance:

C =
dmfr

dpfr
, (5.3)

R =
pfr − pdh

J lr
, (5.4)

where “d” denotes the differential operator. Using the mass balance and (5.3),
the rate of mass change inside the fracture can be written as follows:

Cdpfr = −J lrdt→ Cṗfr = −pfr − pdh

R
.

Finally, by using the above mass balance and the resistance definition (5.4), the
first-order dynamics of the fracture is defined asRCṗfr = −pfr + pdh,

J lr =
pfr − pdh

R
.

(5.5)
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Figure 5.3: Interaction between the wellbore and the fracture, first-order fracture
model.

This fracture model interacts with the MPD model via J lr. In this first-
order fracture model, R,C, the initial value of pfr and the time instant when
the fracture model should be coupled with the wellbore dynamics (i.e., when
the influx actually occurs) are unknown. These are later considered as tuning
parameters of the model in Section 5.2.3.

Remark 5.2. The mass flow rate equation in (5.5) resembles the Productivity
Index (PI) relation [112] in reservoir engineering, with the PI equal to 1

Rρfr
and

ρfr being the density of the liquid in the formation.

Constant terminal rate solution

The Constant Terminal Rate Solution (CTRS) is similar to the PI relation with a
constant fracture pressure but with a time-varying PI [174]. The CTRS relation
that approximates the volumetric flow rate of the influx is

qinflux =
c1

c2 + ln(c3t)
(pfr − pdh) , (5.6)

where qinflux =
Jlr
ρfr

is the volumetric flow rate of the influx, c1, c2, c3 are some

unknown constants. In this relation, the pressure dynamics in the fracture are
approximated by the time-dependent PI equal to c1

c2+ln(c3t)
. Similar to the first-

order model, the unknown constants, pfr and the time instant t at which the
MPD dynamics and the CTRS connect to each other are free and will be tuned
in Section 5.2.3.

Second-order fracture model

This model is based on mass and momentum conservation of laws and, similar
to the first-order model, makes use of the capacitance relation (5.3).
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Figure 5.4: Interaction between the wellbore and the fracture, second-order
model.

Similar to the first-order model, the mass conservation can be written as

J lr = −Cṗfr. (5.7)

To enforce the momentum conservation at the interaction point of the fracture
and the wellbore, we consider a control-volume with a unit cross sectional area
and apply

I
d

dt

(
J lr
)

= (pfr − pdh)− F (J lr), (5.8)

where I represents the inertia of the fluid and F (·) describes the friction op-
posing the influx flow, which can be written as F (J lr) = ζJ lr with a constant ζ.
Combining (5.7) and (5.8) yieldsJ

l
r = −Cṗfr,

p̈fr = −pfr − pdh

IC
− ζ

I
ṗfr.

(5.9)

The free parameters in this model, C, I, ζ, initial value of pfr and the coupling
time, are later tuned to reproduce a result similar to the data-based approach.
The interaction between the wellbore, the fracture and the Control-Volume
(C.V.) is depicted in Figure 5.4.

Remark 5.3. The second-order model shares similarities with the Kaasa model
[99], which is usually used for simulating hydraulics inside a well by a lumped
model.

We now present an optimization method to calibrate the parameters of the
MPD and fracture models to replicate the two field data sets shown in Figures
5.1 and 5.2.
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5.2.3 Parameter identification for liquid influx

The unknown parameters of the fracture models and the MPD model to be
identified can be divided into two categories: 1) parameters that can be identified
from the steady field data shown in Figure 5.1 (speed of sound cl, mud viscosity
µl, nominal density of mud ρ0l, nozzle area at the bit AN and choke factor at
different opening Kc(zc)), and 2) parameters that are related to the liquid influx
and can be identified from data represented in Figure 5.2. In order to obtain
physical values for the parameters, the range of each parameter is restricted
based on the prior knowledge from the drilling system. These free parameters
are chosen through an optimization procedure such that the simulation results
and the field data match as closely as possible.

5.2.3.1 Field data for the steady case

The following free parameters can be tuned based on the steady-state field data
set. It should be noted that since we have one set of data and many tunable
parameters, the identified parameters are not unique. We try to identify these
values in a physically meaningful range.

Speed of sound cl

Given the length of the well, the wave propagation from the choke to the pump
takes around 2− 3 seconds. This is hard to be diagnosed from the data of this
well as the resolution of the field data is 1 s which is also polluted with noise.
So, it is hard to attribute the change in the pressure signals to the noise or
to the wave reflection inside the wellbore. Hence, cl is optimized in the range
[1000, 1200] m/s, which is the typical value for the speed of sound in the drilling
mud.

Mud viscosity µl

Except at some periods at the beginning of the drilling, the pump flow is around
3700 lit/min. The total pressure drop of the friction and the drill bit can be
identified from this data set. At this flow, both the frictional pressure drop and
the drill bit pressure drop are related to the flow rate squared. Data sets with
the same flow rate can not be used to identify the individual contribution of the
friction and the drill bit to the pressure drop. This renders the differentiation
between the effect of viscosity and nozzle area at the bit difficult. We use the
nominal value of 40 cP for µl (which is a typical value of viscosity for drilling
mud). For this case, as the flow in the drillstring is always in the turbulent
region, and pipe roughness plays a crucial role in the turbulent friction model,
which is unknown. In order to account for this important factor, the frictional
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pressure drop ∆pFriction is multiplied by a coefficient Kf , i.e.,

∆pFriction = Kfg(µl, v, d), (5.10)

where g(·, ·, ·) gives the frictional pressure drop for a fixed pipe roughness, which
depends on the viscosity of the liquid µl, the velocity of the liquid v and the
hydraulic diameter of the pipe d. The coefficient Kf is considered as a free
parameter to be tuned during the optimization procedure and viscosity µl is
kept constant.

Mud density ρ0

The nominal density of the drilling mud used in this well is around 1450 kg/m3.
As the density of the cuttings is around 2200 kg/m3, ρ0 can also be a bit higher
than its nominal value. So, we optimize the mud density in the range [1400 −
1600] kg/m3.

Nozzle area AN

Since the pump flow rate is high, the flow in the drillstring is always in the
turbulent region. By varying µl ∈ [10, 50] cP, the total friction loss changes
in the range of ∆pFriction ∈ [167, 175] bar. Based on the total gravitation gain
ρgh ≈ 110 bar, the measurements of the downhole pressure (≈ 110 bar) and
pump pressure (pp ≈ 174 bar), we have

pp ≈ pdh − ρgh+ ∆pFriction + ∆pbit. (5.11)

Substituting the above values in this relation shows ∆pbit ≈ 0 and the nozzle
area should be very close to the drillstring area at the bit location, while in
practice, the nozzle area should be much lower than the drillstring area. To
account for that, Kf introduced before is used to reduce the effect of friction
(Kf < 1) and allocate more friction drop to the bit. Then, AN is tuned manually
to set a pressure drop in the range of 10− 20 bar over the bit, which is a typical
value of pressure drop over the bit in such well configurations.

Choke constant Kc(zc)

Pressure and flow rate sensors are installed both upstream (before) and down-
stream (after) the choke. Therefore, adequate data is available to train a non-
linear model (real choke manifolds represent nonlinear behavior) for the choke
installed at the wellhead. To do so, a widely used choke model is assigned to the
choke and its free parameter, Kc(zc), is trained over the available data. This
nonlinear model is given by [128]:

qc = Kc(zc)

√
2

ρc
(pc − p0), (5.12)
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Table 5.1: Choke constant as a function of choke opening.
zcA + zcB 0 0.6 0.8 1.1 2

Kc 0 0 0.00052 0.0014 0.0036

where ρc, pc, qc are, respectively, the density of the mud at the choke, the pressure
at the choke and the volumetric flow rate through the choke. Having access to
data (qc, pc) with a different choke opening zc (zc = zcA + zcB being the total
opening of the choke A and B installed at the top of the well), Kc(zc) is obtained
and presented in Table 5.1.

To summarize, values for cl,Kf , ρ0 are determined during an identification
process, AN is set manually to ensure a realistic pressure drop over the bit, µl
is fixed on 40 cP and Kc(zc) is specified over the wide range of available data
with different choke openings. Now, the procedure to obtain the influx-related
parameters is explained.

5.2.3.2 Liquid influx-related parameters

In this section, based on the field data presented in Figure 5.2, the unknown
parameters of the fracture models and the MPD model are identified.

Remark 5.4. Since we study the liquid-liquid flow, the equation of state (4.7b)
is replaced by a similar equation of state as in (4.7a) and therefore (4.11) changes
accordingly. For the sake of brevity, we did not include these equations in this
chapter.

Speed of sound cinf

As the influx is water, the speed of sound in the influx medium is optimized in
the range [1000, 1200] m/s.

Influx viscosity µinf

This parameter is optimized between [0.5, 1.5] cP as the viscosity of water is
around 1 cP.

Influx nominal density ρ0inf

This parameter varies between [800, 1200] kg/m3 due to the nominal density of
water (1000 kg/m3).

Influx rate approximation

The influx rate approximated by the data-based approach obtained by (5.1) and
(5.2) is shown in Figure 5.5. For the model-based approaches, the interaction
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Figure 5.5: Influx rate approximated in the simulations by the data-based ap-
proach.

between the fracture model and the wellbore model by replacing equation (4.21)
determines the influx rate.

Slip relation

In this work, we use the simple slip relation of Zuber-Findlay [69], vinf = Kvmix+
S, where vinf is the velocity of the reservoir liquid and vmix is the mixture velocity
of the mud and the reservoir liquid. Then the value for K and S are selected
during an optimization procedure.

To summarize this section, the values of cinf, µinf, ρ0inf,K, S are determined
during an optimization procedure. If model-based approaches are used to ap-
proximate the influx rate, the free parameters corresponding to each model are
also tuned during the optimization procedure. The optimization problem is
illustrated below.

5.2.3.3 Optimization procedure

For the optimization problem underlying the parameter identification, the fol-
lowing objective function is defined:

f(ppSim, pcSim) =

∥∥ppField − ppSim

∥∥
2∥∥ppField

∥∥
2

+
‖pcField − pcSim‖2
‖pcField‖2

, (5.13)



148 Chapter 5. Model Validation for Multi-phase Flow

Table 5.2: Identification result for steady-state flow.
parameter cl [m/s] Kf AN [m2] ρ0 [kg/m3]
nominal 1000 1 - 1450

optimized 1190.2 0.86 0.0014 1466
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Figure 5.6: Comparison of field data and simulation model for single-phase flow.

where subscripts “Field” and “Sim” denote values obtained from the field data
and the MPD model in Chapter 4, respectively, and ‖·‖2 is the Euclidean norm
of the signals discretized over time based on the sensor reading frequency. This
objective function is aimed to be minimized by tuning the free parameters of the
MPD model and the fracture models.

5.2.4 Validation results

For the purpose of model validation in steady-state conditions, we obtain the
parameter values as reported in Table 5.2. The associated simulation results
can be seen in Figure 5.6 in comparison to the field data. In this figure, pump
pressure pp, choke pressure pc and volumetric flow rate through the choke qc are
depicted. All these values are approximated well with the MPD model using
physical values for the optimized variables.

For the case where the influx occurs, we perform the identification for the two
techniques introduced in Sections 5.2.2.1 and 5.2.2.2, the data-based approach
and the model-based approach.
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Figure 5.7: Comparison of field data and simulation for liquid-liquid flow.

5.2.4.1 Data-based approach in approximating the influx rate

For the purpose of validation in the liquid-liquid flow scenario by using the data-
based approach discussed in Section 5.2.2.1, we obtain the parameter values as
reported in Table 5.3. The associated simulation results can be seen in Figure
5.7.

The results associated to data-based approximation of the influx are well in
agreement with the measured field data and this shows that influx rate approx-
imated by this approach is close to the actual influx rate. This feature is used
in the next section to construct the right model for the fracture.

5.2.4.2 Fracture models

According to the data presented in the previous section, it is confirmed that the
influx profile in Figure 5.5 is close to the real influx from the reservoir. Now,
among the proposed fracture models introduced in Section 5.2.2.2 and based
on the measurement of the downhole pressure, we tune the free parameters of
the fracture models to reproduce a similar influx profile. Then, the most reliable
fracture model is interconnected with the wellbore dynamics by replacing (4.21).

Table 5.3: Parametric settings for liquid-liquid flow obtained with the data-based
approach.

parameter cinf [m/s] µinf [Pa.s] ρ0inf [kg/m3] K S
nominal 1100 0.001 1000 - -

optimized 1021.8 0.0011 1200 0.9745 0.4659
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Remark 5.5. In this well, “measurements while drilling” equipment were in-
stalled at the bit, and enabled the measurement of the downhole pressure. When
the signal for pdh is available, models (5.5), (5.6) and (5.9) can be simulated
without coupling the models to the wellbore dynamics via (4.21).

First-order dynamics

Free parameters in the model (5.5) are R,C, pfr and the time instant at which
the fracture dynamics is coupled with the wellbore dynamics. The best result
achieved by tuning these parameters to fit the influx rate is shown in Figure 5.8
(R = 5.7×106 1/(m·s), C = 5.3×10−5 m·s2, pfr = 185.6 bar and tcouple = 624 s).
Apparent from the result, the data coming from the dynamics occurring in the
reservoir is quite different from the data of the data-based approach. Therefore,
this fracture model is not selected to be coupled with the wellbore dynamics.

CTRS

For CTRS relation (5.6), in addition to pfr and the time instant of dynamic
coupling, the constants c1, c2, c3 are also required to be tuned. The best fitting
of the influx volumetric flow rate by this method is shown in Figure 5.8 (c1 =
1× 10−10, c2 = 0, c3 = 100, pfr = 197.8 bar, tcouple = 618). Clearly, this method
can not reliably approximate the influx well either. This result is very similar
to the result of first-order model, except that the fracture pressure dynamics is

replaced with the time-varying term
1

c2 + ln(c3(t− tcouple))
.

Remark 5.6. In both the first-order model and the CTRS, at the moment of
coupling, the influx volumetric flow rate changes instantly, i.e., the acceleration
of the control volume at the interaction of the fracture and the wellbore should be
infinite despite the finite force acting on the fluid flow. Therefore, these models
can not represent the real physics correctly.

Second-order model

Free parameters in the second-order model (5.9) are I, C, ζ, pfr and the coupling
time instant. The best result achieved by tuning these parameters to fit the
influx rate is shown in Figure 5.8 (I = 7.8× 106 m, C = 0.0025 m·s2, ζ = 0.004
m/s, pfr = 111.7 bar and tcouple = 582.6 s). Apparent from the results, this
model can achieve an influx profile similar to the data-based approach with a
high accuracy. Therefore, this model is used to validate the field data.

Remark 5.7. The main issue with these fracture models is the sensitivity of the
results to the fracture and downhole pressure. A small change in the downhole
pressure significantly affects the influx rate. Therefore, the parameters of the
fracture model should be identified together with the wellbore dynamics. In the
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Figure 5.8: Comparison of data-based influx and approximation of influx via the
first-order fracture model, the CTRS and the second-order fracture model.

following section, the results of the coupling of the second-order fracture model
and the wellbore model are presented.

5.2.4.3 Validation of the interconnected wellbore-fracture dynamics
by the second-order fracture model

In this section, the second-order fracture model (5.9) is coupled with the wellbore
by replacing (4.21) to reproduce the field data in Figure 5.2. The optimized
variables are reported in Table 5.4 and the comparison of the simulation with
the field data is shown in Figure 5.9.

Table 5.4: Parametric settings for liquid-liquid flow obtained by the second-order
fracture model.

parameter cinf [m/s] µinf [Pa.s] ρ0inf [kg/m3] K S
nominal 1100 0.001 1000 - -

optimized 1019.4 0.0006 1000 0.9873 0.18
parameter pfr [bar] I [m] C m·s2 ζ [m/s] tcouple [s]
nominal 111.7 - - - -

optimized 109.3 8.7 × 106 0.0013 0.0028 600
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Figure 5.9: Comparison of field data and simulation for liquid-liquid flow with
the second-order fracture model and with the parameter setting of Table (5.4).

Apparent from Figure 5.9, all components of the field data are approximated
well with the parameter setting in Table 5.4. Better results can also be obtained
by a better tuning of parameters on a richer field dataset if available. This
comparison shows the predictability of the MPD model developed in Chapter
4 for standard influx scenarios. The capability of the MPD model is further
investigated in the next section for the case of complex influx scenario.

5.3 Validation in case of a gas influx

In this section, all the steps required to validate the MPD model developed in
Chapter 4, without any adaptation, in case of multi-phase flow scenarios are
explained.

5.3.1 Field data

Finding suitable field data for a gas influx case is challenging. Measurements
can be noisy and unreliable in case of gas and liquid mixture. Almost all mea-
surement devices are designed for either gas or liquid, not for a mixture of those.
Moreover, the gas influx in practice is usually accompanied with liquid influx
and might also be dissolved in the drilling mud during the migration through the
annulus. The coupling between the reservoir model and the wellbore model can
be seen as another challenge for such complex influx scenario. These difficulties
render finding a field data suitable for the purpose of accurate model validation
virtually impossible. However, experimental data from test wells, which are de-
signed to be useful for model validation, can be used. In this section, the data
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presented in [5], [12] is used. The validation is performed in a different manner
than in [5], which is discussed in Section 5.3.2.

The experimental data set is obtained from a well control test conducted at
Louisiana State University. The test setup, illustrated in Figure 5.10, is detailed
in [47]. An 11-bbl gas kick was simulated by injecting natural gas inside the
1.25-in tubing while water-based mud was continuously pumped through the
annulus formed by the 3.5-in drill pipe and the 1.25-in tubing, with returns
taken through the annulus between the 9.625-in casing and the 3.5-in drill pipe.
A manually operated choke manifold was used to provide back-pressure, with the
goal of keeping a constant drill pipe pressure throughout the gas circulation. This
experiment represents a kick circulation commonly carried out in real practice.
The choke opening, mud circulation and gas injection rate recorded during the
test were used as inputs to the model and are shown in Figure 5.11. Well
geometry, mud properties and drilling inputs are detailed in Table 5.5.

The measured data of the system is plotted in Figure 5.12. We point out an
inconsistency in the data in the following remark.

Remark 5.8. An inconsistency between the pressure and the flow in the zoomed
part of the plot of the pump pressure data pp in Figure 5.12 is detected. As the

Figure 5.10: Schematic of the test well [5].
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Table 5.5: Parameters of the experimental well.
parameter Length [m] ID [in] OD [in] cl [m/s] µl [cP]

value 1793 3.068 in 3.5 1202.5 8

pump flow rate is doubled in the period [35, 55] min, the frictional pressure drop
should be quadrupled as the flow inside the drillstring is turbulent. We consider
the approximate relation between pump pressure pp, downhole pressure pdh as
follows:

pp ≈ pdh − ρgh+ ∆pFriction +���:
0

∆pbit . (5.14)

As no bit is present in the test system, ∆pbit ≈ 0. In [5], it was approximated
that pdh − ρgh ≈ 27.6 bar after turning on the pump. Due to pp ≈ 60 bar after
turning on the pump, the frictional pressure drop would be around 30-35 bar
which is a reasonable value for such a well. Therefore, by almost doubling the
pump flow rate, an increase of at least 90 bar is expected in the pump pressure.
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Figure 5.11: Inputs of the test well and simulation framework (zc: choke open-
ing).
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Figure 5.12: Measurements of the system (pp: pump pressure, pc: choke pressure,
q: volumetric flow rate).

However, the measured data show that the pump pressure increases by less than
10 bar. Therefore, for this sensor, we only trust the steady-state measurements.
Regarding other sensors, the fact that in the steady-state, the flow rate through
the choke should be almost equal to the pump flow rate is confirmed by the mea-
surements from the flow meters. Therefore, we trust the measurements recorded
by the flow meters. We also trust the choke pressure sensor where typically more
accurate sensors are installed at the choke manifold.

5.3.2 Model validation for complex influx/loss scenarios

In this section, we present results on the experimental validation of the MPD
model presented in Chapter 4. In contrast with the validation for the liquid
influx scenario, as the gas flow rate injection into the annulus is known over
time, there is no need to introduce a model for the gas reservoir.

Remark 5.9. A validation of a model similar to the DFM, namely a Reduced
DFM, is done in [5]. In Table 5.6, we highlight the difference of the validation
procedure in this section with [5].

Remark 5.10. Notably, in the field data, no drilling bit is presented while we
use a drilling bit to connect the drillstring and the annulus. This bit simulates
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Table 5.6: Comparison of the validation in this study and the validation in [5].
Validation in [5] Validation in this study

Validation of the Reduced DFM Validation of the full DFM

Simulation of the flow
only in the annulus

Simulation of the flow
both in the drillstring and the annulus

State-dependent slip law Zuber-Findlay slip law

No choke model choke model (5.12)

the pressure drop due to the change in the direction of the flow going from the
drillstring to the annulus.

5.3.3 Parameter identification for gas influx scenario

Here, we identify the unknown parameters used in the DFM either by the avail-
able measurements or during an optimization procedure. The choke model can
be identified by the measured data and other parameters can be set during an
optimization procedure. These parameters include speed of sound in the gas
medium cg, gas viscosity µg, pipe roughness coefficient Kf (similar to (5.10)),
slip law constant parameters K,S and nozzle area at the bit AN . For the op-
timization, the following objective function is minimized by tuning the free pa-
rameters:

fg(pcSim) =
‖pcField − pcSim‖2
‖pcField‖2

. (5.15)

Since the transients in the pump pressure sensor are not reliable, it is not in-
cluded in the objective function unlike (5.13). Notably, for different choke open-
ings zc, Kc is obtained as explained in Section 5.2.3.1 and presented in Table
5.7.

Remark 5.11. To obtain a computationally efficient solution to the optimiza-
tion problem, the first 18 minutes of the data are not simulated. In this period,
the fluid is stagnant and simple hydrostatic relations can replicate the field data.
The first few minutes of the transients are also ignored to initialize the system
from an almost steady condition. Moreover, as the gas reaches the topside mea-
surement devices around t = 90 min (see Figure 5.12 for sudden increase in

Table 5.7: Choke coefficient as a function of choke opening.
zc 0 0.0102 0.011 0.012 0.0155 0.016 0.017
Kc 0 7.1e-5 7.8e-5 9.8e-5 10.8e-5 11.2e-5 12e-5
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qc and a sudden decrease afterwards), flow and pressure measurements at the
choke side are not reliable due to the two-phase nature of the flow. Therefore,
the simulations are stopped at this moment.

Remark 5.12. Since we only have one set of data, not all parameters are
uniquely identifiable and different parameter combination lead to similar objec-
tive function values, i.e., the objective function is not too sensitive with respect to
parameters. Among these physically admissible parameters, the ones with better
approximation of the pump pressure are selected.

5.3.4 Validation results

For the purpose of validation in the two-phase flow scenario, we obtain the
parameter values as reported in Table 5.8. The simulation results are depicted
in Figure 5.13. As mentioned in Remark 5.11, we only run the simulations in
the time window between t = 18 min and t = 90 min.

As can be observed from the results (except at the inconsistency mentioned
in Remark 5.8 and the time window shown in the top part of Figure 5.12 related
to the pump pressure pp), the DFM with physically reasonable parameters is
able to reproduce the field data.

The steady pump pressure shown in the top part of Figure 5.7 corresponds to
the field data accurately. However, in the time window where the inconsistency
has been detected (see Remark 5.8), the MPD model behaves physically justifi-
able. At this time window, the frictional pressure drop almost quadruples and
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Figure 5.13: Comparison of field data and the simulation results.
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Table 5.8: Optimization result for two-phase flow.
parameter cg [m/s] µg [Pa.s] Kf K S AN [m2]
optimized 408.09 8e-4 2.5612 1.104 0.0486 0.00352

the pump pressure should change significantly. In the middle and bottom part
of Figure 5.7, the choke pressure and the choke flow show a good agreement.
The dynamics observed in the data at the choke are due to the gas migration
and the pump flow rate change, all of which are captured well by the simulation
of the model developed in Chapter 4. Further improvements can be achieved if
a better trained choke model (5.12) is constructed using a richer data set.

To track the front of the migrating gas, the volume fraction of gas at different
time instants is plotted in Figure 5.14. As expected, around t = 90 min, the
gas is reaching the top of the annulus and the measurements become unreliable
afterwards. The location of the gas front obtained by the MPD model is in a
good agreement with the location of the gas front presented in [5].

5.4 Conclusion

The objective of this chapter has been the experimental validation of the MPD
model developed in Chapter 4 in case of a liquid and a gas influx. For the case
of a liquid influx, the MPD model is coupled with fracture models to simulate
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Figure 5.14: The distribution of gas volume fraction in different time instants.
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the interaction between the wellbore and the reservoir. The existing models and
a new proposed model, based on the mass and momentum conservation laws,
aim to predict the mass flow rate from a formation flowing into the annulus.
The proposed reservoir model based on a second-order dynamics predicts the
mass flow rate of the influx qualitatively and quantitatively more accurately
compared to the existing reservoir models. In case of a gas influx, finding a
suitable field data is much more challenging. Therefore, a set of data obtained
from an experimental well is used with a known gas flow rate injected to the
annulus. Hence, no reservoir model is required and the explicit value of the gas
influx is injected into the annulus at the bottom of the wellbore. The comparison
of the simulation results and the field data showed good predictive capabilities
of the MPD model in field circumstances. However, due to the lack of useful
dataset in a drilling well, we were not able to validate the identified model over
another dataset in the same drilling well.
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Part II

Model Order Reduction

The MPD model in the case of single-phase flow and its utilized models in
Part I are subject to model order reduction in this part. Since the RB method is
not capable of dealing with time-varying, nonlinear and state-dependent bound-
ary conditions, a new ansatz is suggested by decomposing the boundary dynam-
ics and the internal dynamics. The reduction is applied to the high-dimensional
linear system of the internal dynamics and the dimension of the nonlinear part of
boundary dynamics is not reduced. The ansatz successfully captures nonlinear
boundary conditions without generating non-physical spikes at the boundaries.
Moreover, to predict the error due to reduction, a new error estimate is proposed
for nonlinear systems with local nonlinearities at the boundaries. This error es-
timate hinges on the interconnection of an internally stable linear system with
nonlinear dynamics. The error estimate efficiently predicts the accuracy loss
after reduction.

To extend the error estimate for systems with non-Lipschitz distributed non-
linearities such as Burgers’ equation, a loop transformation is performed between
the linear and nonlinear systems. Still, this error estimate suffers from restric-
tion due to the non-Lipschitz nonlinearities. To lift the restrictions with this
type of error estimates, a new hierarchal error estimate for nonlinear systems
is proposed based only on the snapshots of the system during the offline phase.
Although both error estimates accurately predict the error due to the reduction,
the hierarchal error estimate is applicable to a wider range of problems.

Finally, all developments in this part are put together to reduce the dimen-
sion of an MPD model for single-phase flow. There are many varying parameters
in MPD. Challenging examples of such parameters are the location and number
of area discontinuities in drillstring and annulus. To accommodate these pa-
rameters into RB structure, a local adaptive enrichment stage is added to the
RB procedure. This stage should be performed when the location and num-
ber of area discontinuities vary. The proposed method accurately predicts the
physics induced by these varying features while maintaining a reasonable small
computational time.





Chapter 6

Error estimation in reduced basis method
for systems with time-varying and nonlinear

boundary conditions

Many physical phenomena, such as mass transport and heat transfer, are mod-
eled by systems of partial differential equations with time-varying and nonlinear
boundary conditions. Control inputs and disturbances typically affect the system
dynamics at the boundaries and a correct numerical implementation of bound-
ary conditions is therefore crucial. However, numerical simulations of high-order
discretized partial differential equations are often too computationally expensive
for real-time and many-query analysis. For this reason, model complexity reduc-
tion is essential. In this paper, it is shown that the classical reduced basis method
is unable to incorporate time-varying and nonlinear boundary conditions. To ad-
dress this issue, it is shown that, by using a modified surrogate formulation of
the reduced basis ansatz combined with a feedback interconnection and a input-
related term, the effects of the boundary conditions are accurately described in the
reduced-order model. The results are compared with the classical reduced basis
method. Unlike the classical method, the modified ansatz incorporates boundary
conditions without generating unphysical results at the boundaries. Moreover, a
new approximation of the bound and a new estimate for the error induced by
model reduction are introduced. The effectiveness of the error measures is stud-
ied through simulation case studies and a comparison with existing error bounds

This chapter is based on “M.H. Abbasi, L.Iapichino, B. Besselink, W.H.A.Schilders, N.van
de Wouw, Error estimation in reduced basis method for systems with time-varying and
nonlinear boundary conditions, Computer Methods in Applied Mechanics and Engineering,
Volume 360, 1 March 2020, 112688”.
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and estimates is provided. The proposed approximate error bound gives a finite
bound of the actual error, unlike existing error bounds that grow exponentially
over time. Finally, the proposed error estimate is more accurate than existing
error estimates.

6.1 Introduction

Simulations of high-fidelity dynamic models, especially for real-time and many-
query analyses, entail highly expensive computations, rendering direct numer-
ical simulation infeasible. To circumvent the so-called curse of dimensionality
in such simulations, model order reduction has been employed in the literature
and it is becoming an essential tool for controller design, multi-query, real-time
simulations and model-based optimization [13]. Several techniques for generat-
ing reduced-order models have been proposed such as, e.g., the reduced basis
method [89], balanced truncation [80], moment matching [13], and interpolation
techniques based on input-output behavior such as IRKA [81]. In particular,
the reduced basis method is an efficient approach for dealing with parameter-
ized systems, where the parameters can be, for instance, the physical parameters
of a system, geometry properties or boundary conditions [92].

The reduced basis method consists of an offline and online phase. In the
offline phase, the essence of the underlying model is extracted by obtaining a,
usually small, problem-specific set of basis functions. This can be carried out
by computing the solution to the full-order model for a representative set of
parameter values. The basis functions can be computed by different methods;
the most popular ones are proper orthogonal decomposition (POD) and the
greedy algorithm [65], [117]. After generating the basis functions, by exploiting
the affine dependency of the full-order model on the varying parameters, a fast,
easy-to-compute and reasonably accurate model is built in order to be used in
the online phase. In the online phase, the computationally cheap yet accurate
model can be solved for each new set of parameters with far less computational
effort compared to the full-order model.

While the theory of the reduced basis method for a single, parabolic and
elliptic partial differential equation (PDE) has already reached a mature stage
[59], [78], [79], [89], systems of PDEs and single hyperbolic PDEs still present
an open research field [84], [135], [148], [149]. For hyperbolic problems, shock-
capturing model order reduction techniques such as the freezing method [135]
and shifted-POD [148] are yet far from generic and still require many problem-
specific adaptations and are not considered in this paper.

One critical issue to address in the reduced basis method is the incorporation
of the boundary conditions. The reduced basis method is a powerful method for
the case of constant boundary conditions. Due to the global nature of the basis
functions and their independency over time, handling time- or state-dependent
boundary conditions can be challenging [53]. Moreover, dealing with nonlinear
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and implicit boundary conditions in the reduced-order model of a system of
PDEs is still an open issue [82]. Nonetheless, boundary conditions of any system,
either induced by the physical effects or by a controller, play a crucial role in
the system dynamics.

In the reduced-order model, different approaches for dealing with parame-
terized Dirichlet boundary conditions have been introduced [52], [82]. In addi-
tion, the formulation of boundary conditions as a differential algebraic equation
(DAE) has been discussed in [66]. Nevertheless, the correct implementation of
boundary conditions of a hyperbolic system requires the use of characteristic
waves [10], [71]. The governing equations of these waves include nonlinear ordi-
nary differential equations (ODEs) [69], [71], introducing extra dynamics at the
boundaries. This challenges the construction of reduced-order models. So, the
correct implementation of the boundaries in the general case should be investi-
gated more thoroughly.

Besides problems occurring in nonlinear, time-varying boundary conditions
in the reduced basis method, an easy-to-compute a posteriori error bound (or
estimate) is required, firstly, to speed up the basis generation in the greedy al-
gorithm and, secondly, to assess the accuracy of the reduced solution generated
by the reduced basis method. Numerous works are directed towards deriving a
residual-based error bound (or estimate) for parabolic PDEs [31], [79], [89], [98],
[117]. The error bounds in the parabolic context are well-developed while very
few works have focused on developing an error bound (or estimate) for hyperbolic
PDEs [84], [182]. The error bound in [84] is dependent on the norm of the state
matrix; when this norm is larger than one, the error bound grows exponentially
over time and is not useful for assessing the quality of the reduced-order model.
The error estimate in [182] is derived by defining a dual system and building a
connection between the norm of the residuals and the error in approximating
the states. Moreover, this method is also based on the norm of the state ma-
trix and this norm should satisfy some constraints. These constraints are not
satisfied in the numerical examples shown in the current paper. So the ultimate
problem is that in many cases for hyperbolic problems, no finite error bound can
be constructed using existing approaches. Therefore, novel approaches for the
construction of error bounds and estimates are needed. Hereto, we first propose
a new approximate error bound that does not pertain to the norm of the state
matrix. Second, in order to mitigate the conservativeness of the proposed error
bound, a new error estimate is introduced by exploiting this error bound. The
main contributions of the paper are described below.

In this paper, we propose an efficient strategy for dealing with time-varying
and nonlinear boundary conditions. A modified ansatz representation for the
reduced basis method, interconnected with a boundary condition solver, is pro-
posed and tested on a hyperbolic system. This method draws inspiration from
methods presented in [27], [28], [129] in the scope of balanced truncation for
nonlinear systems. Furthermore, to certify the accuracy of the reduced-order
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model, a new approximate error bound is proposed. However, this approximate
error bound may still lead to conservative results. To sharpen the error bound,
an error estimate is introduced based on the obtained approximate error bound
and the simulations in the offline phase, similar to the one presented in [182],
however, in a different norm realization. Two test cases are considered in this
paper. First, a linear advection equation containing source terms with time-
varying boundary conditions is investigated. The error bound is applied on this
system and we show that, for a certain class of inputs, the proposed error bound
is one of the sharpest possible error bounds. Second, the linearized isothermal
Euler equations with nonlinear, time-varying boundary conditions are consid-
ered. The effect of the boundary conditions on the solution of the reduced-order
model is investigated. The isothermal Euler equations with the utilized bound-
ary conditions are commonly used in the simulation of gas and liquid flows in
pipelines [126] and for hydraulics drilling simulations in single phase cases [129].

The outline of this paper is as follows. In Section 2, the general linear PDE
together with the applied finite-volume scheme and the resulting full-order model
are explained. In Section 3, the ingredients of the reduced basis method, the pro-
posed ansatz and the reduced-order model are introduced. In Section 4, the error
bound is formulated and the connection between the error bound and the error
estimate is explained. In Section 5, numerical results for an advection equation
with source term and the linearized isothermal Euler equations are presented.
Finally, Section 6 closes the paper with some conclusions and perspectives on
future work.

6.2 Problem statement

In this work, the following class of linear PDEs is studied:
∂u

∂t
+ J

∂u

∂x
= S(u, t, x;µ),

u(0, x;µ) = u0(x;µ),
u(t, x∂ ;µ) = u∂(t;µ),

t ∈ [0, T ], x ∈ [0, L], (6.1)

where u = u(t, x;µ) is called conservative variable (since this variable should
be conserved in each grid cell after the discretization) at time t and spatial
location x for a set of parameters µ ∈ D ⊂ Rb. Here, D is the domain of varying
parameters and b is the number of varying parameters in the system. This
system may also contain fixed parameters that do not vary from one simulation
to another in a multi-query context. In addition, J = J(µ) is the Jacobian of the
analytical flux function f(u;µ), i.e., J(µ) = ∂f/∂u (J should be independent
of u such that the PDE becomes linear), and S(u, t, x;µ) is the source term.
Moreover, the final time of the simulation and the spatial domain length are
denoted by T and L, respectively. To analyze the response, an initial condition
u0(x;µ) and a set of boundary conditions u∂(t;µ) on the boundary points x∂
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are required, which will be elaborated upon in Sections 6.5.1.1 and 6.5.1.2 for
the specific cases of an advection equation with source term and the linearized
isothermal Euler equations.

Definition 1. The function S(u, t, x;µ) is affine with respect to parameters µ
if it can be written as S(u, t, x;µ) =

∑
j S

j
u (u, t, x)Sjµ(µ), with state-dependent

functions Sju (u, t, x) and parameter-dependent functions Sjµ(µ).

Assumption 6.1. In (6.1), J only depends on the parameters µ, not the states.
J and S are affine with respect to parameters. Moreover, the eigenvalues of J
are all real and distinct such that the system is hyperbolic. Finally, to have a
linear system, all Sju in the expansion of Definition 1 are assumed to be a linear
function of conservative variables u.

Linear PDEs as in (6.1) with properties mentioned in Assumption 6.1 can be
discretized with a linear scheme, which is described next.

6.2.1 Discretization using the upwind scheme

First-order Godunov-type schemes together with forward Euler integration nu-
merically solve PDE (6.1) by (parameter dependency is not mentioned here for
the ease of notation) [50], [139]

Un+1
i = Uni −

∆t

∆x

(
F(Uni+1, U

n
i )−F(Uni , U

n
i−1)

)
+ ∆t S(Uni , t

n, xi;µ), (6.2)

where Uni , i = 1, · · · , Nδ, n = 0, · · · , Nt − 1, is the average of the conservative
variables u over the i-th spatial grid cell at the time instant tn = n∆t, with
Nδ the number of spatial grid cells and Nt the number of time steps. Also, ∆t
and ∆x denote the temporal and spatial resolution of the discretization. Next,
F is the numerical flux function (discretized counterpart to the analytical flux
function f in (6.1)) that is scheme-dependent. For instance, for the upwind
scheme [50], [139], the numerical flux function is given by

F(Ui+1, Ui) = A+Ui +A−Ui+1, (6.3)

where A+ = RΛ+R−1 and A− = RΛ−R−1 with R matrix composed of the right
eigenvectors of the Jacobian matrix J , and

Λ+ =


λ1

+ 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 λr

+

 , Λ− =


λ1
− 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 λr

−

 . (6.4)

Here, λk, k = 1, · · · , r are the eigenvalues of the Jacobian matrix J with r as
the dimension of the system (6.1). For every k = 1, · · · , r, we denote λ+

k =
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max(λk, 0) and λ−k = min(λk, 0). If the Jacobian matrix J is not diagonalizable
(i.e., Assumption 6.1 is not valid) , other schemes such as the Lax-Friedrichs or
Rusanov scheme [113] can be used.

The finite-volume discretization leads to a high-dimensional (though finite-
dimensional) model, which will be referred to as the full-order model. This model
is introduced in the upcoming section.

6.2.2 Full-order model

In many cases, the equations governing the boundary conditions are time-
varying, coupled with the state variables, and/or nonlinear. As a result, the
full-order model becomes nonlinear even if the internal dynamic is linear. As an
example, since the system of PDEs of interest as in (6.1) is linear and the upwind
scheme (6.3) is also linear, a finite-dimensional linear time-invariant (LTI) sys-
tem is obtained after discretization. However, substituting i = 1 and i = Nδ in
(6.2), the conservative variables Un0 and UnNδ+1 are required to compute the solu-
tions. These variables are the boundary values that can be regarded as inputs to
the LTI system that render the entire system nonlinear. On the other hand, all
nonlinearities enter the system at the boundaries. So, it is natural to decompose
the full-order nonlinear model Σnl into a linear subsystem Σlin (representing
the discretized PDEs in the internal domain) and a nonlinear subsystem ΣBC
(representing the boundary dynamics). This is schematically depicted in Figure
6.1 and the models Σnl, Σlin and ΣBC are of the form

Σnl :



Σlin :


Un+1 = A(µ)Un +B(µ)wn

yn = CyU
n

zn = CzU
n

,

ΣBC :


V n+1 = G(V n, zn, unc ;µ)

wn = G(V n, unc ;µ)

UnBC = CBC

[
(V n)

T
(wn)

T
]T .

(6.5)

Here, the superscript T denotes the transpose operator. As depicted in Fig-
ure 6.1 and apparent from (6.5), the linear subsystem Σlin solves for the states
Un. The input to this system comes from boundaries which are governed by
ΣBC . This subsystem takes auxiliary outputs z from the linear subsystem and
the control inputs uc from the user and then computes the variables w, which
represents the input of the linear dynamics. The actual output y of the system
is defined by the user while the auxiliary outputs z are determined based on the
interconnection of the two subsystems. In addition, the boundary solver calcu-
lates the conservative variables at the boundary location UBC , which will be used
in the reduced-order model. Although the boundary values of the conservative
variables, UBC , do not play a role in the full-order model, these help us later
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in the next section to incorporate the boundary conditions in the reduced-order
model correctly.

To introduce the notation in (6.5), A(µ) ∈ RNδ×Nδ , B(µ) ∈ RNδ×m, with m
the dimension of the inputs w, are parameter-dependent state and input matri-
ces, Un ∈ RNδ is the vector of state variables of the linear system Σlin at time
step n. For this system to be stable, A(µ) should be a Schur matrix (i.e., all
eigenvalues of A(µ) lie in the unit disc in the complex plane). Moreover, V n is
the vector of state variables in the dynamics of the boundary conditions gov-
erned by G, wn ∈ Rm is the input of the linear system Σlin, which is computed
by an output function G in ΣBC . External (control) inputs uc act at the bound-
aries. Finally, Cy and Cz are the output matrices for the output of interest yn

and auxiliary outputs zn. In general, Σnl in (6.5) expresses a feedback intercon-
nection between Σlin and ΣBC . However, in some cases, there is no dynamics
occurring at the boundaries and the boundary conditions are specified explicitly
over time; and in some other cases, the boundaries are dynamically coupled with
the output zn as in ΣBC in (6.5).

Clearly the dimension of Σlin scales with Nδ, which can be extremely large
when fine spatial discretization meshes are used. On the other hand, the di-
mension of ΣBC is typically of low order compared to Nδ. According to this
observation, we assume that most of the computational time is allocated for
solving Σlin rather than ΣBC . This assumption is crucial to justify the speedup
after model order reduction via the interconnection approach. To reduce the
number of equations to be solved in Σlin, a reduction approach will be imple-
mented on the linear subsystem, while the number of equations in ΣBC is not
changed. Moreover, the boundary incorporation in the reduced basis is another
challenge that has to be handled. To deal with the complexity of the linear sub-
system of the full-order model (6.5) and the boundary incorporation, the model
order reduction technique is introduced next.

Assumption 6.2. A(µ) and B(µ) in the linear subsystem Σlin in (6.5) are

Figure 6.1: The schematic representation of the full-order nonlinear model Σnl
consisting of a feedback interconnection of the linear subsystem Σlin and a
boundary subsystem ΣBC .
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affine with respect to parameters µ. Moreover, A(µ) is Schur for all µ ∈ D.

Remark 6.3. Since A(µ) is Schur for all µ ∈ D, Σlin is stable. However, the
stability of Σlin does not guarantee the stability of Σnl.

Remark 6.4. In this study, only 1D problems are considered. For the 2D and 3D
case, the number of equations to be solved at the boundary is still much lower than
for the internal grids. If the boundaries in the higher-dimensional settings are
nonlinear, reduction for simulation is less promising if most of the computational
time is allocated in solving the boundary conditions. One alternative in the 2D
and 3D cases would be the reformulation of the system as partial differential
algebraic equations (PDAEs) and reduce the entire system, which is beyond the
scope of this paper. For the reduction of parameter-independent PDAEs based
on input-output behavior, refer to [146].

Remark 6.5. In this study, by using characteristic boundary equations [10],
[69], boundary dynamics and the internal dynamics become consistent in the
full-order model and no boundary layer appears in the solution.

6.3 Boundary incorporation within the reduced basis method

The reduced basis method [84], [89] targets the reduction of parametrized prob-
lems requiring repeated evaluations or (faster than) real-time simulations, known
as many-query and real-time analysis, respectively. This technique consists of
two phases with two different objectives. The first phase is the offline phase,
which captures the most dominant characteristics of the problem based on the
solution of the physical full-order model, the so-called truth solutions, for spe-
cific parameter values. At this stage, the dimension Nδ of the full-order space
exploited to find the truth solution is large, leading to expensive and time-
consuming simulations. The reduced basis method approximates this space with
an N -dimensional subspace (typically N � Nδ). After finding this subspace,
the required reduced-order operators are defined through Galerkin or Petrov-
Galerkin projection onto this N -dimensional subspace. In the online phase, the
reduced-order model is generated, rendering simulations faster as N � Nδ [89].
In other words, the online computational cost depends on N , rather than Nδ.
This fact has two advantages. First, the solution in the online phase can be
found faster compared to the full-order model, due to the small dimension of the
reduced basis space and, second, the basis functions used for the projection are
defined in the full-order space and allow to express the reduced basis solution in
the full-order space as well. The dimension of the full-order space depends on
the number of grid cells of the computational domain and can be increased to
attain more accurate results. Even though increasing the number of grid cells
increases the offline cost, it does not influence the online cost significantly. We
note that Assumption 6.2 enables such offline-online decomposition [20], [89].
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Numerically, the reduced basis solution of (6.5) in the finite-dimensional
setting collected for all grid cells at time instant tn is denoted by Ûn(µ). The
reduced basis solution, Ûn, is computed as a linear combination of spatial- and
time-dependent vectors as

Ûn(µ) =

N∑
i=1

ani (µ)φi, (6.6)

where Φ = {φi, i = 1, · · · , N} is the set of N reduced basis vectors (i.e., reduced
basis functions evaluated at the discrete computational domain). These basis
vectors are the dominant modes of specific truth solutions of (6.5) for certain
values of the parameters µ. The basis vectors φi can be obtained by using the
POD-greedy algorithm in the offline phase [31], [89]. The POD approach to
generate φi is illustrated in Algorithm 4 and POD-greedy is explained in Algo-
rithm 5. The dynamics of the generalized coordinates, ani (µ), can be obtained
by Galerkin or Petrov-Galerkin projection of the problem (6.5) onto the space
Φ.

Remark 6.6. If nonlinearities exist or the system is non-affine with respect
to parameters, the empirical interpolation method (EIM) or the discrete empir-
ical interpolation method (DEIM) can be performed on the system to prepare
it for Galerkin or Petrov-Galerkin projection onto the space Φ [44], [78], [79].
However, nonlinear and non-affine systems are not studied in this work.

Remark 6.7. The dyadic product of (6.6) may not be suitable for problems with
shocks. In this study, the boundary conditions change smoothly and therefore no
shock occurs in the system. For systems with shocks, other approaches such as
Shifted-POD [148] or the freezing method [135] should be followed; however, their
applicability is still limited.

6.3.1 New ansatz formulation

The ansatz formulation (6.6) cannot capture time-varying boundary conditions
[52]. This is attributed to the global and time-invariant nature of the reduced

Algorithm 4: POD algorithm, POD(U , nPOD)

Input: Snapshots U = {U0, · · ·UNt} ∈ RNδ×Nt , number of basis
vectors nPOD

Output: φi ∈ RNδ×nPOD

1 Perform a Singular Value Decomposition on the snapshots, U = MSV
2 φi = M(:, 1 : nPOD) are the first nPOD vectors of the left singular

vectors M
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basis vectors. As an example, POD typically employs basis vectors that are
constant over time. As a result, if the boundary values are constant over time
and not parameter dependent, the boundary conditions are always satisfied.
However, when the boundary conditions change over time, the reduced solution
cannot cope with these changes since the coefficients of the basis vectors, ani , are
determined by the internal dynamics. This is more important when the system
has two time-varying boundary conditions at both ends. For many industrial
applications, such as flow inside a pipe [71] and managed pressure drilling (MPD)
[129], boundary conditions are coupled with the state variables and are even
nonlinear. Since external (control) inputs of such systems also usually act at
the boundaries, correct implementation of the boundaries in the reduced-order
model is crucial.

To handle the time dependency and nonlinearities associated with the bound-
aries, the dyadic form of the reduced basis ansatz (6.6) is changed to

Ûn(µ) = UB(ÛnBC) +

N∑
i=1

ani (µ)φi, (6.7a)

UB(ÛnBC)
∣∣∣
x∂

= ÛnBC , (6.7b)

φi|x∂ = 0, (6.7c)

where ÛnBC is the reduced solution at specified locations x∂ on the boundary and

UB(ÛnBC) is a vector (a function evaluated at the discrete computational domain)

that enables the reduced basis solution Ûn to satisfy the boundary conditions. In
other words, the vector UB encodes the exact satisfaction of only the boundary
conditions at the reduced level as in (6.7b) (it can be an interpolation inside the
internal domain). Then, (6.7c) states that φi should vanish at the location of
the specified boundary conditions.

The logic behind choosing UB is problem-specific and some examples are
given in Section 6.5. In general, we propose to choose UB by considering a linear
interpolation between the boundaries x∂ of the system (6.1).

One requirement for the correct incorporation of the boundary conditions
is that the basis vectors in (6.7) should vanish at the boundaries (see (6.7c)).
In order to satisfy this requirement, the snapshots for applying the POD are
modified. Instead of applying the POD to the snapshots of the solution Un(µ),
the POD is applied to the set of modified snapshots Un∗(µ) defined as below,

Un∗(µ) = Un(µ)− UB(UnBC), (6.8)

where UnBC is the truth solution at the boundaries. The modified snapshots
Un∗(µ) vanish at the location of the specified boundaries, enforcing the POD to
generate basis vectors that are zero at these boundaries.

The methodology to obtain the reduced-order model with the modified ansatz
(6.7a) at the discrete level is illustrated next.
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Figure 6.2: The schematic representation of handling boundary conditions in
the reduced-order model in (6.9).

6.3.2 Reduced-order model by Galerkin projection

As mentioned earlier, we focus on linear PDEs as in (6.1), discretized with linear
schemes such as the upwind scheme (6.3). By doing so, on the one hand, the
equations governing the internal domain form an LTI system and thus the dimen-
sion of the equations can be reduced by the reduced basis method. On the other
hand, the dynamics of the boundary conditions are time-variant, nonlinear, and
act locally. As the correct implementation of the boundaries is uncompromisable,
the number of equations in ΣBC in (6.5) are not reduced. This method shares
some features with the method introduced in [28], [29], [129] in the balanced
truncation setting and in [66] in the finite-element setting.

The linear subsystem Σlin in (6.5) can be reduced to another linear system
Σ̂lin of lower order by the reduced basis method, but the local and finite bound-
ary equations ΣBC remain full-order. Generally speaking, the local nonlinearities
of the boundary conditions are hard-coded in this approach. To provide some
insights on this technique, the schematic view of the method is shown in Figure
6.2. This figure illustrates that auxiliary outputs, ẑn = CzÛ

n, that are neces-
sary for computing the outputs of ΣBC , wn and ÛnBC (see also Figure 6.1), are
provided via a feedback interconnection. Then, the outputs from ΣBC are fed
into the reduced linear system Σ̂lin to incorporate the effect of the boundary
conditions.

To obtain the reduced-order model corresponding to the full-order model
(6.5), we drop the parameter dependency on µ for notational simplicity. The
parameter dependency can be included straightforwardly using the affine prop-
erty of the system, as explained in [84]. After finding the reduced basis space
Φ ∈ RNδ×N , the Galerkin projection can be executed. After the projection, the
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states of the reduced system Σ̂lin are the generalized coordinates ani . Following
the explanation above regarding the reduction strategy and considering (6.7)
and the orthogonality of Φ, we obtain the reduced-order system as follows:

Σ̂nl :



Σ̂lin :


an+1 = Âaa

n + B̂ŵn + ÂBCU
n
B − ΦTUn+1

B ,

Ûn = UnB + Φan,

ŷn = CyÛ
n,

ẑn = CzÛ
n,

ΣBC :



V̂ n+1 = G(V̂ n, ẑn, unc ),

ŵn = G(V̂ n, unc ),

ÛnBC = CBC

[
(V̂ n)

T
(ŵn)

T
]T
,

UnB = UB(ÛnBC),

(6.9)

where Âa = ΦTAΦ, ÂBC = ΦTA, B̂ = ΦTB, a = [a1, · · · , aN ]T . The second
equation in Σ̂lin in (6.9) is the ansatz (6.7a). For an example of UB , see (6.35) in
Section 6.5.1.2 for the linear isothermal Euler equations. In (6.9), Âa ∈ RN×N
and B̂ ∈ RN×m are both of low dimension. Recall that N is the number of basis
vectors with N � Nδ and m is the dimension of wn. The initial condition of the
system is a0 = ΦTU0 where U0 is the initial condition of the original system.
However, some dependencies on the actual degree of freedom Nδ still exist in
(6.9) due to ÂBC , ΦT and UB . Resolving this issue is problem-specific, which is
illustrated in Sections 6.5.1.1 and 6.5.1.2 for two test cases.

Remark 6.8. In the reduced-order model, an inconsistency between the solu-
tion at the internal domain and the solution at the boundaries appears when
Galerkin projection is applied (see Section 6.5.2). To resolve this, the effect of
boundary conditions is subtracted from the internal domain and added later on
by an input-related term to avoid boundary layers. One can also reformulate the
problem with the boundary condition as a DAE problem. Note that in the cur-
rent study, the boundary conditions are dynamic and not characterized by mere
algebraic constraints. In a way, this type of decomposition preserves the DAE
structure, but its numerical solution is derived based on the interconnection ap-
proach presented here. In addition, this also preserves the differentiation index
of the DAE. If the full DAE is reduced, then the dynamics at the boundary might
also change and inconsistencies might still appear. Here, only the differential
part of the DAE is reduced and the boundary related part is retained in the ex-
act form. Moreover, the numerical solution of the DAEs is hard to obtain as
the problem might become stiff. These reasons have motivated us to pursue the
decomposition approach.

Remark 6.9. System (6.9) still depends on the dimension of the full-order model
due to the lifting in the second equation of Σ̂lin. This lifting can be incorporated
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in the output equations as ŷn = CyU
n
B+CyΦan (similar for ẑn) and precomputing

CyΦ (CzΦ) for use in the online phase.

In the next section, the bound and estimate for the error induced by replacing
the full-order model with the reduced-order model are discussed.

6.4 Error bound and estimate for the reduced-order model

In order to certify the accuracy of the reduced basis solution and to accelerate
the offline phase by appropriate snapshot selection, an error bound (or estimate)
has to be provided. In this study, we are interested in a reduced-order model
that provides an accurate prediction of the output y (to be specified by the user
of the reduction approach) of the full-order nonlinear model. To derive a bound
for the output of a system, the concept of the `2-gain of the system is exploited.

Definition 2 ([101]). The stable system Σlin as in (6.5) has a bounded `2-gain
of less than γ from input w to output y if

∞∑
n=0

‖yn‖2 ≤ γ2
∞∑
n=0

‖wn‖2, (6.10)

for all trajectories of Σlin with zero initial condition and where ‖·‖ is the Eu-
clidean norm. We will use the shorthand notation ‖y‖`2 ≤ γ ‖w‖`2 , where

‖y‖`2 =

√
∞∑
n=0
‖yn‖2.

Definition 2 implies that for a bounded input with respect to the `2-norm,
the output is also bounded with respect to the same norm. In other words, γ
in the inequality (6.10) can be interpreted as a bound on the ratio between the
energies of output and input. This kind of inequality can be defined for any
input-output pair of the system. If the system is LTI and asymptotically stable,
as we assume to be the case for Σlin in (6.5) for all µ ∈ D (Assumption 6.2),
it can be proved that the `2-gain of a linear system equates to the H∞-norm
of the system [160] for which computationally efficient tools are available [19],
[34]. As the final system before applying the Galerkin projection should be cast
into a linear model with respect to the states, the concept of `2-gain is also
applicable in the reduced basis context. Here, we aim to exploit this notion to
derive an error bound for substituting the full-order nonlinear model (6.5) with
the reduced-order nonlinear model (6.9). For developing such an error bound,
the dynamics that govern this error is required, which is the topic of Section
6.4.1. Then, we introduce an expensive yet accurate error bound in Section
6.4.2.2. As we are interested in easy-to-compute and cheap error estimates, a
fast error estimate is introduced based on the error bound in Section 6.4.3.
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6.4.1 Error dynamics

Recall that Ûn is the result computed by the reduced basis method from (6.9).
As this variable satisfies the reduced-order model, and not exactly the full-order
model (6.5), by substituting Ûn into (6.5), a residual denoted by Rn ∈ RNδ , at
each time step, appears in the formulation of the full-order dynamics

Σnl :



Σlin :


Ûn+1 = A(µ)Ûn +B(µ)ŵn +Rn,
ŷn = CyÛ

n,

ẑn = CzÛ
n,

ΣBC :


V̂ n+1 = G(V̂ n, ẑn, unc ;µ),

ŵn = G(V̂ n, unc ;µ),

ÛnBC = CBC

[
(V̂ n)

T
(ŵn)

T
]T
.

(6.11)

It should be noted that the dynamics of the boundary conditions ΣBC are fully
preserved and no residual appears in their dynamics. By defining the reduction
error by en = Un− Ûn, the error dynamics can be obtained by using (6.11) and
(6.5):

Σenl :



Σelin :

e
n+1 = A(µ)en +B(µ)enw −Rn,
eny = Cye

n,
enz = Cze

n,

ΣeBC :


en+1
V = G(V n, zn, unc ;µ)−G(V̂ n, ẑn, unc ;µ),

enw = G(V n, unc ;µ)− G(V̂ n, unc ;µ),

enUBC = CBC

[
(enV )

T
(enw)

T
]T
,

(6.12)

where other output errors are denoted as e(·) = (·)−(̂·) and V n = enV +V̂ n. Thus,
the error dynamics generally contain two inputs. One input is enw, which affects
the error dynamics if the boundary values are not estimated perfectly. Although
the boundary dynamics are exactly preserved, due to the fact that boundary
values are determined together with an approximation of the linear model, the
boundary values are not exact either, which gives an error enw. The other input of
the error dynamics is the residual Rn, which contributes to the error due to the
inaccuracy of Ûn in approximating Un. Figure 6.3 explains the interconnection
within (6.12). Next, bounds on the output error of the interconnected system
(6.12) are introduced.

6.4.2 `2 and `∞ error bounds

As the error dynamics have the dimension of the full-order model, it cannot be
used for efficiently determining the error and, therefore, bounds on the output
of the error dynamics should be set. For systems with state-dependent bound-
ary conditions, we propose the `2 error bound and for systems with boundary
conditions explicitly stated over time, we propose the `∞ error bound as below.
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Figure 6.3: The schematic representation of the error dynamics (6.12) consisting
of a feedback interconnection of the linear and nonlinear part.

6.4.2.1 `2 error bound

To impose a bound on the output ey as in (6.12) by the `2-gain theory, we note
that Assumption 6.2 implies the existence of gains γeyew and γeyR such that

‖ey‖`2 ≤ γ
eyew‖ew‖`2 + γeyR‖Rs‖`2 , (6.13)

where γyu is the H∞-norm (`2-gain) of the system from input u to output y and
Rs is the two-norm of the residual over the spatial domain at each time instant,
i.e., Rns = ‖Rn‖.

One ingredient for the calculation of the bound is the `2-norm of the error
induced at the boundaries, ‖ew‖`2 . This norm can be bounded by the Lipschitz
constant of the nonlinear function governing the boundary. For instance in
(6.12), we have:

enw = G(V n, unc )− G(V̂ n, unc ),

‖enw‖ ≤ LG ‖enV ‖ =⇒ ‖ew‖`2 ≤ LG ‖eV ‖`2 ,
(6.14)

where LG is the global Lipschitz constant of the nonlinear function G(V n, ·) with
respect to its first argument.

Remark 6.10. For some cases, the function G(V n, ·) might not be globally Lip-
schitz. Then, a local Lipschitz constant can be employed. In this study, we
approximate such local Lipschitz constant by

LG ≈ max
n

(∣∣∣∣ ∂G∂V |V=V̂ n

∣∣∣∣) , (6.15)

which becomes more accurate if the solutions of the full-order and reduced-order
systems are closer. The computation of ‖eV ‖`2 in (6.14) is dependent on its gov-
erning dynamics G, which will be explained in one of the test cases in Appendix
E. The assumption of reduced and full solution being close to each other becomes
more realistic when the number of basis vectors increases. For a low number of
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basis vectors, this assumption is not accurate and (6.13) (combined with (6.15))
cannot be a true bound on the error. When the number of basis vectors is low, a
possible alternative is to restrict the solution domain. Then, during the offline
phase, the local Lipschitz constant over this restricted solution manifold can be
approximated based on (6.14) and the available actual error (see Remark .1).
In this approach, potentially larger discrepancies between the solutions of the
full-order and reduced-order systems are always allowed at the expense of higher
LG.

Finally, the last ingredient for computing the error bound is ‖Rn‖ and conse-
quently ‖Rs‖`2 . This computation should also scale with N in the online phase
to make the error bound computationally feasible. To analyze this, rearranging
the first equation in (6.11) and dropping the parameter dependency yields:

Rn = Ûn+1 − (AÛn +Bŵn). (6.16)

By using the ansatz Ûn = Φan + UnB and multiplying the above equation with
its transpose, we obtain

‖Rn‖2 = RnTRn = an+1TΦTΦan+1 + an+1T ΦTUn+1
B + Un+1

B

T
Φ an+1T+

Un+1
B

T
Un+1
B −

(
an+1TΦTAΦan + an+1T ΦTAUnB + an+1TΦTBŵn

)
−(

Un+1
B

T
AΦ an + Un+1

B

T
AUnB + Un+1

B

T
B ŵn

)
− anTΦTATΦan+1

− anT ΦTATUn+1
B − UnB

TATΦ an+1 − UnB
TATUn+1

B +(
anTΦTATAΦan + anT ΦTATAUnB + anTΦTATBŵn

)
+(

UnB
TATAΦ an + UnB

TATAUnB + UnB
TATB ŵn

)
−

(ŵn)TBTΦan+1 − (ŵn)T BTUn+1
B +(

(ŵn)TBTAΦan + (ŵn)T BTAUnB + (ŵn)TBTBŵn
)
.

(6.17)

Most operators in the above equation such as ΦTATAΦ ∈ RN×N can be com-
puted offline and used in the online phase for fast computation of the norm of
the residual. The efficient computation of the terms in the dashed boxes will be
explained in Section 6.5.1.1 and 6.5.1.2 as we define UB for each test case sepa-
rately. For more information, refer to [84]. As the two-norm of the residual over
the spatial domain, Rs, can be computed cheaply in the reduced basis context,
its `2-norm over time is also cheaply computable.
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6.4.2.2 `∞ error bound

For a single PDE with time-dependent (not state-dependent) boundary condi-
tions, we have the value of wn for all time instants. Therefore, the inclusion
of ΣBC is not required and we have enw = 0 for all n. In this case, the error
dynamic reduces to

Σelin :

{
en+1 = A(µ)en −Rn
eny = Cye

n . (6.18)

Based on the error dynamics (6.18), the `2 error bound (6.13) for these types
of systems is as follows:

‖ey‖`2 ≤ γ
eyR‖Rs‖`2 , (6.19)

and the error bound can be compared with an error bound constructed by using
the notion of input-to-state-stability (ISS) [101], which leads to a bound point-
wise in (discretized) time. By solving (6.18) recursively over time for a given
parameter µ, the error at each time instant is given by

en+1 = A(µ){n+1}e0 −
n∑
i=0

A(µ){n−i}Ri, (6.20)

where the notation A{n} is used to indicate the n-th power of the matrix A, i.e.,

A{n} = A×A× · · ·A︸ ︷︷ ︸
n times

. (6.21)

The use of (6.20) leads to a bound on the norm of the error as

∥∥en+1
∥∥ ≤ κISS :=

∥∥∥A(µ){n+1}
∥∥∥

2

∥∥e0
∥∥+

n∑
i=0

∥∥∥A(µ){n−i−1}
∥∥∥

2
Ris, (6.22)

where ‖A‖2 is the two-norm of matrix A. The ISS-like bound (6.22), although
expensive to compute due to calculation of A(µ){i} and the corresponding norms,
is the sharpest possible error bound with the available information. The norm
of the matrix should be calculated at each time step and this renders the us-
age of this bound computationally unattractive. However, this bound is a good
reference measure for the performance of other error bounds. Instead, the error
bound in (6.13) requires the norm calculation only once, i.e., much less computa-
tion than the bound (6.22). However, there are also two drawbacks of the error
bound (6.13). First, calculation of H∞-norms, even though only needed once,
is expensive, and second, this error bound may be conservative. For resolving
these two issues, an error estimate based on the error bound (6.13) is developed,
as presented in the next section.
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6.4.3 Error estimate for the reduced-order model

To resolve the problem of the expensive calculation of theH∞-norm in the online
phase, as needed in the `2 error bound (6.13), all requiredH∞−norms, γeyew and
γeyR, are computed and stored offline for all parameters in the discrete parameter
domain Dh ⊂ D. These norms correspond to the `2-gain from different inputs
to the output of Σlin that are present in (6.13) for all µ ∈ Dh. Here, as only the
norms corresponding to the members of Dh are saved, memory demands are not
increased. Then, in the online phase, for any new parameter that does not lie in
Dh, the closest element in Dh (in the Euclidean sense) is found and the norm of
that parameter in Dh is used instead of the norm of the original parameter used
in the online phase. If the distance from many parameter sets are the same, the
one with the higher H∞-norm is chosen.

Remark 6.11. Since the H∞-norms are not computed exactly, but rather com-
puted approximately based on the discrete parameter domain, the expression
(6.13) is not mathematically a bound and would be an approximation of the
error bound. Henceforth, wherever we mention an error bound, we mean an
approximation of the error bound.

For resolving the problem of conservativeness, a similar approach to the one
in [182] but in a different norm realization is used. Specifically, the bound (6.13)
is adapted to the estimate

‖ey‖`2 ≤ κ
ey := ρ̄γeyew‖ew‖`2 + ρ̄γeyR‖Rs‖`2 , (6.23)

where ρ̄ is the so-called transition factor that provides a measure of the average
conservativeness of the bound (6.13). In particular, ρ̄ can be computed after
defining

ρ̄fi = max
n

√
n∑
j=1

∥∥∥ejy (µ∗i )
∥∥∥2

γeyew

√
n∑
j=1

‖eiw (µ∗i )‖
2

+ γeyR

√
n∑
j=1

(
Rjs (µ∗i )

)2
, (6.24)

where ey is the actual error computed in the offline phase for a parameter set
µ∗i as in (6.12). The parameter µ∗i is the parameter selected during the greedy
algorithm in the i-th stage of the greedy algorithm in offline phase, i = 1, · · · , N .
The denominator of (6.24) is motivated by (6.13).

There are two alternatives for calculating ρ̄. The first one is that we choose
the last entry of ρ̄f as the transition factor,

ρ̄ = ρ̄fN . (6.25)
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Algorithm 5: OFFLINE: Basis vector generation using POD-greedy

Input: Dh, µ0, ε
Output: Φ, ρ̄, γeyew , γeyR ∀µ ∈ Dh

1 Compute the required H∞-norms that appear in (6.13) for all µ ∈ Dh
2 Initialization: i = 1, µ∗1 = µ0,Φ = [ ], ρ̄ = [ ], κey (µ∗) = 2ε
3 while κey (µ∗) > ε do
4 Compute the truth solution by the parameter set µ∗i as in (6.5),

SFV

(
µ∗i

)
= {Un

(
µ∗i

)
}Ntn=0,

5 Ū
(
µ∗i

)
= SFV

(
µ∗i

)
− ΦΦTSFV

(
µ∗i

)
,

6 ϕi = POD(Ū
(
µ∗i

)
, 1) as in Algorithm 4,

7 Enrich reduced basis space, Φ = [Φ, ϕi], where ϕi is the first POD

mode of Ū
(
µ∗i

)
,

8 For all members (or the last entry) of µ∗, solve (6.9) to compute

SRB

(
µ∗i

)
= {Ûn

(
µ∗i

)
}Ntn=1,

9 Set ey

(
µ∗i

)
= Cy

(
SFV

(
µ∗i

)
− SRB

(
µ∗i

))
and compute the

denominator of (6.24) at each time instant,
10 Compute ρ̄f j as in (6.24) for j = 1, · · · , i,
11 Run the greedy algorithm for all µ ∈ Dh and find

µ∗i+1 = arg max
µ∈Dh

κey (µ), calculated by (6.23) (the error indicator

here, κey , can be replaced by the actual error or any other error
indicator),

12 i = i+ 1,

13 Compute the projected matrices of the reduced-order model.

The second one is

ρ̄ = max(ρ̄fi ), (6.26)

By embedding these transition factors into error estimates, the offline and online
algorithms in the reduced basis method are illustrated in Algorithms 5 and 6.
Other definitions of ρ̄f can be straightforwardly tested, such as computing (6.24)
only at the last time instant, which is a good option when the total error after
the simulation horizon is interesting for the user. In this study, the options in
(6.25) and (6.26) are tested. Obviously, using (6.26) leads to more conservative
error estimates than (6.25).

In the next section, the effectiveness of the proposed error bound and estimate
is tested in numerical case studies.
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Algorithm 6: ONLINE: Reduced basis solution by Galerkin projection

Input: µo for online simulation, the required H∞-norms for all µ ∈ Dh,
the reduced basis space Φ, ρ̄, projected matrices of the
reduced-order model.

Output: Û(µo), κey

1 Find µ̄o = arg min
µ∈Dh

‖µ− µo‖

2 Combine the projected matrices considering affine property of the
system (6.5) to obtain the low-order dynamics in (6.9),

3 for n = 1 : Nt, do
4 Compute the RB generalized coordinates, an(µo) based on the

reduced-order model (6.9),
5 Compute the RB solution Ûn(µo) via (6.7)
6 Compute the norm of the residual Rns as in (6.17),
7 Compute the error estimator via (6.23) by using γyu(µ̄o) and Rns ,
8 n = n+ 1,

Remark 6.12. To enable the computation of the reduced solution and the corre-
sponding error estimate, the following items should be stored in the offline phase
and used in the online phase:

• the parameter-independent operators obtained after the Galerkin projec-
tion, which are of the dimension of the reduced space,

• the `2-gains from different inputs to different outputs for all µ ∈ Dh.

The gains in the second item are scalar constants and require only little memory
to be stored.

6.5 Numerical case studies

In this section, first the PDE models are introduced and the associated adap-
tations are discussed. Then, the reduced basis solution with the classical and
the proposed ansatz (equations (6.6) and (6.7)) are compared. Finally, the error
bounds and estimates are applied on the discretized systems and the results are
compared.

6.5.1 Case studies

As mentioned earlier, two well-known examples of models of the form (6.1) are
an advection equation with a source term and the linearized isothermal Euler
equations, which are discussed below.
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6.5.1.1 Advection equation with a source term

We consider the following advection equation:
∂u

∂t
+ c

∂u

∂x
= u,

u(0, x;µ) = µ1,

u(t, 0;µ) = µ2(t),

t ∈ [0, T ], x ∈ [0, L], (6.27)

where u = u(t, x;µ) ∈ R is the scalar conservative variable (e.g. heat or pres-
sure), c is the transport velocity of the conservative variable (f(u) = cu, J = c, as
in (6.1)) and µ2(0) = µ1. To be able to numerically solve this equation, an initial
condition µ1 ∈ R (initial condition is constant over the spatial domain) and a
time-varying boundary condition µ2(t) ∈ R are defined. In this test case, x∂ = 0
as in (6.1) and we consider the varying parameters µ := (µ1, µ2, c, L) ∈ D ⊂ R4.
The other parameters in the system are fixed.

Within this test case, the boundary condition is just a function of time,
and no dynamics occur at the boundary. Therefore, the full-order model (6.5)
simplifies to:

Σlin :

{
Un+1 = A(µ)Un +B(µ)wn,

yn = CyU
n.

(6.28)

To take into account the time-varying boundary conditions, the vector UB in
(6.7) should be defined. For this test case, there is only one boundary condition
in the left side of the spatial domain at x∂ = 0, thus:

UB(UnBC) = UB(Un|x∂=0) = µ2(t)1, (6.29)

where 1 is a vector of ones of dimension Nδ. By doing so, the vector UB encodes
the boundary condition and therefore Û as in (6.7) correctly simulates the effects
of the boundary. Hence, no dynamics occur at the boundary conditions as the
boundary values are specified explicitly over time. Therefore, ΣBC is omitted
from (6.9) and this system reduces to

Σ̂lin :


an+1 = Âaa

n + B̂ŵn + Â∗BCµ
n
2 − B̂∗BCµn+1

2 ,

Ûn = 1µn2 + Φan,

ŷn = CyÛ
n,

(6.30)

where Â∗BC = ΦTA1 and B̂∗BC = ΦT1 are both in RN . Now, the dynamics
in (6.30) is completely independent of Nδ and offline-online decomposition is
achieved thanks to the linearity and affine property of the full-order model (6.28)
(Assumption 6.2). The error dynamics then is of the form (6.18) and the `2 error
bound reads as (6.19). Therefore, in Algorithm 5 for this test case, we only need
to calculate γeyR for all parameters within Dh (recall that the error dynamics
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(6.18) is parameter dependent). In addition, by the definition of UnB = 1µn2 ,
the terms in the dashed box in the residual calculation (6.17) can be computed
cheaply. For instance,

UnB
TATAΦ = µn2 1TATAΦ ∈ RN ,

is computed without being dependent on the size of the full-order system Nδ.
Therefore, the online residual calculation does not depend on the dimension of
the full-order model.

This test case can assess the quality of the `2 error bound by comparison
against the ISS-like bound (6.22). After promising performance of the approx-
imate error bound (6.19) on this test case, the more general approximate error
bound (6.13) is applied to the linearized isothermal Euler equations where the
effect of the local nonlinearities plays a crucial role.

6.5.1.2 Isothermal Euler equations

To mathematically describe a single-phase flow inside a pipe, the isothermal
Euler equations encompassing mass and momentum conservation laws are used
[66]. This system of PDEs is described as

∂ρ

∂t
+

∂

∂x
(ρv) = 0,

∂

∂t
(ρv) + c2l

∂ρ

∂x
= ρg sin θ − 32

ζ

d2

ρv

ρ0
,

(6.31)

where ρ = ρ(t, x;µ) and v = v(t, x;µ) are the density and velocity of the fluid,
respectively. Also, cl is the speed of sound in the liquid medium, ρ0 is the
reference density around which the equation of state of the fluid is linearized, g
is the gravitational acceleration, θ is the inclination of the pipe with respect to
the horizontal direction, ζ is the viscosity of the fluid and d is the diameter of
the pipe.

To compare it with (6.1), denote u = [ρ ρv]T , f = [ρv ρc2l ]
T and

S =

[
0 ρg sin θ − 32

ζ

d2

ρv

ρ0

]T
, J =

[
0 1
c2l 0

]
. (6.32)

Henceforth, wherever the Euler equations are mentioned, we refer to system
(6.31) unless otherwise noted.

Boundary conditions are selected to enable the simulation towards industrial
applications such as MPD [129] and pipeline networks [66]. In this regard, for
the left boundary conditions (at x∂ = 0), a liquid pump is assigned as

qp = Apvp, (6.33)



6.5 Numerical case studies 185

Figure 6.4: Pipe configuration for the Euler equations.

where qp is the volumetric flow rate of the pump, Ap is the discharge area of
the pump, and vp is the liquid velocity at the pump. For the right boundary
condition (at x∂ = L), a choke manifold is located which is governed by the
equation

qc = Kczc

√
2

ρc
(pc − patm), (6.34)

where qc,Kc, zc, ρc, pc and patm are the volumetric flow rate through the choke,
the choke constant, the choke opening, the density at the choke inlet at the
pipe side, the pressure at the choke inlet at the pipe side and the atmospheric
pressure, respectively. This test case can be visualized as in Figure 6.4 with
x∂ = {0, L}.

However, to numerically solve the coupled system (6.31), the values for both
ρ and ρv at each boundary are required while there is only one static relation
at each boundary. For instance, at the left boundary condition, by assigning
qp, we know v at the boundary and ρ is unknown. In order to resolve this issue
and render the dynamics at the boundary consistent with the internal dynamics,
the characteristic-based boundary equations as in [69], [71] are unified with the
static relations (6.33) and (6.34). These characteristic-based equations define G
in (6.5).

In this test case, µ := (ρ0, θ, cl, d, ν, q, L) ∈ D ⊂ R7. Other remaining pa-
rameters, such as Kc, are fixed from one simulation to another. Finally, for
numerical simulations, the initial condition of this system for any given param-
eter setting is the corresponding steady-state solution of the system. Then, by
changing the control inputs uc (qp and zc in this test case), the dynamics of the
system are excited.

To incorporate boundary conditions for the linear isothermal Euler equation
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(6.31), we take

UnB(ÛnBC) =

(
1− X

L

)
ÛnBC |x∂=0+

X

L
ÛnBC |x∂=L, (6.35)

where ÛnBC |x∂=0 and ÛnBC |x∂=L, respectively, are the left and the right boundary
values of the conservative variables (corresponding to UnBC in (6.5)) computed
by the solution of the reduced-order model and X ∈ RNδ is a vector containing
the location of the grid cells. The logic behind choosing a linear function for
incorporating the boundary conditions inside the domain originates from the
steady-state solution of (6.31). In steady state, momentum is constant along the
spatial domain, and due to the high value of the speed of sound, density varies
almost linearly with respect to the spatial domain (this can be seen numerically
in Section 6.5.2). In this way, the reduced basis approximation can capture the
steady-state solution with a better accuracy compared to the situation where the
classical ansatz (6.6) is used. Similar to the advection equation, by the definition
of UnB , the residual (6.17) can be calculated cheaply. To include the effect of UnB
in the reduced-order model and the detailed analysis for the error bound and
estimate, refer to Appendix E.

6.5.1.3 Parameters for the numerical experiments

The numerical results are divided into two parts. In the first part, the effect of
changing the ansatz is tested by comparing the use of (6.6) and (6.7) for both the
advection and the Euler equations. It is shown that the proposed ansatz (6.7)
with the interconnection shown in Figure 6.2 is capable of incorporating the time-
varying and nonlinear boundary conditions in the advection and Euler equations
while the reduced solution with the ansatz (6.6) generates discontinuity at the
boundary locations. The simulation speedups in the online phase compared to
the full-order solution are also reported without considering computations of the
residuals, the error bound and estimate; it means that in Algorithm 6, lines 1, 6
and 7 are not included in the cpu time. In the second part, the performance of
the error bound and estimate is analyzed. The error bound is compared with the
error bound introduced in [84] (denoted by HO in the figures). For the advection
equation, it is numerically confirmed, by comparing the results with the ISS-like
bound (6.22), that the proposed error bound is one of the sharpest possible error
bound on systems reaching steady state with constant inputs. This is due to
the fact that the H∞-norms of Σlin occur at zero frequency. Moreover, the error
estimate of [182] (denoted by Dual in the figures) is compared with the proposed
error estimate. In the following, the simulation parameters for both test cases
are introduced.
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Table 6.1: Variation range of the varying parameters in the advection equation.
parameter c [m/s] L [m] µBC µ1

minimum 50 100 1 0
maximum 100 200 5 2
Online µo 85 125 4 1.5

Advection equation with the source term

The simulation parameters for the advection equation (6.27) along with the
properties of the parameter domain are listed in Table 6.1, where the minimum
and maximum value for each parameter are specified. The discrete parameter
domain Dh is composed of 81 equidistant members in the parameter domain
D (each parameter contains three equally distributed values in its region. In
other words, Dh is a grid of 81 equidistant points in D.). In the last row of
Table 6.1, the set of parameters selected for the online simulation µo is reported,
which does not lie in the discrete parameter domain. The number of spatial
grid cells are Nδ = 500, the time horizon T is 10 s and time steps are changed
in a way such that at each simulation c∆t/∆x = 0.9 (this is the so-called CFL
number determining the stability of the full-order model [69]). For the boundary
conditions, we take

µ2(t) =


µ1, 0 ≤ t ≤ 2,
µBC , 2 < t ≤ 4,
0, 4 < t ≤ 6,
µBC

2
, 6 < t ≤ 10.

(6.36)

Linearized isothermal Euler equations

For the Euler equations (6.31), the test case is shown in Figure 6.4. The first
two rows of Table 6.2 indicate the range of variation of the varying parameters
and the third row shows the values used in the online phase, µo. The discrete
parameter domain Dh contains 128 members equally distributed in the param-
eter domain D (each parameter contains two equally distributed values in its
region). Fixed parameters for the Euler equations are listed in Table 6.3.

Table 6.2: Variation range of the varying parameters in the Euler equations.
parameter ρ0 [kg/m3] θ cl [m/s] d [m] ζ [Pa.s] q [m3/s] L [m]
minimum 800 60 1000 0.2 0.004 0.01 800
maximum 1200 90 1500 0.5 0.04 0.05 1200
Online µo 1000 72 1250 0.35 0.02 0.03 1000
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The full-order model contains 500 spatial grid cells, Nδ = 500, with the time
horizon T = 25 s and time steps chosen such that at each simulation the CFL
number is 0.99, i.e., cl∆t/∆x = 0.99. The the boundary conditions are taken as

qp(t) =

{
q 0 ≤ t ≤ 3

0.2q 3 < t ≤ 25
, zc(t) =

{
1 0 ≤ t ≤ 1

0.1 1 < t ≤ 25
. (6.37)

Finally, it should be mentioned that in the simulation related to the Euler
equations, the same number of basis vectors for density ρ and momentum ρv is
used.

6.5.2 Illustration of the proposed ansatz formulation

In this section, the effect of the ansatz modification on the correct implementa-
tion of the boundary conditions is investigated.

Advection equation with the source term

The result of the reduced basis method with and without changing the ansatz
at different time instants are compared in Figures 6.5 and 6.6. These figures
compare the results of (6.27) solved by the finite-volume method (denoted by
FV), the reduced basis method with the classical ansatz (6.6) (denoted by RB)
and the reduced basis method of (6.27) with the proposed ansatz (6.7) (denoted
by RB-ansatz) for a varying number of basis vectors, namely 10 and 30 basis
vectors, respectively. The space of basis vectors in this section is not enriched
with the initial conditions. As is apparent from the figures, the boundary con-
dition (at x∂ = 0) is not implemented correctly even by using 10 basis vectors
with ansatz (6.6). This can be visually confirmed in the figures by the mismatch
at the boundary at x∂ = 0. This mismatch is due to the fact that the number
of degrees of freedom to simultaneously satisfy the boundary conditions and the
internal domain is not sufficient. In other words, in this case, the reduced basis
compromises between the accuracy of the solution in the internal domain and
the correct implementation of the boundaries. However, for the reduced basis
with the ansatz (6.7), the boundary conditions are always implemented correctly,
regardless of the number of basis vectors.

Moreover, the initial condition is captured more accurately with the ansatz
(6.7). This means that the initial energy of the system is also captured better.
It should be noted that the drawback in capturing the initial condition in the

Table 6.3: Fixed parameters for the Euler equations.
parameter g [m/s2] patm [Pa] Kc

value 9.81 105 0.00285



6.5 Numerical case studies 189

0 50 100
0.8

1

1.2

1.4

1.6

1.8

0 50 100
0

2

4

6

8

10

0 50 100
0

5

10

15

20

0 50 100

0

2

4

6

Figure 6.5: Incorporation of the boundaries by using 10 basis vectors for the ad-
vection equation; comparison of the finite-volume (FV) solution and the reduced
basis method with (6.7) (RB-ansatz) and (6.6) (RB).

classical ansatz (6.6) can be resolved by enriching the space of the basis vectors
with the initial condition.

To compare the speedups in the online phase and the full-order solution, see
Table 6.4. As mentioned previously, computations of the error bound (estimate)
are not included in the speedup calculation. In the online phase, the state for
the entire domain is calculated to compare the solutions in the entire domain,
which scales with the degrees of freedom of the original model and decreases
the speedups. The other reason for the moderate speedups is the 1D type of
problems considered in this paper, where the expected speedups are modest.
The hyperbolicity of the advection equation can also be noted as another reason
for moderate speedups.

Linearized isothermal Euler equations

Analogously, the result of the reduced basis method with the ansatz (6.6) and
(6.7) at different time instants are compared in Figures 6.7 and 6.8 for the

Table 6.4: Speedup factors for the reduced basis method for the advection equa-
tion.

N 1 10 20 30 40 50
Speedup 16.8 8.2 7.9 6.2 5.5 5.3
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Figure 6.6: Incorporation of the boundaries by using 30 basis vectors for the ad-
vection equation; comparison of the finite-volume (FV) solution and the reduced
basis method with (6.7) (RB-ansatz) and (6.6) (RB).

linearized isothermal Euler equations. The velocity of the liquid v is depicted in
these figures when using 10 and 30 basis vectors.

Similar to the advection equation case study, the boundary condition treat-
ment is not perfect with the classical ansatz (6.6) as mismatches at the two
boundaries (at x∂ = 0 and x∂ = L) are present. Similar to the result for the ad-
vection equation, initial conditions, initial mass and initial energy of the system
are captured better with the ansatz (6.7) compared to the ansatz (6.6).

To compare the speedups, refer to Table 6.5.

The relatively modest speedup factors can be attributed to the fact that, at
each time step, a nonlinear function should be solved to compute the boundary
conditions both for the full-order and the reduced-order model, which domi-
nates the cpu time of both simulations. Similar to the advection equation, the
full state is reconstructed in the online phase to compare the solutions in the
entire domain, whose computation scales with the degrees of freedom of the orig-
inal model and reduces the speedup. Hyperlic nature of the Euler equations is
another reason of moderate speedup values.

Table 6.5: Speedup factors for the reduced basis method for the Euler equations.
N 1 10 20 30 40 50

Speedup 18.8 11.4 11.2 8.3 7.7 7.5
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Figure 6.7: Incorporation of the boundaries by using 10 basis vectors for the
Euler equations; comparison of the finite-volume (FV) solution and the reduced
basis method with (6.7) (RB-ansatz) and (6.6) (RB).
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Figure 6.8: Incorporation of the boundaries by using 30 basis vectors for the
Euler equations; comparison of the finite-volume (FV) solution and the reduced
basis method with (6.7) (RB-ansatz) and (6.6) (RB).

All in all, the ansatz (6.7) captures the effect of the boundary conditions
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better than the classical one (6.6), leading to a correct incorporation of the
control inputs at the boundaries.

6.5.3 Performance of the error bound and estimate

In this section, the proposed error bound and estimate are compared with the
actual error and also existing error bounds [84] and estimates [182] in the `2-
norm. First, the results are presented for the advection equation with source
term and, second, for the linearized isothermal Euler equations. The variables
that are shown in the figures of this section are computed as

Enact =
1√
n

√√√√ n∑
i=1

∥∥eiy∥∥2
, (6.38a)

EnH =
1√
n

(
γeyew

√√√√ n∑
i=1

‖eiw‖
2

+ γeyR

√√√√i=n∑
i=1

(Ris)
2

)
, (6.38b)

EnISS =
1√
n

√√√√ n∑
i=1

(κiISS)2, (6.38c)

where Eact, EH and EISS are the indicators used for the actual error, the pro-
posed error bound and ISS-like error bound. For the error bound and estimate
introduced in [84], [182] (HO and Dual in the following figures, respectively), a
similar approach to (6.38c) is followed to compute the variables shown in the
figures of this section; instead of κISS , the bound in those papers are used.

Advection equation with source term

In order to make a fair comparison between the proposed error bound in (6.19),
which is a bound on the output error ey, and the ISS-like bound in (6.22),
which is a bound on the state error e, all states are considered as the output,
i.e., Cy = INδ×Nδ where I is the identity matrix. To have a zero error at the
initial time and justify using the `2-gain notion (6.10), the space of basis vectors
is enriched by the modified initial conditions, which is computed similarly to
(6.8) with t = 0. The error bound comparisons are depicted in Figure 6.9.
Obviously, the ISS-like bound is always the sharpest bound. On the one hand,
the computation of the ISS-like bound is expensive due to the computation of
the norms in (6.22) at each time step. On the other hand, the bound (6.19) is
cheaper to compute as it calculates the H∞-norms only once and also it is closer
to the ISS-like bound compared to the HO bound after the initial transient. The
proposed bound, unlike the HO bound, remains bounded for increasing time.
Therefore, the proposed bound in this paper is one of the sharpest possible
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Figure 6.9: Comparison of the error bounds, Enact (‘Actual’), EH (‘H∞’), EISS
(‘ISS’) and ‘HO’, for the online parameter set; advection equation.

error bounds for steady-state certification. The jumps visible in Figures 6.9
and 6.10 in the error bounds and estimates are due to the fact that at these
time instants the boundary values change drastically and therefore the residual
changes significantly.

The comparison of the error estimates is depicted in Figure 6.10, revealing
that the estimate (6.23) is very close to the actual error by selecting either option
regarding ρ̄. In this figure, the option of ρ̄ as in (6.25) is shown by ’H∞-last’
and ρ̄ as in (6.26) is shown by ’H∞’. Clearly, both error estimates proposed
here outperform the one proposed in [182] in the `2-norm realization. Moreover,
’H∞-last’ provides a sharper estimate than ’H∞’ (as expected). However, it
was observed that sometimes the estimate ’H∞-last’ underestimates the actual
error. Nevertheless, it is always close to the actual error within a narrow band.
For ρ̄ as in (6.26), the error estimate never underestimated the actual error. It
should be noted that the dual error introduced in [182] may perform better in
other norms.

The dependency of the actual error and the error bounds and estimates as
a function of the number of basis vectors is shown in Figure 6.11, where ’`2’ is
the bound computed by (6.38b) at n = Nt. This figure compares the maximum
estimated error among the members in the discrete parameter domain during
the greedy algorithm. The proposed error estimate with ρ̄ as in (6.25) always
approximates the maximum error in the parameter domain with high accuracy
while the performance of the error estimate with ρ̄ as in (6.26) and the error
estimate in [182] are more conservative. Table 6.6 reports on the percentage
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Figure 6.10: Comparison of the error estimates, Enact (‘Actual’), ‘Dual’, ρ̄ × EH
(ρ̄ as in (6.26) denoted by ‘H∞’ and as in (6.25) denoted by ‘H∞-last’ for the
online parameter set; advection equation.
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Figure 6.11: Comparison of the maximum of error bounds and estimates com-
puted for all members of the parameter domain during the greedy algorithm;
advection equation.
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of the online calculation devoted to the calculation of the error estimate when
varying the number of basis vectors. This table numerically confirms that the
computational cost required for the online error bound computation is slightly
larger than the one for the computation of the reduced-order solution due to the
residual calculation. However, as shown before, the computations related to the
residual calculation are independent of the dimension of the full-order model Nδ.

Linearized isothermal Euler equations

For this test case, as we can only approximate the Lipschitz constant of the
nonlinear functions, no error bound is introduced. The detailed analysis of the
error estimation computation can be found in Appendix E. Here, the pressure at
the last grid cell, the grid cell before the choke manifold, is selected as the output.
The comparison of the error estimates with the actual error is presented in Figure
6.12. Moreover, Figure 6.13 compares the maximum estimated error among the
members of the discrete parameter domain during the greedy algorithm. Similar
to the advection equation, the error indicator in Algorithm 5 is controlled by
different approaches proposed and introduced in this paper. The proposed error
estimate in this paper works effectively and always predicts the error with a
good accuracy. Compared to the error estimate in [182], the estimation of the
actual error has improved significantly in the `2-norm. Although this estimate
is very effective, its applicability region is limited, which has been discussed at
the end of Appendix E of this paper. The percentage of the CPU time allocated
to calculate the error estimate in the online phase by varying N is listed in
Table 6.7. Similar to the advection equation, calculation of the residual takes a
significant percentage of the CPU time. The high ratio at the very low number
of basis vectors relates to the very fast solution of the reduced-order model while
the computation of the Lipschitz constants do not scale with the number of basis
vectors.

Table 6.6: Percentage of the CPU time allocated to the computation of the
error estimate during the online phase of the reduced-order model, the advection
equation.

N 1 10 20 30 40 50
ratio 44% 75% 74% 72% 71% 70%

Table 6.7: Percentage of the CPU time allocated to the computation of the
error estimate during the online phase of the reduced-order model, the Euler
equations.

N 1 10 20 30 40 50
ratio 82% 71% 70% 70% 69% 69%
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Figure 6.12: Comparison of the error estimates, Enact (‘Actual’), ‘Dual’, ρ̄ × EH
(ρ̄ as in (6.26) denoted by ‘H∞’ and as in (6.25) denoted by ‘H∞-last’ for the
online parameter set; Euler equations.
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Figure 6.13: Comparison of the maximum of error estimates computed for all
members of the parameter domain during the greedy algorithm; Euler equations.
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6.5.4 Discussion

To conclude, as apparent from the results presented in this section, the ansatz
(6.7) is capable of incorporating the boundary conditions effectively, both for
the advection and the Euler equations. In addition, the proposed error bound
(6.19) is very close to the ISS-like bound (6.22) in the advection equation and
significantly computationally more attractive than the ISS-like bound (6.22).
Finally, the computationally efficient error estimate (6.23) is sharp and able to
predict the actual error with a reasonable accuracy.

6.6 Conclusion and future work

In this paper, the reduced basis method is applied to systems with time-varying
and nonlinear boundary conditions. By changing the ansatz of the reduced basis,
these types of boundary conditions are handled properly while mismatches and
discontinuities are observed at the boundaries with the classical ansatz.

Moreover, a new residual-based error bound and estimate are proposed.
Given the accessible information in the reduced basis context (the spatial two-
norm of the residual at each time instant), this error bound is sharp in steady-
state for a special class of systems; systems for which inputs are constant. To
mitigate the conservativeness of the error bound, an accurate error estimate
is introduced. The error estimate outperforms the existing error estimates in
`2-norm realization.

For future work, the application of the approach on real applications such as
a managed pressure drilling systems will be investigated. The interconnection
approach of handling local nonlinearities at the boundaries will be extended to
local nonlinearities inside the domain. The extension of the error bound and
estimate for nonlinear systems is also being investigated.





Chapter 7

Error estimates for model order reduction
of Burgers’ equation

Burgers’ equation is a nonlinear scalar partial differential equation, commonly
used as a testbed for model order reduction techniques and error estimates. Model
order reduction of the parameterized Burgers’ equation is commonly done by us-
ing the reduced basis method. In this method, an error estimate plays a crucial
rule in both accelerating the offline phase and quantifying the error induced after
reduction in the online phase. In this study, we introduce two new estimates for
this reduction error. The first error estimate is based on a Lur’e-type model for-
mulation of the system obtained after the full-discretization of Burgers’ equation.
The second error estimate is built upon snapshots generated in the offline phase
of the reduced basis method. The second error estimate is applicable to a wider
range of systems compared to the first error estimate. Results reveal that when
conditions for the error estimates are satisfied, the error estimates are accurate
and work efficiently in terms of computational effort.

7.1 Introduction

Model order reduction of high-fidelity models is a necessary tool for enabling
real-time simulation and controller design. These high-fidelity models are often
the result of the discretization of Partial Differential Equations (PDEs) governing
the physical phenomena. One way to reduce these models is the Reduced Basis
(RB) method [84], consisting of decomposed offline and online phases. In the

This chapter is based on “M.H. Abbasi, L.Iapichino, B. Besselink, W.H.A.Schilders, N.van
de Wouw, Error estimates for model order reduction of Burgers’ equation, IFAC World
Congress, Berlin, July 2020”.
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offline phase of the RB method, RB functions for approximating the solution are
generated. This phase contains computations whose complexity scale with the
degrees of freedom of the original system, thus it is computationally expensive.
In the online phase, the solution is approximated by a linear combination of the
RB functions. The computations in this phase scale with the number of RB
functions generated in the offline phase, which renders obtaining the solution
of the reduced model computationally efficient. However, replacing a model
with its reduced version leads to an error between the solution of the full-order
model and the reduced one. To ensure the accuracy of the reduced solution, an
error bound or estimate should be provided. In the RB context, the benefits of
having such an error bound or estimate are twofold. First, an error bound (or
estimate) in the RB technique can be used to accelerate the offline phase during
the greedy algorithm [9]. Second, it certifies the accuracy of the solution that
is obtained during the online phase. Therefore, developing a sharp error bound
(or an accurate error estimate) is crucial within this approach.

To build an efficient yet accurate reduced-order model by the RB method
and decompose the offline and online phases, nonlinear problems are hyper-
reduced by using the Empirical Interpolation Method (EIM) [17] or its discrete
counterpart, the Discrete Empirical Interpolation Method (DEIM) [44], com-
bined afterwards with the RB method itself. EIM and DEIM require additional
basis functions (called collateral basis functions) to approximate the nonlinear
functions and these collateral basis functions are usually generated in the of-
fline phase before the generation of the RB functions, which makes the offline
phase even more expensive. To reduce the computation time, the collateral ba-
sis functions can be generated in parallel to the RB functions. To synchronize
the RB function generation and the collateral basis function generation, various
algorithms have been introduced; e.g. the PODEI algorithm by [63]. The in-
accurate approximation of the nonlinear functions also plays a role in the final
error induced by reduction, which has to be taken into account when building
error estimates. To generate both collateral basis functions and RB functions,
the solution snapshots of the full-order system of equations should be available.

In this paper, we focus on a hyperbolic PDE, Burgers’ equation. Hyperbolic
systems are commonly solved by Finite-Volume (FV) techniques that lead to
state-space models of high order. The work on error bounds (or estimates) in
the RB community for hyperbolic systems is still in the evolutionary stage, see
[9], [84], [182] for some works. Methods introduced in these works are typi-
cally tailored to linear systems and not efficient if applied to nonlinear systems.
Moreover, most of these techniques (except the method by [9]) utilize the norm
of the state matrix of the discretized system. If the state matrix has a large
norm (larger than one), these error bounds (estimates) are not valid and grow
exponentially over time. The method introduced by [9] (which also works well
if applied to systems with local nonlinearities) circumvents this issue by using
the `2-norm of the system with respect to its inputs and outputs, as similarly
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done in the balanced truncation method by [28], [29], [129]. In general, theoret-
ical error estimates for nonlinear systems are lacking in the RB literature. In
this paper, we aim to extend the methodology introduced in [9] from systems
with local nonlinearities to systems with distributed nonlinearities. However,
the error estimate of [9] cannot be efficiently used when strong nonlinearities
(nonlinearities with high Lipschitz constant) are present in the system.

Therefore, in addition to the error estimate based on the `2-gain notion,
an empirical error estimate is also introduced in this paper. This estimate is
based on the snapshots generated in the offline phase of the RB method. This
estimate does not suffer from restrictions of the previous error estimate. Most
importantly, it does not require the residual calculation and it is tailored in a way
that its computation is efficient, similar to the computation of the reduced-order
solution.

The structure of this paper is as follows. In Section 7.2, Burgers’ equation
together with its discretization, which leads to the full-order model, is intro-
duced. In Section 7.3, the model-order reduction approach used to obtain the
reduced-order model is elaborated. In Section 7.4, the two error estimates for the
nonlinear reduced-order model are discussed. In Section 7.5, numerical results
are presented. Finally, Section 7.6 concludes the paper.

7.2 Burgers’ equation

One of the simplest and yet fundamental nonlinear equations describing a conser-
vative system is Burgers’ equation, which is sometimes referred to as the scalar
version of the Navier-Stokes equations ([136]). This equation is defined as

∂u

∂t
+

∂

∂x
(f(u)) = 0, t ∈ [0, T ], x ∈ [0, L], (7.1)

where u := u(t, x;µ) is the conservative variable and f(u) = u2/2 is the flux
function associated with Burgers’ equation. Here, t represents time and T is the
time horizon of the simulation. In addition, x denotes the spatial coordinate and
L is the length of the spatial domain. Finally, µ ∈ D is a vector of parameters
used in (7.1) that varies in a multi-query analysis within the parameter domain
D ∈ RR, with R the number of varying parameters. We assume that the initial
condition and boundary condition are represented by these varying parameters.
For the initial condition, we assume u(0, x;µ) = µ1, which is constant over the
spatial domain. For the boundary condition at x = 0, we assume

u(t, 0;µ) =

{
µ1, t = 0,

µ2, t > 0.
(7.2)

Therefore, in this study, we have µ = [µ1, µ2].
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Discretizing (7.1) with the Lax-Friedrichs scheme (see [73], [110]) leads to

Un+1 = LlinU
n +BUn0 −

∆t

4∆x
Lnl(U

n)2 +
∆t

2∆x
B(Un0 )2, (7.3)

whereUn := [Un1 , · · · , UnN ]T ∈ RN is the vector containing Uni , the average of the
conservative variable u over the i-th grid cell at the time instant tn := n∆t, n =
{0, · · · , Nt} with Nt number of time steps. Here, ∆t and ∆x refer to the temporal
and spatial discretization intervals over time and space, respectively. The spatial
discretization consists of cells (xi−1/2, xi+1/2), i = 1, · · · ,N , with the length of
∆x centered at xi = xi−1/2 + ∆x/2 and N spatial grid cells. Furthermore,
Llin, Lnl ∈ RN×N are the operators acting on the linear and nonlinear part of
the system that emerge after applying the full-discretization. Also, Un0 ∈ R
is the value of the conservative variable at the boundary x = 0 acting as the
input into the system defined according to (7.2) and B ∈ RN is the input
matrix corresponding to the boundary input. Moreover, the square operator
(·)2 in (7.3) is interpreted element-wise. The nonlinearity associated with this
equation is g(U) = (U)2, where g(·) is a nonlinear operator. Then, system
(7.3) is equivalent to the system Σ depicted in the left side of Figure 7.1, which
comprises a linear subsystem Σlin and nonlinear subsystem Σnl given by

Σlin :



Un+1 =LlinU
n +BUn0 −

∆t

4∆x
LnlU

n
nl

+
∆t

2∆x
B(Un0 )2,

yn =CyU
n,

zn =Un,
Σnl : Un

nl = g(zn) = (zn)2.

(7.4)

Here, y ∈ Rw is the output of interest of the system (for instance, y can be the
value of the conservative variable at the right-end of the spatial domain with w =
1) and Cy ∈ Rw×N is the corresponding output matrix. This full-order model
has large dimension (i.e., N is large). Therefore, real-time simulations cannot be
achieved unless powerful computational resources are at the disposal. Moreover,
control design for such a complex system is generally infeasible. Hence, model
order reduction should be applied to (7.4), which is the topic of the next section.
The following assumption will be used throughout the paper.

Assumption 7.1. The system matrix Llin is Schur for all µ ∈ D, i.e., Σlin in
(7.4) is internally asymptotically stable.

7.3 Model reduction

This section subsequently discusses the RB method, (D)EIM, and their combi-
nation, leading to a method for hyper-reduction of the nonlinear system (7.4).
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Figure 7.1: Left: The schematic representation of the the interconnection be-
tween the linear dynamics and the static nonlinearity. Right: The schematic
representation of the interconnection between the reduced linear subsystem (ob-
tained by the RB method) and the reduced nonlinear function (number of non-
linear equations is reduced by (D)EIM).

7.3.1 Reduced basis method

A powerful method for dimension reduction of a parameter-dependent dynam-
ical system is the RB method. In the RB method, the system of equations is
projected into a low dimensional space spanned by the solutions of the full-order
model for specific members of the parameter domain.

As discussed in [9], handling time-varying boundary conditions within the
RB method is vital as the (time-varying) control inputs commonly act at the
boundaries. Tailoring the method in [9] to our case study, we introduce the RB
ansatz

Ûn(µ) = Un0 (µ)1 + Φan, (7.5)

where Ûn ∈ RN is the solution of the reduced-order model, and 1 ∈ RN is a
vector of ones that enables the RB solution Ûn(µ) to satisfy the boundary condi-
tion (7.2) at all time instants. Then, the RB functions Φ ∈ RN×N should vanish
at the location of the specified boundary condition (i.e., Φ|x=0= 0,), where N is
the number of RB functions. Here, an ∈ RN is the modal coordinate associated
with the RB functions, which is the state of the reduced-order model. To gen-
erate the RB functions Φ vanishing at the location of the specified boundary,
we modify the snapshots during the greedy algorithm for a selected parameter
µ∗ and then apply the Proper Orthogonal Decomposition (POD) ([89]) on these
modified snapshots (see Algorithm 7), defined as

Ûn,∗(µ∗) = Ûn(µ∗)− Un0 (µ∗)1,

Û∗(µ∗) = {Ûn,∗(µ∗)}, ∀ n = {0, · · · , Nt}.
(7.6)

Finally, “POD(Û∗(µ∗), 1)” obtained from Algorithm 7 yields an RB function.
For more details, we refer to [9].
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7.3.2 Empirical interpolation method

To handle the nonlinearities in (7.4), EIM is applied as in [17]. By using this
method, a nonlinear function is replaced by a linear interpolation of collateral
basis functions (basis functions generated by the EIM/DEIM), which are ob-
tained during the offline phase. In the online phase, the coefficients for the
linear interpolation of the collateral basis functions are chosen such that this
interpolation becomes exact at some pre-selected points, the so-called interpo-
lation points, along the spatial domain. The effect of the nonlinear function is
then fed back into the linear system via the feedback interconnection as shown
in the right side of Figure 7.1.

After applying EIM, the nonlinear function in (7.4) is approximated by a
linear interpolation

(Un)2 ≈ qnlθnnl, (7.7)

where qnl ∈ RN×M is the matrix of collateral basis functions and θnl ∈ RM are
the unknown coefficients of the collateral basis functions, to be calculated online.
The collateral basis functions qnl are obtained by applying POD (Algorithm 7)
on the snapshots of the nonlinearities g(zn) for specific members of the parameter
domain during the offline phase. The coefficients θnl in (7.7) are obtained during
the online phase such that the interpolation is exact at M pre-selected points
Xm = {x1, · · ·xM} where xi ∈ R is the grid-cell number of the interpolation
point selected at the i-th iteration (the selection procedure of such points is
introduced later in Algorithm 8). Specifically, let P = [ex1 , · · · exM ] ∈ RN×M
where ei is the i-th column of the identity matrix (of dimension N × N ). For
the points Xm, we have

(PTUn)2 = PT qnlθ
n
nl, (7.8)

stating that the interpolation is exact at Xm if PT qnl is non-singular (θnnl can
then be computed from (7.8)). After approximating the nonlinearities in (7.4)
with linear interpolation of the collateral basis functions, we can apply a Galerkin
projection ([84]) to the system of equations, as explained in the next section.

Algorithm 7: POD algorithm, POD(U , nPOD)

Input: Snapshots U(µ) ∈ RN×Nt , number of basis vectors nPOD

Output: φ ∈ RN×nPOD

1 Perform a Singular Value Decomposition on the snapshots,
U = USVDSV

2 φ = USVD(:, 1 : nPOD) is the first nPOD vectors of the left singular
vectors USVD.
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7.3.3 RB-EIM combination

After applying EIM to the nonlinear parts of the dynamics, all the operators
involved in the full-order model become linear and therefore the system can be
efficiently projected onto a lower-dimensional subspace spanned by Φ. Substi-
tuting the ansatz (7.5) and the EIM approximation (7.7) in (7.4), applying a
Galerkin projection on the resulting system and taking into account the orthog-
onality of the basis functions Φ, we obtain the reduced-order model

Σ̂lin :



an+1 =L̂lina
n + (B̂ + L̂BC)Un0 −

∆t

4∆x
L̂nlθ

n
nl

+
∆t

2∆x
B̂(Un0 )2 − Φ1U

n+1
0 ,

ŷn =Un0 Cy1 + CyΦan,

znm =Un0 P
T1 + PTΦan,

Σ̂nl :

{
Un
nl = g(znm) = (znm)2,

θnnl = (PT qnl)
−1Un

nl,

(7.9)

where ŷ is an approximation of y and L̂lin = ΦTLlinΦ, L̂nl = ΦTLlinqnl, B̂ =
ΦTB, L̂BC = ΦTLlin1, and Φ1 = ΦT1. Finally, znm is the value of the reduced
solution at the pre-selected pointsXm. None of the computations in (7.9) scales
with the actual degrees of freedom N and therefore the model is in a reduced
form. It should be noted that the boundary-related terms in (7.9) (such as
Un0 P

T1) are due to the ansatz used in (7.5) and the segregation of the boundary
condition from the solution. In this work, to synchronize the generation of the
RB functions Φ and the collateral basis functions qnl, the PODEI algorithm
in [63] is used, which is mentioned in Algorithm 8 together with the greedy
algorithm and the selection of the interpolation points. Now, the reduced-order
model is available and the error estimates can be introduced.

7.4 Error estimates

In this section, we introduce two types of error estimates. In the first one, we
build the error dynamics and propose an estimate based on the `2-gain notion.
In the second one, we use the solutions of the full-order model generated in the
offline phase to obtain an empirical error estimate.

7.4.1 Error estimate based on the `2-gain notion

As shown in (7.9), the interconnection of the RB method and EIM can be rep-
resented as a Lur’e-type system as shown in the right side of Figure 7.1. The
error estimate introduced here relies on the notion of small-gain condition of the
error dynamics ([28]), to be introduced here. If this condition is not satisfied,
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Algorithm 8: PODEI-Greedy algorithm

Input: Dh(discretized version ofD), N,µ1 ∈ Dh
Output: Φ, qnl,Xm, Bnl

1 Set Φ = {}, qnl = {},Xm = {}, Bnl = 1,
2 for k=1 to N-1 do
3 Solve (7.4) for µk to obtain U = [U0, · · · ,UNt ] and

Unl = [U0
nl, · · · ,U

Nt
nl ]

4 Generate U∗ = U − [U0
0 , · · · , U

Nt
0 ]1 and

Ūnl = Unl − qnlB−1
nl Unl(Xm, :)

5 Set Ū = U∗ − ΦΦTU∗

6 Φ← orth
{

Φ ∪ POD(Ū , 1)
}

and qPOD = POD(Ūnl, 1)

7 σM = (qnl(Xm, :))
−1
qPOD(Xm)

8 rd = qPOD − qnlσM
9 Xm ← {Xm ∪ arg max(rd)},

10 qnl ← {qnl ∪ rd
max rd

}, Bnl = qnl(Xm, :)

11 Based on Φ and qnl, perform the error estimates to find the worst

approximated solution and find µk+1 and e(µk+1)
12 if e(µk+1) > e(µk) then
13 qnl = qnl(:, 1 : end− 1), Xm = Xm(1 : end− 1),

Bnl = qnl(Xm, :)

the error estimate presented here cannot be used. To enable cheap computation
of the residual, the following assumption is used.

Assumption 7.2 ([63]). We assume the exactness of the EIM approximation
for a certain number of collateral RB functions; i.e., there exists a positive in-
teger M∗ > M with the set of enriched collateral basis functions by q∗nl and the
corresponding coefficients by θ∗nl

n, such that

(Ûn(µ))2 = q∗nlθ
∗
nl
n(µ) ∀n = 1, · · · , Nt, and µ ∈ D. (7.10)

Claim 7.3. Let Un be obtained from (7.4) and Ûn be obtained from (7.9) and
(7.5) with n = 1, · · · , Nt under the same initial condition and the same boundary
input Un0 . We define the residual Rn by inserting the RB solution Ûn into (7.4)
as follows:

Rn =Ûn+1 −
(
LlinÛ

n +BUn0 −
∆t

4∆x
Lnlg(Ûn)

+
∆t

2∆x
B(Un0 )2

)
.

(7.11)
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We assume the Lipschitz continuity Lg for the nonlinear function eng = g(en),

i.e.,
∥∥∥eng ∥∥∥ ≤ Lg ∥∥en∥∥ . An estimate of the error bound of ‖ey‖`2 with ey := y− ŷ

is given by ∥∥ey∥∥`2 ≤ κ(µ)‖R‖`2

with κ(µ) := γeyR +
γeyegLgγ

eR

1− Lgγeeg
,

(7.12)

with ‖(·)‖`2 :=

√
∞∑
n=0
‖(·)‖2 and γyu denoting the `2-norm of the system from

input u to the output y.

Derivation: To define the error estimate, the error dynamics is defined by sub-
tracting (7.11) from the full-order model (7.3)

en+1 = Lline
n − ∆t

4∆x
Lnl((U

n)2 − (Ûn)2)−Rn, (7.13)

with e := U − Û . By denoting (Un)2− (Ûn)2 as eng and rewriting the dynamics
in the feedback interconnected form, we obtain the error system Σe with its
linear and nonlinear subsystems given as follows:

Σelin :


en+1 = Lline

n +
∆t

4∆x
Lnle

n
g −Rn,

eny = Cye
n,

enz = en,

Σenl : eng = f(Û , ez) = g(ez + Û)− g(Û).

(7.14)

This feedback interconnection is depicted in Figure 7.2. Notably, the relation
in Σenl holds regardless of using EIM as we have already lifted the solution to
the full-order space. The effect of inaccurate approximation of the nonlinearities
plays a role in the residual calculation, which is explained later in this section.

In the online phase, however, we do not have access to the values for (Un)2

since the actual solution is not known. Therefore, an estimation of the output
should be defined as we cannot simulate these error dynamics in a computation-
ally efficient manner.

Following the idea introduced by [9] for linear systems and assuming Σlin is
asymptotically stable (Assumption 7.1), an error bound on the `2-norm of the
error signal can be computed as follows:∥∥ey∥∥`2 ≤ γeyR‖R‖`2 + γeyeg

∥∥eg∥∥`2 . (7.15)

This `2-norm is equal to the H∞-norm of the linear system (7.14) with respect
to the same input and output ([101]). Apart from the gains, in order to compute



208 Chapter 7. Reduced Basis Method for Nonlinear Systems

Figure 7.2: The schematic representation of the feedback interconnection for the
error dynamics.

this error bound, both ‖Rn‖ and
∥∥∥eng∥∥∥ should be computed in a computationally

efficient manner.
To compute the norm of the residual, we decompose the residual into a linear
and a nonlinear part as below:

Rn = Rnlin +Rnnl, (7.16)

where

Rnlin = Ûn+1 −
(
LlinÛ

n +BUn0 −
∆t

4∆x
Lnlqnlθ

n
nl

+
∆t

2∆x
B(Un0 )2

)
,

Rnnl = − ∆t

4∆x
Lnl(qnlθ

n
nl − (Ûn)2).

(7.17)

In computing the two-norm of the residual Rn, it is necessary to compute Rnnl,
which is time-consuming due to the presence of the nonlinear term (Ûn)2. To
avoid this computational issue, following the idea presented by [63], this term is
calculated empirically by using Assumption 7.2. This assumption requires the
reduced-order problem to be solved once more with an enriched set of collateral
basis functions. Employing this assumption in the equation governing Rnnl leads
to

Rnnl = − ∆t

4∆x
Lnl(qnlθ

n
nl − q∗nlθ∗nl

n). (7.18)

The other required quantity for calculating the error estimate via (7.15) is∥∥eg∥∥`2 . As eng := en represents the error in approximating the nonlinear
function, we have ∥∥∥eng ∥∥∥ ≤ Lg ∥∥en∥∥ , (7.19)
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where Lg is an approximation of the local Lipschitz constant of the nonlinear
operator g. The inequality (7.19) implies∥∥eg∥∥`2 ≤ Lg ‖e‖`2 . (7.20)

Similar to (7.15), we have

‖e‖`2 ≤ γ
eR‖R‖`2 + γeeg

∥∥eg∥∥`2 . (7.21)

Combining (7.20) and (7.21), and assuming that the small-gain condition
Lgγ

eeg < 1 holds, leads to

‖e‖`2 ≤
γeR

1− Lgγeeg
‖R‖`2 . (7.22)

Finally, the use of this result in (7.15) gives (7.12). �

Remark 7.4. Exact satisfaction of Assumption 7.2 requires M∗ = N , which
renders the error estimate expensive. In the results presented in this paper, we
set M∗ = M + 1. Therefore, ‖Rn‖ is computed cheaply and the `2-norm can be
calculated.

Remark 7.5. To compute RnTRn, some operators such as ΦTLlinLnlqnl
∈ RN×M should be pre-computed during the offline phase and stored for us-
age during the online phase. Now, the two-norms of Rn can be computed with
computations that scale at most with the dimension of q∗nl or Φ, which is still
much lower than the number of actual degrees of freedom of the high-fidelity
scheme. For the details of residual calculation, we refer to [9]. Using Remark
7.4 instead of M∗ = N renders the bound (7.12) to be an error estimate, not an
actual error bound.

Remark 7.6. As the nonlinear operator for Burgers’ equation g(U) = (U)2 is
not globally Lipschitz, we have to restrict the solution domain to be able to define
a finite Lg. Note that the inequality (7.19) holds only locally as the value of Lg
depends on the magnitude of U , which restricts the range of U in the simulations.
Assuming enz := en to be small and estimating the Lipschitz constant by the
derivative of the nonlinear function Lg = 2 max

i,n
Uni reveals that

max
i,n

Uni <
1

2γeeg
, (7.23)

ensures that the small-gain condition in (7.14) is satisfied.

To enlarge and shift the applicability region, a loop transformation can be
pursued as follows.
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Figure 7.3: The schematic representation of the feedback interconnection within
the error dynamics after loop transformation.

7.4.1.1 Loop transformation

The range of the applicability of the small-gain condition can be enlarged by
using a so-called loop transformation (see [101]). In this section, we aim to
apply this transformation to the feedback interconnection in (7.14) induced by
the EIM and RB methods.

The loop transformation changes the interconnection in Figure 7.2 to Figure
7.3. The error dynamics after the loop transformation can be written as

Σe,εlin :


en+1 = (Llin − ε

∆t

4∆x
Lnl)e

n +
∆t

4∆x
Lnle

n
g −Rn,

eny = Cye
n,

enz = en,

Σe,εnl : eng = g(ez + Û)− g(Û) + εez.

(7.24)

It should be noted that Σe in (7.14) and (7.24) are exactly the same. The
constant ε should be defined such that it minimizes the product Lgγ

eeg and
therefore enlarges the applicability region while also reducing the conservatism in
the small-gain condition and the estimate (7.12). For the parameterized system
(7.24), the following minimization problem is solved to obtain ε,

ε = arg min
ε

(∑
i

(
max

(
|2U(µi) + ε|

)
× γezeg (µi)

))

s.t. ∀µi ∈ Dh

 ρ(Llin − ε
∆t

4∆x
Lnl) < 1

max(|2U(µi) + ε|)× γezeg (µi) < 1

(7.25)

where ρ(·) is the spectral radius of a matrix and Dh is the discrete version of the
varying parameter domain D. For the test case under study, we have designed



7.4 Error estimates 211

the experiments such that

min(µ1, µ2) ≤ Un(µi) ≤ max(µ1, µ2). (7.26)

The constraints in the minimization problem (7.25) ensure that for each parame-
ter setting, first, the linear part of the error dynamics Σe,εlin is stable, and second,
the interconnection of the linear subsystem Σe,εlin and the nonlinear subsystem
Σe,εnl is also stable. In order to render the computations tractable, we terminate
the minimization problem as soon as the constraints are satisfied.

Due to the fact that the nonlinear part of the system is not globally Lipschitz,
a restriction on the region of the solution still holds after determining ε. In other
words, to satisfy the small-gain condition, for all members of the parameter
domain, we require (based on the second constraint in (7.25))

− 1

2γezeg (µ)
− 1

2
ε < u(x, t;µ) <

1

2γezeg (µ)
− 1

2
ε. (7.27)

Therefore, the parameters, boundary conditions and initial conditions should
be chosen in a way that the satisfaction of (7.27) would be possible. Based on
the knowledge of the dependence of the `2-gains on ε and the variation of initial
and boundary conditions, one can a priori have an insight whether this condition
can be satisfied or not.

However, the error estimate (7.12), even with this loop transformation,
can lead to conservative results. To alleviate the conservativeness, we tighten
(sharpen) the error estimate as below.

7.4.1.2 Sharpening the error estimate

To resolve the problems of expensive calculation of the `2-gain of the system and
conservativeness of the error estimate, we follow [9]. The main idea is that in
the offline phase, the average of the conservatism of the error estimate is known
and we can sharpen the error estimate in the online phase according to the
experience in the offline phase. To do so, the error gain κ in (7.12) is multiplied
by a reduction factor to obtain

κey (µ) = ρ̄κ(µ), (7.28)

where κey‖R‖`2 is an estimate of ‖ey‖l2 , which is calculated based on κ in (7.12).

To define ρ̄, we first introduce the variable ρ̄fi as a measure of the conservatism

ρ̄fi =

∥∥ey(µ∗,i)
∥∥
`2(

γeyR +
γ
eyegLgγeR

1−Lgγeeg

)
‖R(µ∗,i)‖`2

, (7.29)

where ey is the actual error computed in the offline phase for a parameter set
µ∗,i selected at the i-th stage of the greedy algorithm in the offline phase. The
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denominator of (7.29) is motivated by (7.12). Then, ρ̄ is defined as

ρ̄ = max
i

(ρ̄fi ). (7.30)

In Section 7.5, the performance of the error estimate is investigated numerically.
For the detailed algorithm of this error estimate, we refer to [9], where it is
limited to systems without distributed nonlinearities.

7.4.2 Empirical error estimate

The underlying idea for the empirical error estimate is similar to the idea used
for finding the contributed error from EIM ([63]) and the idea presented by [85].

Claim 7.7. In the offline phase, we enrich RB functions from dimension N to
dimension N ′ and the collateral basis functions from dimension M to dimension
M ′ such that, based on the snapshots of previously selected parameters during

the greedy algorithm, the following relation holds with ηN
′,M ′

N,M < 1:

‖y − ŷN ′,M ′‖`2 ≤ η
N ′,M ′

N,M ‖y − ŷN,M‖`2 , (7.31)

where y is the actual output computed from (7.4) and ŷN,M is obtained from
(7.9) with N RB functions and M collateral basis functions. An output error
estimate can be defined as

‖y − ŷN,M‖`2 ≤
ζN
′,M ′

N,M

1− ηN ′,M ′N,M

, (7.32)

with

ζN
′,M ′

N,M = ‖ŷN ′,M ′ − ŷN,M‖`2 . (7.33)

Derivation: To increase the accuracy in the offline phase, based on the snap-
shots of the current selected parameter µ∗,i in the i-th iteration of the greedy
algorithm, we enrich Φ and qnl step by step. During the greedy algorithm, we

increase N ′ and M ′ until ηN
′,M ′

N,M in (7.31) becomes smaller than 1 for all param-
eters whose corresponding full-solution is available. Therefore, for any (N,M),

we can find (N ′,M ′) such that ηN
′,M ′

N,M < 1. This condition bears similarities
with the small-gain condition introduced in the first error estimate in this pa-
per. Now, in the offline phase, corresponding to each (N,M), a pair of (N ′,M ′)

and the value of ηN
′,M ′

N,M are known.
In the online phase, two reduced solutions with (N,M) and (N ′,M ′) basis

functions should be solved. After obtaining these two computationally cheap
solutions, we set

ζN
′,M ′

N,M = ‖ŷN ′,M ′ − ŷN,M‖`2 . (7.34)
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Algorithm 9: Empirical error estimate

Input: qnl,Φ,Xm, parameters selected in the previous greedy iteration
µ∗ and their corresponding full solutions

Output: N ′,M ′, ηN
′,M ′

N,M

1 Set N ′ = N and M ′ = M ,
2 Based on the recently selected parameters, enrich Φ(N ′ = N ′ + 1) and

qnl,Xm(M ′ = M ′ + 1)
3 compute ηN

′,M ′ = ‖y − ŷN ′,M ′‖`2 and ηN,M = ‖y − ŷN,M‖`2 for all
members of µ∗,

4 Set η = max
(
ηN
′,M′

ηN,M

)
5 if η < 1 then

6 ηN
′,M ′

N,M = η

7 else
8 Go back to step 2

Then, based on the following inequality

‖y − ŷN,M‖`2 ≤ ‖y − ŷN ′,M ′‖`2 + ‖ŷN ′,M ′ − ŷN,M‖`2 , (7.35)

and taking into consideration from the offline phase that ‖y − ŷN ′,M ′‖`2 ≤
ηN
′,M ′

N,M ‖y − ŷN,M‖`2 , we finally obtain

‖y − ŷN,M‖`2 ≤
ζN
′,M ′

N,M

1− ηN ′,M ′N,M

. (7.36)

The reason for having ηN
′,M ′

N,M < 1 shows itself here to have finite and positive
error estimate. �

For the implementation of this error estimate, refer to Algorithm 9.

7.5 Numerical results

The simulation parameters in the online phase µo for Burgers’ equation along
with the parameter domain are listed in Table 7.1, where the minimum and
maximum value for each parameter are specified. The discrete parameter domain
is composed of 8 equidistant members in the parameter domain. In the last row of
Table 7.1, the set of parameters selected for the online simulation µo is reported,
which does not lie in the discrete parameter domain. This kind of parameter
setting ensures that 4 ≤ u(t, x;µ) ≤ 7 for all (t, x) ∈ [0, T ]× [0, L]. The number
of spatial grid cells is N = 250, the time horizon T is 50 s and time step is
∆t = 0.01 s. The output is the value of the conservative variable at x = L.



214 Chapter 7. Reduced Basis Method for Nonlinear Systems

Table 7.1: Test case parameter range for Burgers’ equation.
parameter L [m] µ1 µ2

minimum 100 4 6
maximum 110 5 7
Online µo 105 4.5 6.5

1 5 10 15 20
10-3

10-2

10-1

100

101

102

103

Figure 7.4: Maximum error in the discrete parameter domain during the greedy
algorithm.

The effect of using the actual error, the error estimates based on the `2-gain
notion (with and without the reduction factor ρ̄ in (7.30)) and the empirical error
estimate in the greedy algorithm of PODEI algorithm (Algorithm 8) as in [63]
is shown in Figure 7.4. Clearly, the error estimates accurately approximate the
maximum error in the parameter domain. The “estimation before ρ̄” is the most
conservative error estimate, which is due the high conservativeness in the `2-gain
notion. In the eighth iteration, using the `2-based error estimate, the collateral
basis function is inconsistent with the RB basis functions, which reduces the
accuracy of the RB solution and increases the residual values. Discarding the
collateral basis functions, as in PODEI algorithm, resolves the problem for the
next iteration. In general, the accuracy of the RB solution increases by enriching
the RB and collateral basis functions.

In the online phase by using 20 RB functions and 20 collateral basis functions,
the time-wise evolution of the solution is shown in Figure 7.5 at four different
time instants in comparison with the FV solution. The speedup factor is reported
in Table 7.2 (without including the error estimate computational time). The
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Figure 7.5: Comparison of the full-order and low-order solutions over time using
20 RB functions and 20 collateral basis functions.

moderate speedup is due to the hyperbolic, nonlinear and 1D nature of the
original problem. The effect of the number of RB functions in the induced error
due to the reduction for the parameters used in the online phase is shown in
Figure 7.6.

The results of this section verify that both error estimates perform success-
fully in estimating the maximum error during the greedy algorithm in the offline
phase and also estimating the error for a new parameter setting during the
online phase. However, the estimate based on the `2-gain notion suffers from
restricted applicability to satisfy the small-gain condition. This becomes even
more restricted in the case of stronger nonlinearities (nonlinearities with higher
local Lipschitz constant). On the other hand, in the empirical error estimate,
we only need to find (N ′,M ′) to be sufficiently large to satisfy the condition

on ηN
′,M ′

N,M < 1. Apart from this condition that should be resolved in the offline
phase, there is no restriction on the applicability of the method in the online
phase.

Table 7.2: Speedup factors for the reduced basis method for Burgers’ equation.
N = M 1 5 10 15 20
Speedup 17.4 4.2 4 3.4 3
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Figure 7.6: Error evolution by increasing the number of basis functions.

7.6 Conclusion

In this paper, a new perspective on the interaction between EIM and RB meth-
ods is introduced. First, a new error estimate based on a Lur’e type formulation
of nonlinear Burgers’ equation is defined. This estimate is rigorous, accurate
and effective, but has limited applicability due to satisfying a small-gain con-
dition. Furthermore, it requires another reduced-order model to be solved to
approximate the residual. To circumvent the small-gain condition issue, hinged
on the snapshots generated in the offline phase, an empirical error estimate is
introduced that does not suffer from the restrictions of the first error estimate.
Both error estimates work efficiently in terms of computational effort and accu-
racy. The empirical error estimate is faster and also applicable on a wider range
of problems than the error estimate proposed on the basis of `2-gain notion.



Chapter 8

Reduced Basis Method for Managed
Pressure Drilling Based on a Model with

Local Nonlinearities

To circumvent restrictions of conventional drilling methods, such as slow control
actions and inability to drill depleted reservoirs, a drilling method called Man-
aged Pressure Drilling (MPD) has been developed. In MPD, single-phase flow
processes can be modeled as a feedback interconnection of a high-order linear
system and a low-order nonlinear system. These nonlinearities appear locally
both inside and at the boundaries of the computational domain. To obtain a fast
simulation platform for real-time purposes (e.g. online model-based controller
implementation), model order reduction is required for MPD. However, the local
nonlinearities render applying model order reduction techniques challenging. In
this study, a new approach is proposed to deal with such nonlinearities within the
Reduced Basis (RB) context and it is successfully tested on a model for MPD.
Contrary to the classical RB technique, the proposed approach not only does not
generate non-physical spikes at the locations of these local nonlinearities but also
yields high speedup factors. The obtained reduced-order model can be used for
efficient online simulation and controller design for drilling systems with MPD.

This chapter is based on “M.H. Abbasi, L.Iapichino, S.Naderi Lordejani, W.H.A.Schilders,
N.van de Wouw, Reduced Basis Method for Managed Pressure Drilling Based on a Model
with Local Nonlinearities, International Journal for Numerical Methods in Engineering, in
press, 2020.”
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8.1 Introduction

The design of pressure control systems for drilling with Managed Pressure
Drilling (MPD) requires an accurate model of the hydraulics of the system.
Moreover, training novice drillers for drilling operations, simulating well con-
trol incidents in a controlled environment and also monitoring drilling wells are
other important reasons for hydraulics modeling in drilling. However, the de-
sire for accurate modeling of drilling systems typically leads to highly complex
models. In particular, this type of modeling for MPD automation gives rise to
models involving parameterized, nonlinear, non-conservative hyperbolic Partial
Differential Equations (PDEs) completed by nonlinear and implicit boundary
conditions [5], [128], [129]. The governing equations can become even more
complicated when the flow path cross-section is discontinuous along the well.
All these features of the model render its numerical simulation computation-
ally expensive and also make the controller design for the system cumbersome.
Moreover, an accurate and fast assessment of the downhole pressure is crucial
in drilling processes. A tool that facilitates this assessment can be a significant
help/support for the drilling procedure. For instance, in case of emergencies, an
easy-to-use and much faster than real-time simulation framework can provide
insights into effects of a potential reaction to contingencies occurring during
drilling. This reduces the probability of making hazardous decisions and hence
increases the safety of the drilling rig. To provide such efficient model-based
simulation tool, Model Order Reduction (MOR) [13] can be very useful.

MOR techniques aim at the automatic construction of reduced-complexity
models that combine high predictive capacity and low complexity. These tech-
niques drastically reduce the size of the problem and, subsequently, its compu-
tational cost at a price of a minimal and quantifiable loss of model accuracy.
The resulting low-complexity models can then be used for simulation, control,
optimization, parameter estimation and inverse modeling [13]. Among several
existing techniques for reducing the dimension of expensive and complex compu-
tational models, the Reduced Basis (RB) [89] method is an efficient approach for
dealing with parameterized systems. In particular, the MPD model described in
[128] can be considered as a parameterized system where the (varying) parame-
ters can be the properties of the drilling mud or the wellbore geometry.

The use of the RB method for MPD models is not straightforward due to
the time-dependent, nonlinear and state-dependent boundary conditions. The
underlying idea of the RB method is to find the solution of the system as a combi-
nation of some precomputed functions, called RB functions. Handling boundary
conditions becomes challenging due to the global nature of the RB functions and
their independency over time [53]. To resolve this issue, a lifting method [9] is
implemented here and tested for an industry-relevant MPD application. Within
this lifting method, the effect of the boundary conditions is segregated from the
internal domain and is incorporated later as a state-dependent and locally acting
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input.
Besides the nonlinearities at the boundaries, local nonlinearities can occur

inside the computational domain. One realistic example is represented by the
discontinuities in the cross-section of the flow path in a drilling system [10].
These local nonlinearities generate discontinuities in the solution of the state
variables. While various reduction techniques for distributed nonlinearities, such
as Empirical Interpolation Method (EIM) [17] and Discrete EIM (DEIM) [44],
have been developed, little attention,to the best of our knowledge, has been
paid to the issue of local nonlinearities in the RB setting. To take into account
the local nonlinearities inside the domain, the RB functions are enriched with
some local basis functions with compact support (henceforth called the localized
enrichment). This method shares similarities with the approaches introduced in
the balanced truncation community [27], [129].

In this paper, to the best of our knowledge, for the first time the RB method
is applied to a drilling system with MPD and the ansatz introduced in [9] is
tested for dealing with implicit and nonlinear boundary conditions governing
the hydraulics dynamics of the drilling system. Moreover, a new methodology
is introduced to automatically capture the local nonlinearities inside the com-
putational domain by enriching RB functions with specific local basis functions.

The outline of this paper is as follows. In Section 8.2, a model for MPD is
briefly introduced. In Section 8.3, the new approach to use the RB method for
capturing local nonlinearities in MPD is proposed. In Section 8.4, numerical re-
sults comparing the full-order model and the reduced-order model are presented.
Finally, conclusions and future works are presented in Section 8.5.

8.2 Problem Statement

The industrial problem under investigation is a drilling system, with a special
focus on MPD. The configuration of the system is illustrated in Figure 8.1.
A drilling liquid known as mud is pumped into a pipe at high pressure; this
pipe is called the drillstring. At the bottom of the drillstring, the mud leaves
the drillstring through nozzles located inside the drill bit and enters the area
between the drillstring and the wellbore known as the annulus. It then flows up
through the annulus and carries the rock cuttings out of the well. In MPD, the
annulus is sealed off from the surroundings at the top with a Rotating Control
Device (RCD) and the mud circulates out of the well through a choke valve.
The circulation path of the mud can be observed by following the green arrows
in Figure 8.1. Furthermore, the diameters of the drillstring and the wellbore
experience sudden variations along the well; the diameter profile of the drillstring
and the wellbore are shown in red (denoted by d) and blue lines (denoted by
Dout), respectively, in Figure 8.1. The parameters L and θ denote the well length
and the well inclination with respect to the horizontal line. In this paper, a single-
phase flow model for MPD is studied. For a more comprehensive explanation of
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Figure 8.1: A schematic configuration of an MPD system.

MPD systems and multi-phase flow modeling, the reader is referred to [128]. The
mathematical formulation employed to model this system is described below.

8.2.1 Mathematical modeling for MPD

To model the drilling hydraulics, the drillstring and annulus can be treated as two
pipes connected at the bit and the hydraulics within MPD can be modeled by the
so called U-tube modeling approach [128]. Different models have been introduced
for the mathematical representation of the single-phase flow inside each pipe
[99], [128]. One of the most widely used models is obtained by simplifying the
isothermal Euler equations and accounting for the area variation of the drillstring
and the wellbore. This model is described by the following system of PDEs:

∂(uA)

∂t
+
∂(f(u, x))

∂x
= S(u, x)→

∂(ρA)

∂t
+
∂(ρAv)

∂x
= 0,

∂(ρAv)

∂t
+ c2l

∂(ρA)

∂x
= A (F (u, x) +G(u, x)) + p

∂A

∂x
,

x ∈ [0, L], t ∈ [0, T ],

(8.1)

where ρ(t, x), v(t, x) and A(x) are density, velocity and the cross-sectional
area of each pipe, respectively. Here, t and x denote the temporal variable
and the spatial variable, respectively. Parameters T and L, respectively, denote



8.2 Problem Statement 221

the temporal and spatial length of the computational domain. In addition,
u = [ρ, ρv]T (noteworthy, m(t, x) := ρ(t, x)v(t, x) is the momentum of the flow,
and superscript (·)T shows the transpose operator). The source term S(u, x)
consists of a friction term F (u, x), a gravitation term G(u, x) and the effect
of variable cross-sectional area. The flux function f(u, x) attributed to (8.1) is
f(u, x) = [ρAv, ρAc2l ]

T where cl is the speed of sound in the fluid medium.
In case of laminar flow, we have

F (u, x) = −32
γ

D2
h

ρv

ρ0s

, (8.2)

where Dh(x) is the hydraulic diameter of each pipe, ρ0s is the reference density
and γ is the viscosity of the liquid. For gravity, we set

G(u, x) = ±ρg sin θ, (8.3)

where g is the gravitational acceleration and θ is the inclination of the pipe. To
calculate pressure, the Equation Of State (EOS) for the fluid can be used, which
reads as follows:

p = p0 + c2l (ρ− ρ0s), (8.4)

where p(t, x) is the pressure and p0 is the reference pressure. Although system
(8.1) is parameter-dependent (e.g., the inclination θ and the properties of the
fluid such as cl and ρ0s can vary), the parameter dependency is not shown for the
sake of simplicity. The parameter dependency is made explicit later in Section
8.3.

Remark 8.1. System (8.1) is solved once for the drillstring and once for the
annulus. These two solutions then interact at the bit. For the simulation of the
hydraulics in the drillstring, we set Dh(x) = d(x) where x = 0 and x = L corre-
spond, respectively, to the pump and bit location in the drillstring. Additionally,
for gravitational source term, we choose “+” sign in (8.3). For the annulus, we
set Dh(x) = Dout(x) − d(x) with x = 0 indicating the bit location and x = L
indicating the choke location with “-” sign in the gravity term (8.3).

Remark 8.2. Area discontinuities, such as those presented in Figure 8.1, leads
to an impulse in the right-hand side of the momentum equation in (8.1), leading
to a discontinuity in the density and velocity. At these locations, where v is
discontinuous and ∂v/∂x is an impulse, the simplified isothermal Euler equations
as in (8.1) are not accurate. At these locations, the original isothermal Euler
equations as in [57] are exploited to solve the fluid flow.

The Finite-Volume (FV) method is usually employed to numerically solve
this type of system of PDEs [113]. In the following section, the numerical frame-
work to solve system (8.1) is discussed.
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8.2.2 Finite-volume discretization

To numerically solve (8.1), a Gudonov-type scheme is employed as follows

Un+1
i = Uni −

∆t

∆x

(
F
(
Uni , U

n,∗
i+1

)
−F

(
Un,∗i−1, U

n
i

))
+ ∆t (F (Uni , xi) +G (Uni , xi)) ,

(8.5)

where the discrete field variable Uni = [ρni , ρni v
n
i ]T , i ∈ {1, · · ·Nδ}, n ∈

{1, · · ·Nt}, is the average of field variables u = [ρ, ρv]T over the i-th grid cell
at the time instant tn := n∆t. Moreover, Nδ and Nt are, respectively, the num-
ber of spatial and temporal grid cells of the discretized computational domain.
Also, F(·, ·) is the scheme-specific numerical flux function (to be introduced in
Section 8.2.4). Here, ∆t and ∆x refer to the temporal and spatial discretization
step sizes, respectively. It should be noted that parameter dependency is not
mentioned in (8.5) for the sake of notational simplicity.

The effects of area variation are incorporated by the starred variables
(Un,∗i+1, U

n,∗
i−1) appearing in (8.5). These variables can be computed by solving

the following system of equations at each time step (refer to [103] for details),

ρn,∗i+1v
n,∗
i+1Ai = ρni+1v

n
i+1Ai+1, (8.6a)

c2l ln ρn,∗i+1 +
(vn,∗i+1)2

2
= c2l ln ρni+1 +

(vni+1)2

2
. (8.6b)

After obtaining ρn,∗i+1 and vn,∗i+1, Un,∗i+1 = [ρn,∗i+1, ρ
n,∗
i+1v

n,∗
i+1]T is constructed at each

time step n (Un,∗i−1 is formed in the same manner). Since this approach is de-
veloped only to consider the effects of diameter discontinuity, system (8.6) is
solved only at the locations of area variations. At other locations in the spatial
domain where the area does not change over the interfaces, we set Un,∗i+1 = Uni+1

and Un,∗i−1 = Uni−1.

Remark 8.3. The set of equations (8.6) are derived according to the isothermal
Euler equations, not (8.1), see Remark 8.2.

8.2.3 Initial and boundary conditions

In order to be able to numerically solve system (8.1), initial conditions and
boundary conditions should be imposed. Initial conditions are chosen to the
steady-state solution of system (8.1) corresponding to a selected set of param-
eters. Then, by changing the inputs of the system (i.e., the boundary inputs),
the dynamics of the system are excited.

System (8.1) consists of two first-order PDEs; hence, two physical boundary
conditions for each pipe should be defined. For the drillstring, the governing
equation of a pump comprises the left boundary condition while the drilling bit
equation governs the right boundary condition. For the annulus, on the other
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hand, the drilling bit constitutes the left boundary, while the right boundary is
specified by a choke valve, see Figure 8.1. The governing equations of the pump,
bit and choke are summarized in Table 8.1. There, qp, Ap and vp represent the
volumetric flow rate of the pump, the cross-sectional area at the pump and the
velocity of the liquid at the pump. Moreover, ∆pb, ρb, ṁb, AN and CD denote
the pressure drop over the bit, density at the drillstring side of the bit, the
mass flow rate through the bit, the total area of the nozzle holes of the bit
and the nozzle coefficient of the bit. Finally, qc,Kc, zc, ρc, pc and patm are the
volumetric flow rate through the choke, the choke constant, the choke opening,
the density at the choke inlet, the pressure at the choke inlet and atmospheric
pressure, respectively. Control inputs of the system are qp and zc. For a more
comprehensive description of the boundary conditions, refer to [128].

Remark 8.4. It should be noted that a Non-Return Valve (NRV) is always
installed above the drilling bit inside the annulus. This valve allows the drilling
mud to flow only from the drillstring into annulus, not vice versa. The NRV
model is introduced in [128].

8.2.4 Upwind scheme

All numerical test cases in this paper are performed by an upwind scheme [50].
The corresponding numerical flux function in (8.5) holds

F(Uni , U
n
i+1) = A+Uni +A−Uni+1, (8.7)

where

A− =
1

2

[
−cl 1
c2l −cl

]
, A+ =

1

2

[
cl 1
c2l cl

]
. (8.8)

By inserting (8.7) into (8.5), the following equation is attained by compressing
the notation (Fni := F (Uni , xi) and similarly for Gni ):

Un+1
i = Uni −

∆t

∆x

(
A−Un,∗i+1 −A

+Un,∗i−1 +
(
A+ −A−

)
Uni
)

+ (Fni +Gni ) ∆t.

(8.9)

Using (8.9), one can find the vector of discrete field variables over the i-th cell
at each time step. Augmenting all Uni , i ∈ {1, · · ·Nδ}, n ∈ {1, · · ·Nt}, over

Table 8.1: Governing equations of the pump, bit and choke.
pump bit choke

qp = Apvp ∆pb =
1

2ρb

(
ṁb

ANCD

)2

qc = Kczc

√
2

ρc
(pc − patm)
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all cells and taking into account the variation of the diameter (by solving (8.6))
yields the following algebraic equations

ρn+1 =

(
I + cl

∆t

∆x
L1

)
ρn +

∆t

2∆x
L2m

n

+ cl
∆t

∆x
L∗1ξρ

+,n +
∆t

2∆x
L∗2ξm

+,n

+
cl
2

∆t

∆x
B0ρ

n
0 +

cl
2

∆t

∆x
BNδ+1ρ

n
Nδ+1 +

1

2

∆t

∆x
B0m

n
0 −

1

2

∆t

∆x
BNδ+1m

n
Nδ+1,

(8.10)

mn+1 =

(
c2l
2

∆t

∆x
L2 ± g sin θ∆tI

)
ρn+(

diag

(
1− 32

γ

ρ0sD
2
h

)
∆t+ cl

∆t

∆x
L1

)
mn +

c2l
2

∆t

∆x
L∗2ξρ

+,n+

cl
∆t

∆x
L∗1ξm

+,n − c2l
2

∆t

∆x
B0ρ

n
0 −

c2l
2

∆t

∆x
BNδ+1ρ

n
Nδ+1 +

cl
2

∆t

∆x
B0m

n
0 +

cl
2

∆t

∆x
BNδ+1m

n
Nδ+1,

(8.11)

where ρ,m,Dh ∈ RNδ are, respectively, the vector-valued averages of the den-
sity and momentum and the vector containing diameter values at all grid cells
gathered in a vector of dimension Nδ (number of grid cells). Matrix I is the
square identity matrix of dimension Nδ. The function “diag” in (8.11) generates
a square matrix with the diagonal terms according to its argument. Further-
more, ρn0 and mn

0 are the left boundary values of each pipe at time instant with
index n while ρnNδ+1 and mn

Nδ+1 are the right boundary values of each pipe at
time instant with index n. We recall that in the term 32γ/(ρ0sD

2
h) in (8.11),

we set Dh = d for the drillstring and Dh = Dout−d for the annulus (d is the
discrete version of d(x) and similarly for Dout). Also, we have

L1 =


−1 1

2 0 0

1
2

. . .
. . . 0

0
. . .

. . . 1
2

0 0 1
2 −1


Nδ×Nδ

, L2 =


0 −1 0 0

1
. . .

. . . 0

0
. . .

. . . −1
0 0 1 0


Nδ×Nδ

,

B0 =


1
0
...
0


Nδ×1

, BNδ+1 =


0
...
0
1


Nδ×1

.

(8.12)
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In (8.10), (8.11), the variables with the superscript “+”, (·)+,n ∈ R2Nd with Nd
number of diameter discontinuities along the spatial domain, are defined as:

(·)+,n = (·)∗,n − (·)n, (8.13)

where the variable (·)n is subtracted from the starred variable (·)∗,n computed
by (8.6).

The operators L∗1 and L∗2 incorporate the nonlinearities due to discontinu-
ities in the diameter. These operators are tridiagonal matrices with zero diagonal
terms and nonzero entities at the off-diagonal entities corresponding to the loca-
tions of area discontinuities. These nonzero terms are respectively a copy of the
off-diagonal terms of L1 and L2 at the neighboring cells of the interface where
the area discontinuity occurs; the other off-diagonal entities are set to zero. The
operator ξ ∈ RNδ×2Nd in (8.10),(8.11) is composed of the canonical vectors at
the neighboring cells of the interface with the area discontinuity. For instance, if
the area variation only occurs at the interface xi+1/2 of the discretized domain,
we have:

L∗1 =

1 . . . i i+ 1 . . . Nδ



1 0 . . . 0 0 . . . 0
...

...
...

...
...

...
...

i 0 · · · 0 1
2 · · · 0

i+ 1 0 · · · 1
2 0 · · · 0

...
...

...
...

...
...

...
Nδ 0 0 0 0 0 0

, ξ = [ei, ei+1], (8.14)

where ei ∈ RNδ is the i-th canonical vector (a zero vector with only one nonzero
element at the i-th entry).

To show the internal dynamics (8.10),(8.11), boundary equations and the
area discontinuity solver (8.6) in a compact form, a description of the discretized
system dynamics is shown below in the form of a feedback interconnection:

Σ :


Σlin :


ρn+1 = A11ρ

n +A12m
n +B1V

n +B∗1W
n,

mn+1 = A21ρ
n +A22m

n +B2V
n +B∗2W

n,

yn = C[ρnT mnT ]T ,

ynV = CV [ρnT mnT ]T ,

ynW = CW [ρnT mnT ]T ,

Σnl :

{
V n = h(yn−1

V , V n−1, un−1
c ),

Wn = G(ynW ),

(8.15)

where h(·, ·, ·) is the solver of the dynamics occurring at the boundaries, uc
contains the control inputs acting at the boundaries (in MPD, uc = [qp, zc]),
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Figure 8.2: A schematic presentation of the full-order model consisting of a
feedback interconnection of the linear and nonlinear part.

and G(·) is the solver of (8.6). We have set Wn = [ρ+,nT , m+,nT ]T , V n =
[ρn0 , ρ

n
Nδ+1, m

n
0 , m

n
Nδ+1]T . The other matrices such as A11 are defined according

to (8.10)-(8.11) and yn ∈ RNy is a vector of the outputs of interest with the
dimension Ny. The other outputs of Σlin, ynV and ynW (correspondingly the
output matrices CV and CW ), are respectively required for the computations of
the boundary conditions and the area discontinuities. This interconnection is
shown in Figure 8.2.

It should be noted that the area variation changes the wave reflection pattern
inside the system. It also significantly changes the velocity profile and therefore
the pressure drop due to the friction. The formulation (8.15) allows to capture
these effects even when the order of the system is reduced by the RB method.

Remark 8.5. Before going to the model order reduction part, let us add the
parameter dependency into (8.15),

Σ(µ) :


Σlin(µ) :


ρn+1 = A11(µ)ρn +A12(µ)mn +B1(µ)V n +B∗1(µ)Wn,
mn+1 = A21(µ)ρn +A22(µ)mn +B2(µ)V n +B∗2(µ)Wn,

yn = C[ρnT mnT ]T ,

ynV = CV [ρnT mnT ]T ,

ynW = CW [ρnT mnT ]T ,

Σnl(µ) :

{
V n = h(yn−1

V , V n−1, un−1
c ;µ),

Wn = f(ynW ;µ),

(8.16)

where µ is a vector in D ∈ Rb, b ≥ 0. Here, D is a continuous space containing
varying parameters of the system.

To summarize, system (8.16) is linear except at the locations of area dis-
continuities and at the boundaries. The high-dimensional nature of the system
dynamics Σ is only present in Σlin and not in the nonlinear part Σnl and this mo-
tivates the system complexity reduction by reducing only the linear part. Thus,
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developing a MOR method to reduce the linear part and simultaneously account
for this type of local nonlinearities is essential, which is the topic of the next
section. We in particular consider the case in which the computational effort to
solve for the dynamics of Σlin is significantly higher than that required for Σnl.
We care to stress that this is the case in many application scenarios in which Σlin
expresses the discretized, large-scale, dynamics of an internal domain and Σnl
expresses nonlinear, though low-dimensional, dynamics (or even static relation-
ships) characterizing local nonlinearities. In such relavant scenarios, substantial
computational efficiency gains can be expected after reduction. The reduction
approach can still be pursued if this assumption is violated, but the computa-
tional gain may be less significant. In support of the MOR paradigm, we adopt
the following assumptions.

Assumption 8.6. To enable efficient reduction of (8.16), all operators in
Σlin(µ) should be affine with respect to the parameters µ, i.e.,

A11(µ) =
∑
j

Θj(µ)Aj11, (8.17)

where Θj(µ) are scalar functions of µ and Aj11 are matrices independent of the
parameter µ.

Remark 8.7. If Assumption 8.6 is not satisfied, the operators in (8.16) can be
approximated by an affine expression by using EIM [17].

8.3 Reduced Order Model Formulation

The RB method targets parameterized problems requiring repeated evaluations
(many-query analysis) or (faster than) real-time simulations (real-time analysis).
It typically consists of an offline and an online stage. During the offline stage, an
RB space Φ is generated and several parameter independent operators related to
system (8.16) are evaluated to be used in the online stage. In the online stage,
the reduced solution can be obtained much faster than the one with a classical
(e.g., FV) numerical simulation with a reasonable accuracy.

In this paper, we propose an additional stage, called ”intermediate” stage,
necessary to sufficiently handle the internal nonlinearities of system (8.16) (i.e.,
nonlinearities due to the discontinuous diameter of the drillstring and the an-
nulus). In this section, we explain the three mentioned stages of the method:
offline, intermediate, and online stage. The requirements of each stage are ex-
plained within each section. Finally, the computational decomposition of these
stages is illustrated.

Remark 8.8. In this study, during the offline stage, we propose to consider a
reference domain (constant cross-sectional area along the well) excluding nonlin-
earities in the internal domain and including the discontinuous cross-sectional
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area in the intermediate stage to be used in the online stage, which is further
explained in the sequel.

8.3.1 Offline stage

During the offline stage, a set of N RB functions is computed. Although N is
typically much smaller than the degrees of freedom of classical numerical scheme
(e.g., FV), this stage can be computationally expensive, since the RB functions
are obtained via Proper Orthogonal Decomposition (POD) on the solutions of
(8.16) for a specific set of parameter values. The selection of these parameter
values is performed by the Greedy algorithm. The entire procedure is called
POD-Greedy [89] and is explained in Section 8.3.1.3.

8.3.1.1 Proper orthogonal decomposition

Let assume that the solution of (8.16) for an arbitrary parameter value µ has
been computed. POD extracts the most energetic modes of the snapshots which
represent the set of RB functions denoted by φ. Mathematically speaking, POD
solves a minimization problem as follows [33]

min
φ⊂H

∥∥U − φφTU∥∥2

F
, (8.18)

where U = [U0, U1, · · · , UNt ] with Un ∈ RNδ is the numerical solution at
all spatial grid points at time instant n, H is the Hilbert space and ‖·‖F is the
Frobenius norm. The POD algorithm (to be used in a Greedy fashion later) is
summarized in Algorithm 10, where φ is computed based on the discrete field
variables U and the number of desired RB vectors. In Algorithm 10, the number
of POD modes is either given by the user or determined by the decay of singular
values. As we use this algorithm in a Greedy fashion, we show POD algorithm
for the former option.

Before discussing the POD-Greedy approach, we discuss the incorporation
of the nonlinear boundary conditions.

Algorithm 10: POD algorithm, POD(U , nPOD)

Input: Snapshots U(µ) ∈ RNδ×Nt , number of basis vectors nPOD

Output: φ ∈ RNδ×nPOD

1 Perform a Singular Value Decomposition on the snapshots,
U = USVDSV

2 φ = USVD(:, 1 : nPOD) is the first nPOD vectors of the left singular
vectors USVD.
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8.3.1.2 Nonlinearities at the boundaries

To handle the nonlinearities at the boundaries, the following RB ansatz is used
by lifting the reduced solution [9]

Ûn(µ) = Un
B +

N∑
i=1

ani (µ)φi,

φi|x={0,L} = 0,

(8.19)

where UnB is a vector that enables the RB solution Ûn(µ) to satisfy the boundary

conditions (Û can be either ρ̂ or m̂). In other words, the vector Un
B encodes

the exact satisfaction of the boundary conditions. The RB vectors Φ = {φi, i =
1, · · · , N} are the set of N RB functions evaluated at the discrete spatial points,
which are obtained by the POD (Algorithm 10) applied to modified snapshots
as below. To incorporate the boundary conditions correctly, φi should vanish
at the location of boundaries, see (8.19). To do so, we modify the snapshots as
below (step 5 of Algorithm 11):

Ūn(µ) = Un(µ)− UnB . (8.20)

Since Ūn vanishes at the boundaries, applying POD to this snapshots yields
basis vectors that vanish at the boundaries as well.

Finally, ai, i = {1, 2, · · · , N}, which is the new state variable of the ROM,
is the modal coordinate corresponding to φi. The governing dynamics of the
modal coordinates are explained in Section 8.3.3.

The vector Un
B should be exact at the boundaries and can be an interpolation

in the internal domain. For instance, for the density variable, we set

ρnB =

(
1− X

Nδ + 1

)
ρn0 +

X

Nδ + 1
ρnNδ+1, (8.21)

where X = [1 · · ·Nδ]T ∈ RNδ and 1 ∈ RNδ is a vector of ones. This expression
at the boundaries leads to ρnB |x=0= ρn0 and ρnB |x=L= ρnNδ+1, which satisfies the
requirements for the new ansatz (8.19). A similar expression can be used for
mn
B .

Remark 8.9. A similar lifting approach can be applied to 2D and 3D cases. The
modified snapshots and correspondingly the RB functions then should vanish at
the boundary lines or surfaces.

8.3.1.3 POD-Greedy approach

The POD-Greedy Algorithm is summarized in Algorithm 11. To enable the
implementation of Algorithm 11, we need to introduce a finite parameter domain
Dh ⊂ D which serves as a computational surrogate for D (which is the continuous
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parameter domain). We assume that the set of first i parameter values have
been selected and the first set of RB vectors in Φ has been computed. The next
parameter value µi+1 is the one corresponding to the worst approximated RB
solution of (8.22) among all the members of the discrete parameter domain Dh
(which is determined in step 10 of Algorithm 11). For this parameter value,
we solve the full-order model (8.15) and gather the snapshots of density and
momentum. The worst approximation is determined by evaluating the output
error between the RB solution of system (8.22) and the full order solution of
(8.16). An error bound or an error estimate can be useful to drastically alleviate
the computational effort of the error exploration among the domain Dh [9] (if the
error estimate can be computed at low computational cost, i.e., the computation
of the error estimate does not scale with the dimension of the full-order model).
Other empirical error estimates can also be useful for nonlinear problems, such
as those in [8], [85]. In this study, however, during the offline stage, the actual
error in the output is considered as the measure to select the next parameter.
Using the actual error during the Greedy algorithm is called the strong Greedy
approach [32] and it generally is computationally expensive. It is known that the
Greedy approach has a higher convergence rate compared to POD and nested
POD algorithms [84]. Moreover, saving all snapshots for all members of the
parameter domain for all time steps induces stringent memory requirements
while for the strong Greedy algorithm, we only need to save the output of the
system. The POD-strong Greedy algorithm terminates when the maximum error
is smaller than a given tolerance or the number of RB vectors is equal to a given
number of RB vectors.

Remark 8.10. The POD-strong Greedy is not computationally feasible in gen-
eral, but the goal of the paper is to show that it is possible to use a reduced model
to compute accurate solutions, not accounting for an effective offline stage (i.e.,
using weak greedy approach).

By inserting the ansatz (8.19) into (8.15), applying a standard Galerkin pro-
jection and taking into account the orthonormality of Φ, a reduced-order model
is obtained as below:

Σ̂ :


Σ̂lin :



an+1
ρ = Â11a

n
ρ + Â12a

n
m + B̂1V̂

n − F̂1V̂
n+1,

an+1
m = Â21a

n
ρ + Â22a

n
m + B̂2V̂

n − F̂2V̂
n+1,

ŷn =CC0

[
ρn0 mn

0

]T
+ CCNδ

[
ρnNδ+1 mn

Nδ+1

]T
+

CCφ
[
anρ

T anm
T
]T
,

ŷnV =CV C0

[
ρn0 mn

0

]T
+ CV CNδ

[
ρnNδ+1 mn

Nδ+1

]T
+

CV Cφ
[
anρ anm

]T
,

Σnl : V̂ n = h(ŷn−1
V , V̂ n−1, un−1

c ),

(8.22)

where the hatted operators (̂·) are obtained by Galerkin projection of the full-
order operators on the space spanned by the orthogonal RB vectors Φρ and Φm,
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and

C0 =

1− X

Nδ + 1
0Nδ×1

0Nδ×1 1− X

Nδ + 1

 , CNδ =

 X

Nδ + 1
0Nδ×1

0Nδ×1
X

Nδ + 1

 ,
Cφ =

[
Φρ 0Nδ×Nm

0Nδ×Nρ Φm

]
.

(8.23)

Operators such as CC0 ∈ RNy×2 are of low dimensions and can be defined in
the offline stage. For more information, refer to [9]. The initial conditions for
the system are also obtained by a Galekin projection of the initial condition; for
instance, a0

ρ = ΦTρ ρ
0. It should be recalled that in the offline stage, the diameter

is considered constant along each pipe.
Note that in step 8 of Algorithm 11, the POD is performed on the interpola-

tion error instead of the modified snapshots to consistently add new information
at each step of the POD-strong Greedy procedure. To apply POD (step 8 of Al-
gorithm 11), a singular value decomposition (SVD) is performed on the modified
snapshots as demonstrated in Algorithm 10. The set of RB vectors is enriched
with the first left singular vector. For more information, refer to [89]. At this
point, if the maximum number of RB vectors is not yet reached or the expected
maximum error among members of the discrete parameter domain Dh is not
achieved, we proceed in the same way to compute µi+2.

8.3.2 Intermediate stage

To incorporate the effect of the spatially-dependent diameters, an extra stage
is added to the standard RB method, which is an intermediate stage coming in
between the offline and the online stage. Although the computation of this step
scales with the dimension of the full-order mode, this stage has to be performed
when the diameter profile is changed. If this stage is not included, whenever
the diameter profile is changed, the entire offline stage should be repeated. In
the intermediate stage, operators related to the diameter are defined and the
RB vectors are enriched with some local basis vectors with compact support.
Then, the enriched set of basis vectors is orthonormalized. This is explained in
Algorithm 12 and in the following section.

8.3.2.1 Localized enrichment

For capturing the internal nonlinearities (discontinuous diameter inside the do-
main), a local enrichment of RB vectors is introduced here, which also shares
similarities with the EIM approach for the distributed nonlinearities. The generic
EIM procedure consists of an offline stage to generate the collateral basis func-
tions and detect some interpolation points [17]. Then, the distributed nonlinear-
ities are approximated by linear interpolation of these collateral basis functions.
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Algorithm 11: POD–strong Greedy

Input: Dh, N, µ1 ∈ Dh (arbitrary), εy
Output: Φ

1 Set Φ = {}, k = 1, and Ek > εy,
2 Solve (8.16) ∀µ ∈ Dh to compute y(µ),
3 while Ek > εy do
4 Find Un(µk) as the solution of (8.16), n = {1, · · · , Nt},
5 Ūn(µk) = Un(µk)− UnB ,
6 Ū(µk) = [Ū0(µk), · · · , ŪNt(µk)],

7 ēn(µk) = Ū(µk)− ΦΦT Ū(µk),
8 Φ← orth {Φ ∪ POD(ēn, 1)} which orthonormalizes the enriched set

of basis function (see Algorithm 10 for POD),
9 Solve (8.22) ∀µ ∈ Dh to compute ŷ(µ),

10 µk+1 = arg max
µ∈Dh

1√
Nt

√∑Nt
n=0 ‖yn(µ)− ŷn(µ)‖22 and

Ek+1 =
1√
Nt

√∑Nt
n=0 ‖yn(µk+1)− ŷn(µk+1)‖22

11 k + k + 1

The coefficients of the interpolation are computed such that the interpolation
is exact at the interpolation points. Generally, EIM is tailored for distributed
nonlinearities, not for local nonlinearities. Here, by a similar formulation of the
problem suited to EIM (see (8.10),(8.11) where operator ξ appears in the equa-
tions), the nonlinearity computation is decoupled from the linear subsystem.

In the current problem setting, the MOR method is supposed to be flexible
and deal with any generic cross-sectional area of the domain. The nonlinearities
do not enter the problem until the area discontinuity is introduced by the user
in the intermediate stage. Here, unlike the procedure in the EIM approach,
the interpolation points are already known and selected at the locations of area
discontinuity. Moreover, the local basis vectors are the same as ξ introduced in
(8.10) and (8.11).

The locations of area discontinuities can be detected as x∗m = {xk+1/2|Dh(xk)
6= Dh(xk+1)}. Therefore, the interpolation points are defined as xm =
{xk, xk+1|Dh(xk) 6= Dh(xk+1), k = 1, · · · , Nδ − 1}. Then, the local basis vectors
are defined as the collocation of canonical vectors corresponding to the locations
in xm, i.e., ξ = {ek, ek+1|Dh(xk) 6= Dh(xk+1), k = 1, · · · , Nδ − 1}, where ek is
the canonical vector with the nonzero entity at k-th element.

If no area variation occurs, the local basis vector is a null vector. The local
nonlinearities of area variation, J ∈ RNδ for instance for the density, can be
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approximated by

J = ξρ+,n
d , (8.24)

where ρ+,n
d is calculated at the locations of xm as in (8.13). In other words,

J is a vector with nonzero elements at the locations of area discontinuities and
zero elements elsewhere. In this way, we approximate the local nonlinearities by
an affine combination of pre-computed basis vectors ξ and local values of the
field variables. This also enables the exact interpolation at the location of area
variation.

At this stage, RB vectors are enriched with local basis vectors to take into ac-
count the effect of area variations and also the reduced operators are re-defined.
To account for the discontinuities in the area, the set of continuous RB vectors,
obtained during the offline stage, are enriched by local discontinuous basis vec-
tors with compact support. For instance, for an area variation at the discrete
point xi+1/2, one of the two basis vectors shown in Figure 8.4 is added to the set
of RB vectors and then the orthogonalization is applied. These discontinuous
basis vectors account for the discontinuities generated in the solution due to the
discontinuous diameter and these should also vanish at the boundaries. This is
explained in Algorithm 12. The motivation behind choosing the discontinuous
basis vectors shown in Figure 8.4 is explained in the following remark.

Remark 8.11. In the case of a discontinuous diameter, the snapshots in U ,
and therefore the RB vectors in φ, are also discontinuous. Since, in the offline
stage, local discontinuities are ignored, we should account for these nonlinearities
in the intermediate stage. Assume that we have the steady-state solution as the
initial condition in the online stage. Then, we should enrich the current set of
RB vectors such that the following cost function:∥∥Ūss − φφT Ūss∥∥2

F
, (8.25)

is minimized with respect to φ, where Ūss is the modified steady-state solution
after subtracting the effect of the boundary conditions similar to (8.20). For an
arbitrary set of parameters, this modified steady-state solution for the momentum
for example resembles Figure 8.3. The optimum way to minimize this objective
function is to enrich the set of RB vectors with the modified steady-state solution.
However, this solution is not known beforehand. Therefore, local basis vectors
should be added to the set of RB vectors to reproduce at least the steady-state
solution. To this end, the set of basis vectors introduced in Figure 8.4 are added.
These basis vectors are designed to take into account the discontinuities in the
solution, while the continuous RB vectors determine the solution between two
adjacent discontinuities.

Remark 8.12. The selection of the local basis vectors is problem specific. For
2D and 3D cases, based on the difference between the solution in the absence
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Figure 8.3: Modified steady-state solution for momentum Ūss for an arbitrary
set of parameters.

and presence of the local nonlinearities, some basis surfaces or volumes should
be defined accordingly.

8.3.3 Online stage

After obtaining the enriched basis vectors Φ̄ from Algorithm 12, the linear part
of system (8.16) is reduced from Σlin to Σ̂lin by a standard Galerkin projection
into the space spanned by Φ̄ while the local nonlinear dynamics Σnl (area dis-
continuities and boundary equations) remain exactly as in the original model
(8.16). A schematic view of the reduced model is shown in Figure 8.5. This
figure illustrates that auxiliary outputs that are necessary for computing the
output of Σnl, y

n
W and ynV , are provided via a feedback interconnection. Then,

Figure 8.4: The discontinuous basis vector φdi to take into account the discon-
tinuous area at x = xi+1/2.
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Algorithm 12: Intermediate stage including local enrichment

Input: Continuous RB vectors Φ, diameter profile d,Dout, FV
operators as in (8.10),(8.11)

Output: Enriched set of basis vectors Φ̄
1 Calculate the hydraulics diameter Dh for each pipe,

2 xm = {}, ζ = {},Φd = {}
3 for k ← 1 to Nδ − 1 do
4 if Dh(xk) 6= Dh(xk+1) then
5 xm = [xm, {xk, xk+1}]
6 ζ = [ζ, {ek, ek+1}]
7 Compute the discontinuous basis vectrors Φd = [Φd, φdk] as

explained in Figure 8.4,

8 Enrich Φ̄ = [Φ,Φd] and perform an orthonormalization based on the
Gram-Schmidt procedure [84].

the outputs from Σnl are fed into the reduced linear system Σ̂lin to incorporate
the effect of the boundary conditions and area variation.

Similar to (8.22) and by embedding the effect of discontinuous diameter, we

Figure 8.5: The schematic representation of the reduced order model.
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have

Σ̂ :



Σ̂lin :



an+1
ρ = Â11a

n
ρ + Â12a

n
m + B̂1V̂

n + B̂∗1Ŵ
n − F̂1V̂

n+1,

an+1
m = Â21a

n
ρ + Â22a

n
m + B̂2V̂

n + B̂∗2Ŵ
n − F̂2V̂

n+1,

ŷn =CC0

[
ρn0 mn

0

]T
+ CCNδ

[
ρnNδ+1 mn

Nδ+1

]T
+

CCφ
[
anρ

T anm
T
]T
,

ŷnV =CV C0

[
ρn0 mn

0

]T
+ CV CNδ

[
ρnNδ+1 mn

Nδ+1

]T
+

CV Cφ
[
anρ anm

]T
,

ŷnW =CWC0

[
ρn0 mn

0

]T
+ CWCNδ

[
ρnNδ+1 mn

Nδ+1

]T
+

CWCφ
[
anρ

T anm
T
]T
,

Σnl :

{
V̂ n = h(ŷn−1

V , V̂ n−1, un−1
c ),

Ŵn = G(ŷnW ),

(8.26)

where the effect of discontinuous diameter is incorporated by operators such as
B̂∗1 and variables Ŵn. Recall that operators such as CC0 ∈ RNy×2 are of low
dimension and are defined in the offline stage. Operators such as CWC0 are
defined in the intermediate stage due to their dependencies over the locations
of area variations. In the next section, the notion of offline-online decomposi-
tion, including the intermediate stage taking into account the area variation, is
explained.

8.3.4 Offline-intermediate-online decomposition

In the offline stage, no area variation is considered. It means that B∗i in (8.16)
is zero during the offline stage and the RB vectors are generated without consid-
ering the discontinuous diameter. The affine property of the model with respect
to the parameters (Assumption 8.6) leads to the offline-online decomposition of
the computational costs [89].

Since changing the locations of the diameter discontinuity changes the struc-
ture of the wave propagation inside the domain, the diameter profile of the
drillstring and the annulus is not a function of the spatial coordinate x in the
offline stage. If the locations of area variation change from one simulation to
another in the offline stage, the snapshots and, therefore, the RB vectors experi-
ence discontinuity at different locations. Then, reconstructing the solution from
these RB vectors leads to a stair-case problem. This problem also arises in many
other applications [180]. To avoid this issue, no area discontinuity is considered
in the offline stage. It means that the snapshots and therefore the RB vectors,
which are obtained by performing a POD on the modified snapshots, are contin-
uous. To obtain the parameters corresponding to the worst RB approximation
during the Greedy algorithm, the actual error (as in line 10 of Algorithm 12) or
an estimate of the error indicated in [9], [182] can be used.
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However, as diameters are spatially dependent and should be set by the user
before running the online simulation, we define an intermediate stage between
the offline and the online stages. In this intermediate stage, the diameter is
defined by the user. Also, the operators in (8.26) that are dependent on this
diameter are defined in this stage. Although this stage involves computation
scaled by the actual degrees of freedom of the original system, this is done only
once per each change in the diameter profile. If this stage is absent, the entire
expensive offline stage should be repeated for each change in the diameter profile,
which would be far more expensive computationally.

In the online stage, by changing any of the varying parameters as well as the
diameter profile, the solution can be obtained accurately in a computationally
cheap fashion. However, if the locations of the area variation vary, the com-
putations in the intermediate stage should be repeated while the information
computed during the offline stage are still useful and valid for the new scenario.

8.4 Numerical results

In this section, the numerical results are divided into two categories. First,
results are obtained by using the same external control inputs (as unc in (8.16)
and (8.26)) during the offline and online stages (both stages simulate one drilling
scenario). Second, without varying the offline stage, the external control inputs
in the online stage are changed to simulate another scenario in drilling. The two
test cases mentioned above are relevant to two real drilling scenarios, which are
explained below.

Connection: The action of adding a stand of drillpipe to the drillstring to
continue drilling deeper is called connection. To do so, the pump is stopped and
choke is partially closed to maintain the downhole pressure in a specific range. A
new drillpipe is attached to the top of the drillstring to elongate the drillstring.
After this, the pump is turned on and the choke is opened up and the drilling
procedure resumes [128], [155].

Choke plugging: As the mud along with the cuttings travels up along the
annulus, the mixture passes through the choke manifold. When some of the
cuttings get stuck in the choke, due to their weight and change of flow direction,
the flow area of the choke decreases if no action is taken by the operator. Any
change in the choke area might affect the choke pressure and consequently the
bottomhole pressure. The contingency of having some cuttings getting stuck
in the choke yielding in the unplanned reduction of the flow area in the choke
manifold is called choke plugging [128], [155].

8.4.1 Training for connection scenario

In this study, the varying parameters are the mud viscosity γ, the well length
L, the well inclination θ, the speed of sound cl, the reference density of the
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mud ρ0s, and the drillstring diameter d and wellbore diameter Dout. The initial
condition of the system (8.16) is its steady-state solution corresponding to a
specific parameters of interest or the parameters selected during the Greedy
algorithm. Then, by changing the inputs to the system (qp and zc), the dynamics
of the system are excited. In other words, the dynamic solution is a perturbation
of the steady-state solution.

Table 8.2 contains the range of the varying parameters. Due to memory
constraints, only 128 equispaced samples are considered in the discrete parameter
domain. There are also some fixed parameters from one simulation to another,
which are listed in Table 8.3. In the last row of Table 8.2, the set of parameters
selected for the online simulation µo is reported, which does not lie in the discrete
parameter domain Dh. The diameters used in the online stage are shown in
Figure 8.6. The number of grid cells is Nδ = 500 and the fixed time horizon is
T = 50 s. In each simulation, the time-step ∆t is changed such that cl∆t/∆x =
0.8, which is the CFL number [113] associated to each simulation. The output
of interest is the pressure in the last 10 percent of the domain in the annulus
(i.e., downhole in the well) where the pressure needs to be calculated accurately.
The boundary conditions variability over time during offline stage are shown
in Figure 8.7. This type of input simulates the connection scenario commonly
performed in practice.

Remark 8.13. As the length of the spatial domain L varies, we scale the RB
vectors on a unit length and scale back for any new given length.

Remark 8.14. The interconnected model Σ̂ may get unstable due to the in-
terconnection of the area discontinuity and the reduced linear subsystem Σ̂lin.
One way to reduce the gain of this feedback interconnection is to reduce the CFL
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Figure 8.6: Diameter configuration for the online test cases.
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Figure 8.7: Input signals for the connection scenario.

Table 8.2: Range of varying parameters.

parameter

ρ0s

[Kg/m3]
θ

[deg]
cl

[m/s]
L

[m]
γ

[Pa.s]
d

[m]
Dout

[m]
minimum 800 60 1300 800 0.004 0.05 0.15
maximum 1200 90 1500 1200 0.04 0.125 0.4

Online µo 1000 75 1400 1000 0.02
Well 1

Figure 8.6
Well 1

Figure 8.6

number (for CFL= 0.8, we did not encounter instability in the simulations).

The maximum of the error indicator computed in the POD-strong Greedy
algorithm (line 10 of Algorithm 11) during the offline stage among all the mem-
bers of the training set Dh is plotted in Figure 8.8 where no area variation is
imposed.

A comparison of the pressure profile between the FV and RB solutions is
shown in Figure 8.9 at four different time instants during the online stage where
the area discontinuity of Well 1 is considered. It should be noted due to the
low compressibility of the drilling mud, that the pressure does not vary signifi-
cantly over the discontinuous area and its discontinuties are not visible in Figure
8.9. The maximum error in the downhole pressure approximation is less than 1
bar. The dimension of the full-order model is 2000 while the dimension of the
reduced-order model is 80 plus 6 basis vectors added in the intermediate stage

Table 8.3: Fixed parameters for the simulations.
parameter g [m/s2] patm [Pa] Kc AN [in2] CD

value 9.81 105 0.00285 1.1562 0.8
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Figure 8.8: Error in approximating pressure profile by the RB solution during
the offline stage with spatially constant diameters.

to capture the area discontinuity (one diameter discontinuity in the drillstring
for both momentum and density and two in the annulus for both momentum
and density). To decrease the approximation error, the number of RB vectors
should be increased. However, increasing the number of RB vectors does not
resolve the so-called Gibbs phenomenon due to the hyperbolic nature of the
system under investigation [66]. In addition to the pressure, Figures 8.10 and
8.11 show the comparison of the velocity profiles between the FV and the RB
solution. To show the applicability of the method, the RB results are also com-
pared with the POD results applied to the snapshots of the full-order model
with discontinuity. Apparently, POD works better; however, when the location
of the area discontinuity varies, the entire offline stage should be implemented
again. The aforementioned Gibbs phenomenon is more visible in Figures 8.10
and 8.11. However, in the MPD context, the approximation of pressure is much
more important than approximating the velocity. The inaccuracies observed in
Figures 8.10, 8.11 are due to the hyperbolic nature of the system, which is beyond
the scope of this paper. It can be inferred from the results that the proposed
methodology for capturing the local nonlinearities works efficiently and accu-
rately and can be a promising approach to speed up real-life drilling operations.

The time-wise comparison of the bottomhole pressure computed by the full-
order and reduced-order model together with the approximation error is depicted
in Figure 8.12. Apparent from this figure, the wave reflection occurred due to
the area variation has been captured accurately by the reduced-order model (see



8.4 Numerical results 241

0 50 100 150
-1000

-800

-600

-400

-200

0

20 40 60 80 100 120
-1000

-800

-600

-400

-200

0

40 60 80 100 120 140
-1000

-800

-600

-400

-200

0

0 20 40 60 80 100
-1000

-800

-600

-400

-200

0

Figure 8.9: Comparison between pressure profiles obtained by the FV and RB
solution for the online parameter µo as in Table 8.2, connection scenario.
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Figure 8.10: Comparison between velocity profiles obtained by the FV solution,
the RB solution and direct POD applied to the discontinuous solution in the
drillstring for the online parameter µo as in Table 8.2, connection scenario.

the step-wise increase in the downhole pressure over time, which is due to the
wave reflection at the area discontinuities and boundaries). This phenomenon
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Figure 8.11: Comparison between velocity profiles obtained by the FV solution,
the RB solution and direct POD applied to the discontinuous solution in the
annulus for the online parameter µo as in Table 8.2, connection scenario.
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Figure 8.12: Time-wise comparison of the bottomhole pressure between the FV
and RB solution for the online parameter µo as in Table 8.2, connection scenario.

significantly changes the dominant resonance frequency of the system, which has
to be captured by the reduced-order model. The time-wise change of the velocity
at the choke together with the approximation error can be seen in Figure 8.13,
which further confirms the accuracy of the reduced-order model.
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Figure 8.13: Time-wise comparison of the velocity at the choke between the FV
and RB solution for the online parameter µo as in Table 8.2, connection scenario.

The CPU time allocated to solve the offline stage, the intermediate stage, the
online stage and the full-order model together with the speedups are reported in
Table 8.4 by using different numbers of RB functions. Number of RB functions
for each state is the same and therefore the total number of RB functions is
multiplied by four. Since there is one diameter discontinuity in the drillstring
and two diameter discontinuities in the annulus, six extra local basis functions
are added to enrich the previous set of RB functions. The speedups are obtained
by comparing the CPU time of solving the full-order model and the CPU time
of solving both the intermediate and the online stages. This shows that by using
this approach, a speedup in the computational time of obtaining the reduced-
order solution (intermediate and online stages together) up to 70 can be achieved
while maintaining a high accuracy in the output of interest. The large CPU
time of the offline stage (around 17 hours) is due to the high dimension of the
parameter domain and the requirement to solve the full-order model (without
area discontinuity) 128 times.

To further evaluate the performance of the proposed method, five random
points in the parameter domain (outside the training parameter domain) are
selected and new simulations for the connection scenario in the two geometries
shown in Figure 8.6 are computed and compared with the full-order solutions.
In Table 8.5, the following relative error indicator for the different parameter
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samples is reported:

e =

√√√√∑Nt
n=0 ‖yn(µ)− ŷn(µ)‖22∑Nt

n=0 ‖yn(µ)‖22
. (8.27)

The reported relative errors confirm the accuracy of the approach for different
well geometry configuration and different parameter samples. The results also
reveal that the relative error is higher if the number of area discontinuities is
higher due to the many discontinuities in the state variables.

8.4.2 Choke plugging scenario

In the previous section, both the offline stage and the online stage are computed
with the same external control inputs; only the parameters of the simulation
are changed. In this section, based on the offline stage performed on connection
scenario, we simulate a choke plugging scenario (with different inputs compared
to the offline stage) and show the results.

In a choke plugging scenario, the choke opening decreases due to cuttings
getting trapped inside the choke. As there are two parallel chokes installed
at the choke manifold, the plugged choke is closed and the stand-by choke is
opened. Then, the personnel cleans the plugged choke. To simulate this effect,
the choke opening zc is reduced for some period of time and then increased to
the previous level. Throughout all these actions, the pump flow is constant. The
input signals are shown in Figure 8.14.

Table 8.4: CPU time comparison of the full-order model of MPD and its reduced
version for the online parameter µo as in Table 8.2 (N : number of basis functions
in the online stage).

Full-order 368.11 s
Offline 16 h 46 min
N 1× 4 + 6 5× 4 + 6 10× 4 + 6 15× 4 + 6 20× 4 + 6

Intermediate 0.066 s 0.068 s 0.068 s 0.072 s 0.075 s
Online 4.15 s 4.18 s 4.75 s 4.95 s 5.1 s

Speedup 87.3 86.6 76.4 73.3 71.1

Table 8.5: Error indicator (8.27) for different random parameter samples (outside
the discrete parameter domain) in the two geometry configurations shown in
Figure 8.6 tested for connection scenario.

sample number 1 2 3 4 5
well 1 0.0028 0.0033 0.0025 0.0035 0.0031
well 2 0.0079 0.0091 0.0072 0.0100 0.0090
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Figure 8.14: Input signals for the choke plugging scenario.

Similar to the previous test case, the time-wise comparisons of the bottom-
hole pressure and the velocity at the choke together with their corresponding
approximation errors are shown in Figures 8.15 and 8.16. The results confirm
that, although the training (the offline stage) is performed for a connection sce-
nario, it can simulate other drilling scenarios. Speedup in this case is similar to
Table 8.4 of the previous test case.

The results presented in this section confirm that the proposed method suc-
cessfully captures the effect of the local nonlinearities inside the computational
domain and at the boundaries of the system during MOR.

8.5 Conclusion

In this paper, a new approach for addressing the issue of localized nonlinearities
with the RB method has been proposed. These nonlinearities appear either
at the boundaries of the system or inside the computational domain. As the
boundary conditions for industrial systems are often nonlinear, it is vital to
change the reduced basis ansatz, such as the one suggested in this paper. For the
nonlinearities inside the domain, a local enrichment approach bearing similarities
with EIM is incorporated and its outputs are coupled with the rest of the system
dynamics. Using this approach, crucial underlying physics of the phenomena
such as mass conservation at a particular point and wave reflections are preserved
during MOR. Any other spatially-dependent local nonlinearities can be handled
by this method. Locating pump stations and orifices in a pipeline can be seen
as other applications which may benefit from the proposed approach.
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Figure 8.15: Time-wise comparison of the bottomhole pressure between the FV
and RB solution for the online parameter µo as in Table 8.2, choke plugging
scenario.
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Figure 8.16: Time-wise comparison of the velocity at the choke between the FV
and RB solution for the online parameter µo as in Table 8.2, choke plugging
scenario.

The speedup obtained by using the proposed approach can expedite, for
instance, optimization for well planning, real-time simulations, and the imple-
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mentation of (model-predictive and optimal) control techniques.
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Part III

Port-Hamiltonian Systems

The final part of the thesis provides the pH formulation of models involved in
MPD. In this part, two commonly used multi-phase flow models, the TFM and
DFM, are investigated and pH modelling of both is presented. As the single-
phase flow also abides by pH formalism, all dynamical models involved in MPD
can be reformulated with such a structure. To create a pH-MPD model, these
pH models are interconnected through the boundary condition of a drilling bit.
In order to preserve the total power and obtain an aggregated pH model for the
MPD model, the drilling bit should also preserve power. The conditions under
which this boundary constitutes a power-preserving interconnection are derived
in this chapter. The pH structure can be exploited for passivity-preserving MOR
techniques in future studies.





Chapter 9

Port-Hamiltonian Formulation of
Two-phase Flow Models

Two-phase flows are frequently modelled and simulated using the Two-Fluid
Model (TFM) and the Drift Flux Model (DFM). This paper proposes Stokes-
Dirac structures with respect to which port-Hamiltonian representations for such
two-phase flow models can be obtained. We introduce a non-quadratic candi-
date Hamiltonian function and present dissipative Hamiltonian representations
for both models. We then use the structure of the corresponding formally skew-
adjoint operator to derive a Stokes-Dirac structure in the scope of the two vari-
ants of multi-phase flow models. Moreover, we present a numerical counter
example to demonstrate that only a special form of the DFM (without slip be-
tween the phases) can be cast in a port-Hamiltonian representation and that the
DFM with the Zuber-Findlay slip conditions is not an energy consistent model
for two-phase flow.

9.1 Challenges in the DFM reduction

Applying projection-based model order reduction techniques, such as the re-
duced basis method, to the DFM does not typically yield a stable system due
to the highly nonlinear and coupled nature of the DFM. It is challenging, if not
impossible, to identify a suitable basis (of reduced dimension) to approximate
the solution space, irrespective of the number of basis functions used. The dif-
ficulties in the reduction of the DFM, based on the author’s experience and the

This chapter is based on “H. Bansal, P. Schulze, M.H. Abbasi, H. Zwart, L. Iapichino,
W.H.A. Schilders, N. van de Wouw, Port-Hamiltonian Formulation of Two-phase Flow
Models, Submitted to Systems & Control Letters, 2020”.
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conducted simulations, can be listed as below:

• The DFM contains, at the infinite dimensional level, strongly coupled non-
linear terms, which affect the solution dramatically;

• The primitive variables are a highly nonlinear function of conservative
variables;

• Discretization techniques used for the DFM introduce even more local and
distributed nonlinearities;

• Some of the nonlinearities introduced after the discretization, e.g. “max”
function in (2.23), has to be applied at the interface of the two neighbor-
ing cells of the FV discretization, rendering the computational reduction
technique less efficient;

• Boundary conditions are also a highly nonlinear function of conservative
variables;

• The coupled nature of the DFM might require different accuracy for dif-
ferent conservative variables. Even considering this feature does not help
to recover stability.

These features of the DFM make it challenging to construct an accurate and
reduced model concurrently. Discarding some nonlinearities would not lead to a
realistic discretization of the DFM. On the other hand, we could use interpolation
techniques, such as Empirical Interpolation Method (EIM) [17], to tackle the
nonlinearities. However, the stability of the Reduced-Order Model (ROM) is
observed only when a high number interpolation points is used in the EIM
approximation. Moreover, even in very limited stable test cases, the ROM goes
to a non-physical steady-state solution unless a high number of EIM interpolation
points is used. This will reduce the final gain in computational efficiency and
sometimes even increases the required computational time compared to solving
the full-order model. Therefore, we propose in this chapter a pH framework
for DFM and TFM. This can serve as a stepping stone towards Model Order
Reduction (MOR) while keeping essential properties of systems such as stability
or passivity.

9.2 Introduction

In this paper, we develop a port-Hamiltonian (pH) formulation for modelling
multi-phase flow dynamics in pipes. Multi-phase flows are important in a large
range of industrial applications, such as within the oil and gas industry, chemical
and process industry (including heat-pumping systems) as well as the safety
analysis of nuclear power plants [5], [6], [143]. Within the oil and gas industry,
such models are used for virtual drilling scenario testing [5], [6]. The multi-phase
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aspect is particularly relevant in these applications in case of gas influx occurring
from a reservoir.

A pH model formulation is known to provide a modular framework for multi-
physics and interconnected systems [122]. The pH structure allows for non-zero
energy flow through the boundary and guarantees power preservation [154].
Moreover, structure-preserving methods for discretization and the model or-
der reduction of infinite-dimensional pH systems can preserve certain original
system-theoretic properties such as stability and passivity [43], [138]. Addition-
ally, the pH framework supports the development of control strategies [119].

In the literature, the infinite-dimensional pH structure has been exploited in
several domains of science and engineering. For instance, some well-known fluid
dynamical systems such as the shallow water equations [138], reactive Navier
Stokes equations [11], and reaction diffusion processes [184] have already been
formulated in the pH formalism. Such a representation is also prevalent in the
fields of structural dynamics [119] and fluid-structure interaction [36].

Multi-phase flows are mathematically governed by conservation laws. Several
conservation laws have previously been converted to pH representations [121],
[177]. Some work on Hamiltonian modeling for multi-phase hydrodynamics has
been done in [90]. However, (dissipative) Hamiltonian representations do not
exist for the Two-Fluid Model (TFM) and the Drift Flux Model (DFM) [68].
Moreover, until now, to the best of our knowledge, pH modeling for fluid dy-
namics only encompasses single-phase models [181].

Matrix/operator theory for linear distributed parameter port-Hamiltonian
systems on one-dimensional domains is owed to some pioneering works [77], [97].
The central theme of the current paper is to extend and propose modifications
to the existing theory for non-linear distributed parameter systems. We exploit
the existing theory in the scope of linear systems and arrive at new results from
an operator theoretic viewpoint, including further generalizations in the scope
of non-linear distributed parameter port-Hamiltonian systems.

The main contributions of this paper are as follows: (i) (dissipative) Hamil-
tonian representations of the TFM and the DFM, and (ii) proposition of state-
dependent Stokes Dirac structures for both the TFM and the DFM along with
the proof of the corresponding representation obtained in the scope of the TFM.

The paper is organized as follows. In Section 9.3, we introduce the two math-
ematical models governing 1-D multi-phase flow dynamics and mention under
which conditions these are equivalent. The (dissipative) Hamiltonian represen-
tations of these models are presented in Section 9.4. Then, the corresponding
geometric properties are discussed and proved in Section 9.5. This section also
includes a non-unique parametrization of the boundary port-variables. After-
wards, Section 9.6 deals with the reasons behind formulating the DFM without
slip between the two phases in a pH representation instead of a general DFM with
the Zuber-Findlay slip conditions. Finally, Section 9.7 closes with conclusions.

Notations: We first introduce few notations that are used in the sequel.
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L2(Ω) is the space of square-integrable functions over the spatial domain Ω, and

L2(Ω)p = L2(Ω)× L2(Ω)× ...× L2(Ω) (p-times). (9.1)

H1(Ω) denotes the Sobolev space of functions that also possess a weak derivative.
Furthermore, H1

0 (Ω) denotes the functions in H1(Ω) that have zero boundary
values. H1(Ω)p is defined in a manner anologous to L2(Ω)p. And, R denotes
the space of real numbers.

9.3 Multi-phase flow models

In this section, we present two sets of nonlinear conservation laws, namely, the
TFM and the DFM.

9.3.1 Two-Fluid Model (TFM)

The TFM is a set of Partial Differential Equations (PDEs) and algebraic closure
relations. The PDEs expressing mass and momentum conservation for each
phase are as follows:

∂t (αgρg) + ∂x (αgρgvg) = 0, (9.2a)

∂t (α`ρ`) + ∂x (α`ρ`v`) = 0, (9.2b)

∂t (αgρgvg) + ∂x
(
αgρgv

2
g

)
= −∂x (αgp) +Mg, (9.2c)

∂t (α`ρ`v`)+∂x
(
α`ρ`v

2
`

)
= −∂x (α`p)+M`, (9.2d)

where t ∈ R≥0 and x ∈ [a, b] are, respectively, the temporal and spatial variables
(a and b refer to the location of the left and the right boundary of the one-
dimensional spatial domain). The model contains seven unknown variables,
namely, liquid and gas void fraction, α` and αg, liquid and gas phase velocity,
v` and vg, liquid and gas phase density, ρ` and ρg, and the common pressure p.

To complete the model, we use one set of the most widely applied closure
laws as in [68]:

αg + α` = 1, (9.3a)

Mg +M` = 0, (9.3b)

Mg = p∂xαg +Mig, (9.3c)

Mig = bMg (v` − vg), with bMg ≥ 0, (9.3d)

ρg =
p

c2g
, (9.3e)

ρ` = ρ`0 +
p− p`0
c2`

, (9.3f)
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where (9.3a) expresses that any pipe segment is occupied by the combination of
gas and liquid. The terms Mg and M` with the constant bMg in (9.3b)–(9.3d)
account for the force interaction between the phases. Finally, (9.3e)–(9.3f) define
the equation of state of each phase with the reference density and pressure as
ρ`0 and p`0, and cg and c` are the constant speeds of sound in the gas and liquid
phase, respectively.

Remark 9.1. We do not consider gravitational and frictional effects in the
above TFM description for the sake of simplicity. However, in principle, the
TFM can be formulated with the additional terms accounting for these effects
[68].

The TFM, governed by the set of equations (9.2) and (9.3), can be written
in terms of only four physical variables. We introduce the following shorthand
notations: mg := αgρg and m` := α`ρ`.

Assumption 9.2. The gas void fraction, the liquid void fraction, the liquid
and the gaseous phase densities along with β = ρ`0c

2
` − p`0 are positive.

Lemma 9.3. .model By considering mg, m`, vg and v` as state variables, the
system of equations (9.2) and (9.3) can be re-written in the following form:

∂tmg + ∂x (mgvg) = 0, (9.4a)

∂tm` + ∂x (m`v`) = 0, (9.4b)

∂tvg+∂x

(
v2

g

2

)
= −c2g∂x (ln p)+

bMg
mg

vr, (9.4c)

∂tv`+∂x

(
v2
`

2

)
=−c2`∂x (ln (p+ β))−

bMg
m`

vr, (9.4d)

where vr = (v` − vg), and

p (mg,m`, αg) = mgc
2
g +m`c

2
` − β (1− αg) , (9.5)

αg (mg,m`) = −mg

c2g
2β
−m`

c2`
2β

+
1

2
+

√√√√(mg

c2g
2β

+m`
c2`
2β
− 1

2

)2

+mg

c2g
β
.

(9.6)

We refer the reader to [6] for the detailed proof of the expression for
αg (mg,m`). In summary, the set of equations (9.4) is equivalent to (9.2) and
(9.3).

9.3.2 Drift Flux Model (DFM)

The DFM can be obtained from the TFM via a slip relation of the form

vg − v` = Φ (mg,m`, vg) , (9.7)
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where mg and m` are as introduced above. Since the slip relation (9.7) deter-
mines the coupling between the velocities of the two phases, only one momentum
equation is required contrary to the two momentum equations in the TFM (9.2).
Several models of the form (9.7) exist depending on the choice of the function
Φ [68]. In the simplest case, without slip, Φ := 0. Another case is the Zuber-
Findlay relation [68]:

Φ :=
(K − 1)vg + S

Kα`
→ vg = K(αgvg + α`v`) + S, (9.8)

where K and S are flow-regime dependent parameters, which are assumed to be
constant in this study.

Using the abbreviations Ig := mgvg and I` := m`v`, the governing equations
for the DFM are:

∂tmg + ∂xIg = 0, (9.9a)

∂tm` + ∂xI` = 0, (9.9b)

∂t (Ig + I`) + ∂x (Igvg + I`v`) = −∂xp+Qg +Qv (9.9c)

completed with closure equations (9.3a), (9.3e), (9.3f), (9.7) and gravitational
effects Qg and frictional effects Qv defined by [69]:

Qg = −g (mg +m`) sin θ, (9.10a)

Qv = −32µm(αgvg + α`v`)

d2
, (9.10b)

with gravitational constant g, space-dependent pipe inclination θ(x), mixture
viscosity µm > 0, and pipe diameter d.

Remark 9.4. Similar to Lemma 9.3, the governing equations (9.9) associated
with v := vg = v` (DFM without slip), the closure equations (9.3a), (9.3e), (9.3f)
and (9.10), upon elimination of auxiliary variables, can be rewritten as a system
of PDEs with as many unknowns as equations. We omit the discussion for the
sake of brevity.

The TFM can be adapted to behave exactly like the DFM if the term Mig in
(9.3d) is replaced with the term stated in the following theorem. For the proof,
we refer to [68].

Theorem 9.5. Under zero gravitational and frictional effects, the DFM (9.9)
together with (9.3a) and (9.7) is equivalent to the TFM (9.2) with (9.3a)–(9.3c),
and

Mig = −αgα`
ρg − ζρ`
mg + ζm`

∂xp−
mgm`

mg + ζm`

(
v`∂xv`−
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ζvg∂xvg + µg∂x(mgvg) + µ`∂x(m`v`)
)
, (9.11)

with µg := ∂Φ
∂mg

, µ` := ∂Φ
∂m`

, ζ := 1− ∂Φ
∂vg

.

Remark 9.6. The equivalence of the DFM and the TFM can also be shown in
the presence of gravitational and frictional effects; see [68], for further details.

The model equivalence, stated above, will play a crucial role in drawing a
conclusion about the behavior of the Hamiltonian along the solutions of the
DFM by using the theoretical analysis conducted for the TFM (see Section 9.6).

9.4 Dissipative Hamiltonian Formulations

Port-Hamiltonian (pH) systems have several useful properties for system anal-
ysis and control. Basic properties of pH systems include passivity and compo-
sitionality. The pH model formulation is appealing as it helps to characterize
the energy exchange across the boundaries and thus accounts for the interac-
tion between the system and the environment. Such a framework generalizes
the classical Hamiltonian framework by the definition of boundary ports. We
restrict ourselves to pH systems (with state-variable z) of the form

∂tz =
(
J (z)−R(z)

)
δzH(z),(

f∂
e∂

)
=M

(
(δzH(z))(b)
(δzH(z))(a)

)
,

(9.12)

where H is the Hamiltonian functional, δzH(z) its variational derivative, and
M is a state-dependent bijective mapping. Furthermore, for every z, J (z)
is formally skew-adjoint with respect to the L2 inner product, i.e., for e1, e2

sufficiently smooth and zero at the boundary there holds∫
Ω

eT1 (J (z))e2dx+

∫
Ω

eT2 (J (z))e1dx = 0, (9.13)

where Ω refers to the spatial domain, and R is formally self-adjoint with re-
spect to the L2 inner product and positive semi-definite. Finally, f∂ , e∂ are the
boundary ports.

The dissipation inequality, which expresses that energy cannot be generated
within the system, is a property which directly follows from the definition of a
pH system. In particular, ignoring the boundary conditions,

dH
dt

=

∫
Ω

(δzH(z))
T
∂tz dx =

∫
Ω

(δzH(z))
T

(J (z)−R(z))δzH(z) dx

=

∫
Ω

(δzH(z))
T

(−R(z))δzH(z) dx ≤ 0.

(9.14)
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Thus, R is the dissipative component of the system. In the presence of boundary
conditions, the behavior of the Hamiltonian along the solutions of the mathe-
matical model is governed by the following balance equation:

dH
dt

=

∫
Ω

(δzH(z))
T

(−R(z))δzH(z) dx+ b.t., (9.15)

where b.t. denotes the boundary terms. Normally f∂ , e∂ are chosen such that the
boundary terms equal 〈f∂ , e∂〉 w.r.t. some inner product. In our case, this will
be the standard inner product on Euclidean space. Associated to the operators
J and R, we can identify an underlying geometric object called Stokes-Dirac
structure. This is crucial as the pH systems can be defined with respect to these
infinite-dimensional Stokes-Dirac structures [64]. Often, this structure is only
associated to J . This geometric object yields a manner to describe the boundary
port variables, i.e., f∂ and e∂ , see (9.12).

We first introduce (dissipative) Hamiltonian representations, i.e., without
boundary effects for the mathematical models under consideration. The resulting
formally skew-adjoint operators and formally self-adjoint operators are used as
a tool to derive a non-canonical Stokes-Dirac structure, and hence the boundary
port variables.

In the models discussed in Section 9.3, the Hamiltonian is dependent on the
kinetic, gravitational potential and internal energy. To derive the internal energy
of the system, consider the following remark.

Remark 9.7. The internal energy ui, i ∈ {`, g}, can be interpreted as the energy
causing the expansion of the i-th compressed phase or compression of the i-th
expanded phase. In order to derive this energy component, the Gibbs relation
[41] under barotropic and isentropic flow considerations for an infinitesimal part
of the phase is used, i.e.,

ρ2
idui = pdρi, i ∈ {`, g}.

Using (9.3e)–(9.3f) and integrating the above equation leads to

u` = −p`0
ρ`

+ c2` ln ρ` +
ρ`0c

2
`

ρ`
+K1, (9.16a)

ug = c2g ln ρg +K2, (9.16b)

where K1 and K2 are the integration constants.

Considering the total energy of the system (neglecting the gravitational po-
tential energy), we define a candidate for the Hamiltonian as follows:

H :=

∫
Ω

(
αgρg

v2
g

2
+ α`ρ`

v2
`

2
+ αgρgug + α`ρ`u`

)
dx, (9.17)
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where Ω = [a, b] refers to the spatial domain.
Inserting (9.16) into (9.17), the Hamiltonian for a flow across a (unit) con-

stant cross-section takes the following form:

H :=

∫
Ω

(
αgρg

v2
g

2
+ α`ρ`

v2
`

2
+ αgρg(c2g ln ρg +K2)+

α`ρ`
(
c2` ln ρ` +K1

)
+ α`(c

2
`ρ`0 − p`0)

)
dx. (9.18)

It should be noted that when ρi → 0, ρi ln ρi → 0. The term ρi ln ρi is
bounded from below, i.e., ρi ln ρi ≥ −1/e. So, the Hamiltonian (9.18) is bounded
from below. Due to the high bulk modulus of the liquid phase, we usually have
ρ`0c

2
` � p`0 [69]; therefore, the positivity of the Hamiltonian (9.18) can be

ensured by appropriately choosing K1 and K2 or even adding some constants to
the Hamiltonian. For simplicity, we set K1 := 0 and K2 := 0 henceforth.

Remark 9.8. The discussion in the above paragraph is reasonable from a phys-
ical perspective. However, numerically, solutions of the TFM and DFM may not
be guaranteed to have non-negative density and non-negative void fractions.

9.4.1 Dissipative Hamiltonian Formulation for the Two-Fluid
Model

We now present the dissipative Hamiltonian framework for the TFM.

Theorem 9.9. The governing equations (9.2) together with the closure equations
(9.3) can be written in the following dissipative Hamiltonian form:

∂tq = (JT (q)−RT ) δqH(q) (9.19)

with q = [q1, q2, q3, q4]T := [mg, m`, Ig, I`]
T , the Hamiltonian functional

(9.18), and where

JT (q) = −


0 0 ∂x(q1·) 0
0 0 0 ∂x(q2·)

q1∂x(·) 0 ∂x(q3·) + q3∂x(·) 0
0 q2∂x(·) 0 ∂x(q4·) + q4∂x(·)


is a formally skew-adjoint operator with respect to the L2 inner product, and

RT =


0 0 0 0
0 0 0 0
0 0 bMg −bMg
0 0 −bMg bMg


is a symmetric and positive semi-definite matrix.



260 Chapter 9. pH modelling of Multi-phase Flow Models

Proof : Similar to (9.4), the TFM with respect to the state variables q can
be straightforwardly formulated. We omit the model reformulation here for the
sake of brevity.

The Hamiltonian (9.18) in terms of q1, q2, q3 and q4 is re-written as follows:

H(q1, q2, q3, q4) :=

∫
Ω

q2
3

2q1
+

q2
4

2q2
+ q1c

2
g ln

(
p

c2g

)
+ q2c

2
` ln

(
p+ β

c2`

)
+ (1− αg)β dx, (9.20)

where p and αg can be replaced by the relations (9.5) and (9.6), respectively.
The variational derivatives are:

δH
δq1

= −1

2

q2
3

q2
1

+ c2g ln

(
p

c2g

)
+ c2g,

δH
δq3

=
q3

q1
,

δH
δq2

= −1

2

q2
4

q2
2

+ c2` ln

(
p+ β

c2`

)
+ c2` ,

δH
δq4

=
q4

q2
.

For the sake of brevity, we omit detailed calculations here. Instead, we argue
that the TFM exhibits similarities in structure with the model presented in [166],
where the Hamiltonian structure was discussed for single-phase dynamics. The
TFM with bMg = 0 can be viewed as two separately existing phases. The contri-

butions due to the non-zero bMg enter into the dissipation matrix RT . The proof
of the symmetric and positive semi-definite nature of RT is straightforward.

The operator JT is formally skew-adjoint (with respect to the L2 in-
ner product). To prove formal skew-adjointness of JT , we check whether
〈e1,JTe2〉L2(Ω) + 〈JTe1, e2〉L2(Ω) = 0 for smooth e1, e2 which are zero at the

boundary, where we define ei = (ei1, e
i
2, e

i
3, e

i
4)T . Here, the variable eij refers to

the j-th element of ei. JT is formally skew-adjoint with respect to the L2 inner
product as

−〈e1,JTe2〉L2(Ω) − 〈JTe1, e2〉L2(Ω) =

∫
Ω

e1
1∂x(q1e

2
3) + q1e

2
3∂xe

1
1+

e2
1∂x(q1e

1
3) + q1e

1
3∂xe

2
1 + e1

2∂x(q2e
2
4) + q2e

2
4∂xe

1
2+

e2
2∂x(q2e

1
4) + q2e

1
4∂xe

2
2 + e1

3

[
∂x(q3e

2
3) + q3∂xe

2
3

]
+

e2
3

[
∂x(q3e

1
3) + q3∂xe

1
3

]
+ e1

4

[
∂x(q4e

2
4) + q4∂xe

2
4

]
+

e2
4

[
∂x(q4e

1
4) + q4∂xe

1
4

]
dx = (

[
e1

1 e1
2 e1

3 e1
4

] 
0 0 q1 0
0 0 0 q2

q1 0 2q3 0
0 q2 0 2q4


︸ ︷︷ ︸

Q


e2

1

e2
2

e2
3

e2
4

)|ba,

(9.21)

which vanishes under our assumptions on the boundary conditions.
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9.4.2 Dissipative Hamiltonian Formulation for the Drift Flux
Model

So far, we focused on the dissipative Hamiltonian representation for the TFM.
We will now deal with the DFM under gravitational and frictional effects, and
present a corresponding dissipative Hamiltonian formulation. For the DFM, we
focus only on a case in which there is no slip between the phases, i.e., v := vg = v`
(the reason for adopting this no-slip assumption is provided in Section 9.6). Since
gravitation is considered, the gravitational potential energy needs to be added
to the Hamiltonian. The Hamiltonian now takes the following form:

HD(mg,m`, v) =

∫
Ω

mg
v2

2
+m`

v2

2
+m`c

2
` ln

(
p+ β

c2`

)
+mgc

2
g ln

(
p

c2g

)
+

α`β + (mg +m`)

 x∫
a

g sin(θ(ξ))dξ

 dx. (9.22)

Using the above candidate Hamiltonian function HD, a dissipative Hamiltonian
representation of a special case of the DFM is shown below.

Theorem 9.10. The governing equations (9.9) together with v := vg = v` (case
of no slip), the closure equations (9.3a), (9.3e), (9.3f) and (9.10) can be written
in dissipative Hamiltonian form as follows:

∂tzD = (JD(zD)−RD(zD)) δzDHD(zD) (9.23)

with zD := [mg, m`, v]T , the Hamiltonian functional (9.22), where

JD(zD) = −


0 0 ∂x

(
mg

mg+m`
·
)

0 0 ∂x

(
m`

mg+m`
·
)

mg

mg+m`
∂x(·) m`

mg+m`
∂x(·) 0


is a formally skew-adjoint operator with respect to the L2 inner product, and

RD(zD) =

0 0 0
0 0 0

0 0 32µm
d2(mg+m`)

2


is a symmetric and positive semi-definite matrix.

Proof : First note that, using (9.9a) and (9.9b), the left-hand side of equation
(9.9c) can be rewritten as

(mg +m`) ∂tv + v∂t (mg +m`) + ∂x
(
(mg +m`) v

2
)
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= (mg +m`)

(
∂tv + ∂x

(
v2

2

))
.

Thus, instead of (9.9c) we can also consider

∂tv + ∂x

(
v2

2

)
=

1

mg +m`
(−∂xp+Qg +Qv) . (9.24)

The variational derivatives of HD are given by:

δHD
δmg

= c2g ln

(
p

c2g

)
+
v2

2
+ c2g +

x∫
a

g sin(θ(ξ))dξ,

δHD
δm`

= c2` ln

(
p+ β

c2`

)
+
v2

2
+ c2` +

x∫
a

g sin(θ(ξ))dξ,

δHD
δv

= (mg +m`) v.

Next, we prove the claim equation by equation. The first line of (9.23) reads

∂tmg = −∂x
(

mg

mg +m`
(mg +m`) v

)
= −∂x (mgv) . (9.25)

Similarly, the second line is

∂tm` = −∂x
(

m`

mg +m`
(mg +m`) v

)
= −∂x (m`v) . (9.26)

Let us introduce a short-hand notation G =
x∫
a

g sin(θ(ξ))dξ. Then, the third line

yields

∂tv =− mg

mg +m`
∂x

(
c2g ln

(
p

c2g

)
+
v2

2
+ c2g +G

)
− m`

mg +m`
∂x

(
c2` ln

(
p+ β

c2`

)
+
v2

2
+ c2` +G

)
− 32µm

d2 (mg +m`)
2 (mg +m`) v

=− ∂x
(
v2

2

)
− 1

(mg +m`)
(∂xp+Qg +Qv).

(9.27)

The claim follows by observing that (9.25), (9.26), and (9.27) are identical
to (9.9a), (9.9b), and (9.24), respectively.

The symmetric and positive semi-definite nature of RD follows immediately
from the positivity of µm. The formal skew-adjointness of JD essentially follows
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from integration by parts and neglecting the boundary conditions. The operator
JD contains terms similar to the skew-adjoint operator JT , the formal skew-
adjointness of which was discussed extensively in the proof of Theorem 9.9. For
the sake of brevity, we refer the reader to follow similar lines of reasoning to
show the formal skew-adjointness of JD.

9.5 Geometrical properties of the system: Stokes-Dirac struc-
tures

We now define a geometric structure, a generalization of symplectic and Poisson
structures, called a Stokes-Dirac structure.

Definition 9.11. [64], [77] Consider F and E as real Hilbert spaces which are
isometrically isomorphic. The subspace D ⊂ F × E is a Stokes-Dirac structure
if D = D⊥, where D⊥ denotes the orthogonal complement which is defined as

D⊥ := {(f̃ , ẽ) ∈ F × E |� (f̃ , ẽ), (f , e)�= 0 ∀(f , e) ∈ D}. (9.28)

Here, � (f̃ , ẽ), (f , e)� is defined as follows:

� (f̃ , ẽ), (f , e)�:= 〈f̃ | e〉+ 〈f | ẽ〉, (9.29)

where the notation 〈f | e〉 indicates a non-degenerate bilinear form defined on
the bond space B = F × E.

This structure relates the composing elements of a system in a power-
conserving manner [138]. Such geometric structures often have a composition-
ality property [7], [106], [138].

For (f, e) element of a Stokes-Dirac structure, it is easy to see that 〈f | e〉 = 0,
and thus there is a close relation to (formally) skew-adjoint operators, see also
(9.13). However, if f = J e for all (f, e) ∈ D, and J is formally skew-adjoint,
then D ⊂ D⊥. To make such a D into a Stokes-Dirac structure, it is required
that D = D⊥ holds. The formally skew-adjoint part of a pH system will form
the foundation of the associated Stokes-Dirac structure, as we will show as well.

Non-linearity encoded within the Hamiltonian along with a linear Stokes-
Dirac structure constitutes a favorable representation of PDEs. Such a structure
facilitates the analysis of non-linear systems as the linearity of the Stokes-Dirac
structure can be exploited to assess system behavior. Stokes-Dirac structures
can also be used to formulate boundary control systems [77].

In the existing results [64], [77], [175], the skew-adjoint operator yields a
symmetric bilinear form on the space of the boundary variables. An important
tool used in that framework is the trace operator, which, in earlier works [64],
[77], [175], requires that the effort variables e belong to the function class H1(Ω).
Given the state-dependent nature of skew-adjoint operators in (9.19) and (9.23)
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(unlike in [77]), a combination of the states and the effort variables have to belong
to the function classH1(Ω) or suitable conditions have to be imposed on the state
variables in order to have effort variables belonging to the function class H1(Ω)
(see Theorems 9.14 and 9.16). Boundary port-variables have been parametrized
in [77] using the trace operators. However, such an elegant parametrization is
limited to the case of a non-singular matrix Q (synonymous to (9.21)) arising in
linear problems with state-independent operators. To the best of our knowledge,
the work [175] is the only work in the scope of parametrization of boundary
port-variables for a singular matrix Q, thereby enlarging the class of systems
that can be dealt. Villegas in [175] demonstrated the approach to define the
non-degenerate bilinear form under singular Q and consequently modified the
definition of the boundary port-variables. However, [175] was limited to the
setting of state-independent Stokes-Dirac structures. In this work, we extend
the definition of boundary port-variables to eventually obtain state-dependent
Stokes-Dirac structures with boundary ports for non-linear problems with non-
quadratic Hamiltonian functional. It should be mentioned that the authors in
[154] have also considered state-dependent Stokes-Dirac structures for problems
(for instance, ideal isentropic fluid) with non-quadratic Hamiltonian functional
by using a differential geometric viewpoint. We, contrarily, use the matrix or
operator-theoretic viewpoint in the consideration of such geometric structures
in the scope of the compressible two-phase flow models.

Remark 9.12. Boundary port-variables, in our setting, will remain unchanged
in the presence of dissipation. This is only true since our resistive operator
(R) does not include any differential operator. In general, the boundary ports
could also include contributions from the resistive part. In this work, we only
consider Stokes-Dirac structures without accounting for resistive ports (for the
above mentioned reason) and finally arrive at a definition of the boundary port-
variables, which is practical for pH representations.

We recall the following fundamental lemma of calculus of variations.

Lemma 9.13. If the pair (h,m) ∈ L2(Ω)2 satisfies∫ b

a

[h(x)∂xf(x) +m(x)f(x)]dx = 0, (9.30)

for all f ∈ H1
0 (Ω), then

h ∈ H1(Ω), and ∂xh = m(x). (9.31)

Lemma 9.13 will be extensively used in order to prove that a certain structure
is a Stokes-Dirac structure.

Using the above mathematical preliminaries, we first propose a Stokes-Dirac
structure for the TFM and present a corresponding proof, and then we propose
it for the DFM without slip.
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9.5.1 Stokes-Dirac structure representation for the Two-Fluid
Model

We, first, introduce the notations

ft =
[
fmg

fm` fIg fI` fBa,t fBb,t
]T
, (9.32a)

et =
[
emg

em` eIg eI` eBa,t eBb,t
]T
, (9.32b)

ftr =
[
fmg fm` fIg fI`

]T
, (9.32c)

etr =
[
emg

em` eIg eI`
]T

(9.32d)

with ft ∈ Ft, et ∈ Et where Ft = Et = L2(Ω)4 × R2 × R2. On Ft × Et the
following non-degenerate bilinear form is defined:

〈ft | et〉 =

∫
Ω

(fmg
emg

+ fm`em` + fIgeIg+

fI`eI`)dx+ (fBb,t)
T
eBb,t + (fBa,t)

T
eBa,t. (9.33)

Using these notations, the Stokes-Dirac structure corresponding to the dissipa-
tive Hamiltonian representation of the TFM can be expressed as follows.

Theorem 9.14. Consider Ft and Et as introduced above. Moreover, assume
that mg,m`, Ig, I` =: q1, q2, q3, q4 ∈ H1(Ω). We also assume that q1, q2 > 0 on
Ω. Then, the linear subset Dt ⊂ Ft × Et defined as follows:

Dt =
{

(ft, et) ∈ Ft × Et | etr ∈ H1(Ω)4, ftr = Jt(q)etr,

(
fBb,t
eBb,t

)
=


fBb1,t
fBb2,t
eBb1,t
eBb2,t

 =



q1 0 q3 0
0 q2 0 q4

0 0 1 0
0 0 0 1



emg

em`
eIg
eI`


 (b), (9.34)

(
fBa,t
eBa,t

)
=


fBa1,t

fBa2,t

eBa1,t

eBa2,t

 =




0 0 −1 0
0 0 0 −1
q1 0 q3 0
0 q2 0 q4



emg

em`
eIg
eI`


 (a)

}
,

where

Jt(q) = (9.35)

−


0 0 ∂x(mg·) 0
0 0 0 ∂x(m`·)

mg∂x(·) 0 ∂x(Ig·) + Ig∂x(·) 0
0 m`∂x(·) 0 ∂x(I`·) + I`∂x(·)


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is a Stokes-Dirac structure with respect to the symmetric pairing given by

� (ft, et), (f̃t, ẽt)�= 〈ft | ẽt〉+ 〈f̃t | et〉,
(ft, et), (f̃t, ẽt) ∈ Ft × Et, (9.36)

where the pairing 〈· | ·〉 is given in (9.33).

Proof : The proof is divided into two parts. We first prove that Dt ⊂ D⊥t .
We consider two pairs of flow and effort variables belonging to the Stokes-

Dirac structure, i.e., (ft, et) ∈ Dt and (f̃t, ẽt) ∈ Dt. Using the earlier introduced
notations, we obtain:

� (ft, et), (f̃t, ẽt)�=

∫
Ω

(fmg
ẽmg

+ fm` ẽm` + fIg ẽIg + fI` ẽI`)dx+∫
Ω

(f̃mgemg + f̃m`em` + f̃IgeIg + f̃I`eI`)dx+

(fBa,t)
T
ẽBa,t + (fBb,t)

T
ẽBb,t + (f̃Ba,t)

T
eBa,t + (f̃Bb,t)

T
eBb,t.

(9.37)

Substituting the mappings between the flow and the effort variables, the total
sum within the integrals of (9.37) becomes[
− ∂x(q1eIg )ẽmg

− ∂x(q2eI`)ẽm` +
(
− q1∂xemg

− ∂x(q3eIg )− q3∂xeIg

)
ẽIg+(

− q2∂xem` − ∂x(q4eI`)− q4∂xeI`

)
ẽI`

]
+
[
− ∂x(q1ẽIg )emg

− ∂x(q2ẽI`)em`+(
− q1∂xẽmg

− ∂x(q3ẽIg )− q3∂xẽIg

)
eIg +

(
− q2∂xẽm` − ∂x(q4ẽI`)− q4∂xẽI`

)
eI`

)]
= −∂x(q1ẽmg

eIg )− ∂x(q1emg
ẽIg )− ∂x(q2eI` ẽm`)− ∂x(q2ẽI`em`)

− ∂x(q3eIg ẽIg )− ∂x(q3eIg ẽIg )− ∂x(q4eI` ẽI`)− ∂x(q4eI` ẽI`).

Performing integration on the above expression, it equals minus the last ex-
pressions in (9.37) and hence, Dt ⊂ D⊥t . This concludes the first part of the
proof.

We now prove the converse part, i.e., D⊥t ⊂ Dt. For this, we follow the steps
similar to Proposition 4.1 in [64]. The proof consists of several repeated steps,
which are summarized below. We take (f̃t, ẽt) ∈ D⊥t i.e., (f̃t, ẽt) ∈ Ft × Et such
that � (ft, et), (f̃t, ẽt) � = 0 ∀(ft, et) ∈ Dt. To this end, we use the freedom
in the choice of the effort variables and exploit Lemma 9.13.
Step 1: Let (ft, et) ∈ Dt with em` , eIg , eI` = 0 and emg(a) = emg(b) = 0. Using
(9.37), we find that∫

Ω

−(q1∂xemg
)ẽIg + f̃mg

emg
dx = 0 ∀emg

∈ H1
0 (Ω). (9.38)
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Lemma 9.13 gives

q1ẽIg ∈ H1(Ω) and f̃mg
= −∂x(q1ẽIg ). (9.39)

Using q1 ∈ H1(Ω) along with q1 > 0 on Ω, we obtain that ẽIg ∈ H1(Ω).
Step 2: Considering (ft, et) ∈ Dt with emg , eIg , eI` = 0 and em` ∈ H1

0 (Ω), we
have by (9.37) that∫

Ω

−(q2∂xem`)ẽI` + f̃m`em`dx = 0 ∀em` ∈ H1
0 (Ω). (9.40)

Now using Lemma 9.13 leads to

q2ẽI` ∈ H1(Ω) and f̃m` = −∂x(q2ẽI`). (9.41)

As before, using q2 ∈ H1(Ω) along with q2 > 0 on Ω, we have that ẽI` ∈ H1(Ω).
Step 3: For (ft, et) ∈ Dt with emg

, em` , eI` = 0 and eIg ∈ H1
0 (Ω), we obtain:∫

Ω

−∂x(q1eIg )ẽmg
− ∂x(q3eIg )ẽIg−

(q3∂xeIg )ẽIg + f̃IgeIgdx = 0 ∀eIg ∈ H1
0 (Ω).

We rewrite the above equation as follows:∫
Ω

−(∂xq1)(eIg ẽmg)− (∂xq3)(eIg ẽIg )− (∂xeIg )·(
q1ẽmg

+ 2q3ẽIg

)
+ f̃IgeIgdx = 0 ∀eIg ∈ H1

0 (Ω).

As a result of Lemma 9.13, we have that q1ẽmg
+ 2q3ẽIg ∈ H1(Ω). Moreover, we

obtain the following identity:

f̃Ig = −∂x(q1ẽmg
+ 2q3ẽIg ) + ẽmg

∂xq1 + ẽIg∂xq3. (9.42)

Using q1, q3, ẽIg ∈ H1(Ω) and that q1 > 0, it can easily be deduced that ẽmg ∈
H1(Ω), and so (9.42) can be written as

f̃Ig = −q1∂xẽmg
− ∂x(q3ẽIg )− q3∂xẽIg . (9.43)

Step 4: Considering (ft, et) ∈ Dt with emg
, em` , eIg = 0 and eI` ∈ H1

0 (Ω), we
obtain:∫

Ω

−∂x(q2eI`)ẽm` − ∂x(q4eI`)ẽI`−

(q4∂xeI`)ẽI` + f̃I`eI`dx = 0 ∀eI` ∈ H1
0 (Ω).
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Re-writing the above equation as in the previous step and using Lemma 9.13,
we have that q2ẽm` + 2q4ẽI` ∈ H1(Ω) and also obtain:

f̃I` = −∂x(q2ẽm` + 2q4ẽI`) + ẽm`∂xq2 + ẽI`∂xq4. (9.44)

Using q2, q4, ẽI` ∈ H1(Ω) and that q2 > 0, it can easily be deduced that ẽm` ∈
H1(Ω) and so

f̃I` = −q2∂xẽm` − ∂x(q4ẽI`)− q4∂xẽI` . (9.45)

Step 5: Let (ft, et) ∈ Dt with em` = eIg = eI` = 0 and emg
(a) = 0, emg

(b) 6= 0.
Using the procedure outlined above, we obtain the following identity: ẽBb1,t =
ẽIg |b.
Step 6: Let (ft, et) ∈ Dt with emg = eIg = eI` = 0 and em`(a) = 0, em`(b) 6= 0.
We now observe that ẽBb2,t = ẽI` |b holds.
Step 7: Let (ft, et) ∈ Dt with emg

= em` = eI` = 0 and eIg (a) = 0, eIg (b) 6= 0.
Using the outlined procedure, we now obtain:

− (q1ẽmg
eIg ) |b −(q3ẽIgeIg ) |b +f̃Bb1,teIg |b= 0. (9.46)

Finally, we obtain the following identity:

f̃Bb1,t =
(
q1ẽmg + q3ẽIg

)
|b . (9.47)

Step 8: Let (ft, et) ∈ Dt with emg = em` = eIg = 0 and eI`(a) = 0, eI`(b) 6= 0.
Using the outlined procedure, we now obtain the following identity:

f̃Bb2,t =
(
q2ẽm` + q4ẽI`

)
|b . (9.48)

The boundary port-variables fBa1.t, f
B
a2,t, e

B
a1,t and eBa2,t can be obtained in a man-

ner similar to the one outlined for computing the boundary port-variables at the
right boundary of the spatial domain Ω.

Thus, in summary we have shown D⊥t ⊂ Dt and, hence, Dt is a Stokes-Dirac
structure.

Remark 9.15. The formally skew-adjoint operator JT (q) in Theorem 9.9 is
equal to the skew-adjoint operator Jt(q) associated to the Stokes-Dirac structure
representation in Theorem 9.14. These operators are found to be equal only
because of the assumptions on the state variables q; see Theorem 9.14 for details.
In general, the formally skew-adjoint operator and the skew-adjoint operator
associated to the Stokes-Dirac structure representation need not be the same.
For instance, see Theorem 9.16.

We now discuss the representation of the Stokes-Dirac structure correspond-
ing to the skew-adjoint operator JD in the scope of the Drift Flux Model without
slip.
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9.5.2 Stokes-Dirac structure representation for the Drift Flux
Model

We introduce the notations

fd =
[
fmg,d fm`,d fv,d fBa,d fBb,d

]T
, (9.49a)

ed =
[
emg,d em`,d ev,d eBa,d eBb,d

]T
, (9.49b)

fdr =
[
fmg,d fm`,d fv,d

]T
, (9.49c)

edr =
[
emg,d em`,d ev,d

]T
. (9.49d)

A Stokes-Dirac structure for the dissipative Hamiltonian representation of the
DFM can be expressed as follows.

Theorem 9.16. Consider Fd = Ed = L2(Ω)3 × R2. We assume that Ag :=
mg

mg+m`
, A` := m`

mg+m`
∈ H1(Ω). We also consider that the non-degenerate

bilinear form on Fd × Ed is defined in the following way:

〈fd | ed〉 =

∫
Ω

(fmg,demg,d + fm`,dem`,d + fv,dev,d)dx+

fBb,de
B
b,d + fBa,de

B
a,d. (9.50)

Then, the linear subset Dd ⊂ Fd × Ed given by

Dd =
{

(fd, ed) ∈ Fd × Ed,
(
Agemg,d +A`em`,d

ev,d

)
∈ H1(Ω)2, fdr = Jd(zD)edr,(

fBa,d
eBa,d

)
=

(−Ag −A` 0
0 0 1

)emg,d

em`,d
ev,d

 (a),

(
fBb,d
eBb,d

)
=

(Ag A` 0
0 0 1

)emg,d

em`,d
ev,d

 (b)
}
, (9.51)

where

Jd(zD) =

 0 0 −∂x(Ag·)
0 0 −∂x(A`·)

−D(Ag·)&D(A`·) 0


is a Stokes-Dirac structure with respect to the symmetric pairing given by, see
(9.50):

� (fd, ed), (f̃d, ẽd)�= 〈fd | ẽd〉+ 〈f̃d | ed〉,
(fd, ed), (f̃d, ẽd) ∈ Fd × Ed. (9.52)
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The action of the operator D(Ag·)&D(A`·) is given by

D(Ag·)&D(A`·)
(
emg,d

em`,d

)
= ∂x(Agemg,d +A`em`,d)

− emg,d∂xAg − em`,d∂xA`. (9.53)

Remark 9.17. This can be considered as a special case of the extended structure
shown in [16] in the context of spatially-varying cross-section. We skip the proof
of Theorem 9.16 and instead refer to [16] and use similar lines of reasoning.

We have shown Stokes-Dirac structure representations for both dissipative
Hamiltonian formulations of the mathematical models under consideration.

9.6 Special case considerations for the DFM

In this section, we disqualify the DFM with the Zuber-Findlay slip conditions as
an energy consistent model for two-phase flow, and, thus, motivate the reasons
behind considering the DFM without slip.

We recall the dissipation inequality obeyed by the TFM (see Theorem 9.9).
Under the imposition of periodic boundary conditions, the time derivative of the
Hamiltonian (9.18) can be expressed using (9.3d) as follows:

dH
dt

= −
∫

Ω

(δqH(q))
T

(RT )δqH(q) dx = −
∫

Ω

bMg (vg − v`)2
dx

= −
∫

Ω

Mig(v` − vg) dx ≤ 0.

(9.54)

The equivalence between the TFM and DFM, discussed in Section 9.3, gives
a better understanding of the DFM, especially when comparing the energy con-
siderations between these two models since the only difference is how the term
Mig is chosen. In the TFM, it is chosen to be proportional to the slip veloc-
ity v` − vg with a non-negative coefficient of proportionality bMg . This linear
relationship has been chosen to enforce an entropy inequality [95] and it is the
basic ingredient to show that the Hamiltonian is non-increasing along solutions,
see Theorem 9.9. However, to imitate the behavior of the DFM from the TFM,
the expression for Mig in (9.11) is much more complex and it is challenging to
analytically investigate the sign of the term

∫
Ω
Mig(v` − vg) dx that appears in

(9.54).
If the term

∫
Ω
Mig(v` − vg) dx is always positive, it can be claimed that

the dissipation inequality dH/dt ≤ 0 also holds for the (general) DFM (using
(9.54)). It is worth recalling that the dissipation inequality dHD/dt ≤ 0 holds
for the DFM under zero slip considerations (see Theorem 9.10).

As the theoretical assessment of the term
∫

Ω
Mig(v` − vg) dx for the model

with non-zero slip is highly involved, we investigate its behavior numerically.
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Figure 9.1: (top) Initial condition and (bottom) the temporal evolution of∫
Ω
Mig(v` − vg)dx for the DFM with periodic boundary conditions.

In order to calculate µg, µ` and ζ as in Theorem 9.5, the same expressions as
computed in [68] are used. The Rusanov scheme [152] together with Zuber-
Findlay slip (with K = 1.07 and S = 0.216 m/s cf. (9.8)) is used to solve the
DFM numerically in a horizontal 1000 m-long spatial domain with the spatial
and temporal step size of 0.5 m and 0.0005 s, p`0 = 1 bar, ρ`0 = 1000 kg/m3,
c` = 1000 m/s, and cg = 316 m/s. We consider periodic boundary conditions
with the initial condition as shown in Figure 9.1. We use this test case to draw
a concrete conclusion on the sign of

∫
Ω
Mig (v` − vg) dx. As obvious from Figure

9.1, we have found a counter example for which this integral is negative for all
time instants.

The numerical results indicate that the proposed Hamiltonian HD with pe-
riodic boundary considerations does not guarantee the non-increasing behavior
of the Hamiltonian functional along solutions of the DFM. A possible under-
lying reason for this effect could be that the Hamiltonian (9.22) (under zero
gravitational contribution) is not suitable for the DFM with the Zuber-Findlay
slip. However, the Hamiltonian HD has the interpretation of the energy. The
increment in this energy along the solutions in principle disqualifies the DFM for
such slip conditions as an energy-consistent model for two-phase flow. Hence,
we do not consider the general case of the DFM and only focus on a special case
of the model, i.e., the model without slip.
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9.7 Conclusions

We introduced a dissipative Hamiltonian formulation for two variants of multi-
phase flow models, i.e., the Two-Fluid Model (TFM) and the no-slip Drift
Flux Model (DFM) across a constant cross-section. Moreover, we presented
Stokes-Dirac structure representations corresponding to the skew-adjoint oper-
ators obtained both for the TFM and for the DFM without slip (under certain
choice of state-variables) along with the proof of corresponding representation
for the TFM. Port-Hamiltonian representations for the multi-phase models are
implicitly represented in terms of the Stokes-Dirac structures. Additionally, we
numerically reasoned, by exploiting a connection to the TFM, to support the
consideration of the DFM without slip.

Elegantly parametrizing the boundary port-variables for a class of state-
dependent Stokes-Dirac structures is one important research direction for the
future. The construction of structure-preserving surrogate models will be an-
other focus of future work. This will open up possibilities for the analysis and
control of complex physical systems.



Chapter 10

Power-Preserving Interconnection of Single-
and Two-Phase Flow Models for Managed

Pressure Drilling

Many complex systems are modeled by a network of different subsystems, each
having their underlying mathematical model representations. Energy-based mod-
eling of each of these subsystems can yield a port-Hamiltonian (pH) representa-
tion. In this paper, a single-phase flow model, a dissipative mathematical com-
ponent and a two-phase flow model are interconnected to model hydraulics for
Managed Pressure Drilling (MPD) applications. These subsystems are inter-
connected in a power-preserving manner to build an aggregated pH system for
real-life MPD scenarios. We prove that the interconnection junction connecting
the single- and two-phase flow models is conditionally power-preserving.

10.1 Introduction

Port-Hamiltonian (pH) systems have recently received a lot of attention for mod-
eling physical phenomena governed by nonlinear Partial Differential Equations
(PDEs) and ordinary differential equations [64], [153]. A pH realization offers a
suitable description of the components for the modeling, analysis and controller
design [64].

Controllers for PDEs are generally designed for finite-dimensional state-space

This chapter is based on “M.H. Abbasi, H. Bansal, H. Zwart, L. Iapichino, W.H.A.
Schilders, N. van de Wouw, Power-Preserving Interconnection of Single- and Two-
Phase Flow Models for Managed Pressure Drilling, American Control Conference, Denver,
U.S.A., July 2020”.
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model descriptions obtained after a low-resolution spatial discretization of the
PDEs, which lack part of the information (such as mass conservation) present
in the infinite-dimensional representation. Next to PDE control techniques such
as optimal control, backstepping [104] and adjoint methods [123], recently, re-
searchers have been investigating control strategies for pH representations [64].
A pH framework enables controller design based on energy consideration by dif-
ferent techniques such as energy-shaping [118], and interconnection and damping
assignment [137]. In addition, the Hamiltonian defined in pH framework repre-
sents a good candidate for the Lyapunov function, rendering the physics-based
control design and the stability proof more tangible [119].

One interesting feature of pH systems is power preservation. A key property
of pH systems is that the interconnection of such systems still preserve the pH
structure if the interconnection is performed in a power-preserving manner [42],
[64]. This compositionality feature enables to interconnect the individual pH
subsystems to define an aggregated pH system. A lot of work has already been
done in the past in the scope of integration of finite-dimensional and infinite-
dimensional components [42], [64]. The key point in aggregating different pH
subsystems is the identification of the interconnection structure and casting this
interconnection into a power-preserving structure.

Hydraulics in an Managed Pressure Drilling (MPD) can be characterized by
interconnection of subsystems governed by a single-phase flow in one pipe and
a two-phase flow in another pipe (see Figure 10.1), and, mathematical models
governed by nonlinear ordinary differential equations or static equations [5]. A
single-phase flow is usually modelled by the isothermal Euler equations, which
obeys a pH formalism [181]. For two-phase flow modelling, the Two-Fluid Model
(TFM) and the Drift Flux Model (DFM) are typically employed [5]. Recently,
it has been shown that the TFM and a DFM without slippage between the two
phases can also be cast in the pH formalism [15]. Drilling with MPD is composed
of single- and two-phase flow pH realizations, which can be interconnected via
MPD equipment (bit) in a power-preserving manner to form an aggregated pH
system.

We employ the existing theory to interconnect (individual) mathematical
subsystem models to construct an aggregated model for MPD. To the best of
our knowledge, compositional pH modeling for MPD is taken up for the first time
in this paper. A compositional pH representation of the MPD model is useful
when it needs to be connected to other systems such as a reservoir model, where
each system is characterized by a particular energy property. The compositional
structure, presented in this work, can be viewed as a stepping stone towards a
holistic control paradigm for MPD scenarios. To the best of our knowledge,
most controllers for MPD are designed based on a lumped-parameter models
approximating the hydraulics and ignoring the fast pressure dynamics [5]. The
framework introduced in this paper enables an energy-based controller design
while taking all (infinite-dimensional) dynamics into account.
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The contribution of this study is two-fold. First, a power-preserving inter-
connection at the junction connecting the single- and two-phase flow models are
provided and, second, a power-preserving condition for a typical junction used in
MPD [128] interconnecting these two models is derived. Outside this conditional
power-preserving region, the interconnection junction generates power, which
renders the junction model (that connects the two subsystems) non-physical.

The structure of this paper is as follows. In Section 10.2, a brief introduction
to MPD is provided. In Section 10.3, single- and two-phase flow models together
with their pH formalisms are introduced. In Section 10.4, the interconnection
of the single- and two-phase flow models together with the conditional power
preservation of the interconnection junction is discussed. In Section 10.5, the
power-preserving interconnection of the systems in a real-life drilling scenario is
investigated. Finally, Section 10.6 concludes the paper.

10.2 Managed pressure drilling

The industrial problem under investigation is a drilling system, with a special
focus on MPD. The configuration of the system is illustrated in Figure 10.1. A
drilling liquid known as mud is pumped into a pipe, called the drillstring, at high
pressure. At the bottom of the drillstring, the mud leaves the drillstring through
nozzles created inside the drill bit and enters the area between the drillstring
and the wellbore, known as the annulus. It then flows up through the annulus
and carries the rock cuttings out of the well. In MPD, the annulus is sealed
off from the surroundings at the top with a Rotating Control Device (RCD in
Figure 10.1) and the mud circulates out of the well through a choke valve. The
circulation path of the mud can be observed by following the green arrows in
Figure 10.1. Usually a flow from the formation containing gas and liquid (this
formation is named reservoir in Figure 10.1) occurs at the bottomhole of the
annulus, leading to multi-phase flow in the annulus. For a more comprehensive
explanation of MPD, single-phase and two-phase flow modeling, we refer to [128].

Remark 10.1. If no contingency happens during drilling, the flows inside the
drillstring and annulus are of a single-phase flow nature. In case of liquid influx,
we assume the reservoir produces the same liquid as the drilling mud. If a gas
influx occurs in the formation, the flow inside only the annulus involves two
phases.

Notation : The following short-hand notations are used in the paper. xa, xd:
spatial coordinate in the annulus and drillstring, xd ∈ Ωd = [0, L] and xa ∈ Ωa =
[0, L]: spatial domain in the drillstring and annulus, respectively. (·)BL,d : variable

(·) at the boundary xd = L, (·)B,i0,a : the i-th component of the decomposed

variable (·) at the boundary xa = 0, (·)|L,d: variable (·) at xd = L, (·)|L,d0,d :=

(·)|L,d−(·)|0,d, (·)B,r,g0,a , (·)B,r,`0,a : boundary variables at the reservoir for the gas
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and liquid phase, respectively. Subscripts (·)` and (·)g refer to the values for
liquid and gaseous phase, respectively. R denotes the space of real numbers.

10.3 Port-Hamiltonian Models

In this section, we briefly introduce the isothermal Euler equations and the
TFM. The pH formulation of each of these models is presented in this section.
It should be noted that modeling MPD in 1D captures the most important
hydraulics features of drilling [5]. Therefore, the governing PDEs and models
for the MPD equipment are presented in 1D.

10.3.1 Isothermal Euler Equations

Isothermal Euler equations [113] are typically employed to model single-phase
flow inside the drillstring [128]. This model encompasses a coupled mass balance
and momentum balance equation. For a drillstring with constant cross-sectional
area Ad and a constant inclination of the pipe θ, see Figure 10.1, under the
assumption of laminar flow, the isothermal Euler equations read as follows:

∂tρ+ ∂xd (ρv) = 0, (10.1a)

∂t (ρv) + ∂xd
(
ρv2 + p

)
= −32

µ`v

d2
d

+ ρg sin θ, (10.1b)

where t ∈ R≥0 and xd denote the temporal and spatial variables in the drillstring,
respectively (see Figure 10.1). Variables ρ(t, xd), v(t, xd) and p(t, xd) refer to

Figure 10.1: A drilling well with MPD equipment.
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density, velocity and pressure of the mud inside the drillstring, respectively.
Moreover, µ` and dd denote viscosity of the mud and hydraulic diameter of the
drillstring, respectively, and g is the gravitational acceleration. To complete the
set of equations, an Equation of State (EOS) is provided as p = (ρ− ρ0)c2` + p0

with constants ρ0 and p0 (respectively the density and pressure around which
the EOS is linearized), and c` being the speed of sound in the mud.

The Hamiltonian function for (10.1) in the state variables z :=[ρ, v]T is

H(z) := Ad

∫
Ωd

ρ
v2

2
+ ρc2` ln ρ+ (c2`ρ0 − p0)− ρgx sin θ dx. (10.2)

In the following theorem, the pH formulation corresponding to (10.1) is intro-
duced.

Theorem 10.2. The governing equations (10.1) together with the EOS p =
(ρ− ρ0)c2` + p0 can be written in the following dissipative pH formulation:

∂tz = (Jd −Rd(z)) δzH(z), (10.3a)

with Jd = − 1

Ad

[
0 1
1 0

]
∂

∂xd
,Rd(z) =

[
0 0

0 32µ`
Add2dρ

2

]
, (10.3b)

where z := [ρ, v]T and H(z) is given by (10.2). This equation is completed by the
power conjugated input u and output y at the boundaries with coupling relations
as follows:(

yBL,d
uBL,d

)
=

(
1
Ad
δρH(z)

δvH(z)

)
|L,d,

(
yB0,d
uB0,d

)
=

(
− 1
Ad
δρH(z)

δvH(z)

)
|0,d. (10.4)

Proof. Using (10.1a) and the EOS, the momentum equation (10.1b) can be writ-
ten in terms of ρ and v as

∂tv = −∂xd(
v2

2
+ c2` ln ρ)− 32

µ`v

d2
dρ

+ g sin θ. (10.5)

The variational derivatives of Hamiltonian (10.2) are:

δρH = Ad(
v2

2
+ c2` ln ρ+ c2` − gxd sin θ), δvH = Adρv. (10.6)

The physical interpretation of δvH is the mass flow rate of the mud passing
spatial location xd at time t. The energy per unit mass multiplied by the cross
section Ad can be inferred from δρH. Equations in (10.3) are obtained by a
straightforward replacement of ed := [δρH, δvH]T in (10.1a) and (10.5). Bound-
ary conditions (10.4) are obtained by satisfying the following relation for the
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time derivative of the Hamiltonian Ḣ and the power through the boundaries of
the drillstring PB ,

Ḣ+ PB =−
∫

Ωd

eTd Rd ed dx+

(
1

Ad
δρH(z)δvH(z)

)
|0,d−(

1

Ad
δρH(z)δvH(z)

)
|L,d+yB0,duB0,d + yBL,du

B
L,d

=−
∫

Ωd

eTd Rd ed dx ≤ 0.

(10.7)

The last inequality is due to the positive semi-definite nature of Rd(z).

10.3.2 Two-Fluid Model

The TFM can be defined in terms of PDEs expressing mass and momentum
conservation laws for each phase in the annulus with constant cross-sectional
area Aa, constant hydraulic diameter da and constant inclination θ as follows
[168]:

∂t (αiρi) + ∂xa (αiρivi) = 0, (10.8a)

∂t (αiρivi) + ∂xa
(
αiρiv

2
i

)
= −∂x (αipa) +

Mi − αiρig sin θ − 32
µiαivi
d2
a

,
(10.8b)

where i ∈ {`, g} and xa is the spatial variable in the annulus (see Figure 10.1).
The model contains seven unknown variables, namely, liquid and gas void frac-
tion, α` and αg, liquid and gas phase velocity, v` and vg, liquid and gas phase
density, ρ` and ρg, and the common pressure in the annulus pa. To complete
the model, we use a set of widely applied closure laws as in [68]:

αg + αl = 1, (10.9a)

Mg +M` = 0,Mg = pa∂xαg + bMg (v` − vg), (10.9b)

ρg =
pa
c2g
, ρ` = ρ0 +

pa − p0

c2`
, (10.9c)

where (10.9a) expresses that any pipe segment is occupied by the combination
of gas and liquid. The terms Mg and Ml with the constant bMg ≥ 0 in (10.9b)
account for the force interaction between the phases. Finally, (10.9c) define the
barotropic EOS of each phase with cg the constant speed of sound in the gaseous
phase.

The Hamiltonian for the flow inside the annulus with za := [mg, m`, vg, v`]
T

takes the following form (with mg := αgρg and m` := α`ρ`):
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Ha(za) := Aa

∫
Ωa

mg

v2
g

2
+ml

v2
`

2
+mgc

2
g ln ρg + ρ`c

2
` ln ρ`+

α`(c
2
`ρ0 − p0)− (ρ` +mg) g(L− x) sin θ dx. (10.10)

Notably, variables ρ`, ρg, α` can be written in terms of mg and m`, see [15]. In
the following theorem, the pH formulation corresponding to (10.8) and (10.9) is
presented.

Theorem 10.3. The governing equations (10.8) associated with the closure
equations (10.9) can be written in the dissipative pH formulation as follows:

∂tza = (Ja −Ra(za)) δzaHa(za), (10.11a)

Ja = − 1

Aa

[
0 I
I 0

]
∂

∂xa
,Ra(za) =

1

Aa

[
0 0
0 τ

]
, (10.11b)

where za := [mg, ρ`, vg, v`]
T and Ha is given by (10.10), τ = bMgm2

g
+

32µgαg
m2
gd

2 − bMg
mgρ`

− bMg
mgρ`

bMg
m2
`

+ 32µlα`
m2
l d

2

 , and 0 and I denote the 2 × 2 zero and identity

matrix, respectively. This pH formulation is completed by the power conjugated
inputs u and outputs y at the boundary coupled with relations as follows:

yB,10,a

yB,20,a

uB,10,a

uB,20,a

 =


− 1
Aa
δmgHa

− 1
Aa
δρ`Ha

δvgHa
δv`Ha

 |0,a,

yB,1L,a

yB,2L,a

uB,1L,a

uB,2L,a

 =


1
Aa
δmgHa

1
Aa
δρ`Ha

δvgHa
δv`Ha

 |L,a. (10.12)

Proof. Rewriting momentum equations (10.8b) in terms of vg and v` leads to

∂tvi + ∂xa

(
v2
i

2

)
=− c2i ∂xa (ln ρi)±

bMg
mi

(v` − vg)

− g sin θ − 32
µivi
ρid2

a

,

(10.13)

where “+” is used for i = g and “−” is used for i = `. Using the Hamiltonian
(10.10) (for details, see [15]),δmiHa = Aa(

v2
i

2
+ c2i ln ρi + c2i − g(L− xa) sin θ),

δviHa = Aamivi, i ∈ {`, g}.
(10.14)

Similar to the isothermal Euler equations, δviHa represents the mass flow rate
of the phase i. Similarly, The energy per unit mass of phase i multiplied by the
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cross section Aa can be inferred from δmiHa. Straightforward replacement of
these relations into the original equations give the asserted equations. Similar
to Theorem 10.2, the boundary terms can be obtained from (PBa is the power
through the boundaries of annulus)

Ḣa + PBa = −
∫

Ωa

eTa Ra ea dx+

(
1

Aa
δmgHaδvgHa

)
|0,a+(

1

Aa
δρ`Haδv`Ha

)
|0,a−

(
1

Aa
δmgHaδvgHa

)
|L,a−(

1

Aa
δρ`Haδv`Ha

)
|L,a+yB,10,a u

B,1
0,a + yB,20,a u

B,2
0,a +

yB,1L,au
B,1
L,a + yB,2L,au

B,2
L,a = −

∫
Ωa

eTa Ra ea dx ≤ 0,

with ea = [δmgHa, δm`Ha, δvgHa, δv`Ha]T .

Remark 10.4. PH properties for the isothermal Euler equations in [181] and
the TFM in [15] are proved for only unit cross section without frictional and
gravitational source terms. Moreover, a different choice of the state variables
than in [15] is employed to express the pH realization of the TFM.

Remark 10.5. It can easily be proved that Jd in (10.3) and Ja in (10.11)
are formally skew-adjoint operators [64]. Moreover, Rd and Ra in the same
equations are symmetric positive semi-definite.

10.4 Power-Preserving Interconnection

In this section, the drillstring, the drill bit and the annulus are connected in a
power-preserving manner. First, the boundary conditions are introduced. Then,
the dissipation of energy through the bit is studied. Finally, the power-preserving
structure of the interconnection junction (the bit and the summation junction
at the reservoir, see Figure 10.2) is investigated.

10.4.1 Boundary conditions of the single- and two-phase flow
models in MPD

The boundary conditions governing the fluid flow in the drillstring and the an-
nulus follow from Figure 10.1. The governing equations of the pump, bit and
choke are summarized in Table 10.1. For the pump, ṁp, Ap, ρp and vp repre-
sent the mass flow rate, the cross-sectional area, the density and the velocity of
the liquid through the pump, respectively. For the bit, ∆pb, ρb, ṁb, AN and CD
denote the pressure drop over the bit, density at the drillstring side of the bit,
the mass flow rate through the bit, the total area of the nozzles of the bit and



10.4 Power-Preserving Interconnection 281

the nozzle coefficient, respectively. For the choke, ṁc, ρc, pc and p0 are the mass
flow rate, the density, the pressure at the choke inlet and atmospheric pressure,
respectively. Finally, Kc and zc, are the choke constant and the choke opening,
respectively.

First, we define the boundary conditions for the drillstring to be used in
(10.4).

Pump: At the pump location, we have Ap = Ad, vp = v|0,d and ρp = ρ|0,d.
Hence

δvH|0,d= (ρAdv)|0,d= ṁp(t). (10.15)

The boundary condition at the left side of the spatial domain Ωd is assigned.
Input and output variables at this boundary can be defined with (10.15) and
(10.4).

Bit and reservoir: Through the bit, the mass conservation holds and the
pressure drop is governed by the bit equation. Moreover, the flow that passed
through the bit is then mixed with the known liquid mass flow rate ṁ`(t) and
the gaseous mass flow rate ṁg(t) coming out of the reservoir. Then, the mixture
enters the annulus. Considering ∆pb = p|L,d−p|0,a, ṁb = (ρAdv)|L,d, ρb = ρ|L,d,
we have 

p|L,d−p|0,a =
1

2ρ|L,d

(
δvH|L,d
ANCD

)2

,

δvH|L,d+ṁ`(t) = δv`Ha|0,a,
δvgHa|0,a = ṁg(t).

(10.16)

Remark 10.6. To solve the TFM, typically either 2 boundary conditions are
specified at the left side of the domain and 2 at the right side or 3 boundary
conditions at the left side and one at the right [70]. In this paper, we consider
the 2-2 case. In (10.16), one equation corresponds to the right boundary for the
isothermal Euler equations in the drillstring and two equations correspond to the
left boundary of the TFM in the annulus.

Remark 10.7. Above the bit and inside the drillstring, a non-return valve is
installed to restrict the flow in one direction only from the drillstring to the

Table 10.1: Governing equations of the pump, bit and choke.
Equipment Governing equation

pump ṁp = Apρpvp

bit ∆pb = 1
2ρb

(
ṁb

ANCD

)2

Choke ṁc = Kczc
√

2ρc (pc − p0)
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annulus. When this valve is open, the pressure drop over the bit is governed
by the bit equation in Table 10.1. When this valve is closed, the drillstring and
the annulus become disconnected. Then, the right boundary condition for the
drillstring becomes ṁb(t) = (ρAdv)|L,d= 0 and therefore δvH|L,d= 0. The left
boundary condition for the annulus changes to δv`Ha|0,a= ṁ`(t) and δvgHa|0,a=
ṁg(t).

Choke: For the TFM at the choke, we have two boundary conditions, i.e.,
the explicit value of gas void fraction over time and the nonlinear choke equation.
Following the same procedure in [128], we rewrite ṁc as the mass flow rate of the
mixture, ṁc = (ρ`Aav`)|L,a+(ρgAavg)|L,a. We also replace ρc with the mixture
density, ρc = α`ρ` + αgρg. Therefore, we have:

(δv`Ha + δvgHa)|L,a = Kczc

√
2(mg + ρ`)|L,a(pa|L,a−p0),

αg|L,a = g(t),
(10.17)

where g(t) is a function of time, explicitly specifying the gas void fraction at the
choke.

Remark 10.8. Notably, boundary conditions (10.16) and (10.17) form an im-
plicit function of variational derivative of Hamiltonian (10.2) and (10.10) with
respect to z and za, respectively.

Remark 10.9. For the case of 2-2 boundary conditions specified above, setting
the boundary inputs to zero leads to Ḣa = 0 in the absence of dissipation. For
the case of 3-1 boundary conditions, setting the boundary inputs to zero will not
yield the same result and it is not clear how energy of the system evolves over
time. This complicates the energy perspective presented in this paper for 3-1
case.

10.4.2 Dissipativity of power through the bit

The power-preserving structure of the single-phase flow model and the TFM
are shown in Section 10.3 by the corresponding dissipative pH formulation of
(10.3)-(10.4) and (10.11)-(10.12).

In this section, we derive conditions under which the interconnections, shown
in Figure 10.2, are power-preserving. To have power-preserving interconnections,
we define the following interconnections between input ports u and output ports
y of different components shown in Figure 10.2:{

ud,bit = yBL,d

yd,bit = −uBL,d
,

{
ua,bit = y1

ya,bit = −u1

,

{
u2 = yB,20,a

y2 = −uB,20,a

,{
u3 = yB,r,`0,a

y3 = −uB,r,`0,a

,

{
uB,r,g0,a = yB,10,a

yB,r,g0,a = −uB,10,a

.

(10.18)
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The power preservation of all these connections can be easily checked [64], e.g.,

u2y2 + uB,20,a y
B,2
0,a = 0. If the power is preserved through the bit, then the entire

aggregated system preserves power. Therefore, we only focus on deriving the
condition of power preservation through the bit.

Remark 10.10. Due to the directions shown in Figure 10.1, the positive direc-
tion is assumed from pump to the bit and from the bit to the choke. Therefore,
the incoming power into bit flows from the drillstring and the outgoing power
from the bit enters the annulus.

The physical nature of the bit dictates the outgoing power to be less than
the incoming power (see Figure 10.2)

Pbit := ua,bitya,bit − ud,bityd,bit ≤ 0. (10.19)

The incoming power ud,bityd,bit is related to the physical variables of the system
via (10.18). To relate the outgoing power ua,bitya,bit to the model-dependent
variables, the power preservation across the summation junction is written as

u1y1 + u2y2 + u3y3 = 0
(10.18)
−−−−→

(−ua,bitya,bit) + (−uB,20,a y
B,2
0,a ) + (−uB,r,`0,a yB,r,`0,a ) = 0,

(10.20)

where uB,r,`0,a := −ṁ`(t) and, by considering the definition of the boundary con-

ditions in the pH formulations (10.4) and (10.12), we have uB,20,a = ṁb + ṁ`(t)

and yB,20,a = − 1
Aa
δρ`Ha|0,a. For the summation junction, we use a 1-junction

principle where all outputs are equal and the summation of all inputs equal to
zero. This leads to yB,r,`0,a = − 1

Aa
δρ`Ha|0,a, Then by using (10.16) in (10.20), we

obtain,

ua,bitya,bit =
1

Aa
ṁb δρ`Ha|0,a. (10.21)

Figure 10.2: The power-preserving interconnection of different components of a
drilling well.
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Substituting (10.21), (10.16) into (10.19) yields

Pbit = ṁb

(
1

Aa
δρ`Ha|0,a−

1

Ad
δρH|L,d

)
. (10.22)

Note that when the non-return valve is closed, the two systems become isolated
and the summation of the power change of both is less than the summation of
the input-output conjugated energy of each pipe. As the non-return valve is
open, ṁb > 0 holds. To ensure the power-preserving property across the bit, we
must ensure Pbit ≤ 0. As a result of this property and by using (10.22), we have

1

Ad
δρH|L,d−

1

Aa
δρ`Ha|0,a≥ 0. (10.23)

Replacing the terms describing the variational derivative of Hamiltonian with
respect to state variables from (10.6) and (10.14) leads to

(
v2

2
+ c2` ln ρ− gL sin θ)|L,d−(

v2
`

2
+ c2` ln ρ` − gL sin θ)|0,a≥ 0→

1

2
M2
d (−M

2
a

M2
d

+ 1) + ln
ρ|L,d
ρ`|0,a

≥ 0,

(10.24)

where Md =
v|L,d
c`

,Ma =
v`|0,a
c`

are the Mach numbers of the flow at the outlet of
the drillstring and at the inlet of the annulus near the bit. To further simplify
the relation, we use the bit equation,

∆pb = (ρ|L,d−ρ`|0,a)c2` =
1

2
ρ|L,d(

Ad
ANCD

)2v|2L,d→ (10.25a)

ρ`|0,a
ρ|L,d

= 1− 1

2
(

Ad
ANCD

)2M2
d , (10.25b)

The mass conservation across the bit (10.16) can also be simplified to

(Adρv)|L,d+ṁ`(t) = (Aaρ`v`)|0,a→ AdMd +
ṁ`(t)

ρc`
= Aa

ρ`
ρ
Ma

(10.25)
−−−−→

Ma =
Ad
Aa

Md

1− 1
2 ( Ad
ANCD

)2M2
d

+M`r ,

(10.26)

where M`r := ṁ`(t)
Aac`ρ`|0,a is the Mach number at the interface of the reservoir and

annulus. Finally by using (10.26), the inequality (10.24) simplifies to

M :=
1

2
M2
d ((

Ad
Aa

1

1− 1
2 ( Ad
ANCD

)2M2
d

+
M`r

Md
)2 − 1) + ln(1− 1

2
(

Ad
ANCD

)2M2
d ) ≤ 0.

(10.27)

For the bit, connecting the drillstring and the annulus, to be power-preserving,
the inequality (10.27) should hold.
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10.5 Numerical example

In this section, a real drilling well is considered and the region where the inequal-
ity (10.27) holds is investigated. The corresponding geometry and bit property
are studied to define the power-preserving operational region. Outside this re-
gion, the bit model should be adjusted to abide power preservation.

Remark 10.11. In drilling operations, the velocity inside the drillstring is typ-
ically around 1 m/s while the speed of sound in the mud is around 1000 m/s.
Therefore, for drilling applications, Md ≈ 0.001.

The geometry and equipment properties of the drilling platform are given by

dd = 76.2 mm, dod = 241.3 mm, dw = 444.5 mm,

AN = 1418.7 mm2, CD = 0.8,
(10.28)

where dod and dw are, respectively, the outer diameter of the drillstring and the
diameter of the wellbore.

For this well and this drill bit, to render the argument inside the logarithmic
function in (10.27) to be positive, we observe that Md < 0.35 should hold. As
shown in the top part of Figure 10.3, in this restricted region for Md with no
flow from the reservoir (which is true in the normal drilling scenarios), (10.27)
always holds for ṁ` = 0 for the drilling well under consideration and the bit
model is indeed dissipative (power-preserving). This might be the experimental
condition under which the model for the bit was derived.

In case of contingencies, where the fluid of the reservoir flows into the annulus,
condition (10.27) is not always satisfied in the restricted region for Md, as shown
in the bottom part of Figure 10.3. When the reservoir also contains liquid, the
velocity of this flow should be less than the velocity of the flow coming through
the bit. This situation most probably occurs when the drilling process and
the mud injection are halted (Md = 0) and a new pipe section is added to
the drillstring to increase its length to drill further (this is called a connection
scenario in practice). If the reservoir is producing liquid during connection, this
inequality does not hold for sure. Therefore, the bit model presented in Table
10.1 must not be used to simulate the hydraulics in this situation. Notably,
in cases when velocity of the flow from the reservoir is much higher than the
velocity of the flow passing through the bit, usually the non-return valve is
closed and the two subsystems become isolated. This situation, however, requires
more investigation. These bit models are usually derived by curve fitting to
experimental data obtained under certain conditions. To adapt the bit model,
experiments should be designed in such a way that the inequality (10.27) is
violated and a new model should be fitted to the new data.



286 Chapter 10. PH fromulation of MPD

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 10.3: Top: The value of the functionM in (10.27) for different admissible
Mach number with ṁ` = 0, Below: Power-preserving region for different Mach
numbers of Md and M`r satisfying inequality (10.27).

10.6 Conclusion

In this paper, two pH models for the (single- and two-phase) flow dynamics in
MPD with nonlinear boundary conditions are interconnected by a nonlinear drill
bit model. To render the aggregated system power-preserving, the mathematical
model of the bit, used to interconnect the two pipes, obeys power preservation
under a certain condition. However, this conditional power preservation does
not restrict the normal drilling operation region. The drill bit model restricts
the drilling operation where liquid influx from reservoir flows into the wellbore.
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In such cases, velocity of the drilling mud at the bit inside the annulus should
be higher than the velocity of the liquid influx. Outside this region, the power
preservation of the bit model might be violated. The framework proposed in
this paper enables an energy-based controller design for MPD while taking the
infinite-dimensional nature of the dynamics into account.





Chapter 11

Conclusion and Outlook

11.1 Conclusions

In this thesis, research results towards order reduction of discretized models for
MPD are presented. The first step towards this goal was deriving a represen-
tative model of the hydraulics occurring during drilling with MPD. Then, this
highly nonlinear, non-conservative model was discretized and numerically solved
accurately. The following contributions were presented in Part I of the thesis,

1. Numerical solver dealing with the non-conservative part of the system due
to the discontinuous geometry of pipes,

2. Numerical solver dealing with the detrimental effects of the source terms
on the numerical solution,

3. Implementing nonlinear boundary conditions of MPD to obtain a simulator
for hydraulics in MPD,

4. Validation of the MPD model with field data in case of single-phase flow,
liquid influx and gas influx.

The discontinuous geometry of the wellbore increases the complexity of the hy-
draulics equations by adding a non-conservative term. This term cannot be
handled by classical numerical methods as non-physical jumps will appear in the
solution. To resolve this issue, in Chapter 2, a new numerical method was pro-
posed to deal with this problem. The results confirm that the proposed method
captures the effects of the discontinuous geometry accurately and the induced
physics due to this feature is well represented in the numerical simulations.
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It is well-known in the literature that the presence of source terms in the
equations will induce drift of the numerical steady-state solution away from
the analytical (true) steady-state solution. This is due to the fact that the
source terms are treated in a trivial manner, where the detrimental effects of
the source term will be canceled only by increasing the number of discretization
cells. This, however, increases the computational time and the memory demand
dramatically. In cases where the effect of the source terms is significant, source
terms should be accounted for in a more accurate way. In Chapter 3, a new
method to deal with these source terms is proposed. This method approximates
the true steady-state solution with significantly higher accuracy compared to the
classical methods. Moreover, the method is faster than the classical methods by
using lower number of grid-cells while the same level of accuracy on the steady-
state solutions of the two methods is imposed.

MPD is governed by the hydraulics in the drillstring and the annulus con-
nected with highly nonlinear boundary conditions. Incorporating the effect of
these boundary conditions is a non-trivial task. In addition, a non-return valve
is installed inside the drillstring, which has to be modeled. In Chapter 4, the
governing models, the numerical techniques, the incorporation of boundary con-
ditions, and the modeling of the non-return valve are discussed. In addition, the
numerical results in case of single-phase flow are validated against the field data
obtained from real drilling wells. This comparison reveals that the derived mod-
els of the MPD and the components such as the non-return valve are physically
valid and the numerical techniques successfully replicate the field data.

As the final chapter of Part I, the validation of the MPD model against the
multi-phase flow data is carried out in Chapter 5. In this chapter, the MPD
model is adapted for the case of liquid (different from the drilling mud) and gas
influx phenomena. To accommodate the time-varying influx in case of liquid
influx, a new reservoir model is proposed, which accurately approximates the
influx flow rate if tuned correctly. It was confirmed that the numerical results
are in a good agreement with the data collected from the sensors installed at
real drilling rigs.

The discretized model developed in Part I is of high dimension. Exploiting
this model for multi-query simulation scenarios for drilling optimization or for
simulation-based controller design is by no means efficient. This brings many
questions into the research framework of this thesis, which were answered in
Part II by the contributions listed as below:

5. Proposing a new RB ansatz and the interconnection of the internal and
boundary dynamics to capture the effect of nonlinear, state-dependent
boundary conditions,

6. Quantification of accuracy loss induced by reduction in nonlinear systems
with local nonlinearities,
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7. Extension of the applicability region of the error estimate for systems with
distributed nonlinearities,

8. Proposing an empirical hierarchical error estimate for systems with dis-
tributed nonlinearities,

9. Extension of the RB method for MPD while considering discontinuous
geometry of the pipes and wellbore.

Since the MPD model in case of single-phase flow contains many parameters that
vary from one simulation to another, the RB method is exploited in Chapter 6 to
reduce the number of equations involved in solving the hydraulics in MPD. The
presented results confirm the efficiency of this method in accelerating the solution
of the MPD-relevant hydraulics. However, this acceleration always comes at a
price, the accuracy loss. Due to the presence of the nonlinearities associated with
this problem at local points in the spatial domain, the existing error bounds
and estimates do not work well. Therefore, a new effcient error estimate for this
system is proposed to quantify the error induced by the reduction.

The error estimate proposed in Chapter 6 is not tailored for nonlinear systems
with distributed nonlinearities. In Chapter 7, this error estimate is extended
to more general nonlinear systems by some adaptations. However, the error
estimate suffers from a severe restriction when applied to nonlinear systems
with nonlinearities that are not globally Lipschitz. To circumvent this issue,
a hierarchical error estimate based on the snapshots of the original system is
proposed, which even performs more efficiently and robustly compared to the
previous error estimate.

The RB method developed in Chapter 6 is applied to the MPD model for
the case of single-phase flow in Chapter 8. The reduced version of the MPD is
still capable of capturing the physics occurring in MPD, especially the physics
induced by the discontinuous geometry of the well. The RB method also offers
high speedup values while losing little accuracy in predicting pressure in the
downhole region of the wellbore.

The implementation of the RB method yields disappointing results for the
multi-phase flow scenarios. This is due to the highly nonlinear nature of the
dynamics. There are few alternatives to go about this problem and one is the
reformulation of the problem as a pH system. This will be the stepping stone for
discretization and reduction of pH systems by structure-preserving techniques.
These techniques preserve some system theoretic properties of the system, such
as stability and passivity, through reduction. In Chapter 9, we showed that
multi-phase flow models abide the pH formalism. Then Chapter 10 was devoted
to explore the compositionality feature of pH systems. The sub-models involved
in the MPD model are reformulated as pH systems and interconnected through
power-preserving interconnections. The model developed in this chapter, fol-
lowed by a structure-preserving discretization, can then be used for structure-
preserving model order reduction techniques. The reduced model obtained after
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this hierarchy of procedures guarantee stability. Moreover, the model developed
here can be used for controller design.

11.2 Outlook and Future Research

Although many methods have been tested, extended and tailored for the problem
at hand, still many aspects of this study can be extended to fulfill the goals.

The drift flux model is not accurate in many flow regimes of the multi-phase
flow [127]. In these regimes, Two-fluid model should be simulated to obtain
reliable results. Moreover, the well-balanced property should be extended for
the two-fluid model. The well-balanced property should be upgraded for the
case where discontinuous diameter is present in the system and also for higher
order of accuracy. To improve the model validation, many datasets are required
from a drilling well where all scenarios have actually occurred. If these data are
available, similar reservoir models can be proposed for gas influx scenario.

In this thesis, error estimates are proposed which only approximate the accu-
racy loss. However, error bounds are required to certify the accuracy level after
reduction. Tight and cheaply computable error bounds and estimates can be
a topic of future research. Moreover, accompanying RB methods with stability
preservation techniques for nonlinear systems opens up many possibilities for
future research.

After casting the sub-models of MPD in the pH formalism, structure-
preserving techniques can be employed to discretize these pH models. During
the discretization, one should give special attention to the non-polynomial na-
ture of the Hamiltonian of the system. After finding an accurate discretization
technique, to achieve a stable ROM, structure-preserving MOR techniques with
the focus on the passivity and stability should be exploited.

Apart from efforts in a pH route to avoid instability of the reduction of multi-
phase flow models, non-intrusive (data-based) MOR approaches can also be fol-
lowed. This thread shares similarities with Machine Learning and also System
Identification Theory. Through this method, data obtained from the simulation
of the full-order model plays a crucial role in finding a low-dimensional state-
space system and the model equations themselves are ignored in the reduction
process.

As the final remark on the future research, we can refer to a hot research
thread, reduction of the number of equations describing advection-dominated
problems. The existing methods [135], [148], however, are far from being practi-
cal and almost all can be applied only to problems with periodic boundary condi-
tions. These problems have no counterpart in real-world applications. Moreover,
most of the existing techniques apply only to systems governed by a single PDE
and fail for systems with coupled PDEs. However, if these severe restrictions of
these techniques are resolved, they can be applied to the MPD test case.



Appendix

A Initial conditions away from steady state

As mentioned in Section 2.3.4, for initial conditions far from the steady-state
solution or simulating dynamics including abrupt changes in the input variables,
the model-based modification (the fourth approach proposed in this paper) does
not perform well. Due to the fact that equations in the DFM (2.6) are rather
complicated, it is hard to find a framework for defining the applicability region
of this method. Below, a brief explanation and an example are given for the case
when the model-based modification cannot be applied.

Different from the results presented in the main text, here we analyze the
algebraic constraints (2.34) in more detail and provide a qualitative insight why
the algebraic constraints do not have a solution when the initial conditions for
system (2.6) are far away from the steady-state solution. Similar analysis can
be performed on the algebraic constraints (2.31).

To find the solution of the algebraic constraints, seven equations (three from
(2.34) and four from closure laws of (2.2)-(2.5)) should be solved simultaneously
to find the seven unknowns of primitive variables. Due to the nonlinearity of
equations, these may have more than one solution or may not have any solution.
This is investigated in this appendix by applying the following steps:

1. Since there are seven unknown variables in the equations, it is challenging
to analyze the solutions. As a first step, we express the equations only in
one variable, particularly in pressure.

2. The resulting single equation is a nonlinear function of pressure, which is
hard to be analyzed. Therefore, the solution of that equation is investi-
gated numerically.

Assume we aim to find the starred values U∗M1
from UM1 by substituting (2.35a)

and (2.35b) into (2.35c) and keeping pressure as the only variable. For reduc-
ing the number of variables and simplifying the equations, no slip between the
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phases, i.e., û := ul = ug, is considered (it should be noted this is just an assump-
tion for simplifying the computational procedure while the algebraic constraints
of (2.34) are derived for general case of slip). Then, the simplified algebraic
constraints of (2.35) changes to:

(αlρlû)∗M1
= B, (1a)

(αgρgû)∗M1
= C, (1b)

(αl
ρl
ρg

û2

2
+ αg

û2

2
+ c2g ln ρg)

∗
M1

= D, (1c)

with

B :=
(αlρlûA)M1

AM2

(2a)

C :=
(αgρgûA)M1

AM2

(2b)

D := (αl
ρl
ρg

û2

2
+ αg

û2

2
+ c2g ln ρg)M1 . (2c)

By embedding (1a) and (1b) into (1c) and using the closure laws of (2.2)-(2.5)
and keeping only pressure as the variable (denoting p∗M1

by p), a nonlinear
function of pressure is obtained as follows:

Φ(p) :=
1

2
ϕ1(p)ϕ2

2(p) + c2g ln
p

c2g
−D, (3)

where

ϕ1(p) :=

p

c2l
+ F

p

c2g

+
C

B

(
p

c2l
+ F

)
1

p

c2g
+
C

B

(
p

c2l
+ F

)
1−

p

c2l
+ F

p

c2g

 , (4a)

ϕ2(p) :=

B
p

c2g
+ C

(
p

c2l
+ F

)
p

c2g

(
p

c2l
+ F

) , (4b)

with F := ρ0 − p0/c
2
l . Now, the solution of the algebraic constraints of (2.35)

correspond to the root of the function Φ in (3). Although function Φ is highly
nonlinear and analytical investigation of the roots is challenging, analyzing the
roots of the function Φ is easier compared to investigating the solution to the
constraints (2.35). It can be shown that this equation either has one root, two
roots or no root at all. Analytical investigation of the condition of having a root,
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Figure 1: Evolution of Φ function with pressure.

however, is difficult, if not impossible. As the only variable in the function Φ is
pressure, the roots can be found numerically by varying the pressure from zero
to infinity and then we can analyze how many roots the function Φ has under
different conditions.

This function tends to infinity as the pressure tends to zero or infinity when
B,C,D > 0. In other words, for p→ 0 or p→∞, it holds that Φ→∞. Thus,
for Φ to have any real roots, the minimum of function Φ should be less than
zero, which is highly dependent on the constant values of B,C,D, apparent from
the dependence of the function on these constants. Hence, the necessary and
sufficient condition for having solution(s) to the introduced algebraic constraints
is Φ(pmin) < 0 with Φ′(pmin) = 0, where pmin is the unique value at which the
minimum of Φ is attained. As mentioned previously, the analytical assessment
of the roots of Φ is challenging, thus we tackle this numerically as follows with
an example.

Consider the following test case as an example to show the fact that those
algebraic constraints sometimes have multiple solutions and sometimes do not
have any solution. If starting from the initial condition of shock tube problem
presented in Section 2.4.2 accompanied with discontinuous area reduction at the
middle cell of the pipe, say at the i-th cell, from Ai = 1.5 m2 to Ai+1 = 1 m2,
the evolution of function Φ with respect to p (as pressure varies from zero to
infinity) for finding U∗i and U∗i+1 values can be shown in Figure 1.

It can be noted that for finding the U∗i , we do not have any solution, therefore
the model-based modification fails to predict the solution (see the left plot in
Figure 1 that function Φ does not intersect the horizontal axis). In case of DFM,
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due to the complexity of the equations, it is hard to find a generic condition under
which the constraint equations have solutions; unlike the case for Euler equations
for which the condition is derived in [103]. However, a qualitative insight in the
condition for the existence of a numerical solution can be provided as below. If
we start exactly from steady-state solution, since the three algebraic constraints
of (1) are defined by the steady-state equations, these equations are already
satisfied. If starting close to steady states, the residuals of these equations are
small and we are still in the region where the algebraic constraints can be satisfied
by small changes in the primitive variables. In contrary, if we start from an
initial condition far from steady-states, the residual of the algebraic constraints
are large and it might be impossible to satisfy all seven equations simultaneously
(in other words, Φ(pmin) > 0 due to the values of B,C,D in (3)). Therefore, it is
probable not to obtain solution if we start from inconsistent initial condition, i.e.,
initial conditions far away from the steady-state solution. Analogous analyses
can be carried out for abrupt dynamic changes in the simulation.

For U∗i+1, we have two solutions (see right plot in Figure 1). In case of having
two solutions, one solution corresponds to the subsonic flow and the other to the
supersonic flow. Following the same admissibility criterion of [103], a root which
lies in the same side of pmin is chosen, meaning that

(pcorrect − pmin)(pi+1 − pmin) > 0 (5)

where pcorrect is the correct root of function Φ that should be selected. Relying
on this analysis, the second root should be selected in this simulation and the
first root is ruled out.

Since in some cases, especially when the imposed assumptions (2.33) are
not valid, we may not have the solutions of those algebraic relations, it is highly
recommended to use the numerical method proposed in this paper when we start
close to steady-state solution of the PDE. In industrial applications, it is often the
case that system is simulated from steady states (or from rest) and the underlying
dynamics are some perturbations to the steady-state solution. So, this is not
a restrictive assumption in many cases. However, satisfying those algebraic
relations to simulate the correct transient behavior comes at the expense of
losing the solution in problems starting far from steady state. We leave further
analysis of finding a better approach to future works. One tentative remedy
could be a hybrid approach, combining the third and fourth approach proposed
in this paper.
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B Reference solution for the transient simulation

As there is no Riemann solution for the DFM with variable cross-section, another
method for having a reference solution for transient case is used. In this method,
at the location of area discontinuity, the pipe is divided into two different pipes
that are connected to each other by some boundary conditions. For instance,
the pipe in Figure 2.4 is broken into two different connected pipes, as shown in
Figure 2.

Within each smaller pipe, classical schemes with high resolution can be ap-
plied as each pipe has a constant area. At the interconnected boundary, at
least six equations should be defined to obtain three primitive variables for each
pipe. Then, by using the closure laws (2.2)-(2.5), all primitive variables can be
obtained.

From the left pipe Lp, two characteristic-based boundary conditions cor-
responding to the waves moving downstream similar to (2.16) and (2.17) are
written. From the right pipe Rp, one characteristic-based boundary condition
moving upstream can be written similar to (2.18). Three more equations are
required, which are obtained by integrating system (2.6) over the area disconti-
nuity,

∫
δx

∂(αlρlA)

∂t
dx+

∫
δx

∂(αlρlulA)

∂x
dx = 0, (6a)∫

δx

∂(αgρgA)

∂t
dx+

∫
δx

∂(αgρgugA)

∂x
dx = 0, (6b)

Figure 2: Decomposition of pipes into many connected smaller pipes.
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∫
δx

∂
(

(αlρlul + αgρgug)A
)

∂t
dx+

∫
δx

∂
(

(αlρlu
2
l + αgρgu

2
g + p)A

)
∂x

dx =∫
δx

p
∂A

∂x
dx,

(6c)

where δx is a very narrow band around each area discontinuity. For δx→ 0, the
integrals related to the time derivations vanish and (6) simplifies to the following
algebraic relations

(αlρlulA)Rp = (αlρlulA)Lp , (7a)

(αgρgugA)Rp = (αgρgugA)Lp , (7b)∫
δx

(
∂
(
(αlρlu

2
l + αgρgu

2
g)A

)
∂x

+A
∂p

∂x

)
dx = 0, (7c)

where the subscript Rp and Lp refer to the right and left pipe. For no-slip
condition ul = ug = û, based on Lemma 2.5 and the algebraic equation (2.31c),
we have

(αlρlûA)Rp = (αlρlûA)Lp , (8a)

(αgρgûA)Rp = (αgρgûA)Lp , (8b)(
αlρlûA(

û2

2
+ c2l ln ρl) + αgρgûA(

û2

2
+ c2g ln ρg)

)
Rp

=(
αlρlûA(

û2

2
+ c2l ln ρl) + αgρgûA(

û2

2
+ c2g ln ρg)

)
Lp
.

(8c)

The other three equations have also been obtained. Then,the six boundary
equations are complete and the simulation in each pipe can be solved with a
high resolution Rusanov scheme to deliver the reference solution.
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C Approximate solution for turbulent flows

In this section, we present an approximate solution to (4.6) based on a first-order
Taylor series expansion. From (4.6), we define

H(ν) :=
1√
ν

+ 4 log

0.27ε

Deff
+

1.26n
−1.2
m(

ν(1−nm2 )Re
)n−0.75

m

 , (9)

such that H(ν) = 0. We take

ν = ν0 −∆ν, (10)

where

ν0 =
1

16
(

log
(

0.27ε
Deff

+ 5.74
Re0.9

))2 , (11)

is a well-known approximate solution to Colebrook equation, which is recovered
from (9) for nm = 1, see [164]. Moreover, ∆ν is a parameter that is to be
approximated. Now, using a Taylor expansion of H(ν) around ν0, we obtain

H(ν) ≈ H(ν0)−H ′(ν0)∆ν, (12)

where H ′(ν0) = dH
dν (ν0) is available analytically. Following (12), designing ∆ν

as

∆ν =
H(ν0)

H ′(ν0)
, (13)

leads to H(ν0 −∆ν) ≈ 0. Substituting this design of ∆ν into (10) further leads
the following explicit approximation for the friction factor:

ν ≈ ν0 −
H(ν0)

H ′(ν0)
. (14)

One may expand this equation to obtain a closed-form description of it to re-
duce the computational burden during simulations. Our numerical evaluations
verified the high accuracy of this approximate solution over a wide range of
Reynold’s numbers and 0.6 < nm < 1.4.
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D Derivation of the dynamical bit equation

The bit equation is obtained by considering a control volume filled with only
liquid over the bit, as illustrated in Fig. 3, and averaging the momentum con-
servation equation for liquid over it. For the first and second half of this control
volume, each of the length ∆l/2, located in the drilling and annulus, we respec-
tively obtain

∆l

2

dz(t)

dt
= Ad(L)

(
z2(t)

Ad(L)ρ(t, L−∆l/2)
− z2(t)

Ad(l)ρ(t, L)
+ Pd(t, L−∆l/2)−

Pd(t, L)

)
+ s̄d(t),

(15)
∆l

2

dz(t)

dt
= −Aa(0)

(
z2(t)

Aa(0)ρa(t,∆l/2)
− z2(t)

Aa(0)ρa(t, 0)
+ Pa(t,∆l/2)−

Pa(t, 0)

)
+ s̄a(t),

(16)

where z(t) is an approximation of the average mass flow rate in this control
volume, which also gives an approximation of the flow through the bit. Note
that, we have also assumed a single-phase flow in the half of this control volume

that is located in the annulus. Moreover, s̄d = Ad(L)
∫ L
L−∆l/2

sd(u
d, t, x) dx and

s̄a = Aa(0)
∫∆l/2

0
sa(ua, t, x) dx. These terms can be approximated as follows:

s̄d(t) ' Ad(L)
∆l

2
sd

(
Ud,N , t, L−

∆l

2

)
, s̄a(t) ' Aa(0)

∆l

2
sa

(
Ua,1, t,

∆l

2

)
.

(17)

∆l
2

drillstring

annulus

control volume

bit

Figure 3: A schematic of the control volume assumed over the bit to facilitate
solving the boundary equations at the bit.



D Derivation of the dynamical bit equation 301

Next, considering that ρ(t, L−∆l/2) ' ρ(t, L) and ρa(t,∆l/2) ' ρa(t, 0),
subtracting (15) from (16) results in

Aa(0)Pa(t, 0) +Ad(L)Pd(t, L) =Aa(0)Pa(t,∆l/2) +Ad(L)Pd(t, L−∆l/2)−
s̄d(t) + s̄a(t).

(18)
Now, given the bit equation in (4.18), we have

Pd(t, L)− Pa(t, 0) =
1

2ρ(t, L)

(
z(t)

cdAn

)2

, z > 0. (19)

If we solve (18) and (19) for Pd(t, L) and Pa(t, 0) and substitute the solution
into the summation of (15) and (16), we obtain the bit equation (4.39).
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E An error estimate for the linearized isothermal Euler equa-
tions

In Section 6.5.1.1, the procedure for the computation of the error bound and error
estimate for the advection equation (6.27) was elaborated. This equation consists
of a linear system with time-varying boundary conditions. In this section, the
procedure for computing the error estimate for the Euler equations (6.31) is
illustrated. This test case is also an internally linear system but with time-
varying, nonlinearly state-dependent boundary conditions. The pump boundary
located at x∂ = 0 and the choke boundary at x∂ = L lead to nonlinear time-
varying boundary conditions. Both of the boundary conditions are coupled with
the states of the system. As the Lipschitz constant for the local nonlinearity at
x∂ = L is not exactly known and has to be estimated, the error bound is not a
true upper bound and is somehow an estimate of the upper bound. Due to this
fact, we just propose an error estimate for this test case. The entire procedure
for the error estimation computation is detailed below.

Following the same idea for advection equation, we can derive the error dy-
namics for the Euler equations. Pursuing the same steps explained in Section
6.4.1, the following error dynamics is obtained:

Σnl :



Σelin :


en+1
ρ = A11e

n
ρ +A12e

n
m +B1e

n
V1

+ F1e
n
W2
−Rnρ ,

en+1
m = A21e

n
ρ +A22e

n
m +B2e

n
V1

+ F2e
n
W2
−Rnm,

eny = Cy[eTρ eTm]T ,

ez = [enρ1 e
n
ρNδ

enm1
enmNδ

]T = Cz[e
T
ρ eTm]T ,

ΣeBC :


x∂ = 0 :

{
en+1
V2

= α1e
n
V2

+ α2e
n
ρ1 + α3e

n
m1
,

enV1
= QnenV2

,

x∂ = L :

{
en+1
W1

= β1e
n
W1

+ β2e
n
ρNδ

+ β3e
n
mNδ

,

enW2
= h(Wn+1

1 , znc )− h(Ŵn+1
1 , znc ),

enUBC = CBC [(enV )T (enw)T ]T .

(20)

Here, ρ is a vector of averaged densities within the grid cells, and m = ρv is
momentum. Next, Vi and Wi, i ∈ {1, 2}, are the expressions emerging from
the finite-volume discretization necessary for solving the boundary conditions.

It should be noted that Wn
1 = enW1

+ Ŵn
1 . Moreover, e(·) = (·) − (̂·) is the

difference between the full-order and reduced-order solution. The variable Qn

represents the time variation related to the pump boundary condition (6.33)
and the function h(·, ·) encompasses the effect of the nonlinear choke boundary
condition (6.34).

In addition, αi and βi, i ∈ {1, 2, 3} are some constants and Aij , Bi and
Fi, i, j ∈ {1, 2} are matrices generated as the result of the finite-volume dis-
cretization. R(·) is the residual attributed to the equation solving for the vari-
able (·). The nonlinearities and time variation associated with the boundary
conditions does not fit into the LTI representation of the system. Then, by the
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interconnection in Figure 6.3, the effects of the boundaries are included in the
system as auxiliary inputs. To make a connection between (20) and (6.12), set

e =

[
eρ
em

]
, A =

[
A11 A12

A21 A22

]
, B =

[
B1 F1

B2 F2

]
, w =

[
V1

W2

]
,

V =

[
V2

W1

]
, G =

[
α1V

n
2 + α2ρ

n
1 + α3m

n
1

β1W
n
1 + β2ρ

n
Nδ

+ β3m
n
Nδ

]
,G =

[
QnV n2

h (Wn
1 , z

n
c )

]
.

(21)

Finally, Cz and CBC in (20) are selected to generate the required auxiliary
outputs and Cy is defined by the user to yield the output of interest. Here, the
pressure at the choke is chosen as the output. A good indicator for the pressure
is density, therefore Cy = [0Nδ−1, 1, 0Nδ ], where 0Nδ ∈ R1×Nδ is a vector of
zeros.

Considering the following state of vectors and rewriting the whole error dy-
namics (20), we have

ē =
[
eV2

eTρ eTm eW1

]T
,

ēn+1 = Āēn +BRRn + B̄V1
enV1

+ B̄W2
enW2

,

ēny = C̄y ē
n,

(22)

with

Ā =


α1 α2E1 α3E1 0
0 A11 A12 0
0 A21 A22 0
0 β2EN β3EN β1

 , BR =

 0
−I2Nδ×2Nδ

0

 , B̄V1 =


0
B1

B2

0

 ,

B̄W2
=


0
F1

F2

0

 ,R =

[
Rρ
Rm

]
,

(23)

where 0 is a zero vector with appropriate dimension and E1 = [1 0 · · · 0],
EN = [0 · · · 0 1] ∈ RNδ . The nonlinear part then includes only the static
function G as in (21).

Relying on the same idea of (6.13) and decomposing the inputs of the linear
system into eV1 and eW2 , the error bound for (22) is obtained as

‖ēy‖`2 ≤ γ
ēyR‖Rs‖`2 + γēyV1‖eV1

‖`2 + γēyW2‖eW2
‖`2 . (24)

If we can compute the right-hand side of (24), we can use (6.23) to compute the
error estimate. To this end, we need the following relations (note that Qn is a
scalar), ∥∥enV1

∥∥ ≤ |Qn|∥∥enV2

∥∥ → ‖eV1
‖`2 ≤ ‖Q‖`∞ ‖eV2

‖`2 ,∥∥enW2

∥∥ ≤ ηW2W1

∥∥enW1

∥∥ → ‖eW2‖`2 ≤ ηW2W1 ‖eW1‖`2 ,
(25)
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where ηW2W1
is the local Lipschitz constant of the nonlinear function h(·, ·) with

respect to its first argument, which is defined similar to (6.15). As mentioned
earlier, due to this approximation of the Lipschitz constant, we do not calculate
any error bound for the Euler equations and only calculate an error estimate.

Remark .1. An empirical alternative (which is not tested in this paper) for
computing the Lipschitz constant can be provided due to the fact that we have the
truth solution in the offline phase. In the offline phase, for the set of parameters
µ∗, ηW2W1

can be found. One can use the Lipschitz constant either for the
last selected set of parameters or the maximum Lipschitz constant for all the
previously selected set of parameters.

For the sake of notation, henceforth, we set η := ‖ηW2W1
‖`∞ and Q :=

‖Q‖`∞ . Thus, we have:

‖eW1‖`2 ≤ γ
W1R ‖Rs‖`2 + γW1W2 ‖eW2‖`2 + γW1V1 ‖eV1‖`2 ,

‖eW2‖`2 ≤ ηγ
W1R ‖Rs‖`2 + ηγW1W2 ‖eW2‖`2 + ηγW1V1 ‖eV1‖`2 .

(26)

Then,

‖eW2
‖`2 ≤

η

1− ηγW1W2

(
γW1R ‖Rs‖`2 + γW1V1 ‖eV1

‖`2
)
. (27)

Similarly, for eV1 , we have

‖eV1
‖`2 ≤

Q

1−QγV2V1

(
γV2R ‖Rs‖`2 + γV2W2 ‖eW2

‖`2
)
. (28)

Finally, by inserting (27) into (28), we get

‖eV1
‖`2
(
1− σ1σ2γ

V2W2γW1V1
)
≤ σ1

(
γV2R + σ2γ

V2W2γW1R
)
‖Rs‖`2 , (29)

where

σ1 =
Q

1−QγV2V1
,

σ2 =
η

1− ηγW1W2
.

(30)

For using this bound, these norms in Algorithm 5 should be calculated:
γēyR, γēyV1 , γēyW2 , γW1R, γW1W2 , γW1V1 , γV2R, γV2W2 . Due the special structure
of the model and also parameter settings, in all simulations we observe that
σ1 ≈ 1 and γV2W2γW1V1 ≈ 1. Then, the conservativeness and applicability of
the error estimate are highly dependent on σ2 and hence on η and, consequently,
on the choke operating condition. By having the upper bound on ‖eV1‖`2 , the
upper bounds on ‖eW2

‖`2 and then ‖ēy‖`2 are computable by subsequently using



E An error estimate for the linearized isothermal Euler equations 305

(28) and (27) into (24). It should be noted that for using the error estimate, the
condition

1− σ1σ2γ
V2W2γW1V1 > 0, (31)

should hold, which depends on the system and boundary condition properties
such as pump and choke characteristics; otherwise, the error estimate cannot be
used (by applicability we mean that the condition (31) should be satisfied on the
solution manifold). This condition originates from the small-gain condition on
the interconnection of the system dynamics with the boundary dynamics [27],
see Figure 6.3.

To resolve this issue, we propose to use a hybrid error estimate; meaning that
at those regions that the proposed error estimate does not exist due to violating
the small-gain condition, we can switch to the error estimate presented in [182].
In the test cases of this paper, the condition (31) was always satisfied and this
hybrid method has not been used. Other approaches will be investigated in
future works.





Summary

Modeling and Order Reduction for Hydraulics Simulation in
Managed Pressure Drilling

Societal uses for the drilling of deep wells are abundant and without excep-
tion have enormous impact on global economies. The future sustainability of the
harvesting of these resources requires the exploitation of difficult-to-access, un-
conventional reserves. The drilling of deep wells for these purposes is character-
ized by high complexity, high uncertainty, high risk and high cost. In particular,
one threat for the economically feasible and environmentally safe harvesting of
such energy and mineral reserves is pressure control. Maintaining the downhole
pressure within the pressure limits of the well, i.e., between the pore and fracture
pressure, is critical for the safety of drilling operations. To successfully control
the downhole pressure, a drilling technique called Managed Pressure Drilling
(MPD) has been recently developed. In support of MPD application, advanced
tools for virtual drilling scenario testing are needed, especially during the drilling
operation to evaluate the effects of a potential action. The main objectives of
this thesis are: i) developing a new hydraulics model for MPD together with new
numerical techniques, ii) developing efficient model order reduction techniques
with error estimates, and iii) introducing port-Hamiltonian (pH) formulations
of the models to preserve key properties after reduction.

To develop a virtual drilling well, a hydraulics model for MPD operations
should be developed. The hydraulics model for MPD consists of a single- and
a multi-phase flow model connected through nonlinear equations describing the
MPD equipment. The obtained model, however, suffers from many different
mathematical complexities, rendering the classical numerical techniques inade-
quate to discretize and numerically simulate such a model. Therefore, different
numerical techniques have been developed or extended to support numerical sim-
ulation with the aim to: i) capture the physics induced by a discontinuous well
geometry, ii) have a significantly more accurate steady-state solution in the pres-
ence of friction and gravity, and iii) incorporate the nonlinear state-dependent
boundary conditions. Comparisons of the numerical solutions against the field
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data gathered from real-world drilling wells reveal the validity of the model and
also the accuracy of the numerical solutions.

The discretized model for MPD is typically computationally expensive to be
run in real time, rendering the numerical model not suitable for simulation-based
controller design. Moreover, while optimizing the design process of the drilling
procedure, any change in the parameters of the system, such as the geometry of
the well, requires performing many expensive and time-consuming simulations.
To overcome these issues, model order reduction of the parameterized model for
MPD is beneficial. The Reduced Basis (RB) method is utilized for the reduction
of single-phase flow models. Nonetheless, the RB method is tailored for Dirichlet
time-invariant and Neumann boundary conditions. To deal with the highly
nonlinear, state-dependent boundary conditions employed in MPD, a modified
version of the RB method has been proposed. Apart from the reduction, the
RB method for nonlinear systems lacks error bounds and estimates to quantify
the accuracy loss due to the reduction. In this regard, a new error estimate
has been developed based on a Lure type model formulation for the discretized
model, which can be efficiently extended to other systems of such a form. Results
show that the error estimate approximates the actual error with a high accuracy.
However, the condition to guarantee the existence of the error estimate based
on this approach is not always satisfied. To generalize the proposed approach to
highly nonlinear systems, a new hierarchical error estimate has been proposed
based on the available simulation data in the RB method. Furthermore, a new
RB method has been developed to capture discontinuous features of the drilling
well geometry. Simulations confirm that this new method captures the physics
in MPD even in the presence of discontinuous well geometry.

In contrast to the efficient performance of the RB method for single-phase
flow models, due to the high complexity of multi-phase flow models, applying
RB method to these models may generate an unstable reduced-order system.
To preserve key system properties such as stability after reduction, a pH model
formulation has been investigated. This type of systems are proven to be passive
and can preserve passivity through structure-preserving reduction techniques.
PH model formulations have been proposed for single- and multi-phase flow
models used in MPD modeling. These pH models are interconnected in a power-
preserving manner, yielding an aggregated pH system model for MPD. This
aggregated system can then be discretized and used for model-order reduction,
and also controller design, while preserving desired information of the system at
the infinite-dimensional level.
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 چکیده

 مدلسازی و کاهش مرتبه به منظور شبیه سازی هیدرولیکی در

 حفاری مدیریت فشار

برای حفر چاه های عمیق فراوان است و بدون استثنا تأثیر زیادی بر  جامعه نیازهای

این منابع در آینده مستلزم بهره برداری از  از اقتصاد جهانی می گذارد. پایداری برداشت

قابل دسترسی و غیرمعمول است. حفر چاه های عمیق برای این اهداف دارای ر ذخایر غی

هزینه بالا می باشد. به خصوص، یکی از و پیچیدگی بالا ، عدم اطمینان زیاد ، ریسک 

این ذخایر زیست محیطی از سالم از نظر و  مقرون به صرفهتهدیدات برای برداشت 

بین فشار  ، معیندر محدوده چاه است. حفظ فشار  چاه انرژی و معدنی، کنترل فشار

، برای ایمنی عملیات حفاری بسیار مهم است. برای دیوارهشکستگی  فشار منافذ و

ار مدیریت فشحفاری ، اخیراً یک تکنیک حفاری به نام چاهکنترل موفقیت آمیز فشار 

ابزارهایی برای آزمایش سناریوی حفاری مجازی ن منظور، به ایشده است.  گسترش داده

قوه. بال واکنش، به ویژه در حین عملیات حفاری برای ارزیابی اثرات یک است مورد نیاز

فاری ح( تهیه یک مدل هیدرولیک جدید برای الفاهداف اصلی این پایان نامه عبارتند از: 

 رتبهمتوسعه تکنیک های کاهش به همراه تکنیک های جدید عددی ، ب(  مدیریت فشار

رای بهمیلتون های پورتمدل( معرفی فرمولاسیون پمدل با استفاده از برآورد خطا ، و 

 .مرتبهخواص کلیدی بعد از کاهش حفظ 

حفاری  اتیعمل یبرا کیدرولیمدل ه کی دی، بایچاه حفار  کمجازی ی توسعه یبرا

دل م کیشامل  مدیریت فشار حفاری یبرا کیدرولیشود. مدل ه نیتدو  مدیریت فشار

 توصیف کننده یرخطیمعادلات غ قیاز طر  باشد کهمی و چند فاز فاز تک انیجر 

ت ، مدل به دسحال نی. با اشوندبه یکدیگر متصل می حفاری مدیریت فشار زاتیتجه

 کیکلاس یعدد  یها کی، و تکنبرد یمرنج  یاضیر  یها یدگیچیاز پ یار یآمده از بس

 یها کی، تکن نی. بنابرادنباش یم یمدل ناکاف نیچن یعدد  یساز  هیو شب ریتفس یبرا

ظر ند. اهداف مورد ناافتهیگسترش  ایو  توسعه یعدد  یساز  هیشب یبرا یمختلف یعدد 

 داریالت پاح جواب  ب( ،چاه وستهیاز هندسه ناپ یناش کیز یگرفتن فبر در عبارتند از: الف(

 خطیر یغ یمرز  طیشرادر بر گرفتن  و پ( ،و گرانش صطکاکاتر در حضور  قیدق بسیار

ده شیآور جمع یدانیم یهاداده با یعدد  یراه حل ها سهی. مقاحالت سیستموابسته به 

را  یعدد  یهاحلصحت راه نی، اعتبار مدل و همچن یواقع یایدر دن یحفار  یهااز چاه

 دهد.ینشان م

 یآنبرای اجرای  یمعمولاً از نظر محاسبات حفاری مدیریت فشار یشده برامدل گسسته

 یساز هیببر ش یکنترلر مبتن یطراح یبرا یمدل عدد  به این دلیلاست، و  سنگین اریبس



ونه ، هرگیروش حفار  یطراح ندیفرآ یساز نهیبه هنگام،  نی. علاوه بر اباشدیمناسب نم

 یهایساز هیاز شب یار یبه انجام بس ازیچاه ، ن دسهمانند هن ستمیس یهادر پارامت رییتغ

شده  زهیمدل پارامتر  برای مرتبهمسائل ، کاهش  نیغلبه بر ا یدارد. برا زمان برو  سنگین

  تهافیکاهش پایهاز روش نامه، در این پایاناست.  سودمند حفاری مدیریت فشار یبرا

یه پا، روش وجود نیفاز استفاده شده است. با اتک انیجر  یهامدل مرتبه کاهش یبرا

ست. شده ا یطراح دیریچله و نیومن زمانی ییربدون تغمرزی  طیشرا یبرا کاهش یافته

فاری حبکار رفته در  حالت سیستمو وابسته به  یرخطیغ یمرز  طیمقابله با شرا یبرا

 رایوارائه شده است.  پایه کاهش یافتهنسخه اصلاح شده از روش  کی، مدیریت فشار 

برای طا خ تخمینفاقد  یرخطیغ یستمهایس یبرا یافتهپایه کاهش ، روش مرتبهکاهش 

ر ب دیجد یخطا نیتخم کی، راستا نی. در امرتبه استاز کاهش  یناشحدس میزان خطا 

ورت تواند به ص یکه م مدل گسسته ساخته شده است یبرا اتصال یافتهاساس مدل 

 نیخمدهد که ت ینشان م جی. نتاابدیگسترش  یفرم نیچن یستمهایس ریکارآمد به سا

 نیوجود تخم نیحال ، شرط تضم نی. با ازندیم بیرا تقر  یواقع یبا دقت بالا خطا طاخ

به  یشنهاد یپ کردیرو  میتعم ی. براشودارضا نمی شهی، همکردیرو  نیخطا بر اساس ا

 یابر اساس داده ه ید یجد یسلسله مراتب یخطا نی، تخم یرخطیغ اریبس یستمهایس

وش ر  کی، نیاست. علاوه بر ا هارائه شد پایه کاهش یافتهموجود در روش  یساز  هیشب

توسعه  یهندسه چاه حفار  وستهیناپ یها یژگیو  گرفتندربر  یبرا پایه کاهش یافته دیجد

ورت در ص یحت دیروش جد نینکته است که ا نیا انگریها بیساز  هیداده شده است. شب

 .ردمیگیدربر  را حفاری مدیریت فشاردر  مشمول کیز یچاه ، ف وستهیوجود هندسه ناپ

 لی، به دلتک فاز  انیجر  یهامدل یبرا کاهش یافته پایهبرخلاف عملکرد کارآمد روش 

ها دلم نیا یبرا کاهش یافته پایهچند فاز، استفاده از روش های مدل یبالا یدگیچیپ

ی کلید حفظ خواص  یکند. برا جادیا داریناپا یافتهکاهش  ستمیس کیممکن است 

ورد م همیلتونینپورتمدل  ونی، فرمولاسمرتبهپس از کاهش  یدار یمانند پا ستمیس

را از  لتواند انفعا یو م باشندمیمنفعل  ها ستمینوع س نیقرار گرفته است. ا یبررس

-پورتمدل  ونید. فرمولاسنحفظ کن مرتبه حافظ ساختارکاهش  یهاکیتکن قیطر 

 حفاری یو چند فاز مورد استفاده در مدل ساز فاز تک انیجر  یهامدل یبرا همیلتونین

به  یفظ انرژ ابه روش ح همیلتونینپورت یمدل ها نیارائه شده است. ا مدیریت فشار

حفاری مدیریت  یبرا جامع همیلتونینپورت ستمیمدل س کیاند و  متصل شدههم 

اهش ک یشده و برا گسستهتواند  یمع سپس ماج ستمیس نی. اشودحاصل می فشار

که اطلاعات  ی، در حالردیمورد استفاده قرار گ کنترلر یطراح نیو همچن مرتبهمدل 

 .کندمیادلات پاره ای را حفظ عمدر سطح  ستمیمورد نظر از س
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