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Chapter 1

Introduction

This thesis presents the research activities carried out in the HYDRA project in
the framework of Marie Skodowska-Curie Innovative Training Networks (ITN-
EID). HYDRA has received funding from the European Union’s Horizon 2020
research and innovation program under grant agreement No 675731. The main
goal of this thesis is to develop different Model Order Reduction (MOR) tech-
niques with specific objectives. These MOR methods lead to fit-for-purpose mod-
els to support drilling operations. Specifically, in this thesis, the effort is directed
towards developing MOR techniques for hydraulics simulation for Managed Pres-
sure Drilling (MPD) applications. In this chapter, the research activities are mo-
tivated and different steps to reach to the final goal of the project are explained.
These steps can be summarized as: i) developing a new hydraulics model for
MPD together with new numerical techniques, ) developing efficient model order
reduction techniques with error estimates, and iii) introducing port-Hamiltonian
(pH) formulations of the hydraulics models to preserve key properties after re-
duction. Finally, the outline of the thesis concludes this chapter.

1.1 Motivation

To this date, human need for energy has been ever increasing. Among all energy
resources, fossil energy has been resolving most of this need. Obtaining abun-
dant fossil energy, especially through burning gas and oil, requires drilling into
reservoirs (a formation of rock in which oil and gas has been trapped). This
process consists in drilling a hole into the ground until a targeted reservoir is
reached. The hole is created by rotating a cutting device, called drill bit, at-
tached to the end of a heavy thick-walled pipe called the drillstring. During the
drilling operation, a drilling fluid, usually known as mud, is pumped through the
drillstring, exits through the drill bit nozzles with high velocity and pressure,
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Figure 1.1: Schematic representation of a drilling rig (left) and different pressure
zones (right).

cools and lubricates the bit and the drillstring, and carries drilled cuttings to the
surface. The main function of the drilling mud is to build a barrier between the
reservoir and the wellbore by providing a hydrostatic pressure, added to the fric-
tional pressure drop in the annular space between the drillstring and wellbore.
The section of the well that is exposed to the reservoir is called “open hole”
(see Figure 1.1). Controlling pressure in the open hole is a major challenge in
drilling.

Fulfilling the ever-increasing demand for fossil energy requires investigation
and exploitation of difficult-to-drill reservoirs. Drilling to reach oil and gas in
such reservoirs meets many challenges, regarding safety, environmental and eco-
nomical risks. In particular, pressure control in such wells is highly critical as
explained below. To control the pressure in the open hole (called downhole pres-
sure), three pressure constraints, as denoted in Figure 1.1, should be considered:

I. Collapse pressure: A pressure profile constraint for the downhole pressure
below which the well collapses, which should be avoided at all times;

II. Pore pressure: This is the pressure of the fluid trapped in the reservoir.
When the downhole pressure is less than the pore pressure (i.e., for an
underbalanced well), the fluid from the reservoir flows into the wellbore
and, if not controlled properly, such scenario might lead to an explosion
at the surface in case of a gas reservoir, such as the one happened in
Deepwater Horizon drilling rig in Gulf of Mexico, 2010;

III. Fracture pressure: If the downhole pressure exceeds the fracture pressure,
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the expensive mud penetrates into the formation and decreases the pro-
ductivity of the reservoir.

Difficult-to-drill reservoirs are formations for which the pore and fracture
pressures are very close to each other. In a safe drilling scenario, the downhole
pressure profile has to be driven between the path of the pore and fracture pres-
sure (called drilling window, see Figure 1.1), which is highly challenging if this
window is narrow. A drilling technique called Managed Pressure Drilling (MPD)
with improved well control capabilities has been recently developed to keep the
downhole pressure under control. MPD differs from conventional drilling tech-
niques by installing a Rotating Control Device (RCD) at the top of the well to
create a seal around the drillstring, which, together with a back-pressure choke,
enables manipulating the downhole pressure indirectly. This is sometimes also
coupled with a dedicated back-pressure pump to enable control even when the
main pump is shut off. In MPD, the slope of the pressure profile can be modi-
fied by either changing the pump flow rate (which is not used in practice) or by
changing the mud density. More importantly, the starting point of the profile
can be shifted by manipulating the opening of a valve installed at the top of the
well, called a choke manifold. This control input affects the downhole pressure
in a matter of seconds; i.e., much faster than non-MPD control inputs such as
changing the mud density. This feature of MPD is also often used to handle
uncertainties in the assumed physical parameters of the reservoir that enables
the driller (or the automatic controller) to better and more quickly react to the
scenario that is actually encountered.

To control the downhole pressure accurately in MPD, an accurate virtual
drilling simulator is required, in which the hydraulics (pressure and flow evolu-
tion of the drilling mud in the drill-string and the annulus) in the well is modeled
and can be simulated. This enables 1) virtual drilling scenario testing and 2)
the use of model-based control techniques for MPD. To construct models for
MPD that are both highly predictive/accurate and of reduced complexity, we
face three challenges in constructing an MPD model for such a purpose: 1) De-
veloping an accurate model and simulation platform for hydraulics in MPD, 2)
Improving the computational efficiency of the simulation platform through ap-
plication of Model Order Reduction (MOR) techniques, 3) Developing a math-
ematical framework to introduce special structure in the MPD model. This
structure then can be used to preserve key properties of the system dynamics
while reducing the dimension of the system model.

1.2 Modeling for Managed Pressure Drilling

In support of MPD application, advanced tools for virtual drilling scenario test-
ing are needed, especially during the drilling operations to evaluate the effects of
a potential action without risks. To model the flow inside the drillstring, which
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contains single-phase flow in MPD, isothermal Euler equations are usually em-
ployed [115]. To analyze the flow inside the annulus, hyperbolic sets of Partial
Differential Equations (PDEs) such as the Drift Flux Model (DFM) and the
Two-Fluid Model (TFM) are employed [5], [69]. A critical issue in MPD model-
ing is the discontinuous cross-sectional area of the wellbore and the drillstring.
The mathematical model should be able to capture the physics induced by this
feature. The models introduced in [103], [151] take this aspect into account ac-
curately. However, solving these models numerically is challenging due to the
discontinuous features of the solution. Another challenge in modeling MPD is to
connect the two models in the drillstring and annulus correctly, which has not
been dealt with extensively in the literature. Especially at the interconnection of
the drillstring and annulus, a switching dynamics of a Non-Return Valve (NRV)
is present, which allows the mud to flow only from the drillstring to the annulus,
not vice versa. This further challenges the modeling of MPD operations.

After constructing a reliable model for MPD on the infinite-dimensional level,
an accurate numerical technique should be employed to discretize the dynamical
model and obtain a finite-dimensional model representation as a basis for simu-
lation studies. Highly nonlinear schemes [50], [69] are employed to discretize the
PDEs over space and time and to predict the evolution of pressure and velocity.
There are many techniques in the literature to numerically solve the isothermal
Euler equations and the DFM in case of constant cross-sectional area [69], [83].
However, presence of area discontinuity in MPD model leads to discontinuities in
the state solution of the coupled system. This introduces new challenges in the
numerical technique to solve MPD. The method in [103] captures this effect for
the Euler equations; however, such a method for the DFM is not available in the
literature and the DFM with discontinuous cross-sectional area should be tackled
by introducing a new numerical technique. Another challenge of the numerical
scheme is the correct implementation of the boundary conditions together with
the switching dynamics of the NRV. While many studies use the extrapolation
method to compute necessary variables at the boundaries of a coupled system
[5], the method in [69], [71] introduces transformed version of Euler equations
and the DFM along their characteristics. These new PDEs are then discretized
to correctly enforce the boundary conditions. However, combining these equa-
tions at the interconnection of the isothermal Fuler equations and the DFM
while taking the NRV into account is still an open challenge.

Although the MPD model at the infinite-dimensional level takes into ac-
count the effect of source terms, such as friction and gravity, correctly, the main
challenge emerges at the finite-dimensional level after numerical discretization.
Significant contributions of the source terms may lead to a drift of the numerical
solution from the actual solution. For Euler equations in case of zero flow with
only gravity, many numerical approaches, which are called well-balanced, have
been proposed to satisfy the steady-state solution [100]. In case of non-zero flow
and again with only gravity, few studies have been carried out [46]. Euler equa-
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tions with both gravity and friction and also DFM lack a well-balanced solver
in the literature.

In safety-critical applications such as drilling for oil and gas, a model has to
be validated against field data. For Euler equations and DFM separately, many
studies have been carried out to validate these models only against experimental
data [5], [37]. There is a gap in the literature to validate an MPD model in case
of single- and multi-phase flows against data directly collected from a real-life
well.

The discretization yields a system of state-space models with high number
of equations and unknowns. Simulating this system requires high demands con-
cerning hardware and computation times. Moreover, the solution of the system
has to be computed several times for different parameter configurations (so-
called multi-query scenario). Let us assume that the different parameters, such
as pump discharge, can be represented by a multi-dimensional parameter p and
the corresponding solution of the system by UV (). In the multi-query setting,
the long computational time of these simulations in the forward analysis (see Fig-
ure 1.2 top) renders the well planning longer and increases the non-productive
time of the drilling. On the other hand, the controller in MPD usually requires
a reference pressure profile for the choke p.,.;. This reference pressure can be
generated via solving an inverse problem by knowing the reference pressure pro-
file for the downhole pressure pgp,o¢ together with the measure choke pressure
De, the downhole pressure pg, and the pump pressure p,. This information can
be fed into the inverse problem solver as an input (see Figure 1.2 bottom). In
real-time setting, if the simulations in the inverse analysis are expensive to run,
the computation time exceeds the sampling time of the sensors and this might
lead to instability of the closed-loop system. Moreover, the state-space model
obtained after the discretization is of high dimension, rendering model-based
controller design infeasible. This can be seen as another motivation for model
order reduction.

To summarize, the main challenges that are tackled within Part I are: i)
proposing a numerical technique for the DFM with discontinuous cross-section,
ii) developing an MPD model by interconnecting appropriate models of single-
and multi-phase flow models via MPD equipment, iii) validating the MPD model
under single- and multi-phase flow against real field-data, and finally, iv) devel-
oping a numerical method to predict the accurate steady-state solutions in the
presence of significant contributions of source terms.

1.3 Model Order Reduction

To control the downhole pressure in the desired region, via a model-based con-
troller, a computationally fast and trustworthy simulator or a low-complexity
model for the hydraulics in the well is required. Therefore, accelerating the
simulator is vital.
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Parameters p Hyperbolic u(,u) Solution
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Figure 1.2: Time-consuming simulations for MPD, forward analysis (top), in-
verse analysis (bottom).

To attain faster than real-time simulations and develop models to be used
in multi-query setting, the model complexity and the dimension of the system
of equations should be reduced. The reduced-order model generated by this re-
duction should be accurate enough to capture the most important aspects of the
physics involved in the original model. In the MPD context, the most impor-
tant feature to be preserved is the distributed nature of the pressure dynamics.
In this thesis, MOR approaches are used to develop a fit-for-purpose model for
simulation of single- and two-phase flow in drilling.

Discretized models for MPD yield parametric models, to be simulated from
scratch for any change in the parameters. These parameters can address geo-
metrical features of the well or the mud properties. Therefore, a method should
be used that exploits the parameter dependency of the model to gain maximum
efficiency. In this thesis, we are mainly concerned with a class of model reduction
techniques for parametric PDEs, so-called Reduced Basis (RB) methods. These
methods yield low-dimensional parametric models typically leading to fast and
accurate numerical simulations, suitable for multi-query and real-time scenar-
ios. However, this acceleration in the simulation comes with a price: errors in
approximating the solutions. For the RB method, two aspects are pivotal: first,
basis generation to project the full-order space onto a lower-order space, and
second, a certification or an estimation of the error induced by the reduction
procedure.

Let us assume that the parameters u introduced in the last section lie in a
set D, ie., p € D C RP, where b denotes the number of varying parameters.
The parametric solution U¥ (1) originates from a standard, high-dimensional
solution space of dimension N (e.g., originating from finite-volume discretiza-
tion). Frequently, the output quantity V() of the model is more of interest
than the full state solution. Particularly for MPD, this quantity of interest is the
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Solution

Figure 1.3: Solution manifold and the RB approximation for a case with two
varying parameters p = {1, fia}-

pressure profile in the open hole section. To circumvent the computation of the
high-dimensional U# (1), the RB method provides a low-dimensional, and hence
rapidly computable, approximation for the parametric solution, called U™ ().
This solution originates from solving a system of N equations. This paves the
way for the fast approximation of the output 3™ (u). The main assumption
behind the RB method is the fact that the solution manifold, i.e., the set of
parametric solutions of the system, often can be well approximated by a low-
dimensional subspace. In RB-methods, one popular way is the construction of
this subspace from the snapshots of the full-order model for a suitable set of
parameter values p®,i € {1,---,k}. The most popular method to extract the
basis functions for this subspace is Proper Orthogonal Decomposition (POD)
[117]. However, POD requires the solution for all parameter values in the dis-
crete parameter domain, rendering its application limited. An alternative is to
approximate the space of solutions, which requires a careful choice of the pa-
rameters u' by the greedy algorithm [65]. After the construction of the space,
the reduced model is obtained, e.g., by Galerkin projection [31], and provides an
approximation U™ (1) of the solution and an approximation y¥ (u) of the output
quantity of interest. See Figure 1.3 for an illustration of the RB-approximation
scenario.

The computational procedure in RB methods is decomposed in an offline and
online phase as shown in Figure 1.4. During the offline phase, performed only
once, the basis functions for the low-dimensional space are generated and further
auxiliary operators are precomputed, mostly based on the affine decomposable
nature of the system [84]. These basis functions are obtained based on the solu-
tion of the full-order model with respect to parameter settings u’,i € {1,---,k}.
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Offline phase Online phase
UN(HI)UN(#Z) u¥ @y UV (), time

Figure 1.4: Offline and online phases in the RB approximation.

The offline phase is typically expensive as it entails several simulations of the
full-order model (red blocks in Figure 1.4). Then, in the online phase, for any
new varying parameter p*, the approximate output is provided rapidly (shown
by green blocks in Figure 1.4). The computational complexity of the online phase
should not depend on the dimension of the high-dimensional space. Hence, the
computational complexity of the online phase will reduce depending on the di-
mension of the low-order model. This dimension should be chosen in a trade-off
between the required speedup in the simulation and the desired accuracy of the
RB solution. Notably, the computational efficiency of RB pays off in the online
phase, where the solution for many new parameters is demanded. This is gen-
erally required in the optimization procedure and multi-query settings. If the
solution of the system is only needed few times, it is suggested to directly use
the full-order model solution [84].

The RB method is well developed for linear systems with Dirichlet bound-
ary conditions [89]. For nonlinear systems, RB is usually coupled with the
Empirical Interpolation Method (EIM) [59]. However, inclusion of nonlinear
state-dependent boundary conditions in RB is challenging and, in MPD, non-
linear state-dependent boundary conditions play a crucial rule in the overall
dynamics.

In addition to the reduction strategy, rapidly computable, effective and rig-
orous error bounds and estimates are necessary to quantify the error in the state
or output due to the order reduction [89]. The advantage of such error bounds
and estimates are twofold. First, without having access to a reliable error bound
and estimate, to run the greedy algorithm, the high-fidelity solution for all mem-
bers of the discretized parameter domain is required to compute the actual error
induced by reduction. This is time consuming and also memory demanding. By
introducing a good error bound or estimate, instead of finding the actual error,
a bound or an estimate of this value is provided cheaply to choose the parame-
ters in the greedy algorithm. This accelerates the offline phase and also reduces
the memory demand to save the solution for all members of the discretized
parameter domain [84]. Second, the solution obtained in the online phase is
certified and the error loss is approximated or bounded [182]. Such certificates
have a key role in 1) making a well-informed tradeoff between model complexity
and model accuracy and 2) providing confidence on the trustworthiness of the
reduced-order model for the user. Error bounds and estimates in RB method
are tailored for specific systems [84], [182]. Beyond these systems, error bounds
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and estimates either are typically conservative or exponentially increases over
time. Error estimates for general nonlinear systems are missing in the literature.

To summarize, Part II tackles i) tailoring the RB method for systems with
nonlinearly state-dependent boundary conditions, ii) developing error estimates
for systems with local and distributed nonlinearities, and finally, iii) approxi-
mating MPD-related hydraulics by the RB method while taking into account
the area discontinuity as a varying parameter.

1.4 Port-Hamiltonian Systems

It has been observed that the RB methods do not preserve stability in the multi-
phase flow scenario of interest. Therefore, MOR techniques which preserve key
properties of the system such as stability are necessary, which is currently lacking
in the RB context.

Many complex systems are modeled by a network of different subsystems,
each having their underlying mathematical model representations. Energy-based
modeling of each of these subsystems can yield a port-Hamiltonian (pH) repre-
sentation, providing a modular framework for multi-physics and interconnected
systems. PH systems have recently received a lot of attention for modeling phys-
ical phenomena governed by nonlinear PDEs and ordinary differential equations
[64], [153]. In general, a pH system is a system of the following form:

Opz = (J(2) = R(2)) 6 H(2), (1.1)

where ¢ represents time, z := z(t, z) is the state of the system, x is the spatial co-
ordinate, J(z) is a formally skew-adjoint operator describing the interconnection
of different parts of the system, R(z) is a positive semi-definite matrix describ-
ing the power loss in the system, H(z) is a scalar-valued functional describing
the energy of the system and § denote the variational derivative. The operator
J (%) usually contains differential operators such as d,. System (1.1) requires
a suitable set of boundary conditions to allow non-zero energy flow through
the boundary and guarantee power preservation of the system [64]. Moreover,
structure-preserving methods for discretization and model order reduction of
infinite-dimensional pH systems can preserve certain original system-theoretic
properties such as stability and passivity [64]. In addition, a pH realization
offers a suitable description of the components for the modeling, analysis and
controller design [64] while taking the infinite-dimensional nature of the dy-
namics into account. Generally, the Hamiltonian functional H defined in pH
framework represents a good candidate for the Lyapunov function, rendering
the physics-based control design and the stability proof more tangible [119]. A
key property of pH systems is that, if the interconnection of the pH subsystems is
performed in a power-preserving manner [42], [64], it preserves the pH structure
of the coupled (aggregated) system. The key point in aggregating different pH
subsystems is the identification of the interconnection structure and casting this
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interconnection into a power-preserving structure. Isothermal Euler equations
are proved to have a pH structure [181]; however, investigation of the pH struc-
ture in DFM and TFM is missing in the literature. Moreover, interconnection
of the isothermal Euler equations and DFM or TFM is lacking in the literature.

1.5 Objectives and Contributions

From the overview of the state of the art presented in the previous sections and
the related open challenges, the following research objectives are pursued in this
thesis:

1. Modeling, numerical techniques for simulation and model validation for
MPD:

e Developing a model accurately representing all dynamics involved in
MPD,

e Proposing a numerical solver to take into account the effect of area
discontinuity in pipes,

e Developing a numerical solver for the MPD model,
e Validation of the MPD model against the field data,

e Proposing a numerical technique to approximate the steady-state so-
lutions more accurately.

2. Model order reduction of the MPD model together with error estimates:

e Developing model order reduction techniques for the MPD model,

e Proposing error estimates to approximate the error induced by reduc-
tion.

3. Investigating pH structure for MPD model:
e Constructing an MPD model with pH structure.

Due to the different objectives of this thesis, it has been divided into three
parts with different contributions, which are detailed below.

In Part I, the focus lies on the modeling, numerical simulation and validation
for MPD. To this end, a numerical solver for the DFM with discontinuous cross
section is developed. This numerical solver can be applied to any Godunov-type
scheme to account for the discontinuous features in the geometry of drillstring
and annulus. To further extend our numerical solver to simulate fluid flows
for MPD, characteristics boundary conditions of the drillstring and annulus are
coupled at the location of drilling bit. At this location, a dynamical NRV is
designed, which blocks the drilling mud flow from annulus to drillstring. To
validate the results of the numerical solver, simulation results are compared to
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the data gathered from real drilling wells in case of single-phase flow, liquid
influx and gas influx. To accommodate the liquid influx effect, a new reservoir
model is developed and coupled with the MPD dynamics. Finally, to take into
account the effect of significant source terms, a new upgrade procedure for first-
order Godunov-type schemes has been introduced. This upgrade is tailored for
the isothermal Euler equations and the DFM in the presence of laminar friction
and gravity.

Model order reduction and developing error estimates are the themes of Part
II. To be able to capture the nonlinear and state-dependent boundary conditions
involved in MPD, a new RB ansatz together with an interconnection between
the boundary dynamics and internal dynamics has been proposed. This method
exactly enforces the boundary conditions at the ROM level without generating
non-physical spikes in the solution at the boundaries, which the classical ansatz
does. For the first time, the developed RB method is applied to the MPD with
single-phase flow while considering the location and numbers of area disconti-
nuities as a varying parameter. The effect of this varying parameter is taken
into account by enriching the RB functions with local basis functions. This local
enrichment truly captures the physics induced by the discontinuous features. In
case of single-phase flow, the internal dynamics is linear and the only nonlineari-
ties appear at the boundaries. Therefore, the interconnection of these dynamics
can be formulated as a Lur’e-type system. To reduce the dimensionality, the
linear (internal) system is reduced while the finite and low dimension of bound-
ary dynamics is not changed. Exploiting the linear structure of the internal
dynamics and also the f5-gain notion, we have proposed a new error estimate
for linear systems coupled with systems with local nonlinearities. To extend
the error estimate to systems with distributed nonlinearities, a new perspective
on the coupling between RB and EIM through Lur’e-type systems is proposed.
However, for the existence of this error estimate, a small-gain condition should
be satisfied, which significantly restricts the range of state values in the simula-
tions. This motivated the introduction of a hierarchical empirical error estimate
which does not suffer from such restrictions.

Part III is dedicated to pH system modelling for MPD. RB methods do not
preserve stability through reduction [89]. For the case of DFM, the application
of RB and EIM leads to an unstable system. To circumvent this issue, for the
first time, a pH framework is developed for the TFM and DFM. Then, the pH
formalism of isothermal Euler equations and the TFM are coupled together via
MPD equipment models to construct an aggregated MPD model. To preserve
power through the pH MPD model, a condition, based on the velocity of the
drilling mud before and after the drilling bit, is derived to render the drilling
bit model dissipative. The platform proposed in this thesis can be used as a
stepping stone for a controller design based on energy methods for MPD.
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1.6 Organization of the thesis

The thesis has been organized in three parts. In the first part, MPD modeling is
explained and the challenges for its numerical approximation are elaborated. In
the second part, the MOR techniques are developed together with error estimates
and the novel RB method is applied to MPD models. Finally, in the last part,
pH formulations of the models used in MPD are developed and are connected
together to build an aggregated pH model for MPD.

Particularly, MPD can be characterized by interconnection of subsystems
governed by a single-phase flow in the drillstring and a two-phase flow in the
annulus, and, mathematical models governed by nonlinear ordinary differential
equations or static equations [128]. A single-phase flow is usually modelled by
the isothermal Euler equations, which obey a pH formalism [181]. For two-phase
flow modelling, the Two-Fluid Model (TFM) and the Drift Flux Model (DFM)
are typically employed [5]. We show that the TFM and a DFM without slippage
between the two phases can also be cast in the pH formalism [15]. Drilling with
MPD is composed of single- and two-phase flow pH realizations, which can be
interconnected via MPD equipment (bit) in a power-preserving manner to form
an aggregated pH system. We show that the drilling bit model connecting the
drillstring and the annulus is conditionally power-preserving.

1.6.1 Part I: Modeling and Validation of Multi-phase Flow

Hydraulics for MPD consists of a single-phase flow in the drillstring and a po-
tentially multi-phase flow model in the annulus, connected through nonlinear
equations of the bit. Boundary conditions of such systems are described by
the MPD equipment. However, the MPD model cannot be numerically solved
by classical numerical methods due to, i) discontinuous well geometry, ii) es-
sential contribution of frictional and gravitational source terms, iii) nonlinear
state-dependent boundary conditions containing switching dynamics. In Part I,
a model and its corresponding numerical approach are presented to deal with
these challenges. Moreover, the model and its numerical solution are validated
against field data obtained from real-world drilling wells in this part. Therefore,
Part I consists of:

e Chapter 2: A Godunov-type Scheme for the Drift Flux Model
with Variable Cross Section

— In this chapter, a numerical solver is proposed to take into account
the discontinuous geometry of the pipelines for multi-phase flow. This
method enforces some algebraic relations at the location of the area
discontinuity, which resolves the non-physical spikes generated by
classical solvers at these locations.
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e Chapter 3: A Well-Balanced Godunov-Type Scheme for the
Isothermal Euler Equations and the Drift Flux Model with Lam-
inar Friction and Gravitation

— A new method is developed here to tackle the significant effect of
source terms in both single- and multi-phase flow models. Laminar
friction and gravity source terms are included in the isothermal Euler
equation and the DFM. The proposed method enforces algebraic con-
straints from the physical steady-steady solutions, which brings about
significant accuracy increase in steady-state prediction compared to
classical solvers. The method presented here can be applied to any
Godunov-type schemes.

e Chapter 4: Modelling and numerical implementation of managed
pressure drilling systems for the assessment of pressure control
systems

— The methodology developed in Chapter 2 is extended to simulate hy-
draulics in MPD. Dealing with nonlinear boundary conditions is an-
other main focus of this chapter. The switching dynamics for the NRV
is proposed here. Moreover, validation of the MPD model against the
field data in case of single-phase flow is carried out in this chapter.

e Chapter 5: Model Validation for Multi-phase Flow

— This chapter completes the validation of the model proposed in the
previous chapter. In the current chapter, the MPD model in case of
multi-phase flow is validated against the field data. This is carried
out by exploiting data gathered from liquid-liquid flow and liquid-gas
flow. In case of liquid-liquid flow, a novel reservoir model is proposed
which accurately predicts the field data.

1.6.2 Part IlI: Model Order Reduction

The numerical simulation of hydraulics in MPD is computationally expensive
to be run in real time and in a multi-query setting. Therefore, the model is
not suitable for the optimization of drilling plans or simulation-based controller
design. To enable these features, MOR of the parameterized model for MPD is
beneficial. In this part, the RB method tailored for MPD in case of single-phase
flow is explained in three chapters:

e Chapter 6: Error estimation in reduced basis method for systems
with time-varying and nonlinear boundary conditions

— In this chapter, the RB method is utilized for the reduction of single-
phase flow models. To deal with the highly nonlinear, state-dependent
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boundary conditions employed in MPD, a modified version of the RB
method has been proposed. To quantify the accuracy loss due to the
reduction, a new error estimate is developed based on a Lur’e type
model formulation for the discretized model, which can be efficiently
extended to other systems of such a form. Results show that the new
RB ansatz does not generate non-physical results at the boundaries
and the error estimate approximates the actual error with a high
accuracy.

e Chapter 7: Error estimates for model order reduction of Burgers’
equation

— The existence condition of the error estimate developed in the previ-
ous chapter is not always satisfied when highly nonlinear terms are
present in the system of equations. To enlarge the existence condition
for such error estimate for nonlinear systems, a loop transformation
has been conducted in this chapter. Moreover, to generalize the pro-
posed approach to highly nonlinear systems and also for systems with
distributed nonlinearities, a new hierarchical error estimate based on
two ROM solutions with two different levels of accuracy has been
proposed based on the available simulation data in the RB method.

e Chapter 8: Reduced Basis Method for Managed Pressure
Drilling Based on a Model with Local Nonlinearities

— In this chapter, a new RB method has been developed to capture
discontinuous features of the drilling well geometry for single-phase
scenarios. This is done by the enrichment of the RB space by ba-
sis functions with local support. Simulations confirm that this new
method captures the physics in MPD in the presence of discontinuous
well geometry.

1.6.3 Part IlI: Port-Hamiltonian Systems

The RB method works well for the case of single-phase flow as the system is
almost linear except at the boundaries. For the multi-phase flow model, apply-
ing RB method to the model obtained after discretization typically generates
an unstable reduced-order system, possibly induced by the high complexity of
multi-phase flow models. One way to circumvent this issue is to formulate the
multi-phase flow model in a pH formalism and apply structure-preserving MOR
techniques to the obtained model, thereby avoiding such issues related to unsta-
ble reduced-order models. In this part, we set up a framework to generate such
pH-based model formulations in the two chapters mentioned below.

e Chapter 9: Port-Hamiltonian Formulation of Two-phase Flow
Models
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— In this chapter, pH model formulations are proposed for multi-phase
flow models, the TFM and DFM, used in MPD modeling.

e Chapter 10: Power-Preserving Interconnection of Single- and
Two-Phase Flow Models for Managed Pressure Drilling

— The pH models, developed in the previous chapter, are interconnected
in a power-preserving manner, yielding an aggregated pH system
model for MPD. To render the aggregated system power-preserving,
a condition is derived on the drilling bit model.

1.7 Publications

The content of this thesis is mostly built upon the publications of the author
during the 4 years of the PhD study. These publications are listed below.

Remark 1.1. It might be the case that other authors of the following papers
include the same paper as part of their thesis.

1.7.1 First-Authored papers

The contributions of the candidate have been published in the following journal
papers and conference papers with peer review as the first author.

Journal papers

e M.H. Abbasi, S. Naderi Lordejani, N. Velmurugan, C. Berg, L. Iapichino,
W.H.A. Schilders, N. van de Wouw, A Godunov-type Scheme for the
Drift Flux Model with Variable Cross Section, Journal of Petroleum
Science and Engineering, Volume 179, August 2019, Pages 796-813.

e M.H. Abbasi, S. Naderi Lordejani, C. Berg, L. Iapichino, W.H.A.
Schilders, N. van de Wouw, An Approximate Well-Balanced
Godunov-Type Scheme for the Isothermal Euler Equations and
the Drift Flux Model with Laminar Friction and Gravitation, In-
ternational Journal for Numerical Methods in Fluids, in press, 2020.

e M.H. Abbasi, L. Iapichino, B. Besselink, W.H.A. Schilders, N. van de
Wouw, Error estimation in reduced basis method for systems with
time-varying and nonlinear boundary conditions, Computer Meth-
ods in Applied Mechanics and Engineering, Volume 360, 1 March 2020,
112688.

e M.H. Abbasi, S. Naderi Lordejani, L. Iapichino, W.H.A. Schilders,
N. van de Wouw, Reduced Basis Method for Managed Pressure
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Drilling Based on a Model with Local Nonlinearities, International
Journal for Numerical Methods in Engineering, in press, 2020.

e M.H. Abbasi, L. lapichino, W.H.A. Schilders, N. van de Wouw, A Data-
based Stability-preserving Model Order Reduction Method for
Hyperbolic Partial Differential Equations, Submitted to STAM Jour-
nal on Control and Optimization, 2020.

e M.H. Abbasi, L. Iapichino, W.H.A. Schilders, N. van de Wouw, A Non-
Intrusive Stable Model Order Reduction Method for Drift Flux
Model, In preparation.

Conference papers

e M.H. Abbasi, L. Iapichino, B. Besselink, W.H.A. Schilders, N. van de
Wouw, Error estimates for model order reduction of Burgers’
equation, IFAC World Congress, Berlin, Germany, July 2020.

e M.H. Abbasi, H. Bansal, H. Zwart, L. Iapichino, W.H.A. Schilders, N.
van de Wouw, Power-Preserving Interconnection of Single- and
Two-Phase Flow Models for Managed Pressure Drilling, American
Control Conference, Denver, U.S.A., July 2020, Pages 3097-3102.

1.7.2 Co-Authored papers

In addition, the candidate has contributed as co-author to the following journal
papers and conference papers with peer review. The specific contribution of the
author to these publications are explained in detail.

Journal papers

e S. Naderi Lordejani, B. Besselink, M.H. Abbasi, G. -O. Kaasa, W.H.A.
Schilders, N. van de Wouw, Control-oriented modelling for managed
pressure drilling automation using model order reduction, IFEE
Transactions on Control Systems Technology, in press, 2020,

— Modeling, numerical implementation and simulations corresponding
to the full-order model are performed in collaboration with S. Naderi
Lordejani. The model order reduction development and the corre-
sponding simulations are solely the contribution of S. Naderi Lorde-
jani.

e S. Naderi Lordejani, M.H. Abbasi, N. Velmurugan, C. Berg, J.A.
Stakvik, B. Besselink, L. Iapichino, F. Di Meglio, W.H.A. Schilders, N. van
de Wouw, Modelling and numerical implementation of managed
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pressure drilling systems for the assessment of pressure control
systems, SPE Drilling & Completion, in press, 2020,

— Modeling, numerical implementation and simulations are performed
in collaboration with S. Naderi Lordejani and N. Velmurugan. The
validation of the single-phase flow model against the field data is solely
the contribution of S. Naderi Lordejani.

e H. Bansal, P. Schulze, M.H. Abbasi, H. Zwart, L. Iapichino, W.H.A.
Schilders, N. van de Wouw, Port-Hamiltonian Formulation of Two-
phase Flow Models, Submitted to Systems € Control Letters, 2020,

— Derivation of the Hamiltonian functional, rewriting the two-fluid
model in terms of only four primitive variables and the numerical
simulations are the contribution of the author.

Conference papers

e S. Naderi Lordejani, B. Besselink, M.H. Abbasi, G. -O. Kaasa, W.H.A.
Schilders, N. van de Wouw, Model order reduction for managed pres-
sure drilling systems based on a model with local nonlinearities,
IFAC-PapersOnLine, Volume 51 (8), January 2018, Pages 50-55,

— Modeling, numerical implementation and simulations corresponding
to the full-order model are performed in collaboration with S. Naderi
Lordejani. The model order reduction development and the corre-
sponding simulations are solely the contribution of S. Naderi Lorde-
jani.
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Part |

Modeling and Validation of
Multi-phase Flow

This part concerns the modelling of MPD-related hydraulics, to be used
for model order reduction in the subsequent parts of the thesis. Here, a new
technique to capture the effect of the discontinuous cross-sectional area of a pipe
on a multi-phase flow is discussed and compared to existing techniques in the
literature. Apparent from the results, other techniques in literature generate
non-physical results at the location of area discontinuity while the proposed
technique captures the physics induced by this feature accurately. The order of
accuracy of the scheme is also investigated.

Next, the correct approximation of steady-state solution in the presence of
powerful source terms is studied. Steady-state solutions play a crucial role in
the decision-making process of industrial systems and thus should be computed
accurately. We propose an upgrade of first-order Godunov-type schemes to pre-
dict the steady-state solution significantly more accurately than the original
Godunov-type scheme for single- and two-phase flow models. The upgrade is
applied to Rusanov scheme and tested over illustrative test cases of zero and
non-zero mass flow rates.

To enable MPD simulations and interconnect the drillstring and annulus in-
ternal dynamics, state-dependent and nonlinear boundary conditions involved
in MPD are investigated. U-tube modeling of MPD is carried out by connecting
two pipes with discontinuous cross-sectional areas, representing drillstring and
annulus, via these boundary conditions. The aggregated MPD model success-
fully simulates MPD-relevant scenarios such as kick circulation. Moreover, its
accurate prediction is validated against field data for single-phase flow scenarios.

To enable the simulation of liquid influx, the MPD model is extended to
simulate liquid-liquid flow as well. A new reservoir model for the case of liquid
influx is also introduced and coupled to the MPD. The coupled model is then
validated against liquid and gas influx scenarios. Results show that the MPD
model is capable of reproducing the field data accurately through adjusting the
uncertain parameters in the model.






Chapter 2

A Godunov-type Scheme for the Drift Flux
Model with Variable Cross Section

This paper presents a modification of a classical Godunov-type scheme for the
numerical simulation of a two-phase flow in a pipe with a piecewise constant
cross-sectional area. This type of flow can occur in wellbores during drilling for
oil and gas as well as after well completion. Contrary to classical finite-volume
schemes, the numerical scheme proposed in this paper captures the steady-state
solution of the system without generating non-physical discontinuities in the nu-
merical solution close to the locations of discontinuities in the cross-section.
Moreover, the proposed scheme can be extended to problems with piecewise con-
tinuous cross-sectional area. This extension is achieved by discretization of the
area along the spatial domain and converting the piecewise continuous area into
a piecewise constant area. The proposed scheme reduces to the classical scheme
when the cross-sectional area is constant along the spatial domain. For the pur-
pose of computational efficiency, the modification to the classical scheme is only
applied at the locations of area variation and the numerical solver reduces to the
classical scheme where the cross-sectional area is constant. It s also shown that
the proposed scheme can be effectively used to simulate two-phase flows arising
from the perturbation of the steady-state solution. The effectiveness of the pro-
posed scheme is shown through illustrative numerical simulations. Finally, it
should be noted that the proposed scheme retains the same order of accuracy as
the underlying classical scheme.

This chapter is based on “M.H. Abbasi, S.Naderi Lordejani, N.Velmurugan, C.Berg,
L.Tapichino, W.H.A.Schilders, N.van de Wouw, A Godunov-type Scheme for the Drift Flux
Model with Variable Cross Section, Journal of Petroleum Science and Engineering, Volume
179, August 2019, Pages 796-813”.
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2.1 Introduction

Reliable models and accurate numerical solutions for single- and two-phase flows
are necessary for many industrial applications, such as drilling for oil and gas
and flow in fuel bundles and pipelines [86], [120], [132]. Modeling of the transient
behavior of the flow dynamics in these industrial systems plays a crucial role in
the design, decision making and control of such systems. For the simulation of
two-phase flows, the one-dimensional Drift Flux Model (DFM), which is consti-
tuted by a set of first-order nonlinear hyperbolic partial differential equations,
has gained attention [69], [72] due to its balance between predictive capabilities
and simplicity. Compared to the two-fluid model, the DFM is favorable from a
numerical simulation perspective [127]. In addition, the DFM remains hyper-
bolic over a wider region of the variables and it is also more accurate than the
two-fluid model in homogeneous two-phase regimes [127].

In many industrial applications, the computational domain, typically a pipe,
frequently has a variable cross-sectional area along its length. In particular,
a drilling well experiences discontinuities in the cross-sectional area [93] as
schematically illustrated in Figure 2.1. These area discontinuities affect the res-
onance frequency of the wave propagation effects inside the system, especially
the rapid pressure dynamics. If this phenomenon is not considered, the model
may lose its predictive capacity. Moreover, in the scope of controller design for
Managed Pressure Drilling (MPD), the system performance may seriously dete-
riorate when such effects are not appropriately represented in the model. Hence,
a model that accounts for such phenomena is required.

Two-phase flow in a pipe with variable cross-sectional area increases the
complexity of the governing model and, subsequently, its numerical solution as
a non-conservative term is added to the governing equations [57]. This means
that after adding this term, all derivatives over the spatial variable cannot be
gathered into a single differential term.

Classical finite-volume schemes are suitable for numerical simulation of con-
servative hyperbolic PDEs, such as the DFM with a constant cross-sectional area
[67], [72], [172]. However, these classical methods cannot be effectively used
to solve non-conservative PDE models, such as the DFM with variable cross-
sectional area [103]. A common approach to incorporate the area variation is to
treat the non-conservative term as a source term [169]. This treatment leads to
non-physical and numerical spikes in the numerical solution and, subsequently,
this approach cannot be reliably used [103].

Addressing the issue of the presence of non-conservative terms in mathemat-
ical models of various systems in the scope of numerical implementation is an
active research area. Different methods have been developed for the simulation
of the behavior of a single-phase flow in a pipe with a variable cross-sectional
area. Instead of treating the non-conservative term as an additional source term,
a modification to the Rusanov scheme [171] has been proposed in [49] to capture



2.1 Introduction 23

AT
|| e

A 113/4”

2000 m

95/8"
2400 m

81/2"
2700 m

Figure 2.1: The discontinuous cross-section of area in a real drilling well with
diameters shown in inch and depths shown in meter (as common in the drilling
community). The path of the fluid is marked by black arrows. The data is
extracted from [93].

the steady-state solution of the Euler equations. However, this method is not
well-balanced in the presence of non-zero flow in the system, i.e., the numerical
solution does not preserve the steady-state solution for non-zero flow scenarios.
A model-based modification of the input arguments of the finite-volume scheme
has also been introduced in [57], [88], [103]. All the mentioned works deal with
the variable cross-sectional area in single-phase flow systems while two-phase
flows frequently occur in many realistic industrial applications [37], [86], [120],
[132].

To the best of the authors’ knowledge, the effect of non-conservative terms
in two-phase flow models has been studied only to a rather limited extent
for conservative shock capturing schemes. As an example, in [167], the non-
conservativeness in the two-fluid model originating from the state variables is
considered. However, the non-conservativeness originating from the variable
cross-sectional area is not discussed. Therefore, this paper focuses on developing
a reliable numerical approach for the DFM capturing the effects of variations in
the cross-sectional area by introducing a model-based scheme, inspired by [103].

The results of this paper can be used to simulate the flow of gas and liquid
mixtures in pipelines. In particular, this kind of flow is common in the up-
stream, midstream and downstream sector of the oil and gas industry. As in
the upstream sector, for any drilling well, the understanding of the flow (and
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pressure) dynamics in the drill-string and annulus is essential. Herein, the drill-
string consists of a series of drill pipes and the bottom hole assembly (assembly
of heavy weight drill pipes and mud motors). Together these system compo-
nents represent a drastically varying flow path, both inside the drill-string and
the annulus (refer to Figure 2.1). In drilling operations for oil and gas, multi-
phase fluid flow arises in several cases, such as gas influx into the annulus or
during under-balanced drilling where the gas is also present in the drill-string in
addition to the annulus. Moreover, the proposed method can be used to validate
hydraulics models in a drilling well with the DFM, as an extension to [37]. In
many studies for the DFM validation in a drilling well, such as e.g. the one in
[37], the effect of area discontinuity has been ignored. However, dealing with the
field data, the effects of these discontinuities should be taken into account and
the developments in this paper support this. The work of this paper can then be
used to support the operational design of MPD-based operations and controller
design for MPD. In the midstream operations, multi-zone completion designs,
using a liner or an open-hole in combination with tubings, pose a multi-phase
flow scenario in a pipe with potentially variable cross-sectional area during the
production phase. In the downstream sector, the refining and separation of the
natural gas and crude oil can be simulated using the results of this paper.

Contributions of this paper are provided in two areas. First, this paper
reviews the current techniques to deal with non-conservative terms within single-
phase flow. These techniques, which are not applicable for the DFM, are adapted
for the DFM. Secondly, new approaches within the context of the DFM are
introduced to deal with the non-conservative term induced by the variable cross-
sectional area. Since the goal of this paper is to evaluate the merit of the scheme
in capturing the effects of area variation, the effect of source terms such as friction
and gravity has not been considered. The evaluation of the scheme in the absence
of the source term is a common practice in the finite-volume community [103],
[105], [114]. In addition, considering source terms raises the issue of the well-
balancedness [38], which is beyond the scope of this paper. Incorporating these
additional source terms is the subject of future works.

The structure of this paper is as follows. In Section 2.2, an overview of
the model is given together with a comparison between the conservative and
non-conservative DFM and the corresponding eigenvalue analysis is performed.
Various methodologies to deal with the non-conservative term are proposed in
Section 2.3. In Section 2.4, the effectiveness of the different variable cross-
section treatments in preserving the steady-state solution is evaluated through
numerical tests and, subsequently, transient simulations are performed. Finally,
conclusions and recommendations for future works are presented in Section 2.5.
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2.2 Two-Phase Flow Model

In this section, the DFM in case of constant and variable cross-sectional area
is presented. Eigenvalue analysis is performed for the non-conservative system
with variable cross-sectional area. Since the dynamics originating from the per-
turbation to the steady states are of numerical interest in this study, the steady-
state solution is also presented in this section. Next, the necessary boundary
conditions for both the transient and the steady-state model are defined.

2.2.1 Introduction to the Drift Flux Model

The Drift Flux Model is widely used to describe the behavior of two-phase flow
systems [5], [69], [94], [185]. It consists of two mass balance equations, one for
each phase, and one combined momentum balance equation for the mixture of
the phases. The governing equations for one-dimensional systems are given by

Oapr) | Oleuprur)

5 o 0, (2.1a)
I agpy) | Oagpguy) _
ot =0, (2.1b)
Oauprug + agpgug) n A euprui + agpyug + p) -0 (2.1c)
ot ox ’ '

where a(t,z), p(t,x),u(t,z) and p(t,x) are, respectively, the volume fraction,
density, velocity and pressure, which are functions of time ¢ and the one-
dimensional spatial coordinate x. The subscripts | and g denote the liquid and
gas, respectively. Noteworthy, the DFM is based on the assumption of mechan-
ical equilibrium between the two phases, i.e., the pressure of the gas and the
pressure of the liquid are equal. The DFM as in (2.1) contains seven variables
while it is expressed in only three equations. Thus, four other equations, called
closure relationships, are required to, potentially, uniquely solve the system of
equations. The most widely used closure relationships are listed below [69], [91]:
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Equation (2.2) implies that every section of the pipe is filled up with a mixture
of the liquid and gas. The slip law (2.3), showing a static relation between
the velocity of the gas and the liquid, compensates for the fact that only one
momentum balance is included in the DFM. Here, K and S are, respectively,
the distribution coefficient and the drift velocity of the gas relative to the liquid
defined according to the flow regime [30], [142] and wmiz = oqu; + agug is the



26 Chapter 2. Variable Geometry of Drill Pipes

velocity of the mixture. Equations (2.4) and (2.5) represent the equation of state
(EOS) for the gas and liquid phases, respectively. ¢; and ¢, are the speeds of
sound in the liquid and gas phases, which can be assumed to be constants or be
functions of other variables, such as pressure. Finally, pg and pg are, respectively,
the reference values for density and pressure around which the EOS for the liquid
has been linearized.

Model (2.1) is based on the assumption that the cross-section is constant all
along the spatial domain. When this does not hold, the DFM in (2.1) should be
modified in order to take into account the cross-sectional variations. By including
a variable cross-sectional area along the computational domain, A = A(x), as
used in [151], the system (2.1) changes to
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Equation (2.6d) is trivial and it is only added to enable the eigenvalue analysis
presented later. Notably, system (2.1) can be written in the conservative form
while system (2.6) cannot be written in such a form due to the presence of the
term pdA/Ox (in (2.6c), all terms concerning spatial derivatives of the state
variables cannot be gathered in one single term and therefore the system (2.6)
is non-conservative). Therefore, the area variation included in (2.6) significantly
affects the solution, in particular the wave reflection pattern inside the domain
of a pipe with a discontinuous area. For this type of cross-sectional character-
istics, the term pdA/Ox becomes an impulsive force per unit length acting on
a infinitesimally small spatial interval. This means that when a fluid particle
passes a location with discontinuity in the area, it experiences an excessively
large force (an impulsive force) for an infinitesimally short period of time that
leads to a finite change in the momentum of the particle. The effect of such
impulsive forces can not be captured appropriately by the classical finite-volume
schemes. Therefore, other methods are needed to solve this system of equations.

In the following section, an eigenvalue analysis of the system (2.6) is carried
out to explain the effect of a variable cross-sectional area on the solution.

2.2.2 Eigenvalue Analysis of the non-conservative DFM

To perform the eigenvalue analysis, @ := [ay, w; p A]” is defined as the state
variable vector and by inserting the closure laws into the PDEs (2.6), the system
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in (2.6) can be rewritten in a compact form as follows:

2Q

0Q
5 T @7 =0, (2.7)

J1(Q) 5

where the concise representation of J; and Jy (by partially inserting the closure
laws) are as below

—pi 0
"R (K~ 1+ 5) ’
J1(Q) = K (K —1)u + Ko
Ug — PrU] + « —+ « P
Pglg — P1ui gPg = Kag)2 1oL gPg 1-Kay)
0 0
(67) -
g 0
Qg
= 0
a Y aguy 0 ’
2 c2
1 g
0 1]
[ P aup; Rl aprt
c? A
p ug — Koagug aup Ko Qgllg Qg Pgllg
J2(Q) = 7 (1-Kay) (1 - Kay) cz A
au?  agu?
asy as2 121 + 929 +1 0
& c2
i 0 0 0 0 |
(2.8)

where

K (K = 1)u +9)
(1-Kay)?

2 2
as1 = Pgly — PLuj + 20gPguy

Kal

asze = 20élplUl + 2agpgugm.
g9

It should be noted that although the area is a known variable, it is considered
to be one of the states of the system to facilitate the analyses and to enable
writing system (2.6) in the format of (2.7). This is the main reason for keeping
the last trivial equation in system (2.6). For the DFM, the eigenvalues of the
matrix J; 'J; have the following form [69):

M=w+w, d=uy, dg=uy—w, A=0, (2.9)
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where w is the speed of sound in the mixture of the gas and the liquid [69]. In
case of no-slip, i.e., K =1, § = 0, after computing the eigenvalues and casting
the results into the format of (2.9), the speed of sound in the mixture can be
analytically written as follows known as Wood or Wallis speed of sound [56],
[178]:

W= clcg\/ PiPg , (2.10)

plagpuc} + cupgc?)

with p = aqp; + agpy.

In the case when slip occurs between the two phases, computing the analytical
speed of sound in the mixture is complex, if not impossible. Thus, simplified
surrogates for the speed of sound have been suggested; for instance the surrogate
in [69] is introduced for cases with agpy < cyp; and 0 < oy < 1 as below:

p
w o /m. (2.11)

Notably, although the gas and the liquid phase play a symmetric role in (2.6),
the contribution of the phases are non-symmetric in the eigenvalues (2.9) due
to the closure laws (2.2)-(2.5). For a detailed analysis of the eigenvalue problem
of the conservative DFM, the reader may refer to [58]. The eigenvalue A4 shows
that there is a stationary wave in the computational domain that becomes visible
when the cross-sectional area is discontinuous and dA/dz becomes closer to the
impulse function.

Remark 2.1. Equation (2.11) becomes ill-posed when a4 tends to zero or
Kay, — 1. When K > 1, the singular point even occurs for ag < 1. In these
cases, other surrogate formulations should be used [94], which has not been stud-
ied in this paper.

Remark 2.2. In some special cases, the speed of sound w becomes very low, even
less than cg, in the presence of both phases. However, in the special application
of drilling for oil and gas, phase velocities are still lower than w and the flow is
subsonic. Henceforth, we only consider subsonic flows.

In general, dynamics of the problems studied in this paper are the pertur-
bation dynamics with respect to the steady-state solution. Thus, finding the
steady-state solution is the first step towards solving this type of problems.

2.2.3 Steady-state solution

For obtaining the analytical steady-state solution of system (2.6), the partial
derivatives of the variables with respect to time is set to zero and the following
system of equations should be solved:

8(alplulA)

o =0, (2.12a)
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I agpgugA)
o = 0, (2.12b)
a((alplulz + agpguf; + p)A) 0A
=p—. (2.12¢)
Ox ox

By embedding (2.12a) and (2.12b) into (2.12c), simplified governing equations
are obtained as in (2.13)

IaupwA)
—— =0 2.13
) o, (213a)
I(argpgugA)
——F—= =0 2.13b
fetef) _ o, (213b)
ouy ou op
apu A— o L QgpgUgA—— o g 4 Aa:c (2.13¢)
After inserting the closure laws and considering the slip law (2.3), the steady-
state solution of the new state variable W := [u; u, «, p]T is governed by
the system of equations:
ow
MW, x)—— o = = E(W,z), (2.14)
x

where the concise representation of M and E (by partially inserting the closure
laws) are as below

i -K(1-ay) 1—-Kay K (u; — ug)
1-a)EF a4 0 P pua
i 1
- p p
M(VV’ x) 0 Oégc?A ?UgA
g g
(1- O‘g)(p 5— +po)u A ag;“gA 0
L i g
0
(1 - ag)ulA
cf
ugA ’
g Cg
A
_ 0 ;
P — Do 0A
—(1 = ay)( 2 + )Ul%
E(W,z) = o P, 04 : (2.15)
gcg 90z
P — Do p 0A
_ —((1 — ag)( 2 + po)uj +04g% 3)% ]
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Notably, the term 0A/Ox represents an impulsive term at the discontinuities
of A(z), which leads to discontinuities in the steady-state solution of W. To
solve this system for discontinuous function A(z), left- or right-continuity of the
function should be specified to be able to define the area at any location.

The initial condition for the simulations in the presence of area variation is the
solution of (2.14)-(2.15) unless otherwise mentioned. If a system starts from its
unique steady-state solution, the numerical solution should remain on the same
solution afterwards. Therefore, a significant discrepancy between the numerical
simulation and the steady-state initial condition reveals the poor performance of
the scheme, which may be hard to diagnose in dynamical simulations. Thus, this
test is a powerful measure for assessing the necessary performance of a scheme,
i.e., predicting the correct steady-state solution.

Equations (2.14)-(2.15) represent a two-point boundary value problem due
to the boundary conditions specified at both ends, which are detailed in the next
section.

2.2.4 Boundary conditions

As three PDEs are involved in the system of (2.14), three physical boundary
conditions have to be specified. For subsonic flow, it is typical to set a specific
mass flow rate of the liquid and the gas at the left boundary (at x = 0) and
a pressure at the right boundary (at x = L) [69], [71]. Henceforth, the mass
flow rate of the liquid and gas are, respectively, denoted by 7y and 7, (ie.,
my = agprw A and 1y 1= agpgugA), and the pressure at the right boundary is
denoted by pg.

However, for finding the numerical solution of system (2.6), all conservative
variables should be prescribed at the boundaries. Since the number of conserva-
tive variables at each boundary is more than the number of physical boundary
conditions, additional conditions at the boundary are required to find the unique
solution for the boundary variables. For instance, at the right boundary, only
pressure is prescribed and other variables should be obtained by some compat-
ibility equations. By following the approach described in [71], characteristic
boundary conditions are combined with the physical boundary conditions in or-
der to fulfill all the necessary conditions at the boundaries. The characteristic
boundary equations can be found in [71]. Under the assumption of constant area
only at the boundaries, the characteristic boundary equation corresponding to
the pressure wave propagating in the downstream direction A\; = u; + w reads
as:

Cp+ ol — ) S ( )L =0
—pP PIW\Ug — U) 7 Qg — P1Og(Ug — U] — W)U = U,

: d 0 0
with T 5 + (uy +w)%.
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Similarly, for the gas volume wave Ay = ug4, we have:

p d . d 0 0
_ —_ — 07 th — = — —_— 2.17
P T a1 Kay) at™ R T R (217)
Finally, for the pressure wave propagating in the upstream direction A3 =
u; — w, we have:

d
&p — pw(ug — ul)&ag — pray(ug —u + w)gul =0,
(2.18)
ith 4 g—i—(u —w)E
R T T
The discrete version of equations (2.16) and (2.17) are solved at the right
boundary and discrete version of equation (2.18) is solved at the left boundary.

Remark 2.3. Before going through the numerical solvers, it should be noted
that, in this paper, the function A(x) is piecewise continuous and it is discretized
over the spatial domain. After such discretization, A(x) becomes piecewise con-
stant as it is constant within each grid cell and the discontinuities occur only
at the interfaces. Then, in the case of discontinuous area, wherever the com-
putation of 0A/Ox is required, for instance in the steady-state calculations, the
spatial derivative of A(x) is approzimated by the finite difference method.

Remark 2.4. Some existing methods to deal with the variable cross-section are
based on adapting the Rusanov scheme [105]. For the sake of a fair comparison,
we also consider the Rusanov scheme as our numerical scheme. However, the
method introduced in this paper is a universal modification that can be used along
with any numerical scheme such as the AUSMYV scheme [69].

2.3 Numerical solvers for the DFM with piecewise continuous
cross-section

In this section, different approaches are presented to deal with the non-
conservative term in the DFM; some of which are proposed in this paper and
some are extensions of existing methods for (2.6). The effects of variable cross-
sectional area in the DFM and Euler equations are similar; a stationary wave is
added to the existing waves in both cases. Therefore, the strategies introduced in
different works such as [57], [72], [103], [169] to deal with non-conservative terms
in the Euler equations with area variation are the main source of inspiration for
this work.

For the sake of completeness, some terminologies widely used in the context
of finite-volume method are introduced beforehand. For a general first-order
PDE of the form

ou 0

o %(f(u)) = S(u,t,z), witht €I1=1[0,T], z€ Q=1[0,L],  (2.19)
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Figure 2.2: An illustration of the finite-volume spatial and temporal discretiza-
tion; green block: the desired solution at the next time step, red lines: constant
solutions within each grid cell at the current time step.

u is called the conservative variable, f is called the mathematical flux func-
tion and S is the source term. Furthermore, primitive variables with phys-
ical interpretation are defined, denoted by w. For instance, for the system
(2.1), the conservative variables are u = [p  agp, upu + agpgug)’ and
primitive variables are any combination of three independent variables, such as
v=la, w p]T. Finite-volume discretization is commonly employed to solve
such PDEs by a discretization of the spatial computational domain €2 and the
temporal computational domain I, as shown in Figure 2.2. Assume that we are
interested in the solution at the i-th spatial grid cell at the time step n+ 1 (the
green block in Figure 2.2). First-order Godunov-type schemes numerically solve
(2.19) by
n+1 n At n n n n n 4n

U =Ui - Ar (FUM UL = FURL,UR) + At S(UP ), (2:20)
where U" is the spatial average of the conservative variable u over i-th cell at
the time instant t" = nAt, schematically shown at different grid cells by red
lines in Figure 2.2. Similarly, V" is the spatial average of the primitive variables
v, which will be used later. Also, At and Az refer to temporal and spatial
discretization step sizes, respectively.

The numerical flux function F' is a scheme-dependent function of the con-
servative variables. The classical Rusanov scheme [171] for the system (2.6)
employs a flux function as below:

f( 1'11);- for) Ny o (UEy — UP), (2.21)

F(Uznv in+1) =

with

[ =lapwA, ogpgugA, (uprui + agpgui +p)A]T, (2.22a)
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U=laupA,  agpgA,  (aupug + agpgug) AT, (2.22b)
and
1
Atpaye = 5 max({[uf |+w", fugltory, {luf'|+0", [ugl}i), (2.23)

i1/2
is the half of maximum local eigenvalue of (2.9) computed at the left-hand and
right-hand side of the interface x;; 1,5 at the time instant ¢". Below, various

methods for dealing with the non-conservative term are presented.

where the operator “max”gives the maximum value of its arguments, and A

2.3.1 First approach: source term approximation

The first approach involves considering the non-conservative term in (2.6),
pdA/dzx, as a source term. In other words in (2.20), the term S(U,t", z;)
is taken equal to an approximation of (p0A/dx)?, with the conservative variable
vector and mathematical flux function as in (2.22). When the area is discontin-
uous, this source term approaches an impulsive force. Different approaches such
as the one in [169] have tried to approximate this term in different ways.

2.3.2 Second approach: modified Rusanov scheme

The second approach is adopted from [49] for dealing with the non-conservative
Euler equations by modifying the Rusanov scheme. Clain and Rochette in
[49] adapted this scheme to enforce the numerical solution to be steady-state-
preserving for zero flow for the system of the non-conservative Euler equations.
The extension of the approach in [49] to the DFM is as below:

At
n+1 __ n n n —,n n n +,n
Ui - Ui - Ax ((F(Uz ) 1‘+1) + Gi+1/2) - (F( i—laUz' )+Gi1/2)() ) )
2.24
with
n g fUR)+FUF)
F(UMUl) = = D) - ¢+1/2Ai+1/2><

(upr)iyr — (qupr)
(agpg)?+1 — (agpg)}
(uprug + O‘gpgug)ﬁ-l — (uprwi + agpgug)?
Ai+1/2 = maX(AiH, Ai)7
(2.25)

where A; is the cross-sectional area at the center of i-th grid cell (it is assumed
that the area is constant within each grid cell and only changes at the interfaces)
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and
0
G " = —7Ai+1 — A 0

+, —
s 5 Gh =

i—1/2 9
p} p

(2.26)

In other words, the third entry of the following vector which appears in (2.24),

0
A1 — A
—,n +,n _ i+1 1—1
R Gt =Gl = S "

approximates the term pdA/dx. Clain and Rochette in [49] prove that the
modified scheme is well-balanced in the case of zero flow.

2.3.3 Third approach: novel, modified Rusanov scheme

The third method is inspired by the idea behind the second approach, by ap-
plying further modifications to the scheme in (2.25). The new modification,
proposed here, is motivated by the need to capture the steady-state solution
with a higher accuracy. In the second approach, when evaluated at the steady-
state solution at the presence of flow inside the domain, we obtain Ui”Jrl # U,
and therefore, the numerical solution deviates from the actual steady-state so-
lution. This approach is motivated by enforcing the last entry of U;*, which is

((alplul + agpgug)A) , to be well-balanced. By using the fact that the mass

flow rates of both phases are constant at every location during a steady-state
solution, the new modification of the scheme is introduced by the flux function
as given below:

fUL) + FUF)

FUM U )iv12 = 5

— Aiy1/24iv12X

(alpl)hLl (cupr)}
(agpg) — (agpg)i
(uprw A+ agpgugA)iy,  (uprwA + agpgug AP |7

Aiy1)2 Aiy1)2 ( )
2.27

with the same f and U mentioned in the previous section. In this case, while
starting from the steady-state solution, the third entry of the flux function F
computed by (2.27), i.e., (upiwA + agpgugA)f | — (upru A + agpgugA)7, be-
comes zero; therefore, at least the deviation of the third entry of conservative
variable at the first time-step is zero and this modification outperforms the sec-
ond approach. Similar to the second approach, this scheme reverts to the original
Rusanov scheme when there is no change in the cross-sectional area.
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2.3.4 Fourth approach: model-based modification

The next novel method, proposed here, is obtained through modifying the con-
servative variables before calculating the flux functions that allows one to treat
the non-conservative term in an indirect way, regardless of the type of the Go-
dunov scheme. The underlying idea is inspired by [57], [103] and consists of
defining the solution as follows:
n+1 n At n *,m *,M n

Ui =U" - Ar (F(Ul ,Ui+1) - F(Ui—la U; )) s (2~28)
where U7, | and U/ | are the modified conservative variables, which are hence-
forth called starred conservative variables. All conservative variables U and the
mathematical flux function f (which will be used in the computation of F') in
this approach are defined according to (2.1), not (2.6), as the effect of area is
included in the starred variables, meaning that

U=laup, agpg, oupiuy +agpgug]T,

f = lapru, QgPgUg, alpleQ + Oégpgug +p}T-

First of all, an explanation to this approach is provided, and then, the com-
putational steps for computing U}, ; and U; ; at the i-th spatial grid cell is
established to obtain the numerical solution by (2.28).

As mentioned in the eigenvalue analysis in Section 2.2.2, a stationary time-
independent wave (corresponding to A4 in (2.9)) lies in the system that should be
captured by (2.28). To this end, the method proposed in this section is composed
of two steps. In the first step, the effect of the stationary wave generated by
the non-conservative source term is captured. As the stationary waves are time-
independent, steady-state model is employed to reconstruct this type of waves.
In the second step, the effect of the non-stationary waves is taken into account.
The latter waves are governed by (2.1) as the effect of the stationary wave is
already considered in the first step.

This approach is visualized in Figure 2.3, where the first step mentioned
above is denoted by @ and the second step is denoted by ). Assume that
UZ-"Jrl is required (the green block in Figure 2.3). This grid cell is surrounded
by two interfaces at x;; 1/ and x;_1/3. The conservative variables at the right-
hand and left-hand side of the interface i + 1/2 are shown by U;41 and Uj,
respectively, in Figure 2.3. Similarly, the left- and right-hand side values for the
interface ¢ —1/2 can be defined. In this approach, the conservative and primitive
variables affecting the solution in the i—th cell, U;41 and U;_1, are modified such
that these variables contain the effect of the stationary waves at the inlet and
outlet of the cell. The starred values are denoted by U/, ; and U} ; in Figure 2.3
at level . Now, as the system has a constant area only over the i-th grid cell
and its neighboring cells, classical finite-volume discretization can be applied on
(2.1) at level D to obtain the solution at the i-th spatial grid cell. It should be
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Figure 2.3: Finite-volume modification for the fourth approach, model-based
modification.

noted that the area is assumed to be constant over only these three grid-cells
while the area of other grid cells do not affect the solution of the i-th grid cell at
the current time step n + 1. Therefore, the solution obtained by (2.28) contains
both the effect of the stationary and non-stationary waves.

After providing the intuition how this method works, the framework for find-
ing the starred values is established here. As the stationary waves are time-
independent, the steady-state solution of the non-conservative system (2.6) is
exploited to find algebraic constraints that capture the stationary waves. Re-
calling steady-state equations in (2.13), we have

A prug A)

Ox =0
O(agpgugA) _o
Ox ’
ouy ou Op
A gu Py | 9Py _,
(cupru Ox T+ gPglly Ox * 830) 0

To find an algebraic relation over the area discontinuity, (2.13) should be inte-
grated over the interface. However, (2.13c¢) is difficult to be integrated analyt-
ically over the spatial domain and needs more investigation. This differential
equation can be simplified, as shown in the following Lemma 2.5.
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Lemma 2.5. The equation (2.13¢) is equivalent to the following equation if both
phases are present in the system:

_ Oug 1 9p % 1 @

mg(ug% ;g%)+mz(ul or T

E(‘?xﬂ—

ou é)ul

(u — “g)(mgalaixg - ml%%) =0,

(2.29)

where my; = Aoypru and mg = Aagpgug.
Proof. From (2.13c), we have:

Oug - O

op
+m or

3 =

mi
9 dx

As variables oyju; and agug are not constantly zero in general due to the presence
of both phases, we can multiply the above equation by these two variables:

+A 0.

0 0
alul(mgaixg + mlai’l;l + Aaii) - 07
_ Ou _ Ou Op
agug(mga—xg + mla—xl + Aa—x) =0.

Summation of the above equations and using the identity ay; + a; = 1 leads to:

_ ou _ oy dp _ ou B oy
mgalula—xg +my(1— ag)ul% + Aalul%erg(l — al)uga—xg + mlagug%Jr
dp
Aagug% =0.
Rewriting the above relation leads to the claimed equation (2.29). O

The relation in (2.29) cannot be simplified further unless additional assump-
tions are made. In the following sections, we analyze the DFM in two categories.

2.3.4.1 DFM without slip

Assume that there is no slip between the two phases, i.e., K =1 and S =0 in
(2.3) and subsequently

U=y = ug. (2.30)

In this case, as u; — ug = 0 in (2.29), system (2.13) changes to:

8(0&1/)[@/1) -0
Ox ’
O0(agpgtiA) _0

or
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ou 1 0p ou 1 0p
A (i —— )+ A u(t— + ——=—) =0.
alplu(uax + oL OI) + Oégpg ( 8.’1} + ,09 ax)
As Op/dx = c}0p, )0z = cgapg/aaﬁ, the above equation is integrable over z.
Therefore, over the interface, the following set of functions are set to be constant:

a1 pitA = constant, (2.31a)
agpyUA = constant, (2.31b)

2 2
alpluA( +cnp) + agpguA( + c In p,) = constant. (2.31c)

Equations (2.31&)—(2.31b) represent the mass flow continuity at the interface.
Equation (2.31c) governs the rate of energy exchange at the interface. In other
words, the term 42/2 is the kinetic energy per unit mass of each phase. Also,
clz, g p1g is the potential energy of the compressible liquid and gas per unit
mass. Therefore, at the interface, the mass and energy continuity should be
preserved.

For instance, for finding Uy, from Uy, , we should solve:

(Oélplft)}kwlAMz = (Ozlpl’LALA)Ml, (232&)
(O‘gpgﬁ)}k\/flAMz = (O‘gpgﬁA)Mu (2-32b)
/\2 /\2 *
(alplu( 5 +ciInpy) + agpyi ( 5 —|—c§ lnpg)> An, =
M (2.32¢)

a2 a2
(alpluA( +ctlnp) + agpguA( + c In pg)> ,
My

where M7 and M, refer to two neighboring cells, see Algorithm 1 for more details.

However, when the slip law is not discarded, finding an algebraic relation

becomes hard as the third term (u; — ugy)(Mmgoduy/0x — mMyagdu;/Ox) in (2.29)

is not negligible. In order to extend the applicability of the fourth approach for

cases with slip, extra physical assumptions should be made, which is dealt with
below.

2.3.4.2 DFM with slip

In this case, the analytical integration of the momentum equation (2.13c) is
challenging. In [18], the authors claim that the DFM cannot be endowed with
an entropy pair unless restrictive assumptions such as no-slip are made. This fact
that the integration of the momentum equation is challenging might be related
to the lack of an entropy inequality. Alternatively, here, we try to impose some
physical assumptions to be able to integrate the momentum equation.

It is assumed that at the interfaces of area variation, the ratio of volume
and mass composition of the mixture do not change (in other words, still mass
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continuity is maintained). This assumption is valid when one of the phases is
dominant in volumetric sense in the pipe or the area varies smoothly. Otherwise,
in situations where both phases occupy the space rather equally and the area
variation is sudden, this assumption is less accurate. These two assumptions
result in constant volumetric fraction and mass fraction of each phase at the
interface, respectively. Meaning that at each interface, the following conditions
hold:

g

——— = constant = qy , = constant, (2.33a)
Qg + oy
_MPL _ constant = 2L = constant. (2.33b)
upL+ Qgpg Py

Then (2.13c) is rewritten as below:

pr Oy Oug 1 0p Apy#£0
Apglay—u—— + agug——+ —-=) =0 =
Pyl lpg . 9% 75, pgax)
0 2
%) —Z—Jr +c In p, = constant.

o 2 g2

Finally, the set of algebraic constraints under the set of assumptions mentioned
in (2.33) for p, > 0 is defined as:

aipiup A = constant, (2.34a)
agpgugA = constant, (2.34b)
o %7 +ay 5 —|— c? 10 pg = constant. (2.34¢)

Still the mass continuity exactly helds. The kinetic energy of both phases and
the potential energy of the gaseous phase can still be detected in (2.34c). This
is due to the assumption that we consider that one of the phases is dominant
in space. Therefore, the potential energy due to the expansion of the dominant
phase, here gas, is only reflected in the algebraic relation. Moreover, due to the
assumption of the prevalence of one phase, the area has been disappeared from
(2.34c). We emphasize again if both phases are rather equally present in the
pipe and the area variation is sudden, the relation (2.34c) is not accurate.

Similar to the previous set of assumptions, for finding Uy, from Upy,, the
following set of algebraic equations should be solved:

(auprwn) ar, Ant, = (upruiA) (2.35a)
(agpgug)hr, Ant, = (otgpgtigA) ay, (2.35Db)
2 2 2

u2 u ;U u
(Oélp*?l + 2 + C lnpg)Ml = (Oél;;?l + ag?g + 852] lnpg)Mu (235C)
9 g9
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Algorithm 1: Fourth approach: model-based modification

Input: Un Un Uz+17Az 1,Ai,Ai+1
n+1
Output: U = ([alpl Qgpg QUPIYY +agpgug]T>_
Compute primitive variables, V", V", V;
variables, U |, U, Uj | [169)],
if Ai+1 7é Az then
Solve (2.32) or (2.35), based on the assumption taken in Section
2.3.4, with My =i+ 1 and M = i, obtain V7] and then U7}

"t 1, from conservative

4 else

*N__rrn
L Uz+1 Ui+1

6 end if
7 if Az 7é Ai—l then

10

11
12

Solve (2.32) or (2.35), based on the assumption taken in Section
2.3.4, with M; =i — 1 and My =4, and obtain V;" and then U,

else
L U*,I’L Uz/n_l
end if
Compute U via (2.28).

where M and M refer to the neighboring cells, see Algorithm 1 for more details.

All steps involved in the fourth approach are summarized in Algorithm 1.

Now, a justification on the performance of this approach is presented in the
following claims.

Theorem 2.6. For any given U in z; € [0, L] that satisfies (2.13), then U =
U? V n €N, if no-slip condition (2.30) is assumed to obtain the solution using
Algorithm 1.

Proof. Starting from a steady-state solution U, according to (2.13) and using
(2.31), we have:

(cuprtA)p, = (uprtA)nry, (2.36a)
(agpgﬁ‘A)Iwz - (agpgﬁA)Mlv (236b)
(ozlpluA( +cZlnpy) +aqpquA( —|—c lnpq)> =

Me (2.36¢)
(alPlUA( + Cl Inp;) + agngA( + C In pg))

My

Comparing equations (2.36) with (2.32) reveals that Uy, = Uns,. Using this
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property in (2.28), by replacing M; and M; as described in Algorithm 1 yields

At
Uptt = Ul' - & B8 U7) = F(UUT)) = U7 (2.37)

x
Solving (2.37) recursively yields U = U?. Thus, the proposed scheme captures
the steady-state solution exactly. For the case with slip and assumptions (2.33),
the scheme captures the steady-state solution only approximately. O

Theorem 2.7. In case of constant cross-sectional area, i.e., 0A/Ox = 0, the
solution U obtained from (2.28) is equal to that obtained from (2.20) if no-slip
condition (2.30) is assumed.

Proof. For the case of constant area over two neighboring cells and assuming
no-slip condition, (2.32) reduces to

(uprt)pg, = (Cuprt) my s
(O‘gpga)* = (O‘gpga)Mla
02 02

(alplu( 5 +cfInpy) + agpyte ( +c lnpg)) =
My

*

A2 A2

(azPZU( ~ I p) + agpyi( +c§lnpg)) ,
M,y

where a candidate solution would be Uy, = Up,. Then, by following Algorithm
1, (2.28) reduces to

. At n n
urtt = u; Aa?( (U7 Uy) = F(UL, U)) -

This is similar to (2.20) with zero source terms (since area is constant and
0A/0x = 0) and the modified scheme reverts back to the classical scheme. This
feature is reflected in the Algorithm 1 to accelerate the numerical solution. Again
we should mention that for the case with slip and assumptions (2.33), the scheme
recovers the classical scheme only approximately when the area is constant. [

Remark 2.8. After finding the starred values through solving the algebraic con-
straints, the numerical solution of (2.6) can be computed. If the starred-values
are not found, one cannot compute the numerical solution by this method and
other methods should be followed. Since these constraints exploit the steady-state
equation (2.13), there is the possibility that these constraints are not satisfied ei-
ther when starting at initial conditions far from the steady-state solution or when
abrupt perturbations occur inside the domain. Notably, the algebraic constraints
(2.32) and (2.35) may also have multiple solutions. Although the assumption
of starting close to the steady-state solution is restrictive, there are many ap-
plications in the industry for which the analysis of perturbations with respect to



42 Chapter 2. Variable Geometry of Drill Pipes

the steady-state solution is important. In addition, studying the perturbations
of steady-state solution of different systems has been the subject of many other
studies [159], [161]. Moreover, this work can be the first step towards solving the
non-conservative DEM by understanding the restrictions of the current approach.
For a more in-depth discussion on features of the solution of the algebraic con-
straints, refer to Appendiz A at the end of this paper, where the procedure to
choose the feasible solution in case of multiple solutions is also explained.

In the following section, numerical results associated to each approach are
discussed.

2.4 Numerical Results

Numerical results in this section are divided into five categories. First, in order to
find the best scheme to solve system (2.6), the methods introduced in Section 2.3
have tested their ability to preserve the steady-state solution of system (2.6) with
a piecewise constant cross-sectional area. Second, the most accurate approach, in
the sense of capturing the steady-state solution, is used to compute the solution
of (2.6) by imposing no variation in cross-sectional area in order to compare
its performance with the solution obtained from the classical scheme of (2.21)
applied to (2.1). Third, the selected approach has been tested for a transient
flow modeling in a horizontal pipe with piecewise constant cross-sectional area.
Fourth, the method is tested on a piecewise continuous cross-sectional area,
both for capturing the steady-state solution and performing transient simulation.
Finally, an error convergence study is performed.

The values of the parameters involved in system (2.6) are summarized in
Table 2.1. The steady-state solution of (2.14) is acquired by the bvpdc solver
of MATLAB. This solver approximates the solution to (2.13) in an iterative way
while considering the boundary values at both ends of the computational domain
[156].

Remark 2.9. In Sections 2.4.1 and 2.4.2 for the fourth approach, lines
2,4 —17,9— 11 of Algorithm 1 are ignored to test the performance of the new
model-based modified scheme to automatically recover the classical scheme in lo-
cations where the area is constant. After becoming assure of the performance at
constant area locations, the entire Algorithm 1 is used in other sections.

Remark 2.10. As mentioned before, to make fair comparisons between this ap-
proach and the second and the third approaches introduced in previous sections,

Table 2.1: Test case parameters.
Po Po 1y Mg Cq a
1000 kg/m® 1 bar 0.3 kg/s 0.003 kg/s 316 m/s 1000 m/s
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Figure 2.4: Configuration of the computational domain.

we use the Rusanov scheme as the case study. However, the modification intro-
duced in the fourth approach can be applied to other finite-volume schemes in a
stmilar manner; only the numerical flux function F in (2.21) should be changed
according to the finite-volume scheme.

Remark 2.11. The Rusanov scheme is subject to the CFL condition

Az
At = CFL , 2.38
e Pl Pl Pl (2.38)

where A, € {1,2,3,4} are given by (2.9). For all simulations in this section,
we estimate max(|A1], ||, [As], [\a]) = ¢; and set CFL = 1. Then, according to
the chosen Ax, the temporal discretization At is specified.

Remark 2.12. To the best of authors’ knowledge, no Riemann solution for
the DFM with variable cross-sectional area has been published. Before doing
any transient simulations, the performance of the scheme at the steady state is
evaluated. For transients, the performance of the scheme is assessed against the
classical Rusanov scheme for the case of constant cross sectional area along the
pipe. For a reference solution for piecewise constant area, refer to Appendiz B.
For a general piecewise continuous cross-sectional area, mo reference solution
exists for transient simulations.

2.4.1 Preservation of the steady-state solution

This section is dedicated to check the steady-state preservation of the numerical
approaches proposed in Section 2.3. Since for the set of algebraic relations (2.31)
in the fourth approach, no slip between the phases is considered, i.e., K = 1 and
S = 0, we apply the same condition in this section to perform a fair comparison
between different approaches. Figure 2.4 shows the computational domain for
this case study that is a horizontal pipe with one discontinuity in diameter along
its length. Moreover, the time horizon is 1 s with discretization steps Ax = 1
m. The pressure at the right boundary is also pr(¢) = 1 bar. It should be noted
as the simulation is stopped at ¢ = 1 s, there are still some transient effects in
the solution.
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Figure 2.5: Liquid phase variables of system (2.6) by using original Rusanov
scheme on variable area and the first approach: source term approximation.

2.4.1.1 First approach: source term approximation

The numerical solution of (2.6) obtained by the first approach mentioned in
Section 2.3.1 in comparison with solution of system (2.13) is shown in Figure
2.5. Clearly, this kind of non-conservative remedy is afflicted by non-physical
peaks at the locations of the discontinuities in the cross-sectional area where the
impulsive force lies. As this method fails to capture the steady-state solution, it
is not selected for further investigation by transient simulations.

2.4.1.2 Second approach: modified Rusanov scheme

After modifying the Rusanov scheme as explained in Section 2.3.2, the solution
of this test cases is shown in Figure 2.6. Clearly, this modification suffers from
non-physical jumps at the locations of the area discontinuities. This should not
be a surprise since this modification is proved in [49] to be well-balanced only
in the case of zero flow inside the domain. However, in the presence of flow,
the performance of this scheme is not necessarily satisfactory in the sense that
it is incapable of preserving the steady-state solution, similar to the presented
results. Therefore, this method is also not studied further in this paper.

2.4.1.3 Third approach: novel, modified Rusanov scheme

The results for the third type of modification is shown in Figure 2.7. Appar-
ently, the results of the new modified Rusanov are better than the first and
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Figure 2.6: Liquid phase variables of system (2.6) by using Rusanov scheme on
variable area and the second approach: modified Rusanov scheme in Section
2.3.2.
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Figure 2.7: Liquid phase variables of system (2.6) by using Rusanov scheme on
variable area and the third approach: novel, modified Rusanov scheme in Section
2.3.3.

second approach in preserving the steady-state solution except for relatively
small discontinuity jumps in the mass flow rate. These jumps are related to the
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Figure 2.8: Liquid phase variables of system (2.6) by using Rusanov scheme on
variable area and the fourth approach, model-based modification, together with
(2.31).

approximation of the integral fz’il//; p 0A/dz dx by p;(Aj+1 — Ai—1)/2. This
numerical deficiency pollutes the numerical solutions. Another weakness of this
approach is that by increasing the spatial rate of cross-section variation in the
discretized sense at a certain location (i.e., higher jumps in the cross section
and a larger impulsive force), the solution deviates from the actual steady-state
solution even further. Therefore, this method is also not selected for further
investigation.

2.4.1.4 Fourth approach: model-based modification

The numerical results obtained by using the fourth approach with the set of
algebraic constraints in (2.31) are demonstrated in Figure 2.8. The numerical
results show a significant accuracy in the preservation of the steady-state solution
of the PDEs (2.6). Compared to the previous results, pressure and mass flow
rate are preserved with significantly higher accuracy. The small deviation from
steady-state is due to the error in solving the algebraic relations (2.31).

The simulation results for the set of algebraic constraints in (2.34) are de-
picted in Figure 2.9. This set of assumptions also performs well in capturing
the steady-state solution. As obvious from the top-left side of Figure 2.9, the
gas phase is dominant here and «;, and subsequently oy, change negligibly over
the interface. In addition, due to the very small change of pressure apparent
from bottom-right side of Figure 2.9, the assumption of constant p;/p, over the
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Figure 2.9: Liquid phase variables of system (2.6) by using Rusanov scheme on
variable area and the fourth approach, model-based modification, together with
(2.34).

interface is also valid.

Comparing all the results, the last method outperforms the other methods
in capturing the steady-state solution. Therefore, the proposed modification
in Section 2.3.4 together with the set of algebraic constraints (2.31) and (2.34)
has been used for transient simulations. In these simulations, if the no-slip
condition is imposed, the set of algebraic constraints (2.31) is used; otherwise,
the algebraic constraints at the location of area variation are governed by (2.34).
Since this approach uses a model-based modification, it does not suffer from any
non-physical discontinuities in the solution of the state variables.

2.4.2 Comparisons in case of constant area

In this section, the performance of the proposed scheme to accurately character-
ize the dynamic behavior of the system in the case of constant area is analyzed.
In order to do so, the result of the classical Rusanov scheme (2.21) applied to
(2.1) is compared with the result of the model-based modified Rusanov scheme
(2.31) or (2.34) applied to (2.6) in case of constant cross-sectional area. It should
be noted again that the full Algorithm 1 is not implemented here as mentioned
in Remark 2.9.

For the case of constant cross-sectional area, various benchmark tests for
the DFM have been introduced. One well-known benchmark test is the DFM
shock-tube problem, where the parameters of the simulation are taken from [69].
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Figure 2.10: Performance of model-based modified and classical Rusanov scheme
for shock tube test, constant area.

A horizontal pipe with the constant diameter of 0.1 m and length of 100 m is
divided into two sections at the middle length of the pipe. For the left half of
the pipe, the initial data are as below:

ag = 0.55, w; =10.37 m/s, p = 80450 Pa.
For the right half of the pipe, we set
ag =0.55, u; = 0.561 m/s, p = 24282 Pa.

In addition, discretization steps are Az =1 m, and K = 1.07 and S = 0.216.

First, we apply the modified Rusanov scheme (2.28) along with (2.34) on
system (2.6) and compare the results with the original Rusanov scheme (2.21)
applied to system (2.1). Both solutions should correspond exactly with each
other, as seen in Figure 2.10. As area is constant, the assumptions made for the
DFM with slip as in (2.33) are valid. Reference solution is obtained on a fine
discretization of Az = 0.1 m with the classical Rusanov scheme.

Thus, in order to reduce the computational cost, the algebraic relations of
(2.31) and (2.34) are enforced only at the locations where the cross-section varies.
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At the other locations, we set Uiy = Uip1 and U | = U; 1 as already noted in
Algorithm 1.

2.4.3 Wave reflection in the presence of piecewise constant
cross section

In this section, transients near the steady-state solution for a flow inside a pipe
with piecewise constant cross-section are analyzed. At the location of discon-
tinuous cross-section, any pressure wave is partially reflected back. Therefore,
presence of the discontinuous cross-section dramatically affects the frequency
response and the natural frequency of the system, which highly depends on the
location and number of area variations. This kind of behavior has to be captured
by the numerical simulation. In this section, the wave reflection behavior in the
model-based modified Rusanov scheme together with (2.31) in both cases of dis-
continuous and constant cross-section of area are compared as another criterion
for assessing the performance of the scheme.

The wave propagation can be excited by variation of a mass flow at the left
boundary or a pressure change at the right boundary. In this simulation, the
pressure at the right boundary pg(t) is increased from 1 bar to 1.2 bar at ¢t =1
s to initiate a propagating pressure wave inside the domain. Other simulation
parameters are shown in Table 2.1 with K = 1 and S = 0 with the pipe shown in
Figure 2.4. The comparison of pressure wave propagation and reflection between
two boundaries and area discontinuities can be observed in Figure 2.11 and 2.12.

The reference solution is obtained as explained in Appendix B. In Figure
2.11, the reference solution is obtained on a coarse with Az = 1 m (the same
spatial resolution as the solution with the modified scheme) and a fine grid with
Az = 0.1 m. Result of the modified scheme and the reference solution are very
close to each other. It can be observed that the pressure front generated at the
location of discontinuous area (in this case at © = 25 m which is shown by dashed
black line in Figure 2.12) opposes the incoming pressure waves and this front
partially reflects back the pressure waves as obvious from the top part of Figure
2.12 at around ¢t = 3 s and similarly at the other time instants. This feature,
which changes the wave propagation pattern inside the domain, has been well
predicted by the scheme. In case of constant area, no pressure reflection occurs
until the pressure wave reaches the other boundary.

Remark 2.13. This example resembles a choke plugging scenario within man-
aged pressure drilling operations. When the mud gets stuck in the choke installed
at the top of the annulus, the choke pressure experiences a sudden increase. Due
to this pressure increase, a pressure wave propagates inside the annulus, which
can be analyzed similar to the example in this section by adding relevant friction
and gravity source terms into the governing equations.
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Figure 2.11: Effect of discontinuous cross section in pressure reflection (the
variable cross-section is defined in Figure 2.4 for the top case and the constants
cross section is with diameter of 7.5 cm for the bottom case).
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Figure 2.12: Space-time graph for pressure [bar] wave reflection pattern;
top:variable cross section as in Figure 2.4, bottom: constant cross section with
diameter of 7.5 cm.
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Figure 2.13: Dimension of the pipe with piecewise continuous cross-section.
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Figure 2.14: Gas velocity at different time instants.

2.4.4 Piecewise continuous cross section

Here, a two-phase flow inside a converging-diverging nozzle is investigated. The
dimensions of the pipe are shown in Figure 2.13. The simulation parameters are

the same as in Section 2.4.3. Figure 2.14 depicts the gas velocity at different
time instants.

The top-left plot in Figure 2.14 shows that the steady-state solution is cap-
tured well by the numerical scheme. Then, by increasing the pressure at the
right boundary, the opposition force at the right boundary lowers the velocity
inside the domain. This test case shows the capability of the proposed scheme
both in capturing the steady-state solution and in the transient simulation of
two-phase flow inside a pipe with piecewise continuous cross section.
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2.4.5 Error convergence analysis

To accurately study the error convergence of the scheme, a test case should
be introduced such that other aspects of the numerical solution does not affect
the accuracy. For instance, A/dx and the mixture speed of sound w should be
analytically known. Therefore, a pipe with continuous cross section is selected as
shown in Figure 2.15, which defines 0A/Jx analytically. To know the analytical
speed of sound, no slip condition is set, i.e., K = 1 and S = 0; then, w is governed
by (2.10). Other parameters are taken from Table 2.1. Boundary conditions do
not change (pr(t) =1 bar) and the system remains on its steady-state.

In order to study convergence properties of the scheme, the number of grid-
cells (N) are varied, the problem is solved with the model-based modified Ru-
sanov scheme at other values for Az (i.e., other number of grid-cells) and the
solution (here the gas velocity) is compared with the reference solution at the
last time instant, t = 1 s. The error is defined as the relative difference between
numerical gas velocity at the last time instant and the initial gas velocity at all
locations, as in (2.39),

g 1) — g (2, 0)]]

H“g(%O)HL,‘

, (2.39)

where ||-||, is the L, norm of its argument over the spatial domain. The values
for the error indicator (2.39) with increasing the number of the cells are reported
in Table 2.2 and in Figure 2.16 for » = 2,00. The absolute value of the slope
of each line is also depicted in this figure, confirming that the proposed scheme
does not affect order of accuracy of the underlying scheme (it is well-known that
the classical Rusanov scheme is first order accurate [105]).

The small discrepancy between the order of accuracy at different level of the
number of grid cells is due to the inaccuracy in solving the nonlinear algebraic
constraints (2.31).

All discussions in this paper focused on first-order schemes; the extension to
higher-order scheme can be done, which is beyond the scope of this paper. This
will be the topic of future works.

Figure 2.15: Dimension of the pipe with continuous cross-section to study the
error convergence.
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Table 2.2: Relative error convergence for the model-based, modified Rusanov

scheme.

Number of cells r=2

r =00
50 0.012  0.0289
100 0.0061  0.0143
200 0.0031  0.0070
400 0.0015  0.0033
800 0.00076  0.0016

Generally, this approach of dealing with variable cross-sectional area is prob-
lematic when the system (2.6) starts far from steady-state solution or when it
is used for simulating abrupt dynamics. In this setting, an analysis has been
presented in Appendix A.

2.5 Conclusions

This paper studied numerical solvers for the non-conservative Drift Flux Model
in the presence of variable cross-sectional area. Different numerical approaches
have been proposed and compared to the existing approaches in the sense of
accurate preservation of the steady-state solution. It has been shown that one
of the new proposed schemes, the model-based modified scheme, indeed captures
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Figure 2.16: Relative error convergence by increasing the number of the grid

cells with the model-based modified Rusanov scheme together with (2.31).
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the physical steady-state solution with an acceptable accuracy. The model-based
modified scheme can be applied to piecewise continuous cross-sectional areas as
well. This modified scheme reduces to the classical scheme in case of constant
area and it is also shown that the modified scheme enables simulation of the wave
reflection in case of discontinuous cross-sectional area. It has been numerically
proved that the proposed modification retains the first order of accuracy of the
underlying scheme. Based on the performance of the proposed scheme, it can
be used for simulation of industrial applications such as the hydraulics of two-
phase flow occurring in drilling for oil and gas in a well with discontinuous
cross-sectional area.



Chapter 3

An Approximate Well-Balanced Upgrade of
Godunov-Type Schemes for the Isothermal
Euler Equations and the Drift Flux Model
with Laminar Friction and Gravitation

In this paper, approximate well-balanced finite-volume schemes are developed
for the isothermal Euler equations and the drift flur model, widely used for the
simulation of single- and two-phase flows. The proposed schemes, which are
extensions of classical schemes, effectively enforce the well-balanced property to
obtain a higher accuracy compared to classical schemes for both the isothermal
Euler equations and the drift fluz model in case of non-zero flow in the presences
of both laminar friction and gravitation. The approzximate well-balanced property
also holds for the case of zero flow for the isothermal Euler equations. This is
achieved by defining a relevant average of the source terms which exploits the
steady-state solution of the system of equations. The new extended schemes
reduce to the original classical scheme in the absence of source terms in the
system of equations. The superiority of the proposed well-balanced schemes to
classical schemes, in terms of accuracy and computational effort, is illustrated by
means of numerical test cases with smooth steady-state solutions. Furthermore,
the new schemes are shown numerically to be approximately first-order accurate.

This chapter is based on “M.H. Abbasi, S.Naderi Lordejani, C.Berg, L.Iapichino,
W.H.A Schilders, N.van de Wouw, An Approzimate Well-Balanced Upgrade of Godunov-
Type Schemes for the Isothermal Euler Equations and the Drift Flux Model with Lam-
inar Friction and Gravitation, International Journal for Numerical Methods in Fluids, in
press, 2020.”
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3.1 Introduction

Numerical simulation of single- and two-phase flows has attracted the atten-
tion of researchers in the past few decades. This interest is invoked by many
associated industrial applications, such as flow dynamics in petroleum refiner-
ies, distillation units, boilers of petrochemical plants and refineries, pipelines for
long-distance transportation of gas and liquid [120] as well as in drilling systems
[132]. Accurate prediction of the steady-state solution of such systems is crucial
in the decision-making process; for instance, pipelines are usually designed to op-
erate in the steady condition [48]. Moreover, mathematical models are used for
leak detection in pipelines by comparing the measurements with the numerical
steady-state solution [102]. This highly relies on the accuracy of the numerical
solution.

In addition, transient multi-phase flows commonly occur in pipelines when
changes in operational conditions, such as inlet and outlet flow rates, and set-
point pressures, are induced. These changes are usually exerted to reach a new
steady condition in the system. All these points dictate that a reliable simulator
should predict not only transients accurately but also the steady-state solution.

Many numerical methods have been used for solving the equations governing
the physics of a phenomenon. When there is no effect from external sources,
these methods are often highly accurate in predicting steady-state behaviors of
the system. However, many realistic industrial systems, such as, e.g., managed
pressure drilling systems, are inevitably affected by external sources such as
friction and gravitation [128]. It has been observed that classical finite-volume
schemes do not preserve the analytical (or the trustworthy numerical) smooth
(i.e., continuous and differentiable) steady-state solution of systems in the pres-
ence of such source terms [25], [38], [133]. To resolve this issue, much effort has
been put into deriving schemes capable of preserving the analytical steady-state
solution. Such schemes are called well-balanced schemes [124], [125].

The isothermal Euler equations (henceforth called Euler equations) [115] and
the Drift Flux Model (DFM) [71] have been widely used for modeling single and
two-phase flows in pipelines. The accuracy of Euler equations and the DFM
for single-phase and two-phase flows in drilling scenarios has been verified by
comparing it to real-life field data [5], [128]. Thus, these models are trustworthy
for simulation of single-phase and two-phase flows in pipelines and in drilling.
Developing well-balanced schemes for Euler equations and the DFM is necessary
to approximate the correct steady behavior of the flow in pipelines. To capture
the analytical steady-state solution of Euler equations, a few studies have been
carried out for special cases [21], [39], [46], [100]. The developed schemes in
these studies are all well-balanced only with respect to gravity, and not friction.
Moreover, the proposed solution in [21], [39], [100] relies on the analytical steady-
state solution, , which is, in general, not available or is computationally expensive
to be computed at each time step. Furthermore, schemes in [21], [39], [100] are
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only well-balanced in case of zero flow (stationary steady-state solutions), which
restricts the applicability of these schemes. Stationary steady-state solution of
Euler equations is, however, much easier to capture compared to moving (non-
zero flow) steady-state solutions as the mass conservation law is automatically
satisfied in the stationary situation. Moreover, the analytical stationary steady-
state solution replicates a trivial hydrostatic solution, which might not be the
most important scenario in drilling for oil and gas and also the transportation
of liquid and gas through pipelines. The solution in [46], although applicable for
moving steady-states, is based on neglecting the diffusive part of Rusanov scheme
[105] when the system is in its steady state (Rusanov scheme then converts to
a centered scheme when their algorithm detects that the system has reached
steady condition). Nonetheless, the diffusive part of this scheme is essential for
the stability of the solution during transients. Moreover, the mechanism that
detects the solution is now steady and the diffusive part should be neglected
is not well explained. Therefore, in this study, a different method is proposed
to solve Euler equations in a well-balanced manner in a general scenario (zero
and non-zero flow) in the presence of both laminar friction and gravitation with
an accuracy much higher than classical schemes; however, our method does
not capture steady-state solution exactly and therefore we recover the actual
steady-state solution approximately. This leads to an approximate well-balanced
scheme. Moreover, we also propose a scheme for the case of two-phase flows
governed by the DFM. To the best of authors’ knowledge, no study has been
performed on capturing the smooth steady-state solution of multi-phase flows,
especially the DFM.

Contrary to Euler equations and the DFM, the shallow water equations have
attracted many researchers for developing a well-balanced scheme [14], [24], [39],
[124], [125]. These efforts were pioneered by developing a well-balanced scheme
for a lake at rest [14], [39], further extended to non-zero velocity with topog-
raphy [125] and friction source terms [124]. In case of non-zero velocity, the
schemes become approrimately well-balanced as many assumptions have to be
made. Moreover, the convergence rate of the scheme also reduces due to these
simplifying assumptions [124], [125]. Fortunately, Euler equations [46], the DFM
[69] and the shallow water equations [125] share many common features; for ex-
ample, all three systems are hyperbolic (for the DFM, it is hyperbolic over a wide
region of the state variables [183]) and these systems are typically discretized by
finite-volume techniques. Therefore, we propose to generalize the ideas proposed
for the shallow water equations and extend these techniques to Euler equations
and the DFM. Compared with the studies on shallow water equations, apart
from the application for other classes of PDEs, this study differs in another cru-
cial aspect. In [124], [125], the intermediate values in the approximate Riemann
solver are found to force the system to be approximately well-balanced. Here,
we modify an existing scheme to upgrade it approximately well-balanced. All in
all, this research aims to develop a scheme- and model-dependent framework for
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increasing the accuracy of numerically obtained steady-state solutions of Euler
equations and the DFM. Nonetheless, this approach can be extended straight-
forwardly to other numerical schemes and also to other systems of hyperbolic
PDEs.

This paper is organized as follows. In Section 3.2, Euler equations and the
DFM together with their steady-state solutions are introduced. In Section 3.3,
a methodology to upgrade a finite-volume scheme to become well-balanced is
discussed. Moreover, the application of this methodology to an advection equa-
tion, Euler equations and DFM is elaborated (the ezact well-balanced property
of the scheme is proved for the advection equation). In Sections 3.4 and 3.5, the
proposed schemes are supported by illustrative numerical test cases for Euler
equations and the DFM, respectively. In Section 3.6, the error convergence of
the schemes is studied. Finally, Section 3.7 concludes the paper.

3.2 Single- and two-phase flow models

In this section, Euler equations and the DFM, together with the corresponding
steady-state solutions, are introduced.

3.2.1 Isothermal Euler equations

Single-phase flow inside a pipe can be modeled by the isothermal Euler equations
[57]. This system of equations is as follows:

aaz:f’jLai(f(w)):(q(o )>7 te[0,7), e (0,L), (3.1)

w, T

where w, g(w, z) and f(w) are, respectively, the vector of conservative variables,
the source terms and the mathematical flux function defined as

w=(p) sw= (8, ) ) = P + 6w, 62

with p(t,z), u(t,z) and p(t,z) denoting density, velocity and pressure of the
fluid, respectively. The temporal and spatial variables are denoted by t and x
while T" and L are the final time of the simulation and the length of the spatial
domain (i.e., the length of the pipe). Moreover, F(w, ) is the laminar friction
and G(w, ) is the gravitational source term. In this paper, we consider

F(w,z) = —32%u7 (3.3a)
G(w,z) = —pgsinb, (3.3b)

where p, d, g and 0 are, respectively, the viscosity of the fluid, the hydraulic
diameter of the pipe, the gravitational acceleration and the pipe inclination
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with respect to the horizontal plane. System (3.1) is completed by the Equation
Of State (EOS) of the fluid as follows:

p=(p—po)c® + po, (3.4)

where py and pg are the reference density and pressure for defining the EOS of
the fluid and c is the constant speed of sound in the medium occupied by the
fluid. As the dynamics for single-phase flow are now uniquely described, we can
proceed to find a numerical steady-state solution of system (3.1).

3.2.1.1 Steady-state solution of the isothermal Euler equations

The equations describing the steady-state solution are obtained by using
Ow/0t = 0 in (3.1) and substituting p from (3.4) into (3.1), which read as

dm
a = O7 (353)
2
d (m + ch)
e/, (3.5b)

dx

where m = pu is the momentum. For subsonic flows (which is the common
case for drilling applications and transport of gas and liquid), the two boundary
conditions to be specified to solve system (3.5) lead to a two-point Boundary
Value Problem (BVP), which is hard to be solved analytically, especially because
both friction and gravity are present in q. However, this BVP can be solved
numerically by the bvp4c solver of MATLAB. This solver approximates the solution
to (3.5) in an iterative way while considering the boundary values at both ends
of the computational domain [156]. This numerical solution later serves as a
reference solution to evaluate the accuracy of the proposed scheme in predicting
the steady-state solution.

However, due to the nature of the BVP, the steady-state solution is compu-
tationally expensive and thus the approach from [21], [39], [100] is not applicable
here to develop a well-balanced solver for Euler equations. Moreover, since fric-
tion and gravity are present simultaneously and we aim to maintain all charac-
teristics of the scheme (not neglecting the diffusive part), the methodology from
[46] cannot be employed either. Thus, we try to find a more general approach
to develop a well-balanced numerical solver in Section 3.3. Next, we analyze
the steady-state solution in case of only laminar friction and only gravitational
force, which later supports our arguments in Section 3.3.2.2.

Lemma 3.1. The isothermal Euler equations (3.1) with (3.4) for the case of
only friction source term (3.3a) has (a unique or two) steady-state solutions for
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a reference point xy with p(xg) = po and m(xg) = mo if
21, Mo 2y My H
—moln7+molnpo+7 fp05+32ﬁm0(x—xo) <0. (3.6)

Proof. In the case of only laminar friction as the source term, (3.5) reads as

dm
E—O, (37&)
2
d<m+62p) Bom
P
—_— 7 =32 — .7b
dz 3 a2 p’ (3.7)

Since the momentum is constant along the spatial domain in the steady state,
we consider m = mg and rewrite (3.7b) as follows:

d /1 d U myg dIn c? dp? I
2 2dp 2 P P
mox(>+0——22 — —my . 5 Mo (3.8)

Consider zg € R as a reference point with p(z¢) = po and integrating (3.8) over
(29, ) and denoting p(x) = p, we have:

2

~ A~ C ~
C(p; z, w0, mo, o) := —ma (Inp —In po) + 5 (p2 - pg) + 32%7710(.%‘ —1xp) =0.
(3.9)
The minimum of ¢ occurs at
d
dp 0 c

Function ( is strictly increasing on p € (p.,00) and decreasing on p € (0, p.).
Therefore, function ¢ admits a unique minimum for p = p.. As ( — oo when
p — 0 and p — 0o, to have any steady solution, ((p.) < 0 must hold. This leads
to the condition (3.6). O

Lemma 3.2. The isothermal Euler equations (3.1) with (3.4) for the case of
only gravity source term (3.3b) has (a unique or two) steady-state solutions for
a reference point xo with p(xg) = po and m(xg) = mg if

2 m% 2 mo

— +c (1n— — lnpo) + gsinf(z —xg) <0

c
— — . 3.11
2 203 c = (3.11)

Proof. Similar to Lemma 3.1, we have

d /1 dp m2 d [ 1 dlnp
2 2 . 0 2 .
— ()4 2E = g —"L— | =) +cF—E = — 0. 12
modx <p> ¢ dx pgsm 2 dx (pQ) ¢ dx gsin (3.12)
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Consider zy € R as a reference point with p(xo) = po and integrating above over
(0, ) and showing p(x) = p, we have:

R md (1 1 . .
C(p; z, w0, Mo, Po) = 70 (p2 - pq) + ¢ (Inp—1Inpg) + gsinf(z — o) = 0.
0
(3.13)
The minimum of ¢ occurs at

d 2 2

éz_mi??+i:0_>pc:@. (3.14)

dp p p c

Function ( is strictly increasing on p € (p.,00) and decreasing on p € (0, p.).
Therefore, function ¢ admits a unique minimum for p = p.. As ( — oo when
p — 0 and p — oo, to have any steady solution, {(p.) < 0 must hold. This gives
the condition (3.11). O

3.2.2 The drift flux model

The DFM is described by the following system of partial differential equations
(PDEs) [127], which describes a two-phase flow inside a pipe:

ow 0 0
-5 T s f(’lU) = 0 ) te [OaT]a T € (OvL)7 (315)
gt = Ox
q(w,x)
with
apr o pruy
w= QgPg , flw) = QgpPgllg ' (3.16)
QPIU] + QgPglig O‘lplu% + agpgug +p ’

Q(wax) = F(’Uj, I) + G(wvx)a

where the subscripts I and g denote the liquid and gaseous phase, respectively,
and oy(t,z) and ay4(t,x) denote the volume fraction of each phase. Frictional
and gravitational terms are given by

Hmix
F(w,z) = —32 2 Umix, (3.17a)
G(w,x) = —pmixgsin (3.17b)

with pimix = agpi + agpy the mixture viscosity, umix = oqu; + agug the mixture
velocity (ayu; and agyu, are the superficial velocities of each phase), and pnix =
a1py + agpg the mixture density of the gas and liquid. The DFM is completed
by closure relations, as listed below [69], [91]:

a+a;—1=0, (3.18a)
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p—((p1 = po) i +po) =0, (3.18b)
p— pgcs =0, (3.18¢)
Ug — (Kumix + S) = 0; (318d)

where K and S are two constant parameters depending on the flow regime [30],
[142]. Moreover, ¢; and ¢4 are the constant speed of sound in the liquid and gas
medium, respectively. Now, the steady-state solution of system (3.15) can be
computed numerically.

3.2.2.1 Steady-state solution of the DFM

The steady-state solution of the DFM can be obtained by solving the following
system of equations, which is obtained by setting dw/0t = 0 in (3.15):

dmy
—t 9 3.19
dx ’ (3:190)
dmg
=9 3.19b
=0, (3.19b)
d(mu + mgug +p) _ (3.19¢)

dx ’

where m; = a;p;ui,t € {l,¢}, is the momentum of phase i. By embedding the
closure relations (3.18) in (3.19), this system, which also leads to a two-point
BVP due to the boundary conditions for subsonic flow, can be solved numeri-
cally. This numerical steady-state solution will be used as the reference solution
to assess the well-balanced property of the numerical solver to be proposed.
Similar to the discussion for Euler equations in Section 3.2.1.1, the approaches
proposed in [100] and [46] cannot be employed for solving system (3.15) and
new approaches should be developed. In the following section, the novel well-
balanced schemes are introduced.

Remark 3.3. Notably, other friction functions rather than laminar friction can
also be studied; however, more complicated frictional source terms complicates
the analysis presented in this paper, if not impossible.

Remark 3.4. The analysis in this paper holds true if the parameters present in
the source terms such as 6, hydraulic diameter and viscosity vary smoothly along
the spatial domain. In this case, the steady-state solution of Euler equations
and the DFM will also be smooth, which will be used in the proofs presented in
Sections 8.3.2.2 and 3.3.2.3. For the sake of simplicity, these parameters are
assumed to be constant in this study.

Remark 3.5. Analysis of the steady-state solution of the DFM in case of only
friction and only gravity, similar to what we did for FEuler equations, is compli-
cated, if not impossible.
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3.3 Well-balanced finite-volume scheme

Classical cell-centered finite-volume schemes are reliable for solving systems in
the absence of source terms [69], [105], [115]. When source terms appear in the
governing equations, these numerical methods are no longer well-balanced; i.e.,
the steady-state solutions predicted by the finite-volume solvers differ from the
analytical steady-state solution. As a consequence, the solution of the finite-
volume method deviates from the analytical steady-state solution even when
initialized on the steady-state solution. This deviation can be made smaller by
increasing the number of grid cells to a computationally unfeasible large number
(much more than the required spatial resolution). Here, we propose a method
that can achieve a significantly higher accuracy in predicting the steady-state so-
lution with relatively low number of grid cells. As the method we are suggesting
is scheme-dependent, in this section, first Rusanov scheme [105] is introduced as
a reference classical scheme, and then a modification of the scheme is proposed,
which is able to compute an accurate approximation of the analytical steady-
state solution. Reasons for choosing Rusanov scheme are its simple formulation
compared to other numerical schemes and the independence of its diffusivity
properties on the Courant-Friedrichs-Lewy (CFL) number [105]. These features
yield less complicated nonlinearities. However, the methodology introduced in
this paper can be applied straightforwardly to other Godunov-type schemes as
well.

3.3.1 Rusanov scheme

Let At and Ax refer to the temporal and spatial discretization intervals over
time and space, respectively. The spatial discretization consists of cells spatially
located between two interfaces (z;_1/2,;41/2) With the length of Az centered
at x; = x;_1/o + Az/2. Time discretization is performed using a forward Eu-
ler integration method. Finally, first-order Gudonov-type schemes are used to
numerically solve systems (3.1) and (3.15) by

At

W — e - Ao (FOVPWEL) = FOWI L W) + At g (W] ,), (3.20)

where W/ and ¢ (W/*,z;) are approximate averages of the conservative vari-
ables and the source terms within the i-th cell at the time instant ¢" := nAt,
respectively. Variables W* and W, are approximations of the conservative
variables at the left and right sides of the interface x;; /o at the time instant
t", respectively. Moreover, F(-,-) is the scheme-specific numerical flux function.
Various numerical flux functions have been introduced in the literature [58], [69],
[105], [111], [115], [158]. As a case study, the flux function for Rusanov scheme

is defined as follows

fOVP) + F(Wi)
2

}-(W'na ﬁH) =

2

- A" (Wi, = W), (3.21)

K2
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where A" := A(W}'_;, W) is half of the absolute value of the largest eigenvalue
of the Jacobian matrix of the system of equations (3.1) or (3.15) (the Jacobian
matrix is 9 (f(w)) /Ow in these equations). This state-dependent eigenvalue is
is calculated locally at the left and right side of each interfaces. For instance,
for system (3.1),

1 ,
AW, Wiky) = g max(e + |ui], e + [uila]), (3.22)

and for system (3.15),
1
MW Wiky) = gmax(i + ||, [ug) wily + luia | fug ), (3.23)

with w! denoting the speed of sound in the mixture of liquid and gas [69]. In
the case of no-slip, i.e., K =1, § = 0, the speed of sound in the mixture, w/,
can be analytically written as follows, known as the Wood or Wallis speed of
sound [56], [178]:

n iy Py
w; = CiCq n nAn2 n, n.2\" (324)
Pmix; (O‘gi pii ¢ taggpgic )

19

When slip occurs between the two phases, computing the analytical sound ve-
locity, due to the effect of slippage between the two phases and its effect on the
wave propagation speed, is mathematically involved, if not impossible. Thus,
simplified surrogates have been suggested in [69] for cases with ayp, < ayp; and
0 < agy <1, such as

p
Wi d . 3.25
\/O‘g?pl?(l - Kag}) (329)

These surrogates are not exact and may lead to inaccurate solutions. For this
reason, only the case of no-slip is considered in this paper. The reader is referred
to [58], [69] for a detailed analysis of the speed of sound in the mixture of the
gas and liquid.

Remark 3.6. Equation (3.25) becomes ill-posed when a4 tends to zero or
Ko, — 1. When K > 1, the singular point even occurs for ag < 1. In
these cases, other surrogate formulations should be used [94], which have not
been studied in this paper.

Remark 3.7. In some special cases, the speed of sound w] becomes very low,
even less than cq, in the presence of both phases. However, in the relevant
application domain of managed pressure drilling operations for oil and gas, phase
velocities are still lower than the speed of sound in the mixture and the flow is
subsonic. Henceforth, we only consider subsonic flows.
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Remark 3.8. Physical boundary conditions are coupled with the so-called
characteristic-based boundary conditions to obtain the primitive variables at the
boundaries. For more information, refer to [71]. Noteworthy, the method in this
paper is not dependent on the type of the boundary conditions and can be easily
applied to other boundary conditions such as periodic boundary conditions.

After this concise introduction to Rusanov scheme, a novel modification to
this scheme is proposed next to upgrade the solver to be approximately well-
balanced.

3.3.2 Modified Rusanov scheme

In the presence of source terms, the numerical solutions obtained by classical
finite-volume schemes may drift from the actual solution depending on the con-
tribution of the source terms to the solution. Resolving the issue of generat-
ing non-physical steady-state solutions thus requires further adjustments of the
scheme by considering the effects of the source terms, leading to the definition
of a well-balanced scheme. By definition, a well-balanced scheme preserves the
actual steady-state equation [38]. In the following, we introduce a framework for
an approximately well-balanced scheme and provide the motivation for choosing
such a framework. This framework differs from the one in (3.20) in one crucial
aspect: the effects of the source term ¢ (W/*,z;) are incorporated in the input
arguments of the numerical flux function F(-,-). The proposed modification is
inspired by the work in [124]. The applicability of that work is, however, limited
to basic shallow water equations. This paper extends the introduced framework
in that paper to more advanced and generic models, such as the isothermal Euler
equations and DFM.

The proposed structure for the well-balanced scheme: The proposed
well-balanced solver of the PDEs (3.1) and (3.15) has the following structure

n n At n *,M *,M n
W = Wi — Ax (]:(Wz »Wi+1) - F(W 2, W, ))7 (3.26)

where F(-,-) can be any numerical flux function and specifically for this study
it is defined in (3.21) as in Rusanov scheme. Moreover, W}, henceforth called
the intermediate variable, satisfies a consistency condition defined in [87], [124].
In order to define W' uniquely, complementary equations alongside the con-
sistency condition, which are source- and model-dependent, are defined for an
advection equation, for Euler equations (3.1) and for the DFM (3.15) in Sections
3.3.2.1, 3.3.2.2 and 3.3.2.3, respectively. Specifically, the computational steps for
the numerical simulation of Euler equations and the DFM are summarized in
Algorithm 2 and 3. In the following, we provide a motivation for the proposed
structure in (3.26).
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Motivation. Comparing the newly proposed scheme in (3.26) with the classical
one in (3.20) reveals that the effect of the source terms in (3.26) are hidden in
the intermediate variables while in (3.20) the source terms are simply integrated
over a grid cell. The latter leads to an erroneous steady-state prediction, which
originates from the underlying nature of classical schemes that approximate the
source terms with a simple average. The problem in predicting a wrong steady-
state solution is not resolved by using a different time integrator. To resolve this
issue, we embed the effect of the source terms in the intermediate variables in
(3.26) while the intermediate variables satisfy some algebraic constraints derived
from steady-state equations. This aspect is the main difference between this
study and other studies in literature [124], [125], where the intermediate variables
in the approximate Riemann solver have been defined such that the scheme
becomes approximately well-balanced. Instead, we modify an existing scheme
to make it approximately well-balanced.

Consistency. When manipulating the scheme to contain the effect of source
terms, some properties of the scheme should remain intact. Most importantly,
the modified scheme should still simulate the transients accurately. Also, when
reaching the steady-state solution, the analytical steady-state solution should be
approximated as accurately as possible. Besides, the scheme should always be
consistent, i.e., F(W/, W) = f(W]*), which is the case for the original Rusanov
scheme in (3.21). This is also the case for the proposed well-balanced scheme
as we are not changing the definition of the flux function itself, but only modify
its input arguments. Another consistency condition, defined in [87], [124], states
that the average of the conservative variables obtained by the scheme should be
equal to the average over the same cell of the exact solution of the Riemann
problem over a length of Az. If we focus on the spatial interval of (z;,x;y1),
this consistency condition imposes the following equality:

Tit1/2 Tit+1 Tyl
Wt de 4 / Wit de = / Wr (W), W) da, (3.27)

T; Tit1/2 T

where Wy (W], W/, gives the conservative variables at the time instant ¢+
obtained from the exact solution of the Riemann problem at the interface z; /2,
which is dependent on the solutions at the neighboring cell of this interface at
time instant ¢". Moreover, W/"*! is obtained from (3.20) together with (3.21).
To compute the right-hand side of (3.27), the exact solution of the Riemann
problem should be defined over the spatial domain of (z;,2;+1) and in the tem-
poral domain (¢",t™ + At). It should be noted that the exact solution varies
continuously over the spatial and temporal coordinate. For obtaining the above
integral for the exact solution of the Riemann problem, one can use the following
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equivalent equation [87]:

Ti+1

1 n o 1. . . At . .
Az / Wr (Wi, W) da :i(Wi + W) — Ax (fWP) — fFW) +
1 1 Tit1 t"+AL
Ax / / q(Wr (W, W}i,),z) dt dz,
x; tm

(3.28)

where f(+) is the mathematical flux function as in (3.1) or (3.15). The integral
of the numerical solution on the left-hand side of (3.27) depends on the order
of the accuracy of the scheme, i.e., how the solution changes within a grid cell
(for first-order accurate schemes, the solution is constant within a grid cell). We
proceed with the computation below by considering first-order accurate schemes.
This changes the left side of (3.27) to:

1 e n+1 T n+1 1 n+1 n+1
xT; Ti41/2
By embedding (3.20) into (3.29), we obtain:
Tit1/2 Tit1
1 n+1 n+1 1 n n
Ar Wi de + Wiy dz :i(Wi + Wity)—
X Tit1/2
At n n n n n n
AL FWiy, Wiks) — FOVEWT) + FOVEWET) — F(WL, W) )+

At
5 <Q(Win, i) + q(Wiiq, $i+1)> .
(3.30)

Now, we propose to accommodate the effects of the source terms ¢ into those
input arguments of the numerical flux functions that are not in the neighborhood
of the interface x;1 1,5 (in this case, Wi 2 and W;_; and change their subscripts
to enable the solution locally at each interface). This leads to the definition
of the intermediate variables, W] and W;"", that encompass the effect of the
source terms. Embedding these into (3.30) leads to
Tiy1/2 Tyl
1 1

Z; Tit1/2
At n *,M *,M n
e (Fv Wi - Fove o ).
(3.31)
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Finally, the consistency equations at each interface are obtained by equating
(3.31) and (3.28):

Tit1 t" AL

2

2 (f( ) — f(Wzn)) N (WR (W [j_l) ,x) dz dt =

(3.32)

T tm

FWi, W) = FWS™ W),

Equation (3.32) is the consistency equation that we consider for the proposed
scheme (3.26).

Remark 3.9. The intermediate variables, W' and W™ introduced in (3.31),
contain the effect of the source terms, (W}, mz) and q(Wl_H, Zit1), and the effect
conservative variables, W[ 5 and W' . These variables are computed based on
the governing equations of the physical phenomenon and also the source terms,
which will be explained in Sections 3.3.2.1, 3.3.2.2 and 3.3.2.83 for each case

study.

Remark 3.10. In this study, we focus only on first-order schemes. To upgrade
the scheme to second-order, MUSCL approaches (see for example [26]) can be
followed, which will be the topic of future studies.

The main question is how to approximate the integral in (3.32) which contains
the exact solution to the Riemann problem. This can be resolved by exploiting
the governing PDEs that encompass the exact solution, which will be explained
in Sections 3.3.2.2 and 3.3.2.3. Moreover, (3.32) contains many unknowns and
the equation is not uniquely solvable in isolation. All the complementary equa-
tions, necessary to obtain the intermediate variables such as W™ uniquely, will
be introduced later for each system of equations in Sections 3.3.2.2 and 3.3.2.3.

The unknown terms in (3.32) are the intermediate variables and the average
of the source term (the integral term in (3.32)). The average of source terms
should be determined such that the numerical steady-state solution approxi-
mately recovers the analytical one. Since we do not have the exact solution to
the Riemann problem, we can exploit the original PDEs to find the average of
the source terms. To this end, this average will be approximated by exploiting
the algebraic relations originated from the system of equations (3.1) and (3.15),

which will be clarified in Sections 3.3.2.2 and 3.3.2.3. Henceforth, the integral
Tit1 t" AL

Ay [ (WR (wr, ng),x) da dt is denoted by Q. It should be

noted that thls treatment of the scheme is dependent on the nature of the source
terms, which is explained later in the aforementioned sections. The intermedi-
ate variables should be obtained by considering two essential properties that are
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required to be satisfied by the well-balanced solver: consistency with the actual
system and the well-balanced property.

The consistency with the actual system of equations is ensured by satisfying
algebraic relations originating from the steady-state model. These algebraic
relations are obtained in the next section for the isothermal Euler equations
and the DFM. For the well-balanced property, from (3.26), we deduce that the
solution is stationary, VVZ-"+1 = W, if the solution is assumed constant within
each grid cell (the underlying scheme is ﬁI“bt order accurate) and W] T =W
and W™ = W} ,. Therefore, we seek W'} = W* and W'} = W}* as soon

as W and W/, define a steady state. Then, the right-hand side of (3.32)
becomes zero and the left-hand side resembles the steady-state model at the
discrete level. Here, the pair (W;, W;;) is said to define a steady state if the
equations (3.5) and (3.19) are satisfied at the discrete level. Such intermediate
states will enforce the well-balancedness of our scheme. All these properties will
help to define the intermediate variables in Sections 3.3.2.2 and 3.3.2.3.

The idea proposed in [100] consists of modifying the effect of the source term
by knowing the difference between the numerical steady-state solution and the
analytical one. This means that finding the averaged contribution of the source
terms requires finding the analytical steady-state solution, which is however chal-
lenging and expensive due to the BVP structure of the steady-state problem.
Instead, one can use algebraic relations that are valid during the steady state
without prior knowledge of the steady-state solution itself. Now, the methodol-
ogy introduced in [124], [125] is employed and modified for any general scheme
and applied to Euler equations and the DFM. But first, in the following, we
prove that the proposed scheme leads to an exact well-balanced solution for an
advection equation.

Remark 3.11. In this study, we investigate laminar friction characterizations.
In general, the approach in this paper is applicable to turbulent friction functions
as well. However, with turbulent friction, the analysis is highly demanding and
the numerical solution is generally hard to obtain, even in the case of a classical
numerical solver. As a result, the well-balanced solution would be even more
complez.

3.3.2.1 An advection equation with a source term

As Euler equations and DFM are coupled and the corresponding source terms
are sometimes nonlinear with respect to the conservative variables, the analytical
assessment of the performance of the proposed scheme on these equations is
cumbersome if not impossible. Therefore, we provide the assessment for a simple,
though relevant, test case, a scalar PDE governing an advection phenomenon as
below:

ow Ow
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where we set ¢(w) = w for simplicity of the assessment.

Theorem 3.12. Consider the advection equation in (3.33). The numerical so-
lution of this system for q(w) = w obtained by the solver (3.26) with numeri-
cal flux function in (3.21) and the intermediate variables satisfying (3.32) and
At/Ax < 1 leads to zero error in approzimating the steady-state solution while
the solver (3.20) together with (3.21) yields an erroneous steady-state solution.

Proof. Applying the Rusanov scheme (3.21) yields (Al = 1/2)
F(Wi, zr-ll—l) = Wi (3.34)

The consistency condition (3.32) adapted for this advection equation at any
interface is obtained as follows

2(FOVE) — VD)) = 2080 = FOVL WI) = FOV "W). (335)
Embedding (3.34) into the above equation gives,

= 1 n *, M
W] — QAz = 5( i = W), (3.36)
Now, we have to exploit (3.33) in the steady-state condition to compute Q, as
below. In steady state, it holds that

n =W = QAx. (3.37)

Moreover, as we know the source term, for the steady-state solution it holds that

d
d—“’ —w= W] = Az = Wiy = Wieh™. (3.38)
x

Therefore, we can find the expression for QAx = W;(e”* —1). Using the Taylor
expansion of e2?, it can be verified that QAz is consistent with W;Az. Then,
at each interface, (3.36) yields

W = — Wl + 2We™". (3.39)
Due to the specific form of the advection equation and the Rusanov scheme, the
calculation of W} is not required. The proposed well-balanced solver (3.26) is
repeated here:

At

Wi =W — Az (‘F(Win7 W) — F(Wi, Wzn)) : (3.40)

When reaching the exact steady-state profile, the relation VVi”+1 = W should

3
hold. We define, ¢ = WZ-”Jr1 — W and we compute ¢ for the advection equation
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with the classical way of dealing with source term as in (3.20) and the proposed
well-balanced way as in (3.26).

For the well-balanced solver (3.26) with the Rusanov scheme (3.21), it holds
that

At At

W = W S (FOVE W) — FOVE, W) = = (W = W)
(3.41)
By incorporating (3.39), we obtain
Wi“:<1 A)W A Witie e :—A—x(Wi—WleA)
(3.42)

Due to the stability of the scheme and the positive numerical diffusion coefficient
(because of the CFL condition At/Axz < 1) [54], as n — oo, € — 0. Therefore
W = W, which corresponds to the actual steady-state solution (3.38). This
shows that the new proposed scheme will lead to zero error at the actual steady-
state solution and if the solver starts from the analytical steady-state solution, it
remains there. Also, it can be inferred that the only solution of the well-balanced
scheme that yields I/VZ-”‘|r1 = W/ is the analytical steady-state solution. Next,
we prove that the classical scheme does not preserve the solution. This is proved
by contradiction.

Recalling the classical solver (3.20) with Rusanov scheme (3.21) as below:

At
W = W R (F (W2 W) = F (WL WE)) + AW, (343

we obtain

At
et =—— (W =W ,)+ AtW. (3.44)
Ax
Then, if the solver starts from the analytical steady-state solution, i.e. W; =
Woe'™*, we obtain,

, 1 , A
= WoAteid (1 -5 (- e_A””)> — Woe' " At (; +0 (Aﬁ)) £0,

(3.45)

Clearly, the right-hand side of (3.45) is non-zero, meaning that W; = Wye!2* is

not the steady-state solution of (3.43). This contradiction completes the proof.
The error in steady state approximation tends to zero only by making the spatial
and temporal grid size (Az and At) smaller. O

Supported by Theorem 3.12, we project that the proposed scheme also leads
to better results for coupled equations such as Euler equations and DFM.
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3.3.2.2 Modified scheme for the isothermal Euler equations

To compute the average source terms @ that satisfy steady-state equations (3.5),
we exploit the discrete version of the steady-state equations. To this end, we
integrate (3.5) at each interface over (x;, Z;41),

mrp = Mg =: Mo, (3.46a)
d /1 dp 1 -
2 d (1 2dp _ 2 |1 210 — OA 4
wig (3) 4L = mt [2] + 2l - Qan (3.461)
where [] = (-)r — (-) denotes the difference of variables between the right

(subscript R) and left (subscript L) side of the interface x;y;/o. Considering
(3.46b), there are two unknowns, my and Q. In this paper, Q = F + G where
F and G are the average of frictional and gravitational source terms. One
more equation is thus required to solve this equation. The steady-state solution
associated to the full source term @ does not admit an algebraic expression in
the presence of both friction and gravity and therefore the source terms should
be decomposed into individual source terms. So, instead of finding @) such that
(3.46b) is satisfied, we find F' and G satisfying other equations with similar
structure to (3.46b), and then set Q = F + G. Tt should be noted the Q found
in this way might not satisfy (3.46b) exactly an therefore it leads to some errors
in the steady-state solution. We first explain this step for the friction-related
terms and then for the gravity contribution to the source term. To find consistent
(relevant) source terms F and G even in transient case, we exploit the discrete
steady-states equations in case of only friction and only gravity, respectively.
These source terms entail defining new parameters in the source terms, which
converge to the corresponding steady values when the system is reaching the
steady condition.

Frictional source terms

Considering only laminar friction (3.3a) in (3.5b), to define an average friction
source term that is consistent with the steady-state equations, we set:

d /1 dp uwm d /1 dp Mo

2 2 2 2

— | - —=-32=— = — | - — = —-32=

"0 4y (p) T d? p 0P 3y (p) TP 2"
(3.47)

where m can be interpreted as an average of the momentum over the left and

right side of the interface and it should be defined such that it converges to mg
as the solution reaches the steady state. To this end, the following description
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for m is assumed,

0, if mp=mr=0
7 — 2
m Msign(m L +mg), otherwise ’
|mL‘+‘mR|
' (3.48)
1, ifa>0,
with sign(a) = 0, ifa=0,
-1, ifa<0.

This average indeed ensures that when the system reaches its steady state, mp =
mpg, then m = my = mpr = mg. By integrating (3.47) over the interval of
(4, Ti+1), we obtain:

02

—milnpl + 10 = —32%77@;. (3.49)
When reaching steady-state, m = mg and (3.49) becomes a discrete version of
(3.8) and the same conditions for the availability of the solution holds as in
Lemma 3.1 (with zg = z, * = xR, po = pr and p = pg). Finally solving
(3.49) gives myg, and by substituting this mg into (3.46b) in case of only laminar
friction as the source term, we obtain

1 _
ma [p} + ?[p] = FAx. (3.50)
Now, by substituting mg from (3.49) into (3.50), we obtain
2
i 510+ 32%mm )
FAz = H + [p). (3.51)
[In p] p

This source term should be equivalent to (consistent with) the actual friction
source term, which is stated below.

Proposition 1. Under the assumption of smooth (steady and transient) solu-
tion, F' obtained in (3.51) is consistent with the actual friction defined in (3.3a).

Proof. For smooth solutions, there exists p; and p; with |p; — pr|< |pr — pL|
and |p; — pr|< |pr — pr| such that

PR — PL 1 PR — PL
[inp) = PZ2—PL H — _PRZPL (3.52)
Pi P P

Substitution of (3.52) in (3.51) yields:

_ A, Ko Pi | 2
FAz=—(+ (pg —p1) +325mAx F‘FC (pr —pL) =

2 d? j
. (3.53)
Fon-on) (1 P2 ) et
Pj i
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For smooths solutions, by increasing the number of the cells, the values of
PR, PL, Pi, pj all converge to a single value, let us say p. Then, (3.53) changes to:

— o) m

In smooth solutions, it holds that m/p = w. This proves that under the as-

sumption of smooth solutions, F', obtained from (3.51), indeed approximates
(3.3a). O

Gravitational source terms

For the case of only gravitational source term (3.3b), (3.5b) changes to:

d, 1 d ) 1d /1 1d .
mgﬁ(;) + 025(;)) = —pgsinf = m%;a <p> + 62;£(p) = —gsind.
(3.55)
By integrating (3.55) over the interval of (z;,z;11), we obtain
s1
% [pQ} + *[In p] = —gsin HAz. (3.56)

Notably, (3.56) is a discrete version of (3.12) and the same conditions for the
availability of the solution holds as in Lemma 3.2 (with xg =z, © = xg, po =

pr and p = pg). After obtaining mg from the above equation, G can also be
computed from (3.46b) as follows:

m2 [/1)] +2[p = GAx. (3.57)

Finally, we obtain the following expression for G:

GAz = —2950 Mz1+ <[] m +2[p). (3.58)
i

Now, we study the equivalence of this source term with the actual gravitational
source term.

Proposition 2. Under the assumption of smooth (steady and transient) solu-
tion, G in (3.58) is equivalent to (3.3b).

Proof. Substituting [1/p]/[1/p*] = prpL/(pr + pr) to (3.58) leads to

- PRPL . 2 PRPL
GAzr = —2————¢gsinfAx + ¢ — (1 —2———(In ) . 3.59
ontor? (pr — pL) P [In p] (3.59)



3.3 Well-balanced finite-volume scheme 75

Increasing the number of the cells for smooth solutions yields pr, pr — p and
therefore (3.59) changes to:

GAzx = —pgsin Az. (3.60)

This proves that under the assumption of smooth solution, the term G indeed
approximates (3.3b). O

Remark 3.13. We note that using Propositions 1-2 allows for the recovery of
the intermediate states for the gravity only if the friction source term vanishes.
Similarly, if the gravity source term vanishes, we recover the intermediate states
for friction only. As a consequence, the computational step yields intermediate
states that are well-balanced for the individual source terms of gravity or friction.
Let us recall that the steady-state relation for (3.5b) with both frictional and
gravitational source terms cannot be written in the form of an algebraic relation.
Therefore, we can only preserve the steady state solution approximately when
both source terms are present. See [124] where a similar approach is used for the
shallow-water equations.

Remark 3.14. Note that the expressions of the averaged source terms (3.51)
and (3.58) have been obtained by considering Wi, and Wg satisfying steady-
state models. Since these expressions only depend on the left and right states
and it has been proved in Propositions 1 and 2 that the averaged source terms
are equivalent to the actual source terms, it is relevant to extend the usage of the
averaged source terms to the case where these states do not define a steady state,
and actually use the well-balanced expressions (3.51) and (3.58) for all Wi, and
Whg.

The average source term is then specified as Q = F 4+ G. After obtaining the
average source term, the modified scheme can be completed by calculating the
intermediate values mj, m%g, p7,, pi needed in the modification of the scheme. To
this end, by rewriting the consistency conditions (3.32) for the modified Rusanov
scheme (3.26) and for (3.1), we have:

mp+m A . mr +m; A N
2lm] = ( AR - SRk —pr) ) — (T = SR (o — 1) ) (3.61a)
2 2 2 2
m*Z m2
2 ~ (TR + CZPE) + (J + CQPR) )
2 {7 + CQP} —2QAx = Pr 3 pr - 7R (mgr —mgr)
m2 m*Q
(—L + c%) + ( — c2pz>
PL PL AL (mp — )
2 g T

(3.61b)
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As we are focusing on subsonic scenarios, A;, and Ar are dominantly governed
by the sound velocity apparent from (3.22) as u < ¢, not by the state values, we
can consider X\ := A\, = Ag. Although this assumption leads to some errors in
the end, it will significantly simplify the calculations and the nonlinear equations
can be solved more easily by Newton-based methods. Due to the specific form
of the steady-state solution (constant momentum over the spatial domain) and
after [87], we set m™ := m}, = m7} (this choice is also used in case of transients
and helps to satisfy the steady equations more easily). Therefore, the system of
algebraic relations in (3.61) simplifies to

* * 3
PR+ pL = pr+pL = S[m], (3.62a)
3 2 2 m*2 1 1 * 1 2/ % *
2 —2QAz = — =)= = - 2 .
2[ +c p} QAz = — (p73 pz) m”+ 3¢ (pr — pr) + 5 (mr +mr)
(3.62b)

Still one more equation is needed to be able to compute the variables uniquely.
This last equation should be defined such that when we are on the steady-state
profile, the intermediate variables satisfy the steady-state equation (and also
should be usable during transients). To do so, we suggest an equation which can
be used both at the steady-states and transients [124]. This is carried out by
adapting the steady equation (3.46b) as follows:

w2 [3]+ ) = Qo — i (o= ) 4+ on - pu) = Q80 —
p PR PL (3.63)

—2
(02 - = ) (pr — pL) = QAz.
PRPL

The intermediate values should also satisfy the last relation in the above equation
[124], [125], meaning that:

m? -
(@2 (o - o) = QA (3.64)
PRPL
Now, equations (3.62) and (3.64) form a complete system of equations from
which the intermediate values can be computed. Algorithm 1 summarizes the
procedure for computing the intermediate variables W, W7, i.e., the variables
that are required in the numerical scheme (3.26).

Remark 3.15. Due to the high density of the liquid in test cases of this paper,
a negative intermediate density was not observed in our realistic industrial test
cases. Positivity preserving techniques [35] can be used in case of encountering
such problems.

Now, we continue with the DFM and modify the Rusanov scheme corre-
spondingly.
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Algorithm 2: WB-Euler: well-balanced scheme for the Euler equa-
tions

Input: Wy, Wg at each interface

Output: W}, Wy at the same interface

Calculate m from (3.48),

Compute F' and G from (3.51) and (3.58), respectively,

Set Q = F + G,

Solve (3.62) and (3.64) simultaneously and obtain pj , p}; and m*,

Set Wi = [pt, m*]" and W}, = [p%, m*]".

[ VR

3.3.2.3 Modified scheme for the DFM

Integrating system (3.19) at each interface over the interval (z;, x;11), we have:

(mi)r = (mi)r = Mo, (3.65a)
(mg)r = (mg)r = mygy, (3.65D)
1 1 _
mig Lélpl] +mgg [ozng +[p] = QAz. (3.65¢)

Three unknowns, myg,mgy, and Q, are present in (3.65¢). Two more source-
specific equations are thus needed to be coupled with (3.65¢) to uniquely find
these unknowns. Since the additional equations are source-dependent, friction
and gravity are treated separately. Similar arguments as put forward for the
isothermal Euler equations also hold here. So, instead of finding @ such that
(3.65¢) is satisfied, we find F' and G satisfying other conditions, and then set
Q = F+G. Tt should be noted the @ found in this way might not satisfy (3.65¢)
exactly. We will first do the decomposition for the friction-related terms and
then for the gravity contribution to the source term. Due to the complicated
nature of the DFM, the following assumption is made only to attain the average
source terms.

Assumption 3.16. [10] Only to obtain the average source terms, it is assumed
that at interfaces of the discrete DFM as in (3.19), the volume and mass com-
position of the mixture do not change.

This assumption is approximately valid when smooth solutions are consid-
ered; otherwise, this assumption is less accurate. Assumption 3.16 results in
constant volumetric fraction and mass fraction of each phase at the interface,
respectively. This implies that at each interface, the following conditions hold:

(87 ajtag=1
= constant ——— ay 4 = constant, (3.66a)
Qg + o
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Py a;, g=constant p;
p — constant She= 0N O

] o S = constant. (3.66b)
Qpr + Qgpg Pg

This assumption may restrict the applicability of the method to systems with
smooth solutions; however, the analysis of the applicability is beyond the scope
of this study. Again we note that Assumption 3.16 is only used for obtaining
the average source terms and not applied into the DFM (3.15) itself.

Frictional source terms

Considering only friction, from (3.19¢), we have:

d /1 d 1 dp (Qupu + ogpig)
2 2 gr'g
mlodx (alpl) +mgodx (Oégpg> + dz d2 G agug)
(3.67)

A similar approach to (3.47) cannot be followed here to find similar algebraic
relations. Therefore, simplifying Assumption 3.16 (equation (3.66)) is consid-
ered. Following [124], rearranging (3.67) and having the constant variables of
(3.66) in mind, we have:

d [ 1| m2 mg? ap + a, 1 m
N _ lﬁ?l + 90 +ppg :_32( 1M 5 g/’LQ)i l +mg ,
dz |\ pg | 22 g d Pg (pz)
Pg g
(3.68)

where (7) represents an average of the variable over the left and right side of the
interface, which is defined similar to (3.48). After some steps of straightforward
computations and integration over each interface, we obtain:

2

C
—Allnp,] + 59 [p2] = B, (3.69)
where
2 2 . . _
A= Mo ey g gplOmE datg) | T (57

o] L) ag d? Pl
Pg E

From (3.70), the term B can be computed. By substituting the value of B in
(3.69), the value of A can be computed. Moreover, for computing F' in (3.65c)
in the case of only friction using:

1 1 _
2 2
mlo{ ll]+mg0[ gg}er] x,
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the values of my and my, are required. By knowing the value of A, taking
into account the structure of A specified in (3.70) and assumptions (3.66), F is
obtained as follows:

_ A A
FAr=or " o T (371
Finally, we obtain
- 1 o _ 1

Proposition 3. Under the assumption of smooth (steady and transient) solu-

tions, F obtained in (3.72) is approximately equivalent to the actual friction
(3.17a).

Proof. For smooth solution, there exists (p,); with [(pg)i — (pg)rl< |(pg)r —
(pg)r| such that

(pg)R - (pg)L
(pg)i .

Substituting (3.73) and EOS (3.18¢) to (3.72) and carrying out some straight-
forward simplification leads to:

[In pg] = (3.73)

EA Cf] —(pg)r 1
Faw =3 (oo~ (00}) I; Gole Tagy] *8(Pn = (o)t
plP)r— (e (p )1

~~

Pg)r(Pg)r  (Pg)r — (Pg)L

g  ((a)h = (00)2) (o) = (0)2)

~eolba)n = el )(1 2y nlpy)r ] )*
(pg)i

P orleas

(3.74)

By increasing the number of grid cells, (pg)r, (pg)L, (pg)i = pg- Using this and
also substituting the expression of B from (3.70) leads to:

7 1 Y Y, n & le
Fag— Lo _golQunt dopg) \ N Ty | Hmix

~ ix Az
Pg a Pl Pg 2 et
Pg\ —
Pg

(3.75)
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After obtaining the friction contribution, a similar treatment is applied for
finding the contribution from the gravitational term.

Gravitational source terms

If gravity is the only source term, from (3.19¢), we have:

d 1 d 1 dp
2 2 .
) _ 4+ = = - + sin 6. 3.76
mlodx <alpl> mgodx <agpg> dx (up ozgpg)gbln ( )

Similar to the friction source term and using Assumption 3.16 (equation
(3.66)), we obtain:

2 [Pfy] + ¢ [Inpg] = B, (3.77)
where
ml2 my2 T
A= ;l + -9 B=— al() +ay | gsinfAz. (3.78)
ot Qg Pg
Pg

All terms including (-) are defined similar to the average momentum in Euler
equations by the structure introduced in (3.48). Finally, by computing A and

1 1 _
knowing that m;3 {} + mgd [ ] + [p] = GAz, we obtain:
aipi QgPg

GAz =

+ [p]. (3.79)
Finally, we obtain:

- 2 9 1
GAz = H (B — ¢ [Inpy]) {pg} +
Py
Proposition 4. Under the assumption of smooth (steady and transient) solu-

tion, G in (3.80) is approzimately equivalent to the actual gravitation source
term (3.17b).

. (3.80)

Proof. For smooth solution, there exists (pg); with [(pg): — (pg)r|< |(pg)r —
(pg)r| such that

(Pg)R - (Pg)L .

o) (3.81)

[Inpy] =
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Substituting (3.81) and EOS (3.18¢) to (3.80) and carrying out some straight-
forward simplification leads to:

A o (PQ)R(Pg)L _ 92 (Pg)R(Pg)L (PQ)R - (Pg)L 2 o
GAz =2B Do et (oo 2 PR TR PR P R ((pg)r = (pg)L)
_ (Pg)r(Pg)L 2 _ _ 2(pg)r(Pg)L
= 2B o + o)y, T ((P)n = (Pa)e) (1 (o) (o) + wm? -
3.82

By increasing the number of grid cells, (pg)r, (pg)r, (Pg)i = pg- By using this
and also substituting the expression of B from (3.78) leads to:

GAzx = Bpy, = — (al,og (g) + pgag> gsinfd ~ —pp.gsinf. (3.83)
g
This proves that G is an approximation of (3.17b). 0O

Remark 3.17. Assumption 3.16 is adopted only to find expressions for the
average friction and gravity source terms. These are not applied to the DFM
(3.15) and, from now on, these assumptions are only hidden in F and G and do
not affect the structure of the governing equations.

The average source term is now specified as Q = F + G. Following the
same steps introduced in the previous section for Euler equations, we can solve
the following equations, consisting of three consistency equations, one algebraic
steady-state condition and eight closure laws. Following the same line of rea-
soning for Euler equations, after imposing A := Ap, = Ag, m} 1= (m;)} = (m4)},
with ¢ € {l, g}, we have

[my]

(upi)r + (qup)p = (upr)r + (cup) L — 35 (3.84a)
* * m
(agpg)r + (agpg)L = (agpg)r + (gpg)L — 1 Ag] , (3.84b)
3 (m e s )tm v~ - )+ (PR —p1)
2 ( : (alpl)R (O‘lpl)L g (agpg)R (agpg)L R L
A
= Am[ +my) + B ((my +mg)r + (my +mg)) =
2 2
§ [W+%+p —QQAQ?,
2 | aypy Qgpg
(3.84c¢)
_ 9 =2
-y * * _mg * *
———— ((« — (« -9 ((« —(« 4
(Oélpl)R(Oélpl)L (( lpl)R ( lpl)L) (agpg)R(agpg)L (( gpg)R ( gpg)L)

(pk —pL) = QAx,
(3.84d)
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(a1 +og)r =1, (3.84¢)
(ar+ay)L =1, (3.84f)
PR = ()R — po) & + po, (3.84g)
pr = () = po) & + po, (3.84h)
PR = (Pg) s, (3.841)
pi = (pg)ich, (3.84j)
m Ko tS Lo
(gpg)L, 1 K(ag)p’ (3.84k)
my  KG+S
= : (3.841)

(agpg)E 1- K(ag)}%

The short-hand notation, for instance, (a;p;)f = (cu)i(p1)}; is used to compact
the equations. These twelve equations can be solved simultaneously to compute
the intermediate primitive variables, (ou)%, (g)k: (a)%, (ag)h, (o) (Pg)hs
(P)1s (Pg)L» PRy PL, M, m;. The entire procedure is summarized in Algorithm
2. By running Algorithm 2 for both (W, Wg) at x;41/2 and at x;_; /o, the
variables that should be substituted into (3.26) are computed.

Now, all the required components for implementing the modified scheme

(3.26) are available and numerical simulations can be obtained.

Remark 3.18. Before going through the numerical examples, it should be noted
that the numerical steady-state solution is calculated point-wise at the center
of the cells while finite-volume solution is the average of solutions over a cell.

Algorithm 3: WB-DFM: Well-balanced scheme for the DFM
Input: Wi, Wg at each interface
Output: W}, W at the interface
1 Compute primitive variables from conservative variables at the left and
right side of the interface,

N

Similar to (3.48), calculate ('Ol),al, ag,my and my
_ _ Py
Compute F' and G via (3.72) and (3.80), respectively,
Set @ =F+ G,
Solve the system (3.84a)-(3.841) simultaneously to obtain the
intermediate primitive variables,
* * * * * T
Set Wi = [(aipr)i, (agpg)i, mi+mj]" and

* * * * * T
WR = [(alpl)Ra (O‘gpg)Rv m +mg]

(31 B N

(=)
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Figure 3.1: Configuration of the computational domain.

However, point-wise values are very close to the average values in the test cases
of this paper as the solution within each grid cell can be approrimated by a line.

Remark 3.19. The numerical steady-state reference solution is obtained at the
finite-volume centers, as is the case for the numerical finite-volume solutions.

3.4 Numerical results for single-phase flow

In this section, numerical results of a single-phase flow inside a pipe are shown.
First, preservation of the steady-state solution is considered and then, a tran-
sient simulation from an initial steady-state to another steady-state is carried
out. The values of the parameters involved in system (3.1) are listed in Table
3.1 (gp and pg are the volumetric flow rate of the pump at the left boundary
and pressure at the right boundary, respectively). Figure 3.1 shows the com-
putational domain, which is a vertical pipe with a constant cross-sectional area
with the left boundary at the bottom and the right boundary at the top of the
pipe. For all simulations in this section, we set L = 1000 m and Az = 10 m.

Table 3.1: Parameters for the test case of the single-phase flow.

Parameter 00 Po 0 PR c g m

Value 1000 kg/m® 1bar 90° 1bar 1000 m/s 9.81 m/s* 0.5 Pa.s
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Remark 3.20. The Rusanov scheme is subject to the CFL condition

Ax
At = CFL 3.85
max(|2A\?,i=1,---,N,n=1,---,N;)’ (3.85)

where A is given by (3.22) and N is the number of grid cells and Ny is
the number of time-steps. For all simulations in this section, we estimate
max(|2A?]) = ¢+ 10 and CFL = 0.99. Then, according to the chosen A,
At is specified by (3.85).

3.4.1 Preservation of the steady-state solution

In this section, the performance of the well-balanced scheme in terms of the
accuracy of the steady-state profile is evaluated in case of zero and non-zero
flow. The initial condition in the test cases of this section coincides with the
steady-state solution. Results are also compared against the classical Rusanov
scheme. Moreover, we set T = 10 s. After this time instant, the solution varies
negligibly over time (the spatial 2-norm of the solution varies less than 0.1%
relatively over time), indicating that the solution has reached its steady state.

3.4.1.1 Zero flow

Results of simulating a steady system with zero flow are shown in Figures 3.2
and 3.3. The differences between the steady-state velocity and the numerical
velocity of both the well-balanced and the classical schemes at the right bound-
ary are depicted over time in Figure 3.4. This example bears relevance with
the connection scenario commonly performed in the drilling context, which is
shutting down the pump, waiting for the drilling liquid to become stagnant, and
adding a new stand of pipe to the current configuration before resuming drilling
ahead.

In the left plot of Figure 3.2, the classical scheme gives a linear change of mass
flow over the spatial domain in the steady state. This is in contrast with the
physical steady-state solution, i.e., the mass flow rate should be constant over the
spatial length. The slope of the line in that plot is significantly smaller for the
well-balanced scheme, close to zero as the physical governing equations show.
However, the pressure in the well-balanced scheme deviates slightly from the
steady-state solution, in an extent comparable to the classical scheme. As shown
in Figure 3.4, the error for approximating the velocity at the right boundary
in the well-balanced scheme decreases as time evolves. Nonetheless, this error
remains unchanged for the classical scheme.

Most notably, the classical scheme implies that zero mass enters from the
left boundary and approximately 0.004 kg per second exits the pipe from the
right boundary (note that in Figure 3.2, momentum, pu, at the right boundary

is around 0.5 kg/m’s and 1 = pud = 0.5 x gdg = 0.004 kg/s), meaning that
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Figure 3.2: Comparison of solutions of the well-balanced and the classical scheme
in capturing steady state with zero flow at the left boundary, Euler equations.

the mass inside the pipe decreases 0.004 kg per second, contrary to the physical
governing condition of the test case.

3.4.1.2 Non-zero flow

For simulation scenario with non-zero flow, we set ¢, = 2000 1/min. Simulating
such a system leads to the results shown in Figures 3.5 and 3.6, where the states
and the error in approximating the correct steady-state solution are depicted,
respectively. Evolution of the error in approximating the velocity at the right
boundary for both schemes is shown in Figure 3.7 over time. This flow scenario
is usually present in the pipeline networks while the flow is pumped from one
location to another under a constant volumetric flow rate. This can also be
observed in drilling with single-phase flow when the rate of penetration is too
low.

Analyzing the results of Figures 3.5 and 3.6 reveals that, in case of non-zero
flow, the well-balanced scheme always outperforms the classical scheme, such
that, its error is considerably lower than that of the classical one. The most
important feature of the well-balanced scheme is the preservation of the mass
flow rate (see the plots related to pu in Figures 3.5 and 3.6). Figure 3.7 shows
that the well-balanced scheme always remains closer to the analytical steady-
state solution, which further confirms the accuracy of this scheme.
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Figure 3.3: Comparison of difference between the analytical and numerical
steady-state solution of the well-balanced and the classical scheme in captur-
ing steady state with zero flow at the left boundary, Euler equations.
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Figure 3.4: Comparison of the evolution of the error in the steady-state velocity
prediction for the well-balanced and classical scheme with zero flow at the left
boundary, Euler equations.
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Figure 3.5: Comparison of solutions of the well-balanced and the classical scheme
in capturing steady state with non-zero flow at the left boundary, Euler equa-
tions.

3.4.2 Transient simulation scenario

By observing the results of the previous section, it can be inferred that the
well-balanced scheme preserves the steady-state solution with a higher accuracy
compared to the classical scheme. In this section, we numerically verify that the
well-balanced scheme also approximates the correct steady-state solution with a
better accuracy during a transient going from one steady-state to another one
by changing the inputs of the system. To this end, in the previous test case at
t = 10 s, the right boundary pressure changes from pr = 1 bar to pg = 10 bar
and the pump flow rate changes from ¢, = 2000 1/min to g, = 4000 1/min and
the dynamics is simulated until 7" = 100 s. After this time instant, the state
variables of the system do not vary with time, i.e., the system has reached its
steady state. This example shows a set-point change in the pipeline networks or
in a drilling operation.

Figures 3.8 and 3.9 show the initial condition and the final steady-state solu-
tion and the numerical steady-state solution of both schemes and the associated
error, respectively. Results show that the well-balanced scheme converges to the
steady states with an error significantly smaller than the classical scheme. The
approximation error of the velocity at the right boundary is depicted in Figure
3.10.
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Figure 3.6: Comparison of difference between the analytical and numerical
steady-state solution of the well-balanced and the classical scheme in captur-
ing steady state with non-zero flow at the left boundary, Euler equations.
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Figure 3.7: Comparison of the evolution of the error in the steady-state velocity
prediction for the well-balanced and classical scheme with non-zero flow at the

left boundary, Euler equations.

The well-balanced scheme captures the new steady-state solution with a lower

error.

The small deviation of the well-balanced solver from the steady-state
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Figure 3.8: Comparison of solutions of the well-balanced and the classical scheme
in capturing new steady state, Euler equations.

solution is due to the simplifying assumption made in Assumption 3.16 and also
the simplification mentioned before (3.62). The difference of the accuracy of both
solvers is more striking if we highlight the source contributions by increasing the
nominal density of the liquid (pg) or viscosity of the fluid. The same procedure
is carried out for the DFM in the next section.

3.5 Numerical Results for two-phase flow

In this section, numerical results of a two-phase flow inside a pipe, as illustrated
in Figure 3.11, are shown. Similar to Section 3.4, preservation of the steady-
state solution and then a transient simulation are provided. The values of the
parameters involved in system (3.15) are summarized in Table 3.2. It should be
mentioned that 1y ¢ = aq gp1,¢u1,4A and pr are the mass flow rate of the liquid
and the gas at the left boundary and pressure at the right boundary, respectively,
and A is the cross-sectional area of the pipe.

Figure 3.11 shows the computational domain which is a vertical pipe with a
constant cross-sectional area. For all simulations in this section, we set L = 1000
m and Az = 10 m. For the temporal discretization, we use the CFL definition
(3.85) by estimating max(|2A}'|) = ¢; and imposing CFL = 0.99.

As it has been illustrated in [69], the speed of sound in the mixture appeared
in (3.23) affects the solution significantly. As we want to focus on the perfor-
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equations.

mance of the well-balanced scheme compared to the classical scheme, we do not
want any other errors rather than source-related errors to affect the numerical
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solution. As the analytical speed of sound is available only in case of K =1
and S = 0, these parameters are used for simulations. The effect of choosing the
speed of sound model can be seen by simulating the system with different values
for K and S [30], [142]. Moreover, in this section, only the values related to
the liquid properties are reported in the figures since these values can represent
the entire dynamics. The gas-related properties can be easily obtained from the
liquid-related values by using the closure laws (3.18).

3.5.1 Preservation of the steady state

For the case of zero flow in a two-phase system in a vertical pipe, due to the
density difference of the two phases, the gaseous phase migrates up the pipe and
the liquid goes down along the pipe in a non-horizontal pipe; then, we cannot
have a mixture of the gas and liquid for such a pipe. Moreover, the slip law does
not permit the separation of the gas and the liquid since the velocity of the gas
and liquid have to be equal. Thus, the system does not have any solution for
stationary case of a non-horizontal pipe containing two-phase flow governed by

Table 3.2: Test case parameters.

Parameter 00 Po my My PR K
Value 1000 kg/m? 1 bar 0.3kg/s 0.03kg/s 1 bar 1
Parameter Cg c g g I S
Value 316 m/s 1000 m/s 9.81 m/s® 5e-4 Pa.s 0.5 Pass 0
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Figure 3.12: Comparison of solutions of the well-balanced and the classical
scheme in capturing steady state with non-zero flow at the left boundary, the
DFM.

the DFM without any slip. For the horizontal pipe, both the gravitational and
the friction term are zero and no source term affects the solution. Hence, in this
section, unlike the single-phase flow, only the case of nonzero flow is studied for
assessing the ability of the scheme to retain the equilibrium profile of the system.
Again, the initial condition for the test cases in this section is the steady-state
solution of the system.

3.5.1.1 Nonzero flow for a vertical pipe

Parameter values are mentioned in Table 3.2; besides that, T  is set to 100 s.
Comparison of the steady-state solution and the numerical solutions obtained
from the well-balanced and the classical solvers are depicted in Figure 3.12 and
the difference between these solutions and the steady-state solution is shown in
Figure 3.13. Also, the time evolution of the error in approximating the velocity
at the right boundary is shown in Figure 3.14. This scenario can occur in the two-
phase pipelines as well as the flow inside a well-bore during an under-balanced
drilling operation [2].

It can be observed that the well-balanced scheme performs better than the
classical scheme in terms of remaining on the steady-state profile when starting
from the steady initial condition. The effectiveness of the well-balanced scheme
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Figure 3.13: Comparison of errors between the analytical and numerical steady-
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Figure 3.14: Comparison of the evolution of the error in the velocity prediction
for the well-balanced and classical scheme in capturing steady state with non-
zero flow at the left boundary, the DFM.

can be better observed in the plots related to mass flow rate of the liquid (oypruy
in Figures 3.12 and 3.13). Apparent from these figures, the classical scheme
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generates a non-physical steady-state solution. Pressure and velocity predicted
by the classical scheme deviate from the actual values significantly. Again, in
the steady state, the classical scheme predicts that 0.3 kg of the liquid enters
the pipe per second and around 0.37 kg of the liquid exits the pipe, which is in
contrast with the physical governing equations. The results of the well-balanced
scheme and the actual steady-state solution correspond to each other with a high
accuracy.

Now, the scheme can be tested under transient simulations by going from
one steady initial condition to another steady-state solution.

3.5.2 Transient simulation scenario

Analogous to the case of single-phase flow, boundary conditions are changed to
excite the transients of the systems. At ¢ = 1 s, the values of the mass flow
rates are doubled instantly and the right boundary pressure changes to pr = 2
bar slowly over 10 s. This set-point change can also happen in the two-phase
pipelines and also as a control action to harness the gas migration in a drilling
well.

The results acquired at time instant 7" = 500 s are shown in Figures 3.15,
3.16 and 3.17. These figures reveal that the well-balanced scheme approximates
the steady-state solution of the system with a higher accuracy compared to the
classical scheme. As the system approaches to the steady condition, the errors
in all state variables also tend to zero over time.

Results presented in Sections 3.4 and 3.5 confirm that the well-balanced
schemes yield more accurate results in both preserving and approximating the
steady-state solution compared to the classical scheme. Moreover, the modified
schemes have also been tested in the case of no source terms (the flow with zero
viscosity in a horizontal pipe), which has shown that it produces the same results
as the classical scheme (these results are not included in the paper). Now, we
can analyze the order of accuracy for the proposed scheme.

3.6 Order of accuracy for the modified scheme

In order to study the error convergence of the proposed scheme, a norm of
the difference between the steady-state solution and the numerical steady-state
solution generated by the proposed schemes is computed. The error-norm is
velocity-based and it is defined as below:

1
(ﬁ% ulzs, T) — “ss(%)l’“) r

1 )

(é |Uss($i)|r) '

(3.86)

e =
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Figure 3.15: Comparison of solutions of the well-balanced and the classical
scheme in capturing new steady state, the DFM.

where NN is the number of the grid cells, T', as mentioned earlier, is the last time
instant of the simulation and uss is the steady-state value of the velocity. In this
study, we set r = {2, 00}, meaning that we calculate the spatial 2—norm and
oo—norm of the difference between the trustworthy and the numerical steady-
state solution divided by the spatial 2—norm or co—norm of the trustworthy
steady-state solution. In this section, we denote e for (3.86) calculated by
r =2 and ey, for (3.86) calculated by r = co. Simulations are performed for the
single- and two-phase flow (v := u, = w;) and the number of grid cells is varied
to analyze the dependency of (3.86) on the number of grid cells.

3.6.1 Single-phase flow

The parameter settings in Section 3.4.1.2 are used for this section. Table 3.3
illustrates the dependency of the steady-state error measure in (3.86) on the
number of grid cells for both the classical and well-balanced (WB in Table 3.3)
schemes. In addition, the CPU time for carrying out these simulations are
also reported in this table. The first-order convergence of the classical Rusanov
scheme is clear [105], as by doubling the number of the grid cells, the error is
divided by two. Moreover, the error associated with the well-balanced scheme
with 100 grid cells is much less than the error of the classical scheme with 1600
grid cells. By extrapolation, the classical scheme with 12,800 grid cells yields
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Figure 3.17: Comparison of error evolution for approximating velocity of the
well-balanced and classical scheme in capturing new steady state, the DFM.

the same accuracy as the well-balanced scheme with 100 grid cells while the
well-balanced scheme with 100 grid cells is less expensive than using classical
scheme even with 400 grid cells. This clearly shows the superiority of the well-
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balanced scheme over the classical scheme in correct steady-state calculation.
The proposed scheme is close to first-order accurate. To be precise, its accuracy
is of order of 0.82 on average (see Figure 3.18 ). The main reason for this lower
convergence rate can be attributed to the assumption A := A = Ag; it seems
that by increasing the number of grid cells, the error related to this assumption
does not reduce linearly and therefore decreases the overall convergence rate of
the proposed scheme. Another reason can be the point-wise calculation of the
reference solution, rather than the average solution over a grid-cell. Approxi-
mating the averaged source terms as the summation of the averaged frictional
and gravitational source terms and also the fact mentioned in Remark 3.9 con-
tribute to this behavior. The data shown in Table 3.3 together with the order of
accuracy can be seen in Figure 3.18. It can be observed that by increasing the
number of grid cells, the incremental order of accuracy (the order of accuracy in
each step of doubling the number of grid cells) does not follow a specific trend.
By going from 100 to 200 grid cells, the error drops even more than a first-order
accurate scheme. Then the order of accuracy decreases and then increases.

3.6.2 Two-phase flow

The parameter settings in Section 3.5.1.1 are used for this section. The effect of
increasing the number of the grid cells on capturing the steady-state solution of
the DFM is reported in Table 3.4 together with the CPU time allocated for the
simulations.

The first-order accuracy of the classical Rusanov scheme can easily be inter-
preted from Table 3.4. Moreover, the error associated with the well-balanced
scheme with 100 grid cells is much less than the error of the classical scheme
with 1600 grid cells. Similarly, by extrapolation, the classical scheme with 12,800
grid cells generates the same accuracy as the well-balanced scheme with 100 grid
cells while the well-balanced scheme with 100 grid cells is less expensive than

Table 3.3: Error convergence for the Euler equations together with the cpu time
comparison (WB=well-balanced).

Cells 100 200 400 800 1600
es-classical 3.39e-5 1.69e-5 8.44e-6 4.22e-6 2.11e-6
eo-WB 1.65e-7 7.05e-8 4.77e-8 2.8e-8 1.53e-8

Convergence rate - 1.23 0.57 0.77 0.88
eso-classical 5.78e-5 2.89e-5 1.45e-5 7.21e-6 3.61le-6
eso-WB 3.19e-7 1.41e-7 9.21e-8 5.31e-8 2.87e-8

Convergence rate - 1.2 0.62 0.80 0.89

cpu time classical ~ 0.86 s 1.15s 2.06 s 541s 21.24s
cpu time WB 1.29 s 2.07 s 5.89s 15.36s 52.36s
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Table 3.4: Error convergence for the DFM together with the cpu time comparison
(WB=well-balanced).

Cells 100 200 400 800 1600
eo-classical 0.17 0.083 0.042 0.021 0.01
es-WB 7.65e-4 6e-4 4.2e-4 2.44e-4 1.3e-4
Convergence rate - 0.35 0.52 0.79 0.91
eso-Classical 0.24 0.12 0.06 0.03 0.015
eso-WB 12e-4 8.1le-4 5.6e-4 3.22e-4 1.7e-4
Convergence rate - 0.57 0.54 0.81 0.93
cpu time classical 8.8 s 18 s 40 s 123.4s  344.7s

cpu time WB 272s  978.2s 3460.4s 19,055s 74,451 s

using classical scheme even with 1600 grid cells. Due to the nonlinearity of the
equations in (3.84), the cpu time for the well-balanced scheme is higher than
the classical scheme. This however can be alleviated remarkably by embedding
the linear equations into the nonlinear ones among (3.84), so a smaller set of
equations has to be solved at each time step. In general, the comparison of the
error (3.86) shows the superiority of the well-balanced scheme over the classi-
cal scheme. However, this superiority comes at the expense of reduction in the
error convergence rate; the proposed scheme is of order of 0.65 on average (see
Figure 3.19). The main culprits for this reduction in the convergence rate are
the assumption of A := A, = A and the assumption (3.66). Approximating the
averaged source terms as the summation of the averaged frictional and gravi-
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Figure 3.19: Error convergence comparison of the classical and the well-balanced
scheme based on (3.86) with » = 2, WB: well-balanced scheme, LS: Least Square
line passed through the points, the DFM.

tational source terms and also the fact mentioned in Remark 3.9 contribute to
this behavior. The data shown in Table 3.4 together with the order of accuracy
can be seen in Figure 3.19. As can be observed in this figure, by increasing the
number of grid-cells, the incremental order of accuracy increases and becomes
closer to 1. This can be attributed to the fact that by increasing the number
of grid cells, the conservative and primitive variables vary even more smoothly
from one grid cell to another and the set of assumptions (3.66) becomes more
realistic. In the high number of grid cells, the error generated by the assump-
tion A := A, = Ar dominates the error. Similarly, point-wise calculation of the
reference steady-state solution can contribute to this behavior.

3.7 Conclusion

In this paper, a novel extension of the Rusanov scheme has been proposed to
improve the preservation of the steady-state solutions of Euler equations and
the drift flux model. These schemes reduce to the original scheme when there
is no source term. The proposed schemes capture the steady-state solution with
significantly higher accuracy compared to the classical scheme in the presence
of source terms. This is proved for an advection equation with a simple source
term. Various test cases of zero and non-zero flow have been carried out and
the improved performance of the well-balanced schemes has been shown numeri-
cally, both for single-phase and two-phase scenarios. The modification is model-
and scheme-dependent, such that a similar approach can be followed for other
systems of partial differential equations solved by different schemes.
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The well-balanced schemes lead to physical results while this is not the case
for the classical finite-volume schemes in the presence of source terms. This can
be interpreted from the presented results, especially those for the mass flow rate.
Both Euler equations and DFM imply that the mass flow rate along the spatial
domain remains constant in the steady condition. This property is preserved
with significantly higher accuracy in the proposed well-balanced schemes.



Chapter 4

Modelling and numerical implementation of
managed pressure drilling systems for the
assessment of pressure control systems

Automated Managed Pressure Drilling (MPD) is a method to enhance downhole
pressure control performance and safety during drilling operations. It is becom-
ing more common to use model-based simulation for the evaluation of pressure
control systems designed for MPD automation before using those in the field.
This demands a representative hydraulics simulation model which captures the
relevant aspects of a drilling system. This paper presents such a model and,
additionally, an approach to numerically implement that model for simulation
studies. The complexity of this simulation model should be limited to, firstly,
support effective numerical implementation and, secondly and most importantly,
to allow for the analysis of the behaviour and performance of the automated pres-
sure control systems during the controller design phase. To this end, aspects of
a drilling system that can considerably affect the performance of the automated
MPD system are captured in the model. This hydraulics model incorporates both
the distributed and multi-phase flow nature of a drilling system. Moreover, it
captures nonlinear boundary conditions at the inlet of the drillstring, at the drill
bit and choke manifold, and also the variations in the cross-sectional area of

This chapter is based on “S. Naderi Lordejani, M.H. Abbasi, N. Velmurugan, C. Berg,
J.A. Stakvik, B. Besselink, L. Iapichino, F. Di Meglio, W.H.A. Schilders, N. van de Wouw,
Modelling and numerical implementation of managed pressure drilling systems for the
assessment of pressure control systems, SPE Drilling € Completion, in press, 2020”. Mod-
eling, numerical implementation and simulations are performed in a joint work with S. Naderi
Lordejani. The validation of the single-phase flow model against the field data is solely the
contribution of S. Naderi Lordejani.
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the flow path. Model validations against field data from real-life MPD opera-
tions and simulations of industry-relevant scenarios indicate that these aspects
are effectively captured in the model and preserved during the numerical imple-
mentation.

4.1 Introduction

Conventionally, the task of pressure control is accomplished by changing the mud
density during drilling operations. However, this method of controlling the pres-
sure is slow and inaccurate, and it lacks a means of compensating and responding
to transient pressure fluctuations (e.g., occurring during pipe connection opera-
tions or drilling into high-pressure formations). Besides, this method cannot be
used for the drilling of deep wells with narrow drilling windows because of its low
accuracy. To overcome such drawbacks of conventional pressure control meth-
ods, managed pressure drilling (MPD) has been introduced. A main objective of
MPD is to provide a means of fast, accurate and efficient control of the bottom-
hole pressure (BHP), as opposed to conventional methods. As we illustrate in
Fig. 4.1, in MPD, the annulus is sealed off at the top with a rotating control
device to direct the mud flow from the annulus to a choke valve with a variable
opening (see, e.g., [75], [162]). This equipment, which is often accompanied by
a back-pressure pump, pressurizes the fluid inside the wellbore by providing an
active back pressure. The back pressure, and thus the BHP, can be controlled
by manipulating the choke opening. In automated MPD systems, the task of
manipulating the choke opening is primarily performed by an automatic pres-
sure control system. This enhances safety and performance, and reduces drilling
time and cost, see [76]. In particular, if equipped with advanced control sys-
tems, automated MPD can make it possible to handle many well-control events
automatically without operator intervention and using conventional well-control
methods [23].

A control system designed for automated MPD should pass some virtual
and representative test scenarios on a simulation level before it can be used
in the field. This is done because any failure in the drilling system, especially
in the pressure control system, can have catastrophic consequences. Training
new operators for drilling operations and well control incidents in a controlled
environment and also well monitoring are other important reasons for perform-
ing model-based simulation studies in drilling, [40], [176]. However, simulations
performed for training purposes often need to be well-supported by graphical
interfaces, which is not the case when it comes to controller design. These
simulations rely on a mathematical model of the drilling system dynamics, the
complexity of which varies depending on the required purpose. In particular, the
complexity of an MPD model developed for testing pressure controllers should
be limited to facilitate the performance analysis and design of the control system
by neglecting less important system aspects. Such a model, called the simula-
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Figure 4.1: A simplified schematic diagram of a drilling system with MPD equip-
ment.

tion model in this context, should only contain: 1) aspects of a drilling system
considered in the controller designed and, 2) aspects that are not considered in
the controller design but can have detrimental effects on the performance of the
controller. Models used in the controller design are called the design models.
A design model is often much simpler than a simulation model, as it usually
contains only the mass transport dynamics, neglecting the distributed nature of
drilling systems; see, e.g., [2], [60], [99], [134], [140]. Below are listed a number
of the drilling aspects that can be detrimental to an automated MPD system.

e Pressure wave propagation: pressure controllers are usually developed

based on simplified models in which pressure dynamics (i.e., wave propa-
gation effects) are ignored partially [109] or totally [2], [12], [60], [99], [131],
[140], [162]. The essential time scale associated to these dynamics can be
in the range of tens of seconds, or even minutes in the case of gas influx
into the wellbore. Not only can such dynamics deteriorate the control per-
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formance, but they can also cause instability [141], if not accounted for
during the controller design stage;

e Dynamics of the flow in the drillstring: in many cases, e.g., in [1], the
dynamics of the flow in the drillstring (as opposed to the flow through
the annulus), whether fast or slow, are ignored throughout the controller
design stage. This part can, however, have a significant contribution to the
system behaviour, e.g., by changing the location of the major resonance
frequencies of the system or generating additional resonance frequencies.
Thus, the closed-loop performance in practice can be worse than expected
from simulation studies if system aspects imposed by the drillstring are
ignored in the design model;

e Nonlinear behaviour of the drill bit: once the drillstring flow path is ignored
in the design model, the drill bit is replaced by an independent source of
flow. The flow through the bit is, however, nonlinearly dependent on the
pressure drop over the bit. In particular, in the case of standpipe pressure
control during gas influxes, this nonlinearity can be detrimental.

e The variable structure (i.e., switching nature) of the model: this variable
structure is induced mainly by the presence of a non-return valve in the
bottom-hole assembly. During operations such as pipe connection, the
non-return valve usually remains closed, changing the system properties
and behaviour;

e Lastly, variations in the cross-sectional area of the flow path: these varia-
tions, especially those in the annulus, may have significant contribution to
frequency responses of a drilling system. Therefore, if not included in the
design model, these aspects may compromise the control performance.

Other dynamical effects, such as temperature transients, evolve so slowly, see,
e.g., Fig. 14 in [40], that these can be neglected in the simulation model. These
effects may be modelled in terms of uncertainties in the system parameters.
Effects such as well expansion can also be approximately lumped into the system
parameters, seee.g., [22].

In this paper, we rely on physical simplifications to derive a simulation model
for MPD which is consistent with the modelling choices above. The simulation
of the resulting model is based on a numerical discretization method. As these
numerical methods are incapable of exactly preserving all the characteristics
of the model, particular care should be taken in choosing, developing and using
these numerical methods. Thus, we also provide a dedicated numerical approach
for the simulation of this model.

The majority of existing hydraulics simulation models for drilling are single-
phase models, often based on the (isothermal) Euler model, [108], [129], and two-
phase models, which are often based on either the two-fluid model or the Drift-
Flux Model (DFM), see, e.g., [4], [37], [107], [134], [157], [163], [170]. In MPD
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modelling, it is key to specify the boundary conditions of the system carefully
because exactly these boundary conditions differentiate MPD from conventional
drilling methods and are means of applying control inputs. Moreover, one should
consider the fact that the flow path in a drilling system, from the rig pump to
drill bit all the way up to the choke, experiences discontinuities in its cross-
sectional area. These discontinuities have a considerable contribution to the
transient and steady-state behaviour of the flow and pressure along the flow
path. These issues have not been addressed adequately in the literature. [107]
showed, by means of simulations and experiments on test wells, the predictive
capabilities of the DFM for drilling operations. Though providing an advanced
numerical setting for the simulation of their model, they performed their studies
in a conventional drilling setting, not MPD. They did also not consider variations
in the cross-sectional area of the flow. The work by [179] is similar to [107], but
the drilling model is solved with a different numerical scheme to improve the
solution accuracy. [2] used the DFM as a basis for simulating the annulus, testing
controllers and model complexity reduction for MPD. The issue of variations in
the cross-sectional area was, however, not addressed. A similar hydraulics model
was studied in [170], where only the annulus was considered in the model and an
extrapolation method was used for solving the considered boundary conditions
for simulations. [157] used the two-fluid model for the simulation of the flow
in the annulus. [40] provided a survey on advances in drilling simulators, but
no technical details were given on the underlying mathematical models. In this
paper, we propose a model for two-phase MPD drilling operations based on the
DFM. This model takes all the relevant aspects, mentioned above, into account.

4.1.1 Contributions.

The main contribution of this paper is a simulation platform suitable for evaluat-
ing controller performance for MPD operations, which includes both the physical
model and the tool to implement it. In particular, a comprehensive formulation
of a hydraulics model for MPD-relevant two-phase flow drilling scenarios is pre-
sented first. In this model, interactions between the different parts of a drilling
system are formulated in terms of boundary conditions. The complexity of
the model is limited to contain control relevant hydraulics aspects of a drilling
system dynamics which can in some way be detrimental to the closed-loop per-
formance of an automated MPD. The developed model allows for the simulation
of many drilling scenarios ranging from making pipe connections, choke plugging
and choke swapping, and bit nozzle plugging to liquid and gas influx scenarios.
Then, we provide a numerical approach to support simulation tooling for fast
scenario testing. In particular, we adapt a characteristics-based method to solve
the nonlinear and boundary conditions, and also propose a dynamical model
for the drill bit to circumvent numerical issues which appear at low pump flow
rates. Since the effects of variations in the cross-sectional area of the flow path
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can be significant both on transient and steady-state response of the system,
we explicitly address these variations during the numerical implementations of
the model. Finally, we validate the hydraulics model for relevant MPD scenar-
ios of single-phase flow by comparing it with a set of field data obtained from
commissioning tests of an automated MPD system.

4.1.2 OQutline.

The next section is devoted to providing a short introduction to the DFM. Next,
the mathematical modelling of the system is discussed. The steady-state solution
of the model is discussed afterwards. After completing the modelling part, we
present a numerical approach for the implementation of the model, which is later
illustrated by means of a simulation study.

4.2 Drift-flux model

This section provides a short introduction to the DFM [74] as it is the cornerstone
of the MPD model to be developed. Flow behaviour in a transmission line can,
to some extent, be described by the DFM. Because of its relative simplicity yet
favourable capabilities in capturing the pressure and mass transport dynamics
of two-phase flows, the DFM is probably the most widely used model in liter-
ature on control and simulation of two-phase drilling scenarios [4]. Consisting
of two mass conservation equations and one combined momentum conservation
equation, the DFM reads as

dq  9f(q)
9% -, 4.1
ot " ow (1)
with
Q1 JoiLet] p1a vy
qg=1 g2 | = PgCyg . f= Pgliglyg )
q3 PLOqUL + PgQgVg PlOélUl2 + Pgagvg +p (4 2)
. .
S = I
s(u,t,x)

Here, z € (0,L) and ¢ > 0 are the spatial and time variables, respectively, with
L the length of the computational domain and the well in this case. The volume
fraction, density, velocity and pressure are denoted by a = «(t,x), p = p(t, z),
v = v(t,z) and p = p(t,x), respectively, where the subscript | denotes the
liquid phase and ¢ refers to the gas phase. The vector of primitive variables
(individual variables which have a clear physical meaning) is indicated by u =
[, pr,vr, ag, pg,vg,p]T, while ¢ represents the vector of conservative variables,
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and f(-) is the flux function. The source term is represented by s(u,t,z), and
I'; and I'j model mass exchange between the phases, which are often assumed
to be zero. The source term consisting of a gravitational and frictional term is
given by
2U(’U,)pmvm|1}m‘
_D )
where g and 6(x) are the gravitational acceleration and the inclination of the
transmission line with reference to the horizontal direction and D is hydraulic
diameter. Moreover, p,, = a;p; + agpg and vy, = v + a4ve are the mixture
density and velocity, respectively. Here, v is the Fanning friction factor which is
in general a challenging parameter to determine. It is well-known that drilling
muds in general exhibit non-Newtonian behaviours [147]. There are a number
of models describing these types of flows such as the Herschel-Bulkley, Bing-
ham plastic and the Power Law model. Of these three, the three-parameter
model of Herschel-Bulkley is the most accurate, as it includes the other two
models as special cases. However, the respective equations are highly nonlin-
ear and challenging to solve and, moreover, complex models with too many
parameters are less useful from a control and estimation perspective. Here,
we adapt the two-parameter Power Law model to trade off between complex-
ity and accuracy. In this model, we define the Generalized Reynolds number
as Re = pmUmDers/lbm, app, Where Ders = 4ny, D/(3n,y, + 1) is the effective
diameter and

s(u,t, ) = pmgsin (0) — (4.3)

N, —1
3 m 18 m m
ration) o

Hm,app = Hy" ( in,, D
is the apparent mixture viscosity [147]. Here, n,, = ayn; + ayg, with n; the liquid
behaviour index, is the mixture behaviour index, and ,, = oym; + agptg, with
p; and pg the liquid and gas viscosity, respectively, is the mixture viscosity. The
Fanning friction factor for laminar flow, when Re < 3250 — 1150n,,, is given by

16
Re’
while for the turbulent flow, when Re > 4250 — 1150n,,, v is the solution to

vV =

(4.5)

—1.2
1 0.27 1.26™m
— + 410g : + ~0.75 =0, (46)
v Deyy ( (1-ngm) )”m
v Re

2

where ¢ is the pipe roughness [147]. As can be seen, this equation is highly
nonlinear and no exact explicit solution is currently available to it, thus we
use an approximate solution, see Appendix C. For transition flow, when Re €
[3250, 4250] — 1150n,,,, we compute v by a linear interpolation from (4.5) and
(4.6). We stress again that one may use a different frictional model depending
on the application and required accuracy, see [116] for a review of these models.
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Remark 4.1. The Power Law model is in general considered as complex when
it comes to the design of controllers and estimators for MPD automation, given
that it is far less common compared to simpler Newtonian models used for these
purposes.

Remark 4.2. Using mizture parameters and variables piy,, pm and vy, s a
common approach to extend liquid frictional models to two-phase flows. Likewise,
we have used a mizture behaviour index n,,, to be able to use the Power Law model
for two-phase flow scenarios.

The DFM is completed by four other equations to be, potentially, solvable
uniquely. These, often known as the closure laws, can be expressed as follows:

p—po—ci (o= po) =0, (4.72)
D — cgpg =0, (4.7b)
a+a,—1=0, (4.7¢)

vg — v — P(u) =0, (4.7d)

where po, po, ¢; and ¢, are the reference pressure, liquid reference density, sound
velocity in the liquid and sound velocity in the gas, respectively. The first two
equations are, respectively, known as the equations of state for the liquid and
gas. An equation of state describes the state of matter in terms of physical
variables such as temperature, density and pressure. Equations of state can be
rather complex in general, but we here use linear variants approximating only
the relation between pressure and density, as in (4.7a) and (4.7b). We note that
these equations still capture the liquid and gas compressibility. Moreover, the
volume balance between the phases is imposed by (4.7¢), and the slip law (4.7d)
describes the relative velocity between the two phases depending on the function
&(-). Here, the slip law is given by [96]

D(u) = Co(u)vm + Va(u) — vy, (4.8)

where the Cy(-), V4(+) are the distribution parameter and drift velocity, respec-
tively. Several descriptions, which are mostly obtained based on experiments
and function fitting, for these parameters can be found in the literature. De-
pending on well conditions, mud properties and expected drilling scenarios, a
particular description of these parameters can be selected to be used in the hy-
draulics model, assuming only bubbly and slug flows. For a review of a variety
of descriptions for these parameters and their validity conditions, see [30].

It can be shown that the DFM admits three distinct eigenvalues in a wide
region of the variable space, see [69]. These eigenvalues are A\; = vg, Ao = vg—Cm,
A3 = Vg + Cpmy, With ¢, (1) the sound velocity in the mixture. Currently, no exact
analytical expression is available for ¢,,(u). Thus, we use an approximation of
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¢m(u) based on the local definition of the bulk moduli, as follows:

_ | Bm(u)
Cm (1) = (@)’ (4.9)

where 3, is mixed bulk modulus, defined as 3,, = %, with 84 = p and

Bi = ¢?p; the bulk moduli of gas and liquid, respectively [1], [99].

4.3 MPD Description and Hydraulics Modelling

Consulting Fig. 4.1, an MPD system may be simply regarded as two equivalent
hydraulic transmission lines (or simply pipes) which are connected through a drill
bit in the middle and one of which ends up with a controllable choke valve. The
exposed zone of the annulus (so-called open-hole section) is susceptible to gas
and liquid influx from the surrounding formations that may potentially contain
hydrocarbons. Therefore, to have a good description of the flow and pressure
transients along the flow path, it is necessary to use a multi-phase flow model
for the annulus. However, except in some specific drilling operations, such as
operations performed in underbalanced drilling, it is quite reasonable to use a
single-phase flow model to describe the flow in the drillstring.

4.3.1 Hydraulics modelling.

The DFM, as in (4.1), can be used only for the description of the flow lines
with constant cross-sectional area, while in practice there are variations in the
cross-sectional area of the flow path, due to changes in the diameter of pipes
and open hole, that impact the flow behaviour. This urges the use of a modified
version of the DFM that accounts for the variations in the cross-sectional area.
The modified DFM for the annulus reads as follows [150]:

O(Aata) | Ofa(Aata) DA,

at ax - AaSa + Wpa7 (410)

where A, (z) is the cross-sectional area of the annulus and we have denoted
P, :=10,0,p,])". In this context, a sub/superscript a refers to the annulus and a
d to the drillstring. Compared to the model (4.1), changes in the cross-sectional
area lead especially to the term P,0A,/0x. We should note that ¢, x, qa, fa(:)
and S, are the same as in (4.1) computed from the variables in the annulus.
In the annulus, as illustrated in Fig. 4.1, * = 0 marks the well bottom and
x = L a point in the annulus that is in the same level as the choke. Moreover,
D, = D;, —d,, with D;,, the diameter of the annulus and d,, the outer diameter
of the drillstring, and 6,(z) = —0(L — x).

As will be explained in later sections, we need to switch between the primitive
variables u, and the conservative ones g, to numerically solve the model under
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development. Based on the closure laws in (4.7) and also the relation between
the vectors ¢, and ug, as in (4.2), we derive the following relation for the pressure
in terms of conservative variables:

b+ VB2 —dd

. 4.11
p 5 (4.11)

where b = poc} — po — Ga1 — ¢ and d = —(poCF — po)ciqa,2. Next, given the
pressure from (4.11), (4.7a) and (4.7b) can be used to compute p; and p,, respec-
tively. Next, the definition of ¢, leads to expressions for the volume fractions:

qa,1 4a,2
o=, a,="—"". (4.12)
Pl I Pg
Next, we can compute v; using
w3 (1—C — qu.2V,
oy = G231 = Co%) ~ darVa (4.13)
qa,1 + Coagqa,2
Then from the slip law (4.7d), with (4.8), we obtain
Cooquy + Vg
= — 4.14
Ug 1— Coag ( )

Remark 4.3. Depending on the choice of Co(u) and Vy(u), if these parame-
ters are dependent on v; and vy, then (4.13) and (4.14) can become nonlinear
equations with respect to v; an vy which need to be solved simultaneously using
nonlinear solvers. However, these are often independent of v; and vy.

As already mentioned, the main reason for using a two-phase model for the
annulus is to enable modelling of a gas influx from the formation into the annulus.
On the contrary, it is reasonable to use a single-phase model for describing the
flow behaviour inside the drillstring. It is worth mentioning that there are certain
drilling operations, such as operations in underbalanced drilling, where some rate
of gas is intentionally injected into the drillstring. This gas injection in turn gives
rise to a two-phase medium in the drillstring. The following isothermal Euler
equation accounting for the variations in the cross-sectional area describes the
flow behaviour in the drillstring;:

8(14;(1(1) n afdgidqd) A8, - %Pm (4.15)
where fd (Ade) = [Adpva AdPU2 + Adpd]Ta Sd(Ud, ta .13) = [07 Sd(Ud, t7 x)]T7 Pd =
[0,p4]T. Moreover, p = p(t,z),v = v(t,z), pa = pa(t,z) are the mud density,
velocity and pressure profiles along the drillstring. The vectors of primitive
and conservative variables are indicated by ug = [p,v,pq]? and qq = [p, pv]7T,
respectively. Moreover, A;(z) is the cross-sectional area of the drillstring. For




4.3 MPD Description and Hydraulics Modelling 111

the drillstring, £ = 0 marks a point in the drillstring which is at the same level
as the pump whereas = L marks its outlet at the bit. To avoid unnecessary
notational complexities, we do not use a subscript to refer to the primitive
variables in the drillstring, except for the pressure. As before, s4 is the source
term acting on the flow in the drillstring, and the same model as in (4.3) is used
to determine it, with the mixture variables and parameter reducing to liquid
variables. Moreover, we have Dy = d;,, with d;, the inner diameter of the
drillstring, and 64(z) = 6(x). The equation of state considered for the liquid in
the drillstring is the same as (4.7a), the one used in the annulus.

Remark 4.4. It should be noted that (4.15) may be obtained from (4.10) by
setting ag = 0.

4.3.2 Boundary conditions

To potentially be able to solve (4.10) and (4.15) uniquely, one needs to specify
a set of boundary conditions. In this regard, a careful observation of Fig. 4.1
reveals that the hydraulics behaviour of an MPD system is largely dictated
by three main physical boundary conditions, which are the boundaries at the
drillstring inlet, the bit together with the behaviour of the formations around
the open-hole, and the choke valve, as the annulus outlet.

The boundary condition at the drillstring inlet is expressed in a general form
as follows:

five (p (t,0),v(¢,0),¢t) =0, (4.16)

where fipe(+, -, ) is the boundary condition at the drillstring inlet, and it is deter-
mined depending on the ongoing drilling operation. For example, during normal
operations, when the drillstring is connected to the mud pump, we can define

five = Aa (0) p(£,0) v (£,0) = J, (1), (4.17)

where J,(t) denotes the mass flow rate of the mud pumped into the drillstring.
It should be noted that in practice we are often provided the pump strokes per
minutes n,(t) rather than the mass flow rate. In that case, the mass flow rate can
be computed using J, (p(t,0),t) = V,n,(t)p(t,0), where V,, is the volume that
the pump sweeps per stroke. As another example, during a bleed-off operation,
an operation to slowly release the trapped pressure within the drillstring before
detaching it from the top-derive, a valve equation should be used to model
this boundary condition. Next, at the bottom of the well, one can write three
boundary equations, consisting of the bit equation that describes the liquid mass
flow rate through the bit in terms of the pressure drop over the bit, the liquid
mass balance equation between both sides of the bit and the gas balance between
the formations and the annulus, respectively:

Ag(D)p(t, LYv(t, L) — cqAn/2p(t, L)7 (pa(t, L) — pa(t,0)) =0, (4.18)
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Ag(L)p(t, L)v(t, L) 4+ J-(pa(t,0), pr) — Aa(0)ay(t, 0)pi(t,0)v;(t,0) = 0, (4.19)
J7(Pa(t,0), pr) — Aa(0)ay(t, 0)pg(t,0)vy(t,0) = 0, (4.20)

. if .
where the function r(e) = {e, if'e>0 is used to model the non-return valve

0,ife<0

installed above the bit inside the Bottom-Hole Assembly (BHA), A,, is the ef-
fective area of the bit nozzles and cq is the discharge coefficient. Also, J.(-,-)
and JY(-,-) respectively represent the mass flow rates of the liquid and gas ex-
changed between the well-bore and the formations with a pressure p,., known as
the reservoir pressure. Here, we approximate these variables using a linear static
reservoir model as follows (see, e.g., [3]):

Ji = ki (pr — pa(t,0)), i€ {g,1}, (4.21)

where k; is the production index for the phase i. Coupling with a more intricate
reservoir model is also possible and it can be substituted into (4.21). However,
near well-bore reservoir modelling is out of the scope of this paper. At the top
side of the annulus, the boundary condition is determined by the choke equation
describing the mass flow rate of the mixture through the choke as a function of
the pressure drop over the choke (see, e.g., [61])

0= Jc(t’ ua(tvL)) - prp(t) - Jg(ua(t’ L))’
(4.22)

Jo(tua(t, L)) = chc,ic:mzc,i(t))¢2pm<t,L>r P, L) o),

where k.;, z.; and G;(-) are the choke flow factor, the choke opening and
the choke characteristic of the choke valve ¢, respectively. Here, n. is the
number of choke valves in the MPD set up and Jypp(t) is the mass flow rate
from the back-pressure pump. Moreover, J* = A, (L)oy(t, L)pi(t, L)v(t, L) +
Ay(L)ag(t,L)pgy(t, L)vg(t, L) is the mass flow rate upstream the choke whereas
J. is that downstream the choke. Again, more accurate models of multi-phase
flow through valve can be derived to replace (4.22).

The combination of Eqgs. (4.7)-(4.22) constructs our MPD simulation model.
Specifically, in this model, we have accounted for variations in the cross-sectional
area of the flow path and also the nonlinear boundary conditions of an MPD
system. Now the MPD model has been specified, and next the steady-state
solution of the system can be found based on this model.

4.4 Steady-state solution of the model

Clearly, to be able to solve the MPD model derived in the previous section,
an initial condition is required. As most of the drilling time is occupied by
normal drilling operation, it is reasonable to start a simulation study from a
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drilling ahead condition. In this case, the system shows a steady-state behaviour;
therefore, all the derivatives with respect to the time variable ¢ may be discarded
from the Equations (4.10) and (4.15), resulting in the steady-state differential
equations

dfa(Aada) 04q 5

= Aaga Jpaa
), o Ok 429
dx Ox
Now, using the closure laws (4.7) together with (4.23), we obtain
dge(z)

o = My (o) Ha(Ga, @),
r (4.24)

dyq(x 1, _
;J(,‘ ) = Md l(yd)Hd(ydvx)v

where §4(z) = [0, p|T, Yo (x) = [0}, Vg, Gy, Pa]T, with the a bar (i.e., 7) indicating
the variables and vectors in the steady-state. Moreover,

e _o® 02 _o®
07y oY day OPa
_ _ . vi(l—ay _ _
0 AgPg PgUg “gg-‘? pu
(1 — dg) pLU; QgPgUg 0 1
0
~ dA (1—ag)pior _ 1 dAy 0
H, =5, - - A, Hi=G5,_ 244 pP
a a dx agzgvg ; d d Ad dz |: 0 )
0
(4.25)

with ®(u) as in (4.8). The boundary conditions of the ordinary differential
equation (4.24) are given by the physical boundary conditions (4.17), (4.18) and
(4.22) in the steady-state conditions:

(Aap?)|,—g — Jp =0,

(Aap0)l,—p, = (Aa (1 = ag) piov)],_ + I (a(0), Br) =0,

J;c] (Pa(0),pr) — (Aa@gﬁg@g”z:o =0,
(Aap0)ly—t, — Ancar/3(D)7 (3a(L) — 7al0)) =0, (4.26)

(Asqupivr + Aalygpgg)l,_p + Jopp—

Z ke iGilZe.)\/2m (D)7 (Pa(L) — po) =0.

Eq. (4.24) together with (4.26) construct a two-point boundary value problem
in terms of x as the independent variable.
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Note that the presence of dA/dz, which contains impulses due to area dis-
continuities in A(x), in the steady-state equations (4.24) causes discontinuities
in the steady-state solution. After we have initialized our problem by solving
(4.24), we start with the numerical implementation of the model in the sequel.

The developed model in this paper includes the system dynamics and aspects
that are essential to the control performance. Considering only the control-
relevant aspects of the system in the model keeps its complexity relatively low,
such that it permits, for example, a semi-analytical assessment of its dynamical
properties (an assessment that relies partially on theoretical analyses and par-
tially on numerical analyses). For instance, semi-analytical analyses are used
in [62, Chapter 1]. This type of assessment can be computationally expensive,
if not impossible in the case of high-complexity models. Moreover, simulation
studies performed during the controller design might need to be performed sev-
eral times. Thus, it is important for these simulations to run fast. Moreover,
the relatively low complexity of the model will allow designers and engineers to
more easily identify the reason for or the source of problems in the case of poor
simulation results.

4.5 Numerical implementation

The MPD model derived in the modelling section cannot be solved analytically,
due to its complexity (e.g., infinite-dimensional nature and nonlinearities). To
solve and then use this model for simulation purposes, we employ a numerical
scheme based on a finite-volume method (FVM) discretization. As illustrated
in Fig. 4.2, in FVM [113], the spatial domain of a hyperbolic partial-differential
equation (PDE) is divided into a finite number of control volumes or cells. All the
variables are assumed to have a predefined distribution in each control volume.
As illustrated in the figure, the spatial domain is discretized into IV cells denoted
by Gi = (Ti—1/2,Tiv1/2), @ = {1,2,..., N}, of length Az, with x;,/, = iAw
called the i*" cell interface and x; = (i — 1/2)Ax marking the middle point of
that cell. The variable U (QF) is an approximation of the spatial average of
the vector u(nAt, z) (¢(nAt,x)) over G; and the approximate variables at right
and left sides of each interface are indicated by U~ and U™, respectively. Here,
At is the time discretization step length. A finite volume Godunov-type method
has the following general form [113]:

QU = Qr - % (F (Uita/zv Ui:—l/2> - F (U;F_I/Q, Ui_—*1/2)> + ALS?, (4.27)

where F(-,-), a conventional numerical flux function assuming a fixed cross-
sectional area, is determined by the numerical scheme, and S?* = S(U*, nAt, x;)
is the discretized source term. A starred variable U*, yet to be computed, is
an update of the variable U which accounts for variations in the cross-sectional
area of the flow. Note that, since the same formula as in (4.27) is used for
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Figure 4.2: An illustration of a spatial discretization performed in FVM.

solving both of (4.10) and (4.15), the sub/superscripts a and d are omitted for
readability. The time step size At is determined based on the Courant-Friedrichs-
Lewy (CFL) condition [55]. In particular, the numerical implementation of the
DFM (4.1) has been extensively studied in the last few decades (see, e.g., [71]).
These studies mostly aim at developing accurate but computationally low-cost
numerical schemes for computing the numerical flux function.

To treat the variations in cross-sectional area of the flow path of the MPD
model, the method proposed by [103] for (4.15) and an extension of that method
proposed by [10] for the modified DFM (4.10) are exploited here to compute the
starred variables in (4.27). In this method, we use a coordinate transformation
that gives the equivalent values of the variables in a cell if the geometry of
that cell changes. In particular, when updating the variables in the cell G;, we
assume that the cells G;_; and G;y; have the same geometries as GG; and use
this transformation to compute the equivalent of the variables in those cells,
considering this change of geometry. In this way, we are still able to use a
Godunov setting with numerical flux functions as in (4.27) to numerically solve
our MPD simulation model. Following this approach, U;* = [p™*,v"*]T of the
interface 7 + 1/2 in the drillstring is obtained through a nonlinear coordinate
transformation that is given in terms of the following system of equations:

pt ot AT — ptoT AT =0,

*\ 2 .
(7}+*)2 . (’U+)2 +clg In (/)+ ) -0, (4 28)

ot

where A~ and AT denote, as illustrated in Fig. 4.2, the cross-sectional area A
immediately at the left and right side of an interface, respectively. Moreover,
U, " of the interface i —1/2 is obtained by replacing the superscripts + and — by
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— and +, respectively, in (4.28) and then solving the resulting equation. Next,
U* for the DFM of the annulus is obtained by a coordinate transformation
given by the following equations together with closure relations (4.7a)-(4.7d)
and (4.8):

(0™p "0 ) Ag = (ad pv") AT =0,

(af pgvg ™) AT — (af pyog) AT =0,

P N SN oy 2
Sh (Ul) +ag+*<vg) - (4.29)
Pg 2 2
2

2 2 *
a'pl (T (v 2y (Ps _
- ag + ¢ In n 0.
Pg 2 2 Pg

As before, U, * of the interface i —1/2 is obtained by replacing + and — in (4.29)
with — and +, respectively.

Remark 4.5. A close observation of (4.28) reveals that variations in the pres-
sure profile pqa(t, x) in the drillstring due to changes in the cross-sectional area at
the location of these changes are not significant. This is mainly because the mud
velocity v in the drillstring is far smaller than the sound velocity ¢;. On the con-
trary, when there is gas inside the annulus, variations in the cross-sectional area
can cause considerable variations in the pressure. Given this explanation, with-
out losing much accuracy, we may assume that p™* = pT for the drillstring and

solve only the mass-balance equation of (4.28), which is linear, for computing
v,

After computing Q7! from (4.27), the vector of primitive variables are com-
puted using (4.11)-(4.14). Then, if a first-order scheme is used, a uniform dis-
tribution is considered for the variables u(nAt, z) over a cell G;, thus

W(nAt,x) =Uj', x€ (w_1,@p1). (4.30)
When a second-order scheme is used, this approximation is obtained by a linear
interpolation as follows:

a(nAt,x) = UJ + (ug)} (x —2:), € (x

pray) (431)
where (u;)’ is an approximation of the exact derivatives du(nAt,z)/0z at x =
xj, computed using a flux limiter, see, e.g., [165].

Remark 4.6. We reasonably assume that A(x) is piecewise continuous, with
a discontinuity occurring only at a cell interfaces such that A(x) is constant in
each cell G; (i.e., for x € (x;-1/2,%i41/2), 1 € {1,2,..., N} ).

In the next part of this section, we explain how to combine the implicit
boundary conditions of the problem with the numerical scheme used for updating
the internal domains of the model.
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4.5.1 Boundary conditions treatment.

Expanding the scheme (4.27) for i = 1 and ¢ = N reveals explicit dependencies
on Uy and Uyn41, and also implicit dependencies on U_1, Un42 for the case of
second-order schemes. These variables are required to incorporate the boundary
conditions of the boundary value problem in the described scheme in the previ-
ous section. Extrapolation is a common method for determining the boundary
variables. It is effective and can provide accurate results if there are no source
terms in the model [144]. However, it lacks a sound theoretical support and can
cause large spikes in the solution in the presence of source terms. Contrary to
extrapolation, a method known as the characteristics-based method [51] offers
more accurate and reliable solutions and it also has a more reliable theoretical
foundation. This method involves breaking a two-point boundary value problem
into two initial value problems and solving those separately at their respective
boundaries. Now, by the use of a nonlinear coordinate transformation and ap-
proximations, the DFM with the closure laws (4.7a)-(4.7d) can be decomposed
into its characteristic equations. In this form, two of the PDEs describe the
propagation of the pressure waves, also called fast dynamics of the DFM, inside
the domain and one PDE, called the slow dynamics, describes the migration of
the gas phase. For the DFM (characterizing flow the annulus), these relations
come in the following form, see [71]:

d1pa d
ag(1— Coag)c}ilt pad—lltag =0, (4.32)
dapq dacx davy
dot — piCm (Vg — V1) dgtg —pioy (Vg — v + ) Gt = (vg — v + Cm) Sa,
(4.33)
d3pa dsa d3v
it + piCm (vg — V1) d3tg — pray (Vg — vp — ) Gt (vg — v — Cm) Sa,
(4.34)

where in this case we have defined ;iit = % +)‘a,i6%7 1 =1,2,3, which is a direc-
tional derivative along the vector V = [1, )\a,i]T, with A, ; being an eigenvalue of
the DFM of the annulus. Eqs (4.32)-(4.34) correspond to the gas volume wave
travelling at a speed A,,1 = vy downstream the annulus, the pressure waves prop-
agating at A\q 2 = v; — ¢, upstream the annulus and the pressure wave travelling
at a speed of A\, 3 = v; + ¢, towards the choke, respectively. The characteristic
relations of the isothermal Euler equation describing the single-phase flow in the
drillstring are given by

Opq Opd v Ov
S N L S W 4.
ot Mgy WPy T APty T asd (4.35)
Opq Opd v Ov
a1 3 p 2l prg e = - 4.
5 + Aa2 o +Czp8t +ap 425 C154d, (4.36)
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where (4.35) corresponds to the pressure wave travelling upstream the flow with
a velocity of A\g1 = v—¢;, while (4.36) corresponds to the pressure wave travelling
the opposite direction at a velocity of A\g2 = ¢; + v.

Remark 4.7. Note that the characteristic relations (4.32)-(4.34) are obtained
under several simplifying assumption such as an incompressible liquid phase,
0Ch(u)/0u =0 and OV4(u)/0u =0, and that agpy < ayp; holds, because other-
wise the derivation of such relations is highly challenging, if not impossible. Nat-
urally, these assumptions lead to some degree of inaccuracy in the computation
of the boundary variables. Nonetheless, for small gas volume fractions ay (less
than 0.25) at the boundaries, these assumption are rather realistic, especially
when managed pressure drilling operations are supported by high-performance
kick detectors and pressure control systems that prevent large gas kicks. It is
mentioned that the relations (4.35) and (4.36) are exact.

In the remainder of this section, we propose a method for computing the
boundary variables based on the characteristic relations (4.32)-(4.36) together
with the physical boundary conditions introduced in the previous section.

We solve the drillstring inlet boundary condition in (4.16) together with the
characteristic relation (4.35), forming an initial value problem as

fibc(p(t7 0)’ U(ta 0)7 t) =0,

%,)\ %,C @,c A @—cs (4.37)
ot d,1 O lp@t 1P d,18x— 15d-

This partial differential algebraic equation, if solved at x = 0, gives u4(t,0) =
[v(t,0), p(t,0)]T. Finding the analytical solution of this nonlinear partial dif-
ferential algebraic equation is however challenging. Therefore, we solve (4.37)
numerically by performing a first-order Euler discretization (both spatial and
temporal) on (4.37), yielding

fibC(pg7 /Ugla nAt) 207

y -1 _ -1 -1
Pio —Pio 106~ vl ) Pao —Pai
At ! At . Az
1 Un—l _ Un—l
1) (p)\d,l)? % + ¢;84 (U(;tfl, (n — 1)At, O) ,

(4.38)
where the variables pj and vj, the solutions of (4.38), are approximations of
p(nAt,0) and v(nAt,0), respectively, and the notation ()% stands for the term
inside the parentheses evaluated at the time instance ¢ and the point z; in
the special domain. The resulting nonlinear algebraic equation (4.38), together
with the equation of state (4.7a), can be solved with a proper zero-finder algo-
rithm, such as a Newton solver. After this equation is solved, we can compute
Uty = [vg,p5]" and Qo = [pf, pgvg]”, as required in (4.27) for the drill-
string. At the bottom of the well, we take a similar approach. At this boundary,
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there are couplings between the boundary variables in the annulus and those
in the drillstring, and nine unknown boundary variables in total with seven
boundary equations and closure laws. These together with the characteristic
equations (4.36) and (4.33) construct an initial value problem that is solved nu-
merically at this boundary to compute the boundary vectors Uy y,q and Ug,
(and Qf y4; and Q4 o). However, using a numerical method similar to the one
in the previous section is computationally expensive, because it involves solving
a nine-dimensional nonlinear algebraic equation. Moreover, it can cause numer-
ical oscillations when the flow through the bit is close to zero, which is the case
during, e.g., a pipe connection operation. Therefore, here we connect the two
boundaries at both sides of the bit through an intermediate ordinary differential
equation as follows (For the derivation, see Appendix D):

o € (=(0), Apan(1)) for (1) > 0,
A8 = {maX(O,f (2(t), Apan(t))),for  z(t) =0, (4.39)
where Apgp (t) = p(t, L — Al/2) — pa(t, Al/2) and
__ 2A4(L)A4(0) B 2 3a 54
T AI(A(D) + 4,0)) (Ap T L — A2) (Aaca)’ | Aa(0) T Al(D)
(4.40)

The operator max(-,-) in (4.39) is used to account for the non-return valve
installed in the drillstring to prevent a back-flow from the annulus into the
drillstring and we take Al is a parameter that determines the inertia of the dy-
namics of z(t). Now, using the other characteristic relation in the drillstring and
performing an Euler discretization over space and time, we can approximately
compute the drillstring boundary variables at the bit by solving

2" — Ad(L)p?\H»lUKUrl =0,

—1 1 -1 —1
PZ,NH - pZ,NH - Clpn_lvxurl - UKr+1 —(x Q)n—l PZ,N _pZ,N-H i
At N At SN Az
—1 UTKFl - UK/ill 1
a (pra2)y TJF —asaUyy (n—1)At, L — Az/2),

(4.41)
where v}, and pR,, are approximations of the boundary variables v(t, L),
p(t, L), respectively, and 2™, an approximation of z(nAt), is obtained from the
time discretization of (4.39) using an Euler method, i.e.,

‘ A At (7L Apt) for Tl >0,
X =" { ¢ Vi) X j={1,..,m}.

At, max(0,& (Xj_l, Apg}jl)), for /"t =0,
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Here, Y is an auxiliary variable such that x° = 2" ~! and At, is the corresponding
discretization time step length. Note that, to avoid numerical oscillations when
the time step At is large, we can design At, to be smaller than A¢. To this end,
we set At, = At/m, m € N, where m is chosen to be large enough.

Analogously, we can compute Uy, as an approximation of uq(nAt,0), by
solving the following system of nonlinear algebraic equations as a result of spatial
and temporal discretization of (4.33) using the Euler method with (4.19)-(4.20):

2"+ LR 0, or) — Aa(0) (cupivr)y =0,
J(Pa0,Pr) — Aa(0) (%ngg)g =0,

—1 n n—1
Pio ~ Pao n—1 g0 = Qg0
i G U ) ey Ve
n n—1 n—1 n—1
—1 Y0~ Y0 n—1Pa1 ~ Pay0
(Plal (Ug -+ Cm))? T A = ()‘a,2)1 T Ve Az et
—1 n—1
n—1 an,l ~— %0
()\a,chm (Ug—vl))l L 9 Ar LI
n—1 n—1
n—1V1 — Yo
()‘a,QplO‘l (vg — U + CWL))l ACC +
(vg — o1+ em) " 8a (U2, (n — 1)AL, 0).
(4.43)

Note that the above equations need to be solved together with the closure laws
to return (generally) a unique solution. After solving (4.41) and (4.43), we can
compute Qy n,q and Q. At the choke boundary, the initial value problem
consists of the choke equation (4.22), and all closure laws of the DFM (4.7a)-
(4.7d) together with the two characteristic equations (4.32) and (4.34). This
problem is approximated in terms of a nonlinear algebraic equation, similar to
(4.38), using a first-order Euler discretization over space and time domains. The
solution of the resulting algebraic equation is then used to compute U7 v ,; and

QZ,N-H'

Remark 4.8. If a second-order scheme is used, in addition to the boundary
vectors U, o and Uy n41, the vectors U, —1 and U, N2 also need to be deter-
mined. Although these variables are less crucial than the boundary variables for
the accuracy of the MPD model , the way we compute these can have a signif-
icant impact on the solution. A common approach in this regard is to assume
that Ug,—1 = U, 0 and Uy N2 = Ug,N4+1. However, one can use more advanced
approaches such as the one proposed by [145], which comes at a higher compu-
tational expense.
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Figure 4.3: The diameter of the annulus and drillstring of the drilling well used
in the model validation studies.

4.6 Field data comparisons and simulation studies of industry-
relevant scenarios

To evaluate the predictive capabilities of the simulation model and the perfor-
mance of the proposed numerical implementation of the model, simulations and
model validations against experimental data are performed in this section.

4.6.1 Comparisons with field data

We have performed comparisons for single-phase flow scenarios between the hy-
draulics model presented in this paper and field data obtained during commis-
sioning tests of an MPD operation on a real drilling well. These tests were
performed after running casing and before resuming drilling ahead at the length
of 1647 m to adjust the MPD control system. The geometries of the drillstring
and wellbore are reported in Fig. 4.3. The other parameters used in the model
are listed in Table 4.1. The considered measurements correspond to a time
period when the drillstring was stationary. In this experiment, the mass flow
of the mud pumped into the drillstring varies between low, medium and high
values at different rates.
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Table 4.1: Parameters used in the hydraulics model for model validation.

Parameter Symbol Value Unit
Length of the well l 1645 m
Average well inclination 0 1.08 rad
Liquid bulk modulus B 0.94x10° Pa
Reference pressure Do 10° Pa
Liquid density at pg 00 1210 kg/m?
Number of chokes Ne 2 -
Choke flow factor ket 0.0026 m?
Choke flow factor keo 0.0026 m?
Liquid viscosity I 0.177 Pa.s
Liquid behaviour index ny 0.93 -
Bit nozzles area A, 5.69x10~% m?
Bit discharge coefficient cd 0.8 -

In this paper, instead of identifying G;(z.;) as a function of z.;, we approxi-
mate it as a function of time, i.e., we compute the implicit choke characteristic
G(t) from the measurements and use it in our simulations. In particular, we use
the following relation to approximately compute G(¢) :

2

_ ilZe,i) = S
G(t) = ;Gz( c,z) - k071¢20c(t)r(p0(t) —po)’

(4.44)

where p.(t) = pa(t,L) and p.(t) = pa(t, L) are the measured pump pressure
and flow density upstream the choke, and it is assumed that k.o = k¢1. The
choke flow J.(t) is also a measured variable in this equation. We note that this
relation is directly obtained from the choke equation in (4.22). The pump flow
rate together with the choke opening signals and implicit choke characteristic
G(t) are reported in Fig. 4.4.

In Fig. 4.5, the measured and simulated mass flow rates J. are plotted in
comparison to the measured pump flow rate J,. We can observe a good match
between these two signals. Since the entire length of the wellbore was cased
throughout this scenario, we set J. = 0. Next, we compare the measured and
simulated pressure signals at the choke and pump. In Fig. 4.6, the left side, the
modelled and measured choke pressures p. are compared, where a good match is
observed between the measurements and the model. The quality of this match is
also an indication of the good accuracy of the implicit choke characteristic G(t).
Moreover, by comparing this figure to Fig. 4.5, reporting the flow rates, during
periods when the pump flow is steady, we can observe that transients in the
choke pressure p. correspond to transients in the choke flow J.. This is due the
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Figure 4.4: Field data: (top) the pump mass flow rate, (bottom) the choke
opening signals 2.1 and z. 2 and the implicit choke characteristic G(t).

compressibility of the mud, which is well captured by the hydraulics model. The
model-based and measured pump pressures p, = p, (¢, L) are plotted in Fig. 4.6,
on the right side. We can clearly see a good match between these two signals.
However, there are some discrepancies between the two signals as well. These
discrepancies are primarily due to imperfections in the Power Law model, used
for computing the friction factor. We could expect a higher accuracy by using
more advanced frictional models, such as the Herschel-Bulkley model, but at the
expense of additional computational complexity and one additional parameter
to identify.

A careful observation of the pump and choke pressure measurements reveals
that there is a delay of about 4 seconds between transients in the pump pressure
and those in the choke pressure, which is exactly due to the fact that pressure
waves propagate at the limited speed of sound velocity. These delays are well
captured by the model, which is another indication of the high predictive ca-
pability of the hydraulics model in terms of capturing fast transients and wave
propagation effects. Moreover, in this figure, the high accuracy of the surface
pressure control system of MPD can be well observed, when comparing the mea-
sured choke pressure to its reference.

4.6.2 Simulation studies

In this part, we present simulation studies. The geometries of the drillstring
and the annulus considered in the simulations are reported in Fig. 4.7, and the
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Figure 4.5: A comparison between the measured and modelled choke mass flow
rates, together with the measured pump flow.
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Figure 4.6: A comparison between (left) the measured and modelled choke
pressures, together with the reference for the choke pressure as the reference for
the MPD pressure control system, and (right) the measured and modelled pump
pressures.

parameters are listed in Table 4.2. In this section we try, among other things, to
convey the importance of having a simulation model the complexity of which is
and should be kept relatively low by including pressure control-relevant aspects
of an MPD system. This is achieved by demonstrating through simulations that
theoretical analyses based on simple design models and simulation studies are
not always sufficient for obtaining a comprehensive and reliable assessment of an
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Figure 4.7: The diameter and cross-sectional area of the annulus and of the
drillstring considered for the simulation case studies.

MPD pressure control system, and further types of assessments (semi-analytic
assessments for instance) based on a simulation model might be needed. This
type of assessment may itself become impossible if the simulation model includes
irrelevant or less relevant aspects that can cause excessive complexity. However,
these type of assessments are beyond the scope of this paper.

To compute the numerical flux functions F,(-,-) in (4.27) for the DFM of
the annulus, a second-order flux-vector-splitting (FVS) scheme is used [69]. For
the drillstring, a first-order upwind scheme [113, Chapter 4] is used to compute
Fy(-,-) in (4.15). To have a simpler numerical implementation and without
losing much accuracy, we linearized the flux function f4(-) in (4.15). After this
linearization, which is obtained by considering ¢; > v(z), for all z € (0, L), the
flux function in (4.15) reduces to f1 (qq) = [pv, c?p], which is now linear in terms
of ¢4. The maximum value that the time step At can take is determined by the
Courant-Friedrichs-Lewy (CFL) condition, which is a necessary condition for
the convergence of a numerical solution as in (4.27). Here, we use the following
relation to compute the time step:

A _
At = CFLTx, A = maz{|Aarl, a2

+[Aasls [Adals [Aazl}, (4.45)

where CFL is called the CFL number that should be less than one [55]. Note
that while one can choose different time steps for the drillstring and the annulus
in computing (4.27), here we choose both to be equal and assume that A\ = ¢;.
For the case when there is gas in the annulus, the time step (4.45) can be highly
conservative (in the sense that it is chosen much smaller than the maximum value
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Table 4.2: The simulation parameter values.

Parameter Symbol Value Unit
Length of the well l 4000 m
Well inclination 0(x) /2 rad
Liquid bulk modulus B 1.1x10° Pa
Sound speed in gas Cg 316 m/s
Reference pressure Do 10° Pa
Liquid density at pg 00 1500 kg/m3
Number of chokes Ne 1 -
Choke flow factor ke 0.0025 m?
Average velocity Vy 0.5 m/s
Liquid viscosity 10 0.04 Pa.s
Gas viscosity Iy 5x106 Pa.s
Liquid behaviour index ny 0.95 -
Bit nozzles area A, 5.77x107% m?
Space discretization step length Az 12.5 m
Bit control volume length Al 1.5 Az m
Gas production index Kg 8x1077  kg/(Pa.s)
Bit discharge coefficient Cd 0.8 -
Profile parameter Cy 1.1 -
Number of discretization cells N 320 -
CFL number CFL 0.9 -
Discretization parameter m 20 -

it can take) for computing (4.27) for the annulus, causing a diffusive solution
for the annulus. This is because even for small values of o in a cell, the sound
velocity in that cell can drop substantially.

We perform the simulations for three common and representative drilling
scenarios as described below:

1. As the first case study, we run the implemented model for a choke plug-
ging scenario, that is, a contingency where the choke effective area drops
due to, for example, partial or complete blockage of the orifice by drilling
cuttings. Here, we replicate such a scenario by a sudden decrease in the
choke flow factor k. in (4.22) during drilling ahead.

2. Making a pipe connection is a common normal drilling operation that
takes place around every two to ten hours, depending on the rate of pen-
etration. A pipe connection operation entails halting drilling by slowly
ramping down the pump flow to zero and, then, bleeding off the trapped
pressure inside the drillstring by opening a bleed-off valve. Afterwards, the
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top drive is detached from the drillstring, and a new stand of drillpipe is
screwed onto the drillstring. After that, the rig pump flow is ramped up
again, resuming the drilling.

3. Gas influx, or gas kick, and subsequent gas migration in the annulus is
the third scenario that will be studied. A kick usually happens when the
reservoir pressure exceeds the well pressure, which can occur for reasons,
such as drilling into a high-pressure zone, a pressure drop during a pipe
connection or swab and surge effects. We simulate such a scenario by
increasing the reservoir pressure to replicate running into an unexpected
high-pressure zone.

4.6.2.1 Control system:

To maintain the downhole pressure during these scenarios, a simple pressure
control system is used. We design this control system based on a simple lumped-
parameters model in [99]. This model consists of three ordinary differential
equations and in this model wave propagations effect is compromised in exchange
for simplicity.  Although this model is derived based on a single-phase flow
assumption, it partially accounts for two-phase scenarios through the parameters
related to the bulk moduli. A comparison between this design model and the
simulation model is provided in Table 4.3.

Table 4.3: Conditions of the simulation model versus the design model.

Model condition Simulation model Design model
5 PDEs+
Complexity 5 closure laws 3 ODEs
Number of dimensions 1D 1D
Number of phases 2 1
liquid-liquid flows yes no
gas-liquid flows yes no
flow compressibility yes no
wave propagation yes no
gas migration yes no
liquid influx yes yes
gas influx yes no
flow pattern transitions yes no
variation in cross sectional area yes no
Isothermal condition assumption yes yes
Radially homogeneous flow assumption yes yes

Axial flow assumption yes yes
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Remark 4.9. The focus of this paper is not on controller design and the used
controller does mot mecessarily provide a satisfactory pressure control perfor-
mance. The focus is rather on assessing how certain model/system aspects, taken
into account in the proposed model, affect closed-loop system performance.

Following the work by [99], this control system is made up of two parts:
1) a proportional-integral (PI) controller that regulates the surface pressure p.
through the choke opening z. as the control input and 2) an estimator that
generates a reference for the controller from the surface and downhole measure-
ments and also the reference given for the downhole pressure pj,. The reference
generator consists of a parametrized model, approximating the surface pressure
based on a given reference for the downhole pressure, and an estimator that gen-
erates an estimate for the parameters of this model. This estimator is designed
with a recursive least square (RLS) method with a forgetting factor, see [130].
Assuming laminar flow, the parametrized model is given by
Pe(t) = pan(t) = (Je(t) = Jopp(t)) (1 = 05 (£)) F — (1 = b4(t)) G, (4.46)
where F' = fol #ﬁé"mdm and G = gfol posin (0,(x)) dx, 05(t) and 0,4(t) are the
to-be-estimated parameters, the estimates of which are indicated by 0 r(t) and
ég(t), respectively. Here, we assume that the surface measurements are avail-
able at a high sampling rate while the downhole measurements are performed
at a low rate, which is often the case in realistic drilling scenarios. Here, we
take the downhole sampling period during normal operations to be At. = 20
s. In practice, and especially in the case of long wells, there is also some de-
lay in transmitting the downhole measurements to the surface because of using
mud pulse telemetry. However, we here assume that the downhole data are
immediately available after measurement. Moreover, we assume that the only
choke, described by (4.22), has a linear characteristic in its operating range (i.e.,
G1(zc1) = z¢1 for 0 < z.; <1, and G1(z1) =0 and G1(z.1) = 1 for z.; < 0 and
ze1 > 1, respectively). However, one can consider more complex characteristics
for the choke through G(-).

4.6.3 Results for a choke plugging scenario.

Here, the results for a choke plugging scenario are shown. In this scenario, the
choke flow factor k. drops by 50% from its nominal value at ¢ = 400 s. Because
a laminar flow has weaker damping effects on propagating pressure waves and
an objective of this section is to illustrate distributed aspects of the model, we
consider a laminar flow with n; = 1 along the entire flow path in this scenario.
The corresponding results are reported in Fig. 4.8; on the left side of which
are located the pressure signals, for both the design model and the simulation
model, and on the right side snapshots of the liquid velocity along the flow path
are shown. As seen from the left figure, the overall closed-loop responses in
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Figure 4.8: Simulation results for a choke plugging event: (left) the choke,
downhole and pump pressure signals while comparing the design model to the
simulation model, (right) Snapshots of the spatial velocity profile for the simu-
lation model before and after the event.

both models are similar; the design and simulation models show close dynamical
behaviours in this scenario. The difference between the two model