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Chapter 1
Introduction

1.1 Background, Motivation and Research Objec-
tives

The world witnessed a disastrous event with the Deepwater Horizon drilling
rig explosion in 2010 (see Figure 1.1), which had large-scale repercussions on
the environment and the economy. There was a chain of events which led to
the disaster. Primarily, the incident occurred due to some errors in pressure
management of the drilling system under gas influx from the reservoir, and this
led to detrimental effects. The natural question that arises is whether such an
unwanted incident could have been avoided. The answer to this question is
affirmative. Certainly, such incident could be avoided through a better down-
hole pressure control, automation and real-time drilling decision making.

Furthermore, future sustainable harvesting of geothermal energy requires
exploitation of difficult-to-access, unconventional reserves. The drilling of deep
wells for these purposes is characterized by high complexity, high uncertainty,
high risk and high cost. As an example, data from drilling operations on the
Norwegian Continental Shelf (NCS) from the last 10 years show that well con-
struction costs have increased, while drilling efficiency has reduced [137]. This
is a general trend that applies throughout the drilling industry world-wide. The
cause for this undesirable trend is complex, but an important factor is the lack
of automation of the drilling operations. The aforementioned discussion clearly
demonstrates the lack of automation and proper down-hole pressure manage-
ment.



2 Introduction

Figure 1.1: Deepwater Horizon in flames after the explosion [Ref: Wikipedia].

Development of technology, such as Managed Pressure Drilling (MPD), is
gaining relevance for offering improved automatic pressure control. MPD offers
a better down-hole pressure control and aids in mitigating gas influx incidents.
In view of virtual drilling scenario testing, and for simulation and control pur-
poses, the foundation of drilling automation strategies for automating pressure
management needs to be based upon a hydraulic model.

To this date, no hydraulic models exist that are both (i) accurate enough and
(ii) simple enough to be employed in the context of real-time estimation and
control in case of gas influx. On top of that, the sensor measurements are either
not available or have an embedded delay during various drilling operations.
The effectiveness of an automated system or a control system may be jeopar-
dized under the above mentioned circumstances. Moreover, a large amount of
data needs to be transferred from the down-hole to the surface in a reasonable
amount of time. Wireless data transfer techniques, such as mud pulse, are gen-
erally employed for this purpose. However, such techniques require data to be
stored in memory and downloaded during a certain drilling phase. This option,
in which data is stored and then evaluated after some drilling operation, makes
real-time drilling decisions nearly impossible if there does not exist an accurate
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hydraulic model to predict a characteristic behaviour/response. To summarize,
sensor measurements along with the hydraulic model need to be utilized to
make real-time decisions while performing drilling operations. The fundamen-
tal prerequisite is hydraulic model development which, in the future, will serve
as the basis for controller and estimator design. Currently, hydraulic models are
simple, but not accurate enough as the distributed nature of the drilling systems
is usually (totally or partially) neglected [3,91,133]. Ignoring these distributed
effects can be detrimental to an automated MPD system. Furthermore, there
exist hydraulic models that are highly accurate [14, 57–61, 67, 128, 167], but
are not employed in the scope of drilling operations since they are too complex
for virtual drilling scenario testing and controller design.

The main motivation of this research is to develop a much needed novel
computational framework for (multi-phase) hydraulic modelling and model
complexity reduction for drilling operations, thus supporting the wide-spread
deployment of automation strategies for down-hole pressure management.

This dissertation is a stepping stone towards:

• Developing high-fidelity two-phase hydraulic models for drilling opera-
tions that accurately reproduce the dynamics of gas-liquid flow in the well
and enable accurate prediction of down-hole pressure;

• Developing model order reduction techniques for the construction of fit-
for-purpose hydraulic models that enable effective handling of distributed
non-linearities and delays (due to pressure wave propagation), guarantee
the preservation of key system properties (such as stability, multiple time-
and length-scales and input-output behaviour), and preserve the depen-
dency on key physical parameters in the reduced-order model.

In the scope of the aforementioned high-level objectives, this dissertation
will discuss novel results in the field of modelling, structure-preserving dis-
cretization and model order reduction framework to deal with (large-scale)
non-linear dynamical systems as in MPD.

1.2 Scientific challenges and research goals of this
dissertation

In this section, we will first discuss scientific research challenges and then for-
mulate research objectives that have been treated in this dissertation.
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1.2.1 Scientific challenges

The scientific challenges associated with the aforementioned objectives can
be identified in two broad themes.

• The first theme revolves around how to develop models that include essen-
tial features of the multi-phase flow dynamics in drilling, such as transition
between one-phase (gas or liquid) flow and multi-phase flow, propagation
of fast pressure waves and slow mass transport phenomena across a (vari-
able) geometrical cross-section, gas expansion and acceleration, reservoir-
well interaction, and accurate modelling of the friction losses; see Chapter
2 for physical insights.

• The second theme revolves around how to develop methods for model
complexity reduction that, firstly, handle distributed non-linearities, de-
lays and guarantee the preservation of key system properties and, sec-
ondly, can be used to construct low-complexity models suitable for both
extensive, reliable drilling scenario testing and the design of automation
strategies for down-hole pressure management.

First theme - Modelling and (structure-preserving) discretization of hy-
draulic systems
Multi-phase hydraulic models, which are multi-scale and evolutionary in na-
ture, are popularly governed by non-linear partial differential equations. Such
hydraulic models pose several theoretical and computational challenges. The
physics governing the hydraulic dynamics in the wellbore involves several phe-
nomena across different time scales. The slow time scale is related to the mass
transport and the fast time scale is related to the propagation of the acous-
tic (or pressure) waves. Capturing these wave propagation phenomena, in-
duced by slow or fast transients, is a central challenge in hydraulic modelling.
The wave structure of (multi-phase) hydraulic models is composed of shock
waves, rarefaction waves, and, stationary and moving contact discontinuities.
Great progress has been made in the last few decades to implement a stable,
robust and accurate numerical scheme to capture such discontinuous physical
features [9–11,37,47,60,68,92,132,181,197]. The development of robust and
accurate numerical methods for non-linear and compressible multi-phase flow
problems, characterized by conditional hyperbolicity, remains a great challenge
even after several decades of successful research.

Several aspects need to be taken into account when solving these equations
numerically, such as: (i) efficiently capturing the relevant phenomena over the
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various spatio-temporal scales, (ii) guaranteeing the monotonicity of a numeri-
cal scheme, positivity of a physical quantity, and the preservation of steady-state
behaviour, conserved physical quantities and key system properties (such as
stability1 and input-output behaviour), and (iii) enabling effective handling of
distributed non-linearities and non-conservative terms in the governing partial
differential equation.

There exist several variants of multi-phase hydraulic models. We will only
focus on two variants, namely, the Two-Fluid Model (TFM) [56] and the Drift
Flux Model (DFM) [57, 90], in the scope of modelling for MPD systems. As
explained in Chapter 2, the main interest lies in the modelling of two-phase
flow dynamics which is of practical relevance under gas-influx. The TFM and
the DFM provide a physically realistic description for modelling the two-phase
flow behaviour of interest. A framework already exists for high-fidelity compu-
tations of shocks, expansion waves and contact discontinuities for both the TFM
and the DFM [57–61, 67, 128, 167]. The aspect of preserving the steady state
of two-phase flow models has also been addressed via well-balanced numerical
schemes in [174]. Furthermore, the positivity of a physical quantity is not triv-
ially guaranteed upon employing any numerical scheme. However, there exist
a few selected numerical schemes that retain the positivity of a physical quan-
tity [57, 59]. There also exists a rich literature to deal with non-conservative
terms, particularly in the scope of the TFM [58, 167]. Such non-conservative
terms also arise for modelling fluid flow behaviour across a variable geomet-
rical cross-section, and have been dealt recently; see [7] in the scope of the
DFM.

While some numerical schemes are difficult to derive and expensive to use
[67], few other numerical schemes are simple to implement, but at the cost
of a desirable numerical property [128]. On the one hand, some numerical
schemes are able to capture fast-propagation effects, but strongly smear slow-
propagating contact discontinuities [57]. On the other hand, other numerical
schemes fail to effectively resolve the fast-propagating effects, but capture the

1It is important to distinguish between different kinds of (in)stability. By physical (in)stability,
we refer to the intrinsic behaviour of the system that is simulated. While numerical (in)stability
is a consequence of a numerical technique/algorithm that is used to simulate the system. A phys-
ically stable system can be numerically unstable. While there exist methodologies, such as Von
Neumann stability analysis [85], total variation analysis [85], etc., for linear partial differential
equations, a consistent definition of numerical stability is complicated for non-linear partial differ-
ential equations. Numerical algorithms for non-linear partial differential equations are required to
possess numerical stability in the sense that the CFL criteria is not violated and that the numerical
algorithm does not amplify errors [85]. Preservation of stability implies that the numerical stable
regime is (almost) equal to the physical stable regime.
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contact discontinuities [57]. Numerical schemes, such as AUSMV, have been
developed in the past to resolve both fast moving wavefronts and slow mov-
ing contact discontinuities in an accurate manner with no or minimal smearing.
While numerical schemes may satisfy Abgrall’s principle2, they may not possess
the property of “Total Variation Diminishing". For instance, AUSMV and AUSMD
satisfy Abgrall’s principle, but lose monotonicity or the “Total Variation Dimin-
ishing" property [58]. Furthermore, several conserved physical quantities such
as mass, momentum and energy are not preserved exactly in a discrete sense.
To summarize, each numerical scheme comes with its own merits and demer-
its, and there is still a need to develop a suitable numerical tool to describe
two-phase transport problems.

To add, usually no analytical results exist for either the TFM and the DFM,
and a certain numerical scheme at an extremely fine spatial and temporal res-
olution is used to serve as a benchmark for a “truth" simulation response. Fur-
thermore, under grid refinement, numerical solutions computed from various
numerical schemes are theoretically expected to converge to the same solution.
However, different numerical schemes yield different physical representations
at a finer grid resolution (see Chapter 6) and, hence, a challenge is faced to
arrive at a consensus regarding the best numerical scheme to simulate the TFM
and the DFM. Moreover, for instance, the authors in [57] consider the solution
generated by AUSMV (on a finer grid) as a reference solution of the DFM. How-
ever, as discussed earlier, AUSMV is not “Total Variation Diminishing" by nature.
Furthermore, there is no sound physical ground to discard a sharp spike just be-
hind a moving front generated by other numerical schemes, such as FVS [57].
Also, a surrogate of the sound speed model for the two-phase mixture (gas and
liquid) is generally used; see [2, 57] in the scope of the DFM. Such a surrogate
model assumes one of the phases to be incompressible, which is not physically
realistic in the realm of drilling applications. The (mixture) sound speed model
is known to play a crucial role in developing numerical schemes, and has signif-
icant implications in the location and speed of the moving wavefront, numerical
dissipation, etc. Hence, the (mixture) sound speed model needs to be accurate
and deserves careful attention. There is clearly a scope of further detailed nu-
merical analysis, and the following natural questions arise:

Q1. How to rigorously certify a numerical scheme and establish the relative
order of the merit of the numerical schemes?

2A flow, uniform in pressure and velocity, must remain uniform in the same variables during its
time evolution.
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Q2. Do exact/analytical solutions exist or can be developed for the two-phase
flow models of interest in order to test the model and the numerical method?
Q3. How important is the role of the sound speed of a two-phase mixture?
Q4. How to preserve conserved physical quantities in a discrete setting?

In general, Finite-Volume (FV) Methods are employed for developing a high-
fidelity numerical hydraulic model. These methods are popular as they are in-
herently conservative and can easily be formulated to deal with unstructured
mesh of an underlying spatial domain. It is important to ensure the numerical
stability (an aspect related to Q1. posed above) of the FV-based high-fidelity
simulation. However, the numerical stability of such a (high-fidelity) complex
model is not rigorously certified in the existing literature [57–60,67,128,167].
Moreover, the results about the physical (in)stability of (multi-phase) hydraulic
models do not exist. Most of the literature related to multi-phase hydraulic
models, such as in the DFM, to the best of our knowledge, involve performing
‘successful’ numerical experiments within a certain restricted problem setting
[57, 60]. These methods could generate (bounded) stable solutions until a

certain time t and then run into numerical issues. Alternatively, non-stable
(non-physical) solutions could be observed in the first few time-steps of the nu-
merical simulation which then converges to physically meaningful results over
a finite time-horizon. This can be caused by the used numerical scheme giving
poor performance (by construction) for some combinations of parameters/op-
erating conditions. Alternatively, the observed numerical instability could have
arisen due to inherent properties of the physical model as explained next. The
underlying multi-phase models for MPD systems are conditionally hyperbolic
and, consequently, the eigenvalues of associated systems may become complex.
Various potential issues, such as correct specification of boundary data, com-
putation of stable numerical solutions, correct determination of propagation of
wavefront, etc., arise if the eigenvalues become complex. Given the fact that
we work with a model governed by non-linear partial differential equations, the
model can theoretically/physically admit both stable and/or unstable solutions
for a certain set of operating conditions. Moreover, it is not clear whether the
hyperbolicity should be regarded as a necessary condition for well-posedness of
the model. In other words, the physical validity of the model outside the hyper-
bolic regime remains an open question. Some works [51, 149, 157, 166, 170]
modify few terms or add extra equations in the model of interest to ensure
the hyperbolicity of the model across all or vast range of operating conditions.
On the contrary, in principle, the numerical implementation for (conditionally)
hyperbolic multi-phase flow model could encompass a switching behaviour to
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enforce suitable numerical scheme as per the type of the partial differential
equation for a certain state of the system. To summarize, numerical simulations
work ‘successfully’ within a restrictive setting without concrete (theoretical) un-
derstanding which is aggravated by the lack of exact/analytical solutions.

To this end, we propose to adopt a port-Hamiltonian modelling framework
with the vision to develop a map quantifying range of initial conditions, bound-
ary conditions, several involved parameters, etc., for which the high-fidelity
solutions can be guaranteed to be physically stable. A port-Hamiltonian frame-
work provides a sound theoretical underpinning ultimately helping to decouple
the physical effects and the numerical effects. Furthermore, port-Hamiltonian
formulations have several key properties that include passivity, shifted passivity,
existence of Casimirs and compositionality. Moreover, such a framework en-
sures certain dissipativity properties which are strongly linked to passivity of the
system [185]. Also, stability can often be deduced from a dissipation inequality
if the Hamiltonian satisfies some further conditions which make it a Lyapunov
function [94]. Furthermore, the system-theoretic properties of the infinite-
dimensional realization can be preserved in an equivalent finite-dimensional
realization via structure-preserving discretization and reduction methods. A
port-Hamiltonian framework can, hence, definitely be of great use for develop-
ing an automated (and stable) model order reduction framework for two-phase
flow models of interest. A natural question that arises now is:

Q5. How to develop a port-Hamiltonian modelling and structure-preserving
discretization (and reduction) framework for the MPD systems?

Structure-preserving discretization methods are known to play a crucial role in
preserving the structural invariants (Casimirs) of an infinite-dimensional system
at the finite-dimensional level. Hence, such a framework can also be an answer
to Q4. posed above.

We have discussed the state-of-the-art, scientific challenges and open re-
search questions in the scope of first theme dedicated to (high-fidelity) hy-
draulics modelling. We now turn our attention to delve into the second theme
that hinges around model complexity reduction.

Second theme - Model order reduction for transport-dominated problems

Model Order Reduction (MOR) is an indispensable tool to reduce the com-
plexity of a model. It enables multi-query simulations, (faster than) real-time
estimation and control, and optimization of operations in real scenarios, in par-



1.2 Scientific challenges and research goals of this dissertation 9

ticular for multi-scale and multi-physics problems. The focus of this disserta-
tion in the scope of model complexity reduction lies in the class of unsteady
(parametrized) hyperbolic partial differential equations (for, e.g., multi-phase
hydraulic models). Such mathematical models are characterized by solutions
possessing distinct behaviours, such as different wave speeds, and locations
of moving and continuously evolving discontinuous front(s). Standard MOR
approaches, such as, the Reduced Basis Method (RBM) [81], the Proper Or-
thogonal Decomposition (POD) [25, 195], etc., in conjunction with the Dis-
crete Empirical Interpolation Method (DEIM) [22, 44], rely on using spatially
fixed modes as a basis for reduction. These methods fail to strike an accept-
able balance between model fidelity and complexity to obtain computationally
compact representations of several phenomena of interest, such as, for instance,
multiple-transport phenomena with sharp gradient features.

Such an inefficiency of standard MOR approaches holds both for paramet-
ric and non-parametric (evolutionary) transport-dominated problems (for, e.g.,
problems with wave-propagation effects as in multi-phase hydraulic model)
[77, 135]. The underlying challenge is briefly explained next. Suppose, we
have an initial configuration of a certain shape profile. Such initial configu-
ration can be reproduced (up to a required level of representation accuracy)
using a combination of certain basis functions. Given the travelling nature of
the problem, the initial configuration profile will translate to a different spa-
tial location as time advances. Reproducing a new shifted profile demands for
constructing a new set of basis functions. Basically, a new set of approximating
functions needs to be constructed at every time instant. Hence, a large number
of basis functions are required to capture even a single moving wavefront. In
the scope of the TFM and the DFM, multiple wavefronts propagate in different
directions with different strengths and, hence, the expected reduction via stan-
dard MOR approaches would be challenged even more. Moreover, the shape of
the solution undergoes topological changes under wavefront interactions and
then continues to evolve over the spatial domain. The aforementioned issues
are further compounded by the presence of sharp gradient features, for instance,
shocks. Such sharp jumps make the reduced-order model representation(s) sus-
ceptible to oscillatory effects, in the vicinity of sharp gradient in the solution,
which can escalate into a numerical instability in finite time. The limitations
of standard MOR techniques instigate a drive to develop novel and automated
techniques tailored for preservation of key (physical) model properties, such as,
positivity, evolving discontinuous fronts, etc., and system-theoretic properties
(for instance, port-Hamiltonian structure, propagation delays, stability, etc.) of
associated reduced-order models, while still guaranteeing to offer robust and
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stable approximation with lowest possible reduced-order representations.
Furthermore, while reduced-order model realizations built on top of port-

Hamiltonian framework (via structure-preserving discretization and model re-
duction methods) can be inherently stable/passive, the resulting reduced real-
izations are not necessarily of lowest possible dimension. Hence, in order to
obtain an accurate, stable and lowest possible reduced model representation, in
particular for problems with moving sharp gradient features, a novel ingredi-
ent is sought to be developed which in conjunction with the port-Hamiltonian
framework will take us a step further to realize the envisioned dream.

While standard reduction approaches do not exploit the underlying hyper-
bolic structure/physics/dynamics of the problem, we strive to answer the fol-
lowing questions:

Q6. How do the standard MOR approaches fare in the context of two-phase
flow models of interest?
Q7. How to exploit the underlying structure of the system dynamics and how to
construct a model order reduction framework in order to reduce the dimension-
ality (compared to standard reduction) of problems admitting (discontinuous)
wavefront interactions?

Having identified the open scientific challenges, we now formulate the re-
search objectives addressed in this dissertation.

1.2.2 Research Goals

Though we earlier identified two broad research themes, it is clear that both
themes are closely coupled to each other. We pursue both themes in this disser-
tation and address the open challenges given by the questions Q1 - Q9 identified
above. The research goals pertaining to the challenges in the first theme and ad-
dressed in Part I of this dissertation are devoted to Modelling and (structure-
preserving) discretization of hydraulic systems, and are summarized below.

O1 (related to Q5.) To develop port-Hamiltonian formulations for single- and
two-phase flow models across a constant, and a spatially and temporally
varying geometrical cross-section of the well;

O2 (related to Q5.) To identify whether a two-phase flow model, in partic-
ular the Drift Flux Model with the Zuber-Findlay slip law, is an energy-
consistent model;
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O3 (related to Q5.) To construct a compositional port-Hamiltonian model for
MPD systems (under influx from the reservoir) by interconnecting specific
drilling components (drill string, bit and the annulus), and accounting for
energy exchange at the reservoir boundary;

O4 (related to Q4. and Q5.) To develop a structure-preserving discretization
framework for the above obtained infinite-dimensional port-Hamiltonian
realizations;

O5 (related to Q2.) To test the model and numerical method with exact refer-
ence solutions which are available only for a specific equation of the state
for the phases under consideration;

O6 (related to Q1.) To estimate numerical discretization error via an error
transport approach and use it along with other performance metrics on
several challenging test cases (for, e.g., fast-pressure transients, slow mass
transport phenomena, appearance and disappearance of phases, etc.) to
establish the relative order of merit of numerical schemes;

O7 (related to Q3.) To study the sensitivity (in a numerical sense) of the
sound speed model of a two-phase flow mixture;

The goals pertaining to the second theme, addressed in Part II of this disser-
tation, are devoted to Model order reduction for transport-dominated prob-
lems, and are presented next.

O8 (related to Q6.) To assess the performance of standard model order re-
duction techniques in reducing the (non-linear) two-phase flow models of
interest along with simpler but challenging non-linear problems such as
the Burgers’ equation;

O9 (related to Q7.) To construct a (pre-processing) framework to deal with
interacting and merging fronts (shocks);

O10 (related to Q7.) To reduce the dimensionality (compared to standard re-
duction) of problems admitting (discontinuous) wavefront interactions.

It is worth stating that the newly developed model order reduction framework
is in a phase of theoretical development and is quite far from being applied to
MPD systems. Though we restrict ourselves to simpler academic examples for
assessing the numerical performance of the proposed approach, we do embody
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the critical features observed in the scope of the MPD models in order to design
simpler yet challenging simulation studies.

The main contributions along with the structure of this dissertation are out-
lined next.

1.3 Outline of the dissertation & Main contribu-
tions

The dissertation consists of an introductory chapter (Chapter 2) on MPD sys-
tems and two main parts. Chapter 2 discusses the need of an MPD system along
with its basic configuration and, furthermore, highlights the relevant properties
that need to captured by (multi-phase) hydraulic systems for MPD operations.
The first part (Chapters 3-6) of this dissertation is dedicated to the contribution
on the modelling and (structure-preserving) discretization of hydraulic models
in the scope of MPD. In particular, we strive to address questions Q1 - Q5 by
fulfilling outlined research objectives O1 - O7. The second part (Chapters 7-9)
of this dissertation deals, firstly, with the application of standard model order
reduction techniques on multi-phase hydraulic models and, secondly, discusses
novel, efficient and automated model order reduction techniques, particularly in
the scope of transport-dominated problems. In particular, we strive to address
questions Q6 - Q7 by fulfilling outlined research objectives O8 - O10. A brief
overview of the topics covered in each chapter, and the related key contribu-
tions, of this dissertation is provided below.

Introduction to Managed Pressure Drilling set-up

Chapter 2
In this chapter, we discuss the issue of pressure control during conventional
drilling operations. The aspect of pressure control and its criticality is exten-
sively discussed by using a specific drilling well: an Extended Reach Drilling
well. We then review a basic configuration of the MPD system and highlight op-
erational problems during drilling. In order to create a virtual environment for
drilling scenario testing and to automate down-hole pressure management, a
hydraulic model is required. Some requirements need to be imposed on the hy-
draulic model in order to mimic the scenarios realistically. These requirements
are classified into two sub-classes of model requirements, namely, hydraulic
model requirements, and controller and estimator requirements. These require-
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ments are thereby described to outline the features of interest that need to be
resolved in the high- and low-complexity models. Also, the mathematical for-
mulation of the (multi-phase) hydraulic model(s) is introduced.

Part I: Modelling and (structure-preserving) discretization of hydraulic sys-
tems (Chapters 3-6)

Chapter 3
In this chapter, we focus on developing port-Hamiltonian formulations for mod-
elling two-phase flow dynamics across a unit and constant cross-section. In par-
ticular, we develop dissipative Hamiltonian representations for the Two-Fluid
Model and the Drift Flux Model, and propose corresponding novel and state-
dependent Stokes-Dirac structures in order to obtain port-Hamiltonian formu-
lations. This modelling effort is a stepping stone towards the simulation and
control of two-phase flow models governed by conservation laws. This work is
also significant as the existing theory in the scope of linear distributed-parameter
port-Hamiltonian systems has been exploited to arrive at new results from an
operator theoretic viewpoint, including further generalizations in the scope of
non-linear distributed-parameter port-Hamiltonian systems.

Chapter 4
In this chapter, we extend the principles developed in Chapter 3 for modelling
single- and two-phase flow dynamics across a spatially (and temporally) vary-
ing cross-section. These fluid dynamical systems are ultimately represented in
port-Hamiltonian formulations with respect to newly proposed state-dependent
and extended Stokes- Dirac structures. Moreover, we exploit the property of com-
positionality and compose a network of port-Hamiltonian systems for an MPD
set-up via a power-preserving interconnection.

Chapter 5
In this chapter, we develop a framework for discretizing infinite-dimensional
non-linear port-Hamiltonian representations in a structure-preserving manner.
We employ the idea of mixed-finite-element methods for spatial discretization
and the concept of Gauss-Legendre collocation methods for temporal discretiza-
tion of port-Hamiltonian representations obtained in the scope of fluid dynam-
ical systems studied in Chapter 3 and Chapter 4. The properties of the re-
sulting (continuous-time and discrete-time) finite-dimensional realizations are
assessed, and the conditions under which these are known to preserve the prop-
erties of a finite-dimensional Dirac structure are discussed. Moreover, we derive
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the complete finite-dimensional interconnected port-Hamiltonian model by in-
voking the notion of power-preserving interconnection. Finally, we test the pro-
posed discretization framework on a simple, yet representative test case.

Chapter 6
In this chapter, we account for compressibility effects of the phases and obtain
a model for the speed of sound of a two-phase mixture. We also numerically
study the importance of the role of the speed of sound of a two-phase mix-
ture. Furthermore, the estimation of the discretization error is pursued in the
scope of the Drift Flux Model. This numerical error is estimated by utilizing the
concept of numerical error estimation for non-linear hyperbolic partial differ-
ential equations via non-linear error transport. Furthermore, the relative order
of merit of finite-volume based numerical schemes is established by performing
several challenging case studies.

Part II: Model order reduction for transport-dominated problems (Chap-
ters 7-9)

Chapter 7
In this chapter, we lay the mathematical foundation for model order reduction
by revisiting existing basic principles for model reduction in the scope of linear
and non-linear dynamical systems. Standard (Galerkin-type) projection-based
approach is then applied on the (non-linear) Burgers’ equation and the Drift
Flux Model. The numerical performance is assessed on some challenging test
cases. These numerical experiments put forward the success and limitations of
standard model order reduction techniques.

Chapters 8 & 9

Chapters 8 & 9 deal with the development of the model order reduction frame-
work in the scope of transport-dominated problems, in particular for problems
in which moving wavefronts hamper the efficacy of existing reduced-basis ap-
proaches.

In Chapter 8, we investigate the combined approach of the Method of Freez-
ing/Symmetry Reduction and reduced basis approximations in dealing with
merging (discontinuous) wavefronts via several numerical case studies. Fur-
thermore, we propose a novel flux re-distribution approach in order to curb
the additional travelling structures or numerical instabilities (induced by such
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wavefront interactions) encountered in the Method of Freezing. Finally, we
present numerical case studies and discuss the performance of our proposed
approach (in conjunction with reduced basis approximations) in terms of com-
putational accuracy compared with standard MOR techniques.

In Chapter 9, we propose a new MOR approach to obtain effective reduction
for transport-dominated problems or hyperbolic partial differential equations.
The main ingredient is a novel decomposition of the solution into a function
that tracks the evolving discontinuity and a residual part that is devoid of shock
features. This decomposition ansatz is then combined with Proper Orthogo-
nal Decomposition applied only to the residual part to develop a reduced-order
model representation for problems with multiple moving and possibly merging
discontinuous features. We test our framework on challenging scenarios that
embody the features of critical interest in the scope of multi-phase hydraulic
models. Numerical case-studies show the potential of the approach in terms of
computational accuracy compared with standard MOR techniques.

Conclusions and Future Works

Chapter 10
This is the concluding chapter of the dissertation. We briefly reflect on the the-
oretical and practical contributions. In this chapter, we also discuss limitations,
and open-ended questions, and consequently provide insights on research di-
rections that can be perceived as natural extensions of this work.

1.4 Scientific Publications

Some part of this dissertation is based on the results that have been published,
accepted for publication or submitted in several peer-reviewed journals and
conference proceedings. Another part of this dissertation is yet to be converted
into a few scientific papers.

• Chapter 3 is an elaboration of the contents in the article: “Port-Hamiltonian
Formulation of Two-Phase Flow Models", submitted to Systems & Control
Letters (under review). Theorem 3.3.1 is an adaptation of the content in
the contribution submitted to ACC 2020 (see below).

• Chapter 4 is based on the following two contributions:
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1. “Port-Hamiltonian modelling of fluid dynamics models with variable
cross-section", accepted for 24th International Symposium on Math-
ematical Theory of Networks and Systems (MTNS 2020).

2. “Power-Preserving Interconnection of Single- and Two-Phase Flow
Models for Managed Pressure Drilling", accepted for 2020 Ameri-
can Control Conference (ACC 2020). This publication has been co-
authored with M.H. Abbasi. The theoretical section (Section 4.5) has
been developed jointly, while the numerical test on the drilling well
in Section 4.6 has been performed by M.H. Abbasi. We thank Kelda
Drilling Controls, Norway for providing the data to M.H. Abbasi.

• Chapter 5 is an extensive elaboration of the contents in the conference
contribution: “Structure-preserving Spatial Discretization of a Two-Fluid
Model", accepted for 59th Conference on Decision and Control (CDC 2020).
A journal article: “Structure-preserving Discretization of Two-Phase Flow
Models" is envisioned based on the contents of this chapter, and is cur-
rently under preparation.

• Chapter 6 is based on a journal article that will soon be submitted: “Nu-
merical analysis of the Drift Flux Model".

• Chapter 8 also constitutes novel research. However, we do not plan to
submit the contents to any journal for publication. A related contribution,
though not in the scope of the thesis, "Reduced order modelling for wafer
heating with the Method of Freezing", has been submitted to Proceedings
of 13th International Conference on Scientific Computing in Electrical En-
gineering (SCEE 2020).

• Chapter 9 is an extensive elaboration of the contents in the paper "Model
order reduction framework for problems with moving discontinuities", ac-
cepted for European Numerical Mathematics and Advanced Applications
Conference 2019 Proceedings (ENUMATH 2019). A journal article: “Title
to be decided" is envisioned based on the contents of this chapter, and is
currently under preparation.



Chapter 2
Managed Pressure Drilling
system

In this chapter, we discuss the topic of pressure control during conventional drilling
operations. The aspect of pressure control and its criticality is extensively discussed
by using a specific drilling well: an Extended Reach Drilling well. We then review a
basic configuration of the Managed Pressure Drilling (MPD) system and highlight
operational problems during drilling. In order to create a virtual environment
for drilling scenario testing and to automate down-hole pressure management, a
hydraulic model is required. Some requirements need to be imposed on the hy-
draulic model and controller in order to represent the scenarios realistically. These
requirements are classified into two sub-classes of model requirements, namely,
hydraulic model requirements, and controller and estimator requirements. These
requirements are thereby described to outline the features of interest that need to be
present in the high- and low-complexity models for MPD. Also, the mathematical
formulation of the (multi-phase) hydraulic model(s) is introduced.

2.1 Introduction: Issue of pressure control

Drilling processes for deep boreholes consist of different drilling operations,
such as tripping (the procedure of pulling out or running in the drill string),
choke-swapping/plugging (the contingency of having some cuttings stuck in
the choke manifold), and connection (the operation of extending the length of
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Figure 2.1: Overview of drilling with pressure margins [204].

the drill string through adding some new pieces of pipe). While performing
these drilling operations, the bottomhole pressure (BHP), i.e., the pressure at
the bottom of the wellbore, has to be maintained within the limits specified
by geomechanists. Maintaining the BHP within the pressure limits of the well,
i.e., between the pore and fracture pressure, is critical for the safety of drilling
operations. If the down-hole pressure exceeds the strength of the formation, i.e.,
the fracture pressure, the wellbore will be fractured, causing a loss of drilling
fluid to the formation, possibly damaging the reservoir. On the opposite side,
if the down-hole pressure reduces below the formation pore pressure, it will
cause an unwanted influx of formation fluid (liquid or gas) into the well. This is
referred to as a well control incident, which in the worst case can escalate to a
blow-out of hydrocarbons on the drilling rig. See Figure 2.1 for an overview of
conventional/standard drilling set-up and admissible pressure margins. It can
be observed that the well is open to the formation below the casing shoe, and
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this open/exposed section forms the critical part during drilling operations. In
conventional drilling, this exposed part must have a well pressure above the
pore pressure and below the fracture pressure.

We consider a specific drilling setting: Extended Reach Drilling (ERD) wells
with long horizontal section in the rest of this section to put forward critical
pressure control issues observed during drilling. ERD wells reduce development
costs and minimize the impact on marine ecosystems by avoiding the need for
additional offshore structures. Due to their low environmental impact, ERD
wells are widely used nowadays. For instance, such wells have been drilled in
3000 ft of water in the Mississippi Canyon of the Gulf of Mexico. Also, ERD
wells with long horizontal section are economically beneficial as they result in a
larger area for production of oil and gas. Nevertheless, ERD wells have a narrow
pressure margin, and it is critical to maintain an accurate and precise pressure
control during drilling operations, such as connection, choke-swapping, trip-
ping, etc. Variations in BHP increase the risk of an underbalance (a state where
BHP falls below pore pressure) during static wellbore conditions and lead to a
higher chance of fracturing the formation in dynamic conditions. For instance,
when a tripping operation is performed in an ERD well, there is a high risk of
exceeding the fracture pressure because this type of well produces high Equiv-
alent Circulating Density (ECD), which is an effective density exerted by the
circulating fluid, if there is no backpressure, i.e., the pressure resulting from re-
strictions to fluid flow downstream, or friction in the annulus. Fracture pressure
is usually the same in the horizontal part of the well but the ECD continues to
rise. The risk of exceeding fracture pressure in ERD wells results from the con-
tribution of the annular frictional pressure that increases continuously from the
heel to the toe of the horizontal section of the ERD well. High ECD’s are also a
consequence of surge and swab effects which are frequently encountered during
tripping. High ECD is a significant problem in ERD wells as it limits the distance
to which the ERD well can be drilled. Annular pressure loss contributions and
the contribution of surge and swab effects to ECD calculations/measurements
need to be compensated in order to achieve the required length and reach of the
well. Most ERD wells have been cut short prematurely because ECD approaches
the fracture gradient. To obtain a maximum productivity from the ERD wells, it
is necessary to reach the anticipated length and reach of the well.

Furthermore, oil-based muds or synthetic muds are generally used to drill
ERD wells. These muds are used due to their lubrication capabilities; but they
are highly compressible. The compressibility induces time delay in information
propagation and complicates the pressure control in long wells. For instance,
tripping operations (e.g., pipe movements and stopping or starting the pumps)
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cause transient effects, which result in down-hole pressure variations. Dynamic
pressures, such as surge and swab pressures, are detrimental to the wellbore.
The criticality can be observed from the Figure 2.2. It can be observed that,
while drilling, down-hole pressures (dark blue points) reasonably stay within
the optimum window (green shaded area) between fracture gradient (14.1 ppg)
and minimum mud weight for wellbore stability (13.0 ppg). Even though some
equivalent mud weights (dark blue points) are as low as 12.8 ppg, this does
not lead to serious issues for wellbore stability. However, while pulling out of
hole (magenta points), pressures fall significantly below minimum mud weight
requirements due to swab, triggering massive wellbore instability [1].

Remark 2.1.1 Though the above discussion is for an ERD well, the cited issues are
also relevant to other kind of wells. It is worth mentioning that drilling operations
in ERD wells are more critical than carrying out drilling along conventional ver-
tical wells. Accuracy and precision in down-hole pressure management becomes a
necessity due to even narrower drilling windows for performing drilling operations
in ERD wells.

Figure 2.2: Down-hole equivalent mud weight behaviour on a deepwater ERD well.
Here, TVD indicates true vertical depth, TIH stands for tripping in hole; and
BU & POOH for (circulating) bottom-up and pulling out of hole [1].
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The criticality of an accurate pressure control has been highlighted exten-
sively in the introduction of this chapter. Furthermore, as mentioned in Chapter
1, the application of automation in the drilling industry lags behind other indus-
tries, for e.g., the aerospace and automotive industries, and currently a growing
awareness of the potential benefits of automation is surfacing in the drilling
community. Moreover, transient analysis is evidently crucial to drill wells with
narrow mud weight windows. For instance, surge and swab analysis would help
to control the tripping speed and other movement parameters of the drill string
within the wellbore to avoid kicks (a state where formation fluids flow into the
wellbore during drilling operations) or blowouts (a state where formation flu-
ids flow into the wellbore in an uncontrolled manner) due to excessive swab or
surge pressures. It is also clear that the evaluation of down-hole conditions is
of paramount importance. The controller is required to be precise and accurate
in actively manipulating the choke opening or in controlling dedicated surface
backpressure pump to compensate for down-hole pressure variations. The con-
trol system is required to rapidly adjust the pressure in the entire wellbore and
keep the BHP within allowable limits. Managed Pressure Drilling (MPD) (refer
to Section 2.2) can be utilized in such a situation as it enables to remain within
drilling window during drilling operations.

In view of the final goal of automating down-hole pressure management, in
this chapter, we first describe a basic configuration of the MPD system. Then, in
order to address the important question whether a hydraulic model (and a con-
troller and estimator) should accurately capture fast transients/slow transients
or both during several drilling scenarios, we extensively discuss the require-
ments that must be met by the to-be developed numerical hydraulics model,
and a controller and estimator. Finally, we end this chapter with conclusions.

2.2 Basic configuration of MPD system

In addition to the standard/conventional drilling configuration, an MPD system
consists of two critical components: a Rotating Control Device (RCD) and a
choke manifold. The fluid flow path in MPD system is different from the stan-
dard drilling systems due to these additional components. Figure 2.3 represents
the basic configuration of the MPD system along with the fluid flow path. The
circulation path of the mud/fluid can be observed by following the brown ar-
rows in Figure 2.3. A drilling liquid, known as mud, is pumped into a pipe,
called the drill string, at high pressure. At the bottom of the drill string, the
mud/fluid leaves the drill string through nozzles created inside the drill bit and
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enters the area between the drill string and the wellbore, known as the annu-
lus. It then flows up through the annulus and carries the rock cuttings out of the
well. A seal assembly with the RCD enables the mud returns system to remain
closed and pressurized, unlike in conventional well drilling situation where the
annulus is exposed to the atmosphere. As a result, the RCD diverts the pressur-

Figure 2.3: A typical drilling setup with MPD configuration [106].
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ized mud/fluid returns from the annulus to the choke manifold/valve and, thus,
makes closed-loop drilling (CLD) possible. The MPD configuration includes a
choke manifold with (multiple) control choke valves. In case one of the two
chokes gets plugged, the other choke can be utilized in order to continue the
drilling operations. The choke manifold with the pressurized mud/fluid return
system helps to apply backpressure across the wellhead. The choke manifold/-
valve creates backpressure when the mud/fluid flows across it. The backpres-
sure induced via the choke opening is a function of the amount of the mud/fluid
flow across the choke manifold/valve. Hence, when the mudflow decreases, the
amount of backpressure that the choke manifold/valve can induce, becomes
limited. Also, the mud/fluid flow rate dictates how fast the choke manifold/-
valve can act to provide the required backpressure. If the choke manifold/valve
cannot provide sufficient backpressure, a backpressure pump (see Figure 2.3)
connected to the choke and its control system can automatically be ramped up.
A backpressure pump in the MPD configuration also serves as a redundancy in
case of sudden loss of pressure caused by mud pump failure or by human errors.

To summarize, MPD allows to maintain the BHP within the drilling window
and simultaneously to eliminate dynamical (down-hole) pressure variations by
manipulating surface back-pressure and redirecting fluid flow along the alter-
nate flow path. The latter goes across the MPD choke manifold to provide nec-
essary surface backpressure across wellhead by manipulating choke opening.

2.3 Model Requirements

In order to create a virtual environment for drilling scenario testing and to sup-
port model-based automation of down-hole pressure management, a hydraulic
model and a controller and estimator are required. Some model requirements
are necessary to mimic the scenarios realistically. These requirements are clas-
sified into two sub-classes of model requirements namely: Hydraulic Model
Requirements, and Controller and Estimator Requirements.

2.3.1 Hydraulic Model Requirements

Proper hydraulic modelling capabilities are extremely critical for MPD opera-
tions as loss of accuracy is unacceptable when it comes to down-hole pressure
management. Hydraulic analysis will help in determining a progressive ap-
proach to support pressure control by calculating the down-hole pressures in
real-time depending on the mud/fluid properties and the down-hole conditions.
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The physics of the drilling process dictates that a dynamic model, based
on the unsteady flow, must be developed for the prediction of variations in
pressures across the wellbore. Fast changing pressure transients are caused
by changes in fluid flow rate, drill string rotation rates or axial speed of the
drillstring movement. Transients are also caused by unexpected events affect-
ing the mud/fluid flow, such as plugging (typically nozzles of the drill bit and
the choke valve get plugged) or due to (liquid or gas) influx or lost circulation.
Slower changes to the wellbore pressure are caused by operational changes in
mud/fluid properties (density or rheology), temperature effects, the amount
of cuttings in suspension, building or erosion of cuttings beds or hole enlarge-
ment [76]. The hydraulic model must, hence, be effectively able to capture the
pressure propagation, both in fast and slow transients, during all the phases of
drilling operations irrespective of the circulation rates of the drilling mud/fluid.
Also, hydraulics modelling needs to characterize the effect of the surface back-
pressure, which is induced by manipulation of the opening of the choke valve.

The drill string and the Bottomhole Assembly (BHA) are part of MPD sys-
tems through, and around, which single-phase and multi-phase fluids flows take
place. These flow paths have different geometrical specifications. Hence, the
flow area in the annular section of the well varies along the spatial location
in the well. In addition, the flow area changes dynamically due to the axial
movements of the integrated drill string and the BHA system. This dynami-
cal change depends on the position of the drill string and the BHA inside the
well. Hence, the dynamic model must take into account cross-sectional area
variations. Cross-section variation affects the down-hole pressure. Namely, it
alters the pressure transmission between the top and down-hole parts of the
well, because part of the pressure wave is reflected and part of it is transmitted
at the point where the geometrical cross-section changes. Oscillatory pressure
profiles may be induced more frequently compared to the case where there are
no geometrical cross-sectional changes along the well. The convergence to a
steady-state situation may become slower with the inclusion of changes in the
geometrical cross-section. Sudden pressure changes due to axial pipe (here,
drill string) movements, as well as stopping and restarting the pumps, lead to
so called water hammer effects. Travelling waves and standing waves result due
to water hammer effects and dynamical cross-sectional area variations. These
water hammer effects need to be incorporated in the hydraulic model. Captur-
ing wave propagation phenomenon is a central concept in hydraulic modelling
throughout this dissertation. The hydraulic model must be able to accurately
capture the wave propagation for a better prediction of the down-hole charac-
teristics. This motivates us to investigate single- and multi-phase models with
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time-dependent and spatially varying cross-sections of the flow path.
We draw our attention to sub-modules, i.e., hydraulics across the drill string,

annulus and the drill bit, in the MPD set-up in the rest of this dissertation. If
no contingency happens during drilling, the flows inside the drill string and
annulus are of a single-phase flow nature. However, if a gas influx occurs in
the formation, the flow inside only the annulus involves two phases. Hence, a
(complete) hydraulics model can be characterized by interconnection of subsys-
tems (here, the drill string and the annulus) governed by single- and two-phase
flow models, and by mathematical models governed by non-linear ordinary dif-
ferential equations (for instance, a hydraulics model across a bit).

The (hydraulic) dynamics along the length of the wellbore are of crucial im-
portance. Radial dimensions of the wellbore are much smaller than the length
of the wellbore. Hence, the fluid flow is modelled via one-dimensional (1-D)
single- and two-phase flow models. The one-dimensional single- and two-phase
flow models are mathematically introduced next.

Single-phase flow model

A single-phase flow across a geometry with variable cross-section is mathemati-
cally modeled by isothermal Euler equations as in [105]. The model is basically
governed by mass and momentum conservation laws along with the equation
of state for the phase of interest. These equations read as follows:

∂t (Aρ)+∂x (Aρv) = 0,

∂t (Aρv)+∂x (Aρv2 + Ap) = AS +p∂x A,

ρ = ρ`0 + p−p`0

c2
`

,
(2.1)

where S =−ρg sinθ− 32µv
d 2 . Here, t ∈R≥0 and x ∈ [a,b] are, respectively, the time

and the spatial domain (a and b refer to the location of the left and the right
boundary of the one-dimensional spatial domain). Variables ρ, v , p, p`0, ρ`0,
A, g , µ, d and θ refer to density, velocity, pressure, reference pressure, reference
density of the phase of interest, cross-section area, gravitational constant, fluid
viscosity, the diameter of the well/pipe, and, the pipe inclination, respectively.

Two-phase flow model

Different variants of two-phase flow models exist in literature. We primarily
focus on the following two variants of two-phase flow models: the Drift Flux
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Model and the Two-Fluid Model. We first discuss the Drift Flux Model, and then
the Two-Fluid Model.

Drift Flux Model:

The Drift Flux Model (DFM) [56, 57] is derived from a set of non-linear con-
servation laws, written in multi-fluid formulation in a certain asymptotic limit.
It is based on a single pressure formulation and is an approximate macroscopic
formulation compared to more rigorous two-fluid models [66, 107, 124, 129],
which describe two-phase flow in more detail. However, the DFM caters to un-
derstand the physical phenomena of our interest. The (transient) DFM consists
of a system of non-linear (conditional) hyperbolic partial differential equations
(PDEs) and algebraic closure relations. It constitutes the mass conservation
equation for liquid phase, mass conservation equation for the gaseous phase
and the mixture momentum conservation equation. It is applicable to general
multi-phase flow problems with arbitrary flow speeds and arbitrary levels of
compressibility. It should also be mentioned that the hyperbolicity of the model
is conditional. The flow patterns, dictated by the flow-dependent parameters
in the slip relation, serve as constraining conditions and result in the loss of
hyperbolicity of a convective subset, and, hence, in ill-posedness of the model
equations.

A two-phase flow across a geometry with variable cross-section can be mod-
elled by the 1-D DFM as in [5]. The partial differential equations (PDEs) read
as follows:

∂t (Am`)+∂x (Am`v`) = 0,

∂t (Amg)+∂x (Amgvg) = 0,

∂t (A(m`v`+mgvg))+∂x (A(m`v2
`
+mgv2

g ))+ A∂x p =−AS̃,

(2.2)

where S̃ =
(
g (mg +m`)sinθ+ 32µm vm

d 2

)
, and t ∈ R≥0 and x ∈ [a,b] are the time

and the spatial variables, respectively. The abbreviations m` :=α`ρ` and mg :=
αgρg have been used. Variables α` and αg, respectively, denote liquid and gas
void fraction, ρ` and ρg refer to the density of the liquid and the gas phase,
respectively, vg and v` refer to the velocity of the gaseous and liquid phase,
respectively, µm is the mixture viscosity, and vm is the mixture velocity.

There are seven unknowns: αg,α`,ρg,ρ`, vg, v`, p, and only three governing
partial differential equations. Hence, certain closure laws are required to close
the model. The four closure equations are obtained using the property of vol-
ume conservation, equations of state for the liquid and the gaseous phase, and
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the empirical slip relation. Using the property of volume conservation, i.e., any
segment of the wellbore is occupied by the combination of the gaseous and the
liquid phase, we have

αg +α` = 1. (2.3)

Next, we use fluid density-pressure relationships (or equations of state). The
equation of state for the gaseous phase is:

ρg = p/cg
2, (2.4)

where cg is the speed of sound in the gaseous phase. Similarly, the equation of
state for the liquid phase is:

ρ` = ρ`0 + (p −p`0)/c`
2, (2.5)

where c` is the speed of sound in the liquid phase, ρ`0 is the reference density
and Pl 0 is the reference pressure under nominal conditions.
The last closure relation is the slip law that has the following form:

vg = (K v`α`+S)/(1−Kαg), (2.6)

where K and S are flow-dependent parameters, which, in principle, are func-
tions of the gas void fraction. The slip law is the only relation that is empirical
and uncertain in the description of the DFM. The slip law is mostly determined
based on the experiments in certain setting for some set of fluids under certain
operating conditions. The slip relation in (2.6), defined by Zuber and Findlay as
in [56], is a constitutive equation to specify the relative motion between the two
phases under consideration. Such a relation allows to consider unequal phase
velocities. Such a concept plays an important role when the densities of the two
phases are quite different in the presence of the gravity field as density differ-
ence is known to result in buoyancy effects. In principle, the slip law model
should account for different flow regimes which exist across different sections
of the wellbore. The flow-dependent parameters, i.e., K and S, take account of
the non-uniform distribution of the gaseous phase and velocity profile over the
wellbore cross section.

Remark 2.3.1 The slip law (2.6) is valid for the slug and the bubbly flow regimes
[24,56,69]. There is a singularity in the slip law when we approach the pure gas
region. We note from (2.6) that the singularity in the slip law depends on flow
parameter K . Several slip laws exist in the literature and each of them comes up
with different hyperbolicity restrictions. See [46, 88, 93] for more exhaustive list
of empirical correlations.
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In addition to the governing PDEs and the algebraic closure relations, the model
needs to be complemented with appropriate initial and boundary conditions.
Physical boundary conditions are independent of the numerical method used to
solve the governing PDEs. These boundary conditions can be specified in terms
of volumetric inflow rates of liquid and gaseous phase along with certain pres-
sure restriction at the outlet. Inlet boundary conditions can also be expressed in
terms of mass flow rates of liquid and gaseous phase. The general form of the
physical boundary conditions can be given by


(ρ`α`v`)(x = 0, t ) = f (t ),

(ρgαgvg)(x = 0, t ) = h(t ),

p(x = L, t ) = r (t ),

or


(α`v`)(x = 0, t ) = f (t ),

(αgvg)(x = 0, t ) = h(t ),

p(x = L, t ) = r (t ),

(2.7)

where functions f (t ), h(t ) and r (t ) in (2.7) are time-dependent functions.

Remark 2.3.2 In principle, the conditions to be imposed at the given boundary
depends on whether the flow is subsonic, transonic or supersonic. We assume that
only subsonic conditions exist, which is mostly the case during drilling. The above
form of the physical boundary conditions is only valid if the two-phase flow is in a
sub-sonic state such that two boundary conditions need to be imposed on the left
side of the spatial domain and one boundary condition needs to be imposed on the
right side of the spatial domain.

This two-phase single pressure model approach for describing the DFM is jus-
tified by the very short time-scale linked with the phenomena of the relaxation
of two pressures towards an equilibrium. It is, however, worth mentioning that
such a model is characterized by a system of non-linear evolution equations that
change type from hyperbolic to elliptic or parabolic. In other words, the model
is conditionally hyperbolic. This hyperbolicity is closely linked to the choice of
the closure laws and is also impacted by the presence of spatial derivatives in
the source terms.

Two-Fluid Model:

The Two-Fluid Model (TFM) is a set of Partial Differential Equations (PDEs)
and algebraic closure relations. The PDEs expressing mass and momentum con-
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servation for each phase are as follows:

∂t
(
αgρg

)+∂x
(
αgρgvg

)= 0, (2.8a)

∂t
(
α`ρ`

)+∂x
(
α`ρ`v`

)= 0, (2.8b)

∂t
(
αgρgvg

)+∂x

(
αgρgv2

g

)
=−∂x

(
αgp

)+Mg−αgρgg sinθ−32
µgαgvg

d 2 , (2.8c)

∂t
(
α`ρ`v`

)+∂x
(
α`ρ`v2

`

)=−∂x
(
α`p

)+M`−α`ρ`g sinθ−32
µ`α`v`

d 2 , (2.8d)

where t ∈R≥0 and x ∈ [a,b] are, respectively, the temporal and spatial variables.
The model contains seven unknown variables, namely, liquid and gas void frac-
tion, α` and αg, liquid and gas phase velocity, v` and vg, liquid and gas phase
density, ρ` and ρg, and the common pressure p. Here, µg and µ` refer to the
viscosity of the gaseous phase and of the liquid phase, respectively.

To complete the model, we use one set of the most widely applied closure
laws as in [56]:

αg +α` = 1, (2.9a)

Mg +M` = 0, (2.9b)

Mg = p∂xαg +Mi g , (2.9c)

Mi g = bM
g (v`− vg), with bM

g ≥ 0, (2.9d)

ρg = p

c2
g

, (2.9e)

ρ` = ρ`0 +
p −p`0

c2
`

, (2.9f)

where (2.9a) expresses that any pipe segment is occupied by the combination
of gas and liquid. The terms Mg and M` with the constant bM

g in (2.9b)–(2.9d)
account for the force interaction between the phases. Finally, (2.9e)–(2.9f) de-
fine the equation of state of each phase with the reference density and pressure
as ρ`0 and p`0, and cg and c` are the constant speeds of sound in the gas and
liquid phase, respectively.

Similar to the DFM, even the TFM can be complemented with appropriate
initial and boundary conditions.

Remark 2.3.3 We have presented the TFM for flows across a unit and constant
cross-section. Such a model will be utilized in the next chapter. In principle, there
exist two-fluid models for describing the fluid flow dynamics across a variable cross-
section. However, we do not rely on the TFM admitting (spatial) cross-section vari-
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ations, and instead only rely on the DFM for numerically studying the behaviour
across variable cross-section in this dissertation.

The fundamental difference between the TFM and the DFM lies in the for-
mulation of momentum conservation equations. Similar to the DFM, the TFM
is also conditionally hyperbolic. However, the hyperbolicity regimes of the TFM
and the DFM differ. We refer to [56,103,110,127,138,200,206] for a detailed
analysis of the hyperbolicity of these two models. Also, we refer to Chapter 6 for
detailed discussion on the hyperbolicity of the DFM. The DFM is more widely
used than the TFM due to its simplicity and low computational time required.

The above introduced mathematical models will be extensively used in the
rest of this dissertation. At this stage, it worth mentioning that thermal and
elastic effects also play a dominant role in addition to hydraulic effects in dic-
tating the down-hole pressure. However, incorporating these effects are not the
subject of research in the scope of this dissertation.

2.3.2 Controller and Estimator Requirements

A control system which is fast and accurate enough is necessary to control the
pressure fluctuations due to dynamical effects during drilling. The control sys-
tem must be able to prevent gas influx with the assistance of an automated MPD
system (whose configuration was discussed in Section 2.2).

Automated down-hole pressure management relies heavily on real-time mea-
surements. Real-time measurement of BHP, which is the pressure to be con-
trolled, is not available during several drilling operations, such as tripping.
Hence, the BHP needs to be estimated. It is worth mentioning that the estimation
of down-hole pressures is sensitive to several factors: the uncertain wellbore
position in long wells, the surface and down-hole equipment, the density and
thermophysical properties of the drilling mud, the measurements, the well-flow
models, the down-hole conditions, the operating procedures and their perfor-
mance and the pressure control method [76]. The BHP can be estimated by
using topside measurements such as pump pressure, choke pressure, pump flow
rate, choke flow rate, etc., as these are reliable and available continuously. One
can utilize these topside measurements along with the hydraulic model to make
real-time decisions while performing drilling operations.

MPD pressure controllers are required to track a desired BHP when reli-
able real-time measurements are available; or, else, they are required to track
a choke pressure set point which is deduced from BHP estimates. In order to
achieve successful MPD operation during several drilling scenarios, the tracking
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of the choke pressure set point is required as real-time measurements are not
available and, hence, BHP needs to be estimated in real-time to enable appropri-
ate choke pressure set point selection. Predicting and controlling, for instance,
surge and swab pressures have to be based on some estimations due to the lack
of the measurements. Reservoir pore pressure also needs to be estimated to
have the dynamic knowledge of the drilling window.

Figure 2.4: Consequences of uncertainties in sensor delay and bandwidth [76].
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From a control point of view, gel effects in the drilling mud (which cause
delay in pressure transmission), and the time delay imposed by the distance be-
tween the choke and the bottom of the well, make the control of the BHP chal-
lenging. Also, pump rates typically change in less than 10 seconds, and the MPD
system controller operates at even shorter time-scales. An MPD controller oper-
ating at shorter time-scales than a pump rate change is also generally operating
faster than the acoustic travel time in a typical well. To compound the chal-
lenge, for most wells the acoustic travel time for pressure waves in the fluid in
the annulus is significant compared to the time for control transients. These crit-
ical factors need to be taken into account, otherwise the pressure at the choke
can be over-perturbed and the system can become unstable. Moreover, uncer-
tainties in sensor delay and bandwidth associated with the down-hole telemetry
also degrade the controller performance. The quality of the sensory data also
affects the pressure control. The closed-loop performance of MPD controller
may worsen when there is a change in the dynamic properties of the well. Also,
pressure sensor readings drift under harsh environmental conditions. Conse-
quences of the delay in measurements and of the bandwidth can be understood
from the Figure 2.4, where the BHP is plotted for different combinations of sam-
pling times and measurement delays. It can be observed that the BHP varies up
to ±15 bars. However, the drilling window for today’s wells is ±2.5 bars and,
therefore, the variations in BHP upto ±15 bars are not allowed. Hence, the
knowledge of sampling times and the measurement delays are critical to keep
the BHP within the drilling window. The longer is the wellbore, the lower is
the sensor bandwidth as the pressure measurement would be updated less fre-
quently which consequently means lower sampling time. The transmission rate
deteriorates as the depth/length of the well increases, which is usually the case
for deepwater wells. Under transmission delays, lower sampling times can re-
sult in adverse closed-loop system response. A robust controller must be able to
account for these low sampling times and delays in transmission. Another major
challenge is transmitting the copious amounts of data to the surface in a rea-
sonable amount of time. When wireless data transfer techniques, such as mud
pulse, are used, for example, much of this data must be stored in memory and
downloaded during a certain drilling phase. This option, in which data is stored
and then evaluated after some drilling operation, makes real-time drilling de-
cisions nearly impossible if there does not exist an accurate hydraulic model to
predict a characteristic behaviour/response. Hence, it is clear that the real-time
prediction of quantities of interest (say pressure), while drilling, would be an
enormous advantage for any well being drilled. The real-time down-hole pres-
sure estimations would allow, for instance, to set the optimum tripping speed,
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and also to assist in multivariable control of choke valve opening, mud pump
and back pressure pumps simultaneously.

Though we outlined the controller and estimator requirements in the scope
of the drilling application, the design of controller and estimator will not be
treated in this dissertation as it lies outside the scope of this work. However,
the controller and estimator requirements do dictate the need of an underlying
accurate hydraulic model which is computable in real-time. The whole focus in
this dissertation will, hence, be on (low-complexity) hydraulics model develop-
ment which, in the future, will serve as the basis for controller and estimator
design.

2.4 Conclusions

In the pursuit of obtaining an improved automatic pressure control in drilling
operations, we discussed Managed Pressure Drilling (MPD) technology. We also
provided fundamental insights to the physics of drilling hydraulics and the basic
features that need to be mimicked by the high- (and low-) complexity model.

A fit-for-purpose hydraulic model, which needs to accurately capture the
relevant properties of the complex multi-phase flow dynamics of the down-hole
drilling process, while being fit (i.e., simple enough) for model-based control
design, is a fundamental prerequisite for automatic pressure control in case of
well control incidents. The model simplicity is also required to perform multi-
query simulations for the planning of drilling operations. To this end, we need to
develop low-complexity model representations from high-fidelity counterparts
governing hydraulic systems in the scope of MPD.





Part I: Modelling and
(structure-preserving)
discretization of hydraulic
systems

This part is dedicated to the contributions pertaining to the modelling and
(structure-preserving) discretization of hydraulic systems. In particular, we
strive to address questions Q1 - Q5 posed in Chapter 1 by fulfilling outlined
research objectives O1 - O7. Chapter 3 is an effort in the direction of achiev-
ing research objectives O1 and O2. The research objective O1 is fully met in
Chapter 4. This chapter also attains the research objective O3. The contribu-
tions in Chapter 5 help to successfully meet the research objective O4. Research
objectives O5 - O7 are addressed in Chapter 6.





Chapter 3
Port-Hamiltonian Formulation
of Two-Phase Flow Models

Two-phase flows are frequently modelled and simulated using the Two-Fluid Model
(TFM) and the Drift Flux Model (DFM). This chapter proposes Stokes-Dirac struc-
tures with respect to which port-Hamiltonian representations for such two-phase
flow models can be obtained. We introduce a non-quadratic candidate Hamiltonian
function and present dissipative Hamiltonian representations for both models. We
then use the structure of the corresponding formally skew-adjoint operator to de-
rive a Stokes-Dirac structure in the scope of the two variants of multi-phase flow
models. Moreover, we present a numerical counter example to demonstrate that
only a special form of the DFM (without slip between the phases) can be cast in
a port-Hamiltonian representation and that the DFM with the Zuber-Findlay slip
conditions is not an energy-consistent model for two-phase flow.

3.1 Introduction

In this chapter, we develop a port-Hamiltonian formulation for modelling multi-
phase flow dynamics in pipes. Multi-phase flow is important in a large range
of industrial applications, such as those in the oil and gas industry, chemical
and process industry (including heat-pumping systems) as well as in the safety
analysis of nuclear power plants [2, 5, 145]. Within the oil and gas industry,
such models are used for virtual drilling scenario testing [2, 5]. The multi-
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phase aspect is particularly relevant in these applications in case of gas influx
occurring from a reservoir.

Port-Hamiltonian systems have recently received a lot of attention for mod-
elling physical phenomena governed by nonlinear Partial Differential Equations
(PDEs) and ordinary differential equations [53, 182]. A port-Hamiltonian re-
alization offers a suitable description for the modelling, analysis and controller
design [53]. A port-Hamiltonian model formulation is known to provide a mod-
ular framework for multi-physics and interconnected systems [118]. The port-
Hamiltonian structure allows for non-zero energy flow through the boundary
and guarantees power preservation [184]. The advantage of this formulation
is that structure-preserving methods for discretization and the model order re-
duction of infinite-dimensional port-Hamiltonian systems can preserve certain
original system-theoretic properties such as stability and passivity [43, 140]. A
port-Hamiltonian framework enables controller design based on energy consid-
erations by different techniques such as energy-shaping [113], and interconnec-
tion and damping assignment [136]. In addition, the Hamiltonian defined in
a port-Hamiltonian framework represents a good candidate for the Lyapunov
function, rendering the physics-based control design and the stability analysis
more tangible [114].

In the literature, the infinite-dimensional port-Hamiltonian structure has
been exploited in several domains of science and engineering. For instance,
some well-known fluid dynamical systems such as the shallow water equa-
tions [140], reactive Navier Stokes equations [13], and reaction diffusion pro-
cesses [207] have already been formulated in the port-Hamiltonian formalism.
Such a representation is also prevalent in the fields of structural dynamics [115]
and fluid-structure interaction [34].

Multi-phase flows are mathematically governed by conservation laws. Sev-
eral conservation laws have previously been converted to port-Hamiltonian rep-
resentations [117, 178]. Some work on Hamiltonian modeling for multi-phase
hydrodynamics has been done in [84]. However, (dissipative) Hamiltonian rep-
resentations do not exist for the Two-Fluid Model (TFM) and the Drift Flux
Model (DFM) [56]. Moreover, until now, to the best of our knowledge, port-
Hamiltonian modeling for fluid dynamics only encompasses single-phase mod-
els [48].

Matrix/operator theory for linear distributed parameter port-Hamiltonian
systems on one-dimensional domains is owed to some pioneering works [89,
101]. The central theme of the current chapter is to extend and propose mod-
ifications to the existing theory for non-linear distributed parameter systems.
We exploit the existing theory in the scope of linear systems and arrive at new
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results from an operator theoretic viewpoint, including further generalizations
in the scope of non-linear distributed parameter port-Hamiltonian systems.

The main contributions of this chapter are as follows: (i) we obtain (dissi-
pative) Hamiltonian representations of the TFM and the DFM, (ii) we propose
state-dependent Stokes-Dirac structures for both the TFM and the DFM along
with the proof of the corresponding representation obtained in the scope of
the TFM, and (iii) we demonstrate that the DFM with the Zuber-Findlay slip
conditions is not an energy-consistent model for two-phase flow.

The chapter is organized as follows. In Section 3.2, we introduce the two
mathematical models governing 1-D multi-phase flow dynamics and mention
under which conditions these are equivalent. The (dissipative) Hamiltonian
representations of these models are presented in Section 3.3. Then, the cor-
responding geometrical properties are discussed and proved in Section 3.4.
This section also includes a non-unique parametrization of the boundary port-
variables. Afterwards, Section 3.5 deals with the reasons behind formulating
the DFM without slip between the two phases in a port-Hamiltonian represen-
tation instead of a general DFM with the Zuber-Findlay slip conditions. Finally,
Section 3.6 closes with conclusions.

3.2 Multi-phase flow models

In this section, we briefly recall the mathematical models for the TFM and the
DFM. We refer the reader to Section 2.3.1 for a detailed discussion about these
multi-phase flow models.

3.2.1 Two-Fluid Model (TFM)

In this chapter, we do not consider gravitational and frictional effects in the TFM
description for the sake of simplicity. Hence, under this assumption, the PDEs
expressing mass and momentum conservation for each phase are as follows:

∂t
(
αgρg

)+∂x
(
αgρgvg

)= 0, (3.1a)

∂t
(
α`ρ`

)+∂x
(
α`ρ`v`

)= 0, (3.1b)

∂t
(
αgρgvg

)+∂x

(
αgρgv2

g

)
=−∂x

(
αgp

)+Mg, (3.1c)

∂t
(
α`ρ`v`

)+∂x
(
α`ρ`v2

`

)=−∂x
(
α`p

)+M`, (3.1d)



40 Port-Hamiltonian Formulation of Two-Phase Flow Models

where t ∈ R≥0 and x ∈ [a,b] are, respectively, the temporal and spatial variables
(a and b refer to the location of the left and the right boundary of the one-
dimensional spatial domain). To complete the model, we use the algebraic
closure laws given by:

αg +α` = 1, (3.2a)

Mg +M` = 0, (3.2b)

Mg = p∂xαg +Mi g , (3.2c)

Mi g = bM
g (v`− vg), with bM

g ≥ 0, (3.2d)

ρg = p

c2
g

, (3.2e)

ρ` = ρ`0 +
p −p`0

c2
`

. (3.2f)

The model contains seven unknown variables. A detailed explanation of the
system governed by (3.1) and (3.2) is provided in Section 2.3.1.

Remark 3.2.1 The ignored gravitational and frictional effects in the above TFM
description will be accounted for in the next chapter while developing a composed
port-Hamiltonian model formulation for MPD systems.

The TFM, governed by the set of equations (3.1) and (3.2), can be written
in terms of only four physical variables. We introduce the following shorthand
notations that are used in the rest of this chapter:

mg :=αgρg, m` :=α`ρ`. (3.3)

We now adopt the following assumption in this chapter.

Assumption 1 The gas void fraction αg, the liquid void fraction α`, the liquid
phase density ρ`, and the gaseous phase density ρg along with β= ρ`0c2

`
−p`0 are

positive.

The statement in Assumption 1 is physically (always) true. However, the
positivity of different physical quantities cannot be mathematically/numerically
guaranteed and, hence, we need to pose this assumption.

The model of interest is a non-linear partial differential algebraic system. In
the scope of developing a port-Hamiltonian model, such a model description
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intuitively/naturally will call for a non-linear port-Hamiltonian descriptor real-
ization in the sense of [123]. However, the area of non-linear port-Hamiltonian
descriptor realizations is still in the initial stages of theoretical development, in
particular for partial differential algebraic systems with non-quadratic Hamilto-
nian functionals and with index greater than 2. The two-phase flow model of
interest possesses non-quadratic Hamiltonian functionals (see Section 3.3). De-
ferring to speak in the sense of the index of the system, it is worth to point out
that the system constitutes a large number of (non-linear) algebraic equations
which increases technical complexities. Furthermore, we encounter technical
challenges while developing a non-linear port-Hamiltonian descriptor realiza-
tion with the current state-of-the-art. Given the aforementioned reasons and
that the model of interest, i.e., a partial differential algebraic system (3.1) and
(3.2), can be rather straightforwardly re-written as a system of (only) partial
differential equations, we strive to exploit the existing theory to develop a cor-
responding port-Hamiltonian realization. Next, we discuss Lemma 3.2.2 and
3.2.3 in order to provide insights on equivalent model realizations of the TFM
governed by (3.1) and (3.2).

Lemma 3.2.2 By considering mg , m`, vg and v` as state variables, the system of
equations (3.1) and (3.2) can be re-written in the following form:

∂t mg +∂x
(
mgvg

)= 0, (3.4a)

∂t m`+∂x (m`v`) = 0, (3.4b)

∂t vg+∂x

(
v2

g

2

)
=−c2

g∂x

(
ln

(
p

c2
g

))
+

bM
g

mg

(
v`− vg

)
, (3.4c)

∂t v`+∂x

(
v2
`

2

)
=−c2

`∂x

(
ln

(
p +β

c2
`

))
−

bM
g

m`

(
v`− vg

)
, (3.4d)

where

p
(
mg,m`,αg

)= mgc2
g +m`c2

`−β
(
1−αg(mg,m`)

)
, (3.5)

αg
(
mg,m`

)=−mg

c2
g

2β
−m`

c2
`

2β
+ 1

2
+

√√√√(
mg

c2
g

2β
+m`

c2
`

2β
− 1

2

)2

+mg

c2
g

β
. (3.6)

Proof: First, we note that (3.4a) and (3.4b) are exactly of the same form as
(3.1a) and (3.1b), respectively. Next, we explain the steps to obtain (3.4c) and
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(3.4d). Using (3.1a), we can express (3.1c) in the following manner:

∂t vg+∂x

(
v2

g

2

)
=− αg

mg
∂x p+

bM
g

mg

(
v`− vg

)
. (3.7)

Equation (3.7) can be written as (3.9c) since the following identity holds:

c2
g∂x

(
ln

(
p

c2
g

))
= 1

ρg
∂x p =:

αg

mg
∂x p. (3.8)

Equation (3.4d) can be obtained by following similar lines of reasoning as de-
scribed above. In summary, the set of equations (3.4) is equivalent to (3.1) and
(3.2). We refer the reader to [5] for the detailed proof of the expression for
αg

(
mg,m`

)
. This completes the proof. ■

Similar to (3.4), the TFM can be straightforwardly formulated with respect
to another set of state variables. The corresponding model reformulation is
discussed next.

Lemma 3.2.3 By considering mg , m`, mgvg and m`v` as state variables, the
system of equations (3.1) and (3.2) can be re-written in the following form:

∂t mg +∂x (mgvg) = 0, (3.9a)

∂t m`+∂x (m`v`) = 0, (3.9b)

∂t (mgvg)+∂x (mgv2
g )+mg∂x

(
c2

g ln

(
p

c2
g

))
= bM

g (v`− vg), (3.9c)

∂t (m`v`)+∂x (m`v2
`)+m`∂x

(
c2
` ln

(
p +β

c2
`

))
=−bM

g (v`− vg), (3.9d)

where p and αg are given by the relations (3.5) and (3.6), respectively.

Proof: First, we note that (3.9a) and (3.9b) are exactly of the same form as
(3.1a) and (3.1b), respectively. Next, we explain the steps to obtain (3.9c) and
(3.9d). Using (3.2c) in (3.1c), we obtain:

∂t (mgvg)+∂x (mgv2
g ) =−αg∂x p +bM

g (v`− vg), (3.10)

which can be equivalently expressed as follows:

∂t (mgvg)+∂x (mgv2
g )+αg∂x p = bM

g (v`− vg). (3.11)
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Equation (3.11) can be written as (3.9c) since the following relation holds:

mg∂x

(
c2

g ln

(
p

c2
g

))
= mg

( c2
g

p/c2
g

)( 1

c2
g

)
∂x p

(3.2e)= αg∂x p. (3.12)

Equation (3.9d) can be obtained by following similar lines of reasoning as de-
scribed above. In summary, the set of equations (3.9) is equivalent to (3.1) and
(3.2). This completes the proof. ■

3.2.2 Drift Flux Model (DFM)

In this section, we briefly recall the DFM. However, in this chapter, we only
consider fluid flow dynamics across a spatial domain with unit and constant
cross-section and, hence, accordingly adapt the model description.

The DFM can be obtained from the TFM via a slip relation of the form

vg − v` =Φ
(
mg,m`, vg

)
, (3.13)

where mg and m` are as introduced above. Since the slip relation (3.13) deter-
mines the coupling between the velocities of the two phases, only one momen-
tum equation is required contrary to the two momentum equations in the TFM
(3.1). Several models of the form (3.13) exist depending on the choice of the
function Φ [56]. In the simplest case, without slip, Φ := 0. Another case is the
Zuber-Findlay relation [56]:

Φ := (K −1)vg +S

Kα`
→ vg = K (αgvg +α`v`)+S, (3.14)

where K and S are flow-regime dependent parameters, which are assumed to
be constant in this study.

Using the abbreviations Ig := mgvg and I` := m`v`, the governing equations
for the DFM (across a unit, constant cross-section) are:

∂t mg +∂x Ig = 0, (3.15a)

∂t m`+∂x I` = 0, (3.15b)

∂t
(
Ig + I`

)+∂x
(
Igvg + I`v`

)=−∂x p+Qg +Qv (3.15c)

completed with closure equations (3.2a), (3.2e), (3.2f), (3.13) and gravita-
tional effects Qg and frictional effects Qv defined by [57]:

Qg =−g
(
mg +m`

)
sinθ, (3.16a)

Qv =−32µm(αgvg +α`v`)

d 2 , (3.16b)
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with gravitational constant g , space-dependent pipe inclination θ(x), mixture
viscosity µm > 0, and pipe diameter d .

Remark 3.2.4 Similar to Lemma 3.2.2 and Lemma 3.2.3, the governing equa-
tions (3.15) associated with v := vg = v` (DFM without slip), together with the
closure equations (3.2a), (3.2e), (3.2f) and (3.16), upon elimination of auxiliary
variables, can be rewritten as a system of PDEs with as many unknowns as equa-
tions. The reason behind such a model reformulation is similar to that for the
TFM.

The TFM can be adapted to behave exactly like the DFM if the term Mi g in
(3.2d) is replaced with the term stated in the following theorem. For the proof,
we refer to [56].

Theorem 3.2.5 Under zero gravitational and frictional effects, the DFM (3.15)
together with (3.2a) and (3.13) is equivalent to the TFM (3.1) with (3.2a)–(3.2c),
and

Mi g =−αgα`
ρg −ζρ`

mg +ζm`
∂x p − mgm`

mg +ζm`

(
v`∂x v`−

ζvg∂x vg +µg∂x (mgvg)+µ`∂x (m`v`)
)
, (3.17)

with µg := ∂Φ
∂mg

, µ` := ∂Φ
∂m`

, ζ := 1− ∂Φ
∂vg

.

Remark 3.2.6 The equivalence of the DFM and the TFM can also be shown in the
presence of gravitational and frictional effects; see [56], for further details.

The model equivalence, stated above, will play a crucial role in drawing a
conclusion about the behaviour of the Hamiltonian along the solutions of the
DFM by using the theoretical analysis conducted for the TFM (see Section 3.5).

3.3 Dissipative Hamiltonian Formulations

Port-Hamiltonian systems have several useful properties for system analysis and
control. Basic properties of port-Hamiltonian systems include passivity and
compositionality. The port-Hamiltonian model formulation is appealing as it
helps to characterize the energy exchange across the boundaries and thus ac-
counts for the interaction between the system and the environment. Such a
framework generalizes the classical Hamiltonian framework by the definition of
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boundary ports. We restrict ourselves to port-Hamiltonian systems (with state-
variable z) of the form

∂t z =
(
J (z)−R(z)

)
δzH (z),(

f∂
e∂

)
=M

(
(δzH (z))(b)
(δzH (z))(a)

)
,

(3.18)

where H is the Hamiltonian functional, δzH its variational derivative, and
M is a state-dependent bijective mapping. Furthermore, for every z, J (z) is
formally skew-adjoint with respect to the L 2 inner product, i.e., for e1,e2 suffi-
ciently smooth and zero at the boundary there holds∫

Ω
eT

1

(
J (z)e2

)
dx +

∫
Ω

eT
2

(
J (z)e1

)
dx = 0, (3.19)

where Ω refers to the spatial domain, and R is formally self-adjoint with respect
to the L 2 inner product and positive semi-definite.

Finally, f∂,e∂ are the boundary ports, and these are normally split into in-
puts, outputs, and homogeneous boundary conditions, see, e.g., [89]. Mathe-
matically, we can express the inputs u, outputs y and homogeneous boundary
conditions as follows: u

y
0

=W

[
f∂
e∂

]
, (3.20)

where W is a mapping matrix. Here, the first two lines indicate the inputs and
outputs, and the third line indicates the homogenous boundary condition. Split-
ting the boundary port variables as shown above helps to relate the boundary
ports of a port-Hamiltonian formulation to the boundary conditions of a PDE
system such as the TFM and the DFM.

The dissipation inequality, which expresses that energy cannot be generated
within the system, is a property that directly follows from the definition of a
port-Hamiltonian system. In particular, ignoring the boundary conditions,

dH

dt
=

∫
Ω

(δzH (z))T ∂t z dx

=
∫
Ω

(δzH (z))T
(
(J (z)−R(z))δzH (z)

)
dx

=
∫
Ω

(δzH (z))T (−R(z))δzH (z) dx ≤ 0,

(3.21)
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where the last inequality is due to the positive semi-definite nature of R(z).
Thus, R is the dissipative component of the system. In the presence of

boundary conditions, the behaviour of the Hamiltonian along the solutions of
the mathematical model is governed by the following balance equation:

dH

dt
=

∫
Ω

(δzH (z))T
(
−R(z)δzH (z)

)
dx +b.t., (3.22)

where b.t. denotes the boundary terms. Normally f∂,e∂ are chosen such that the
boundary terms equal 〈 f∂,e∂〉 w.r.t. some inner product. In our case, this will
be the standard inner product on the Euclidean space. Associated to the oper-
ators J and R, we can identify an underlying geometric object called Stokes-
Dirac structure. This is crucial as port-Hamiltonian systems can be defined with
respect to these infinite-dimensional Stokes-Dirac structures [53]. Often, this
structure is only associated to J . This geometric object yields a manner to
describe the boundary port variables, i.e., f∂ and e∂, see (3.18).

We first introduce (dissipative) Hamiltonian representations, i.e., without
boundary effects for the mathematical models under consideration. The re-
sulting formally skew-adjoint operators and formally self-adjoint operators are
used as a tool to derive a non-canonical Stokes-Dirac structure, and hence the
boundary port variables.

In the models discussed in Section 3.2, the Hamiltonian is dependent on
the kinetic, gravitational potential and internal energy. To derive the internal
energy of the system, consider the following remark.

Remark 3.3.1 The internal energy ui , i ∈ {`, g }, can be interpreted as the energy
causing the expansion of the i -th compressed phase or compression of the i -th
expanded phase. In order to derive this energy component, the Gibbs relation [41]
under barotropic and isentropic flow considerations for an infinitesimal part of the
phase is used, i.e.,

ρ2
i dui = pdρi , i ∈ {`, g }.

Using (3.2e)–(3.2f) and integrating the above equation leads to

u` =−p`0

ρ`
+ c2

` lnρ`+
ρ`0c2

`

ρ`
+K1, (3.23a)

ug = c2
g lnρg +K2, (3.23b)

where K1 and K2 are the integration constants.
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Considering the total energy of the system (neglecting the gravitational po-
tential energy), we define a candidate for the Hamiltonian as follows:

H :=
∫
Ω

(
αgρg

v2
g

2
+α`ρ`

v2
`

2
+αgρgug +α`ρ`u`

)
dx, (3.24)

where Ω= [a,b] refers to the spatial domain.
Inserting (3.23) into (3.24), the Hamiltonian for a flow across a (unit) con-

stant cross-section takes the following form:

H :=
∫
Ω

(
αgρg

v2
g

2
+α`ρ`

v2
`

2
+αgρg

(
c2

g lnρg +K2
)+

α`ρ`
(
c2
` lnρ`+K1

)+α`(c2
`ρ`0 −p`0)

)
dx. (3.25)

It should be noted that when ρi → 0, ρi lnρi → 0. The term ρi lnρi is bounded
from below, i.e., ρi lnρi ≥ −1/e. So, the Hamiltonian (3.25) is bounded from
below. Due to the high bulk modulus of the liquid phase, we usually have
ρ`0c2

`
À p`0 [57]; therefore, the positivity of the Hamiltonian (3.25) can be

ensured by appropriately choosing K1 and K2 or even adding some constants to
the Hamiltonian. For simplicity, we set K1 := 0 and K2 := 0 henceforth.

Remark 3.3.2 The discussion in the above paragraph is reasonable from a phys-
ical perspective. However, numerically, solutions of the TFM and DFM may not be
guaranteed to have non-negative density and non-negative void fractions.

3.3.1 Dissipative Hamiltonian Formulation for the TFM

We now present dissipative Hamiltonian formulations for the TFM under two
different choices of state-variables.

Theorem 3.3.3 The governing equations (3.4) can be written in the dissipative
Hamiltonian formulation

∂t z = (
J̄T −R̄T (z)

)
δzH (z) (3.26)

with z := [mg, m`, vg, v`]T , the Hamiltonian functional H as in (3.25), and where

J̄T =−
[
0 I
I 0

]
∂

∂x
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is a formally skew-adjoint operator with respect to the L 2 inner product, and

R̄T (z) =
[
0 0
0 τr

]

is a symmetric and positive semi-definite matrix, with τr =

 bM
g

m2
g

− bM
g

mgm`

− bM
g

mgm`

bM
g

m`
2

,

and 0 and I a 2×2 zero and identity matrix, respectively.

Proof: The Hamiltonian functional (3.25) in terms of this set of state vari-
ables z is re-written as follows:

H (mg,m`, vg, v`) :=
∫
Ω

mg

v2
g

2
+m`

v2
`

2
+mgc2

g ln

(
p

c2
g

)
+

m`c2
` ln

(
p +β

c2
`

)
+ (

1−αg
)
β dx, (3.27)

where p and αg can be replaced by the relations (3.5) and (3.6), respectively.
The variational derivative of the Hamiltonian is given by:

δH

δmg
=

v2
g

2
+ c2

g ln

(
p

c2
g

)
+ c2

g ,
δH

δvg
= mgvg,

δH

δm`
= v2

`

2
+ c2

` ln

(
p +β

c2
`

)
+ c2

`,
δH

δv`
= m`v`.

It is straightforward to show that the system (3.26) is equivalent to (3.4) and,
hence, we omit its detailed derivation here.
Moreover, R̄T is symmetric and positive semi-definite due to the positivity of
bM

g . It is straightforward to prove the formal skew-adjointness of J̄T with re-
spect to the L 2 inner product and, hence, we omit such proof here. ■

Remark 3.3.4 We can observe that τr will not be well defined if the masses in any
of the phases, i.e., mg or m`, become zero during the evolution of the states. This
is basically a by-product of the model reformulation (3.4), which will not hold if
mg or m` become zero. At this stage, it is also worth mentioning that the masses of
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any of the phases will not become zero due to Assumption 1. The aforementioned
observation serves as one of the motivations to consider other suitable choices of
state variables, for instance, mg,m`,mgvg and m`v`, and the corresponding model
reformulations, for instance, as in Lemma 3.2.3.

The state vector in the previous theorem was composed of non-conservative
variables. It is well known that any bijective map acting on the state variables
still retains the (dissipative) Hamiltonian structure. However, such bijective
map may not be always attainable in the scope of non-linear problems such as
multi-phase flow models. Hence, as a first step, we define the state vector in
terms of conservative variables and demonstrate the existence/non-existence of
a corresponding dissipative Hamiltonian formalism for the TFM. Moreover, we
assess the suitability of these conservative variables in the scope of dealing with
vanishing phases.

Remark 3.3.5 Deriving conditions under which bijective map would be attainable
is outside the scope of this work.

Theorem 3.3.6 The governing equations (3.1) together with the closure equa-
tions (3.2), equivalent to (3.9), can be written in the following dissipative Hamil-
tonian form:

∂t q = (
JT (q)−RT

)
δqH (q) (3.28)

with q = [q1, q2, q3, q4]T := [mg, m`, Ig, I`]T , the Hamiltonian functional H as in
(3.25), and where

JT (q) =−


0 0 ∂x (q1·) 0
0 0 0 ∂x (q2·)

q1∂x (·) 0 ∂x (q3·)+q3∂x (·) 0
0 q2∂x (·) 0 ∂x (q4·)+q4∂x (·)


is a formally skew-adjoint operator with respect to the L 2 inner product, and

RT =


0 0 0 0
0 0 0 0
0 0 bM

g −bM
g

0 0 −bM
g bM

g


is a symmetric and positive semi-definite matrix.
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Remark 3.3.7 Here, JT (q)δqH (q) is not the standard (multiplicative) product
of JT (q) and δqH (q). Instead, JT (q)δqH (q) should be better viewed as com-
position of JT (q) and δqH (q), i.e., JT (q) ◦ δqH (q). For instance, k∂x (·)l :=
k∂x (·) ◦ l . Such a composition operation is given by k∂x (·) ◦ l = k∂x (l ). Similarly,
∂x (k·)l := ∂x (k·)◦ l = ∂x (kl ), where k and l are any functions such as q1, q2, q3 and
q4. Moreover, ∂x (k·)+k∂x (·) is additive in standard sense, i.e.,

(
∂x (k·)+k∂x (·)

)
◦ l

= ∂x (k·)◦ l +k∂x (·)◦ l .

Proof: The Hamiltonian (3.25) in terms of q1, q2, q3 and q4 is re-written as
follows:

H (q1, q2, q3, q4) :=
∫
Ω

q2
3

2q1
+ q2

4

2q2
+q1c2

g ln

(
p

c2
g

)

+q2c2
` ln

(
p +β

c2
`

)
+ (

1−αg
)
β dx, (3.29)

where p and αg can be replaced by the relations (3.5) and (3.6), respectively.
The variational derivatives are:

δH

δq1
=−1

2

q2
3

q2
1

+ c2
g ln

(
p

c2
g

)
+ c2

g ,
δH

δq3
= q3

q1
,

δH

δq2
=−1

2

q2
4

q2
2

+ c2
` ln

(
p +β

c2
`

)
+ c2

`,
δH

δq4
= q4

q2
.

Next, we prove the claim equation by equation. The first line of (3.28) reads

∂t mg =−∂x

(
mg

(mgvg

mg

))
=−∂x (mgvg). (3.30)

Similarly, the second line reads

∂t m` =−∂x

(
m`

(m`v`
m`

))
=−∂x (m`v`). (3.31)

The third line yields

∂t (mgvg)=−mg∂x

(δH

δq1

)
−∂x

(
mgvg

(δH

δq3

))
−mgvg∂x

(δH

δq3

)
−bM

g

(δH

δq3

)
+bM

g

(δH

δq4

)
.

By substituting the variational derivatives into the above equation, we have

∂t (mgvg) =−mg∂x

(
− 1

2
v2

g + c2
g ln

(
p

c2
g

)
+ c2

g

)
−∂x (mgv2

g )−mgvg∂x vg−bM
g (vg − v`).
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Simplifying the above equation leads to:

∂t (mgvg) =−∂x (mgv2
g )−mg∂x

(
c2

g ln

(
p

c2
g

))
−bM

g (vg − v`). (3.32)

The fourth line yields of (3.28) reads

∂t (m`v`) ==−m`∂x

(δH

δq2

)
−∂x

(
m`v`

(δH

δq4

))
−m`v`∂x

(δH

δq4

)
+bM

g

(δH

δq3

)
−bM

g

(δH

δq4

)
.

On substituting the variational derivatives into the above equation, we have

∂t (m`v`) =−m`∂x

(
− 1

2
v2
`+c2

` ln

(
p +β

c2
`

)
+c2

`

)
−∂x (m`v2

`)−m`v`∂x v`+bM
g (vg−v`).

Simplifying the above equation leads to:

∂t (m`v`) =−∂x (m`v2
`)−m`∂x

(
c2
` ln

(
p +β

c2
`

))
+bM

g (vg − v`). (3.33)

The claim of the theorem follows by observing that (3.30), (3.31), (3.32) and
(3.33) are identical to (3.9a), (3.9b), (3.9c) and (3.9d), respectively.

Alternatively, we can also argue that the TFM exhibits similarities in struc-
ture with the model presented in [173], where the Hamiltonian structure was
discussed for single-phase dynamics. The TFM with bM

g = 0 can be viewed as
two separately existing phases. The contributions due to the non-zero bM

g enter
into the dissipation matrix RT .

The proof of the symmetric and positive semi-definite nature of RT is straight-
forward. The operator JT is formally skew-adjoint (with respect to the L 2

inner product). To prove formal skew-adjointness of JT , we check whether
〈e1,JT e2〉L 2(Ω) + 〈JT e1,e2〉L 2(Ω) = 0 holds for smooth e1,e2 which are zero at
the boundary, where we define ei = (e i

1,e i
2,e i

3,e i
4)T . Here, the variable e i

j refers to
the j -th element of ei. JT is formally skew-adjoint with respect to the L 2 inner
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product as

−〈e1,JT e2〉L 2(Ω) −〈JT e1,e2〉L 2(Ω) =∫
Ω

e1
1∂x (q1e2

3)+q1e2
3∂x e1

1 +e2
1∂x (q1e1

3)+q1e1
3∂x e2

1+

e1
2∂x (q2e2

4)+q2e2
4∂x e1

2 +e2
2∂x (q2e1

4)+q2e1
4∂x e2

2+
e1

3

[
∂x (q3e2

3)+q3∂x e2
3

]+e2
3

[
∂x (q3e1

3)+q3∂x e1
3

]+
e1

4

[
∂x (q4e2

4)+q4∂x e2
4

]+e2
4

[
∂x (q4e1

4)+q4∂x e1
4

]
d x =

[
e1

1 e1
2 e1

3 e1
4

]
0 0 q1 0
0 0 0 q2

q1 0 2q3 0
0 q2 0 2q4


︸ ︷︷ ︸

QT


e2

1
e2

2
e2

3
e2

4




|ba ,

which vanishes under our assumptions on the boundary conditions. ■
Remark 3.3.8 The matrix RT and the skew-adjoint operator JT (q) are well de-
fined. However, the computation of variational derivatives is not defined for vanish-
ing phases. Accordingly, q1 and q3 should not become zero, and this is guaranteed
by Assumption 1.

Remark 3.3.9 On the one hand, the formally skew-adjoint operator in Theorem
3.3.3 is state independent. On the other hand, the formally skew-adjoint operator
in Theorem 3.3.6 is state dependent. Conversely, R̄T is a state-dependent matrix
in Theorem 3.3.3 and RT is a state-independent matrix in Theorem 3.3.6. In
the absence of dissipation terms, a constant Stokes-Dirac structure [116] can be
defined for the formulation in Theorem 3.3.3 (unlike Theorem 3.3.6, where the
Stokes-Dirac structure is non-constant).

3.3.2 Dissipative Hamiltonian Formulation for the DFM

So far, we focused on the dissipative Hamiltonian representations for the TFM
under two different variants of generalized state coordinates. We will now deal
with the DFM under gravitational and frictional effects, and present a corre-
sponding dissipative Hamiltonian formulation. For the DFM, we focus only on
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a case in which there is no slip between the phases, i.e., v := vg = v` (the reason
for adopting this no-slip assumption is provided in Section 3.5). Since gravita-
tion is considered, the gravitational potential energy needs to be added to the
Hamiltonian. The Hamiltonian now takes the following form:

HD (mg,m`, v) =
∫
Ω

mg
v2

2
+m`

v2

2
+m`c2

` ln

(
p +β

c2
`

)
+mgc2

g ln

(
p

c2
g

)
+

α`β+ (
mg +m`

) x∫
a

g sin(θ(ξ))dξ

dx. (3.34)

Using the above candidate Hamiltonian function HD , a dissipative Hamiltonian
representation of a special case of the DFM is shown below.

Theorem 3.3.10 The governing equations (3.15) together with v := vg = v` (case
of no slip), the closure equations (3.2a), (3.2e), (3.2f) and (3.16) can be written
in dissipative Hamiltonian form as follows:

∂t zD = (
JD (zD )−RD (zD )

)
δzD HD (zD ) (3.35)

with zD := [mg, m`, v]T , the Hamiltonian functional HD as in (3.34), and where

JD (zD ) =−


0 0 ∂x

(
mg

mg+m`
·
)

0 0 ∂x

(
m`

mg+m`
·
)

mg

mg+m`
∂x (·) m`

mg+m`
∂x (·) 0


is a formally skew-adjoint operator with respect to the L 2 inner product, and

RD (zD ) =

0 0 0
0 0 0

0 0 32µm

d 2(mg+m`)2


is a symmetric and positive semi-definite matrix.

Proof: First note that, using (3.15a) and (3.15b), the left-hand side of equation
(3.15c) can be rewritten as(

mg +m`

)
∂t v + v∂t

(
mg +m`

)+∂x
((

mg +m`

)
v2)

= (
mg +m`

)(
∂t v +∂x

(
v2

2

))
.
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Thus, instead of (3.15c) we can also consider

∂t v +∂x

(
v2

2

)
= 1

mg +m`

(−∂x p +Qg +Qv
)

. (3.36)

The variational derivatives of HD are given by:

δHD

δmg
= c2

g ln

(
p

c2
g

)
+ v2

2
+ c2

g +
x∫

a

g sin(θ(ξ))dξ,

δHD

δm`
= c2

` ln

(
p +β

c2
`

)
+ v2

2
+ c2

`+
x∫

a

g sin(θ(ξ))dξ,

δHD

δv
= (

mg +m`

)
v.

Next, we prove the claim equation by equation. The first line of (3.35) reads

∂t mg =−∂x

(
mg

mg +m`

(
mg +m`

)
v

)
=−∂x

(
mgv

)
. (3.37)

Similarly, the second line is

∂t m` =−∂x

(
m`

mg +m`

(
mg +m`

)
v

)
=−∂x (m`v) . (3.38)

Let us introduce a short-hand notation G =
x∫

a
g sin(θ(ξ))dξ. Then, the third line

yields

∂t v =− mg

mg +m`
∂x

(
c2

g ln

(
p

c2
g

)
+ v2

2
+ c2

g +G

)

− m`

mg +m`
∂x

(
c2
` ln

(
p +β

c2
`

)
+ v2

2
+ c2

`+G

)

− 32µm

d 2
(
mg +m`

)2

(
mg +m`

)
v

=−∂x

(
v2

2

)
− 1(

mg +m`

) (∂x p +Qg +Qv ).

(3.39)

The claim of the theorem follows by observing that (3.37), (3.38), and
(3.39) are identical to (3.15a), (3.15b), and (3.36), respectively.
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The symmetric and positive semi-definite nature of RD follows immediately
from the positivity of µm . The formal skew-adjointness of JD essentially follows
from integration by parts and neglecting the boundary conditions. The operator
JD contains terms similar to the skew-adjoint operator JT , the formal skew-
adjointness of which was discussed extensively in the proof of Theorem 3.3.6.
For the sake of brevity, we refer the reader to follow similar lines of reasoning to
show the formal skew-adjointness of JD , and just present the final result. JD

is formally skew-adjoint with respect to the L 2 inner product because

−〈e1,JD e2〉L 2(Ω)−〈JD e1,e2〉L 2(Ω) =
([

e1
1 e1

2 e1
3

]
0 0

mg

mg+m`

0 0 m`
mg+m`

mg

mg+m`

m`
mg+m`

0


︸ ︷︷ ︸

QD

e2
1

e2
2

e2
3

)
|ba ,

(3.40)
which vanishes under smooth e1 = [e1

1, e1
2, e1

3]T ,e2 = [e2
1, e2

2, e2
3]T that are zero at

the boundary. ■

Remark 3.3.11 Similar to different port-Hamiltonian realizations of the TFM un-
der different choices of generalized state-variables, the DFM (without slip) can also
be written in other port-Hamiltonian formulation(s) depending on the choice of
state-variables.

3.4 Geometrical properties of the system

We now define a geometric structure, a generalization of symplectic and Poisson
structures, called a Dirac structure.

Definition 3.4.1 (Dirac Structures) [53, 101] Consider F and E as real Hilbert
spaces which are isometrically isomorphic. The subspace D ⊂ F × E is a Dirac
structure if D =D⊥, where D⊥ denotes the orthogonal complement which is defined
as

D⊥ := {(f̃, ẽ) ∈F ×E |¿ (f̃, ẽ), (f,e) À= 0 ∀(f,e) ∈D}. (3.41)

Here, ¿ (f̃, ẽ), (f,e) À is defined as follows:

¿ (f̃, ẽ), (f,e) À:= 〈f̃ | e〉+〈f | ẽ〉, (3.42)

where the notation 〈f | e〉 indicates a non-degenerate bilinear form defined on the
bond space B =F ×E .
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This geometric structure relates the composing elements of a system in a
power-preserving manner [140]. Such geometric structures often have a com-
positionality property [6,99,140].

A Stokes-Dirac structure is a special case of a Dirac structure, where also
boundary ports appear and Stokes’ Theorem plays a role, see [53, 101]. This
geometric structure is defined next.

Definition 3.4.2 (Stokes-Dirac structures) [53,101] Let FΩ and EΩ, respectively,
denote the subspace of flow variables and effort variables defined on the domain Ω.
Also, Let F∂ and E∂, respectively, denote the subspace of flow variables and effort
variables defined on the boundary ∂Ω. Furthermore, consider the real Hilbert
space of flow variables FS and of effort variables ES , where FS = FΩ ×F∂, and
ES = EΩ×E∂, respectively. Moreover, consider that the Hilbert space ES is the dual
of FS [53, 194] or consider that the Hilbert spaces ES and FS are isometrically
isomorphic to each other [101]. Finally, we endow the bond space BS = FS ×ES

with the following pairing:

¿ ( f , f∂,e,e∂), ( f̃ , f̃∂, ẽ, ẽ∂) À=〈 f | ẽ〉+〈e | f̃ 〉±〈 f∂ | ẽ∂〉±〈e∂ | f̃∂〉. (3.43)

Then, the subset DS of BS is a Stokes-Dirac structure with respect to the non-
degenerate bilinear form (3.43) if DS = D⊥

S , where D⊥
S denotes the orthogonal

complement of DS and is defined like (3.41).

Remark 3.4.3 The usage of + or − before the boundary terms in the above equa-
tion depends on the adopted sign convention.

For a ( f ,e) element of a Dirac structure (or Stokes-Dirac structure), it is easy
to see that 〈 f | e〉 = 0, and thus there is a close relation to (formally) skew-adjoint
operators, see also (3.19). However, if f =J e for all ( f ,e) ∈ D, and J is formally
skew-adjoint, then D ⊂D⊥ (or DS ⊂D⊥

S ). To make such a D into a Dirac/Stokes-
Dirac structure, it is required that D = D⊥ (or DS ⊂ D⊥

S ) holds. The formally
skew-adjoint part of a port-Hamiltonian system will form the foundation of the
associated Dirac or Stokes-Dirac structure, as we will show as well.

The non-linearity encoded within the Hamiltonian along with a linear Dirac
or Stokes-Dirac structure constitutes a favorable representation of PDEs. Such
a structure facilitates the analysis of non-linear systems as the linearity of the
Dirac or Stokes-Dirac structure can be exploited to assess system behaviour.
These geometric structures can also be used to formulate boundary control sys-
tems [101].

Before delving into the analysis of the underlying geometrical properties in
the scope of two-phase flow models of interest, we recall a well-known result
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in the context of defining Stokes-Dirac structures for linear infinite-dimensional
port-Hamiltonian realizations, and parametrizing the boundary port variables.

Definition 3.4.4 [101] Consider the formally skew-symmetric differential oper-
ator J = P1∂x e such that P1 = P T

1 . Also, consider the boundary trace operator
τ : H 1(Ω)n →R2n defined in the following way:

τ(e) =
(

e(b)
e(a)

)
.

Next, choose the flow space F and effort space E endowed with the natural inner
product in the following manner:

F = E =L 2(Ω)n ×Rn ,

and consider the bond space B as F×E . Furthermore, endow B with the following
canonical symmetric pairing:

¿ ( f , f∂,e,e∂), ( f̃ , f̃∂, ẽ, ẽ∂) À=〈 f , ẽ〉L 2(Ω) +〈e, f̃ 〉L 2(Ω) −〈 f∂, ẽ∂〉R−〈e∂, f̃∂〉R. (3.44)

Then, the subspace D of B defined by

D =
{

f
f∂
e

e∂

 ∈B | e ∈ H 1(Ω)n ,J e = f ,

[
f∂
e∂

]
= Rextτ(e)

}
, (3.45)

with the matrix Rext ∈R2n×2n given by

Rext = 1p
2

[
Q −Q
I I

]
,

is a Dirac structure with respect to the bilinear form (3.44). The Dirac structure D

is defined by the fact that D =D⊥, where D⊥ denotes the orthogonal complement

D⊥ := {(f̃, ẽ) ∈F ×E |¿ (f̃, ẽ), (f,e) À= 0 ∀(f,e) ∈D}. (3.46)

Remark 3.4.5 The above definition also holds for higher-order (state-independent)
differential operators with constant coefficients; see [101,194] for further details.
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In the existing results [53,101,194], the effort variables e belong to the func-
tion class H 1(Ω) since they dealt with constant matrix differential operators of
first order (see Definition 3.4.4). Given the state-dependent nature of the first-
order skew-adjoint operators in (3.28) and (3.35) (unlike in [101]), a combi-
nation of the states and the effort variables have to belong to the function class
H 1(Ω) or suitable conditions have to be imposed on the state variables in order
to have effort variables belonging to the function class H 1(Ω) (see Theorems
3.4.9 and 3.4.11). Boundary port-variables have been parametrized in [101]
using the trace operators; see τ(e) in Definition 3.4.4. However, in [101], such
a parametrization is limited to the case of a non-singular matrix Q (synony-
mous to QT in Theorem 3.3.6) arising in linear problems with state-independent
operators. To the best of our knowledge, the work [194] is the only work in
the scope of parametrization of boundary port-variables for a singular matrix Q
(synonymous to QD in Theorem 3.3.10), thereby enlarging the class of systems
that can be dealt with. Villegas in [194] demonstrated the approach to de-
fine the non-degenerate bilinear form under singular Q and consequently mod-
ified the definition of the boundary port-variables. However, [194] is limited to
the setting of state-independent Stokes-Dirac structures. In this work, we strive
to extend the definition of boundary port-variables to eventually obtain state-
dependent Stokes-Dirac structures with boundary ports for non-linear problems
with non-quadratic Hamiltonian functional. It should be mentioned that the au-
thors in [184] have also considered state-dependent Stokes-Dirac structures for
problems (for instance, ideal isentropic fluid) with non-quadratic Hamiltonian
functional by using a differential geometric viewpoint. We, however, use the
operator-theoretic viewpoint in the consideration of such geometric structures
in the scope of the two-phase flow models.

Remark 3.4.6 The parametrization of boundary port variables is non-trivial for
underlying state-dependent Stokes-Dirac structure representations of two-phase
flow models. This indicates that fundamental modifications to the approach out-
lined in [101, 194] are sought. Hence, such a parametrization for non-linear dis-
tributed parameter port-Hamiltonian systems will not be the subject of this chap-
ter. Instead, we will identify a particular (non-unique) definition of boundary
port-variables to define geometrical structure for the TFM and the DFM.

Remark 3.4.7 Boundary port-variables, in our setting, will remain unchanged in
the presence of dissipation. This is only true since our resistive operator (R) does
not include any differential operator. In general, the boundary ports could also
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include contributions from the resistive part. In this work, we only consider Stokes-
Dirac structures without accounting for resistive ports (for the above mentioned
reason) and finally arrive at a definition of the boundary port-variables, which is
practical for port-Hamiltonian representations.

We recall the following fundamental lemma of calculus of variations.

Lemma 3.4.8 If the pair (h,m) ∈L 2(Ω)2 satisfies∫ b

a
[h(x)∂x f (x)+m(x) f (x)]dx = 0, (3.47)

for all f ∈ H 1
0 (Ω), then

h ∈ H 1(Ω), and ∂x h = m(x). (3.48)

Lemma 3.4.8 will be extensively used in order to prove that a certain structure
is a Stokes-Dirac structure.

Using the above mathematical preliminaries, we first propose a Stokes-Dirac
structure for the TFM and present a corresponding proof, and then we propose
it for the DFM without slip.

3.4.1 Stokes-Dirac structure representation for the TFM

We first introduce the notations

ft =
[

fmg fm`
f Ig f I` f B

a,t f B
b,t

]T
, (3.49a)

et =
[

emg em`
e Ig e I` eB

a,t eB
b,t

]T
, (3.49b)

ftr =
[

fmg fm`
f Ig f I`

]T
, (3.49c)

etr =
[
emg em`

e Ig e I`

]T (3.49d)

with ft ∈Ft , et ∈ Et where Ft = Et =L 2(Ω)4 ×R2 ×R2. On Ft ×Et the following
non-degenerate bilinear form is defined:

〈ft | et 〉=
∫
Ω

( fmg emg+ fm`
em`

+ f Ig e Ig+ f I`e I` )dx+( f B
b,t )

T
eB

b,t+( f B
a,t )

T
eB

a,t . (3.50)

Using these notations, the Stokes-Dirac structure corresponding to the dissipa-
tive Hamiltonian representation of the TFM can be expressed as follows.
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Theorem 3.4.9 Consider Ft and Et as introduced above. Moreover, assume that
mg,m`, Ig, I` =: q1, q2, q3, q4 ∈ H 1(Ω). We also assume that q1, q2 > 0 on Ω. Then,
the linear subset Dt ⊂Ft ×Et defined as follows:

Dt =
{

(ft ,et ) ∈Ft ×Et | etr ∈ H 1(Ω)4, ftr =Jt (q)etr ,

(
f B

b,t
eB

b,t

)
=


f B

b1,t
f B

b2,t
eB

b1,t
eB

b2,t

=




q1 0 q3 0
0 q2 0 q4

0 0 1 0
0 0 0 1




emg

em`

e Ig

e I`


 (b), (3.51)

(
f B

a,t
eB

a,t

)
=


f B

a1,t
f B

a2,t
eB

a1,t
eB

a2,t

=




0 0 −1 0
0 0 0 −1

q1 0 q3 0
0 q2 0 q4




emg

em`

e Ig

e I`


 (a)

}
,

where

Jt (q) =−


0 0 ∂x (mg ·) 0
0 0 0 ∂x (m`·)

mg∂x (·) 0 ∂x (Ig ·)+ Ig∂x (·) 0
0 m`∂x (·) 0 ∂x (I`·)+ I`∂x (·)

 (3.52)

is a Stokes-Dirac structure with respect to the symmetric pairing given by

¿ (ft ,et ), (f̃t , ẽt ) À= 〈ft | ẽt 〉 + 〈f̃t | et 〉, (ft ,et ), (f̃t , ẽt ) ∈ Ft × Et , (3.53)

where the pairing 〈· | ·〉 is given in (3.50).

Proof: The proof is divided into two parts. We first prove that Dt ⊂D⊥
t .

We consider two pairs of flow and effort variables belonging to the Stokes-
Dirac structure, i.e., (ft ,et ) ∈ Dt and (f̃t , ẽt ) ∈ Dt . Using the earlier introduced
notations, we obtain:

¿ (ft ,et ), (f̃t , ẽt ) À=
∫
Ω

( fmg ẽmg + fm`
ẽm`

+ f Ig ẽ Ig + f I` ẽ I` )dx+ (3.54)∫
Ω

( f̃mg emg + f̃m`
em`

+ f̃ Ig e Ig + f̃ I`e I` )dx+

( f B
a,t )

T
ẽB

a,t + ( f B
b,t )

T
ẽB

b,t + ( f̃ B
a,t )

T
eB

a,t + ( f̃ B
b,t )

T
eB

b,t .
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Substituting the mappings between the flow and the effort variables, as in
(3.51), it is straightforward to see that equation (3.54) equals zero and so
Dt ⊂D⊥

t . This concludes the first part of the proof.
We now prove the converse part, i.e., D⊥

t ⊂Dt . For this, we follow the steps
similar to Proposition 4.1 in [53]. The proof consists of several repeated steps,
which are summarized below. We take (f̃t , ẽt ) ∈ D⊥

t i.e., (f̃t , ẽt ) ∈ Ft ×Et such
that ¿ (ft ,et ), (f̃t, ẽt) À = 0 ∀(ft ,et ) ∈Dt . To this end, we use the freedom in the
choice of the effort variables and exploit Lemma 3.4.8.
Step 1: Let (ft ,et ) ∈Dt with em`

,e Ig ,e I` = 0 and emg (a) = emg (b) = 0. Using (3.54),
we find that ∫

Ω
−(q1∂x emg )ẽ Ig + f̃mg emg dx = 0 ∀emg ∈ H 1

0 (Ω). (3.55)

Lemma 3.4.8 gives

q1ẽ Ig ∈ H 1(Ω) and f̃mg =−∂x (q1ẽ Ig ). (3.56)

Using q1 ∈ H 1(Ω) along with q1 > 0 on Ω, we obtain that ẽ Ig ∈ H 1(Ω).
Step 2: Considering (ft ,et ) ∈ Dt with emg ,e Ig ,e I` = 0 and em`

∈ H 1
0 (Ω), and fol-

lowing the procedure as in the previous step, we obtain:

q2ẽ I` ∈ H 1(Ω) and f̃m`
=−∂x (q2ẽ I` ). (3.57)

As before, using q2 ∈ H 1(Ω) along with q2 > 0 on Ω, we have that ẽ I` ∈ H 1(Ω).
Step 3: For (ft ,et ) ∈Dt with emg ,em`

,e I` = 0 and e Ig ∈ H 1
0 (Ω), we obtain:

∫
Ω
−∂x (q1e Ig )ẽmg − ∂x (q3e Ig )ẽ Ig − (q3∂x e Ig )ẽ Ig + f̃ Ig e Ig dx = 0 ∀e Ig ∈ H 1

0 (Ω).

We rewrite the above equation as follows:∫
Ω
−(∂x q1)(e Ig ẽmg )− (∂x q3)(e Ig ẽ Ig )− (∂x e Ig )·(

q1ẽmg +2q3ẽ Ig

)
+ f̃ Ig e Ig dx = 0 ∀e Ig ∈ H 1

0 (Ω).

As a result of Lemma 3.4.8, we have that q1ẽmg +2q3ẽ Ig ∈ H 1(Ω). Moreover, we
obtain the following identity:

f̃ Ig =−∂x (q1ẽmg +2q3ẽ Ig )+ ẽmg∂x q1 + ẽ Ig∂x q3. (3.58)
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Using q1, q3, ẽ Ig ∈ H 1(Ω) and that q1 > 0, it can easily be deduced that ẽmg ∈
H 1(Ω), and so (3.58) can be written as

f̃ Ig =−q1∂x ẽmg −∂x (q3ẽ Ig )−q3∂x ẽ Ig . (3.59)

Step 4: Considering (ft ,et ) ∈Dt with emg ,em`
,e Ig = 0 and e I` ∈ H 1

0 (Ω), we obtain:∫
Ω
−∂x (q2e I` )ẽm`

− ∂x (q4e I` )ẽ I` − (q4∂x e I` )ẽ I` + f̃ I`e I`dx = 0 ∀e I` ∈ H 1
0 (Ω).

Re-writing the above equation as in the previous step and using Lemma 3.4.8,
we have that q2ẽm`

+2q4ẽ I` ∈ H 1(Ω) and also obtain:

f̃ I` =−∂x (q2ẽm`
+2q4ẽ I` )+ ẽm`

∂x q2 + ẽ I`∂x q4. (3.60)

Using q2, q4, ẽ I` ∈ H 1(Ω) and that q2 > 0, it can easily be deduced that ẽm`
∈ H 1(Ω)

and so
f̃ I` =−q2∂x ẽm`

−∂x (q4ẽ I` )−q4∂x ẽ I` . (3.61)

Step 5: Let (ft ,et ) ∈ Dt with em`
= e Ig = e I` = 0 and emg (a) = 0,emg (b) 6= 0. Using

the procedure outlined above, we obtain the following identity: ẽB
b1,t = ẽ Ig |b .

Step 6: Let (ft ,et ) ∈Dt with emg = e Ig = e I` = 0 and em`
(a) = 0,em`

(b) 6= 0. We now
observe that ẽB

b2,t = ẽ I` |b holds.
Step 7: Let (ft ,et ) ∈ Dt with emg = em`

= e I` = 0 and e Ig (a) = 0,e Ig (b) 6= 0. Using
the outlined procedure, we now obtain:

−(q1ẽmg e Ig ) |b −(q3ẽ Ig e Ig ) |b + f̃ B
b1,t e Ig |b= 0. (3.62)

Finally, we obtain the following identity:

f̃ B
b1,t =

(
q1ẽmg +q3ẽ Ig

)
|b . (3.63)

Step 8: Let (ft ,et ) ∈ Dt with emg = em`
= e Ig = 0 and e I` (a) = 0,e I` (b) 6= 0. Using

the outlined procedure, we now obtain the following identity:

f̃ B
b2,t =

(
q2ẽm`

+q4ẽ I`

)
|b . (3.64)

The boundary port-variables f B
a1.t , f B

a2,t ,eB
a1,t and eB

a2,t can be obtained in a man-
ner similar to the one outlined for computing the boundary port-variables at the
right boundary of the spatial domain Ω.

Thus, in summary we have shown D⊥
t ⊂Dt and, hence, Dt is a Stokes-Dirac

structure. ■
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Remark 3.4.10 We have demonstrated the Stokes-Dirac structure representation
of the TFM for one particular (conservative) choice of state coordinates. The Stokes-
Dirac structure representation can be demonstrated analogously for the choice of
the state vector as in Theorem 3.3.3, which is trivial due to the state-independent
nature of the (formally) skew-adjoint operator J̄T .

We now discuss the representation of the Stokes-Dirac structure correspond-
ing to the skew-adjoint operator JD in the scope of the DFM without slip.

3.4.2 Stokes-Dirac structure representation for the DFM

We introduce the notations

fd =
[

fmg,d fm`,d fv,d f B
a,d f B

b,d

]T
, (3.65a)

ed =
[

emg,d em`,d ev,d eB
a,d eB

b,d

]T
, (3.65b)

fdr =
[

fmg,d fm`,d fv,d
]T

, (3.65c)

edr =
[
emg,d em`,d ev,d

]T
. (3.65d)

A Stokes-Dirac structure for the dissipative Hamiltonian representation of the
DFM can be expressed as follows.

Theorem 3.4.11 Consider Fd = Ed =L 2(Ω)3 ×R2. We assume that Ag := mg

mg+m`
,

A` := m`
mg+m`

∈ H 1(Ω). We also consider that the non-degenerate bilinear form on
Fd ×Ed is defined in the following way:

〈fd | ed 〉 =
∫
Ω

( fmg,d emg,d + fm`,d em`,d + fv,d ev,d )dx + f B
b,d eB

b,d + f B
a,d eB

a,d . (3.66)

Then, the linear subset Dd ⊂Fd ×Ed given by

Dd =
{

(fd ,ed ) ∈Fd ×Ed ,

(
Ag emg,d + A`em`,d

ev,d

)
∈ H 1(Ω)2, fdr =Jd (zD )edr ,

(
f B

a,d
eB

a,d

)
=

(−Ag −A` 0
0 0 1

)emg,d

em`,d

ev,d

 (a),

(
f B

b,d
eB

b,d

)
=

(
Ag A` 0
0 0 1

)emg,d

em`,d

ev,d

 (b)
}

, (3.67)

where

Jd (zD ) =
 0 0 −∂x (Ag ·)

0 0 −∂x (A`·)
−D(Ag ·)&D(A`·) 0
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is a Stokes-Dirac structure with respect to the symmetric pairing given by, see
(3.66):

¿ (fd ,ed ), (f̃d , ẽd ) À=〈fd | ẽd 〉+〈f̃d | ed 〉, (fd ,ed ), (f̃d , ẽd ) ∈Fd ×Ed . (3.68)

D(Ag ·)&D(A`·) is the operator with domain all emg,d ,em`,d ∈ L 2(Ω) such that
Ag emg,d + A`em`,d ∈ H 1(Ω), and its action is given by

D(Ag ·)&D(A`·)
(

emg,d

em`,d

)
= ∂x (Ag emg,d +A`em`,d )−emg,d∂x Ag −em`,d∂x A`. (3.69)

Remark 3.4.12 This can be considered as a special case of the extended structure
shown in Proposition 4.2.9, Chapter 4 in the context of spatially-varying cross-
section. We skip the proof of Theorem 3.4.11 and instead refer to Proposition
4.2.9, Chapter 4 for its derivation.

Remark 3.4.13 The formally skew-adjoint operator JT (q) in Theorem 3.3.6 is
equal to the skew-adjoint operator Jt (q) associated to the Stokes-Dirac structure
representation in Theorem 3.4.9. These operators are found to be equal only be-
cause of the assumptions on the state variables q; see Theorem 3.4.9. In general,
the formally skew-adjoint operator and the skew-adjoint operator associated to the
Stokes-Dirac structure representation need not be the same, see Theorem 3.4.11.

We have shown Stokes-Dirac structure representations for both dissipative
Hamiltonian formulations of the mathematical models under consideration.

3.5 Special case considerations for the DFM

In this section, we disqualify the DFM with the Zuber-Findlay slip conditions as
an energy consistent model for two-phase flow, and, thus, motivate the reasons
behind considering the DFM without slip.

We recall the dissipation inequality obeyed by the TFM (see Theorem 3.3.6).
Under the imposition of periodic boundary conditions, the time derivative of the
Hamiltonian (3.25) can be expressed using (3.2d) as follows:

dH

dt
=−

∫
Ω

(δqH (q))T (RT )δqH (q) dx,

=−
∫
Ω

bM
g

(
vg − v`

)2 dx,

=−
∫
Ω

Mi g (v`− vg) dx.

(3.70)
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The equivalence between the TFM and DFM, discussed in Section 3.2, gives
a better understanding of the DFM, especially when comparing the energy con-
siderations between these two models since the only difference is how the term
Mi g is chosen. In the TFM, it is chosen to be proportional to the slip velocity
v`− vg with a non-negative coefficient of proportionality bM

g . This linear rela-
tionship has been chosen to enforce an entropy inequality [87] and it is the basic
ingredient to show that the Hamiltonian is non-increasing along solutions, see
Theorem 3.3.6. However, to imitate the behaviour of the DFM from the TFM,
the expression for Mi g in (3.17) is much more complex and it is challenging to
analytically investigate the sign of the term

∫
ΩMi g (v`− vg) dx that appears in

(3.70).

If the term
∫
ΩMi g (v`−vg) dx is always positive, it can be claimed that the dis-

sipation inequality dH /dt ≤ 0 also holds for the (general) DFM (using (3.70)).
It is worth recalling that the dissipation inequality dHD /dt ≤ 0 holds for the
DFM under zero slip considerations (see Theorem 3.3.10).

The theoretical assessment of the term
∫
ΩMi g (v` − vg) dx for the model

with non-zero slip is not straightforward due to its complex non-linear nature.
Hence, we investigate its behaviour numerically. In order to calculate µg ,µ`
and ζ as in Theorem 3.2.5, the same expressions as computed in [56] are used.
The Rusanov scheme [156] together with Zuber-Findlay slip (with K = 1.07 and
S = 0.216 m/s cf. (3.14)) is used to solve the DFM numerically in a horizontal
1000 m-long spatial domain with the spatial and temporal step size of 0.5 m
and 0.0005 s, p`0 = 1 bar, ρ`0 = 1000 kg/m3, c` = 1000 m/s, and cg = 316 m/s.
We consider periodic boundary conditions with the initial condition as shown
in Figure 3.1. We use this test case to draw a concrete conclusion on the sign
of

∫
ΩMi g

(
v`− vg

)
dx. As obvious from Figure 3.1, we have found a counter

example for which this integral is negative for all time instants.

The numerical results indicate that the proposed Hamiltonian HD with peri-
odic boundary considerations does not guarantee the non-increasing behaviour
of the Hamiltonian functional along solutions of the DFM. A possible under-
lying reason for this effect could be that the Hamiltonian (5.8) (under zero
gravitational contribution) is not suitable for the DFM with the Zuber-Findlay
slip. However, the Hamiltonian HD has the interpretation of the energy. The
increment in this energy along the solutions in principle disqualifies the DFM for
such slip conditions as an energy-consistent model for two-phase flow. Hence,
we do not consider the general case of the DFM and only focus on a special case
of the model, i.e., the model without slip.
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Figure 3.1: Initial condition (top) and the temporal evolution of
∫
ΩMi g (v` − vg)dx for

the DFM with periodic boundary conditions (bottom) .

3.6 Conclusions

We introduced a dissipative Hamiltonian formulation for two variants of multi-
phase flow models, i.e., the Two-Fluid Model (TFM) and the no-slip Drift Flux
Model (DFM) across a constant cross-section. Moreover, we presented state-
dependent Stokes-Dirac structure representations corresponding to the skew-
adjoint operators obtained for both the TFM and for the DFM without slip (un-
der certain choice of state-variables) along with the proof of corresponding rep-
resentation for the TFM. Port-Hamiltonian representations for the multi-phase
models are implicitly represented in terms of the Stokes-Dirac structures. Ad-
ditionally, we numerically reasoned, by exploiting a connection to the TFM, to
support the consideration of the DFM without slip.

We have shown that complex non-linear partial differential equations, such
as the ones governing two-phase flow, can also be cast in port-Hamiltonian
formulations via underlying Stokes-Dirac structures. We stress that the devel-
oped port-Hamiltonian realizations are not able to deal with vanishing phases,
and this calls for coming up with an appropriate mitigating measure in order
to have port-Hamiltonian formulations across whole range of operating condi-
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tions. Developing Stokes-Dirac structure representations requires generaliza-
tions/extensions to the matrix/operator theory in the scope of non-linear dis-
tributed parameter port-Hamiltonian systems; and a large part of this chapter
is dedicated to address this aspect. The parametrization of boundary port vari-
ables in the scope of obtained port-Hamiltonian realizations turns out to be a
non-trivial task, and deserves further attention for developing a sound mathe-
matical framework.

A result presented in Section 3.5 implies that the DFM with the Zuber-
Findlay slip conditions is not an energy consistent model for two-phase flow
and, thus, motivates the need for identifying energy-consistent slip laws. In
the past, the DFM with the Zuber-Findlay slip conditions has been observed to
yield numerically unstable results (for some operating conditions) when finite-
volume based discretization is applied on such model. However, these observa-
tions lack an underlying explanation in the sense that the response due to the
nature of the mathematical model and the nature of the employed numerical
method for discretization has not been decoupled; and, generally, the numeri-
cal method has been held responsible for observed issues. In view of the non-
existing rigorous theoretical/mathematical analysis of two-phase flow models,
the result obtained in Section 3.5 holds a significance as it indicates that the
mathematical nature of the model itself is susceptible to observed behaviour;
and that numerical solvers may not be the ‘right’ tooling to be held accountable
for the observed numerical behaviour. In hindsight, we also believe that the lack
of an energy-consistent model under Zuber-Findlay slip conditions is attributed
to the conditional hyperbolicity of the DFM. However, these aspects do not form
the focus of this dissertation, and definitely deserve further focus in the future.





Chapter 4
Compositional
port-Hamiltonian modelling for
MPD systems

Many single- and multi-phase fluid dynamical systems, as, e.g., encountered in
Managed Pressure Drilling (MPD), are governed by non-linear evolutionary par-
tial differential equations. A key aspect of these systems is that the fluid typically
flows across spatially and temporally varying cross-sections. We, first, show that
not any choice of state-variables may be apt for obtaining a port-Hamiltonian real-
ization under spatially varying cross-sections, which are encountered in MPD. We
propose a suitable modified choice of the state-variables and then represent fluid
dynamical systems of interest in port-Hamiltonian representations. We define these
port-Hamiltonian representations under spatial variation in the cross-section with
respect to a new proposed state-dependent and extended Stokes-Dirac structure.
Moreover, we also account for temporal variations in the cross-section and obtain
a suitable structure that respects key properties, such as, for instance, the property
of dissipation inequality. Furthermore, a single-phase flow model, a dissipative
mathematical component, for instance, a drill bit, and a single-phase/two-phase
flow model are interconnected to predict hydraulics for MPD applications. These
subsystems are interconnected in a power-preserving manner to build an aggre-
gated port-Hamiltonian system for real-life MPD scenarios. We derive the condition
for the passivity of the composed system. We also prove that the interconnection
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junction connecting the single- and two-phase flow models possesses a conditional
dissipativity property, which is closely related to the passivity of the composed MPD
system.

4.1 Introduction

In the previous chapter, we focused on developing port-Hamiltonian representa-
tions for two-phase flow models (across a unit and constant cross-section) useful
in the scope of modelling multi-phase dynamics in a wellbore under gas influx
from the reservoir. The focus of this chapter is on developing a (composed) port-
Hamiltonian representation of an automated Managed Pressure Drilling (MPD)
system, introduced earlier in Chapter 2, in order to model a vast range of real-
life drilling operations. To this end, we recall that hydraulics in the MPD sys-
tem can be characterized by interconnection of subsystems governed by single-
and two-phase flow models, and mathematical models governed by non-linear
ordinary differential or algebraic equations (for instance, a hydraulic model
across a bit). Furthermore, as mentioned in Section 2.3.1, Chapter 2, the fluid
flow path comprises of different geometrical specifications. This motivates the
need to develop port-Hamiltonian representations for (single or multi-phase)
fluid dynamical systems admitting flows across variable cross-section before in-
terconnecting different subsystems to obtain a (composed) port-Hamiltonian
representation of an automated MPD system. Moreover, the geometrical cross-
section across which the fluid flows can vary over time during some drilling
operations. For instance, during tripping, the drill string moves at a certain
speed, and this results in temporally varying flow cross-section across different
parts of the annulus. In view of the aforementioned discussion, the focus of Sec-
tion 4.2 and Section 4.3 is on developing port-Hamiltonian representations for
fluid dynamical systems with spatially and temporally varying cross-sections. In
Section 4.4 - Section 4.6, we will focus on interconnecting subsystems to form
an aggregated port-Hamiltonian representation for the MPD system.

The modelling effort to develop port-Hamiltonian realizations for fluid dy-
namics across varying cross-sections is a stepping stone towards simulation and
control for MPD systems as introduced in [130]. In this scope, we provide an
overview of the state of the art. A port-Hamiltonian formulation for single-phase
models for flows across constant cross-section already exists with several differ-
ent choices of the equation of state for the phase of interest; see [48]. Moreover,
we recall that port-Hamiltonian formulations have been presented in Chapter
3 (or [19]), for two-phase models with fluid(s)/phases(s) flowing across con-
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stant (and unit) cross-section. However, to the best of our knowledge, no works
have considered a port-Hamiltonian representation of single- and two-phase
flow models across spatially and temporally varying cross-sections. Moreover,
we recall that most of the research in the field of port-Hamiltonian systems
has been done for quadratic Hamiltonian functionals. It is also well known
that single-phase or multi-phase flow models possess non-quadratic Hamilto-
nian functionals; see Chapter 3 and [95]. It is of great interest to investi-
gate whether accounting for varying geoemetrical cross-sections in the port-
Hamiltonian framework requires fundamental mathematical modifications to
the existing theory of port-Hamiltonian systems.

The benefits of port-Hamiltonian framework have been already outlined in
Chapter 3. Here, we motivate the advantage of such a framework in the scope of
compositional system modelling. The port-Hamiltonian framework has gained
a lot of momentum recently [13,16,34,43,62,97,116–119,178,184,185,207].
This is mainly owed to the favourable properties of such a formalism for both
finite- and infinite-dimensional dynamical systems that are characterized by
differential, algebraic or mixture of differential and algebraic equations; refer
to [185, 188, 189]. Furthermore, this paradigm has helped to integrate finite-
and infinite-dimensional components and preserve key system-theoretic prop-
erties due to an attractive property called compositionality [139,185]. In other
words, a key property of port-Hamiltonian systems is that the interconnection
of several port-Hamiltonian systems still preserve the port-Hamiltonian struc-
ture (in an aggregated sense) if the interconnection is performed in a power-
preserving manner [42,53].

A lot of work has already been done in the past in the scope of power-
preserving interconnection of finite-dimensional and infinite-dimensional com-
ponents [42, 53]. The fundamental tool to compose subsystems in a power-
preserving manner is an underlying geometric structure called Dirac structure.
The special class of Dirac structures, known as Stokes-Dirac structures, were
extensively discussed in Chapter 3. Such geometric structures are also studied
in this chapter. In the scope of power-preserving interconnection, it is already
well known that the composition of Dirac structures in the finite-dimensional
setting is known to always yield a (composed) Dirac structure [120, 121, 186].
However, the composition of Dirac structures in an infinite-dimensional setting
may not always be a (composed) Stokes-Dirac structure. In other words, the
compositionality holds only conditionally in an infinite-dimensional setting. For
instance, necessary and sufficient conditions for the composition of two infinite-
dimensional Dirac structures to be a Dirac structure were given in [99]. In view
of such conditional composition in the presence of infinite-dimensional systems,
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the compositional port-Hamiltonian modelling of an MPD system is not only a
significant research topic for application purposes, but also from a mathematical
standpoint.

To the best of our knowledge, compositional port-Hamiltonian modelling for
MPD has not been taken up yet and, hence, this forms one of the focal objec-
tives in this chapter. We employ the existing theory to interconnect (individual)
mathematical subsystem models: (i) a single-phase flow port-Hamiltonian re-
alization corresponding to the fluid dynamics in the drill string, (ii) hydraulics
model across drill bit, and (iii) a single- or two-phase flow port-Hamiltonian
realization corresponding to the fluid dynamics in the annulus under gas/liquid
influx from the reservoir. We connect these models in a power-preserving man-
ner and eventually construct an aggregated port-Hamiltonian model for MPD.
A compositional port-Hamiltonian representation of the MPD model is useful
when it needs to be connected to other systems such as a reservoir model,
where each system is characterized by a particular energy property. The com-
positional structure, presented in this work, can be viewed as a stepping stone
towards a holistic paradigm for predicting MPD-controlled drilling dynamics.
Most controllers for MPD are designed based on lumped-parameter models ap-
proximating the hydraulics and, thereby, ignore the fast pressure dynamics [2].
The framework introduced in this chapter enables an energy-based controller
design while taking all (infinite-dimensional) dynamics into account.

The main contributions of this chapter are as follows: (i) we develop (dissi-
pative) Hamiltonian representations of single-phase and two-phase flow models
for flows across spatially and temporally varying cross-sections, (ii) we propose
a novel state-dependent and extended Stokes-Dirac structure to account for dis-
sipation effects and the exchange of energy via the boundaries, and define port-
Hamiltonian representations with respect to these Stokes-Dirac structures, (iii)
we perform a power-preserving interconnection of fluid dynamics model for the
drill string, hydraulics model across bit, and fluid dynamics model for the an-
nulus, and (iv) we derive a conditional power-preserving region at the junction
(i.e., across the bit) connecting the drill string and the annulus.

The structure of this chapter is as follows. We consider (only) spatially
varying geometry and present (dissipative) Hamiltonian representations, pro-
pose state-dependent and extended Stokes-Dirac structures, and define port-
Hamiltonian representations with respect to these structures in Section 4.2 for
mathematical models of interest. Section 4.3 discusses the corresponding port-
Hamiltonian structure under both spatial and temporal variations in the area
of cross-section. In Section 4.4, single- and two-phase flow port-Hamiltonian
model realizations (accounting for effects of area) are restated in the sense of
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considered global coordinate system to define a composed MPD system. In Sec-
tion 4.5, the liquid or gas influx from the reservoir is considered for the compo-
sition of an MPD system, and the interconnection of the single- and two-phase
flow models together with the conditional power preservation at the intercon-
nection junction is discussed. In Section 4.6, the power-preserving interconnec-
tion of MPD systems in a real-life drilling scenario is investigated. We finally
end the chapter with the conclusions.

4.2 Port-Hamiltonian modelling - spatial area vari-
ations

In this section, we consider a single-phase flow to be modelled by Isothermal
Euler equations, and a two-phase flow to be modelled by the Drift Flux Model,
as introduced in Chapter 2. We refer the reader to Section 2.3.1, Chapter 2 for
mathematical details of these models governing fluid dynamical behaviour un-
der variations in the geometrical cross-sections. We will consider zero slippage
between the two phases while employing the Drift Flux Model in the wake of
observations provided in Section 3.5, Chapter 3. In this section, we will also
consider reference pressure to be zero (i.e., p`0 = 0) for the sake of simplicity.

Remark 4.2.1 In light of Lemma 3.2.2 and Lemma 3.2.3, it is worth mentioning
that, using elimination of variables, the system in (2.1) can be rewritten in terms of
two partial differential equations in two unknowns. Similarly, the set of equations
(2.2) and (2.3) - (2.6) along with the assumption of zero slippage, i.e., vg = v`
can be expressed in terms of three partial differential equations in three unknowns.
We omit this model reformulation in this chapter and instead refer to Chapter 3
for further insights on similar models.

We focus on accounting for only smooth spatial cross-section variations and
developing corresponding port-Hamiltonian model representations in this sec-
tion. Adopting the same recipe as in Chapter 3, we first introduce (dissipative)
Hamiltonian representations, i.e., without boundary effects/under the assump-
tion of zero boundary conditions for the mathematical models under consider-
ation. The resulting formally skew-adjoint operator(s) and the resistive matrix
are used as a tool to define a candidate geometrical structure, which is later
shown to be a non-canonical/extended Stokes-Dirac structure. This geometric
structure yields a way to describe the boundary port variables ultimately lead-
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ing to port-Hamiltonian representations of the models of interest. These port-
Hamiltonian representations inherit properties from the Stokes-Dirac structures.

4.2.1 Dissipative Hamiltonian Representation

We consider the single-phase model governed by (2.1). Considering the total
energy of the system, the Hamiltonian functional, consisting of kinetic, internal
and potential energy, is given by:

H s =
∫
Ω

A(ρ
v2

2
+ρc2

` lnρ+ c2
`ρ`0 +ρg x sinθ)dx, (4.1)

where Ω= [a,b] refers to the spatial domain.

Remark 4.2.2 The above functional is similar to the functional used in [48].
However, here H s is distinct as it accounts for the effects of area (A). Moreover,
the equation of state (an algebraic relation relating density and pressure) is also
different.

We first choose a state coordinate vector comprised of non-conservative vari-
ables, i.e., ρ and v , and aim to develop a port-Hamiltonian representation for
Isothermal Euler equations (governed by the set of equations (2.1)) across a
variable cross-section. This case is used as a test-bed to emphasize that not
any choice of state-variables may be apt to obtain a structure with the required
properties.

The Isothermal Euler equations in (2.1) can be re-written as follows:

(
A 0
0 A

)(
∂tρ

∂t v

)
=


(

0 −∂x (·)
−∂x (·)+

(
1
A∂x A

)
× 0

)
︸ ︷︷ ︸

M

+
(

0 0

0 − 32µ
ρ2d 2

)(
δH s
δρ
δH s
δv

)
. (4.2)

Here, k × l indicates standard multiplication, i.e.,
(

1
A∂x A

)
× δH s

δρ is a standard

product between
(

1
A∂x A

)
and δH s

δρ . Other notations carry the same meaning as
introduced earlier in Chapter 3.
We omit the derivation as the above formulation can be obtained in a straight-
forward manner.

We decompose the operator M , introduced in (4.2), as follows:

M :=
(

0 −∂x (·)
−∂x (·) 0

)
+

(
0 0(

1
A∂x A) 0

)
. (4.3)
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It is trivial to see that the first term in the right-hand side of (4.3) is formally
skew-adjoint. However, the second term in the above equation is not formally
skew-adjoint (under spatial cross-section variation). As a result, the operator M
is not formally skew-adjoint. It is also clearly observable that the second term in
the right-hand side of (4.3) would have been the zero matrix (which is trivially
formally skew-adjoint) under constant cross-section. Hence, the operator M
would be formally skew-adjoint in that case. The above observations illustrate
that the primitive state variables may not always have the desired properties at-
tributed to general port-Hamiltonian representations. However, we stress that
the system written in terms of non-conservative state variables can be formu-
lated in a port-Hamiltonian representation with special care, as discussed next.

We first recall the definition of port-Hamiltonian descriptor systems intro-
duced in [123] in a slightly adapted manner.

Definition 4.2.3 A port-Hamiltonian descriptor system is a system of differential(-
algebraic) equations of the form

E(t , x)ẋ + r (t , x) = (J (t , x)−R(t , x))z(t , x)+B(t , x)u,

y = B(t , x)T z(t , x),
(4.4)

with state x(t ) ∈ Rn , input u(t ) ∈ Rm , output y(t ) ∈ Rm , the flow matrix E(t , x) ∈
Rl×n , time-flow function r (t , x) ∈ Rl , effort function z(t , x) ∈ Rl , structure matrix
J = −J T ∈ Rl×l , dissipation matrix R = RT ≥ 0, port matrix B(t , x) ∈ Rl×m , and the
gradient of the Hamiltonian H satisfies ∂xH = E T z, and ∂t H = zT r pointwise.
From this structure the dissipation inequality immediately directly follows, since

dH

d t
=(∂xH )T ẋ+∂t H =zT (E ẋ + r ) = zT ((J −R)z +Bu) =−zT Rz + zT Bu ≤ yT u.

(4.5)

In [123], the framework of port-Hamiltonian descriptor system has been used
to describe differential algebraic equations. It has also been mentioned that this
framework can also be used to describe partial differential algebraic equations.
We next show that the above described single-phase flow model written in terms
of non-conservative variables can be formulated in an adapted version of the
framework introduced in Definition 4.2.3.

Remark 4.2.4 We ignore the resistive effects for the sake of simplicity in the port-
Hamiltonian descriptor realization mentioned below. Moreover, we also consider
that ρ`0 = 0. These effects do not play an essential role in showing that the
model written in terms of non-conservative variables can be formulated as a port-
Hamiltonian descriptor realization.
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Theorem 4.2.5 Considering the governing equations (2.1), the associated dissi-
pative Hamiltonian representation in a port-Hamiltonian descriptor formulation
is given by

Es∂t q̄ = (J̄s )z̄s (t , q̄) (4.6)

with state variables q̄ := [q̄1, q̄2]T = [ρ, v]T , the Hamiltonian functional in H s

(4.1), where

Es =
(

A 0
0 A

)
, (4.7)

J̄s =
(

0 −∂x (A·)
−A∂x (·) 0

)
(4.8)

is a formally skew-adjoint operator with respect to the L 2 inner product, and

z̄s (t , q̄) = (E T
s )

−1
δq̄H s =

(
v2

2 + c2
`

lnρ+ c2
`

ρv

)
. (4.9)

Proof: The model (2.1) can be straightforwardly written only in terms of q̄ as
follows:

A∂tρ =−∂x (Aρv), (4.10a)

A∂t v =−Av∂x v − Ac2
`

ρ
∂xρ. (4.10b)

The variational derivatives of H s with respect to state variables q̄ are given by:

δq̄1H s = A(
v2

2
+ c2

` lnρ+ c2
`), δq̄2H s = Aρv. (4.11)

Using Es as in (4.7) along with the variational derivatives computed in (4.11),
it can be straightforwardly shown that (4.9) holds.
Next, we prove the claim equation by equation. The first line of (4.6) reads

A∂tρ =−∂x

(
A(ρv)

)
. (4.12)

The second line of (4.6) reads

A∂t v =−A∂x

( v2

2
+ c2

` lnρ+ c2
`

)
=−Av∂x v − Ac2

`

ρ
∂xρ. (4.13)

The claim follows by observing that (4.12) together with (4.13) is identical to
(4.10).
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Furthermore, the (formal) skew-adjointness of J̄s (with respect to the L 2 inner
product) can be straightforwardly shown by following the lines of reasoning
used in Section 3.3, Chapter 3.
This completes the proof. ■

One of the key hindrances in obtaining a port-Hamiltonian formulation of
a model written in terms of non-conservative variables could be due to the use
of the standard L 2 inner product. For instance, consider the model arising in
musical acoustics as in [122]. The model is equivalent to a wave equation,
and accounts for model coefficients varying in space. Such a spatial variation
of model coefficients/parameters bears similarities to the spatially varying geo-
metrical cross-section in the scope of this chapter. The role of inner product is
clearly evident from this model example, as shown in [122]. In the context of
musical acoustic model, the formal skew-adjointness of an operator holds if it is
defined with respect to a weighted inner product. It is, hence, tempting to check
if the operator M in (4.3), which is not formally skew-adjoint with respect to
the L 2 inner product, can be shown to be formally skew-adjoint with respect
to a weighted inner product. However, it is observed that the operator M is
not formally skew-adjoint even with respect to a weighted inner product. We
care to mention that the operator resulting in our setting and the one arising in
the context of musical acoustics differ and, hence, weighted inner product may
not always resolve the issues in deriving a port-Hamiltonian formulation for a
model written in terms of non-conservative variables.

The above discussion shows that a special treatment is required in deriving
port-Hamiltonian (descriptor) formulations with respect to non-conservative
state variables. Although we could formulate a port-Hamiltonian descriptor
formulation using non-conservative state variables, in the rest of this section,
we will derive port-Hamiltonian formulations with respect to conservative state
variables. Besides the fact that the conservative state variables (generally) yield
relevant structural properties, relying on conservative state variables is also mo-
tivated from the fact that the non-conservative numerical schemes may not con-
verge to the correct solution if a shock wave is present in the flow.

We now define the state vector in terms of conservative state variables. In
addition, we extend the reduced version of (2.1) (obtained upon elimination
of variable p) by an extra equation ∂t A = 0, which means that only spatial
variations of A are allowed. Such an additional equation governing spatial or
temporal change of area makes sense since temporal variations in geometrical
cross-section will basically increase the number of differential equations by one.
The latter aspect is treated in detail in Section 4.3. The proposed methodology,
even for accounting only spatial variations in the cross-sectional area, can be
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viewed as a step towards a unified framework under both spatial and temporal
variations in the cross-section. Finally, by invoking the aforementioned mod-
ifications, we demonstrate the dissipative Hamiltonian representation for the
single-phase flow model while accounting for (smooth) spatial cross-sectional
area variations.

We re-write the Hamiltonian functional in terms of the chosen set of state
variables q = [q1, q2, q3]T := [A, Aρ, Aρv]T . This yields

H s =
∫
Ω

q2
3

2q2
+q2c2

` ln(
q2

q1
)+q1c2

`ρ`0 +q2g x sinθdx. (4.14)

We now introduce the dissipative Hamiltonian representation for the single-
phase model.

Theorem 4.2.6 Considering the reformulated form of governing equations (2.1),
the associated dissipative Hamiltonian representation is given by

∂t q = (Js (q)−Rs (q))δqH s (q) (4.15)

with the Hamiltonian functional (4.14), where

Js =
0 0 0

0 0 −∂x (q2·)
0 −q2∂x (·) −q3∂x (·)−∂x (q3·)

 (4.16)

is a formally skew-adjoint operator with respect to the L 2 inner product, and

Rs =
0 0 0

0 0 0

0 0 q1
32µ
d 2

 (4.17)

is symmetric and positive semi-definite matrix.

Proof: We evaluate the variational derivatives with respect to the state variables
q. These are given by:

δH s

δq1
=−q2

q1
c2
`+ρ`0c2

`, (4.18a)

δH s

δq2
=− q2

3

2q2
2

+ c2
` ln(

q2

q1
)+ c2

`+ g x sinθ, (4.18b)

δH s

δq3
= q3

q2
. (4.18c)
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Using these variational derivatives, the claim that (4.15) is equivalent to a refor-
mulated version of (2.1) (with additional ∂t A = 0) follows in a manner similar
to the derivation discussed in-depth in Theorem 4.2.7. Hence, we omit the
derivation here.

The positive semi-definiteness and symmetric nature of Rs follows immedi-
ately from the positivity of q1, µ and d , and the structure of the matrix. The
formal skew-adjointness of Js essentially follows from integration by parts and
neglecting the boundary conditions. The operator Js has terms similar to the
skew-adjoint operators in Chapter 3 (or [19]). For the sake of brevity, we omit
the proof and instead refer to Chapter 3 (or [19]) for a similar derivation.

Using the properties of Js and Rs , the following dissipation inequality holds:

dH s

d t
=

∫
Ω

(δqH s (q))T ∂t q dx

=
∫
Ω

(δqH s (q))T
(
(Js (q)−Rs (q))δqH s (q)

)
dx

=
∫
Ω

(δqH s (q))T (−Rs (q))δqH s (q) dx ≤ 0.

(4.19)

This completes the proof. ■
We now consider a two-phase Drift Flux Model without slip, i.e., (2.2) and

(2.3) - (2.6) along with the assumption of zero slippage, i.e., vg = v` = v ,
and show the corresponding dissipative Hamiltonian representation under the
choice of conservative state variables. Following the choice of candidate Hamil-
tonian functional in [19], we now choose the Hamiltonian functional in the
following manner:

H t =
∫
Ω

A(mg
v2

2
+m`

v2

2
+mg c2

g lnρg +m`c2
` lnρ`+
(1−αg )β+ (mg +m`)g x sinθ)dx,

where β= ρ`0c2
`
. The above functional can be expressed in terms of the follow-

ing choice of state-variables q̃ = [q̃1, q̃2, q̃3, q̃4]T := [A, Amg , Am`, A(mg +m`)v]T

as follows:

H t =
∫
Ω

(
q̃1(

q̃2

2q̃1
v2 + q̃3

2q̃1
v2)+ q̃2c2

g ln(
p

c2
g

)+

q̃3c2
` ln(

p +β
c2
`

)+ q̃1(1−αg )β+(q̃2 + q̃3)g x sinθ)dx, (4.20)
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where v can be expressed in terms of the chosen state-variables by a relation
v = q̃4

q̃2+q̃3
. Moreover, we use the relations in [5] to obtain the gas void fraction

αg from the mass variables, which is given by:

αg =− q̃2

q̃1

c2
g

2β
− q̃3

q̃1

c2
`

2β
+ 1

2
+
p
∆, (4.21)

where

∆=
(( q̃2

q̃1

c2
g

2β
+ q̃3

q̃1

c2
`

2β
− 1

2

)2

+ q̃2

q̃1

c2
g

β

)
. (4.22)

The pressure p can be computed in the following way:

p = q̃2

q̃1
c2

g +
q̃3

q̃1
c2
`−β(1−αg ). (4.23)

Next, we discuss the dissipative Hamiltonian representation for the two-phase
model. We consider a model reformulation of the governing equations (2.2)
along with the closure equations (2.3) - (2.6) under the assumption of zero
slippage, i.e., vg = v` = v , and, express these as a system composed of three
equations in three unknowns (state-variables). Moreover, as before, we consider
an additional equation ∂t A = 0. We refer to the resulting model as Σ in the
sequel.

Theorem 4.2.7 The dissipative Hamiltonian representation of the reformed model
Σ in the scope of two-phase flow models takes the following form:

∂t q̃ = (Jt (q̃)−Rt (q̃))δq̃H t (q̃) (4.24)

with state variables q̃= [q̃1, q̃2, q̃3, q̃4]T = [A, Amg , Am`, A(mg +m`)v]T , the Hamil-
tonian functional (4.20), and where

Jt =


0 0 0 0
0 0 0 −∂x (q̃2·)
0 0 0 −∂x (q̃3·)
0 −q̃2∂x (·) −q̃3∂x (·) −∂x (q̃4·)− q̃4∂x (·)

 (4.25)

is a formally skew-adjoint operator with respect to the L 2 inner product, and

Rt =


0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 q̃1
32µm

d 2

 (4.26)

is a symmetric and positive semi-definite matrix.
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Proof: We first compute the variational derivatives, given by:

δH t

δq̃2
=− q̃2

4

2(q̃2 + q̃3)2 + c2
g ln

( p

c2
g

)
+ c2

g + g x sinθ, (4.27a)

δH t

δq̃3
=− q̃2

4

2(q̃2 + q̃3)2 + c2
` ln

( p +β
c2
`

)
+ c2

`+ g x sinθ, (4.27b)

δH t

δq̃4
= q̃4

q̃2 + q̃3
= v. (4.27c)

The variational derivative with respect to q̃1 can also be computed. However,
we omit its computation as the corresponding elements in the operator Jt and
the matrix Rt are zero.

We now prove the claim equation by equation. The first line holds trivially
as we assume that the cross-sectional area only varies spatially. The second line
reads

∂t (Amg ) =−∂x (q̃2
δH t

δq̃4
) =−∂x (Amg v). (4.28)

Similarly, the third line results in

∂t (Am`) =−∂x (q̃3
δH t

δq̃4
) =−∂x (Am`v). (4.29)

Finally, the fourth line yields

∂t (q̃4) =−q̃2∂x (
δH t

δq̃2
)− q̃3∂x (

δH t

δq̃3
)−∂x (q̃4

δH t

δq̃4
)− q̃4∂x (

δH t

δq̃4
)− q̃1

32µm

d 2

δH t

δq̃4
.

Substituting the variational derivatives, we have

∂t (q̃4) =−Amg∂x

(
− v2

2
+ c2

g ln
( p

c2
g

)
+ c2

g

)
− Am`∂x

(
− v2

2
+ c2

` ln
( p +β

c2
`

)
+ c2

`

)
−∂x (A(mg +m`)v2)− A(mg +m`)v∂x v − A(mg +m`)g sinθ− A

32µm v

d 2 .

This simplifies to:

∂t (A(mg +m`)v) =−∂x (A(mg +m`)v2)− A∂x p−
A(mg +m`)g sinθ− A

32µm v

d 2 , (4.30)
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where we have used the identity

−Amg c2
g∂x (ln

p

c2
g

)− Am`c2
`∂x (ln

p +β
c2
`

) =: −A∂x p.

The formal skew-adjointness of Jt with respect to the L 2 inner product and the
symmetric positive semi-definiteness of Rt can directly be recognized in (4.25),
(8.21) by following the line of reasoning as outlined in earlier proofs.
This completes the proof. ■

Remark 4.2.8 We have only used constant pipe-inclination θ in this work. How-
ever, it is straightforward to account for spatially varying pipe inclinations; see
Chapter 3 or [19].

4.2.2 Stokes-Dirac Structures

Infinite-dimensional port-Hamiltonian systems are described through a geomet-
ric structure known as Stokes-Dirac structure; refer to [53, 101] and Chapter
3. We recall that this geometric object helps to gain insight in describing the
consistent boundary port variables, and that the properties of the Stokes-Dirac
structure can be exploited in the development of energy-based boundary control
laws for distributed port-Hamiltonian systems. Such a geometric structure has
been associated to canonical skew-symmetric differential operators in [101].
Moreover, in [101], the notion of Stokes-Dirac structures has been extended
to skew-symmetric differential operators of any order. Existing works have fo-
cused on the state-independent operators and have also considered an extended
Stokes-Dirac structure to account for dissipative effects (which may include dif-
ferential terms), while mostly dealing with quadratic Hamiltonian functionals.
In the previous chapter, i.e., Chapter 3, we considered state-dependent Stokes-
Dirac structures for (multi-phase) flows across a unit and constant cross-section.
These defined structures were, however, not extended to account for resistive
effects. In this section, we will propose state-dependent Stokes-Dirac structures
for single- and two-phase fluid dynamics across a spatially varying geoemetrical
cross-section. We will also extend these structures to account for the resistive
effects in the model description of (multi-phase) hydraulics.

We refer to [53, 101] and Chapter 3 of this dissertation for the formal defi-
nition of infinite-dimensional (extended) Stokes-Dirac structures.

Next, we propose two variants of extended Stokes-Dirac structures. The
port-Hamiltonian representation for the two-phase model (see Section 4.2.3)
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will be defined with respect to the structure in Proposition 4.2.9. Secondly,
the Stokes-Dirac structure in Proposition 4.2.10 will be used to define port-
Hamiltonian representation for the single-phase model.

We first show the extended Stokes-Dirac structure representation that will be
useful in the scope of the Drift Flux Model without slip. Hereto, we introduce
the following notations

ft =
[

f1 f2 f3 f4 fR f B
a f B

b

]T
,

et =
[
e1 e2 e3 e4 eR eB

a eB
b

]T
,

ftr =
[

f1 f2 f3 f4 fR
]T

,

and,
etr =

[
e1 e2 e3 e4 eR

]T
,

and define the space of flow variables and effort variables in the following man-
ner:

Ft = Et =L 2(Ω)5 ×R2. (4.31)

The non-degenerated bilinear product on Ft ×Et is defined in the following
way:

< ft | et >=
∫
Ω

( f1e1 + f2e2 + f3e3 + f4e4 + fR eR )dx + f B
b eB

b + f B
a eB

a . (4.32)

Proposition 4.2.9 We consider Ft and Et as given in (4.31). We assume that
q̃1, q̃2, q̃3, q̃4 ∈ H 1(Ω) and that q̃2+ q̃3 > 0 on Ω. Then, the linear subset Dt ⊂Ft ×Et

given by:

Dt =
{(

ft ,et
) ∈Ft ×Et |

q̃2e2 + q̃3e3

q̃2e4

e4

 ∈ H 1(Ω)3, ftr =Jext etr ,

(
f B

a
eB

a

)
=

(−q̃2 −q̃3 −q̃4

0 0 1

)e2

e3

e4

 |a ,

(
f B

b
eB

b

)
=

(
q̃2 q̃3 q̃4

0 0 1

)e2

e3

e4

 |b
}

, (4.33)

with

Jext =


0 0 0 0 0
0 0 0 −∂x (q̃2·) 0
0 0 0 −∂x (q̃3·) 0
0 −D(q̃2·)&D(q̃3·) −∂x (q̃4·)− q̃4∂x −I
0 0 0 I 0

 , (4.34)
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is an extended Stokes-Dirac structure with respect to the symmetric pairing given
by:

¿
[

ft

et

]
,

[
f̃t

ẽt

]
À=< ft | ẽt > + < f̃t | et >,

[
ft

et

]
,

[
f̃t

ẽt

]
∈ Ft × Et , (4.35)

where the pairing < · | · > is given in (4.32). Furthermore, the notation (·) |a
(similarly for (·) |b) refers to the function value evaluated at the boundary x = a
(similarly for x = b). Moreover, D(q̃2·)&D(q̃3·) is the operator with domain all
e2,e3 ∈L 2(Ω) such that q̃2e2 + q̃3e3 ∈ H 1(Ω) and the action of this operator is

D(q̃2e2)&D(q̃3e3) = ∂x (q̃2e2 + q̃3e3)−e2∂x q̃2 −e3∂x q̃3. (4.36)

The above action is an extension of the normal action of the operator, which for all
e2,e3 ∈ H 1(Ω) will take the following form:

D(q̃2e2)&D(q̃3e3) = q̃2∂x e2 + q̃3∂x e3.

Proof: The proof consists of two parts. The first part comprises of the proof
of Dt ⊂ D⊥

t . And, the second part comprises of the proof of D⊥
t ⊂ Dt . For the

first part of the proof, we begin with considering two pairs of flow and effort
variables belonging to the Dirac structure, i.e., (ft ,et ) ∈Dt and (f̃t , ẽt ) ∈Dt . Using
the earlier introduced notations, the pairing (4.35) takes the following form:

¿
[

ft

et

]
,

[
f̃t

ẽt

]
À=

∫
Ω

( f1ẽ1 + f2ẽ2 + f3ẽ3 + f4ẽ4 + fR ẽR )dx +
∫
Ω

( f̃1e1 + f̃2e2+

f̃3e3 + f̃4e4 + f̃R eR )dx + f B
a ẽB

a + f B
b ẽB

b + f̃ B
a eB

a + f̃ B
b eB

b . (4.37)

Using (4.33), (4.34) and (4.36) in (4.37), we obtain:

¿
[

ft

et

]
,

[
f̃t

ẽt

]
À=

∫
Ω

(
(−∂x q̃2e4)ẽ2 + (−∂x q̃3e4)ẽ3 +

(
−∂x (q̃2e2 + q̃3e3)+

e2∂x q̃2 +e3∂x q̃3

)
ẽ4 −∂x (q̃4e4)ẽ4 − q̃4(∂x e4)ẽ4 −eR ẽ4+

e4ẽR

)
dx +

∫
Ω

(
(−∂x q̃2ẽ4)e2 + (−∂x q̃3ẽ4)e3 +

(
−∂x (q̃2ẽ2+

q̃3ẽ3)+ ẽ2∂x q̃2 + ẽ3∂x q̃3

)
e4 −∂x (q̃4ẽ4)e4 − q̃4(∂x ẽ4)e4 − ẽR e4+

ẽ4eR

)
dx + f B

a ẽB
a + f B

b ẽB
b + f̃ B

a eB
a + f̃ B

b eB
b . (4.38)
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Performing integration by parts on few terms in the above equation, (4.38) can
be easily shown to be zero and hence, Dt ⊂D⊥

t . This concludes the first part of
the proof, which carries the symbolism of power-conserving structure.
We now prove the converse part: D⊥

t ⊂ Dt . The proof consists of several small
but repeated steps. Hence, we summarize the key steps for proving the converse

part. We take (f̃t , ẽt ) ∈ D⊥
t , i.e., (f̃t , ẽt ) ∈ Ft ×Et such that ¿

[
ft

et

]
,

[
f̃t

ẽt

]
À= 0 for

all (ft ,et ) ∈ Dt . Furthermore, we make a certain choice on the effort variables
(which can be freely chosen as per the definition of the Stokes-Dirac structure)
in each step. We also exploit the fundamental lemma of calculus of variations
(i.e., Lemma 3.4.8) to obtain several identities. Each step (and the associated
choices) is described below:
Step 1: Let (ft ,et ) ∈ Dt with e2,e3,e4,eR = 0 and e1(a) = e1(b) = 0. Following the
procedure leads to: ∫

Ω
f̃1e1dx = 0 ∀e1 ∈L 2(Ω). (4.39)

Thus f̃1 = 0.
Step 2: We now consider (ft ,et ) ∈ Dt with e1,e3,e4,eR = 0 and e2(a) = e2(b) = 0.
Plugging the flow-effort relations (4.33) in (4.37) under the aforementioned
considerations gives:∫

Ω

(
(−q̃2∂x e2)ẽ4 + f̃2e2

)
dx = 0 ∀e2 ∈ H 1

0 (Ω). (4.40)

Using the fundamental lemma of calculus of variations gives

q̃2ẽ4 ∈ H 1(Ω) and f̃2 =−∂x (q̃2ẽ4). (4.41)

Considering (ft ,et ) ∈Dt with e1,e2,e4 and eR = 0 along with e3(a) = e3(b) = 0 gives
by a similar argument that

q̃3ẽ4 ∈ H 1(Ω) and f̃3 =−∂x (q̃3ẽ4). (4.42)

Now using q̃2ẽ4 ∈ H 1(Ω) and q̃3ẽ4 ∈ H 1(Ω), we have that (q̃2 + q̃3)ẽ4 ∈ H 1(Ω).
Furthermore, using q̃2, q̃3 ∈ H 1(Ω) along with q̃2 + q̃3 > 0 on Ω, we have that
ẽ4 ∈ H 1(Ω).
Step 3: Now choosing (ft ,et ) ∈Dt with e1,e2,e3,eR = 0 and e4 ∈ H 1

0 (Ω) gives∫
Ω

(
−∂x (q̃2e4)ẽ2 −∂x (q̃3e4)ẽ3 −∂x (q̃4e4)ẽ4−

(q̃4∂x e4)ẽ4 +e4ẽR + f̃4e4

)
dx = 0. (4.43)
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We rewrite (4.43) as∫
Ω

(
−e4ẽ2∂x q̃2 −e4ẽ3∂x q̃3 − (q̃2ẽ2 + q̃3ẽ3)∂x e4 −∂x (q̃4e4)ẽ4 − (q̃4∂x e4)ẽ4+

e4ẽR + f̃4e4

)
dx = 0 ∀e4 ∈ H 1

0 (Ω). (4.44)

As a result of the fundamental lemma of calculus of variations, we obtain the
following identity:

(q̃2ẽ2 + q̃3ẽ3) ∈ H 1(Ω) and

f̃4 =−∂x (q̃2ẽ2 + q̃3ẽ3)+ ẽ2∂x q̃2 + ẽ3∂x q̃3 −∂x (q̃4ẽ4)− q̃4∂x ẽ4 − ẽR . (4.45)

Step 4: Let us consider (ft ,et ) ∈Dt with e1,e2,e3,e4 = 0. The identity that follows
under these considerations is:

−eR ẽ4 + f̃R eR = 0 =⇒ f̃R = ẽ4. (4.46)

Step 5: Let (ft ,et ) ∈Dt with e1,e3,e4,eR = 0 and e2(a) = 0 and e2(b) 6= 0. Perform-
ing similar steps now gives:

−q̃2e2ẽ4 |b +ẽB
b (q̃2e2) |b= 0. (4.47)

The identity that follows is:
ẽB

b = ẽ4 |b . (4.48)

Step 6: We now let (ft ,et ) ∈ Dt with e1,e3,e4,eR = 0 and e2(b) = 0 and e2(a) 6= 0.
We follow the procedure similar to Step 5 and obtain the following identity:

ẽB
a = ẽ4 |a . (4.49)

Step 7: Consider (ft ,et ) ∈ Dt with e1,e2,e3,eR = 0 and e4(a) = 0 and e4(b) 6= 0.
Following the outlined procedure and using ẽB

b from (4.48), we have:

f̃ B
b e4 |b +ẽ4 |b (q̃4e4) |b −q̃2e4ẽ2 |b −

q̃3e4ẽ3 |b −q̃4e4ẽ4 |b −q̃4e4ẽ4 |b= 0. (4.50)

This results in the following identity:

f̃ B
b =

(
q̃2ẽ2 + q̃3ẽ3

)
|b +

(
q̃4ẽ4

)
|b . (4.51)
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Step 8: We now consider (ft ,et ) ∈ Dt with e1,e2,e3,eR = 0 and e4(b) = 0 and
e4(a) 6= 0. Under these considerations, we follow the procedure similar to Step
7 and also use ẽB

a from (4.49) to obtain the following identity:

f̃ B
a =−

(
q2ẽ2 +q3ẽ3

)
|a −

(
q4ẽ4

)
|a . (4.52)

Thus, we have shown that D⊥
t ⊂Dt and, hence, Dt is an extended Stokes-Dirac

structure. This completes the proof. ■
We now propose the extended Stokes-Dirac structure representation that

will be useful in the scope of the single-phase model. We introduce

fs =
[

f1 f2 f3 fR f B
a f B

b

]T
,

and
es =

[
e1 e2 e3 eR eB

a eB
b

]T
.

Using these notations, we define the space of flow and effort variables as fol-
lows:

Fs = Es =L 2(Ω)4 ×R2. (4.53)

The non-degenerated bilinear product on Fs ×Es is defined as:

< fs | es >=
∫
Ω

( f1e1 + f2e2 + f3e3 + fR eR )dx + f B
b eB

b + f B
a eB

a . (4.54)

Proposition 4.2.10 Consider Fs and Es as given in (4.53). Additionally, we
consider q1, q2, q3 ∈ H 1(Ω) and q2 (or Aρ) is invertible. The linear subset Ds ⊂
Fs ×Es defined as:

Ds =
{(

fs ,es
) ∈Fs ×Es |

(
q2e2

e3

)
∈ H 1(Ω)2,

f1

f2

f3

fR

=


0 0 0 0
0 0 −∂x (q2·) 0
0 −D(q2·) −∂x (q3·)−q3∂x −I
0 0 I 0




e1

e2

e3

eR

 ,

(
f B

a
eB

a

)
=

(−q2 −q3

0 1

)(
e2

e3

)
|a ,

(
f B

b
eB

b

)
=

(
q2 q3

0 1

)(
e2

e3

)
|b

}
, (4.55)
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is an extended Stokes-Dirac structure with respect to the symmetric pairing given
by:

¿
[

fs

es

]
,

[
f̃s

ẽs

]
À=< fs | ẽs > + < f̃s | es >,

[
fs

es

]
,

[
f̃s

ẽs

]
∈ Fs × Es , (4.56)

where the pairing < · | · > is given in (4.54). Moreover, D(q2·) is the operator
with domain all e2 ∈L 2(Ω) such that q2e2 ∈ H 1(Ω) and the extended action of the
operator is

D(q2e2) = ∂x (q2e2)−e2∂x q2.

Remark 4.2.11 We do not prove the Proposition 4.2.10. The proof of the corre-
sponding extended Stokes-Dirac structure can be easily demonstrated by following
the similar lines of reasoning as in the proof of the Proposition 4.2.9.

Remark 4.2.12 We have associated a particular choice of boundary port variables
with an extended Stokes-Dirac structure. In principle, it would be ideal to derive
an admissible set of boundary conditions in a parametrized way similar to [101],
where a parametrization has been derived for a canonical skew-symmetric differ-
ential operator. However, the structures derived in this chapter/dissertation are
non-canonical and hinder the elegant parametrization for the class of systems un-
der discussion.

4.2.3 Port-Hamiltonian representation

The preceding discussion showed that interconnection relations associated with
the conservation laws define a so-called extended Stokes-Dirac structure. The
interconnection structure, given by an extended Stokes-Dirac structure, together
with the Hamiltonian functional representing the total energy of the system
constitute a port-Hamiltonian representation. Following [53], we define the
resulting port-Hamiltonian system as follows.

Definition 4.2.13 A port-Hamiltonian system for the Drift Flux Model (without
slip) with state-variables

q̃(t ) = [
q̃1(t ), q̃2(t ), q̃3(t ), q̃4(t )

]T
, (4.57)

and port-variables [
f B

a (t ), f B
b (t ), eB

a (t ), eB
b (t )

]T ∈L 2(∂Ω)4, (4.58)
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generated by the Hamiltonian functional (with smooth integrand) (4.20), and,
with respect to the extended Stokes-Dirac structure (4.33) is defined by:



∂t q̃1(t )
∂t q̃2(t )
∂t q̃3(t )
∂t q̃4(t )

f B
a (t )

f B
b (t )
fR


,



δq̃1H t

δq̃2H t

δq̃3H t

δq̃4H t

eB
a (t )

eB
b (t )

32µm q̃1

d 2 fR




∈Dt . (4.59)

Remark 4.2.14 Similarly, we can also define a port-Hamiltonian system for the
single-phase model with respect to the extended Stokes-Dirac structure (4.55). We
omit it for the sake of brevity.

4.3 Port-Hamiltonian Modelling - temporal area vari-
ations

We now briefly consider temporal variations in the geometrical cross-section,
i.e., ∂t A 6= 0. We consider that the evolution of the area is described as:

∂t A = r1(t , z̃), (4.60)

where r1 is a function, which say is known a-priori or can be determined via
some control law, and z̃ represents the vector of state variable.

Allowing for temporal variations in area can be viewed as the structure (with
state variable z̃), which contains additional terms (relative to the structure with
only spatial variations) that can be perceived as state and time-dependent con-
trol inputs. See the following theorem.

Theorem 4.3.1 Consider the system Σt
1 governed by the combination of (2.2),

(2.3) - (2.6) under the assumption of zero slippage, i.e., vg = v` = v , and (4.60).
Then, it can be formulated in the dissipative Hamiltonian representation of the
following form:

∂t z̃ = (J (z̃)−R(z̃))δz̃H (z̃)− r (t , z̃). (4.61)

1The first equation of the composed system Σt is (4.60). The rest of the equations in the composed
system are the mass and the momentum conservation laws.
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Remark 4.3.2 In the scope of two-phase flow models, z̃ = q̃, J =Jt , R =Rt and
H =H t . Equivalently, the structure holds in the scope of single-phase models with
corresponding state variables, interconnection (formal skew-adjoint) operator, re-
sistive matrix and the Hamiltonian functional.

The above structure can be viewed as a special case of the representation
in [123]. If we ignore the boundary ports in the pHDAE definition of [123] and
use slightly different notations for the sake of consistency in this chapter, then
we obtain:

E ˙̃z = (J (z̃)−R(z̃))s − r (t , z̃), (4.62)

where r (t , z̃) is of the form: [r1(t , z̃) 0 0 0]T . The reasoning behind the
choice of this form is apparent1.

We consider the mapping E = I , ∂z̃H = s and ∂t H = sT r and follow [123] to
obtain the dissipation inequality.

dH

d t
= (∂zH )T ˙̃z +∂t H

= sT
(
(J −R)s − r

)
+ sT r

=−sT Rs ≤ 0.

(4.63)

The structural representation as in (4.62) has already been shown to be a
Dirac structure in [123]. Hence, we refer the reader to [123] for further details.

Remark 4.3.3 Structure (4.61) or (4.62) has been presented in rather general
sense. It is worth mentioning that a desirable structure is realizable for the models
governing the single-phase and two-phase fluid flow across variable geometrical
cross-section by using specific choice of state variables and the associated intercon-
nection operator and the dissipation matrix.

Having discussed the methodology to obtain a port-Hamiltonian formalism
that accounts for variations in geometrical cross-section, we now turn the focus
towards composing subsystems in an MPD configuration, i.e., the drill string,
the drill bit, and the annulus, in a power-preserving manner.

4.4 Revisiting Port-Hamiltonian Models

We first define a global/local coordinate system that will be used in the scope
of composing MPD subsystems. Figure 4.1 provides a simplified schematic of
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an MPD system; refer to Chapter 2 for a detailed description. Here, xd and xa

indicate the spatial location inside the drill string and the annulus, respectively.
The (local) axes, corresponding to the drill string and the annulus are oriented
as shown in red and blue, respectively, in Figure 4.1. The circulation path of
the fluid(s) can be observed by following the green arrows in Figure 4.1. We
recall that the flow inside the drill string is primarily of single-phase nature.
The fluid exits the drill string and flows across the drill bit before passing into
the annulus section of the wellbore. If there is no influx from the reservoir
into the annulus, the flow inside the annulus also constitutes only a single-
phase nature. A liquid and/or gaseous influx into the annulus changes the flow
type from single-phase flow to multi-phase flow inside this part of the wellbore.
In case of liquid influx, we will consider that the reservoir produces the same
fluid as the one pumped inside the drill string via the pump shown in Figure
4.1 and, hence, only a single-phase flow model will be considered inside the
annulus. The aforementioned assumption sounds restrictive in the scope of
drilling applications. However, we stress that a liquid influx with potentially
different properties than the circulating fluid can be dealt with in the same
manner as the scenario of gas influx. In case of gas influx, different properties of
the in-flowing gas and the circulating fluid are considered and, hence, the two-
phase flow model is employed for studying the behaviour inside the annulus. A
liquid and gas influx can also occur simultaneously. Such a situation demands
employing three-phase or more complicated multi-phase flow models. However,
such scenarios fall outside the scope of this dissertation and, hence, the focus
will be on single- or two-phase flow models only.

Next, we briefly introduce the Isothermal Euler equations for the drill string
and the Two-Fluid Model for the annulus along with their corresponding port-
Hamiltonian formulations in Section 4.4.1 and Section 4.4.2, respectively.

4.4.1 Isothermal Euler Equations for the drill string

For a drill string with constant cross-sectional area Ad and a constant inclination
θ (see Figure 4.1), the Isothermal Euler equations, under the assumption of
laminar flow, read as follows:

∂tρ+∂xd

(
ρv

)= 0, (4.64a)

∂t
(
ρv

)+∂xd

(
ρv2 +p

)=−32
µ`v

d 2
d

+ρg sinθ, (4.64b)
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Figure 4.1: A simplified schematic of an MPD system.

where t ∈ R≥0 and xd carries the meaning as mentioned earlier. Variables
ρ(t , xd ), v(t , xd ) and p(t , xd ) refer to density, velocity and pressure of the fluid
inside the drill string, respectively. Moreover, µ` and dd denote viscosity of
the fluid and hydraulic diameter of the drill string, respectively, and g is the
gravitational acceleration. As before, to complete the set of Isothermal Euler
equations, an Equation of State (EOS) is provided as p = (ρ−ρ`0)c2

`
+p`0 with

constants ρ`0 and p`0, and c` being the speed of sound in the fluid.

Remark 4.4.1 The signs of the source terms in the right-hand side of (4.64b) are
in accordance with the coordinate system for the drill string defined in Figure 4.1.
It should be stressed that in Chapter 3 and earlier part of this chapter, gravita-
tional source terms were associated with the “-" sign. All previous results still hold
if “+" sign needs to be considered. Moreover, we emphasize that the gravitational
source terms are automatically accounted for in the port-Hamiltonian representa-
tions and, hence, do not impact the structure of the (formally) skew-adjoint op-
erator and the resistive matrix; see Theorem 3.3.10, Theorem 4.2.6 and Theorem
4.2.7 and the corresponding Hamiltonian functionals which included gravitational
energy component.
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The Hamiltonian functional for (4.64) in terms of state variables z := [ρ, v]T

is

H (z) := Ad

∫
Ωd

(
ρ

v2

2
+ρc2

` lnρ+ (c2
`ρ`0 −p`0)−ρg x sinθ

)
dx. (4.65)

We now recall the port-Hamiltonian formulation for the above described model.

Theorem 4.4.2 The governing equations (4.64) together with the EOS p = (ρ−
ρ`0)c2

`
+p`0 can be written in the following dissipative port-Hamiltonian formula-

tion:

∂t z = (
Jd −Rd (z)

)
δzH (z), (4.66a)

where z := [ρ, v]T , the Hamiltonian functional H (z) is given by (4.65),

Jd =− 1

Ad

[
0 1
1 0

]
∂

∂xd
, Rd (z) =

[
0 0

0 32µ`
Ad d 2

dρ
2

]
, (4.66b)

and the power conjugated input u := [uB
0,d , uB

L,d ]T and output y := [yB
0,d , yB

L,d ]T vari-
ables at the boundaries are as follows:(

yB
L,d

uB
L,d

)
=

( 1
Ad
δρH (z)

δv H (z)

)
|L,d ,

(
yB

0,d
uB

0,d

)
=

(− 1
Ad
δρH (z)

δv H (z)

)
|0,d . (4.67)

Here, uB
0,d and uB

L,d indicate the input variable at xd = 0 and xd = L, respectively.
Similarly, yB

0,d and yB
L,d indicate the output variable at xd = 0 and xd = L, respec-

tively. Also, (·)|L,d and (·)|0,d refer to evaluating the quantity within the argument
at xd = L and xd = 0, respectively.

Remark 4.4.3 The proof to Theorem 4.4.2 can be obtained by following the lines
of reasoning as that provided earlier for the derivation of Theorem 4.2.6 and Propo-
sition 4.2.10.

The physical interpretation of δv H is the mass flow rate of the mud/fluid pass-
ing across the spatial location xd at time t . The energy per unit mass multiplied
by the cross section Ad can be inferred from δρH .
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The power balance equation reads as follows:

Ḣ +P B =−
∫
Ωd

eT
d Rd ed dx +

(
1

Ad
δρH (z)δv H (z)

)
|0,d−(

1

Ad
δρH (z)δv H (z)

)
|L,d + yB

0,d uB
0,d + yB

L,d uB
L,d︸ ︷︷ ︸

P B

,

=−
∫
Ωd

eT
d Rd ed dx ≤ 0,

(4.68)

where the last inequality is due to the symmetric and positive semi-definite
nature of Rd (z). Here, Ḣ refers to the time derivative of the Hamiltonian
functional H along the solutions of the single-phase flow model and P B :=
yB

0,d uB
0,d + yB

L,d uB
L,d indicates the power exchange through the boundaries of the

drill string.

4.4.2 Two-Fluid Model for the annulus

In accordance with the introduced coordinate system for the annulus (referring
to Figure 4.1), the TFM can be defined for each phase in the annulus with
constant cross-sectional area Aa , constant hydraulic diameter da and constant
inclination θ as follows [176]:

∂t
(
αiρi

)+∂xa

(
αiρi vi

)= 0, (4.69a)

∂t
(
αiρi vi

)+∂xa

(
αiρi v2

i

)=−∂xa

(
αi p

)+Mi −αiρi g sinθ−32
µgαi vi

d 2
a

, (4.69b)

where i ∈ {`, g } and xa carries the meaning as introduced earlier. Also, the sense
of gravity has been accounted for in the model description (4.69b). We refer
the reader to Section 2.3.1 for detailed description of the TFM. To complete the
model, we recall a set of widely applied closure laws as in [56]:

αg +α` = 1, (4.70a)

Mg +M` = 0, Mg = p∂xaαg +bM
g (v`− vg), (4.70b)

ρg = p

c2
g

,ρ` = ρ`0 +
p −p`0

c2
`

. (4.70c)

We also refer the reader to Section 2.3.1 for the physical interpretation of the
algebraic closure laws (4.70).
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The Hamiltonian for the flow inside the annulus with za := [mg, m`, vg, v`]T

takes the following form:

Ha(za) := Aa

∫
Ωa

(
mg

v2
g

2
+m`

v2
`

2
+mgc2

g lnρg +m`c2
` lnρ`+

α`(c2
`ρ`0 −p`0)− (

m`+mg
)

g (L−x)sinθ
)

dx. (4.71)

Notably, variables ρ`,ρg,α` can be written in terms of mg and m`, see [19].
In the following theorem, the port-Hamiltonian formulation corresponding to
(4.69) and (4.70) is presented.

Theorem 4.4.4 The governing equations (4.69) associated with the closure equa-
tions (4.70) can be written in the dissipative port-Hamiltonian formulation as
follows:

∂t za = (
Ja −Ra(za)

)
δza Ha(za), (4.72a)

where za := [mg, m`, vg, v`]T and the Hamiltonian functional Ha is given by
(4.71),

Ja =− 1

Aa


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ∂

∂xa
, Ra(za) = 1

Aa


0 0 0 0
0 0 0 0

0 0
bM

g

m2
g
+ 32µgαg

m2
g d 2 − bM

g

mgm`

0 0 − bM
g

mgm`

bM
g

m2
`

+ 32µlα`
m2

l d 2

,

(4.72b)

and the power conjugated inputs ua := [uB ,1
0,a , uB ,2

0,a , uB ,1
L,a , uB ,2

L,a ]T and power conju-
gated outputs ya := [yB ,1

0,a , yB ,2
0,a , yB ,1

L,a , yB ,2
L,a ]T at the boundaries of the spatial domain

Ωa are as follows:
yB ,1

0,a

yB ,2
0,a

uB ,1
0,a

uB ,2
0,a

=


− 1

Aa
δmgHa

− 1
Aa
δm`

Ha

δvgHa

δv`Ha

 |0,a ,


yB ,1

L,a

yB ,2
L,a

uB ,1
L,a

uB ,2
L,a

=


1

Aa
δmgHa

1
Aa
δm`

Ha

δvgHa

δv`Ha

 |L,a . (4.73)

Here, (·)B ,i
0,a denotes the i-th component of the decomposed variable (·) at the bound-

ary xa = 0. Similarly, (·)B ,i
L,a denotes the i-th component of the decomposed variable
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(·) at the boundary xa = L. Also, (·)|L,a and (·)|0,a refer to evaluating the quantity
within the argument at xa = L and xa = 0, respectively.

Remark 4.4.5 The proof to Theorem 4.4.4 can be obtained by following the lines
of reasoning as that provided for the derivation of Theorems 3.3.3 and 3.4.9.

The variable δvi Ha represents the mass flow rate of the phase i . Similarly,
the energy per unit mass of phase i multiplied by the cross-section Aa can be
inferred from δmi Ha .
The power balance equation reads as follows:

Ḣa +P B
a =−

∫
Ωa

eT
a Ra ea dx +

(
1

Aa
δmgHaδvgHa

)
|0,a+(

1

Aa
δm`

Haδv`Ha

)
|0,a −

(
1

Aa
δmgHaδvgHa

)
|L,a−(

1

Aa
δm`

Haδv`Ha

)
|L,a + yB ,1

0,a uB ,1
0,a + yB ,2

0,a uB ,2
0,a + yB ,1

L,a uB ,1
L,a + yB ,2

L,a uB ,2
L,a︸ ︷︷ ︸

P B
a

,

=−
∫
Ωa

eT
a Ra ea dx ≤ 0,

(4.74)

where the last inequality is due to the symmetric and positive semi-definite
nature of Ra(z). Here, Ḣa refers to the time derivative of the Hamiltonian
functional Ha along the solutions of the TFM and P B

a := yB ,1
0,a uB ,1

0,a + yB ,2
0,a uB ,2

0,a +
yB ,1

L,a uB ,1
L,a + yB ,2

L,a uB ,2
L,a indicates the power exchange through the boundaries of the

annulus.

4.5 Power-Preserving Interconnection under influx

In this section, the drill string, the drill bit and the annulus are connected in a
power-preserving manner. First, the boundary conditions are introduced. Then,
the dissipation of energy across the bit and the passivity of the composed system
is studied.

4.5.1 Boundary conditions of the single- and two-phase flow
models in MPD

The governing equations of the pump, bit and choke are summarized in Table
4.1. For the pump, ṁp , Ap ,ρp and vp represent the mass flow rate, the cross-
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sectional area, the density and the velocity of the liquid through the pump,
respectively. For the bit, ∆pb ,ρb ,ṁb , AN and CD denote the pressure drop over
the bit, density at the drill string side of the bit, the mass flow rate through the
bit, the total area of the nozzles of the bit and the nozzle coefficient, respectively.
For the choke, ṁc ,ρc , pc and p0 are the mass flow rate, the density, the pressure
at the choke inlet and atmospheric pressure, respectively. Finally, Kc and zc , are
the choke constant and the choke opening, respectively.

The boundary conditions governing the fluid flow in the drill string and the
annulus follow from Figure 4.1. First, we define the boundary conditions for
the drill string to be used in (4.67).

Pump: At the pump location, we have Ap = Ad , vp = v |0,d and ρp = ρ|0,d .
Hence

δv H |0,d = (ρAd v)|0,d = ṁp (t ). (4.75)

The boundary condition at the left side of the spatial domain Ωd is assigned.
Input and output variables at this boundary can be defined with (4.75) and
(4.67).

Bit and reservoir: Through the bit, the mass conservation holds and the
pressure drop is governed by the bit equation. Moreover, the flow that passed
through the bit is then mixed with the known liquid mass flow rate ṁ`(t ) and
the gaseous mass flow rate ṁg (t ) coming out of the reservoir. Then, the mixture
enters the annulus. Considering ∆pb = p|L,d − p|0,a ,ṁb = (ρAd v)|L,d ,ρb = ρ|L,d ,
we have 

p|L,d −p|0,a = 1

2ρ|L,d

(
δv H |L,d

AN CD

)2

,

δv H |L,d +ṁ`(t ) = δv`Ha |0,a ,

δvg Ha |0,a = ṁg (t ).

(4.76)

Remark 4.5.1 To solve the TFM, typically either 2 boundary conditions are speci-
fied at the left side of the domain and 2 at the right side or 3 boundary conditions

Table 4.1: Governing equations of the pump, bit and choke.

Equipment Governing equation
pump ṁp = Apρp vp

bit ∆pb = 1
2ρb

(
ṁb

AN CD

)2

choke ṁc = Kc zc

√
2ρc

(
pc −p0

)
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at the left side and one at the right [65]. In this chapter, we consider the 2-2 case.
In (4.76), one equation corresponds to the right boundary for the isothermal Euler
equations in the drill string and two equations correspond to the left boundary of
the TFM in the annulus.

Remark 4.5.2 Above the bit and inside the drill string, a non-return valve is in-
stalled to restrict the flow in one direction only from the drill string to the annulus.
When this valve is open, the pressure drop over the bit is governed by the bit equa-
tion in Table 4.1. When this valve is closed, the drill string and the annulus become
disconnected.

Choke: For the TFM at the choke, we have two boundary conditions, i.e., the
explicit value of gas void fraction over time and the nonlinear choke equation.
Following the same procedure in [130], we rewrite ṁc as the mass flow rate of
the mixture, ṁc = (ρ`Aa v`)|L,a+(ρg Aa vg)|L,a . We also consider ρc as the mixture
density, which is governed by: ρc =α`ρ`+αgρg. Therefore, we have:

(δv`Ha +δvgHa)|L,a = Kc zc

√
2(mg +m`)|L,a

(
pa |L,a −p0

)
,

αg|L,a = g (t ),
(4.77)

where g (t ) is a function of time, explicitly specifying the gas void fraction at the
choke.

Remark 4.5.3 Notably, boundary conditions (4.76) and (4.77) form an implicit
function of variational derivative of Hamiltonian (4.65) and (4.71) with respect
to z and za , respectively.

4.5.2 Dissipativity of power through the bit

We have shown the power-preserving structure of the single-phase flow model
and the TFM in Section 4.4 via the corresponding dissipative port-Hamiltonian
formulation (4.66)-(4.67) and (4.72)-(4.73), respectively.

In this section, we consider the models for the drill string, drill bit and an-
nulus to develop an aggregated port-Hamiltonian model for MPD systems. We
also account for the interaction of the wellbore with the (liquid and gaseous)
reservoir. Refer to Figure 4.2, which represents a schematic of the power-
preserving interconnection of various subsystems of a drilling well. In this
figure, the storage, resistive and boundary (external) ports corresponding to
the drill string and the annulus are shown within the purple and red dashed
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Figure 4.2: The power-preserving interconnection of different components of a drilling
well.

rectangular box, respectively. Similarly, the resistive and boundary (external)
ports corresponding to the bit are shown within the green dashed box. The
composed MPD system is represented by the light blue rectangular box. We
can also clearly see that the pump and the choke form the left and the right
end of the composed system, respectively. The variables yB

0,d , yB
L,d ,uB

L,0,uB
L,d have

already been introduced in Section 4.4. The notations yB
0,a , yB

L,a ,uB
0,a ,uB

L,a stand
for yB

0,a = [yB ,1
0,a , yB ,2

0,a ]T , yB
L,a = [yB ,1

L,a , yB ,2
L,a ]T ,uB

L,a = [uB ,1
0,a , uB ,2

0,a ]T ,uB
L,a = [uB ,1

L,a , uB ,2
L,a ]T .

The variables yB ,1
0,a , yB ,2

0,a , yB ,1
L,a , yB ,2

L,a ,uB ,1
0,a ,uB ,2

0,a ,uB ,1
L,a ,uB ,2

L,a have also been introduced
in Section 4.4. The sub-systems (here, the drill string and annulus) interact
with their environment via the external ports (yB

0,d ,uB
0,d ), (yB

0,a ,uB
0,a), (yB

L,d ,uB
L,d )

and (yB
L,a ,uB

L,a). The ports (fd ,ed ) and (fa ,ea) are linked to the energy storage
within the spatial domain of the drill string and the annulus, respectively, due
to distributed effects. The ports ( fR,d ,eR,d ) and ( fR,a ,eR,a) correspond to en-
ergy dissipation within the drill string and the annulus, respectively. The ports
( fR,l ,eR,l ) and ( fR,g ,eR,g ) correspond to the power transfer from the reservoir to
the annular part of the wellbore due to the liquid and the gaseous influx, respec-
tively. The scalar quantity (yB

L,d )
T

uB
L,d represents the (outgoing) instantaneous

power at the right-hand side of the drill string. This power will now enter at
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the left end of the drill bit. There is a natural relation2 between (yB
L,d )

T
uB

L,d and
( fbi t ,l e f t )T ebi t ,l e f t , where the latter means the (incoming) power at the left end
side of the drill bit. The scalar quantity ( fbi t ,r i g ht )T ebi t ,r i g ht denotes the (out-
going) instantaneous power from the right end of the bit, and eventually enters
the annulus. And, the port ( fR,bi t ,eR,bi t ) corresponds to the dissipated energy
due to the dissipative nature of the drilling bit. It can also be observed that
the instantaneous power entering the annulus is coming from various sources,
i.e., from across the bit and the reservoir. This aspect is indicated via an arrow
across a red circular section in Figure 4.2.

Invoking the notion of power-preserving interconnection for the composi-
tion, the following relations naturally hold:

(yB
L,d )

T
uB

L,d + ( fbi t ,l e f t )T ebi t ,le f t = 0, (4.78)

and

( fbi t ,r i g ht )T ebi t ,r i g ht + ( fR,l )T eR,l + ( fR,g )T eR,g + (yB
0,a)

T
uB

0,a = 0. (4.79)

Furthermore, for power-preserving nature across the bit, the following relation:

( fbi t ,le f t )T ebi t ,le f t + ( fR,bi t )T eR,bi t + ( fbi t ,r i g ht )T ebi t ,r i g ht = 0, (4.80)

must hold.
Using (4.79) and (4.73), and exploiting the scalar nature of some variables,

we have:

fbi t ,r i g ht ebi t ,r i g ht + fR,l eR,l + fR,g eR,g =
( (δmgHa )δvgHa

Aa
+ (δm`

Ha )δv`Ha

Aa

)
|xa=0.

(4.81)
Similarly, using (4.78) and (4.67), and exploiting the scalar nature of some
variables, we have:

fbi t ,l e f t ebi t ,l e f t =− (δρH )δv H

Ad
|xd=L . (4.82)

Using (4.80), (4.81) and (4.82), we have:

− (δρH )δv H

Ad
|xd=L + fR,bi t eR,bi t +

( (δmgHa)δvgHa

Aa
+ (δm`

Ha)δv`Ha

Aa

)
|xa=0

− fR,l eR,l − fR,g eR,g = 0. (4.83)

2The proper relation will be made further apparent technically in the subsequent discussion.
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To ensure the dissipative property across the bit, fR,bi t eR,bi t ≥ 0 must hold. As a
result of this property and by using (4.83), we have:

(δρH )δv H

Ad
|xd=L−

( (δmgHa)δvgHa

Aa
+ (δm`

Ha)δv`Ha

Aa

)
|xa=0+ fR,l eR,l+ fR,g eR,g ≥ 0.

(4.84)
While δρH ,δv H ,δmgHa ,δvgHa ,δm`

Ha ,δv`Ha are known in terms of phys-
ical quantities, the power exchange between the reservoir and the wellbore,
fR,l eR,l + fR,g eR,g , is not yet explicitly known in terms of the physical variables.
It should be mentioned that, in this dissertation, we have not undertaken the
aspect of developing a port-Hamiltonian model of the reservoir. Hence, we do
not have a-priori knowledge on the boundary ports ( fR,l ,eR,l ) and ( fR,g ,eR,g ).
In order to assess whether (4.84) holds universally or conditionally, we impose
some simplifications. Motivated from the form of the power conjugated inputs
and outputs in (4.73), we assume that:

fR,g eR,g =
(δmgHa)δvgHa

Aa
|xa=0. (4.85)

Under the above assumption, (4.84) simplifies to:

(δρH )δv H

Ad
|xd=L −

( (δmgHa)δvgHa

Aa
+ (δm`

Ha)δv`Ha

Aa

)
|xa=0 + fR,l eR,l+

(δmgHa)δvgHa

Aa
|xa=0 ≥ 0, (4.86)

which when further simplified yields:

(δρH )δv H

Ad
|xd=L −

( (δm`
Ha)δv`Ha

Aa

)
|xa=0 + fR,l eR,l ≥ 0. (4.87)

If fR,l eR,l = δm`
Ha

Aa
ṁ`|xa=0, then the relation (4.87) takes the following form:

(δρH )δv H

Ad
|xd=L −

( (δm`
Ha)δv`Ha

Aa

)
|xa=0 +

δm`
Ha

Aa
ṁ`|xa=0 ≥ 0. (4.88)

We can express ṁ` in terms of known physical quantities in the following man-
ner:

ṁ` = (δv`Ha |xa=0 −δv H |xd=L). (4.89)
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Using (4.89) in (4.88), we have:

(δρH )δv H

Ad
|xd=L −

( (δm`
Ha)δv`Ha

Aa

)
|xa=0 +

δm`
Ha

Aa
(δv`Ha |xa=0 −δvH |xd=L) ≥ 0,

(4.90)
which under simplification becomes:

δv H |xd=L

(δρH
Ad

|xd=L −
δm`

Ha

Aa
|xa=0

)
≥ 0. (4.91)

As δv H |x=L ≥ 0, we need to ensure the following condition for the power-
preserving interconnection:(δρH

Ad
|xd=L −

δm`
Ha

Aa
|xa=0

)
≥ 0. (4.92)

Using the definition of the variational derivative of the Hamiltonian func-
tionals with respect to (desired) states, (4.92) reduces to:

(
v2

2
+ c2

` lnρ− g L sinθ)|xd=L − (
v2
`

2
+ c2

` lnρ`− g L sinθ)|xa=0 ≥ 0, (4.93)

which can be further simplified to

1

2
M 2

d (−M 2
a

M 2
d

+1)+ ln
ρ|xd=L

ρ`|xa=0
≥ 0, (4.94)

where Md = v |xd =L

c`
, Ma = v`|xa=0

c`
are the Mach numbers of the flow at the outlet

of the drill string and at the inlet of the annulus near the bit. To further simplify
the relation (4.94), we use the bit equation,

∆pb = (ρ|xd=L −ρ`|xa=0)c2
` =

1

2
ρ|xd=L(

Ad

AN CD
)2v |2xd=L → (4.95a)

ρ`|xa=0

ρ|xd=L
= 1− 1

2
(

Ad

AN CD
)2M 2

d , (4.95b)

The mass conservation across the bit (4.76) can also be simplified to

(Adρv)|xd=L +ṁ`(t ) = (Aaρ`v`)|xa=0 → Ad Md + ṁ`(t )

ρ|xd=Lc`
= Aa

ρ`|xa=0

ρ|xd=L
Ma .

(4.96)



4.5 Power-Preserving Interconnection under influx 103

Using (4.95), we can further simplify (4.96) and obtain:

Ma = Ad

Aa

Md

1− 1
2 ( Ad

AN CD
)2M 2

d

+M`r , (4.97)

where M`r := ṁ`(t )
Aa c`ρ`|xa=0

is the Mach number at the interface of the reservoir and
annulus. Finally by using (4.97), the inequality (4.94) simplifies to

M :=1

2
M 2

d ((
Ad

Aa

1

1− 1
2 ( Ad

AN CD
)2M 2

d

+ M`r

Md
)2 −1)+ ln(1− 1

2
(

Ad

AN CD
)2M 2

d ) ≤ 0.

(4.98)

For the bit, connecting the drill string and the annulus, to be power-preserving
and physically dissipative, the inequality (4.98) should hold.

We now discuss the power balance of the system composed of the drill string,
bit and the annulus. We recall that the power balance across the drill string is
given by:

Ḣ +P B +
∫
Ωd

eT
d Rd ed dx = 0, (4.99)

also see (4.68). Similarly, as in (4.74), the power balance across the annulus is
given by:

Ḣa +P B
a +

∫
Ωa

eT
a Raea dx = 0. (4.100)

The power balance across the composed system is the summation of the power
balance equation across each individual sub-systems. Using (4.99), (4.100),
and (4.80), we have:

P tot := Ḣ +P B +
∫
Ωd

eT
d Rd ed dx +Ḣa +P B

a +
∫
Ωa

eT
a Raea dx+

( fbi t ,l e f t )T ebi t ,l e f t + ( fR,bi t )T eR,bi t + ( fbi t ,r i g ht )T ebi t ,r i g ht , (4.101)

which, upon using (4.81) and (4.82), can be written as:

P tot = Ḣ + yB
0,d uB

0,d + yB
L,d uB

L,d +
∫
Ωd

eT
d Rd ed dx +Ḣa + yB ,1

0,a uB ,1
0,a + yB ,2

0,a uB ,2
0,a +

yB ,1
L,a uB ,1

L,a + yB ,2
L,a uB ,2

L,a +
∫
Ωa

eT
a Raea dx − (δρH )δv H

Ad
|xd=L + ( fR,bi t )T eR,bi t+( (δmgHa)δvgHa

Aa
+ (δm`

Ha)δv`Ha

Aa

)
|xa=0 − ( f T

R,l eR,l + f T
Rg

eRg ). (4.102)
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Furthermore using (4.68) and (4.74), (4.102) simplifies to

P tot = Ḣ + yB
0,d uB

0,d +
∫
Ωd

eT
d Rd ed dx +Ḣa + yB ,1

L,a uB ,1
L,a + yB ,2

L,a uB ,2
L,a+∫

Ωa

eT
a Raea dx + ( fR,bi t )T eR,bi t − ( f T

R,l eR,l + f T
Rg

eRg ). (4.103)

Defining the power exchange at the boundaries of the composed system by P B
T ,

we can say that:

P B
T = yB

0,d uB
0,d + yB ,1

L,a uB ,1
L,a + yB ,2

L,a uB ,2
L,a − ( f T

R,l eR,l + f T
Rg

eRg ). (4.104)

Using (4.104), we can write (4.103) as:

P tot = Ḣ +Ḣa +P B
T +

∫
Ωd

eT
d Rd ed dx +

∫
Ωa

eT
a Raea dx + ( fR,bi t )T eR,bi t︸ ︷︷ ︸
Rtot

. (4.105)

The right-hand side of (4.105) is required to be zero as it is actually the sum of
the right-hand sides of (4.99), (4.100), and (4.80) and, hence, we have

Ḣ +Ḣa +P B
T +

∫
Ωd

eT
d Rd ed dx +

∫
Ωa

eT
a Raea dx + ( fR,bi t )T eR,bi t︸ ︷︷ ︸
Rtot

= 0. (4.106)

The composed system will be passive if Rtot ≥ 0. Noting that
∫
Ωd

eT
d Rd ed dx ≥ 0

(see (4.68)) and
∫
Ωa

eT
a Raea dx ≥ 0 (see (4.74)), we have:∫
Ωd

eT
d Rd ed dx +

∫
Ωa

eT
a Raea dx ≥ 0. (4.107)

As a result of the nature of
∫
Ωd

eT
d Rd ed dx + ∫

Ωa
eT

a Raea dx, we easily observe
that Rtot can be greater than or equal to zero even if ( fR,bi t )T eR,bi t is negative.
However, in the absence of the dissipation across the drill string and the annu-
lus, clearly, the passivity of the composed system reduces to the condition of the
dissipativity across the drill bit. As a consequence, the passivity of the system
(in the absence of dissipation) holds if (4.98) is satisfied. It can, hence, be con-
cluded that satisfying (4.98) provides the conservative bound on the passivity
of the composed system. However, the nature of Rtot should be assessed for the
(true) passivity of the composed MPD system. Due to the complicated nature of
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Rtot , a proper (structure-preserving) numerical tooling is required to assess the
its positivity. In the rest of this chapter, we will base the satisfaction of (4.98)
on a practical example of a drilling well.

Remark 4.5.4 It could be compelling to assess whether the conditional dissipativ-
ity across the drill bit is related with multi-phase flows. It is easy to repeat the
steps in the scope of the single-phase flow model as well. It is observed that the
dissipativity property across the drill bit again holds conditionally.

4.6 Numerical examples

In this section, a real drilling well is considered and the region where the in-
equality (4.98) holds is investigated. The corresponding geometry and bit prop-
erty are studied to define the region across which the dissipativity property
holds.

Remark 4.6.1 In drilling operations, the velocity inside the drill string is typically
around 1 m/s while the speed of sound in the mud is around 1000 m/s. Therefore,
for drilling applications, Md ≈ 0.001.

The geometry and equipment properties of the drilling platform are given
by

dd = 76.2 mm,dod = 241.3 mm,dw = 444.5 mm,

AN = 1418.7 mm2,CD = 0.8,
(4.108)

where dod and dw are, respectively, the outer diameter of the drill string and
the diameter of the wellbore.

For this well and this drill bit, to render the argument inside the logarithmic
function in (4.98) to be positive, we observe that Md < 0.35 should hold. As
shown in the top part of Figure 4.3, in this restricted region for Md with no
flow from the reservoir (which is true in the normal drilling scenarios), (4.98)
always holds for ṁ` = 0 for the drilling well under consideration and the bit
model is indeed dissipative (power-preserving). This might be the experimental
condition under which the model for the bit was derived.

In the case of contingencies, where the fluid of the reservoir flows into the
annulus, condition (4.98) is not always satisfied in the restricted region for Md ,
as shown in the bottom part of Figure 4.3. When the reservoir also contains liq-
uid, the velocity of this flow should be less than the velocity of the flow coming
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Figure 4.3: Left: The value of the function M in (4.98) for different admissible Mach
number with ṁ` = 0, Right: Power-preserving region for different Mach num-
bers of Md and M`r satisfying inequality (4.98).

through the bit. This situation most probably occurs when the drilling process
and the mud injection are halted (Md = 0) and a new pipe section is added to
the drill string to increase its length to drill further (this is called a connection
scenario in practice). If the reservoir is producing liquid during connection, this
inequality does not always hold. Therefore, the bit model presented in Table
4.1 needs to be used with proper care to simulate the hydraulics in this situa-
tion. At this stage, it is important to mention that the dissipativity of the drill
bit, standalone, is of less practical importance. The passivity of the composed
system is the quantity of significant interest. We also recall that the dissipation
effects are usually present in the drill string and the annulus, and that the pas-
sivity of the composed system could still hold even if (4.98) is violated. A more
rigorous numerical check is advised/required before using the bit model to sim-
ulate any hydraulic operations, particularly the ones where (4.98) is violated.
Notably, in cases when velocity of the flow from the reservoir is much higher
than the velocity of the flow passing through the bit, usually the non-return
valve is closed and the two subsystems become isolated. This situation, how-
ever, requires more investigation. The bit models are usually derived by curve
fitting to experimental data obtained under certain conditions. To adapt the bit
model, if required, experiments should be designed in such a way that Rtot (or
the inequality (4.98)) is violated and a new model should be fitted to the new
data.
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4.7 Conclusions

One of the main results of this chapter is the dissipative Hamiltonian realiza-
tion and definition of extended state-dependent Stokes-Dirac structure. Con-
sequently, we obtained port-Hamiltonian representations for both single-phase
and two-phase models (here, the Drift Flux Model) governing fluid flow across
spatially and temporally varying cross-section. It should be mentioned that even
though we focused on the Drift Flux Model, the Two-Fluid Model across a vari-
able cross-section can also be formulated in a port-Hamiltonian representation.
A key observation, based on our findings, is that a special treatment is required
to formulate port-Hamiltonian representations (in terms of non-conservative
state variables) of single- and two-phase flow models across a variable geo-
metrical cross-section. For instance, we need to invoke the concept of port-
Hamiltonian descriptor systems. Such a framework is also perceived to be useful
in order to develop (descriptor) port-Hamiltonian representations without hav-
ing to eliminate the auxilliary variables. We defer this aspect to future works.
Furthermore, similar to Chapter 3, we have adopted a non-unique way to formu-
late boundary port variables. The parametrization of boundary port variables
in the scope of the obtained port-Hamiltonian representations deserves a fur-
ther study. Moreover, we need to stress that we considered smooth variations
in geometrical cross-sections, although non-smooth variations in geometrical
cross-sections is admissible in real drilling scenarios. However, such variations
in geometrical cross-sections complicate the study of Stokes-Dirac structures in
a functional analytic setting that largely is built upon the fundamental lemma
of calculus of variations. Hence, the consideration of non-smooth variations in
the cross-section needs further investigation.

Another main result is hinged around the compositional port-Hamiltonian
modelling for Managed Pressure Drilling (MPD) systems. We interconnect the
(single- and two-phase) flow dynamic models and the drill bit model in a power-
preserving manner, while also accounting for the interaction between the reser-
voir and the wellbore. It is observed that the mathematical model of the bit,
used to interconnect the drill string and the annulus, obeys dissipativity under
a certain condition. However, this conditional dissipativity does not restrict the
normal drilling operation region. The drill bit model may restrict the drilling
operation where liquid influx from reservoir flows into the wellbore. A rigorous
numerical analysis of Rtot is required in such situations. While we observe that
the passivity of the composed system holds conditionally, it is also interesting to
find whether the composed system is incrementally passive, if not passive. How-
ever, the aspect of incremental passivity is not pursued in this dissertation. It
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should be emphasized that we considered constant cross-section in the analysis
of the behaviour at the bit junction and the passivity of the composed system.
However, a similar analysis can straightforwardly be carried out even for the
setting with varying cross-sections. The essential component are the boundary
port variables, which have already been obtained for varying geometrical shapes
as well (see Section 4.2 and 4.3). We restricted our attention to the case where
two boundary conditions are specified at the left-hand side of the annulus and
other two physical boundary conditions are specified at the right-hand side of
the annulus. Other type of physical boundary conditions, such as the 3-1 case
as opposed to 2-2 case, deserve a further dedicated study. This aspect, however,
does not seem to pose serious concerns.

In this chapter, we have not delved deeper into the aspects of composed
Dirac structure for the MPD system. It is well-known that the composition of
Dirac structures is also a Dirac structure. We have already proved the existence
of Dirac structures for the single- and two-phase flow models. The only addi-
tional investigation required, in the scope of composed MPD system, is to assess
whether the finite-dimensional interconnection at the bit junction is indeed a
Dirac structure and under what conditions. Connecting a finite-dimensional
component with an infinite-dimensional Dirac structure will again be a Dirac
structure. In the light of this discussion, we would like to provide insights re-
garding the conditional existence of a finite-dimensional Dirac structure at the
bit junction. This conditional existence is closely tied to the conditional pas-
sivity of the composed system. It can be argued that, overall, more conditions
than those required for the existence of Dirac structure (individually) for fluid
dynamics models, would be needed. A rather technical in-depth discussion is
deferred to future works.

The framework proposed in this chapter enables an energy-based controller
design for MPD while taking the infinite-dimensional nature of the dynamics
into account. In the pursuit towards developing a controller, one of the op-
tions could be to develop an infinite-dimensional controller and then discretize
the resulting closed-loop plant via a structure-preserving scheme. Another op-
tion could be to discretize the model in a structure-preserving manner, and
then develop a finite-dimensional controller. In any case, discretizing a port-
Hamiltonian model in a structure-preserving manner deserves important atten-
tion, and this forms the focus of the next chapter.



Chapter 5
Structure-preserving
discretization of two-phase
flow models

In this chapter, we present a structure-preserving spatial discretization method
for infinite-dimensional non-linear port-Hamiltonian representations of commonly
used one-dimensional two-phase flow models: the Two-Fluid Model (TFM) and
the Drift Flux Model (DFM). We introduce the port-Hamiltonian representations
of these two-phase flow models and then invoke a mixed finite element method to
perform a structure-preserving spatial discretization, both in the presence and ab-
sence of dissipative/resistive effects. Consequently, we obtain a finite-dimensional
realization of a proposed novel (extended) Stokes-Dirac structure for the models
of interest. The properties of the resulting finite-dimensional realizations are as-
sessed and the conditions under which these are known to respect the properties of
finite-dimensional Dirac structures are discussed. Furthermore, we derive the com-
plete finite-dimensional interconnected port-Hamiltonian model by invoking the
notion of power-preserving interconnection. Moreover, we employ the concept of
Gauss-Legendre collocation methods for temporal discretization of state-dependent
infinite-dimensional port-Hamiltonian representations of two-phase flow models.
We extend the collocation concept, a definition based on symplectic integration, by
accounting for state-dependent system matrices and feedthrough terms in the state-
space port-Hamiltonian representation. Consequently, we develop a framework for
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structure-preserving temporal discretization of the TFM and the DFM. Finally, we
test the proposed structure-preserving discretization method on a simple, yet rep-
resentative test case.

5.1 Introduction

In Chapters 3 and 4, we developed infinite-dimensional port-Hamiltonian rep-
resentations for the single- and two-phase flow models. In this chapter, we
will develop numerical algorithms that preserve a port-Hamiltonian structure,
in particular for a class of two-phase flow models, at the continuous-time and
discrete-time level.

Structure-preserving algorithms (or mimetic methods) are defined as nu-
merical algorithms that conserve as much as possible the qualitative behaviour of
the original (finite- or infinite-dimensional) system. Such algorithms have been
used for solving ordinary differential equations, partial differential equations
and differential algebraic equations in [43,54,123,125]. Structure-preservation
carries a different meaning for different research communities. It could mean
preservation of several (if not all) important features of a (continuous) prob-
lem, such as positivity of a physical quantity, local or global mass and momen-
tum conservation or preservation of structural invariants/Casimirs, preservation
of steady-state behaviour and limit-cycle behaviour, control of entropy produc-
tion/dissipation rate, mimicking the decay behaviour of the physical energy, and
preserving the index at the discrete level [17, 39, 40, 80]. Structure-preserving
numerical algorithms could also encompass preservation of geometrical and al-
gebraic structure, for instance Poisson structure, underlying the phase space
of Hamiltonian dynamical systems [82] and preservation of the saddle point
nature of the problem. Recently, numerical algorithms preserving the (multi-
)symplectic structure, Hamiltonian structure, port-Hamiltonian structure and
port-Hamiltonian descriptor structure have also been investigated [32,63,123].

In the past, several scientific applications have been formulated in the (finite-
and infinite-dimensional) port-Hamiltonian framework [13, 19, 34, 115, 207]
and, subsequently, spatially discretized, temporally discretized or both spatially
and temporally discretized in a structure-preserving manner [20, 48, 75, 96,
163]. Several methodologies exist for discretization of finite-dimensional port-
Hamiltonian systems, i.e., explicit discrete-time port-Hamiltonian systems [96]
and discrete-time port-Hamiltonian descriptor realizations [123]. In the scope
of structure-preserving discretization of infinite-dimensional port-Hamiltonian
systems, the spatial discretization and temporal discretization of the underlying



5.1 Introduction 111

geometry of the model forms a key step.
We are interested in the (complete) structure-preserving discretization of

port-Hamiltonian representations of Managed Pressure Drilling (MPD) systems
[130], which are composed of compressible single- and two-phase flow mod-
els. To this end, a structure-preserving finite-dimensional realization is re-
quired both for the single- and two-phase flow models. The structure-preserving
discretization has already been performed for the single-phase flow models
in [48, 95]. Moreover, [95] considered (compressible) single-phase flow in
a pipe segment and also accounted for several practically relevant scenarios,
such as a series interconnection of two and N-pipe segments while also taking
junction conditions into consideration. However, the structure-preserving dis-
cretization of the two-phase flow models, popularly modelled by the Two-Fluid
Model (TFM) and the Drift Flux Model (DFM), is still an open challenge, and
we seek to address it in this chapter. The development of a structure-preserving
discretization framework for compressible two-phase flow models and the exist-
ing structure-preserving discretization framework for compressible single-phase
flow models will serve as a stepping stone to obtain a structure-preserving dis-
cretization and, ultimately, also to control design of MPD systems.

In Chapters 3 and 4 (or [19,21]), a port-Hamiltonian formulation has been
defined (implicitly in terms of state-dependent Stokes-Dirac structures) for single-
phase and two-phase models for flows across constant and variable geometrical
cross-sections. The structure-preserving discretization of such state-dependent
non-linear distributed-parameter port-Hamiltonian systems is a key step for
the simulation purposes and for the observer and controller design based on
energy-shaping and damping-injection principles. Several works, as in [75,
95,126], have performed discretization of state-independent Stokes-Dirac struc-
tures. However, there is limited work in the direction of discretization of state-
dependent Stokes-Dirac structures in a structure-preserving manner. We develop
structure-preserving numerical methods for the class of (conditional) hyperbolic
systems of conservation laws that give rise to state-dependent Stokes-Dirac struc-
tures. In particular, the aim of this work is to develop finite-dimensional port-
Hamiltonian formulations for the two variants of two-phase flow models that
possess a state-dependent underlying geometrical structure.

Port-Hamiltonian formulations are generally represented implicitly in terms
of Stokes-Dirac structures [21, 53]. These underlying geometric structures are
infinite-dimensional Dirac structures based on Stokes’ theorem [19, 53, 101].
These are known to play a crucial role in characterizing the structural invari-
ants of a port-Hamiltonian system [53]. Moreover, we show, for the first time
to the best of our knowledge, that such structures also essentially help us to
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obtain appropriate/compatible approximation spaces (of the flow, state and the
effort variables), and thus eventually to obtain a finite-dimensional Dirac/port-
Hamiltonian structure at the discrete level. It is well known that the resistive
effects can be accounted for by constructing a so-called extended Stokes-Dirac
structure, see [21, 53] for representative examples of such extended structures
in the scope of state-dependent and state-independent operators. To this end, it
will be required to approximate extended Stokes-Dirac structures. Lossy port-
Hamiltonian systems have been discretized in the past [162]. However, the
extended Stokes-Dirac structures were state-independent. Moreover, only the
corresponding structure-preserving spatial discretization scheme was outlined.
We are interested in the complete structure-preserving discretization of an ex-
tended Stokes-Dirac structure while accounting for dissipative effects.

In the past, spatial discretization methods preserving the port-Hamiltonian
structure have been proposed in the scope of one- and multi-dimensional prob-
lems [35, 75, 97, 126, 161–163, 179]. Several well-known spatial discretization
methods include pseudo-spectral methods [126], mixed finite element meth-
ods [75, 97], partitioned finite-element methods [35, 162], staggered finite-
volume and finite-difference methods [179], and explicit simplicial discretiza-
tion methods built on the framework of exterior calculus [163].

However, most of these existing works on structure-preserving spatial dis-
cretization of infinite-dimensional port-Hamiltonian representations have fo-
cused on the approximation of a constant Stokes-Dirac structure arising from
a state-independent (and extended) skew-adjoint Hamiltonian operator. For in-
stance, in [160], non-canonical but physically relevant Hamiltonian function-
als lead to non-linear port-Hamiltonian systems with an underlying constant
and an extended state-independent Stokes-Dirac structure. Such a geometric
structure has subsequently been discretized in a structure-preserving manner
using the partitioned finite-element method in [161]. Structure-preserving spa-
tial discretization has also been performed for first- and higher-order state-
independent Hamiltonian operators with distributed inputs, see [33]. However,
for those methods, the Hamiltonian operators were again state-independent. As
for applications, the (lossless) transmission line, wave equations, Maxwell’s
equations, rendering state-independent Hamiltonian operators, have generally
been used as test-beds for the numerical validation of the structure-preserving
discretization framework [75]. Additionally, most of the existing spatial dis-
cretization methods have been developed and tested for models with quadratic
Hamiltonian functionals.

Non-quadratic Hamiltonian functionals and state-dependent skew-adjoint op-
erators (under a certain choice of the state-variables) are specific features of the
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TFM and the DFM. One of the existing works on structure-preserving spatial dis-
cretization of mathematical models with non-quadratic Hamiltonian functionals
includes [95]. This work deals with the structure-preserving discretization of a
port-Hamiltonian representation of a compressible single-phase flow model. It
focuses on discretizing state-independent Hamiltonian operators or Stokes-Dirac
structures (under a certain choice of the state variables) for the model of in-
terest. In contrast, the first focus of this chapter is to spatially discretize state-
dependent Stokes-Dirac structures (or port-Hamiltonian representations) in a
structure-preserving manner. Moreover, it may be the case that any choice of
state-variables will yield state-dependent skew-adjoint Hamiltonian operators;
see [19] for port-Hamiltonian representation(s) of the Drift Flux Model.

Relevant works in the direction of structure-preserving discretization of a
state-dependent Stokes-Dirac structure include [23,140] and [148]. These works
are built upon the mixed finite element method (mFEM), which was initially
proposed for canonical port-Hamiltonian systems in [75]. The methodology is
based on the concept of using mixed or different finite elements for the approx-
imation of flow and effort variables. This methodology has been used to deal
with the spatial discretization of linear shallow water equations (accounting
for Coriolis forces and topography) with a non-constant Stokes-Dirac structure
in [148]. Spatial discretization essentially translates a Stokes-Dirac structure
into a finite-dimensional Dirac structure [162]. In view of our interest to de-
velop structure-preserving discretization techniques for a port-Hamiltonian rep-
resentation of the TFM and the DFM, we recall that the corresponding Stokes-
Dirac structure, recently introduced in [19], is novel and has not been spatially-
discretized or both spatially- and temporally-discretized in a structure-preserving
manner.

We employ the mFEM for the structure-preserving spatial discretization of
the TFM and the DFM. We demonstrate that a finite-dimensional representation
preserves the finite-dimensional Dirac structure, i.e., the geometric interconnec-
tion structure and the power balance equation. We also discuss the role of the
boundary port-variables in guaranteeing a finite-dimensional Dirac structure. It
is of interest to investigate whether the mFEM, which has so far been tested
on linear(ized) problems or state-independent Stokes-Dirac structures, requires
fundamental modifications to deal with the non-linearity of the mathematical
model or the state-dependent nature of the Stokes-Dirac structure. Hence, we
provide insights on the influence of the model non-linearity or state-dependent
Stokes-Dirac structure in obtaining a structure-preserving spatial discretization
method. Moreover, the mFEM is known to yield feedthrough terms in the
finite-dimensional state-space model representation. We subsequently reason
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that it is not necessary to eliminate the appearance of feedthrough terms from
the finite-dimensional model approximation and that a special structure in the
feedthrough matrix makes it amenable to use the mFEM for spatially discretiz-
ing hyperbolic systems, such as, the TFM and the DFM.

The structure-preserving spatial discretization yields continuous-time, finite-
dimensional port-Hamiltonian representations of the models of interest. A next
natural step is to develop a discrete-time, finite-dimensional port-Hamiltonian
representation by employing suitable structure-preserving temporal discretiza-
tion methods on the continuous-time port-Hamiltonian representation. Discrete-
time port-Hamiltonian systems have been recently defined in [96] based on the
concept of symplectic Gauss-Legendre collocation. Following the principles laid
down in [96], we employ Gauss-Legendre collocation methods and seek to de-
velop discrete-time port-Hamiltonian representations of the TFM and the DFM.
However, the authors in [96] do not consider the presence of feedthrough terms
in the state-space port-Hamiltonian model, which is the starting point for the ap-
plication of the concept of the Gauss-Legendre collocation methods. It is worth
to emphasize that the mFEM, employed for the structure-preserving spatial dis-
cretization, yields feedthrough terms in the continuous-time, finite-dimensional
port-Hamiltonian representations of the TFM and the DFM. To this end, we ex-
tend the existing concepts in [96]. We account for the state-dependent system
matrices and the feedthrough terms in the continuous-time port-Hamiltonian
representations of the two-phase flow models of interest and, subsequently, de-
velop corresponding discrete-time port-Hamiltonian representations.

The main contributions of the chapter are to: (i) perform a spatial dis-
cretization both for the conservative and the resistive setting, and construct
a point-wise in time, finite-dimensional Dirac structure on a minimal discrete
bond space, (ii) interconnect finite-dimensional models (obtained for each dis-
cretized lump) in a power-preserving manner, (iii) perform a temporal dis-
cretization on the state-space port-Hamiltonian model with feedthrough term,
and obtain a discrete-time Dirac structure, and (iv) numerically assess the pro-
posed structure-preserving discretization framework.

The chapter is organized as follows. In Section 5.2, the two-phase flow
models of interest, i.e., the TFM and the DFM, are introduced. Mixed finite
element based structure-preserving spatial discretization is then discussed in
Section 5.3. The spatial discretization methodology, along with the framework
of power-preserving interconnection of discretized lumps, yielding the state-
space port-Hamiltonian model is extensively discussed for the TFM and the
DFM in Section 5.4. Section 5.5 is dedicated to structure-preserving tempo-
ral discretization that is built upon the concept of Gauss-Legendre collocation
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methods. Then, numerical experiments are discussed in Section 5.6 to vali-
date the theoretical foundation. Finally, Section 5.7 ends with conclusions and
potential future works.

5.2 Revisiting Two-Phase Flow Models

In this section, we state port-Hamiltonian formulations of the two-phase flow
models and their equivalent extended Stokes-Dirac structure representations to
set the foundation for developing a corresponding structure-preserving finite-
dimensional realization.

5.2.1 Two-Fluid Model

The non-quadratic Hamiltonian functional HT is given by

HT (q1, q2, q3, q4) :=
∫
Ω

q2
3

2q1
+ q2

4

2q2
+q1c2

g ln

(
p

c2
g

)

+q2c2
` ln

(
p +β

c2
`

)
+ (

1−αg
)
β dz, (5.1)

where p and αg can be replaced by the relations (3.5) and (3.6), respectively,
and where q = [q1, q2, q3, q4]T := [mg , m`, mg vg , m`v`]T denotes the state of
the system.

Theorem 5.2.1 The Two-Fluid Model, governed by (3.1) together with the closure
equations (3.2), can be written in a port-Hamiltonian representation as follows:

∂t q = (
JT (q)−RT

)
δqHT (q) or f = (

JT (q)−RT
)

e, (5.2)

with state-variable q, the Hamiltonian functional HT as in (5.1),

JT (q)=−


0 0 ∂z (q1·) 0
0 0 0 ∂z (q2·)

q1∂z (·) 0 ∂z (q3·)+q3∂z (·) 0
0 q2∂z (·) 0 ∂z (q4·)+q4∂z (·)

 ,

RT =


0 0 0 0
0 0 0 0
0 0 bM

g −bM
g

0 0 −bM
g bM

g

 , (5.3)
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and the boundary port flow and effort variables

eB
b1 = eq3 |z=L , f B

b1 =
(
q1eq1 +q3eq3

)
|z=L ,

eB
b2 = eq4 |z=L , f B

b2 =
(
q2eq2 +q4eq4

)
|z=L ,

f B
a1 =−eq3 |z=0, eB

a1 =
(
q1eq1 +q3eq3

)
|z=0,

f B
a2 =−eq4 |z=0, eB

a2 =
(
q2eq2 +q4eq4

)
|z=0,

(5.4)

where the flow and effort variables have been introduced in (5.2). The flow vari-
ables f are defined as the derivative of the state-variables with respect to time
i.e., f = [ fq1 , fq2 , fq3 , fq4 ]T := ∂t q. Moreover, the effort variables e are defined as
the variational derivative of the Hamiltonian functional HT (q) with respect to the
state-variable, i.e., e = [eq1 , eq2 , eq3 , eq4 ]T := δqHT (q).

Remark 5.2.2 The proof to Theorem 5.2.1 follows directly from Theorem 3.3.6,
which laid the foundation of dissipative Hamiltonian representation of the TFM,
and Theorem 3.4.9, which characterized the corresponding boundary port vari-
ables such that the underlying geometric structure exists.

Using the formally skew-adjointness of JT (q), the behaviour of the Hamiltonian
along the solutions of the mathematical model is governed by the following
power balance equation:

dHT

dt
=

∫
Ω

(δqHT (q))T (−RT (q))δqHT (q) dz +
(
eq3

(
q1eq1 +q3eq3

))
|z=0 +(

eq4

(
q2eq2 +q4eq4

))
|z=0 −

(
eq3

(
q1eq1 +q3eq3

))
|z=L −

(
eq4

(
q2eq2 +q4eq4

))
|z=L .

We can clearly observe that dHT
dt , in the absence of dissipation, is governed by

the product of boundary port variables.

Remark 5.2.3 We have considered a non-unique way to define the boundary port
flow and effort variables. Such boundary port variables can be parametrized fol-
lowing the principles laid down in [101].

The boundary flow and effort variables can be interpreted physically. Ignoring
the sign associated to the boundary flow (and effort) variables; f B

a1 and f B
a2 (eB

b1
and eB

b2) can be interpreted as gas and liquid volumetric flow rate, respectively,
at the left end (and at the right end) of the spatial domain. The flow (and effort)
variables f B

b1 and f B
b2 (eB

a1 and eB
a2) have physical dimensions of energy per unit

mass.
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Equivalent to the representation in Theorem 5.2.1, the Two-Fluid Model can
be represented in terms of an extended Stokes-Dirac structure as shown next.

Theorem 5.2.4 The Two-Fluid Model, governed by (3.1) together with the closure
equations (3.2), can be represented in an extended Stokes-Dirac structure repre-
sentation as follows:

fq1

fq2

fq3

fq4

fR1

fR2

=



0 0 ∂z (q1·) 0 0 0
0 0 0 ∂z (q2·) 0 0

q1∂z (·) 0 ∂z (q3·)+q3∂z (·) 0 −1 0
0 q2∂z (·) 0 ∂z (q4·)+q4∂z (·) 0 −1
0 0 1 0 0 0
0 0 0 1 0 0





eq1

eq2

eq3

eq4

eR1

eR2

 , (5.5)

with closure relations

eR1 = bM
g fR1 −bM

g fR2 , eR2 =−bM
g fR1 +bM

g fR2 , (5.6)

and the boundary port flow and effort variables

eB
b1 = eq3 |z=L , f B

b1 =
(
q1eq1 +q3eq3

)
|z=L ,

eB
b2 = eq4 |z=L , f B

b2 =
(
q2eq2 +q4eq4

)
|z=L ,

f B
a1 =−eq3 |z=0, eB

a1 =
(
q1eq1 +q3eq3

)
|z=0,

f B
a2 =−eq4 |z=0, eB

a2 =
(
q2eq2 +q4eq4

)
|z=0.

(5.7)

Remark 5.2.5 Similar to the proof of Theorem 5.2.1, the proof of Theorem 5.2.4
also uses Theorems 3.3.6 and 3.4.9. In addition, it relies on the concept of extended
Stokes-Dirac structure. We omit the detailed proof, and instead refer the reader
to follow the lines of reasoning in the proof of Proposition 4.2.9 for obtaining
extended Stokes-Dirac structure from the knowledge of dissipative Hamiltonian
representation of the TFM.

This extended geometric structure will be utilized later in this chapter in order
to develop a structure-preserving discretization of the TFM in the presence of
resistive or dissipative effects. In particular, the extended Stokes-Dirac structure
will play a crucial role in quantification of the energy attributed to the resistive
ports. Consequently, it will aid in assessing whether the finite-dimensional ex-
tended Stokes-Dirac structure preserves the energy due to the resistive effects.
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5.2.2 Drift Flux Model

The non-linear, non-quadratic and non-separable Hamiltonian functional for the
Drift Flux Model is given by:

HD (mg,m`, v) =
∫
Ω

mg
v2

2
+m`

v2

2
+m`c2

` ln

(
p +β

c2
`

)
+mgc2

g ln

(
p

c2
g

)
+

α`β+ (
mg +m`

) x∫
a

g sin(θ(ξ))dξ

dx. (5.8)

Theorem 5.2.6 The Drift Flux Model (without slip), governed by (3.15) together
with v := vg = v`, the closure equations (3.2a), (3.2e), (3.2f) and (3.16), can be
written in a port-Hamiltonian representation as follows:

∂t x = (
JD (x)−RD (x)

)
δxHD (x), or f = (

JD (x)−RD (x)
)

e (5.9)

with x:= [x1, x2, x3]T = [mg , m`, v]T , the Hamiltonian functional HD as in (5.8),

JD (x) =


0 0 −∂z

(
mg

mg +m`
·
)

0 0 −∂z

(
m`

mg +m`
·
)

− mg

mg +m`
∂z (·) − m`

mg +m`
∂z (·) 0

 , (5.10)

RD (x) =

0 0 0
0 0 0

0 0 32µm

d 2(mg +m`)2

 , (5.11)

and the boundary port flow and effort variables[
f B

a
f B

b

]
=

[−(emg Ag +em`
A`)|z=0

(emg Ag +em`
A`)|z=L

]
,

[
eB

a
eB

b

]
=

[
ev |z=0

ev |z=L

]
, (5.12)

where the flow and effort variables have been introduced in (5.9), and the short-
hand notations Ag and A` are given by Ag = mg

mg+m`
and A` = m`

mg+m`
, respectively.

The flow variables f are defined as the derivative of the state-variables with respect
to time i.e., f = [ fx1 , fx2 , fx3 ]T := ∂t q. Moreover, the effort variables e are defined
as the variational derivative of the Hamiltonian functional HD (x) with respect to
the state-variable, i.e., e= [ex1 , ex2 , ex3 ]T := δqHD (x).
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Remark 5.2.7 The proof to Theorem 5.2.6 follows directly from Theorem 3.3.10,
which laid the foundation of dissipative Hamiltonian representation of the DFM,
and Theorem 3.4.11, which characterized the corresponding boundary port vari-
ables such that the underlying geometric structure exists.

The boundary flow and effort variables can be interpreted physically. Ignoring
the sign associated to the boundary flow and effort variables; eB

a and eB
b repre-

sent total volumetric flow rate at the left end and the right end of the spatial
domain, respectively. The flow variables f B

a and f B
b have physical dimensions of

energy per unit mass.
Using the formally skew-adjointness of JD (x), the behaviour of the Hamilto-

nian along the solutions of the mathematical model is governed by the following
power balance equation:

dHD

dt
=

∫
Ω

(δxHD (x))T (−RD (x))δxHD (x) dz +
(
ev

(
emg Ag +em`

A`

))
|z=0 −(

ev

(
emg Ag +em`

A`

))
|z=L .

We observe that dHD
dt , in the absence of dissipation, is governed by the product

of boundary port variables.
Similar to the structure-preserving discretization of the TFM, we will exploit

an extended Stokes-Dirac structure representation of the DFM to develop a spa-
tially discretized model for the DFM in the presence of resistive effects. We do
not state the extended geometric structure here and instead refer to Proposition
4.2.9 for its corresponding description.

5.3 Structure-preserving Spatial Discretization

A closed form analytical solution does not exist for complicated models such as
the two-phase flow models presented in Section 5.2. Numerical solvers play a
key role to provide insight in the behaviour of the physical model under consid-
eration. In the past, several numerical methods such as Finite Difference Meth-
ods [70], Finite Volume Methods [14,57–61,67,128,167] and Finite Element
Methods [192] have been employed to numerically approximate two-phase
flow models. However, these numerical methods are not necessarily structure-
preserving by construction. Structure-preserving numerical discretization meth-
ods can be formulated either in the strong form [75] or in the weak/variational
form [97].



120 Structure-preserving discretization of two-phase flow models

We employ the mFEM in the scope of structure-preserving discretization of
two-phase flow models. This methodology is also valid for systems on multi-
dimensional spatial domains. In this chapter, we will focus on one-dimensional
problems only. For an application of such an approach to multi-dimensional
problems, we refer the reader to [75,97].

The major challenge lies in identifying a finite-dimensional (continuous-
time) Dirac structure with non-degenerate power pairings. Such a structure
is crucial as it serves as a basis for the state-space port-Hamiltonian model.

We first set the background by recalling key mathematical preliminaries. We
begin with defining Dirac structures.

A (finite-dimensional) Dirac structure D is defined as follows.

Definition 5.3.1 [20] Consider e ∈ E and f ∈F , where E and F are real finite-
dimensional normed vector spaces and where E = F∗, the dual space of F . We
define

e( f ) := 〈e, f 〉 := f T e = 1

2
f T e + 1

2
eT f . (5.13)

Moreover, we define the non-degenerate bilinear pairing d : (E ×F )× (E ×F ) → R

in the following way:

d
(
(e1, f1), (e2, f2)

)
:= 〈e2, f1〉+〈e1, f2〉. (5.14)

The subspace D ⊂ E ×F is a Dirac structure if D = D⊥, where D⊥ is defined as
follows:

D⊥ := {(e, f ) ∈ E ×F | d
(
(e0, f0), (e, f )

)
= 0 ∀(e0, f0) ∈D}. (5.15)

Several matrix representations are possible for a finite-dimensional Dirac
structure. Here, we only recall the definition of the image representation of a
Dirac structure.

Definition 5.3.2 Let D ⊂ E ×F with dim(F) = n. A subspace

D = {(e, f ) ∈ E ×F | ∃λ ∈Rm s.t . e = E Tλ, f = F Tλ}, (5.16)

endowed with a non-degenerate bilinear pairing (5.14), is an image representation
of a Dirac structure if and only if there exist two n ×n real matrices E and F that
satisfy

(i) EF T +F E T = 0.
(ii) rank([E F ]) = n.
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Condition (i) above is a discrete equivalent of a power balance equation (or
power-preservation), while, condition (ii) is representative of richness in the
interconnection structure in order to interconnect discretized lumps in a power-
preserving manner.

Definition 5.3.3 [187] Let D ⊂ E ×F , with dim(F) = n, be a Dirac structure.
Then D can be represented in the kernel representation in the following manner:

D = {(e, f ) ∈ E ×F | Ee +F f = 0} (5.17)

for any n ×n real matrices E and F satisfying

(i) F E T +EF T = 0, and (ii) rank(E | F ) = n.

Next, we first discuss about the structure-preserving spatial discretization of
the TFM and then about the structure-preserving spatial discretization of the
DFM (without slip).

5.3.1 Spatial Discretization of Two-Fluid Model

The structure-preserving spatial discretization procedure essentially consists of
the following steps. We approximate the states, and the flow and effort vari-
ables by suitable discrete functions. We then use such an approximation to
obtain finite-dimensional equations and ensure power balance. In addition to
preserving the power balance equation, we assess the existence of the finite-
dimensional Dirac structure.

It is known that it is easier to simulate the resulting finite-dimensional real-
ization in the presence of resistive effects than in the absence of such resistive
effects. However, even in the presence of resistive effects, the numerical solvers
may produce solutions in which the numerical dissipated power is not (exactly)
matching with the dissipated power of the infinite-dimensional system. The is-
sue is that the numerical solvers distort or mismatch the resistive nature of a
port-Hamiltonian system and this is, of course, most visible in the lossless case.
Hence, we develop the structure-preserving discretization methodology for both
the lossless and the lossy setting.

Conservative Setting (Lossless case)
Here, we consider the setting which abides by the strict conservation of energy
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in the absence of dissipative terms. So, bM
g = 0 in (5.3) and, therefore, RT = 0

in the following discussion.
Numerical discretization entails discretizing the spatial domainΩ= [0,L] into

several finite elements. We apply the procedure to a single discretized lump
Zab = [a,b], with 0 ≤ a < b ≤ L, in the scope of the TFM.

Each state variable is discretized using one spatial basis function as follows:

qi (t , z) = q ab
i (t )ωab

qi
(z), for all i ∈ {1,2,3,4}, (5.18)

with z∈Zab . The normalization assumption on ωab
qi

(z) yields∫ b

a
ωab

qi
(z)d z = 1, for all i ∈ {1,2,3,4}. (5.19)

Recall from Theorem 5.2.1 that we have:

fqi = ∂t qi , eqi = δqi H (q), for all i ∈ {1,2,3,4}. (5.20)

Each flow variable fqi is discretized in a manner similar to the state approx-
imation, i.e.,

fqi (t , z) = f ab
qi

(t )ωab
qi

(z), for all i ∈ {1,2,3,4}. (5.21)

Each effort variable eqi is spatially discretized using two different basis func-
tions ωa

qi
(z) and ωb

qi
(z) in the following manner:

eqi (t , z)=ea
qi

(t )ωa
qi

(z)+eb
qi

(t )ωb
qi

(z), for all i ∈ {1,2,3,4}, (5.22)

where the following boundary conditions hold:

ωa
qi

(a)=1,ωa
qi

(b)=0,ωb
qi

(a)=0,ωb
qi

(b)=1, for all i ∈ {1,2,3,4}, (5.23)

and
ea

qi
(t )=eqi (t , a), eb

qi
(t )=eqi (t ,b), for all i ∈ {1,2,3,4}. (5.24)

Here, eqi (t , a) (resp. eqi (t ,b)) is the value of the effort variable at the left (resp.
the right) boundary of Zab .

Inserting the discrete approximation of the flow variables (5.21), state vari-
ables (5.18) and effort variables (5.22) into (5.2), we obtain

f ab
q1

(t )ωab
q1

(z) =−q ab
1 (t )ea

q3
(t )∂z

(
ωab

q1
(z)ωa

q3
(z)

)
−q ab

1 (t )eb
q3

(t )∂z

(
ωab

q1
(z)ωb

q3
(z)

)
,

(5.25)



5.3 Structure-preserving Spatial Discretization 123

f ab
q2

(t )ωab
q2

(z) =−q ab
2 (t )ea

q4
(t )∂z

(
ωab

q2
(z)ωa

q4
(z)

)
−q ab

2 (t )eb
q4

(t )∂z

(
ωab

q2
(z)ωb

q4
(z)

)
,

(5.26)

f ab
q3

(t )ωab
q3

(z) =−q ab
1 (t )ωab

q1
(z)ea

q1
(t )∂z (ωa

q1
(z))−q ab

1 (t )ωab
q1

(z)eb
q1

(t )∂z (ωb
q1

(z))

−q ab
3 (t )ea

q3
(t )∂z

(
ωab

q3
(z)ωa

q3
(z)

)
−q ab

3 (t )eb
q3

(t )∂z

(
ωab

q3
(z)ωb

q3
(z)

)
−q ab

3 (t )ea
q3

(t )ωab
q3

(z)∂z (ωa
q3

(z))−q ab
3 (t )eb

q3
(t )ωab

q3
(z)∂z (ωb

q3
(z)), (5.27)

f ab
q4

(t )ωab
q4

(z) =−q ab
2 (t )ωab

q2
(z)ea

q2
(t )∂z (ωa

q2
(z))−q ab

2 (t )ωab
q2

(z)eb
q2

(t )∂z (ωb
q2

(z))

−q ab
4 (t )ea

q4
(t )∂z

(
ωab

q4
(z)ωa

q4
(z)

)
−q ab

4 (t )eb
q4

(t )∂z

(
ωab

q4
(z)ωb

q4
(z)

)
−q ab

4 (t )ea
q4

(t )ωab
q4

(z)∂z (ωa
q4

(z))−q ab
4 (t )eb

q4
(t )ωab

q4
(z)∂z (ωb

q4
(z)). (5.28)

The relation between different basis functions, in the sense of compatibility of
forms as in [75], needs to concur with the following points:

1. The basis function ωab
q1

(z) and functions ωa
q3

(z) and ωb
q3

(z) should be cho-
sen in such a way that for every ea

q3
(t ) and eb

q3
(t ) we can find f ab

q1
(t ) such

that (5.25) is satisfied.

2. The basis function ωab
q2

(z) and functions ωa
q4

(z) and ωb
q4

(z) should be cho-
sen in such a way that for every ea

q4
(t ) and eb

q4
(t ) we can find f ab

q2
(t ) such

that (5.26) is satisfied.

3. The basis function ωab
q3

(z) and functions ωa
q1

(z), ωb
q1

(z), ωa
q3

(z) and ωb
q3

(z)

should be chosen in such a way that for every ea
q1

(t ), eb
q1

(t ), ea
q3

(t ) and
eb

q3
(t ) we can find f ab

q3
(t ) such that (5.27) is satisfied.

4. The basis function ωab
q4

(z) and functions ωa
q2

(z), ωb
q2

(z), ωa
q4

(z) and ωb
q4

(z)

should be chosen in such a way that for every ea
q2

(t ), eb
q2

(t ), ea
q4

(t ) and
eb

q4
(t ) we can find f ab

q4
(t ) such that (5.28) is satisfied.

For instance, take eb
q3

(t ) = 0. Under this assumption, (5.25) is true if and only if

∂z

(
ωab

q1
(z)ωa

q3
(z)

)
= cωab

q1
(z) for a constant c. Integrating this equation over Zab

yields:

ωab
q1

(b)ωa
q3

(b)−ωab
q1

(a)ωa
q3

(a) = c
∫

Zab

ωab
q1

(z) dz. (5.29)
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Exploiting the normalization assumption (5.19) and the boundary values of the
basis functions (ωa

q3
and ωb

q3
) (5.23), we can find that c =−ωab

q1
(a) and, hence,

∂z

(
ωab

q1
(z)ωa

q3
(z)

)
=−ωab

q1
(a)ωab

q1
(z). (5.30)

Analogously, we can obtain the following relations:

∂z

(
ωab

q1
(z)ωb

q3
(z)

)
=ωab

q1
(b)ωab

q1
(z),

∂z

(
ωab

q2
(z)ωa

q4
(z)

)
=−ωab

q2
(a)ωab

q2
(z),

∂z

(
ωab

q2
(z)ωb

q4
(z)

)
=ωab

q2
(b)ωab

q2
(z).

(5.31)

Now consider eb
q1

(t ) = 0, ea
q3

(t ) = 0 and eb
q3

(t ) = 0. Under this assumption, (5.27)
is true if and only if ωab

q1
(z)∂zω

a
q1

(z) = cωab
q3

(z) for a different constant c. Inte-
grating this equation over Zab gives the following result:

c
∫

Zab

ωab
q3

(z)

ωab
q1

(z)
dz =ωa

q1
(b)−ωa

q1
(a) =−1, (5.32)

where we have exploited (5.19) and (5.23). Using (5.32) we have that:

ωab
q1

(z)∂zω
a
q1

(z) =− 1∫
Zab

ωab
q3

(z)

ωab
q1

(z)
dz

ωab
q3

(z). (5.33)

In a similar manner, we can arrive at the following identities:

ωab
q1

(z)∂zω
b
q1

(z) = 1∫
Zab

ωab
q3

(z)

ωab
q1

(z)
dz

ωab
q3

(z),

ωab
q2

(z)∂zω
a
q2

(z) =− 1∫
Zab

ωab
q4

(z)

ωab
q2

(z)
dz

ωab
q4

(z),

ωab
q2

(z)∂zω
b
q2

(z) = 1∫
Zab

ωab
q4

(z)

ωab
q2

(z)
dz

ωab
q4

(z).

(5.34)

We now consider ea
q1

(t ) = 0, eb
q1

(t ) = 0 and eb
q3

(t ) = 0. Under this assumption,
(5.27) is true if and only if

∂z

(
ωab

q3
(z)ωa

q3
(z)

)
+ωab

q3
(z)∂zω

a
q3

(z) = cωab
q3

(z), (5.35)
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for another constant c. Integrating the above equation over Zab yields:

c
∫

Zab

ωab
q3

(z) =ωab
q3

(b)ωa
q3

(b)−ωab
q3

(a)ωa
q3

(a)+
∫

Zab

ωab
q3

(z)∂zω
a
q3

(z) dz. (5.36)

Exploiting the normalization assumption (5.19) and the boundary values of the
basis functions (5.23), we can find that

c =−ωab
q3

(a)+
∫

Zab

ωab
q3

(z)∂zω
a
q3

(z) dz. (5.37)

Using the above steps, we will analogously have the following results:

∂z

(
ωab

q3
(z)ωa

q3
(z)

)
+ωab

q3
(z)∂zω

a
q3

(z) = Aωab
q3

(z),

∂z

(
ωab

q3
(z)ωb

q3
(z)

)
+ωab

q3
(z)∂zω

b
q3

(z) = Bωab
q3

(z),

∂z

(
ωab

q4
(z)ωa

q4
(z)

)
+ωab

q4
(z)∂zω

a
q4

(z) =Cωab
q4

(z),

∂z

(
ωab

q4
(z)ωb

q4
(z)

)
+ωab

q4
(z)∂zω

b
q4

(z) = Dωab
q4

(z),

(5.38)

where

A =−ωab
q3

(a)+
∫

Zab

ωab
q3

(z)∂zω
a
q3

(z) dz, B =ωab
q3

(b)+
∫

Zab

ωab
q3

(z)∂zω
b
q3

(z) dz, (5.39)

C =−ωab
q4

(a)+
∫

Zab

ωab
q4

(z)∂zω
a
q4

(z) dz, D =ωab
q4

(b)+
∫

Zab

ωab
q4

(z)∂zω
b
q4

(z) dz. (5.40)

The time-derivative of the Hamiltonian in Zab is given by:

d

d t
H ab

T =
∫

Zab

(
fq1 eq1 + fq2 eq2 + fq3 eq3 + fq4 eq4

)
dz. (5.41)

Using the discrete approximation of the flow variables (5.21) and effort vari-
ables (5.22) in (5.41), we have:

d

d t
H ab

T =∫
Zab

(
f ab

q1
(t )ωab

q1
(z)(ea

q1
(t )ωa

q1
(z)+eb

q1
(t )ωb

q1
(z))+ f ab

q2
(t )ωab

q2
(z)(ea

q2
(t )ωa

q2
(z)+eb

q2
(t )ωb

q2
(z))

+ f ab
q3

(t )ωab
q3

(z)(ea
q3

(t )ωa
q3

(z)+eb
q3

(t )ωb
q3

(z))+ f ab
q4

(t )ωab
q4

(z)(ea
q4

(t )ωa
q4

(z)+eb
q4

(t )ωb
q4

(z))
)

dz.

(5.42)



126 Structure-preserving discretization of two-phase flow models

Similar to [33], we define another type of effort-type variables in the following
way:

eab
qi

(t ) := ea
qi

(t )
∫

Zab

(
ωab

qi
(z)ωa

qi
(z)

)
dz︸ ︷︷ ︸

αa
i

+eb
qi

(t )
∫

Zab

(
ωab

qi
(z)ωb

qi
(z)

)
dz︸ ︷︷ ︸

αb
i

, i = {1,2,3,4}.

(5.43)
The alternative effort-type variables eab

qi
can be viewed as a projection of the

original physically meaningful effort variables ea
qi

and eb
qi

. Such projection maps
are commonly required in order to preserve a finite-dimensional Dirac structure
on a minimal discrete bond space [75, 97, 126]. As a result, the power balance
can be expressed as a product of four flow variables and the newly defined four
effort-type variables in the following manner:

d

d t
H ab

T =
4∑

i=1
f ab

qi
eab

qi
. (5.44)

Let us define

fg = [ f ab
q1

, f ab
q2

, f ab
q3

, f ab
q4

, f B
a1, f B

a2, f B
b1, f B

b2]T ,

eg = [eab
q1

, eab
q2

, eab
q3

, eab
q4

, eB
a1, eB

a2, eB
b1, eB

b2]T ,

and ∆z := b−a. Using (5.25)-(5.28), (5.43) and discrete approximation of (5.7),
we then have

fg = F T
g λg , eg = E T

g λg , (5.45)

where

F T
g =



0 0 0 0 qab
1 ωab

q1
(a) −qab

1 ωab
q1

(b) 0 0

0 0 0 0 0 0 qab
2 ωab

q2
(a) −qab

2 ωab
q2

(b)

F31 F32 0 0 −Aqab
3 −B qab

3 0 0

0 0 F43 F44 0 0 −C qab
4 −Dqab

4
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 0
0 qab

1 ωab
q1

(b) 0 0 0 qab
3 ωab

q3
(b) 0 0

0 0 0 qab
2 ωab

q2
(b) 0 0 0 qab

4 ωab
q4

(b)


,

(5.46)
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E T
g =



αa
1 αb

1 0 0 0 0 0 0
0 0 αa

2 αb
2 0 0 0 0

0 0 0 0 αa
3 αb

3 0 0
0 0 0 0 0 0 αa

4 αb
4

q ab
1 ωab

q1
(a) 0 0 0 q ab

3 ωab
q3

(a) 0 0 0
0 0 q ab

2 ωab
q2

(a) 0 0 0 q ab
4 ωab

q4
(a) 0

0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


, (5.47)

and
λg = [ea

q1
, eb

q1
, ea

q2
, eb

q2
, ea

q3
, eb

q3
, ea

q4
, eb

q4
]T , (5.48)

with

F31 = qab
1∫

Zab

ωab
q3

(z)

ωab
q1

(z)
dz

, F32 = −qab
1∫

Zab

ωab
q3

(z)

ωab
q1

(z)
dz

, F43 = qab
2∫

Zab

ωab
q4

(z)

ωab
q4

(z)
dz

, F44 = −qab
2∫

Zab

ωab
q4

(z)

ωab
q2

(z)
dz

.

(5.49)
It is not trivial to check whether the matrices F T

g in (5.46) and E T
g in (5.47), for

any choice of basis functions consistent with the compatibility conditions, sat-
isfy the requirements for the existence of a kernel or an image representation of
a (finite-dimensional) Dirac structure; see Definition 5.3.3 and Definition 5.3.2.
Also, in the scope of the system under consideration, a popular proposition as
in [75] (see Proposition 1) is not straightforward to generalize. It could be said
that the profile of the basis functions should be chosen such that the resulting
F T

g and E T
g satisfy (i) and (ii) as per the Definition 5.3.2. However, still finding

an explicit characterization of the basis functions remains a challenge.
As a simplification, we choose to investigate whether the geometric proper-
ties are preserved in the discrete case while associating the lowest order finite-
element spaces. We consider

ωab
qi

(z) = 1

b −a
, for all i = {1,2,3,4}, (5.50)

and

ωa
qi

(z) = b − z

b −a
, and ωb

qi
(z) = z −a

b −a
, for all i = {1,2,3,4}. (5.51)
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Remark 5.3.4 The time-dependence is omitted in the notation used in the sequel.
We focus on obtaining a (point-wise in time) finite-dimensional Dirac structure.

The basis functions for the flow and the effort variables should satisfy the system
model in (5.2). Under the choice of the basis functions as in (5.50) and (5.51),
we obtain the following finite-dimensional equations:

f ab
q1

= 1

b −a

(
q ab

1 ea
q3

−q ab
1 eb

q3

)
,

f ab
q2

= 1

b −a

(
q ab

2 ea
q4

−q ab
2 eb

q4

)
,

f ab
q3

= 1

b −a

(
q ab

1 ea
q1

−q ab
1 eb

q1
+2q ab

3 ea
q3

−2q ab
3 eb

q3

)
,

f ab
q4

= 1

b −a

(
q ab

2 ea
q2

−q ab
2 eb

q2
+2q ab

4 ea
q4

−2q ab
4 eb

q4

)
.

(5.52)

The above system (5.52) cannot be used for defining the Dirac structure as we
have four flow-type variables and eight effort-type variables. Following [33],
we motivate an alternative definition of (discrete) effort variables to ultimately
obtain a Dirac structure at the finite-dimensional level. Alternative effort-type
variables are defined as the average values of the efforts on the boundary of the
discretization interval. Such a definition of effort-type variables is in the same
spirit as in [33] (see Section 8.2.3), and can be viewed as a special case of the
definition in (5.43) with αa

i =αb
i = 0.5. Such a definition essentially guarantees

that the energy is preserved after (spatial) discretization. Mathematically, these
alternative effort-type variables take the following form:

eab
qi

= 1

2
(ea

qi
+eb

qi
), for all i ∈ {1,2,3,4}. (5.53)

Let us define

f = [ f ab
q1

, f ab
q2

, f ab
q3

, f ab
q4

, f B
a1, f B

a2, f B
b1, f B

b2]T ,

e = [eab
q1

, eab
q2

, eab
q3

, eab
q4

, eB
a1, eB

a2, eB
b1, eB

b2]T ,

and ∆z := b − a. Using (5.52), (5.53) and discrete approximation of (5.7), we
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then have

f=



0 0 0 0
qab

1
∆z − qab

1
∆z 0 0

0 0 0 0 0 0
qab

2
∆z − qab

2
∆z

qab
1
∆z − qab

1
∆z 0 0

2qab
3
∆z − 2qab

3
∆z 0 0

0 0
qab

2
∆z − qab

2
∆z 0 0

2qab
4
∆z − 2qab

4
∆z

0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 0

0
qab

1
∆z 0 0 0

qab
3
∆z 0 0

0 0 0
qab

2
∆z 0 0 0

qab
4
∆z


︸ ︷︷ ︸

F T



ea
q1

eb
q1

ea
q2

eb
q2

ea
q3

eb
q3

ea
q4

eb
q4


, (5.54)

e=



1
2

1
2 0 0 0 0 0 0

0 0 1
2

1
2 0 0 0 0

0 0 0 0 1
2

1
2 0 0

0 0 0 0 0 0 1
2

1
2

qab
1
∆z 0 0 0

qab
3
∆z 0 0 0

0 0
qab

2
∆z 0 0 0

qab
4
∆z 0

0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


︸ ︷︷ ︸

E T



ea
q1

eb
q1

ea
q2

eb
q2

ea
q3

eb
q3

ea
q4

eb
q4


. (5.55)

Theorem 5.3.5 Consider E ×F =R8 ×R8. The subspace

DT F M = {(e, f) ∈ E ×F | ∃λ ∈R8 s.t . e = E Tλ, f = F Tλ}, (5.56)

with E and F defined in (5.55) and (5.54), respectively, is a Dirac structure.

Proof: It is straightforward to check that F and E introduced respectively in
(5.54) and (5.55) fulfill the two conditions, outlined in Definition 5.3.2, for all
discrete states q ab

1 , q ab
2 , q ab

3 and q ab
4 . It is also clearly observable that DT F M is a

Dirac structure irrespective of the value of the spatial step ∆z. ■
Remark 5.3.6 Recently, the notion of power-preserving maps has been intro-
duced in [97] to define a finite-dimensional Dirac structure abiding by the non-
degenerate bilinear form.

Remark 5.3.7 The approximation space generated by the chosen polynomial basis
may not be suitable for resolving moving discontinuities. It is well known that
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not all choices of finite-element approximation spaces may lead to a stable mixed
Galerkin discretization or a well-behaved scheme. Hence, an alternative (discrete)
function approximation might be needed to resolve these sharp gradients.

Using (5.54) and (5.55), the flow-effort relations are given by:

fab = Jeab +Bu∂,

y∂ =C eab +Du∂,
(5.57)

with fab = [ f ab
q1

, f ab
q2

, f ab
q3

, f ab
q4

]T , eab = [eab
q1

, eab
q2

, eab
q3

, eab
q4

]T , y∂ = [ f B
a1, f B

a2, f B
b1, f B

b2]T

and u∂ = [eB
a1, eB

a2, eB
b1, eB

b2]T . The matrices J ,B ,C and D are as follows:

J =


0 0

2qab
1
∆z 0

0 0 0
2qab

2
∆z

− 2qab
1
∆z 0 0 0

0 − 2qab
2
∆z 0 0

 ,B =


0 0 − 2qab

1
∆z 0

0 0 0 − 2qab
2
∆z

2 0 − 2qab
3
∆z 0

0 2 0 − 2qab
4
∆z

 ,

C =−B T , D =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 . (5.58)

Remark 5.3.8 Invoking the mFEM for the spatial discretization of the TFM is seen
to contain feedthrough terms, i.e., D 6= 0 in (5.58). However, the matrix D is
observed to have a special structure, i.e., it is skew-symmetric. We claim that
such a structure is not unnatural for hyperbolic systems and support it by the
following reasoning. The instantaneous information that is transferred across each
face of the finite-element is non-zero. However, the instantaneous power due to the
feedthrough matrix D is zero as shown below:

〈u∂,y∂〉 = uT
∂ Du∂ = 0. (5.59)

We now invoke several notations in order to define a state-space port-Hamiltonian
model that represents the TFM locally at the geometry of Zab . Using (5.18),
(5.50), (5.20) and (5.21), we can straightforwardly deduce that

fab = [
d

dt
q ab

1 ,
d

dt
q ab

2 ,
d

dt
q ab

3 ,
d

dt
q ab

4 ]T . (5.60)
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The discrete Hamiltonian H ab
d is expressed as:

H ab
d =

∫
Zab

( (q ab
3 )

2

2q ab
1 (b −a)

+ (q ab
4 )

2

2q ab
2 (b −a)

+
q ab

1 c2
g

b −a
ln

( q ab
1

b −a
+ c2

`

c2
g

q ab
2

b −a
−

β

c2
g

(1−αd
g )

)
+ q ab

2 c2
`

b −a
ln

( q ab
2

b −a
+

c2
g

c2
`

q ab
1

b −a
+ β

c2
`

αd
g

)
+ (1−αd

g )β
)
dz, (5.61)

where αd
g =− qab

1 c2
g

2β(b−a) −
qab

2 c2
`

2β(b−a) + 1
2 +∆, with

∆=

√√√√( q ab
1 c2

g

2β(b −a)
+

q ab
2 c2

`

2β(b −a)
− 1

2

)2

+
q ab

1 c2
g

β(b −a)
.

Using the discrete Hamiltonian (5.61) along with (5.20), (5.24) and (5.53), eab

can also be computed for numerical purposes. For the sake of simplicity, we will
use the notation Q̇ab instead of fab , and ∇H ab

d instead of eab in the sequel, i.e.,

Q̇ab := fab , ∇H ab
d := eab .

Using these notations, the finite-dimensional pH model at the geometric domain
Zab is given by

Q̇ = J∇H +BU ,

Y =C∇H +DU ,
(5.62)

where we have omitted the superscript “ab" in the above representation for the
sake of generality of the structure. The subscript “d" is also dropped from the
Hamiltonian for the sake of clarity in the sequel. Moreover, U := [U l , U r ]T = u∂
and Y := [Y l , Y r ]T = y∂, where we define U l , U r , Y l and Y r as follows:

U l = [eB
a1, eB

a2]T , U r = [eB
b1, eB

b2]T , (5.63)

Y l = [ f B
a1, f B

a2]T , Y r = [ f B
b1, f B

b2]T . (5.64)

Each discretized lump has been shown to possess the properties of a finite-
dimensional Dirac structure. Given this fact, the lumps can be interconnected
in a power-preserving manner. Before delving into the power-preserving inter-
connection, we consider resistive setting in the scope of the TFM and develop
the corresponding structure-preserving finite-dimensional realization.
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Resistive setting (Lossy case)
The resistive effects can be incorporated while developing a state-space port-
Hamiltonian model by considering the discrete approximation of different vari-
ables as introduced earlier in this section. However, the image representation
of a Dirac structure will be different, and conditions for the existence of a Dirac
structure will need to be modified in accordance. This is necessary since we
need to approximate an extended state-dependent Stokes-Dirac structure, as
in Theorem 5.2.4, by using admissible function spaces for different variables.
Such an approximation helps to develop a finite-dimensional extended Dirac
structure, which is crucial to quantify the preservation of the dissipated power
upon spatial discretization.
Additional ingredients are briefly discussed next. We approximate the flow and
effort variables (corresponding to the resistive port) on Zab as follows:

fR j = f ab
R j

(t )ωab
f ,R j

(z), eR j = eab
R j

(t )ωab
e,R j

(z), j = {1,2}. (5.65)

Furthermore, consider that

ωab
e,R1

(z) =ωab
q3

(z), ωab
e,R2

(z) =ωab
q4

(z). (5.66)

We state the non-degenerated bilinear product on (L 2(Zab)
6 ×R4)

2
:∫

Z ab

(
fq1 eq1 + fq2 eq2 + fq3 eq3 + fq4 eq4 + fR1 eR1 + fR2 eR2

)
dz + b.t . (5.67)

Substituting the discrete approximations in the above equation, we have:∫
Zab

(
f ab

q1
(t )ωab

q1
(z)(ea

q1
(t )ωa

q1
(z)+eb

q1
(t )ωb

q1
(z))+ f ab

q2
(t )ωab

q2
(z)(ea

q2
(t )ωa

q2
(z)+eb

q2
(t )ωb

q2
(z))+

f ab
q3

(t )ωab
q3

(z)(ea
q3

(t )ωa
q3

(z)+eb
q3

(t )ωb
q3

(z))+ f ab
q4

(t )ωab
q4

(z)(ea
q4

(t )ωa
q4

(z)+eb
q4

(t )ωb
q4

(z))
)

dz+∫
Zab

(
f ab
R1

ωab
f ,R1

eab
R1
ωab

e,R1
+ f ab

R2
ωab

f ,R2
eab

R2
ωab

e,R2

)
dz +b.t .. (5.68)

Upon using (5.43) with αa
i =αb

i = 0.5, (5.68) can be simplified to obtain:

f ab
q1

1

2
(ea

q1
+eb

q1
)+ f ab

q2

1

2
(ea

q2
+eb

q2
)+ f ab

q3

1

2
(ea

q3
+eb

q3
)+ f ab

q4

1

2
(ea

q4
+eb

q4
)+

f ab
R1

eab
R1

∫
Zab

ωab
f ,R1

ωab
e,R1

dz + f ab
R2

eab
R2

∫
Zab

ωab
f ,R2

ωab
e,R2

dz +b.t .. (5.69)
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Recalling that the boundary port variables will remain unchanged in the pres-
ence of dissipation (also see Remark 3.4.7, Chapter 3), and using (5.66), we
can write (5.69) as follows:

−eab
R1

1

2
(ea

q3
+eb

q3
)−eab

R2

1

2
(ea

q4
+eb

q4
)+

f ab
R1

eab
R1

∫
Zab

ωab
f ,R1

ωab
e,R1

dz + f ab
R2

eab
R2

∫
Zab

ωab
f ,R2

ωab
e,R2

dz. (5.70)

As per the notion of non-degenerate bilinear product, (5.70) should be zero.
This holds if:

f ab
R1

∫
Zab

ωab
f ,R1

ωab
e,R1

dz = 1

2
(ea

q3
+eb

q3
), and f ab

R2

∫
Zab

ωab
f ,R2

ωab
e,R2

dz = 1

2
(ea

q4
+eb

q4
).

Imposing ∫
Zab

ωab
f ,R1

ωab
e,R1

dz = 1, and
∫

Zab

ωab
f ,R2

ωab
e,R2

dz = 1, (5.71)

we have that
f ab

R1
= 1

2
(ea

q3
+eb

q3
), f ab

R2
= 1

2
(ea

q4
+eb

q4
). (5.72)

Let us now define

fext = [ f ab
q1

, f ab
q2

, f ab
q3

, f ab
q4

, f ab
R1

, f ab
R2

, f B
a1, f B

a2, f B
b1, f B

b2]T , (5.73a)

eext = [eab
q1

, eab
q2

, eab
q3

, eab
q4

, eab
R1

, eab
R2

, eB
a1, eB

a2, eB
b1, eB

b2]T , (5.73b)

and ∆z := b − a. Using (5.52), (5.53), (5.72) and discrete approximation of
(5.7), we then have

fext=



0 0 0 0
qab

1
∆z − qab

1
∆z 0 0 0 0

0 0 0 0 0 0
qab

2
∆z − qab

2
∆z 0 0

qab
1
∆z − qab

1
∆z 0 0

2qab
3
∆z − 2qab

3
∆z 0 0 −1 0

0 0
qab

2
∆z − qab

2
∆z 0 0

2qab
4
∆z − 2qab

4
∆z 0 −1

0 0 0 0 1
2

1
2 0 0 0 0

0 0 0 0 0 0 1
2

1
2 0 0

0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0

0
qab

1
∆z 0 0 0

qab
3
∆z 0 0 0 0

0 0 0
qab

2
∆z 0 0 0

qab
4
∆z 0 0


︸ ︷︷ ︸

F T
ext



ea
q1

eb
q1

ea
q2

eb
q2

ea
q3

eb
q3

ea
q4

eb
q4

eab
R1

eab
R2



, (5.74)
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eext =



1
2

1
2 0 0 0 0 0 0 0 0

0 0 1
2

1
2 0 0 0 0 0 0

0 0 0 0 1
2

1
2 0 0 0 0

0 0 0 0 0 0 1
2

1
2 0 0

0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

qab
1
∆z 0 0 0

qab
3
∆z 0 0 0 0 0

0 0
qab

2
∆z 0 0 0

qab
4
∆z 0 0 0

0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0


︸ ︷︷ ︸

E T
ext



ea
q1

eb
q1

ea
q2

eb
q2

ea
q3

eb
q3

ea
q4

eb
q4

eab
R1

eab
R2



. (5.75)

Theorem 5.3.9 Consider Eext ×Fext =R10 ×R10. The subspace

Dext
T F M = {(eext , fext ) ∈ Eext ×Fext | ∃λext ∈R10 s.t . eext = E T

extλext , fext = F T
extλext },

(5.76)
with Eext and Fext defined in (5.75) and (5.74), respectively, is a Dirac structure.

Proof: It is straightforward to check that Fext and Eext introduced respectively
in (5.74) and (5.75) fulfill the two conditions, outlined in Definition 5.3.2, for
all discrete states q ab

1 , q ab
2 , q ab

3 and q ab
4 . It is also clearly observable that Dext

T F M
is a Dirac structure irrespective of the value of the spatial step ∆z. ■

The above obtained continuous-time finite-dimensional structure Dext
T F M (5.76),

along with the approximate form of the closure relation (5.6) in consensus with
(5.66), (5.71) and (5.72), represents the system that results after structure-
preserving spatial discretization of the TFM with resistive effects. Unlike a state-
space port-Hamiltonian ODE model obtained in the lossless case, we obtain a
port-Hamiltonian DAE model in the lossy case. It is also worth mentioning that
each discretized lump can be interconnected in a power-preserving manner due
to the nature of Dext

T F M .

5.3.2 Spatial Discretization of Drift Flux Model

Similar to the discretization of the TFM in Section 5.3.1, we use the mFEM for
structure-preserving (spatial) discretization of the DFM (without slip). We again
apply the procedure to a single discretized lump Zab = [a,b], with 0 ≤ a < b ≤ L.
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We will only consider the lossless equivalent of the DFM and develop a corre-
sponding finite-dimensional realization. We refer the reader to the lossy case of
the TFM in order to develop a structure-preserving discretization methodology
of the DFM in the presence of resistive effects. Similar to the TFM, the resistive
effects do not pose significant additional challenges as the port-Hamiltonian
representation of the DFM is also devoid of any operator-type terms in the re-
sistive matrix; see Theorem 5.2.6.

The basis function profile, used for discrete approximation, is recalled be-
low:

ωab
mg

(z) =ωab
m`

(z) =ωab
v (z) = 1

b −a
, (5.77a)

ωa
mg

(z) =ωa
m`

(z) =ωa
v (z) = b − z

b −a
, (5.77b)

ωb
mg

(z) =ωb
m`

(z) =ωb
v (z) = z −a

b −a
. (5.77c)

The basis function approximation (5.77) possesses the following properties:

∫ b

a
ωab

mg
(z)ωa

mg
(z)d z = 0.5. (5.78)

A similar property also holds for other state variables, i.e., m` and v .
The finite-dimensional equivalent of (5.9) takes the following form:

f ab
mg

=−
Aab

g

∆z

(
eb

v −ea
v

)
, (5.79a)

f ab
m`

=− Aab
`

∆z

(
eb

v −ea
v

)
, (5.79b)

f ab
v =−

Aab
g

∆z

(
eb

mg
−ea

mg

)
− Aab

`

∆z

(
eb

m`
−ea

m`

)
, (5.79c)

where

Aab
g :=

mab
g

mab
g +mab

`

, Aab
` := mab

`

mab
g +mab

`

. (5.80)

Similar to (5.53), an alternative definition of effort-type variables in the scope
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of the DFM is given by:

eab
mg

= 1

2
(ea

mg
+eb

mg
), (5.81)

eab
m`

= 1

2
(ea

m`
+eb

m`
), (5.82)

eab
v = 1

2
(ea

v +eb
v ). (5.83)

Let us define
fd = [ f ab

mg
, f ab

m`
, f ab

v , f B
a , f B

b ]T , (5.84)

and
ed = [eab

mg
, eab

m`
, eab

v , eB
a , eB

b ]T . (5.85)

Using (5.79), (5.81) and discrete approximation of (5.12), we have

fd =



0 0 0 0
Aab

g

∆z − Aab
g

∆z

0 0 0 0
Aab
`
∆z − Aab

`
∆z

Aab
g

∆z − Aab
g

∆z
Aab
`
∆z − Aab

`
∆z 0 0

− Aab
g

∆z 0 − Aab
`
∆z 0 0 0

0
Aab

g

∆z 0
Aab
`
∆z 0 0


︸ ︷︷ ︸

F T
d



ea
mg

eb
mg

ea
m`

eb
m`

ea
v

eb
v


, (5.86)

and

ed =


1
2

1
2 0 0 0 0

0 0 1
2

1
2 0 0

0 0 0 0 1
2

1
2

0 0 0 0 1 0
0 0 0 0 0 1


︸ ︷︷ ︸

E T
d



ea
mg

eb
mg

ea
m`

eb
m`

ea
v

eb
v


. (5.87)

Theorem 5.3.10 Consider Ed ×Fd =R5 ×R5. The subspace

DDF M = {(ed , fd ) ∈ Ed ×Fd | ∃λ ∈R6 s.t . ed = E T
d λ, f = F T

d λ}, (5.88)

with Ed and Fd defined in (5.87) and (5.86), respectively, is a Dirac structure.
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Proof: The two conditions that need to hold in order to ensure that DDF M is a
Dirac structure are as follows:
(i) Ed F T

d +Fd E T
d = 0, and (ii) rank([Ed Fd ]) = 5 (also see Definition 5.3.2).

It is straightforward to check that Fd and Ed introduced respectively in (5.86)
and (5.87) fulfill the above two conditions for all discrete states mab

g ,mab
`

, and
v ab . It is also clearly observable that DDF M is a Dirac structure irrespective of
the value of the spatial step ∆z. ■

Remark 5.3.11 Reversing the role of the boundary flow and effort variables will
not impact the existence of the above proved finite-dimensional Dirac structure.
This is straightforward to identify by using the basic principles of linear algebra.

Let us consider fdm = fd and edm = ed . Using the observation in Remark 5.3.11,
we have:

fdm =



0 0 0 0
Aab

g

∆z − Aab
g

∆z

0 0 0 0
Aab
`
∆z − Aab

`
∆z

Aab
g

∆z − Aab
g

∆z
Aab
`
∆z − Aab

`
∆z 0 0

− Aab
g

∆z 0 − Aab
`
∆z 0 0 0

0 0 0 0 0 1


︸ ︷︷ ︸

F T
dm



ea
mg

eb
mg

ea
m`

eb
m`

ea
v

eb
v


︸ ︷︷ ︸
λdm

, edm =



1
2

1
2 0 0 0 0

0 0 1
2

1
2 0 0

0 0 0 0 1
2

1
2

0 0 0 0 1 0

0
Aab

g

∆z 0
Aab
`
∆z 0 0


︸ ︷︷ ︸

E T
dm



ea
mg

eb
mg

ea
m`

eb
m`

ea
v

eb
v


.

(5.89)
In order to develop an explicit representation of fdm in terms of edm , we need
to eliminate λdm and eventually invert E T

dm . We can clearly observe that the
matrices F T

dm and E T
dm in (5.89) are not square and, hence, not invertible (in a

usual sense). However, we can exploit the principle of Moore-Penrose pseudo
inverse. It can be observed that E T

dm is a full rank 5×6 matrix, i.e., rank(E T
dm) =

min(5,6) = 5. The rows of E T
dm are linearly independent, and in such a setting,

the right-inverse of E T
dm can be easily obtained. From now on, we will denote

the right-inverse of E T
dm as (E T

dm)−1
r . An explicit representation can now be

obtained as follows:
fdm = F T

dm(E T
dm)−1

r edm . (5.90)

The flow-effort relations are given by:

fab
d = J d eab

d +Bd u∂,d ,

y∂,d =Cd eab
d +Dd u∂,d ,

(5.91)
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where fab
d = [ f ab

mg
, f ab

m`
, f ab

v ]T , eab
d = [eab

mg
, eab

m`
, eab

v ]T , y∂,d = [ f B
a , f B

b ]T and u∂,d =
[eB

a , eB
b ]T . The matrices Jd and Dd are as follows:

Jd =


0 0 −2

Aab
g

∆z

0 0 −2
Aab
`
∆z

2
Aab

g

∆z 2
Aab
`
∆z 0

 ,Dd =
[

0 1
−1 0

]
.

The matrices Bd and Cd can also be deduced. We can observe that both Jd and
Dd are skew-symmetric. Our claim, as before, regarding the zero instantaneous
power due to the feedthrough matrix Dd holds since the matrix Dd is skew-
symmetric.
The main challenge of obtaining the required properties on system matrices
corresponding to each individual lump have been fully addressed. It is now
straightforward to define a state-space port-Hamiltonian model that represents
the DFM (without slip) locally at the geometry of Zab . We omit the related
discussion and instead refer the reader to follow the principles used in the scope
of the TFM in Section 5.3.1.

Each discretized lump, both in the scope of the TFM and the DFM, has
been shown to possess the properties of a finite-dimensional Dirac structure.
Given this fact, the lumps can be interconnected to obtain an aggregated finite-
dimensional port-Hamiltonian representation, which is shown next.

5.4 Power-preserving interconnection

In this section, we will base our study on the TFM. We show the procedure
to interconnect two lumps (in series), obtained in the scope of the TFM, in a
power-preserving manner. A similar analysis can be carried out to develop an
aggregated finite-dimensional port-Hamiltonian model for the DFM.
We consider that the spatial domain Ω= [0,L] with 0 < a < b < c < L is discretized
into N lumps. We focus our attention on two discretized lumps, i.e., Zab = [a,b]
and Zbc = [b,c]. Using the structure in (5.62), the first discretized lump across
Zab is governed by the following state ODEs:

Q̇1 = J 1∇H1 +B1U1 = J 1∇H1 +B l
1U l

1 +B r
1U r

1 ,

Y1 =C1∇H1 +D l
1U l

1 +Dr
1U r

1 ,
(5.92)

where B l
1 and D l

1, respectively, refer to the matrix composed from the first two
columns of B and D introduced earlier. Anologously, B r

1 and Dr
1 are composed
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of the last two columns of B and D, respectively. Matrices B l
1, D l

1, B r
1 , and Dr

1
are each of size 4×2. The subscript “1" refers to the quantities (introduced in
(5.62), (5.63) and (5.64)) for the first element Zab .
Similarly, for the second discretized lump Zbc , we have

Q̇2 = J 2∇H2 +B2U2 = J 2∇H2 +B l
2U l

2 +B r
2U r

2 ,

Y2 =C2∇H2 +D l
2U l

2 +Dr
2U r

2 ,
(5.93)

where the subscript “2" refers to the quantities corresponding to the second
finite-element Zbc .
The following power-preserving interconnection relations hold:[

U r
1

U l
2

]
=

[
0 −I
I 0

][
Y r

1
Y l

2

]
=

[
−C 12

2 ∇H2 −Dr,12
2 U r

2

C 34
1 ∇H1 +D l ,34

1 U l
1

]
,

where the subscripts “1" and “2" carry the same meaning as before. Matrix C 12
2

refers to the first two rows, i.e., row 1 and 2 of the matrix C for the second
element Zbc . Similarly, matrix C 34

1 refers to the last two rows, i.e., row 3 and 4

of the matrix C for the first element Zab . Analogously, Dr,12
2 refers to the first

two rows, i.e., row 1 and 2 of the matrix Dr
2 for the second element Zbc . Similar

explanation holds for D l ,34
1 .

Interconnecting the 2 discretized lumps in a power-preserving manner yields
the following structure:[

Q̇1

Q̇2

]
=
[

J 1 −B r
1C 12

2
B l

2C 34
1 J 2

]
︸ ︷︷ ︸

Jassembled

[∇H1

∇H2

]
+
[

B l
1 −B r

1 Dr,12
2

B l
2D l ,34

1 B r
2

][
U l

1
U r

2

]
, (5.94)

[
Y l

1
Y r

2

]
=

[
C 12

1 −Dr,12
1 C 12

2

D l ,34
2 C 34

1 C 34
2

][∇H1

∇H2

]
+

[
O2×2 −Dr,12

1 Dr,12
2

D l ,34
2 D l ,34

1 O2×2

][
U l

1
U r

2

]
, (5.95)

where C 12
1 , Dr,12

1 , C 34
2 and D l ,34

2 can be computed by following the notational
conventions introduced earlier.

Remark 5.4.1 The assembled system is conservative in the sense that dH
dt = dH1

dt +
dH2
dt =−

(
(Y `

1 (t ))T U`
1 (t )+(Y r

2 (t ))T U r
2 (t )

)
represents the net power across the left and

right ports of the assembled system, and the system has no resistive effects in its
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dynamic behaviour. This behaviour is inherent and a representative feature of
hyperbolic partial differential equations of the type that are studied here. The
conservative (lossless) nature of the approximate mathematical model is there-
fore physically meaningful and replicates the conservative (lossless) nature of the
infinite-dimensional port-Hamiltonian model.

We have described the procedure to interconnect two discretized lumps.
Analogously, N discretized lumps can be interconnected in a power-preserving
manner to obtain a complete port-Hamiltonian model as follows:



Q̇1
Q̇2
Q̇3
...
...

Q̇n−1
Q̇n


=



J1 −Br
1 C 12

2 Br
1 Dr,12

2 C 12
3 . . . . . . M1,n−1 M1,n

B l
2C 34

1 J2 −Br
2 C 12

3 . . . . . . M2,n−1 M2,n

B l
3D l ,34

2 C 34
1 B l

3C 34
2 J3 . . . . . . M3,n−1 M3,n

. . . . . . . . .
. . .

. . . . . . . . .

. . . . . . . . .
. . .

. . . . . . . . .
Mn−1,1 Mn−1,2 Mn−1,3 . . . . . . Jn−1 −Br

n−1C 12
n

Mn,1 Mn,2 Mn,3 . . . . . . B l
nC 34

n−1 Jn





∇H1
∇H2
∇H3

...

...
∇Hn−1
∇Hn



+



B l
1 ∓Br

1 Dr,12
2 . . .Dr,12

n

B l
2D l ,34

1 ±Br
2 Dr,12

3 . . .Dr,12
n

B l
3D l ,34

2 D l ,34
1 ∓Br

3 Dr,12
4 . . .Dr,12

n
. . . . . .
. . . . . .

B l
n−1D l ,34

n−2 . . .D l ,34
1 ∓Br

n−1Dr,12
n

B l
n D l ,34

n−1 . . .D l ,34
1 ±Br

n


[

U l
1

U r
n

]
, (5.96)

[
Y l

1
Y r

n

]
=

[
C 12

1 −Dr,12
1 C 12

2 G1,3 . . . . . . G1,n−1 G1,n

Gn,1 Gn,2 Gn,3 . . . . . . D l ,34
n C 34

n−1 C 34
n

]


∇H1

∇H2

∇H3
...
...

∇Hn−1

∇Hn


+

[
0 −Dr,12

1 Dr,12
2 . . .Dr,12

n−1Dr,12
n

Dr,12
1 Dr,12

2 . . .Dr,12
n−1Dr,12

n 0

][
U l

1
U r

n

]
, (5.97)
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where

M1,n−1 = (−1)nB r
1 Dr,12

2 Dr,12
3 . . .Dr,12

n−2C 12
n−1, M1,n = (−1)1+nB r

1 Dr,12
2 Dr,12

3 . . .Dr,12
n−1C 12

n ,

M2,n−1 = (−1)n+1B r
2 Dr,12

3 Dr,12
4 . . .Dr,12

n−2C 12
n−1, M2,n = (−1)2+nB r

2 Dr,12
3 Dr,12

4 . . .Dr,12
n−1C 12

n ,

M3,n−1 = (−1)n+2B r
3 Dr,12

4 Dr,12
5 . . .Dr,12

n−2C 12
n−1, M3,n = (−1)3+nB r

3 Dr,12
4 Dr,12

5 . . .Dr,12
n−1C 12

n ,

Mn−1,1 = B l
n−1D l ,34

n−2 . . .D l ,34
2 C 34

1 , Mn−1,2 = B l
n−1D l ,34

n−2 . . .D l ,34
3 C 34

2 ,

Mn−1,3 = B l
n−1D l ,34

n−2 . . .D l ,34
4 C 34

3 , Mn,1 = B l
nD l ,34

n−1 . . .D l ,34
2 C 34

1 ,

Mn,2 = B l
nD l ,34

n−1 . . .D l ,34
3 C 34

2 , Mn,3 = B l
nD l ,34

n−1 . . .D l ,34
4 C 34

3 , (5.98)

and

G1,3 = Dr,12
1 Dr,12

2 C 12
3 , G1,n−1 =±Dr,12

1 Dr,12
2 . . .Dr,12

n−3Dr,12
n−2C 12

n−1,

G1,n =∓Dr,12
1 Dr,12

2 . . .Dr,12
n−2Dr,12

n−1C 12
n , Gn,1 = D l ,34

n D l ,34
n−1 . . .D l ,34

2 C 34
1 ,

Gn,2 = D l ,34
n D l ,34

n−1 . . .D l ,34
3 C 34

2 , Gn,3 = D l ,34
n D l ,34

n−1 . . .D l ,34
4 C 34

3 . (5.99)

We now have all the ingredients to proceed with the development of the structure-
preserving temporal discretization method.

5.5 Structure-preserving Temporal Discretization

Explicit methods such as Runge Kutta methods or linear multi-step methods fail
to preserve the discrete-time port-Hamiltonian structure. We build on the work
of [96] and exploit Gauss-Legendre collocation methods [80] for the temporal
discretization of the state-space port-Hamiltonian representations obtained in
the scope of the two-phase flow models. These collocation methods are a well
known family of A-stable numerical methods for ordinary differential equations.
The symplectic version of these collocation methods is known to be structure-
preserving in the sense of the Dirac structure [96] and is known to work well
for both conservative and dissipative systems [80]. It is also well known that
the symplectic time-integration methods are essentially implicit methods, par-
ticularly for the non-quadratic Hamiltonian setting. At this point, it is worth
mentioning that preserving the symplectic nature is not equivalent to preserv-
ing a discrete energy balance in an exact manner. For instance, it is known that
symplectic schemes can preserve an exact discrete energy balance only condi-
tionally even in the case of linear port-Hamiltonian systems with a quadratic



142 Structure-preserving discretization of two-phase flow models

Hamiltonian functional [96]. A standard implementation of existing symplec-
tic schemes in the scope of our work does not essentially guarantee the exact
preservation of discrete energy balance as we are dealing with non-linear port-
Hamiltonian systems with non-quadratic Hamiltonian functional and, hence,
deserves further careful treatments. Furthermore, we have state-dependent sys-
tem matrices and feedthrough terms in the continuous-time finite-dimensional
realization of the models of interest.

We recall the power balance equation obtained in the context of single (spa-
tially) discretized lump. The power balance equation reads as

eab(t )
T

fab(t )+y∂(t )T u∂(t ) = 0, (5.100)

where eab , fab ,y∂ and u∂ carry the same meaning as introduced earlier in Section
5.3. On integrating the power balance equation (5.100) over every time interval
[t1, t2], we obtain ∫ t2

t1

(
eab(s)

T
fab(s)+y∂(s)T u∂(s)

)
d s = 0. (5.101)

Preserving the energy balance in the integral form (as in (5.101)) will form
the key step in obtaining a fully discrete port-Hamiltonian model. We recall
that a (continuous-time) state-space port-Hamiltonian model has been defined
with respect to a continuous-time Dirac structure; see Theorem 5.3.5, Theorem
5.3.9 and Theorem 5.3.10. Similarly, a discrete-time port-Hamiltonian model
can be defined with respect to a discrete-time Dirac structure. We seek to ob-
tain a (finite-dimensional) discrete-time Dirac structure by applying the Gauss-
Legendre collocation method to the class of state-space port-Hamiltonian sys-
tems and by defining the discrete flow, effort, input and output variables for
every sampling interval in an appropriate manner.

5.5.1 Discrete approximation of variables

Similar to [96], we obtain the numerical approximation of the solution xab(t ) ∈
Rn in the form of a vector x̃ab(t ) ∈ Rn of collocation polynomials of degree s.
Here, xab indicates the general vector and can symbolize the flow, effort, input
or output vector in the sequel. We consider equidistant or uniform sampling
intervals I k = [t k

0 , t k
s+1] = [(k − 1)h,kh],k ∈ N, where t k

s+1 = t k
0 + h. Generically

speaking, we consider the initial value xab,k
0 := x̃ab(t k

0 ) = xab(t k
0 ) to be known.

The continuous numerical solution is obtained by matching the time derivative
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of the vector of polynomials to the right-hand side of the ODE model description
in the s collocation points.

The flow, effort, input and output coordinates can be defined based on iden-
tical or different collocation points. In this chapter, similar to [96], the flow,
effort, input and output coordinates are defined based on identical collocation
points.

Consider the general form of the (spatially discretized) port-Hamiltonian model
as

fab = Jeab +Bu∂, (5.102a)

y∂ =C eab +Du∂ (5.102b)

with fab ∈Rn ,eab ∈Rn ,y∂ ∈Rm and u∂ ∈Rm .
The interpolation formula for the state/flow variables reads as follows:

˙̃qab(t k
0 +τh) := f̃ab(t k

0 +τh) =
s∑

i=1
fab,k

i li (τ), (5.103)

where li is the i−th Lagrange interpolation polynomial

li (τ) =
s∏

j=1
j 6=i

τ− c j

ci − c j
, τ ∈ [0,1]. (5.104)

The numerical solution q̃ab(t k
0 +τh) can be obtained by integrating (5.103) as

shown below:

q̃ab(t k
0 +τh) = q̃ab(t k

0 )+h
s∑

j=1

(
fab,k

j

∫ τ

0
l j (σ)dσ

)
. (5.105)

The numerical solution qab,k
i := q̃ab(t k

i ) inside and at the end of the interval I k

can be computed in the following manner:

qab,k
i = qab,k

0 +h
s∑

j=1
ai j fab,k

j , i = 1,2, . . . , s,

qab,k
s+1 = qab,k

0 +h
s∑

j=1
b j fab,k

j ,

(5.106)
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where ai j and b j are the coefficients of the Butcher Tableau for the Runge-Kutta
interpretation of the collocation method [80].
The interconnection matrix J and the input matrix B need to be evaluated at
the flow collocation points ci . These evaluated matrices are given by:

J k
i := J (qab,k

i ), B k
i := B(qab,k

i ). (5.107)

Similarly, we also need to evaluate the effort vector eab and the input vector u∂
at the flow collocation points. Such an evaluation yields:

u∂
k
i := u∂(t k

0 + ci h), eab,k
i := eab |qab,k

i
. (5.108)

The polynomial approximation of the effort vector eab is given as follows:

ẽab(t k
0 +τh) =

s∑
i=1

eab,k
i li (τ). (5.109)

Similar to the approximation of the effort variables, the polynomial approxima-
tion of the input vector u∂ is given by

ũ∂(t k
0 +τh) =

s∑
i=1

u∂
k
i li (τ). (5.110)

The flow, effort, input and output coordinates are respectively merged in the
discrete-time flow, effort, input and output vector as follows:

f ab,k := [( f ab,k
1 )

T
. . . ( f ab,k

s )
T

]
T
∈Rsn , (5.111a)

eab,k := [(eab,k
1 )

T
. . . (eab,k

s )
T

]
T
∈Rsn , (5.111b)

uk
∂ := [(u∂

k
1 )

T
. . . (u∂

k
s )

T
]
T
∈Rsm , (5.111c)

yk
∂ := [(y∂

k
1 )

T
. . . (y∂

k
s )

T
]
T
∈Rsm . (5.111d)

The discrete-time counterpart of (5.102a) is given by

f ab,k
i = J k

i eab,k
i +B k

i u∂
k
i , i = 1,2, ..., s. (5.112)

On the sampling interval I k , (5.112) can be rewritten as

f ab,k = J k eab,k +B k uk
∂ , (5.113)
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where the block-diagonal matrix J k is given by

J k =−(J k )T = blockdiag(J k
1 , . . . , J k

s ), (5.114)

and the block-diagonal matrix B k is given by

B k = blockdiag(B k
1 , . . . ,B k

s ). (5.115)

We consider the discrete-time equivalent of the output equation (as in (5.102b))
as follows:

yk
∂ =−(B k )T eab,k +Dk uk

∂ , (5.116)

where we have utilized the relation between system matrices B and C , i.e.,
C =−B T (see Section 5.3.1). Here, the block-diagonal matrix Dk is given by

Dk = blockdiag(Dk
1 , . . . ,Dk

s ). (5.117)

5.5.2 Discrete-time Dirac structure

We seek to obtain an approximation of the supplied energy, denoted as ∆H̃ k , on
the sampling interval I k . To attain this, we integrate the polynomial approxi-
mation of the instantaneous power ẽab(t k

0 +τh)
T

f̃ab(t k
0 +τh) over the normalized

time interval [0,1], and obtain:

∆H̃ k := h
∫ 1

0

(
ẽab(t k

0 +τh)
)T

f̃ab(t k
0 +τh) dτ. (5.118)

Substituting the definitions of the polynomial approximation of the flow and
the effort variables, we can re-write (5.118) in the following manner:

∆H̃ k = h
∫ 1

0

( s∑
i=1

eab,k
i li (τ)

)T ( s∑
i=1

f ab,k
i li (τ)

)
dτ,

= h(eab,k )T M f ab,k ,

(5.119)

where M ∈Rsn×sn is a symmetric matrix given by:

M =

m11 . . . m1s
...

. . .
...

ms1 . . . mss

⊗ In×n , with mi j =
∫ 1

0
li (τ)l j (τ) dτ. (5.120)
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Substituting f ab,k in (5.119) with the right-hand side of (5.113), we have:

∆H̃ k = h(eab,k )T M
(

J k eab,k +B k uk
∂

)
, (5.121)

which is re-written as:

∆H̃ k = h(eab,k )T M J k eab,k +h(eab,k )T MB k uk
∂ . (5.122)

We recall that

h(eab,k )T M f ab,k = h(eab,k )T M J k eab,k +h(eab,k )T MB k uk
∂ . (5.123)

We seek to recover a discrete-time equivalent of the energy balance given by
(5.101). In the quest to achieve this, as discussed in [96], the first term in the
right-hand side of (5.123) must vanish for all eab,k ∈Rsn , i.e.,

h(eab,k )T M J k eab,k != 0. (5.124)

The conditions under which (5.124) holds have been discussed in [96], and are
recalled below:
(i) mi j = 0 for all i 6= j ,
(ii) J k

i = J k
j = const. for all i , j = 1,2, . . . , s.

We recall that the interconnection matrices obtained in the scope of the two-
phase flow models are state-dependent, i.e., non-constant (see Section 5.3) and,
hence, condition (ii) is violated. As a consequence, condition (i) need to nec-
essarily hold in order to make the first term in the right-hand side of (5.123)
vanish for all eab,k ∈ Rsn . Condition (i) is an orthogonality requirement on the
choice of the approximation basis in the discretization method. In other words,
the interpolation polynomials must form a system of orthogonal functions to
have mi j = m j i = 0, for i 6= j , with mi j defined as in (5.120). This holds if
the collocation points c1,c2, . . . ,cs are taken as the zeros of the shifted Legendre
polynomials.
Continuing with the pursuit of discrete-time energy balance, multiplying (5.116)
by yet to be determined P T ∈Rsm×sm , we have

P T yk
∂ =−P T (B k )T eab,k +P T Dk uk

∂ . (5.125)

Applying the transpose operation on both the left and the right-hand side of
(5.125), and imposing P T (B k )T = (B k )T M T , we have:(

P T yk
∂

)T =−(eab,k )T
(
P T (B k )T

)T +
(
P T Dk uk

∂

)T
(5.126a)

=−(eab,k )T MB k +
(
P T Dk uk

∂

)T
. (5.126b)
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The imposition of P T (B k )T = (B k )T M T , a constraint used in the above computa-
tion, helps to determine P since B k and M are already known.
Now using (5.126b), we have

(eab,k )T MB k =−
(
P T yk

∂

)T +
(
P T Dk uk

∂

)T
. (5.127)

Plugging (5.127) into (5.123), we obtain:

h(eab,k )T M f ab,k −h
[
−

(
P T yk

∂

)T +
(
P T Dk uk

∂

)T ]
uk
∂ = 0. (5.128)

Simplifying the above expression, we arrive at

h(eab,k )T M f ab,k −h
[
− (yk

∂ )T P + (uk
∂ )T (Dk )T P

]
uk
∂ = 0. (5.129)

Enforcing (Dk )T P to be skew-symmetric, the expression in (5.129) reduces to

h(eab,k )T M f ab,k +h(yk
∂ )T Puk

∂ = 0, (5.130)

which represents the balance equation at the discrete-time level in terms of the
discrete-time conjugate port variables at the nodes of the sampling interval I k .
At this stage, we have all the ingredients to define a discrete-time Dirac struc-
ture. This structure is formalized below.

Theorem 5.5.1 Consider the system of equations

f ab,k = J k eab,k +B k uk
∂ , (5.131a)

yk
∂ =−(B k )T eab,k +Dk uk

∂ , (5.131b)

with discrete flow, effort, input and output vectors f ab,k ,eab,k ,uk
∂

, yk
∂

according to
(5.111a), (5.111b), (5.111c) and (5.111d), respectively, and the block-diagonal
matrices J k , B k and Dk according to (5.114), (5.115) and (5.117), respectively.
Moreover, consider the time interval I k = [(k −1)h,kh)] along with the s colloca-
tion points 0 ≤ ci ≤ 1, i = 1,2, . . . , s Then, the corresponding discrete-time Dirac
structure, which approximates the continuous-time Dirac structure, is given by:[

f̂ ab,k

ŷk
∂

]
+

[ −M J k −MB k

(B k )T M T −P T Dk

][
eab,k

uk
∂

]
= 0, (5.132)

if the following conditions hold:
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(C1) mi j = 0 for all i 6= j ,

(C2) P T (B k )T = (B k )T M T ,

(C3) (Dk )T P ∈Rsm×sm is skew-symmetric,

where M = M T according to (5.120), and f̂ ab,k and ŷk
∂

are defined as f̂ ab,k :=
M f ab,k and ŷk

∂
:= P T yk

∂
, respectively.

Proof: Multiplying (5.131a) by M and (5.131b) by M T , and using the defini-
tions of f̂ ab,k and ŷk

∂
we have

f̂ ab,k = M J k eab,k +MB k uk
∂ , (5.133a)

ŷk
∂ =−P T (B k )T eab,k +P T Dk uk

∂ . (5.133b)

The above system (5.133) can be equivalently written as[
I 0
0 I

]
︸ ︷︷ ︸

F

[
f̂ ab,k

ŷk
∂

]
+

[ −M J k −MB k

(B k )T M T −P T Dk

]
︸ ︷︷ ︸

E

[
eab,k

uk
∂

]
= 0, (5.134)

which is equivalent to (5.132). The system (5.134) is the kernel representation
of a finite-dimensional Dirac structure if the matrices F and E in (5.134) satisfy:
(i) EF T +F E T = 0, and (ii) rank[F | E ] = sn + sm.
Due to the nature of F in (5.134), it is only required to check whether E in
(5.134) is skew-symmetric. It is easy to see that the matrix E is skew-symmetric
when conditions (C1) - (C3) are satisfied simultaneously. The foundation of
conditions (C1) - (C3) is clearly evident from the theoretical development pro-
vided in Section 5.5.2 before stating this theorem.
The balance equation on the discrete-time Dirac structure is given by:

(eab,k )T f̂ ab,k + (ŷk
∂ )T uk

∂ = 0. (5.135)

Substituting the definitions of f̂ ab,k and ŷk
∂
, and multiplying by h, we obtain

(5.130), which is a quadrature formula for the energy balance. ■

The collocation method, under the conditions of Theorem 5.5.1, yields the ap-
proximation of energy balance through the port (uk

∂
, ŷk
∂

):

∆H̃ k = h(eab,k )T M f ab,k = h(yk
∂ )T Muk

∂ = h(ŷk
∂ )T uk

∂ . (5.136)
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The change of stored energy based on the integration of the numerical solution
is expressed as:

∆H̄ k = H(q ab,k
s+1 )−H(q ab,k

0 ). (5.137)

Under an exact discrete energy balance, ∆H̃ k = ∆H̄ k holds. However, numeri-
cally this exactness does not always hold. Based upon the definition provided
in [96], if under a given numerical integration scheme of order p, the increment
of stored energy satisfies

∆H̄ k = h(ŷk
∂ )T uk

∂ +O(hp ), (5.138)

we will call (5.138) a discrete energy balance, which is consistent with the
discretization scheme.

5.6 Numerical Experiments

This section deals with the preliminary results in the scope of the numerical
implementation of the proposed structure-preserving discretization framework.
In particular, we test the performance of the mFEM-based structure-preserving
spatial discretization scheme and employ the (non structure-preserving) explicit
first-order Forward Euler method for the temporal discretization. We pursue
the aforementioned implementation for the following reasons. Firstly, such a
test would help to check whether the spatial discretization methodology is im-
plemented well and works as per the developed theory. Secondly, the explicit
Forward Euler (and Runge Kutta) methods, although not structure-preserving,
are not expected to produce diverging results.

Remark 5.6.1 In principle, it would be desired to implement both the structure-
preserving spatial and temporal discretization to validate the theory developed in
Sections 5.3 - 5.5. However, we defer such an implementation to future works.

We base our numerical considerations on the (challenging) conservative set-
ting of the TFM, i.e., without any frictional effects. We assume that the spatial
domain is of length L = 100. We consider a test case with following uniform
initial conditions:

mg = 0.2, m` = 800, vg = 0, v` = 10 ∀z ∈ [0,100]. (5.139)

Under the aforementioned conditions, the system is expected to stay uniform
∀t since there are no sources or any sharp gradient at any spatial location at
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time t = 0 that may drive the emanation of wavefronts and, subsequently, the
topological changes in the solution.

We solve the state-space port Hamiltonian representation (5.96) with the
system matrices Ji ,Bi ,Ci ,Di for all i = {1,2, . . . ,n} of the form (5.58). Here,
n stands for the number of elements that the spatial domain has been dis-
cretized into. We observe the numerical behavior of the states of the system, i.e.,
mg,m`,mgvg, after 1, 2 and finite number of time-steps with different choices of
the number of elements and the temporal step size. We find out that the states
remain uniform after 1 time step for any temporal step size and the choice of
the number of discretized elements on the spatial domain. However, we ob-
serve numerical differences in the evolution of the states after 2 or more time
steps under different choices of the temporal and the spatial step size. We also
observe that the states do not remain uniform and may diverge after a finite
number of time steps. Suppose we focus on the evolution of m`. In order to
demonstrate the behaviour of the perturbation around the uniform state of m`,

Figure 5.1: Perturbation of the mass of the liquid phase per unit length, i.e., m` at 2×dt
for different choices of the temporal step sizes. Here, the domain has been
discretized into 200 elements.
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we define a metric pm in the following manner:

pm(z, t ) = m`
numerical(z, t )−800

dt
, (5.140)

where dt denotes the temporal step size, m`
numerical(z, t ) stands for the numer-

ically predicted value of m` at location z and time t . Figures 5.1 and 5.2, re-
spectively, demonstrate the behaviour of pm at 2×dt for different choices of the
temporal step sizes under the consideration that the spatial domain has been
discretized into 200 and 400 elements. We can observe a similar oscillatory pat-
tern in both figures, and that these perturbations around the uniform state are
of the frequency which is a function of the spatial step size. It is also visible that
the amount of perturbations reduce for smaller temporal step sizes, and even
reproduce the desired uniform state; for instance, see Figure 5.1 at dt = 5e −6.
The maximum value of the perturbation metric pm is seen to reduce by an order
of magnitude for a reduction in the temporal step size by a factor of 10. The
perturbations, that are seemingly bounded, are observed to diverge after the
first few time steps. At this stage, the pattern of the oscillatory response is not

Figure 5.2: Perturbation of the mass of the liquid phase per unit length, i.e., m` at 2×dt
for different choices of the temporal step sizes. Here, the domain has been
discretized into 400 elements.
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clear to us, and this aspect deserves further investigations. However, it is worth
mentioning that such an oscillatory behaviour is certainly not due to physical
reasons, but most likely due to numerical reasons, which include the choice of
the non structure-preserving temporal discretization method.

Now, suppose that the spatial domain is discretized into 100 elements. Ba-
sically, we resort to a coarser mesh and perform a similar study as before. It is
observed that the states remain uniform for any time horizon under any choice
of the temporal step size. In other words, the perturbation metric pm is found
to be zero at each spatial location and time instant on a discretized space-time
domain. We now seek to observe the behaviour of the Hamiltonian over time
to validate the developed theory. Figure 5.3 demonstrates the behaviour of the
Hamiltonian Hd over time under the choice of dt = 0.1. Here, the Hamiltonian
Hd is obtained by summing up the discrete Hamiltonian of the form (5.61) over
all the elements on the spatial domain. The observed behavior concurs well
with the theory since we can see that Hd remains constant over time.

It is surprising that pm = 0 for a coarser spatial mesh, and possesses oscil-

Figure 5.3: Behaviour of the Hamiltonian Hd over time. Here, 100 elements have been
used and a time step size dt= 0.1 has been considered.



5.7 Conclusions 153

latory response for finer meshes. Given the observation that the evolution of
m` is uniform under the choice of 100 elements even with the non structure-
preserving temporal discretization technique, the reasons of deviation of m`

(and other quantities) from the uniform state seem to be due to numerical error
sources which possibly aggravate as we refine the mesh. This aspect, however,
deserves further investigation.

Furthermore, given that the states remain uniform after the first time step
under any (space and time) mesh resolution, we can (possibly) say that the
structure-preserving spatial discretization methodology has been correctly im-
plemented, and also works in consensus with the theory. However, further de-
tailed investigation needs to be carried out in the future by assessing the pro-
posed discretization framework on numerically challenging test cases.

5.7 Conclusions

We presented the spatial and temporal discretization of non-linear distributed-
parameter port-Hamiltonian systems associated with state-dependent Stokes-
Dirac structures. We performed spatial discretization on an infinite-dimensional
port-Hamiltonian representation of the Two-Fluid Model and the Drift Flux
Model using a mixed finite element method. We demonstrated that such a dis-
cretization preserves the (extended) continuous-time finite-dimensional Dirac
structure even for the underlying (extended) state-dependent Stokes-Dirac struc-
ture. We obtained an aggregated finite-dimensional port-Hamiltonian model us-
ing the notion of power-preserving interconnection. Furthermore, we exploited
the principles of symplectic integration methods to obtain a discrete-time Dirac
structure. We derived the conditions under which the existence of a discrete-
time Dirac structure can be guaranteed even in the presence of state-dependent
system matrices and feedthrough terms.

Such a finite-dimensional approximation is amenable for control and ob-
server design. Moreover, such finite-dimensional representations in conjunction
with symmetry reduction could be a potential crucial ingredient towards obtain-
ing a lowest-dimensional structure-preserving reduced-order model of the Drift
Flux Model and the Two-Fluid Model.

The proposed spatial discretization methodology, i.e., mixed finite element
method, can be adapted, though not straightforwardly, in order to consider
higher-order finite-element spaces by using a similar spatial discretization pro-
cedure. Moreover, the proposed approach shares similarities with the recently
developed mixed Galerkin discretization [97] applicable for multi-dimensional
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models and, hence, it possesses potential for generalization to N−dimensional
models. The presented approach can also be viewed from a domain decomposi-
tion point of view. The port-Hamiltonian representations are particularly attrac-
tive due to the property of compositionality. Hence, the basic challenge in the
direction towards generalization to multi-dimensional models lies in obtaining
an underlying finite-dimensional Dirac structure on individual finite-element of
triangular or quadrilateral shape. This basic challenge can be dealt with modifi-
cations to the proposed setting. The applicability of the proposed approach for
N−dimensional models will be considered extensively in future works.

We discussed the structure-preserving temporal discretization for an under-
lying ordinary differential equation based state-space port-Hamiltonian repre-
sentation. Such an underlying representation is, for instance, obtained while
considering lossless cases. It is however worth recalling that mixed finite ele-
ment based spatial discretization yields a system of differential algebraic equa-
tions in the presence of resistive effects. In this chapter, we did not delve into
developing a structure-preserving temporal discretization for a system of differ-
ential algebraic equations. However, structure-preserving temporal discretiza-
tion can be obtained by following the principles laid down in [123].

We also numerically assessed the proposed discretization framework using a
simple test case. Some numerical phenomena, which is not yet fully understand-
able, can be observed at finer mesh resolutions. Future research is required to
understand such behaviour and also to numerically implement the proposed
structure-preserving temporally-discretized scheme. Furthermore, the future
study should encompass the validation of the proposed structure-preserving
spatial and temporal discretization framework along with the verification of
the numerical convergence.

In view of the still remaining open issues, we will not pursue the structure-
preserving discretization approach in the rest of this dissertation. Instead, we
resort to the Finite Volume Method for the high-fidelity numerical computa-
tions of the two-phase flow models of interest (see Chapter 6) and for building
efficient reduced-order models (see Chapters 7-9).



Chapter 6
Numerical assessment of the
two-phase flow model

Accurately capturing wave propagation phenomena is a central challenge in the
hydraulic modelling of Managed Pressure Drilling (MPD) systems. In this chapter,
the numerical analysis of two-phase flow models, particularly the one-dimensional
Drift Flux Model (DFM), is pursued. We obtain a model for the speed of sound in
the two-phase mixture by accounting for the compressibility effects of the phases
under consideration and, subsequently, numerically study the importance of its
role. Furthermore, to the best of our knowledge for the first time, we test the model
and the numerical method with exact reference solutions. Moreover, we employ
the non-linear error transport approach to numerically estimate the discretization
error and, consequently, understand its generation and evolution mechanism. We
also perform various challenging numerical case studies to test relevant numerical
properties, such as Abgrall’s principle, and also study the behaviour of the solutions
under grid refinements. Finally, we use all the obtained knowledge to establish the
relative order of merit of the introduced numerical schemes.

6.1 Introduction

Accurate multi-phase flow models are essential for wellbore simulations to sup-
port drilling operations [57, 130]. Namely, drilling scenarios may involve gas
influx from the reservoir. In such situations, the flow inside the annulus section
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is primarily of a two-phase nature and composed of gas-liquid mixture; also see
Chapter 2. Often, the drilling fluids pumped inside the drill string are mixed
with gas, which in effect makes the study of two-phase flow inside the drill
string and annulus of relevance.

In this chapter, we are particularly interested in the numerical analysis of a
one-dimensional two-phase flow model which is popularly known as the Drift
Flux Model (DFM). Such a two-phase flow model is often used for wellbore sim-
ulations [57,90,130,201]. We recall that multi-phase models, such as the DFM,
pose several theoretical and computational challenges; see Chapter 1. Captur-
ing the wave propagation phenomena, induced by slow or fast transients, is a
central challenge in hydraulic modelling. Here, we are particularly interested to
accurately resolve fast and slow evolving (discontinuous) wavefronts across the
spatial domain (of the wellbore) while maintaining the positivity of a physical
quantity.

Several approaches exist for solving hyperbolic or transport problems, such
as the DFM. These include the Finite Volume Method [7, 14, 57–61, 67, 128,
167], Finite Element Method [98], Finite Difference Method [70], Discontinu-
ous Galerkin Finite Element Method [192], etc. Among existing schemes, Finite
Volume Methods are popularly used due to their versatility and good conser-
vation properties. Hence, we use a Finite Volume Method to discretize the
hyperbolic system model under consideration. In particular, conservative up-
wind methods are employed as they are known to accurately predict convection
effects, which are responsible for the evolution of the discontinuities in the two-
phase mixture.

It is already well-known that classical solutions to non-linear conservation
laws are unique, but may not always exist due to discontinuous physical fea-
tures. As a consequence, weak solutions are generally investigated and the
numerical solution is expected to converge to the weak solution. Unlike the
classical solutions, the weak solutions may be non-unique. Under grid refine-
ment, an often suggested method for numerical validation, numerical solutions
computed from various numerical schemes are theoretically expected to con-
verge to the same solution. It is, however, observed that different numerical
schemes yield different physical representations at a finer grid resolution [57].
Such an observation is surely related to the convergence behaviour of numeri-
cal schemes, which has to-date lacked proper attention in the existing literature
in the scope of the DFM. Furthermore, numerical schemes developed for simu-
lating the DFM have so far not been benchmarked against the exact solutions.
Usually, a numerical scheme belonging to the family of Advection Upstream
Splitting Methods, namely AUSMV, has been used as a reference to compare
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the performance of any existing or newly developed numerical schemes. How-
ever, a sound physical reasoning behind considering AUSMV to be exhibiting
the “true" behaviour is lacking. Moreover, AUSMV is not “Total Variation Dimin-
ishing" by nature; see [58] for the discussion in the scope of another variant of a
two-phase flow model. The aforementioned reasons clearly point out the need
to perform further numerical analysis to (i) test the model and the numerical
method with exact reference solutions, if existing, and (ii) establish the relative
order of merit of numerical schemes employed for the DFM.

In the pursuit of establishing the relative order of merit of the numerical
schemes, the discretization error plays a fundamental role. The estimate of
the discretization error can be obtained by employing residual and recovery
methods [12], error transport methods inspired from defect correction tech-
niques [18,38,143,164,169], etc. Residual and recovery methods have been pri-
marily developed for linear elliptic and parabolic problems. And, error transport
methods have been useful and are gaining popularity in the scope of estimating
the discretization error of a hyperbolic model that even admits discontinuities
[18, 143]. Due to the shortcomings of residual and recovery methods, we will
resort to utilizing error transport methods. In the literature [18, 38, 143, 205],
there exist linear and non-linear error transport approaches. The linear error
transport approach has been shown to be inaccurate for problems with strong
discontinuities [18]. Given the fact that the DFM admits such sharp gradi-
ent features, we do not pursue linear error transport approach. Instead, we
resort to non-linear error transport approach [18, 143], that has met success
in estimating the discretization error for problems with discontinuities. The
foundation of non-linear error transport approach has been laid in [18]. In
the past, the discretization error has been estimated for the Burgers’ equation,
wave equation, advection-diffusion equation, Euler equations in gas dynamics
and Navier-Stokes equation [18, 38, 143, 205]. The effect of boundary condi-
tion implementation on the accuracy of the discretization error estimates has
also been studied in the scope of Burgers’ equation, Euler equations and Navier-
Stokes equations [143]. However, the estimation of discretization error, with or
without boundary effects, has not yet been pursued in the scope of the DFM.
We will use the principle of non-linear error transport to numerically estimate
the discretization error incurred upon employing different numerical schemes.
This will serve as a stepping stone to obtain one of the metrics that will lead us
to quantify the performance of the numerical scheme in the scope of the DFM.

In line with the objective of developing a robust, accurate and stable numer-
ical scheme, it is important to mention that the speed of sound in the two-phase
mixture plays an important role from a numerical perspective. Intermediate
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steps in the construction of a finite-volume based numerical scheme include the
computation of the numerical flux, which comprises computing the numerical
convective flux and the numerical pressure flux [57]; also see Section 6.3. The
numerical convective flux and the numerical pressure flux are both affected by
the speed of sound in the two-phase mixture [57, 90]. Moreover, the numeri-
cal dissipation depends on the speed of sound in the two-phase mixture [57].
Furthermore, accurate acoustic velocity enables the correct determination of lo-
cations and speeds of the shock wave front, the rarefaction wave front and the
contact discontinuity wave front. The speed of sound in the two-phase mix-
ture also has a practical significance. It is linked to the propagation of pressure
pulses, which is of great interest in the understanding of the transient opera-
tions in Managed Pressure Drilling (MPD). Namely, hydraulics models for MPD
must be able to capture the pressure propagation irrespective of the flow rates
of the drilling fluid and also incorporate water hammer effects. In general, the
propagation of pressure pulses depends on the operating pressure and injec-
tion rates of the gaseous and the liquid phase. The propagation of the pressure
pulses is proportional to the speed of sound in the two-phase mixture and is
also affected by the fluid densities. Hence, the speed of sound in multi-phase
medium dictates the pressure transient time (say, the time taken by the pres-
sure pulse to travel from one end to the other end of the pipe). To summarize,
the speed of sound in the two-phase mixture plays a very significant role, both
numerically and practically.

Few surrogate models [4, 57] exist for calculating the speed of sound in
gas-liquid mixtures. However, they are built upon the assumption of the in-
compressibility of the liquid phase. The major difference between compressible
flows and incompressible flows is the propagation aspect of the pressure waves.
Given the fact that the drilling fluids are highly compressible, the assumption of
incompressiblity, to derive an approximate speed of sound in the two-phase mix-
ture, is highly unrealistic for drilling applications. In addition, these surrogate
models are singular1 for very low and very high gas void fractions. Moreover,
the model, generally used to compute an approximate speed of sound in the
two phase mixtures (constituting higher gas void fractions), becomes singular
before rendering the DFM to be non-hyperbolic. The existing models are also
unreliable in terms of capturing the realistic effects at high operating pressures
(of the order of 100 bars) or high operating temperatures, which occur in deep
drilling scenarios. In view of all of the above factors, and the numerical and
physical importance of the sound speed in the two-phase mixture, there is a

1See Section 6.2 for the discussion regarding the sense of singularity.



6.2 Hyperbolicity and speed of sound 159

clear need for accounting compressiblity effects in the sound-speed model. In
addition, it is important to numerically assess the behaviour of the solution in
the presence of these compressibility effects.

The novel contributions of this chapter are as follows. Firstly, a model for
the computation of the speed of sound in the two-phase mixture is proposed,
and the importance of the role of sound speed of a two-phase mixture is studied
numerically. The obtained numerical behaviour of the DFM is also compared
against the one computed on the basis of surrogate models for the speed of
sound in the two-phase mixture. Secondly, we test the model and numerical
method with exact reference solutions, and thus lay a stronger basis to assess or
benchmark the performance of a numerical scheme. Thirdly, we invoke the non-
linear error transport approach to estimate the discretization error for several
challenging numerical case studies. Finally, we exploit the knowledge of the
discretization error estimate along with the other performance metrics, such as
(formal and observed) order of accuracy, etc. to establish the relative order of
merit of a numerical scheme.

The rest of the chapter is organized as follows. Conditional hyperbolicity and
the model for the speed of sound in the two-phase mixture are then discussed in
Section 6.2. The spatial discretization, numerical boundary conditions and the
temporal discretization is detailed in Section 6.3. In Section 6.4, the error trans-
port approach, is elaborated in the context of the DFM to estimate discretization
error and eventually aid certification of the numerical schemes. A large assort-
ment of numerical case studies are performed in Section 6.5 paving the road for
establishing the relative order of merit of numerical schemes. Finally, Section
6.6 ends the chapter with conclusions and outlook.

6.2 Hyperbolicity and speed of sound

The model of interest, i.e., the DFM has already been extensively discussed in
Section 2.3.1. The DFM is governed by (2.2) and (2.3) - (2.6). The model
(2.2), under the assumption of constant cross-section, can be rewritten in the
following general form:

∂t q+∂x f(q,qx) = S(q,qx ), (6.1)

where

q =
 α`ρ`

αgρg

α`ρ`v`+αgρg vg

 , f(q,qx) =
 α`ρ`v`

αgρg vg

α`ρ`v`
2 +αgρg vg

2 +P

 , S(q,qx ) =
 0

0
Qg +Qv

 ,
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with Qg +Qv =
(
g (mg +m`)sinθ+ 32µm vm

d 2

)
; refer to Section 2.3.1 for the meaning

of the physical variables.

Remark 6.2.1 We will omit the argument qx of the flux function f and the ar-
gument qx of the source term S in the sequel. Such terms can be omitted as we
are only considering flows across a constant geometrical cross-section. The omitted
arguments will play a pivotal role for flows across variable cross-section [7] and
will also influence the study of the hyperbolicity of the corresponding model.

We now introduce the definition of the hyperbolic system to pave the way
for related analysis in the context of the DFM.

Definition 6.1 [105,177] A system of the form (6.1), with f ∈Rm ,q ∈Rm , is said
to be hyperbolic at a point (x,t) if A = ∂f

∂q∈Rm×m has m real eigenvalues λ1,...,λm

and a corresponding set of m linearly independent right eigenvectors K(1),...,K(m).
The system is said to be strictly hyperbolic if the eigenvalues λi , i = 1,2, . . . ,m, are
all distinct.

The eigensystem of the DFM is complicated and lacks a closed form represen-
tation [57, 201]. However, there exist surrogates of eigenvalues [2, 57]. Under
the assumption of the incompressiblity of the liquid phase and αgρg ¿α`ρ`, the
three surrogate eigenvalues for the DFM are given by v`−ωm , vg and v`+ωm ,
where the sound speed of the mixture ωm is given by [57]:

ωm =


c`, αg < ε
c(P,αg,ρ`,K ), ε≤αg ≤ 1−ε,

cg , αg > 1−ε
. (6.2)

with

c(P,αg,ρ`,K ) =
√

P

αgρ`(1−Kαg)
. (6.3)

Here, ε> 0 is a small parameter whose purpose is to ensure the transition from
a two-phase to a single-phase sound velocity. Two of the three eigenvalues
v`−ωm and v`+ωm are linked to compressibility effects. The third eigenvalue
vg is coincident to the gaseous velocity. It can clearly be observed that the op-
erating pressure P has a strong effect on the eigenvalues of the system. Also,
the increase in pressure increases the absolute eigenvalues for a given gas-void
fraction. In view of the eigenvalues v`−ωm , vg and v`+ωm and the expression
of ωm , the hyperbolicity of the model is ensured if 1−Kαg > 0.
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Another existing model for the sound speed of the mixture is obtained by using
variable transformation in accordance with Gavryiluk and Fabre [2, 71], and
under the assumption of the incompressibility of the liquid phase. The variable
transformation is given by

uT = (χ`,ρ, vg) :=
( (α`−α`∗)ρ`
ρmi x −α`∗ρ`

,ρmi x −α`∗ρ`, vg

)
, (6.4)

where
α`

∗ = K −1

K
, α`

∗ ∈ [0,1). (6.5)

The sound speed is given by

ωm(u) =
√√√√χ`(χ`−1)(vg − v`(u))2 +

(1−α`∗)c2
gρg (u)

αg(u)ρ
. (6.6)

From now on, we will refer the sound speed of the two-phase mixture in (6.2)
and (6.6) as ω1

m and ω2
m , respectively.

Having introduced the surrogate models for the sound speed of the two-
phase mixture, we will now account for compressiblity effects of the liquid
medium and shed insights on the resulting sound-speed model.

It is known that the formulations based on variables other than the conserva-
tive variables are bound to fail at shock-waves [177]. Despite this fact, we adopt
the quasilinear formulation of the governing partial differential equations. We
will not develop numerical schemes using the quasilinear formulation. We will
only use the quasilinear formulation for analyzing the hyperbolicity of the model
and eventually in obtaining sound speed model of the two-phase mixture. Such
an analysis is supported by the point, as put forward in [165], that the com-
putation of eigenvalues, Riemann invariants, and the genuine non linearity or
linear degeneracy of the characteristic field are independent of the choice of the
equations, i.e., they are invariant under coordinate transformations.

The quasilinear form of (6.1) in conservative variables is written as:

∂t q+ A(q)∂x q = S(q), (6.7)

where q = [α`ρ`;αgρg ;α`ρ`v`+αgρg vg]T . The Jacobian matrix A(q) = ∂f
∂q of

the corresponding flux function f(q) cannot be computed in a straightforward
manner only in terms of the conservative variables [57]. The Jacobian matrix
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can however be easily obtained in terms of primitive variables. The quasilinear
form of (6.1) in terms of the primitive (or non-conservative) variables can be
written as:

∂t w+B(w)∂x w = s(w), (6.8)

where the actual set of primitive variables w, B(w), the relation between B(w)
and A(q), and the relation between s(w) and S(q) will be discussed in the sequel.

The primitive variables w can be obtained from conservative variables q and
vice versa. Using the fact that w depends on q, we rewrite (6.8) as

∂w

∂q

∂q

∂t
+B(w)

∂w

∂q

∂q

∂x
= s(w). (6.9)

We now introduce J = ∂wq and J−1 = ∂qw. Using this and (6.9), we have

J−1 ∂q

∂t
+B J−1 ∂q

∂x
= s. (6.10)

We have omitted the arguments in the above equation for the sake of simplicity.
Relating (6.10) to (6.7), we have that

A(q) = JB J−1, S(q) = J s. (6.11)

If there are no sources, (6.9) can be written as follows:

C∂t w+D∂x w = 0. (6.12)

Now, using (6.8) and (6.12), B(w) can be defined as B(w) =C−1D.
The DFM, governed by (6.1) and (2.3) - (2.6), can be written in the form

(6.12), as shown next. We consider that w := [αg, P, v`]T . Using q and w, we
can obtain J = ∂wq as follows:

J =


∂q1
∂w1

∂q1
∂w2

∂q1
∂w3

∂q2
∂w1

∂q2
∂w2

∂q2
∂w3

∂q3
∂w1

∂q3
∂w2

∂q3
∂w3

=


−ρ` (1−αg)

c2
`

0

ρg
αg

c2
g

0

(−ρ`v`+ρg vg) α`v`
c2
`

+ αgvg

c2
g

α`ρ`+αgρg
∂vg

∂v`

 .

The model (6.1) can be written in the form (6.12) with C and D given by:

C =


−ρ` 1−αg

c2
`

0

ρg
αg

c2
g

0

C31
(1−αg)v`

c2
`

+
αg

(
K v`(1−αg)+S

1−Kαg

)
c2

g
(1−αg)ρ`+αgρg

(
K (1−αg)
1−Kαg

)
 , (6.13)
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D =


−ρ`v`

(1−αg)v`
c2
`

ρ`(1−αg)

D21

αg

(
K v`(1−αg)+S

1−Kαg

)
c2

g
αgρg

(
K (1−αg)
1−Kαg

)
D31 D32 2ρ`(1−αg)v`+2ρgαgvg

(
K (1−αg)
1−Kαg

)

 , (6.14)

where

C31 = ρg (
K v`(1−αg)+S

1−Kαg
)−ρ`v`+αgρg

(
K

(
K v`(1−αg)+S

)
(1−Kαg)2 − K v`

1−Kαg

)
,

D21 = ρg (
K v`(1−αg)+S

1−Kαg
)+αgρg K

(
K v`(1−αg)+S

)
(1−Kαg)2 − αgρg K v`

1−Kαg
,

D31 =−v2
`
ρ`+

(
K v`(1−αg)+S

1−Kαg

)2
ρg +2αgρg vg

(
K

(
K v`(1−αg)+S

)
(1−Kαg)2 − K v`

1−Kαg

)
,

D32 = (1+
(

K v`(1−αg)+S
1−Kαg

)2

αg

c2
g

+ v2
`

(1−αg)

c2
`

).

Under the chosen set of primitive variables w, and using (6.13) and (6.14),
we can obtain B(w) = C−1D. We can now analyze the eigenvalues of B(w) to
comment on the hyperbolic nature of the DFM and compare the obtained eigen-
values against the surrogate eigenvalues.

Remark 6.2.2 It is correct here not to consider the effect of the source terms on
the hyperbolicity of the model as the source terms are devoid of any derivative-type
terms. The source terms will, however, play a crucial role in the hyperbolicity of the
model for flows across a variable geometrical cross-section as the source terms are
of the form p d A

d x . Still, the role of such terms was not considered in the hyperbolicity
analysis for two-phase flow across a variable cross-section in [7], and only the role
of the convective subset in dictating the hyperbolicity was taken into account.

In addition to real eigenvalues, the matrix B(w) is found to also admit complex
eigenvalues. The complex eigenvalues imply that the solutions not only depend
on the past state, but also on the future state. The existence of complex eigen-
values indicates the loss of hyperbolicity. It is observed that the DFM does not
preserve hyperbolicity at high and low gas void fractions and, hence, global un-
conditional hyperbolicity cannot be ensured. Such a conditional hyperbolicity of
the DFM is representative of the behaviour of most of the two-phase flow mod-
els, which are known not to maintain hyperbolicity across the whole parameter
spectrum (here, gas void fraction). For instance, the Two-fluid Model [56] also
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does not always yield real eigenvalues, and, hence, cannot be assumed hyper-
bolic for all flow conditions either. The existence of complex eigenvalues, in the
scope of the DFM, hints towards the change of the type of the partial differen-
tial equation under consideration. The nature of the partial differential equation
dictates the nature of the numerical method to be employed, and, hence, the
study of hyperbolicity becomes even more important in view of accuracy sought
in the numerical results. For instance, hyperbolic partial differential equations
are generally solved using upwind finite volume methods.

Remark 6.2.3 It is not clear if the hyperbolicity should be regarded as a neces-
sary condition for well-posedness of the model. In other words, the physical va-
lidity of the model outside the hyperbolic regime remains an open question. Some
works modify few terms in the model of interest to ensure the hyperbolicity of the
model across all or vast range of operating conditions. For instance, it is known
that interfacial forces influence the hyperbolicity of the two-fluid model [170]. In
[51, 149, 157, 166, 170], the authors have proposed to add hyperbolic correction

terms in order to retain the hyperbolicity of the two-fluid model and other variants
of two-phase flow models. Such correction terms have not been assessed/studied
yet in the scope of the DFM. And, we neither pursue it in the scope of this work.
Furthermore, as in other research works pertaining to the DFM, we restrict the
numerical experiments to the setting which abides by the hyperbolic nature of the
model. However, it is worth mentioning that, in principle, the numerical implemen-
tation for (conditionally) hyperbolic DFM could encompass a switching behaviour
to enforce suitable numerical scheme as per the type of the partial differential equa-
tion for a certain state of the system.

Remark 6.2.4 The hyperbolicity of the DFM will become even more restrictive for
rather practical equations of state and complicated slip laws.

We consider that the general form of the three eigenvalues of B(w) is same as
the one in [57], i.e., λ1 = v` −ωm , λ2 = vg, and λ3 = v` +ωm . The behaviour
of ωm is supposed to be different from (6.2) and (6.6) due to the inclusion of
compressibility effects and no assumptions on relative velocity of the phases. For
the no-slip case, we observe that one of the numerically computed eigenvalues
is a mere perturbation on top of the flow velocity of the gaseous phase. This
concurs with the surrogate eigenvalue vg. Computing the other two eigenvalues
and using the general form of λ1 and λ3, the modified sound speed ωnew

m for the
two-phase mixture at K = 1 and S = 0, i.e., at no slip is given by

ωnew
m = cg c`

√
ρgρ`

(ρ`+αgρg −αgρ`)(c2
gρg −αgc2

gρg +αgc2
`
ρ`)

. (6.15)
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Figure 6.1: Comparison of sound speed models at P = 1 bar.

Remark 6.2.5 Interestingly, the mixture sound speed obtained above for the DFM
without slip is exactly equal to the mixture sound speed of the homogeneous two-
phase mixture, which, contrary to the DFM, is governed by the mixture mass,
momentum and energy conservation laws.

The analytical expression of one of the earlier introduced surrogate model (see
(6.2)) for the no-slip case yields:

ω1
m =


c`, αg < ε√

P
αgρ`(1−αg) , ε≤αg ≤ 1−ε

cg , αg > 1−ε
. (6.16)

Figures 6.1 and 6.2 demonstrate the behaviour of the proposed and the
existing model of the sound speed in the two-phase mixture versus gas void
fractions for the no-slip case. While Figure 6.1 shows the comparison at P = 1
bar, Figure 6.2 shows the comparison across different values of the pressure.
It can be clearly observed that the existing surrogate sound speed models ad-
mit non-smooth (discontinuous) transition in the regions of low and high gas
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Figure 6.2: Zoomed in view for low gas void fractions and various pressures.

void fractions. Moreover, the surrogate models admit non-physical values of
the speed of sound in the two-phase mixture. However, the obtained sound
speed model under no-slip (6.15) is continuous and smooth throughout the
whole spectrum of gas void fraction. Moreover, unlike (6.16), the model (6.15)
only possesses physically consistent values of the speed of the sound in the two-
phase mixture for varied phase compositions. A mixture sound speed model,
as in (6.16) or (6.15), plays an important role in the velocity and the pres-
sure splitting formulas for the computation of the numerical flux (see Section
6.3 for further details). Non-smooth transitions in the sound speed of the mix-
ture, as in surrogate model (6.16), are a kind of hex that works well in practice
for numerical simulations. However, non-smoothness (or a type of switching)
in the sound speed model complicates the monotonicity analysis of a numerical
scheme. Analysing the property of monotonicity of a numerical scheme is essen-
tial as numerical experiments are observed to show bounded oscillations [57];
also see Section 6.5. The presence of bounded oscillations is not attributed to
the loss of stability. Instead, it is attributed to the loss of the property of mono-
tonicity of a numerical scheme. The attempt towards having a smooth transition
of the sound speed of the mixture, as observed for the modified model (6.15),
will aid to study the property of monotonicity of a numerical scheme.

A closed form expression of the modified sound speed of the two-phase mix-
ture could be obtained for the no-slip case. However, it is observed that the
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quasilinear formulation, in general, does not aid in obtaining a closed expres-
sion of the eigenvalues and eigenvectors. A closed expression is not feasible for
the DFM even for simplified equations of state of the phases under consider-
ation. It should also be mentioned that the “true" hyperbolicity condition via
the quasilinear approach is more restrictive than the hyperbolicity condition of
the surrogate model (6.2). However, in view of the advantages of the modified
model (6.15) discussed in the previous paragraph and that an accurate sound
speed model is linked to a correct resolution of the moving wavefronts, we pro-
pose to use numerical eigenvalues (obtained using the quasilinear formulation)
for the computation of the numerical flux instead of using surrogate eigenval-
ues. We propose to do so even though the closed expression of eigenvalues,
eigenvectors and sound speed model is not feasible, and extra computational
time will be required for the eigenvalue-computation at every time step. The
differences incurred in the numerical results upon using the proposed and the
existing surrogate model of the sound speed of the mixture are discussed in
Section 6.5.

The identification of the type of the partial differential equation and the
region of hyperbolicity is crucial for the reasons stated next. The numerical
schemes should be developed such that they mimic the underlying hyperbolic
nature. For instance, a finite speed of propagation in a certain direction should
be well resolved by a numerical scheme. Furthermore, the numerical schemes
tailored to solve the hyperbolic partial differential equations, should only be
used within the hyperbolic regime2. Having discussed about the hyperbolicity
of the model, we will next delve into spatial and temporal discretization meth-
ods along with the implementation of boundary conditions to solve the DFM
numerically.

6.3 Numerical Methods

Given the fact that the one-dimensional DFM does not have any analytical solu-
tion for generic initial conditions, boundary conditions, equations of state and
slip laws, it becomes important to solve the model numerically for concrete un-
derstanding of the underlying physical behaviour. While exact Riemann solvers
have been developed for Euler equations [177], it is extremely challenging to
construct exact Riemann solvers for the DFM. Hence, we need to heavily rely

2As mentioned in Remark 6.2.3, we will restrict the numerical experiments to the setting which
abides by the hyperbolic nature of the model of interest.
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on numerics. In the scope of our interest, the numerical schemes must be able
to handle dynamic processes such as: (i) propagation of pressure pulses, and
(ii) propagation of mass transport phenomena. The numerical schemes should
be such that they allow the treatment of various linear or non-linear equations
of state with slight modifications to the algorithmic framework. Furthermore,
certified numerical schemes are sought in order to guarantee that the transient
behaviour of the solution is not created due to numerical artifacts, and that
the numerical solution is physically viable. Physical viability of the numeri-
cal scheme refers to obeying the non-linear conservation laws in discrete form,
preserving the steady state solution at the discrete level and preserving the non-
negativity of the physical variables.

Each numerical method should have the following characteristics [64]:

• Consistency: The truncation error should vanish under grid refinement,
i.e., with the mesh spacing ∆x → 0 and/or ∆t → 0.

• Stability: The numerical errors should not be magnified when the itera-
tion process advances. That is, for finite values of the time-step ∆t and
spatial-step ∆x, the error (defined as the difference between the numeri-
cal solution and the exact solution of the numerical scheme) has to remain
bounded, when the number of time steps, n, tends to infinity.

• Convergence: The numerical solution should approach the exact solution
of the partial differential equation as the spatial and temporal step size
tend to zero. Note that a consistent scheme is not necessarily convergent.

• Conservation: The conservation laws should be respected at the discrete
level. The discrete conservation implies that any wave front computed by
the conservative numerical scheme must be in the correct location, and
the physically conserved quantities must be preserved/conserved at the
discrete level.

In particular, we employ conservative numerical schemes in this work. It is
well known that hyperbolic partial differential equations may develop disconti-
nuities in finite time even for smooth initial data. Considering this basic feature,
we do not consider non-conservative numerical schemes as such schemes do not
converge to the correct solution if a shock wave is present in the flow, and the
identified shock position may be wrong [177].

Numerical methods, popularly known by the name of method of lines, exist
that first discretize in space and then in time [57–60,67,128,167]. Also, there
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exist numerical methods, popularly called Rothe’s method, where the discretiza-
tion in space is performed after the discretization in time [79,100,158]. Space-
time discretization methods are also popular for numerically solving partial dif-
ferential equations [72, 104, 190]. These aid to simultaneously discretize both
space-time dimensions. In principle, any of the aforementioned methodologies
can be used to discretize the DFM, which is a first-order (conditionally) hy-
perbolic partial differential equation. However, the method of lines approach is
very popular to discretize the DFM [57,90]. The lack of popularity or utilization
of other numerical approaches to discretize the DFM is largely unknown. How-
ever, the lack of interest could be supported via following arguments. Space-
time discretization methods are known to be computationally expensive and,
hence, potentially not much popular in the scope of the discretization of the
DFM. While Rothe’s approach has been employed for hyperbolic partial differ-
ential equations, [79,158], it has largely been used for discretizing second-order
problems in this class. While delving into Rothe’s method or space-time methods
for numerically solving DFM could be the research topic in its own right, here
we opt to pursue the popular discretization approach, i.e., the method of lines,
in the scope of the DFM. Spatial discretization and temporal discretization, in
the sense of method of lines, could be solved via explicit or implicit approaches.
To be precise, the numerical flux approach and the time discretization approach
could be explicit or implicit. On the one hand, explicit schemes are known to
be efficient, but suffer from severe time-step restrictions in accordance with the
limiting time-scale of the problem. On the other hand, implicit schemes are a
bit more involved and complex from an implementation point of view. Without
delving further into merits and demerits of each of these approaches, we use/-
analyze the numerical methods that discretize in space (with explicit numerical
flux approximation) followed by an explicit discretization in time.

The methodology for spatial and temporal discretization is critical in the
construction of robust, accurate and efficient numerical methods. The disconti-
nuities should be well captured and the numerical approach should not suffer
from any spurious oscillations that may hamper the (accurate) approximation
of the evolution response of the solution. Moreover, the numerical smearing
should be minimal. It should be mentioned that most numerical methods are
known to produce stable solutions under sufficient numerical damping, which
is kind of an artificial damping that has no physical meaning. The stability of
the numerical solutions alone will not be the criterion for rating the numerical
scheme, which is one of the focal objectives of this work. It would be prefer-
able to have a numerical scheme that is stable under zero/minimal numerical
damping and without any other stabilization mechanisms.
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Figure 6.3: Stencil for numerical discretization.

The rest of this section is organized as follows. We first discuss the spatial
discretization methodology extensively. First-order and higher-order spatial dis-
cretization is discussed in Section 6.3.1. Next, we discuss numerical treatment
of boundary conditions in Section 6.3.2. The temporal discretization methodol-
ogy is then discussed in Section 6.3.3.

6.3.1 Spatial Discretization

Spatial discretization constitutes the first step of establishing a computational
method. The general form of a spatially discretized partial differential equation
over the stencil represented in Figure 6.3 is given by

∂t q =− 1

∆x

{
Fi+ 1

2
(QL ,QR )−Fi− 1

2
(QL ,QR )

}
+Si , (6.17)

where q is a state vector composed of conservative variables. Here, QL and QR

are numerical value of the q-variables at left and right cell interface, respec-
tively. Numerical flux F n

i± 1
2

(QL ,QR ) (at the right and the left interface of the

finite volume cell i) can be estimated by various numerical schemes, and Si

represents source terms that can be approximated in various (consistent) ways.

In the finite-volume formulation, as mentioned earlier, the differences among
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all numerical schemes essentially lie in the definition of the numerical flux eval-
uated at the cell interface. The different classes of numerical schemes are cate-
gorized as follows:

• Upwind Schemes [57, 90, 105]: Upwind schemes attempt to discretize
hyperbolic PDEs by using differencing biased in the direction determined
by the sign of the characteristic speeds. These schemes make use of the
grid point where the information is coming from. Hence, upwinding is
kind of directional bias while performing spatial discretization to respect
the flow of the information determined by the characteristics. Thereby,
such implementation incorporates aspects of the characteristic wave struc-
ture of the hyperbolic system under consideration, and is a natural choice
for the spatial discretization of the system of interest.

• Centered Schemes [105]: These schemes do not rely on the specific
eigenstructure of the problem and can be implemented in a straightfor-
ward manner. Such schemes, however, suffer from large numerical dis-
sipation, and, hence, are incapable in sharp resolution of stationary or
moving discontinuities.

• Centered-Upwind Schemes [59]: These schemes aim at exploiting the
best properties of the upwind schemes and the centered schemes. The
centered-upwind schemes utilize directional bias for discretization, and,
in addition, retain the simplicity in construction and implementation.

The above mentioned class of spatial discretization schemes can be constructed
to be (formally) first-order or higher-order accurate. The use of centered schemes
is outrightly rejected due to its shortcomings. In this work, we will also not con-
sider centered-upwind schemes as the main focus is not to enable simplicity in
construction and implementation, but to address numerical issues (see Section
6.1) which are also observed in the class of upwind schemes. While centered-
upwind schemes could also be considered in establishing the relative order of
merit of a numerical scheme, we defer to do it in this chapter due to the afore-
mentioned reasons, and to limit the number of schemes under investigation.

The first- and higher-order (upwind) approximations of numerical flux are
discussed next.

First-order Spatial Discretization

First-order spatial discretization could be performed by employing various nu-
merical schemes as listed below:
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• Flux Difference Splitting (FDS) schemes [67, 177, 181]: Such schemes
require the repeated computation of the eigenstructure, i.e., the Jacobian
matrix of the system with respect to the conservative variables. Roe’s
Scheme and Osher’s Scheme [177] belong to the class of FDS schemes.
In the past, FDS schemes have been implemented for single-phase gas
dynamics under ideal equation of state [177] and a variant of a two-phase
flow model [181]. Several FDS based approximate Riemann solvers are
used to solve hyperbolic-type partial differential equations, including the
DFM [67]. However, such schemes are not much popular for discretizing
the DFM due to the reliance on the eigenstructure of the system.

• Flux Vector Splitting (FVS) schemes [57,59,168]: Such schemes are sim-
pler and in a way more efficient than the FDS schemes. FVS schemes rely
on flux splitting based on the identification of the upwind direction(s).
These schemes are, however, known to lead to numerical diffusion of con-
tact discontinuity at rest. Van Leer type schemes are quite similar to the
FVS schemes and, hence, are also classified within this category3. FVS
and Van Leer type schemes are also commonly employed in the scope of
the DFM, see [57].

• Hybrid schemes [57, 108, 109, 111, 198, 199]: The upwinding idea pre-
vails throughout the construction of the AUSM scheme, which was initially
developed by Liou and Steffen [111]. The AUSM scheme is not based on
the Jacobian matrix computation and, hence, is independent of the eigen-
structure. As a consequence, it is attractive for the DFM whose eigenstruc-
ture is not known explicitly. Instead of Jacobian computations, the AUSM
scheme requires (numerical) flux to be split into separate components
so that each one may be properly upwind stenciled. The convective and
pressure fluxes are separated in the AUSM scheme. An upwind principle is
used for the discretization of the convective terms. Unlike Roe’s or Osher’s
scheme, it does not require redefining the intermediate states. It does not
involve differentiation of (numerical) fluxes. The pressure component of
the flux is split similar to the VanLeer concept. Unlike FVS schemes, the
AUSM scheme allows capturing a stationary contact discontinuity with
reduced numerical diffusion even with first-order discretization. In the
past, several (improved) variants of the AUSM scheme, such as AUSM+,
AUSMV, AUSMD, AUSMDV, etc. have been developed [108,109,198,199].

3Minor technical differences between FVS and Van Leer type schemes will be pointed out later
in this section while discussing about the computation of the numerical fluxes.
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These variants have also been employed in the scope of the DFM, see [57].

We will not consider FDS methods in the sequel due to its shortcomings. More-
over, we will restrict our attention to only a few variants within the AUSM-
family, namely, AUSM, AUSMV, AUSMD, and AUSMDV, which are popularly
used for numerically solving the DFM. We will employ FVS, Van Leer scheme,
and the aforementioned AUSM-family schemes in the scope of the DFM and,
ultimately, study the pros and cons of each of these under different challenging
test cases in Section 6.5.

Next, we discuss mathematical details of schemes belonging to the class of
FVS, Van Leer and AUSM-family, and outline the corresponding numerical flux
computations.

Flux Vector Splitting (FVS and Van Leer type)

It has been found that it is convenient to split the flux contributions into a
part due to convective terms and a part due to pressure terms, and treat them
separately. The (numerical convective and pressure) flux is split into respective
contributions from each wave speed, with the positive flux component coming
from positive wave speeds and the negative flux component coming from the
negative wave speeds. As per (6.17), we need to compute the numerical flux at
the interface i +1/2 and at the interface i −1/2. The numerical flux, in the sense
of FVS, at the interface i +1/2, i.e., F FV S

i+1/2 is given by:

F FV S
i+1/2(QL ,QR ) =

Liquid︷ ︸︸ ︷
(α`ρ`)LΨ

+
`,L + (α`ρ`)RΨ

−
`,R +

Gas︷ ︸︸ ︷
(αgρg )LΨ

+
g ,L + (αgρg )RΨ

−
g ,R︸ ︷︷ ︸

Numerical Convective Flux

+

(Fp )i+1/2︸ ︷︷ ︸
Numerical Pressure Flux

, (6.18)

where

Ψ+
`,L =Ψ+

` (v`,L ,ωi+1/2), Ψ−
`,R =Ψ−

` (v`,R ,ωi+1/2),

Ψ+
g ,L =Ψ+

g (vg ,L ,ωi+1/2), Ψ−
g ,R =Ψ−

g (vg ,R ,ωi+1/2), (6.19)

and
(Fp )i+1/2 =

(
0 0 pi+1/2

)T
, (6.20)

with pi+1/2 = P+(v`,ωi+1/2)pL +P−(vR ,ωi+1/2)pR , and Ψ+
`

,Ψ−
`

,Ψ+
g ,Ψ−

g as shown
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below:

Ψ+
` (v,ω) =V +(v,ω)

1
0
v

 , Ψ−
` (v,ω) =V −(v,ω)

1
0
v

 ,

Ψ+
g (v,ω) =V +(v,ω)

0
1
v

 , Ψ−
g (v,ω) =V −(v,ω)

0
1
v

 . (6.21)

The notation v`,L indicates the value of v` at the left of the interface under
consideration. Other notations v`,R , vg ,L , vg ,R can be similarly inferred. And, the
usage of i +1/2 in the subscript refers to the computation at the interface i +1/2.
The variable ω stands for the speed of sound in the two-phase mixture. The
velocity splitting function V ± and pressure splitting function P± are given by:

V ±(v,ω) =
{
± 1

4ω (v ±ω)2 if |v | ≤ω
1
2 (v ±|v |) otherwise

, P±(v,ω) =V ±(v,ω)

{
1
ω (±2− v

ω ) if |v | ≤ω
1
v otherwise

.

(6.22)
Here, V ± and P± are the functions that satisfy the consistency, upwinding,

monotonicity, differentiability and positivity property, see [58, 108]. The nu-
merical flux, in the sense of FVS, at the interface i − 1/2, i.e., F FV S

i−1/2 can be
analogously computed. We refer to [57] and the references therein for further
technical details.
The FVS scheme coincides with the Van Leer scheme for the mass conserva-
tion equations. However, the discretization of mixed momentum equation is
performed differently in these two approaches, as is clarified next while dis-
cussing about the numerical flux computation in the Van Leer approach. The
numerical flux, again composed of the convective contribution due to the liq-
uid and gaseous phase, and the pressure contribution, is given by the sum of
the quantities F liquid, convective

i+1/2 ,F g as,convecti ve
i+1/2 and (Fp )i+1/2, where components

F liquid, convective
i+1/2 and F g as,convecti ve

i+1/2 are given by:

F liquid, convective
i+1/2 = 1

2
[(α`ρ`v`)i+1/2(Φ`,L +Φ`,R )−|(α`ρ`v`)i+1/2|(Φ`,R −Φ`,L)],

(6.23)

F g as,convecti ve
i+1/2 = 1

2
[(αgρg vg)i+1/2(Φg ,L +Φg ,R )−|(αgρg vg)i+1/2|(Φg ,R −Φg ,L)],

(6.24)
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and the numerical pressure flux (Fp )i+1/2 is computed exactly in the manner as
depicted for the FVS scheme. The quantities Φ`,L ,Φ`,R ,Φg ,L ,Φg ,R in (6.23) and
(6.24) are given by:

Φ`,L = (
1 0 v`,L

)T
, Φ`,R = (

1 0 v`,R
)T

,

Φg ,L = (
0 1 vg ,L

)T
, Φg ,R = (

0 1 vg ,R
)T

. (6.25)

And, the mass fluxes in (6.23) and (6.24), generically written as αρv , are ex-
pressed as:

(αρv)Van Leer
i+1/2 =V +(vL ,ωi+1/2)αLρL +V −(vR ,ωi+1/2)αRρR . (6.26)

The velocity and pressure splitting functions are governed by the same defini-
tion as in (6.22). To summarize, the numerical flux, in the sense of Van Leer, at
the interface i +1/2, i.e., F Van Leer

i+1/2 is given by:

F Van Leer
i+1/2 = F liquid, convective

i+1/2 +F g as,convecti ve
i+1/2 + (Fp )i+1/2. (6.27)

Analogously, F Van Leer
i−1/2 can also be computed.

AUSM-Family

The schemes falling in this class also rest upon the principle to split the contri-
butions due to the convective and pressure terms. While the numerical pressure
flux is computed exactly as done in the FVS scheme, the numerical convective
fluxes are treated differently. This is mainly owing to the treatment of mass
fluxes, see (6.30). The numerical convective flux due to the liquid and gaseous
contribution is shown below:

F l i qui d ,convecti ve
i+1/2,AU SM = 0.5[(α`ρ`v`)i+1/2(Φ`,L +Φ`,R )−|(α`ρ`v`)i+1/2|(Φ`,R −Φ`,L)],

(6.28)

F g as,convecti ve
i+1/2,AU SM = 0.5[(αgρg vg)i+1/2(Φg ,L +Φg ,R )−|(αgρg vg)i+1/2|(Φg ,R −Φg ,L)],

(6.29)
where the quantities Φ`,L ,Φ`,R ,Φg ,L ,Φg ,R in (6.28) and (6.29) carry the same
meaning as in (6.25). And, the mass fluxes (generically written as αρv), ap-
pearing in (6.28) and (6.29) are given by:

(αρv)AU SM
i+1/2 = 0.5[vi+1/2(αLρL +αRρR )−|vi+1/2|(αRρR −αLρL)] (6.30)
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where, vi+1/2 = v+
L + v−

R and v+
L =V +(vL ,ωi+1/2) and v−

R =V −(vR ,ωi+1/2).

Next, we discuss about the variants of the AUSM scheme. AUSMV stands for
Advection Upstream Splitting Method, and V at the end refers to the modified
velocity splitting function, which is expressed as:

Ṽ ±(v,ω,χ) =
{
χV ±(v,ω)+ (1−χ) v±|v |

2 if |v | ≤ω
1
2 (v ±|v |) otherwise

. (6.31)

The only difference in the computation of the numerical flux via AUSMV lies
in the treatment of mass flux type terms, as in (6.30). The mass fluxes, in the
sense of AUSMV, are computed as:

(αρv)i+1/2 = (αρ)LṼ +
L + (αρ)RṼ −

R , (6.32)

where, Ṽ +
L = Ṽ +(vL ,ωi+1/2,χL) and Ṽ −

R = Ṽ −(vR ,ωi+1/2,χR ). Many different choices
can be made for the weighting functions χL and χR . However, χL = αR and
χR =αL are popularly used [57].

AUSMD also replies on the modified definition of velocity splitting functions.
AUSMD scheme can be viewed as a Van Leer scheme where modified velocity
splitting functions replace the original velocity splitting functions. Similar to
AUSMV, the mass fluxes, in the sense of AUSMD, are computed as:

(αρv)i+1/2 = (αρ)LṼ +
L + (αρ)RṼ −

R (6.33)

Again, χL =αR and χR =αL are generally used [57].

In the above discussion we only delved into the aspects related to the com-
putation of the numerical flux at the interface i +1/2. The computations at the
interface i −1/2 can be carried out analogously. So far, we discussed about the
first-order numerical scheme for spatial discretization. Next, we will discuss
about the higher-order variants of the above introduced numerical schemes.

Higher-order Spatial Discretization

The correct description of fluid transport and pressure waves requires high-
resolution schemes possessing little to zero numerical diffusion. It is well known
that smearing dissipation plagues first-order methods [177]. In the past, a lot of
work has been put in towards the development of the theory of high resolution
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schemes for the numerical solution of the governing partial differential equa-
tions; see Chapters 13 and 14 of [177] and Chapter 9 of [175] for an overview.
As a consequence of Godunov’s Theorem (see Theorem 13.51 in [177]), we
need to construct non-linear methods to obtain numerical solutions with the
high-order of accuracy and with no spurious oscillations. In the pursuit of look-
ing for such non-linear numerical schemes, the concept of limiters plays a key
role. Limiters add the numerical non-linearity into the fully or semi-discrete
system. A suitable limiter helps to design high resolution and non-oscillatory
schemes by controlling the process of generation of over- and undershoots by
preventing gradients to exceed certain limits. There exist several limiters, for
example, Vanleer limiter, Min-Mod limiter, Osher limiter, Superbee limiter, van
Albada limiter, Sweby limiter, generalized Min-Mod, monotonized central lim-
iter, etc [171, 175, 177]. Each of these limiters have different switching char-
acteristics. These limiters could be directly applied to the numerical fluxes or
to the conservative/primitive variables. The former methodology is referred
to as the flux-limiting, while the latter is referred to as the slope-limiting in
the literature [171, 175, 177]. The slope-limiting can be implemented in two
ways. One of the methodologies is to apply the limiting on the conservative
variables. The other methodology includes the application of the limiter on
the primitive variables. In certain situations, the flux-limiter can be shown to
be exactly equivalent to the slope-limiter. While there are no significant differ-
ences between the two limiter classes, we will utilize the slope-limiting concept
to perform higher-order spatial discretization of the DFM in this chapter. The
slope-limiting methodology in the scope of the DFM is briefly illustrated next.

Consider the following one-dimensional semi-discrete system:

∂t q =− 1

∆x

{
Fi+ 1

2
(Q?

L ,Q?
R )−Fi− 1

2
(Q?

L ,Q?
R )

}
+Si . (6.34)

The above equation differs from (6.17) in the manner of computation of the q−
variables at the left and the right-hand side of the interface. Unlike first-order
approximation, a piecewise constant value of the state variables is no longer
used. A higher-order variant of various schemes for the DFM is obtained by
using an approach similar to the classical Monotonic Upstream Scalar Conser-
vation Laws (MUSCL) technique [177, 191]. In other words, the primitive or
the conserved variables are extrapolated to get the values of the variables at the
cell faces. The values of Q?

L and Q?
R at the interface i +1/2 can be computed as

shown below:

Q?
L = qi + 1

2
φ(ri )(qi+1 −qi ), Q?

R = qi+1 − 1

2
φ(ri+1)(qi+2 −qi+1), (6.35)
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where φ(·), a limiter function, is a measure of the smoothness of the solution
profile, the argument ri to the limiter function is given by:

ri = ui −ui−1

ui+1 −ui
, (6.36)

and the subscripts to the q− variables represent the finite-volume cell at which
the computation must be performed. The values of Q?

L and Q?
R at the interface

i−1/2 can be analogously computed. The limiting, as in (6.35), has been applied
on the conservative variables. A similar procedure could be used to limit the
primitive variables, which can easily be obtained from the knowledge of the
conservative variables.

The limiters should satisfy the following criteria in order to be “total varia-
tion diminishing" (TVD) by nature:

• r ≤φ(r ) ≤ 2r ; (0 ≤ r ≤ 1);

• 1 ≤φ(r ) ≤ r ; (1 ≤ r ≤ 2);

• 1 ≤φ(r ) ≤ 2;(r > 2);

• φ(1) = 1.

The class of limiters which satisfy the above TVD constraints include Van Al-
bada 1, VanLeer, Min-Mod, Osher, Monotonized Central, Superbee, Sweby, and
Generalized Min-Mod limiter, and these will be exploited later in Section 6.5.

Numerical schemes, under consideration of different limiters, will show obvi-
ous differences. In Section 6.5, we will study the effects of different limiters on
the performance of the numerical scheme. The observations will consequently
aid in establishing the relative order of merit of the numerical schemes.

6.3.2 Numerical Implementation of Boundary Conditions

The numerical treatment of the boundary conditions is an essential aspect for
finding the numerical solution of the model of interest. The numerical boundary
conditions must be formulated and discretized appropriately so as to be compat-
ible with the order of accuracy and stability conditions of the numerical scheme
at internal domain cells. The number of positive eigenvalues of the Jacobian
matrix, i.e., ∂f

∂q , is equal to the number of physical boundary conditions on the
inlet side of the spatial domain of interest. And, the number of negative eigen-
values of the Jacobian matrix corresponds to the number of physical boundary
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conditions on the outlet side of the spatial domain. The numerical boundary
conditions serve as the compatibility equations for the outgoing characteristics,
which need to be added to the imposed physical boundary conditions in order
to obtain the missing equations for the cells at the leftmost and the rightmost
boundary of the spatial domain. See the Appendix in [90] for the characteristic
treatment of the boundary conditions. It is an appealing method for specify-
ing boundary conditions for hyperbolic partial differential equations as it uses
relations based on the characteristic lines, i.e., on the analysis of the different
waves crossing the boundary. This method does not use any extrapolation pro-
cedure, thereby it suppresses the arbitrariness in the imposition of the numerical
boundary conditions.

In the scope of the drilling operations, the flow is usually in the sub-sonic
regime. As a consequence of the eigenstructure of the DFM in such sub-sonic
regime, two physical boundary conditions have to be specified at the inlet and
one physical boundary condition at the outlet. The gas and liquid flowrates at
the pipe inlet are generally known. Similarly, the pressure is known or pre-
scribed at the outlet of the spatial domain; also see Section 2.3.1.

Remark 6.3.1 An imposition of physical boundary conditions, as discussed above,
will only hold if the eigenvalues of the Jacobian matrix do not flip during the
evolution of the states over time. It is, hence, important to check whether the
eigenvalues of the Jacobian matrix flip during numerical simulations. We will
carry out this sanity check for all the numerical experiments discussed in Section
6.5.

Extrapolation of say, pressure, using pressure values at interior points might
be adopted for the implementation of the boundary conditions. However, the
compatibility of such extrapolation with the original set of physical boundary
conditions becomes unclear. This is due to the fact that the extrapolation acts
as an additional physical condition imposing zero or pre-conceived pressure gra-
dient and, hence, (could) overspecify the boundary conditions. Various ways to
enforce extrapolation-based boundary treatments are briefly mentioned below.
Considering the setting where m indicates the cell at the boundary, and n in-
dicates the time sample, any physical quantity X can be extrapolated as follows:

Space Extrapolation, Zero-Order Extrapolation:

X n+1
m = X n+1

m−1. (6.37)

Space Extrapolation, First-Order Extrapolation:

X n+1
m = 2X n+1

m−1 −X n+1
m−2. (6.38)
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Space-Time Extrapolation, First-Order in space/Zero-order in time:

X n+1
m = 2X n

m−1 −X n
m−2. (6.39)

Time Extrapolation, First-Order:

X n+1
m = 2X n

m −X n−1
m . (6.40)

The choice among the above mentioned extrapolation approaches is a bit
arbitrary. We can analyze the sensitivity of numerical schemes under different
kinds of extrapolation-based boundary treatment. Moreover, we could com-
pare the behaviour of the numerical schemes for characteristic-based boundary
treatment and for the extrapolation-based boundary treatment. Both charac-
teristic-based implementation of boundary conditions and extrapolation-based
implementation of boundary conditions have been investigated while perform-
ing numerical simulations. We defer further discussion to Section 6.5.

6.3.3 Temporal Discretization

The spatial discretization of the partial differential equation results in a vec-
tor-valued semi-discrete system as in (6.17). It is easy to observe that the
semi-discrete system obtained with or without implementing flux/slope limiters
is highly non-linear. Now consider L(q) = − 1

∆x (Fi+1/2 −Fi−1/2)+ Si . The semi-
discrete system, equivalent to (6.17), can now be written as:

dq

d t
= L(q). (6.41)

The temporal accuracy of a numerical scheme is as important as the spatial
accuracy. Hence, the choice of the method for the time discretization is also
important. Moreover, the choice also affects the stability properties, which is
one of the central issues while considering any numerical discretization tech-
nique. Furthermore, the solutions should remain non-negative after temporal
discretization. As mentioned earlier, we restrict ourselves to the consideration
of explicit time discretization schemes.

Remark 6.3.2 The spatial discretization yields a semi-discrete system which is
constituted by simultaneous ordinary differential equations (ODEs). If these ODEs
have widely separated eigenvalues, then very small time-steps will be required while
using explicit methods to obtain stable numerical solutions.
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In the scope of the DFM [57,90], the numerical solution of (6.41) is usually
advanced by employing a first-order Forward Euler scheme as shown below:

qn+1 = qn +∆tL(qn), (6.42)

where the superscripts n and n +1 are representative of the time-instants.

Remark 6.3.3 For hyperbolic conservation laws, such as the DFM, the spectrum
of the upwind spatial differential operator constitutes eigenvalues that lie in the
left-half complex plane near the imaginary axis. The absolute stability region of
the first-order Forward Euler method intersects the imaginary axis only at the ori-
gin. As a result, the first-order Forward Euler method is typically not a stable
choice for temporal discretization, particularly when the (discrete) system contains
pure imaginary eigenvalues which is representative of hyperbolic partial differen-
tial equations. Furthermore, it is only first-order accurate. If the system eigenval-
ues are on the imaginary axis, the temporal discretization should be such that the
part of the imaginary axis is contained in the stability region. If the discrete system
has eigenvalues near the imaginary axis, we would be much better off using one of
the higher-order Runge Kutta methods.

In view of Remark 6.3.3, in addition to the first-order Forward Euler, we explore
family of (TVD) Runge Kutta methods for temporal discretization. The second,
third-order and fourth-order (TVD) Runge Kutta scheme are recalled below.

Runge Kutta 2b Time Integration- The evolution of the states is as follows:

q(0) = qn , (6.43a)

q(1) = q(0) +1∆tL(q(0)), (6.43b)

q(2) = q(0) + 1

2
∆tL(q(1))+ 1

2
∆tL(q(0)), (6.43c)

qn+1 = q(2), (6.43d)

where the bracketed supercripts denote the state at the intermediate stages, and
qn ,qn+1 indicate the value of q at time-instant t n and t n+1, respectively.
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Runge Kutta 3b Time Integration- The evolution of the states is as follows:

q(0) = qn , (6.44a)

q(1) = q(0) +1∆tL(q(0)), (6.44b)

q(2) = q(0) + 1

4
∆tL(q(1))+ 1

4
∆tL(q(0)), (6.44c)

q(3) = q(0) + 1

6
∆tL(q(1))+ 1

6
∆tL(q(0))+ 2

3
∆tL(q(2)), (6.44d)

qn+1 = q(3). (6.44e)

Runge Kutta 4b Time Integration- The evolution of the states is as follows:

q(0) = qn , (6.45a)

q(1) = q(0) + 1

2
∆tL(q(0)), (6.45b)

q(2) = q(0) + 1

2
∆tL(q(1)), (6.45c)

q(3) = q(0) +1∆tL(q(2)), (6.45d)

q(4) = q(0) + 1

6
∆tL(q(0))+ 1

3
∆tL(q(1))+ 1

3
∆tL(q(2))+ 1

6
∆tL(q(3)), (6.45e)

qn+1 = q(4). (6.45f)

Many other variants of explicit time discretization techniques exist, but we will
limit the discussion around the above mentioned ones.

Remark 6.3.4 The obtained semi-discrete system, governed by set of ODEs, is stiff
due to distinct time scales in the problem. We do not investigate this aspect in
more detail as there is no consensus on the definition of the stiffness of the ODEs in
the non-linear setting. It should also be mentioned that explicit methods are often
unacceptable for stiff problems due to limited size of stability regions. For instance,
the family of Runge Kutta methods are considered to be inefficient for solving stiff
equations. They are inefficient as the step size is controlled by stability rather than
the accuracy requirements. However, explicit methods, including family of Runge
Kutta methods, are still popularly used for temporal discretization with success;
see [57, 90] in the scope of the DFM. Hence, we will also rely on explicit time
discretization methods.

Remark 6.3.5 We mentioned in Remark 6.3.3 that the first-order Forward Euler
method is typically not a stable choice for temporal discretization. Despite this
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fact, we will still resort to the first-order Forward Euler temporal discretization for
few numerical experiments in Section 6.5 and assess the properties of the discrete
system. The success of the first-order Forward Euler method, in practice, can be
attributed to the numerical diffusion inherent in the construction of most of the
spatial discretization schemes. As a result of such numerical diffusion, the eigen-
values of the discrete system tend to shift towards the stable regime of the spatially
discretized system. We would like to point out that even though a numerical scheme
with inherent (artificial) diffusion works well in practice, a numerical scheme with
zero to minimal artificial damping is desired to replicate the “true" behaviour of the
mathematical model. However, a numerical scheme with (almost) zero numerical
diffusion yields a system of ODEs, which is definitely much more challenging to be
solved via temporal discretization techniques, in particular via first-order Forward
Euler due to the stability constraints. For instance, it is known that AUSM, a spa-
tial discretization method discussed in Section 6.3.1, achieves zero-point interface
capturing, i.e., zero numerical smearing. As a consequence, the application of a
first-order Forward Euler method for temporal discretization brings out relevant
numerical issues. We defer further numerical discussion to Section 6.5.

Remark 6.3.6 Linear(ized) stability analysis of the discrete system can be mis-
leading. This claim can be supported by the fact that problems (such as numerical
instabilities) may occur if the reduction in the step length happens to place eigen-
values of the discrete system outside the absolute stability region due to the shape of
the (stability) boundary. As a result, the notion that ‘the finer the mesh, the better’
may fail. The system eigenvalues are known to shift as per the chosen (spatial and
temporal) discretization. Hence, non-linear stability conditions become critical for
the (convergence) analysis of the numerical scheme in the presence of shocks or
sharp gradients.

Having discussed about the spatial and temporal discretization along with the
aspects of the numerical implementation of the boundary conditions, we now
have all the ingredients to delve into the error estimation and certification of a
numerical scheme.

6.4 Error estimation and certification

The numerical predictions tend to differ from the exact solutions of the model
of interest, even if by a small amount, due to various sources of error. Tem-
poral and spatial discretization errors are the most significant sources of errors
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in computational simulations. These discretization errors are expected to ap-
proach to zero as the grid is systematically refined. There is a close relationship
between discretization error, the underlying mesh and the employed numeri-
cal method. For the purposes of verification and validation, it is necessary to
have quantitative error bounds on each generated solutions, and to quantify the
adequacy of an underlying grid.

Approximate solution methods introduce numerical errors, which should be
kept minimal. The numerical errors may not be generated at a certain location
in the flow domain, but transported as per the error dynamics. It is, hence,
important to understand the generation and evolution of the errors. It is also
important to have a mechanism that can account for the errors resulting from
the spatial resolution or from the choice of the numerical schemes. The goal
is to certify the fluid flow simulations (here in the scope of the DFM) and to
characterize errors generated by different numerical schemes in problems of
practical interest.

An approach called Error Transport Equation (ETE) [18], which is a fairly
recent approach, has come to the fore for discretization error analysis. The
ETE approach can have a continuous or a discrete formulation. This approach
helps to predict discretization error using the numerical solution on only one
grid. Using the ETE approach, error transport analysis can serve as a good
criterion for mesh adaptation (local) and for solution improvement through de-
fect correction. The ETE approach has been recently exploited for discretiza-
tion error analysis in the scope of both unsteady and steady problems, in-
cluding one-dimensional quasi Euler equations, Navier-Stokes equations, etc
[18, 38, 143, 205]. However, such an analysis has not been carried out for the
DFM so far. Hence, we strive to quantify the discretization error using several
challenging numerical benchmarks in the scope of the DFM.

The use of non-linear error transport equation has been motivated in [18]
and we exploit the same (general) finite-volume framework. Consider a partial
differential equation (PDE), equivalent to (6.1), of the form:

∂t u + ∂x f (u,ux )︸ ︷︷ ︸
evolution operator

= s(u,ux ). (6.46)

Consider a function ũ(x, t ) that approximates u(x, t ), but does not exactly satisfy
(6.46). The approximation error can now be defined as follows:

ε(x, t ) = u(x, t )− ũ(x, t ). (6.47)

In an analogous manner, the spatial derivative of the approximation error is
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given by:
εx (x, t ) = ux (x, t )− ũx (x, t ). (6.48)

Using (6.47) and (6.48) in (6.46), we obtain:

∂t (ε+ ũ)+∂x f (ε+ ũ,εx + ũx ) = s(ε+ ũ,εx + ũx ). (6.49)

Subtracting ∂t ũ +∂x f (ũ, ũx )− s(ũ, ũx ) from both sides of (6.49), we have:

∂tε+∂x ( f (ε+ ũ,εx + ũx )− f (ũ, ũx ))︸ ︷︷ ︸
error evolution operator

−(s(ε+ ũ,εx + ũx )− s(ũ, ũx )) =− (R(ũ, ũx ))︸ ︷︷ ︸
residual

,

(6.50)
where

R(ũ, ũx ) = ∂t ũ +∂x f (ũ, ũx )− s(ũ, ũx ). (6.51)

From now on, we will refer (6.50) as an error transport equation.

Remark 6.4.1 An error transport equation, as in (6.50), is usually linearized to
obtain an error evolution. A linearization of the flux function about (ũ, ũx ) is
illustrated below:

f (ũ +ε, ũx +εx ) = f (ũ, ũx )+∂u f (ũ, ũx )ε+∂ux f (ũ, ũx )εx +O(||ε||2). (6.52)

Using (6.52) in (6.50), a linearized transport equation can be obtained as shown
below:

∂tε+∂x (∂u f (ũ, ũx )ε+∂ux f (ũ, ũx )εx )− (∂u s(ũ, ũx )ε+∂ux s(ũ, ũx )εx ) ≈−(R(ũ, ũx )).
(6.53)

However, such a linearization is questionable. In [18], it has been shown that
the linear error transport approach is not valid in several important cases. Given
the shortcomings of the linear error transport approach, we will strive to solve the
error evolution (6.50) in the scope of the DFM without resorting to any kind of
linearization.

In principle, we neither have an exact solution to (6.46), nor to an error trans-
port equation (6.50). However, similar to conventional approach of discretizing
a PDE, the error transport equation can also be discretized. The discretization
error can be estimated by concurrently solving the primal governing PDE along
with an auxilliary (non-linear) error transport equation. Appropriate choices
need to be made to discretize the evolution operator in (6.46), and to discretize
the error evolution operator and the residual in (6.50). We will now step by
step discuss: (i) the choice of discretization of the primal governing PDE, (ii)
the choice of discretization of the evolution operator in the error transport equa-
tion, and (iii) the choice of evaluation technique of the error residual.
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6.4.1 Discretization of the primal governing PDE

The spatial and temporal discretization of the PDE as in (6.46) has already been
discussed extensively in Section 6.3. We also refer the reader to Section 6.3.1
for aspects pertaining to first-order and higher-order of spatial and temporal
accuracy. We will omit further discussions about the discretization of the primal
governing equation here, and instead focus on the discretization aspects related
to the auxilliary error transport equation.

6.4.2 Discretization of the auxilliary error transport equation

The discretization of the auxilliary error transport equation constitutes the choice
of discretization of the error evolution operator and the choice of evaluating
corresponding residual. Some key aspects need to be kept in mind while de-
veloping a (continuous-time and discrete-time) approximation of the error. As
explained in [18], the residual should be evaluated at a higher order than the
primal equation, and the error transport equation should be discretized at the
same or a higher order than that of the primal equation. This technicality is also
elaborated in further detail in the sequel.

In the scope of the DFM for flow across a constant geometrical cross-section,
the semi-discrete form of the primal equation (6.46) is given by:

∂t ũ +G(ũ) = 0, (6.54)

where G(ũ) is a discrete operator representative of the spatially discrete form of
∂x f (ũ)− s(ũ). It should be noted that the dependence of the flux function and
the source terms on the spatial derivatives of the solution has been dropped in
view of the absence of such terms for the DFM with constant cross-section. The
auxilliary error transport equation (6.50) takes the following form:

∂tε+ ∂x ( f (ε+ ũ)− f (ũ))︸ ︷︷ ︸
error evolution operator

−(s(ε+ ũ)− s(ũ)) =− (R(ũ))︸ ︷︷ ︸
residual

, (6.55)

with
R(ũ) = ∂t ũ +∂x f (ũ)− s(ũ). (6.56)

Equation (6.55) can be equivalently written as follows:

∂tε+∂x ( f (ε+ ũ))−∂x ( f (ũ))− (s(ε+ ũ)− s(ũ)) =−(R(ũ)), (6.57)
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Using (6.54) in (6.56), we can write the residual R(ũ) as follows:

R(ũ) =−G(ũ)+∂x f (ũ)− s(ũ). (6.58)

Let us now introduce a discrete operator G̃(ũ) that is representative of the spa-
tially discrete form of ∂x f (ũ)− s(ũ) in (6.58). As a consequence, (6.58) can be
further simplified to

R(ũ) =−G(ũ)+G̃(ũ). (6.59)

Using (6.59), it is easy to see that if the discrete operators G and G̃ are exactly
same, the source of error dynamics will vanish. Furthermore, the error esti-
mate will be asymptotically correct if the order of discretization of the residual
is greater than that of the primal governing PDE; see [18] for a technical discus-
sion. Hence, if G is obtained by a first-order spatial discretization method, then
G̃ should be computed by employing higher-order spatial discretization tech-
nique. To summarize, the semi-discrete form of (6.55) or (6.57) can be written
as follows:

∂tε+ 1

∆x

(
F ε

i+1/2(U ε
L ,U ε

R )−F ε
i−1/2(U ε

L ,U ε
R )

)
− 1

∆x

(
Fi+1/2(UL ,UR )−Fi−1/2(UL ,UR )

)
−Sεi +Si = 1

∆x

(
Fi+1/2(UL ,UR )−Fi−1/2(UL ,UR )

)
−Si︸ ︷︷ ︸

G(ũ)

−

1

∆x

(
F ε

i+1/2(U ε,?
L ,U ε,?

R )−F ε
i−1/2(U ε,?

L ,U ε,?
R )

)
+S?i︸ ︷︷ ︸

G̃(ũ)

. (6.60)

Here, 1
∆x

(
F ε

i+1/2(U ε
L ,U ε

R )−F ε
i−1/2(U ε

L ,U ε
R )

)
represents the spatially discrete coun-

terpart of ∂x ( f (ε+ ũ)). The starred values in (6.60) refer to the ones which
are approximated by a higher-order scheme (here, second-order), and the non-
starred values refer to the quantities approximated by a first-order scheme.
Any spatial discretization methodology, as discussed in Section 6.3.1, can be
adopted to compute the numerical fluxes F ε

i+1/2(U ε
L ,U ε

R ), etc. While Si is gener-
ally computed based on point-wise cell evaluations, the methodology to dis-
cretize S?i should be consistent with the order of discretization of the term

1
∆x

(
F ε

i+1/2(U ε,?
L ,U ε,?

R )−F ε
i−1/2(U ε,?

L ,U ε,?
R )

)
. We omit the detailed discussion around

the (consistent) approximation of S?i as we only consider the problems without
source terms while performing numerical experiments in Section 6.5. Such a
simplification is pursued to make the discontinuous features more prominent,
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and to exclude the role of physical damping in order to (some extent) quantify
the amount of numerical viscosity. After spatial discretization, the semi-discrete
form, as in (6.60), can be evolved over time by using any of the temporal dis-
cretization methodologies which have been discussed in Section 6.3.3. We have
now completely set up the framework for error estimation and certification via
the ETE approach. Next, we delve into the numerical experiments to quantify
the performance of the numerical method.

6.5 Numerical Experiments

Numerical experiments are required to assess the performance of the introduced
numerical schemes in terms of the inherent accuracy, stability, etc., and, thus,
comment on their strengths and weaknesses. In this section, we test the model
and the numerical method on problems with exact reference solutions, and also
carry out grid refinement studies. Furthermore, we perform various numerical
experiments to test relevant numerical properties using different combinations
of spatial and temporal discretization schemes discussed in Sections 6.3.1 and
6.3.3. For instance, we check if the numerical schemes follow Abgrall’s princi-
ple which states that: "A flow, uniform in pressure and velocity, must remain
uniform in the same variables during its time evolution." The impact of vari-
ous existing limiters on the numerical response is also studied in the scope of
few numerical tests. In the pursuit of error estimation and certification, we
discretize the primal governing PDE along with the auxilliary error transport
equation to provide additional metric for establishing the relative order of merit
of the numerical schemes.

The considered test cases are extensively described next.

6.5.1 Shock-tube type test-case

Shock-tube type problems are interesting as they test the ability of a numerical
scheme to handle the initial data that is far removed from the state of equilib-
rium. Generally, a membrane, placed at a certain location in the spatial domain,
is ruptured, and this eventually leads to the evolution of waves depending upon
the initial states of the system. These waves travel in either directions of the
spatial domain depending upon the states of the system, and travel towards the
boundary of the spatial domain. Clearly, the role of the boundary conditions
is also important. However, in the scope of the following test cases, the end
time of the simulation is chosen such that the emanating waves do not reach
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the boundaries of the spatial domain under consideration. Hence, the boundary
conditions are not specified in the test cases that follow within this sub-section.

Case A
This numerical experiment is inspired from [181]. This is a test case to verify
the property of pressure invariance and, hence, check whether the numerical
schemes follow Abgrall’s principle. Furthermore, such a test case also uncovers
the deficiency of numerical methods in capturing the material interface or the
contact discontinuity. Moreover, this test case aids to test the model and numer-
ical method with exact reference solutions. Such properties, except for testing
the efficiency of the numerical schemes in capturing the (contact) discontinu-
ites, have not yet been theoretically or numerically tested in the literature on
the numerical methods in the scope of the DFM.

This test case does not consider the slip between the two phases, i.e., vg =
v` = v . Furthermore, the model is considered to be inviscid, and, as a conse-
quence, the role of the gravitational and frictional source terms is neglected.
In such a setting, the DFM essentially becomes similar to the model in [181].
In addition to the zero slip and the absence of source terms, this test case uses
Tait’s equation of state for the phases under consideration, which are given by:

ρ`/g (p) = ρ0
`/g (

(p/p0)+η`/g

1+ηp/s
)

1/γ`/g

, (6.61)

where the subscripts ` and g refer to the corresponding value for the liquid
phase and the gaseous phase, respectively, ρ`/g indicate the densities of the
phases which are given as a function of pressure p only and, hence, the equa-
tion of state is barotropic in nature. Here, p0 is the reference pressure, ρ0

`/g

stands for the density of the phases (indicated by the subscript) at the reference
pressure, and η`/g ≥ 0 and γ`/g > 1 are phase-specific constants. The equation
of state, as in (6.61), is different from those in (2.4) and (2.5), which we con-
sidered earlier in Section 6.2 for studying the hyperbolicity of the DFM with its
corresponding closure laws. Here, we consider the Tait’s equation of state for
the phases since the exact solutions under such a setting have been reported
in [181], and we seek to exploit the exact solutions for benchmarking the nu-
merical schemes. It is worth mentioning that the hyperbolicity of the model
with the aforementioned modifications can also be studied. We omit the corre-
sponding discussion, and refer the reader to follow the principles introduced in
Section 6.2 for this purpose.

Furthermore, in the pursuit of assessing whether the numerical schemes fol-
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low Abgrall’s principle, the initial velocity and pressure are considered to be
uniform. Also, a pure liquid is considered at the left side of the membrane lo-
cated at the centre of the spatial domain, i.e., x0 = 2, and a pure gas is considered
at the right side of the membrane. In essence, a large density ratio is considered
across the membrane separating the two phases. Mathematically, the initial
conditions are as follows: αg ,L = 0, pL = 1, vL = 100 and αg ,R = 1, pR = 1, vR = 100,
where L (resp., R) in the subscript indicates the states at the left (resp., right)
side of the membrane. Under the chosen initial conditions, the resulting nu-
merical solution essentially corresponds to the translation of the (material) in-
terface. The coefficients of the equations of state vary discontinuously from one
medium to another across the interface. The spatial domain is assumed to be of
length L = 4. The spatial step size and the temporal step size are considered to
be ∆x = 2−6 and ∆t = 2−9, respectively. For the purposes of numerical simulation
of the model, the values of the constants appearing in the Tait’s equation of state
are chosen as follows: ρ0

`
= 1,η` = 3000,γ` = 7,ρ0

g = 10−3,ηg = 0 and γg = 7/5.
Before delving into the numerical study, we briefly discuss how to obtain

the primitive variables if the conservative variables are known. To this end, q
in (6.1), under the assumption of the zero slip between the phases, takes the
following form:

q :=
q1

q2

q3

=
 α`ρ`

αgρg

(α`ρ`+αgρg )v

 . (6.62)

Using (6.62), we have that:

(q1 +q2)v = q3 or v = q3

q1 +q2
. (6.63)

Using (6.62) and (6.61), we can write:

q1 =α`ρ0
`

( (p/p0)+η`
1+η`

)1/γ`

. (6.64)

Similarly, by using (6.62), (6.61) and the fact that αg +α` = 1, we have that:

q2 =αgρ
0
g

( (p/p0)+ηg

1+ηg

)1/γg

= (1−α`)
(
ρ0

g

( (p/p0)+ηg

1+ηg

)1/γg )
. (6.65)

Equation (6.64) can also be re-written as follows:

α` =
q1

ρ0
`

(
(p/p0)+η`

1+η`
)1/γ`

. (6.66)
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Furthermore, using (6.65) and (6.66), we have that:

q2 =
(
1− q1

ρ0
`

( (p/p0)+η`
1+η` )

1/γ`

)(
ρ0

g

( (p/p0)+ηg

1+ηg

)1/γg )
. (6.67)

Re-arranging (6.67) yields the following expression:

( (p/p0)+ηg

1+ηg

)1/γg

− q1

ρ0
`

( (p/p0)+η`
1+η` )

1/γ`

( (p/p0)+ηg

1+ηg

)1/γg

= q2

ρ0
g

, (6.68)

which can be solved for p given q1 and q2. This equation is highly non-linear
in p, and needs to be solved at every time iteration while converting from con-
servative to primitive variables, which are needed in the computation of the
numerical flux. Having shown the way to obtain the primitive variables from
the conservative variables, we now perform the numerical study on this test
case.

Figure 6.4: Case A: Behaviour of the density, (liquid) velocity and pressure at t = 0.01.
Here, ∆x = 2−6, ∆t = 2−9 and the first-order FVS scheme and the first-order
Forward Euler method has been employed for the discretization. The ex-
act solution is depicted by red-dashed lines and the numerical prediction is
shown in solid blue.
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Figure 6.4 shows the profile of the density, (liquid/gas) velocity, and the
pressure at time t = 0.01 when the (first-order) FVS scheme is employed for the
spatial discretization and a first-order Forward Euler scheme for the temporal
discretization. As per the initial conditions, the velocity and the pressure are
supposed to remain uniform for all time instants, i.e., p = 1 and v = 100 for all
t ∈ [0,0.01], and the exact solution of the density at t = 0.01 is [181]:

ρ :=αgρg +α`ρ` =
{

1, x ≤ 3,

0, x > 3.

Basically, the contact discontinuity travels from x = 2 to x = 3 during the con-
sidered time-horizon. We can clearly observe that the numerical solution of
the density, velocity and pressure is qualitatively indicative of the exact solu-
tion. However, some oscillations in the velocity and pressure profile can be
observed. Also, the contact discontinuity, visible in the profile of the density,
is smeared out, which reveals that the numerical scheme possesses a relatively
large amount of numerical viscosity. Given the fact that the velocity and the
pressure profile are not exactly uniform, the FVS scheme does not satisfy the
Abgrall’s principle in an exact sense.

Next, we investigate the role of the higher-order spatial and temporal dis-
cretization methods in the (numerical) satisfaction of the Abgrall’s principle.
Figure 6.5 again shows the numerical solution of the density, velocity and pres-
sure at t = 0.01. Here, different combinations of higher-order spatial and tem-
poral discretization methods have been assessed in addition to the discretiza-
tion setting discussed in the previous paragraph. We employ the Osher limiter
and the FVS scheme for a (formally) second-order spatial discretization. Fur-
thermore, we apply three different variants of temporal discretization schemes,
namely, the second-order Runge Kutta, the third-order Runge Kutta and the
fourth-order Runge Kutta method. From Figure 6.5, we can clearly observe
that, among the considered combinations, the second-order spatial discretiza-
tion along with the fourth-order Runge Kutta method is the most closest to the
satisfaction of the Abgrall’s principle. Furthermore, we can observe that the na-
ture of the oscillatory perturbations around the uniform state is different for all
the considered combinations. This basically hints at inherently different evolu-
tion mechanisms of the solution (and the error) under the implementation of
various (combinations of) numerical schemes. Moreover, we observe that the
higher-order schemes yield (as expected) a less smeared contact discontinuity
compared to the first-order schemes. It is interesting to note that the second-
order spatial discretization along with the considered choices of higher-order
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Figure 6.5: Case A: Behaviour of the density, (liquid) velocity and pressure at t = 0.01 for
different combinations of spatial and temporal discretization schemes with
∆x = 2−6 and ∆t = 2−9. The red and the yellow curves, not visible in the top
plot, are basically hidden behind the purple curve.

Runge Kutta methods results in an exactly same evolution of the contact discon-
tinuity; see the top plot in Figure 6.5.

We now construct the numerical fluxes, i.e., perform the spatial discretiza-
tion, in several different ways as discussed in Section 6.3.1, and assess which
scheme most accurately satisfies the Abgrall’s principle in a numerical sense. We
only employ first-order variants of FVS, VanLeer, AUSM, AUSMV and AUSMD
along with a first-order Forward Euler scheme. Figure 6.6 shows the velocity
and the pressure profile at t = 0.01 for different spatial discretization schemes.
We can observe that each of the considered schemes possesses (a different type
of) oscillatory perturbations around the uniform state. Similar to an earlier ob-
servation, it is clear that the inherent evolution mechanisms of the solutions are
different for a certain combination of the spatial and temporal discretization
methodology. Furthermore, the propagation of the information towards the left
of x = 2 is quite visible for the FVS and the VanLeer scheme, but not for the other
considered schemes. Among the considered schemes, the AUSMV one clearly
outperforms and (almost) satisfies the Abgrall’s principle. We can also observe
that the AUSM scheme is the worst since the resulting solution deviates the most
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Figure 6.6: Case A: (left) Behaviour of the (liquid) velocity and (right) Behaviour of
the pressure at t = 0.01 with ∆x = 2−6 and ∆t = 2−9. Here the numerical
flux is approximated via several schemes: FVS, VanLeer, AUSMV, AUSMD
and AUSM, and the fourth-order Runge Kutta is employed for the temporal
discretization.

from the uniform state.
We also consider the role of the limiters in assessing the impact on the nu-

merical satisfaction of the Abgrall’s principle. In particular, we consider two
different choices of the limiters, i.e., Osher and MinMod generalized limiter
among the large assortment of available limiters. Given the fact that the (first-
order) AUSMV scheme most closely satisfies the Abgrall’s principle, we construct
a second-order variant of AUSMV by using the two aforementioned limiters.
Furthermore, using the fact that the second-order FVS scheme (with the Osher
limiter) along with the fourth-order Runge Kutta (almost) satisfies the Abgrall’s
principle (see Figure 6.5), we will employ the fourth-order Runge Kutta method
for the temporal discretization of the setting under consideration. Figure 6.7
depicts the profile of the density, velocity and pressure at t = 0.01 under the im-
plementation of the second-order AUSMV (using the Osher and MinMod gener-
alized limiters) and the fourth-order Runge Kutta method. Clearly, the limiters
impact the evolution mechanism. The MinMod generalized limiter is observed
to yield much less numerical oscillations around the uniform state. It is worth
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Figure 6.7: Case A: Behaviour of the density, (liquid) velocity and pressure at t = 0.01 for
two different choices of the limiters, namely, the Osher and the MinMod gen-
eralized limiter. Here, ∆x = 2−6, ∆t = 2−9 and the second-order AUSMV and
the fourth-order Runge Kutta method has been used for the discretization.

emphasizing that the role of the limiters is problem specific, and by now means
should the MinMod generalized limiter be considered superior to the Osher lim-
iter in a generic sense.

Case B
This shock-tube type numerical experiment is inspired from [57]. It is con-
sidered here to showcase the potential benefits of the modified model of the
speed of sound in the two-phase mixture over the existing surrogate one and,
thus, to study the importance of the role of the speed of sound of a two-phase
mixture. This test case is also considered in the scope of error estimation and
certification. Similar to [57], a 100 m horizontal pipe is considered which is
initially separated by a membrane into a left and a right state at x0 = 50 m.
Figure 6.8 represents the initial conditions of the numerical experiment. As a
consequence of the chosen initial conditions and the underlying nature of the
DFM, the numerical solution is composed of three waves: a 1-shock, a 2-contact
discontinuity, and a 3-shock, which start emanating upon the rupturing of the
membrane. Furthermore, we consider that the two phases are governed by the
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Figure 6.8: Case B: Initial conditions of the experiment.

equations of state as described in (2.5) and (2.4). Moreover, frictional effects
are neglected, and the parameters in the Zuber-Findlay slip law are considered
to be: K = 1.07 and S = 0.216. Next, we provide numerical observations in line
with the aforementioned objectives of this test case.

Figure 6.9: Case B: Absolute difference in the pressure computation (in Pa) upon using
the existing surrogate and the proposed model for the sound speed of the
two-phase mixture.
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Sound speed model: We consider that the spatial domain is discretized into 200
FV cells, and that the CFL = 0.8. Furthermore, we use the first-order FVS scheme
along with the first-order Forward Euler method for the purposes of the numer-
ical discretization. Figure 6.9 depicts the space-time diagram of the absolute
difference in the pressure obtained by employing the two different sound speed
models. The numerical differences in the propagation behaviour is clearly ev-
ident. It must be pointed out that any other scheme can also be used for the
spatial discretization, and the similar analysis can be carried out. The loca-
tion/profile of the fronts, under two different sound speed models, is observed
not to be significantly different in the scope of this test case. The numerical
differences are problem specific, and are better observed in another test case
discussed in Section 6.5.2. However, it is worth mentioning that the approach
where the proposed sound speed model is used is computationally expensive
as it involves solving the eigenvalue problem at every time iteration. We defer
further discussion to Section 6.5.2 in the scope of the pros and the cons of the
proposed sound speed model and the existing surrogate one.

Figure 6.10: Case B: (top row: left to right) Behaviour of the pressure, the liquid velocity
and the gas void fraction, and (bottom right: left to right) behaviour of
the approximate error in the pressure, the approximate error in the liquid
velocity and the approximate error in the gas void fraction. Here, CFL = 0.8
and the computational domain is uniformly divided into 400 FV cells.
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Error estimation and certification: In this numerical case study, we divide the
spatial domain into 400 FV cells, consider CFL = 0.8, employ the FVS scheme
for the spatial discretization and the Osher limiter for the higher-order approx-
imation of the numerical fluxes, and use a first-order Forward Euler scheme for
the temporal discretization. Figure 6.10 shows the discrete approximation of
the pressure, the liquid velocity and the gas void fraction along with the corre-
sponding approximate errors at time t = 1. It can be observed that the error in
the physical quantities (say, pressure, liquid velocity, gas void fraction, etc.) is
dominated by the errors near the numerically resolved shock. We can see that
the error in the 2-contact discontinuity has minimal impact on the pressure field.
As a consequence, it can be deduced that the smearing of the 2-contact discon-
tinuity should not be of concern if the pressure is the (only) quantity of interest.
Furthermore, we can see that the source of the dominant error in all the quanti-
ties depicted in Figure 6.10 is the behaviour around the 3-shock. Also, the error
in the gas void fraction is almost equally attributed to the features around the
2-contact discontinuity as to those around the 3-shock. Basically, the gradient at
the moving interface dictates the dominant sources of the error in the fields of
interest. Figures 6.11a and 6.11b demonstrate the space-time evolution of the
approximate error in the pressure and the gas void fraction, respectively. The
observed propagation behaviour (and the speed) is closely related to the un-

(a) Approximate error in the pressure (in Pa). (b) Approximate error in the gas void fraction.

Figure 6.11: Case B: A space-time diagram for the approximate error in the pressure and
gas void fraction. Here, CFL = 0.8 and the computational domain is divided
into 400 FV cells.
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Figure 6.12: Case B: behaviour of (top) approximate error in the pressure, (middle) ap-
proximate error in the liquid velocity, (bottom) approximate error in the
gas void fraction at t = 1 and CFL = 0.8 on a mesh with 400 and 800 FV cells.

derlying eigenstructure of the system. Figure 6.12 shows the approximate error
in the pressure, the liquid velocity and the gas void fraction at t = 1 under the
choice of 2 different mesh resolutions. Here, we use 400 and 800 FV cells, and
adapt the time step such that the CFL is still equal to 0.8. It can be observed that
the behaviour of the approximate error is almost similar for both considered set-
tings. However, two important observations can be made. The first observation
is that the spatial width, across which the approximate errors are dominant, is
less for the finer mesh compared to that for the coarser mesh. This is related
to the fact that using a larger number of FV cells implies a smaller spatial step
size and, consequently, less numerical viscosity and a better capability in resolv-
ing the sharp gradient feature. The second observation is that the maximum
(approximate) error in the quantities of interest almost remains constant with
the mesh refinement. This behaviour is unlike the one usually observed when
the linear error transport approaches, which results in an unbounded growth of
the error under mesh refinement, are employed. This observation reveals the
power of the non-linear error transport approach.

We also implement other schemes, namely, AUSM, AUSMV, AUSMD and
VanLeer for the spatial discretization instead of employing the FVS scheme. We
observe similar behaviour as the one depicted in Figures 6.10 and 6.12 under
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the consideration of the AUSM, AUSMV and VanLeer scheme and, hence, we
omit the related numerical results. However, the behaviour under the imple-
mentation of the AUSMD scheme deserves some discussion. Consider that we
only solve a primal governing PDE by using a first-order variant of the AUSMD
scheme along with a first-order Forward Euler temporal discretization on the
computation domain with 400 FV cells. Figure 6.13 demonstrates the pressure,
liquid velocity and the gas void fraction at t = 1 for the considered setting. While
qualitatively the numerical solution of the quantities of interest are similar to
the other numerical schemes (see the first row in Figure 6.10), it can be ob-
served that there are significantly high amount of oscillations post the 2-contact
discontinuity. These oscillations are observed for coarser spatial mesh resolu-
tions as well as for lower CFL numbers. It seems that the AUSMD scheme is
not tailored to accurately resolve the features that are observed, in particular
the 2-contact discontinuity. It is worth mentioning that the AUSMD scheme has
been employed for other kind of test cases in the past. However, it has never
been tested for the case that we have considered. The observations hint to the
need of modifications in the numerical approximation of the flux for resolving

Figure 6.13: Case B: behaviour of (top) the pressure, (middle) the liquid velocity, (bot-
tom) the gas void fraction at t = 1 and CFL = 0.8 on a uniform mesh with
400 FV cells. Here, the first-order AUSMD and the first-order Forward Euler
method has been employed for discretization.
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the aforementioned issues. Furthermore, it should be mentioned that the eval-
uation of the error residual requires a higher-order approximation. The oscilla-
tions, observed in the first-order implementation, tend to aggravate under the
higher-order implementation of a numerical scheme and, consequently, pollute
the evolution of the numerical solution and the approximate error. Employing
the AUSMD scheme for numerically solving the primal governing PDE and the
auxiliary error transport equation is, hence, not considered.

6.5.2 Fast Transients

This numerical experiment is inspired from [57]. One of the objectives of this
test case is to delve into the relative assessment of the numerical schemes by
pursuing grid refinement studies. Another objective is to showcase the im-
portance of considering compressibility effects of both phases in obtaining the
model of the speed of sound for the two-phase mixture.

Consider a 1000m long pipe with the following initial conditions:

αg =
{

0.01, x ≤ 750,

0.9, x > 750
, p = 1e5 ∀x ∈ [0,1000]. (6.69)

Additionally, a zero slip is considered between the two phases, i.e., v` = vg = v .
Furthermore, the fluids are initially considered to be stagnant throughout the
pipe, i.e., v = 0. Moreover, we consider that the two phases are governed by
the equations of state as described in (2.5) and (2.4). A pulse in the pressure
and fluid velocities is now introduced by increasing the inlet liquid flowrate
from 0 to 0.3 kg/s in 0.0025 s, and the pressure at the outlet side of the pipe is
kept constant. When these pulses experience the sudden jump in the gas void
fraction, the changes in the compressibility, the mixture density and the speed
of sound in the two phase mixture produce reflecting waves in the pressure and
velocity fields. Finally, the simulation considers frictional effects, and is run over
a time horizon of 10 seconds, i.e., t ∈ [0,10].

We first assess the numerical differences under the use of the surrogate and
the proposed model for the speed of sound of the two-phase mixture. To this
end, we consider that the spatial domain is discretized into 200 FV cells, and
that the CFL = 0.8. Furthermore, we use the first-order AUSMV scheme and
characteristic-based boundary treatment along with the first-order Forward Eu-
ler method for the purposes of the numerical discretization. Figure 6.14 depicts
the space-time diagram of the absolute difference in the pressure obtained by
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Figure 6.14: Fast Transients Test Case: Absolute difference in the pressure computation
(in Pa) upon using the existing surrogate and the proposed model for the
sound speed of the two-phase mixture.

employing the two different sound speed models. Clearly, there is a numeri-
cal impact. Before we delve further into the numerical differences, it is worth
observing that the reflection phenomena at x = 750 is clearly visible. A space-
time diagram of the absolute difference in the liquid velocity can also be analo-
gously obtained. In order to provide further (visual) insights into the numerical
differences, we study the profile of the gas void fraction, liquid velocity and
pressure at t = 10. From Figure 6.15, we can observe that there is no differ-
ence in the evolution of the gas void fraction upon employing different sound
speed models. Some differences can however be observed in the profile of the
liquid velocity and the pressure. If we carefully look at the middle plot in Fig-
ure 6.15, some numerical oscillations can be observed if the numerical fluxes
are approximated using the proposed sound speed model. Such oscillations are
much more bounded or not observed when the surrogate sound speed model
is used for the flux approximation. At a first glance, this might be viewed as a
disadvantage of the proposed model over the surrogate one. However, such an
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Figure 6.15: Fast Transients Test Case: behaviour of (left) the gas void fraction, (middle)
the liquid velocity, (right) the pressure at t = 10 and CFL = 0.8 on a uniform
mesh with 200 FV cells. Here, we have used the first-order AUSMV scheme
and characteristic-based boundary treatment along with the first-order For-
ward Euler method for the numerical discretization.

observation can be supported from the following reasoning. An accurate sound
speed model will consequently lead to an accurate evolution of the (moving)
discontinuities/fronts. This is also in a way observable in the middle plot in
Figure 6.15 where we can see that the front around x = 500 is much sharper
if the computations are performed with the proposed sound speed model than
with the surrogate one. It is well-known that "the sharper the front, the higher
is the possibility to run into numerical oscillations". Basically, a more accurate
resolution of the evolving front comes at the expense of the oscillations in the
numerical predictions. However, the occurrence of the numerical oscillations
is problem specific. For instance, in Case B, Section 6.5.1, we do not observe
any numerical oscillations even though the proposed approach yields a slightly
sharper front than the one that results with the existing surrogate models. To
conclude, we can say that the sound speed model has a clear role in terms
of the overall viscosity of the numerical scheme, and that the proposed sound
speed model is numerically less viscous and eventually devoid of self-dissipating
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Figure 6.16: Fast Transient Test Case: Behaviour of the liquid velocity at t = 10 and CFL
= 0.8. Here, surrogate sound speed model has been used for the approxi-
mation of the numerical fluxes.

mechanisms that possibly lead to oscillatory numerical behaviour.
Next, in the scope of the grid refinement studies, we will only employ the

FVS scheme and the AUSMV scheme among all the other considered methods
for the approximation of the numerical fluxes since these are representative
enough for the point that we wish to make. We generate a numerical solution
by using the AUSMV scheme on a mesh with 1600 FV cells. Furthermore, we
also perform computations by using the FVS scheme over different spatial mesh
resolutions. In particular, we compute the numerical prediction with the FVS
over the spatial domain with 100,200,400,800 and 1600 FV cells. From Figure
6.16, we can clearly observe that the FVS and the AUSMV scheme do not yield
similar features at a finer spatial step size.

We recall that the authors in [57] considered the AUSMV scheme at a finer
mesh resolution to yield a reference solution, and used it to benchmark other
numerical schemes. At this point, it is also worth emphasizing that the nu-
merical solutions computed from various numerical schemes are theoretically
expected to converge to the same solution under grid refinements. However,
this is not the case as per the results shown in Figure 6.16. This instigates the
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question whether it is correct to consider solutions generated by the AUSMV
scheme on a finer grid as the reference solutions. Also, the reasons behind dis-
carding the spiking behaviour of the solutions produced by the FVS scheme,
and whether such a spiking behaviour is physical do not exist in the literature.
It is observed that the FVS scheme yields such a spiking behaviour only after
the front coming from the left side of the spatial domain interacts with the in-
terface at x = 750. The spiking behaviour seems unlike an oscillatory behaviour
and, hence, it becomes more challenging to ensure the validity of the obtained
numerical result. It is, in principle, hard to answer which numerical result is
trustworthy. This aspect deserves detailed investigation in the future.

6.6 Conclusions

In this chapter, we have performed the numerical analysis of the Drift Flux
Model (DFM). We discussed about the conditional hyperbolicity of the model,
and proposed to account for compressibility effects in the model of the speed
of sound of the two-phase mixture. We then revisited the existing basic con-
cepts about the (first- and higher-order) spatial and the temporal discretization
along with the aspects related to the numerical implementation of the bound-
ary conditions in the scope of the DFM. Furthermore, we exploited the approach
of non-linear error transport, and used the acquired discretization knowledge
to build a framework for discretizing the primal governing partial differential
equation and the associated auxilliary error transport equation. This paved the
way to understand the generation and the transport mechanisms of the numer-
ical error.

Finally, we performed a large number of numerical experiments ranging
from shock-tube type test cases to fast transient scenarios. In particular, we
tested the model and the numerical method with exact reference solutions,
and checked whether the numerical schemes satisfy the Abgrall’s principle. We
found out that the AUSMV scheme does satisfy the Abgrall’s principle, and out-
performs the other considered schemes, namely, the FVS, VanLeer, AUSM and
AUSMD scheme. We also numerically studied the role of the speed of sound of
the two-phase mixture, and observed that such a model is highly important from
the numerics point of view. Particularly, it impacts the numerical viscosity of the
scheme and also yields differences in the location (and the speed) of the evolv-
ing fronts. The approximate error, obtained using the approach of non-linear
error transport, is observed to be dominant near the captured numerical shock
or a front with a large gradient. Also, the maximum approximate error does not
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grow unboundedly under mesh refinements. While all the considered schemes
(except AUSMD to some extent) converge to the same solution (under grid re-
finements) in the scope of the shock-tube type test cases, there is still an open
question in the context of the scenario that is representative of the propagation
of fast transients. We emphasize that the FVS and the AUSMV scheme produce
different qualitative features in the scope of the fast transient test case, and it
is extremely hard, but important to develop a sound reasoning to validate/dis-
card the observed numerical results. Such a validation would also instigate the
fundamental modifications in the existing numerical methods so as to produce
physically consistent results.

As far as the relative order of merit of the numerical schemes is concerned, it
is largely problem specific. However, out of the considered schemes, we would
recommend to use the FVS and the AUSMV scheme, and assess the convergence
of these methods in the scope of the test case of interest. The reasons behind dis-
carding the consideration of other schemes are as follows: (i) the AUSM scheme
does not satisfy the Abgrall’s principle, and is also known to be highly oscilla-
tory even in the first-order setting, (ii) the FVS and the VanLeer scheme largely
produce similar results, and (iii) the (first-order) AUSMD scheme is observed to
possess the numerical oscillations post the 2− contact discontinuity. Further de-
tailed investigation into the relative merit of the schemes is the subject of future
research.

One of the important frameworks developed in this chapter pertains to the
numerical estimation of the discretization error. It should be mentioned that
the results (obtained results and the ones that can be generated on other test
cases) will be highly useful in the scope of certifying a reduced-order model as
well. Although we do not employ such a framework in the scope of certifying
a reduced-order model in Part II of this dissertation, we stress that a dedicated
study is needed to make an improved assessment of the error between the so-
lution obtained by reduced-basis approximations and the (expected) exact re-
sponse.



Part II: Model order reduction
for transport-dominated
problems

This part is dedicated to the contributions pertaining to the model order re-
duction for transport-dominated problems. In particular, we strive to address
questions Q6 - Q7 posed in Chapter 1 by fulfilling outlined research objectives
O8 - O10. Chapter 7 is an effort in the direction of achieving research objec-
tive O8. The advancements in Chapters 8 and 9 form the basis of meeting the
research objectives O9 and O10.





Chapter 7
Standard Model Order
Reduction for (non-linear)
hyperbolic problems

In this chapter, the main goal is to develop reduced-order representations of the
two-phase flow models in the scope of reducing the complexity of (conditionally)
hyperbolic Managed Pressure Drilling (MPD) systems, in particular under gas in-
flux. We first lay the mathematical foundation for model order reduction of lin-
ear and non-linear dynamical systems by revisiting existing basic principles of
projection-based approaches. The standard (Galerkin-type) projection-based ap-
proach is then applied to the (non-linear) Burgers’ equation for insights into hyper-
bolic problems, and to the Drift Flux Model in the scope of reducing the two-phase
flow hydraulic systems. The numerical performance is assessed on some challeng-
ing test cases. These numerical experiments put forward the success and limitations
of standard projection-based model order reduction techniques.

7.1 Introduction

In today’s world, it is often desired to predict the system response of an under-
lying mathematical model in real-time, or to perform multi-query simulations.
On the one hand, multi-query scenarios, as in Uncertainty Quantification, re-
quire to solve the model multiple times for different problem settings/parame-
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ters. These parameters may represent initial conditions, boundary conditions,
sources, geometrical configurations or physical properties. As a consequence,
optimizing or improving the system performance requires simulations of many
possible realizations of the system. On the other hand, the solution of the system
may need to be predicted at a low computational time for several time-critical
applications. For instance, in the scope of Managed Pressure drilling (MPD),
low-complexity models are needed as a basis for controller design.

Most of the physical phenomena, including the pressure dynamics for MPD
applications, are modelled by using (parametrized) partial differential equa-
tions (PDEs), which describe the physics of the problem in a continuous and
infinite-dimensional space. We know that a closed form analytical or exact so-
lution is generally not available for a wide class of (parametrized) partial dif-
ferential equations, as also for MPD. As a consequence, high-fidelity numerical
methods are usually employed (also see Chapter 6). However, the usage of
high-fidelity numerical techniques to solve the PDEs in (near) real-time or in
a multi-query setting is often not feasible due to high computational time and
storage constraints required. Hence, classical numerical techniques, i.e., high-
fidelity models, are not amenable to (near) real-time estimation and control
or multi-query simulations. Model order reduction (MOR) has emerged as an
important numerical tool to develop efficient numerical methods for multiscale
and multiphysics problems by reducing the dimension of the underlying model.
It helps to reduce the computational time in dealing with large dynamical sys-
tems, for example, during simulation, control, optimization, parameter estima-
tion, inverse modelling, etc. In general, MOR techniques [147, 159] combine
high predictive capacity and low complexity, and greatly reduce the computa-
tional cost of complex simulations at a price of a minimal and quantifiable loss
of accuracy. This usually allows rapid and accurate evaluation of the solutions to
(parametrized) evolutionary PDEs. It is worth mentioning that a reduced-order
model is not a low-fidelity model since it does not consider reduced physics, but
reduced representations of the full problem.

Reduced-order models can be constructed via two approaches. One of them
is a classical approach based on the mathematical manipulation of the system
equations, while the other approach is data driven. Both approaches focus to
retain significant dynamics and preserve key system properties (e.g., the in-
put/output properties, stability, etc.). Depending on the model under consid-
eration and the a-priori information about the physical process, the suitable
approach is chosen for constructing a compact reduced-order model in an au-
tomated sense. The performance of a reduced-order modelling technique can
be quantified in terms of computational speed up, computational accuracy, long
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time simulation performance, behaviour under parametric setting, and generic
(and automated) applicability of the method for a large class of problems. In
this dissertation, we intend to efficiently reduce the dimensionality of non-linear
mathematical models. In particular, we intend to reduce the complexity of the
MPD system to enable multi-query simulations and to predict the quantities of
interest, say pressure, in (near) real-time. We recall that MPD is composed of
conditionally hyperbolic mathematical models. Hence, we are interested to re-
duce the dimensionality of non-linear (conditional) hyperbolic PDEs. Such PDEs
are ubiquitous in science and engineering. Several applications encompassing
the fields of chemical industry, nuclear industry, drilling industry, etc., also fall
within this class.

Projection-based methods are usually used for model-based reduction. In
particular, Proper Orthogonal Decomposition (POD) [25, 195]; also see Sec-
tion 7.4, Reduced Basis Method (RBM) [22, 44], Balanced Truncation meth-
ods [15, 193], Krylov based methods [159], Proper Generalized Decomposi-
tion [45], etc., have been used by many researchers to reduce the dimension-
ality of the high-fidelity model. However, standard projection-based methods,
such as the POD or the RBM, standalone, are ineffective in case of non-linear
problems as they require a projection of the reduced state variables back to the
high-dimensional state space in order to evaluate the non-linear terms [44,52].
In the past, the Discrete Empirical Interpolation method, popularly called as
DEIM (a discrete variant of the Empirical Interpolation Method or EIM) [44]
and the Empirical Operator Interpolation [52] have been proposed to overcome
this limitation in the POD, its variants and other projection-based approaches.
Recently, Generalized Empirical Interpolation Method (GEIM) [22, 78], Local-
ized Discrete Empirical Interpolation Methods (LDEIM) [142], etc., have also
been proposed to advance the field of non-linear MOR.

In the scope of reducing the complexity of MPD systems under gas influx,
single- and/or two-phase flow models need to be reduced. While some work has
been done in the past to reduce single-phase flow-type models [8,112], no work,
to the best of our knowledge, has yet been carried out to construct a reduced-
order counterpart of the the Two-Fluid Model and the Drift Flux Model (DFM).
Hence, the central objective of this chapter is to reduce the two-phase flow
models of interest by applying existing standard projection-based approaches.
In particular, we aim to assess the performance of the standard projection-based
approaches in reducing the dimensionality of the DFM. Such an assessment will
help to answer whether we need to investigate and propose efficient, advanced
and automated approaches to obtain reduction (of the DFM) of the desired
order, which is suitable for (real-time) control methodologies, while still guar-
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anteeing the accurate approximation of wave propagation phenomena.
The outline of this chapter is as follows. In Section 7.2, we discuss the

generic framework popularly used for performing model order reduction. In
Section 7.3, we introduce the notion of Kolmogorov N -width to shed insights
on the reducibility of the high-fidelity model. Section 7.4 is devoted to the
principles of constructing a reduced-order model using the POD and Galerkin
projection. Section 7.5 is dedicated to perform several numerical case studies
pertaining to the reduction of the DFM. In this section, we also apply standard
projection-based approaches on Burgers’ equation. Finally, Section 7.6 ends this
chapter with conclusions.

7.2 Generic Framework of Model Order Reduction

We are interested in finding the solution (or the quantity of interest) u(x, t ,µ) ∈
L 2(Ω) for x ∈ Ω, t ∈ [0,T ], and parameter µ ∈ D ⊂ Rd of a general non-linear
(hyperbolic) problem of the form:

∂t u(x, t ,µ)+Lµ ◦u(x, t ,µ) = 0, (x, t ,µ) ∈ Ω× [0,T ]×D, (7.1)

with suitable initial and boundary conditions. Here, Ω stands for the spatial
domain of interest, D stands for the parameter domain of the problem, Lµ in-
dicates the differential operator with the subscript µ depicting the parametric
dependency, and T indicates the final simulation time.

We assume that we employ classical numerical discretization techniques,
namely Finite Volume Methods, to obtain an approximation which lives in a
high-dimensional functional space. This approximation, denoted as the “truth"
solution of (7.1), is given by un(x, t ,µ) ∈ Wn for a parameter µ ∈D. Here, Wn

stands for the high-dimensional subspace where the high-fidelity "truth" solu-
tion resides, and the subscript n indicates the dimension of the high-fidelity
model. A low-dimensional subspace (comprising POD/RBM ansatz), Wr ⊂ Wn ,
is defined and used for projecting the "truth" solution. The POD/RBM solu-
tion is denoted by ur (x, t ,µ) ∈Wr , where r is the dimension of the reduced-order
model. The major requirements from the reduced-order framework are: (i) Reli-
able and efficient error control, with the error defined as ||un(x, t ,µ)−ur (x, t ,µ)||,
(ii) Choice of Wr , (iii) Offline - Online decomposition and (iv) Empirical Oper-
ator Interpolation [52] to treat non-affine and non-linear problems. The space
Wr is expected to be of significantly smaller dimension than Wn . This signifi-
cant reduction depends on the choice of the training samples (in the parameter
domain) and the inherent system dynamics.
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The main idea of projection-based MOR is often based on the offline and
online decomposition. The methodology requires that all system operators,
matrices and vectors, coming from the discretization of the problem, must be
affinely dependent so that many complex computations can be allocated in a so-
called (computationally intensive) offline phase and a rapid solution (time- or
parameter-dependent) can be computed efficiently in an online phase. More-
over, a reduced basis, consisting of suitable solution samples, which demand
heavy computational cost in the “truth" space, is precomputed in the expensive
offline phase. Hence, the computational complexity of the offline phase depends
on the high-dimensional “truth" space. Overall, it is favorable to pay the price
of an expensive offline phase for real-time or multi-query online evaluations.
The methodology pays off when a large number of parametric evaluations are
required. High-fidelity solutions, which are computed in the offline stage, serve
as basis functions for the Galerkin projection, which is performed in the online
phase. The computational complexity of the online phase is independent of the
dimension of the space in which the high-fidelity solutions reside.

The difference between the projection-based reduced-basis approximation
and the exact solution comprises of two different kind of errors incurred during
two separate approximation phases. The original (analytical) problem, defined
by PDEs, is posed on some infinite-dimensional functional spaces. Implemen-
tation of projection-based approaches requires a finite-dimensional space. The
first approximation phase comprises of numerical approximation of an infinite-
dimensional model. This numerical approximation poses the original continu-
ous problem in a discrete sense such that the solution lives on a (high) finite-
dimensional space. The error committed in this approximation phase is due
to the choice of the high-fidelity numerical solver. The second approximation
phase aims at building a reduced-order representation of the high-dimensional
space-time-parametric manifold. The error in this phase solely depends on how
well a reduced-order model captures the solution in the “truth" space. The to-
tal accrued error should be within an acceptable tolerance, which in general
depends on the kind of application one is interested in.

POD forms a reduced basis by linearly combining the snapshots correspond-
ing to different time instants and/or parametric values. In contrast, the RBM
selects a time instant and/or a value of the parameter in an iterative manner
using an error estimator (greedy algorithm [146]) and then uses the span of
the corresponding snapshot to build the reduced basis. Both the POD and the
RBM lack the ability to treat a non-linear and a non-affine problem efficiently.
Furthermore, both the POD and the RBM are accurate in representing the data
used to generate them. POD/RBM also work for parameters they have not been
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trained for as long as the span of training parameter solutions approximates the
entire solution manifold of interest well enough.

Traditional projection-based methods, such as the POD and the RBM, pos-
sess good approximation properties for fast decay of Kolmogorov N -width (see
Section 7.3 for a discussion on Kolmogorov N -width). The downside of these
projection-based methods is (problem dependent) enormous offline complex-
ity and that they fail for the slow decay of Kolmogorov N -width. To sum up,
the success of these projection-based methods depends on the regularity (in the
sense of continuity and differentiability) of the solution map.

7.3 Kolmogorov N -width

The notion of Kolmogorov N -width is a classical concept in approximation the-
ory. It quantifies how well a compact set, in some high-dimensional functional
space (say, a Banach space), can be approximated in the corresponding norm by
a linear space and, therefore, can be used as a benchmark for the effectiveness
of a model reduction strategy [144]. Kolmogorov N -width can be explained as
follows.

Let X be a normed linear space, S be a subset of X , and XN be some N-
dimensional subspace of X . The deviation of S from XN is :

E(S; XN ) = sup
u∈S

i n f
vN∈XN

||u − vN ||X . (7.2)

The Kolmogorov N -width of S in XN is given by:

dN (S, XN ) = i n f
XN

sup
u∈S

i n f
vN∈XN

||u − vN ||X . (7.3)

This quantity measures the extent to which S may be approximated by a finite-
dimensional subspace. The decay behaviour of dN indicates the number of POD
or RBM modes that need to be considered to develop a reduced-order model.
In other words, the faster the decay, the lower is the required dimension of the
linear subspace.

It is well known that the Kolmogorov N -width decays exponentially fast for
certain linear and coercive parametrized problems [30, 135]. This is gener-
ally the case for (parametrized) elliptic and parabolic partial differential equa-
tions. In the scope of hyperbolic partial differential equations, as in advec-
tion equation, linear transport problem, etc., the Kolmogorov N -width decays
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slowly [77, 135]. Clearly, the linear reducibility in the scope of transport-
dominated problems is hindered. It should also be mentioned that this hin-
drance is not limited to specific discontinuous initial conditions, but also holds
for (smooth) continuous initial conditions.

For instance, consider the one-dimensional linear advection equation:

∂t u(x, t )+ c∂x u(x,u) = 0, (x, t ) ∈Ω× [0,T ],

u(x,0) = u0(x),
(7.4)

where c is a constant speed of propagation and u0(x) is the initial condition.
The general solution of such one-dimensional linear transport equation is

well-known, and is given by:

u(x, t ) = u0(x − ct ). (7.5)

Consider Ns snapshots of the solution (7.5) at time instants t = 0,∆t ,2∆t , . . . , (Ns−
2)∆t ,T , with T = (Ns −1)∆t and construct a snapshot matrix. Further consider
a non-smooth initial data that is localized with compact support. Then, it is
easy to see that the singular values of the snapshot matrix do not decay at all.
Hence, projection-based methods will not be of any use in reducing the dimen-
sionality of the linear advection equation, which is a simplistic example that is
representative of a travelling wave phenomena.

At this stage, we would also like to recall that the two-phase flow models of
interest possess such wave-propagation phenomena; see Chapter 6.

7.4 Projection-Based Approaches

While several projection-based approaches exist, we will only focus on one of
them, namely the Proper Orthogonal Decomposition (POD). The POD is rep-
resentative enough of the performance of projection-based approaches in the
scope of dealing with the MOR of hyperbolic PDEs or transport-dominated prob-
lems. In this section, we first discuss about the POD, and then we delve into the
Galerkin projection methodology. In unison, these two core concepts help to lay
the foundation of the POD-Galerkin methodology.

Proper Orthogonal Decomposition
The POD is a well-known and mostly used MOR technique. It is known in
the scientific community by several names, such as Principal Component Analy-
sis (PCA), Karhunen Loeve Decomposition and method of empirical orthogonal
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eigenfunctions [25, 195]. This method was introduced by Lumley to study tur-
bulence. The POD offers orders of magnitude reduction in dimensionality for
a wide range of applications such as in image processing, signal processing,
data compression, oceanography, fluid mechanics, optimal control, and many
others. Several POD variants, such as Balanced Proper Orthogonal Decompo-
sition [153], have also been proposed by several researchers. In this chapter,
we will not delve into any variants of the POD and will restrict ourselves to the
consideration of the standard POD only.

The POD is a snapshot-based MOR technique and is typically used for time-
dependent problems. This technique can be viewed as a mathematical tool to
calculate the basis vectors from an ensemble of realizations of a high-fidelity
numerical simulation. The POD looks for a linear space, which captures the
dominant dynamics of the problem and identifies the most energetic modes in
a dynamical system. The main idea behind this method is to represent a given
(large) data set by a smaller orthonormal basis which is optimal in a least-
squares sense, which is mathematically defined next.

Consider the snapshot matrix Y = {y1(t ) y2(t ) . . . ym(t )} as the trajectory
of the states of the system over the time interval [0,T ], where yi (t ) ∈ Rn for i =
1,2, . . . ,m. Here, n is indicative of the number of finite-elements or finite-volume
cells of the discretized computational domain and m indicates the number of
time samples in [0,T ]. Consider the least squares distance defined as follows:

|| Y −PWr Y ||2Rn :=
m∑

j=1
|| y j (t )−PWr y j (t ) ||2Rn , (7.6)

where PWr : Wn → Wr is the orthogonal projection operator onto Wr . The POD
seeks to find PWr such that the least squares distance, defined in (7.6), is mini-
mized in the following sense:

min
ψ̃1,...,ψ̃r ∈Rn

m∑
j=1

|| y j −
r∑

i=1
〈y j ,ψ̃i 〉Rn ψ̃i ||2Rn s.t . 〈ψ̃i ,ψ̃ j 〉Rn = δi j ∀ 1 ≤ i , j ≤ r, (7.7)

where δi j is a Kronecker symbol that satisfies δi i = 1 and δi j = 0 for i 6= j . The
minimization problem governed by (7.7) can be reformulated as:

max
ψ̃1,...,ψ̃r ∈Rn

r∑
i=1

m∑
j=1

| 〈y j ,ψ̃i 〉Rn |2 s.t . 〈ψ̃i ,ψ̃ j 〉Rn = δi j ∀ 1 ≤ i , j ≤ r. (7.8)

For any r ∈ {1, . . . ,d} with d = min(n,m), the solution to (7.7) or (7.8) is known
to be given by the first r columns of ψ (see Theorem 1.1, [196]), i.e.,

PWr = [ψ1 ψ2 . . . ψr−1 ψr ], (7.9)
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where ψ is the orthogonal matrix obtained by performing singular value decom-
position (SVD) on the snapshot matrix Y which is given by Y = ψΣφT . Here,
ψ= [ψ1 . . . ψn], which is composed of the left singular vectors, is a n×n orthog-
onal matrix, φ = [φ1 . . . φm], which is composed of the right singular vectors,
is a m ×m orthogonal matrix, and Σ is a n ×m diagonal matrix that contains
the information of the singular values. Each column of ψ is a mode structure
ordered from the most important to the least important and the columns of φ
demonstrate the evolution of the modes with time. The vectors ψi (as in (7.9)),
where i = 1,2, . . . ,r , are referred to as the POD modes in the sequel.

The choice of r is of central importance while applying the POD. In general,
no a-priori rules are available for the choice of r . The choice of r could be based
on heuristic considerations. For instance, the information content of the bases,
given by:

E(r ) =
∑r

i=1λi∑d
i=1λi

, (7.10)

could be used as a measure to determine the dimension of the reduced-order
model. The optimal choice of r is not the central theme in the scope of this
dissertation. We will use the decay behaviour of the singular values to identify
the (near-optimal/acceptable) dimension of the reduced-order model.

One of the important properties of the POD is that
r∑

i=1

m∑
j=1

| 〈y j ,ψ̃i 〉Rn |2=
r∑

i=1
σ2

i , (7.11)

where σi is the singular value obtained after performing SVD on the snapshot
matrix Y . Using this property, the error in the computation of || Y −PWr Y ||2

Rn ,
due to truncation, can be shown to be equal to sum of the squares of the singular
values corresponding to the neglected POD modes; see [196].

In the above discussion, the SVD approach has been used to find the so-
lution to the optimization problem (7.7) or (7.8). The approach of eigenvalue
decomposition can also be utilized to find the POD modes or the POD basis. The
eigenvalue decomposition-based approach is usually referred to as the method
of snapshots in the literature [196]. Furthermore, the aforementioned discus-
sion on the POD method delved into finding the POD modes based on the nat-
ural inner product on the Euclidean space. In principle, the POD modes can be
computed with respect to a weighted inner product. For details, we refer the
reader to [196] for the POD method with a weighted inner product. Without
delving into rigorous technical details, we now present the algorithmic frame-
work for the computation of the POD basis via the approaches that are also
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utilized in this chapter and the subsequent chapters of this dissertation. The
following algorithm is a mere adaptation of the algorithm proposed in [196]:

Data: Snapshot matrix Y ∈Rm×n , reduced-dimension r (≤ d), symmetric
and positive definite weight matrix W ∈Rm×m , flag and solver;

Result: POD modes ψi ;
if flag==0 then

Singular Value Decomposition based approach
Determine Ȳ =W 1/2Y ;
Compute singular value decomposition [ψ̄,Σ, φ̄] = svd(Ȳ );
Set ψi =W −1/2ψ̄.,i for i = 1,2, . . . ,r ;

else
Eigenvalue Decomposition based approach
if solver==1 then

Determine Ȳ =W 1/2Y ;
Set R = Ȳ Ȳ T ;
Compute eigenvalue decomposition [ψ̃, M ] = eig(R);
Set ψi =W −1/2ψ̃.,i for i = 1,2, . . . ,r ;

else
Determine K = Y T W Y ;
Compute eigenvalue decomposition [φ̃, N ] = eig(K );
Set ψi = Y φ̃.,i /

√
λi and λi = Ni i for i = 1,2, . . . ,r ;

end
end

Algorithm 1: Basis computation via Proper Orthogonal Decomposition.

To summarize, the basis (also called POD modes) is constructed via the sin-
gular value decomposition based approach if the counter “flag" is equal to zero,
and via the eigenvalue decomposition based approach if the counter “flag" is
not equal to zero. And, the counter “solver" is equal to one if n < m, and is not
equal to one for n > m. Furthermore, the weight matrix W , which is an input to
the algorithm, is known and can be computed depending on the inner product
deemed appropriate by the user in the scope of the problem of interest. If the
natural inner product is considered, the weight matrix is given by an identity
matrix Im×m of size m ×m. If the POD modes are computed with respect to an
L 2 inner product, then the weight matrix W is given by: W =∆x× Im×m , where
∆x is the spatial step size. In case the POD modes are computed with respect to
an H 1 inner product, the weight matrix W is composed of the so-called mass
matrix and stiffness matrix. The mass matrix is given by ∆x× Im×m and the stiff-
ness matrix is computed by performing spatial discretization on the operator
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− ∂2

∂x2 (·). It should be noted that the form of the mass and the stiffness matrices
are independent of the nature of the particular problem under consideration.
Algorithm 1 can be employed to compute the POD modes by either pursuing a
singular value decomposition or an eigenvalue decomposition based approach.

Remark 7.4.1 Usually, pursuing either a singular value decomposition based ap-
proach or an eigenvalue decomposition based approach yields the same results.
However, some numerical differences may be observed depending on the size and
the nature of the matrices, and the ability of such solvers in the programming
language (for, e.g., MATLAB) employed to perform the computations.

Having constructed the POD modes, we are now ready to project the high-
dimensional system of equations to construct a reduced-order model by employ-
ing a (Petrov) Galerkin projection technique.

Remark 7.4.2 Remark 7.4.3 We focus on reproducing the results of the time-
dependent equation via the standard MOR framework. This reproduction step is
essential before attempting to develop a parametric reduced-order model as we can-
not hope to have an effective low-complexity reduced-order model if the numerical
approach does not fare well in the reproduction step.

Galerkin Projection

We assume that the PDE is not parameter dependent, and, as a consequence,
(7.1) can be re-written as:

∂t u(x, t )+L ◦u(x, t ) = 0, (x, t ) ∈ Ω× [0,T ]. (7.12)

Consider that the solution is approximated by a linear combination of the POD
modes as follows:

u ≈ P T
Wr

ur ed (t ). (7.13)

If we substitute the approximation (7.13) into (7.12), then we obtain:

∂t (P T
Wr

ur ed )+L ◦ (P T
Wr

ur ed )+ R︸︷︷︸
r esi dual

= 0, (7.14)

where the (additional) residual term R is introduced to take account of the er-
rors incurred due to the approximation considered in (7.13), and the argument
of ur ed has been omitted for the sake of simplicity. Invoking that the projector
PWr is time-independent, (7.14) can be re-written as follows:

P T
Wr
∂t (ur ed )+L ◦ (P T

Wr
ur ed )+ R︸︷︷︸

r esi dual

= 0. (7.15)
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The unknowns in (7.15) are ur ed (t ) and R. We now formulate the problem in a
way that we eliminate the role of (unknown) R and that we have to only find
ur ed (t ). To this end, we constrain the residual R to be orthogonal to a subspace
Vr defined by a test projector P T

Vr
, i.e.,

PVr R = 0. (7.16)

Left multiplying (7.15) by PVr , we get:

PVr P T
Wr
∂t (ur ed )+PVr L ◦ (P T

Wr
ur ed )+PVr R = 0. (7.17)

Using (7.16), the third term in (7.17) can be put to zero. We can now write
(7.17) as follows:

PVr P T
Wr
∂t (ur ed )+PVr L ◦ (P T

Wr
ur ed ) = 0. (7.18)

A projection methodology where PVr 6= PWr is usually referred to as a Petrov-
Galerkin projection technique, and a methodology where PVr = PWr is referred
to as a Galerkin projection technique. Employing any of these two projection
methodologies could be pursued in principle, however, we restrict our study to
the consideration of Galerkin projection technique in the scope of this disserta-
tion. Invoking PVr = PWr , (7.18) can be re-written as follows:

PWr P T
Wr
∂t (ur ed )+PWr L ◦ (P T

Wr
ur ed ) = 0. (7.19)

If PWr is composed of orthonormal modes, we can say that PWr P T
Wr

= I . Hence,
(7.19) can be simplified to:

∂t (ur ed )+PWr L ◦ (P T
Wr

ur ed ) = 0. (7.20)

Remark 7.4.4 The basis computed by using the method of snapshots, as elabo-
rated in Algorithm 1, may not be necessarily orthonormal due to limited numeri-
cal accuracy. In order to have the property P T

Wr
PWr = I , the modes computed from

Algorithm 1 should be orthonormalized. Such orthonormalization can be done
by using modified Gram-Schmidt re-orthogonalization. Generally, doing such an
orthogonalization twice is enough.

Using the Galerkin projection methodology, we have converted the high-
fidelity model (7.12) to a reduced-order model (7.20), where the unknowns
ur ed are the time-dependent coefficients associated to the POD modes.

The whole procedure of the POD-Galerkin approach can be split into an of-
fline phase and an online phase. The offline phase is dedicated to the generation
of the POD basis functions and all the operators (time/parameter-independent),
and the online phase involves the computation of time-dependent coefficients.
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Remark 7.4.5 Despite the nice offline and online spliting of the computations, the
POD-Galerkin method is not computationally appealling for non-linear problems
of scientific interest. For instance, in (7.20), the operator L acts on the quantity
PWr ur ed whose dimension is equivalent to that of the high-fidelity model. This
leads to the reduced-order models with similar computational costs as the origi-
nal high-fidelity models and, therefore, no significant cost savings are achieved.
It is clear that the projection alone is not sufficient to reduce the costs of com-
puting a reduced-order model. Hence, an Empirical Operator Interpolation [52], a
hyper-reduction recipe, needs to be employed in conjunction with the POD-Galerkin
method. Although such a hyper-reduction recipe is also crucial in the scope of devel-
oping reduced-order models of MPD systems, we will only employ the POD-Galerkin
method to put forward key challenges to reduce MPD systems. The challenges (see
Section 7.5) are not attributed to the missing hyper-reduction recipe, but are asso-
ciated to a fundamental barrier of projection-based approaches for the treatment
of transport-dominated type problems.

Having laid the mathematical foundation of the POD-Galerkin method, we
can now employ it in developing reduced-order models for MPD systems, in
particular the DFM which is employed for hydraulic modelling in the annulus
part of the wellbore. The methodology can also be applied to develop a reduced-
order model of Burgers’ equation.

7.5 Numerical Test-Beds

In this section, we numerically test the POD-Galerkin method and show its per-
formance. We focus on the problems in the field of fluid dynamics. A series
of numerical experiments are presented to assess the accuracy of the reduced-
order model and, thus, illustrate the advantages or disadvantages of the (stan-
dard) projection-based MOR framework. Firstly, we model reduce Burgers’
equation, which is a well-known benchmark model in the field of fluid dynam-
ics. Then, the behaviour of the reduced-order model is assessed using the DFM.
We restrict to numerical test cases in one-dimensional setting and also use a uni-
form discretization across space unless mentioned otherwise. The initial data
and boundary conditions are also specified for the completeness of the prob-
lem. We will employ the Finite Volume (FV) method for the discretization of
the problem at hand.

Before delving into the numerical assessment, we introduce the performance
metric to assess the ability of the POD-Galerkin method (and MOR techniques in
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general). We quantify the performance of any MOR approach by computing the
reduced-order modelling (ROM) error. The considered metrics are discussed
next.

• We consider L 2 in space and L 2 in time (absolute) ROM error and define
it in the following manner (for a reduced-dimension r ):

er om =
√√√√∆t

NT +1∑
k=1

∆x
Nx∑
i=1

| ui ,k − (P T
Wr

ur ed )i ,k |2, (7.21)

where ∆t is the time-step, ∆x is the spatial step, NT is the number of
time-steps and Nx is the number of Finite Volume elements. And, ui ,k

stands for u at x = xi and t = tk (similarly for (P T
Wr

ur ed )i ,k). Herewith,
(7.21) expresses the error which is the difference between the FV-based
numerical solution u and the reconstructed solution P T

Wr
ur ed obtained by

lifting the standard reduced-order solution ur ed to the high-dimensional
problem space.

• We consider L 2 in space and L 2 in time (relative) ROM error and define
it as follows:

er el (L 2,L 2)
r om =

√
∆t

∑NT +1
k=1 ∆x

∑Nx
i=1 | ui ,k − (P T

Wr
ur ed )i ,k |2√

∆t
∑NT +1

k=1 ∆x
∑Nx

i=1 | ui ,k |2
, (7.22)

where the meaning of the notations is as explained earlier.

• We consider L 2 in space and L∞ in time (relative) ROM error, and define
it as follows:

er el (L 2,L∞)
r om =

max
k={1,2,...,NT +1}

(
∆x

∑Nx
i=1 | ui ,k − (P T

Wr
ur ed )i ,k |2

)
max

k={1,2,...,NT +1}

(
∆x

∑Nx
i=1 | ui ,k |2

) . (7.23)

7.5.1 Burgers’ Equation

There are several reasons which motivate the study of Burgers’ Equation. Firstly,
it is a simple analog of the Euler equations and the two-phase flow models,
and it mimics the non-linear wave equation where each point on the wave-
front can propagate with different speed. Secondly, it possesses coalescence
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of characteristics and the formation of discontinuous solutions similar to shock
waves/rarefaction waves in general fluid mechanics problem. The mathematical
representation of Burgers’ equation is given below:

yt + ( 1
2 y2)x = 0, (x, t ) ∈ [0,L]× [0,T ],

y(t ,0) = y(t ,L), t ∈ [0,T ],

y(0, x) = y0(x), x ∈ [0,L].

(7.24)

The model in (7.24) considers (constant) periodic boundary conditions and
smooth or non-smooth initial data dictated by the profile of y0(x). Further-
more, we consider the spatial domain to be of length L = 12. The spatial domain
is discretized using a spatial step size of 0.002. We use an upwind FV scheme
for the spatial discretization and first-order Forward Euler for the time-stepping.
We take 8000 steps in time, i.e., t ∈ [0,4] with a timestep of 0.0005.

Smooth initial data

It is well-known that even if we start with smooth initial data, Burgers’ equa-
tion tends to develop sharp gradient (discontinuous) features. Consider that the
initial data y0(x) is given by a (smooth) Gaussian profile as shown below:

y0(x) = 2e−
(x−5)2

1e−1 . (7.25)

This initial data leads to the appearance of a shock after a finite time t < 4 and,
hence, the travelling discontinuous feature is also present in the response of
the solution, which further challenges the projection-based MOR approaches.
Furthermore, we assume g = 0, i.e., zero periodic boundary conditions are con-
sidered.

We perform high-fidelity FV computations on the model (7.24) and obtain a
snapshot matrix. In the pursuit of developing a reduced-order model, we then
opt to use the SVD based approach for the computation of the basis functions
and, hence, we set the “flag", in Algorithm 1, to zero. We compute the POD
modes by employing the POD both with respect to an L 2 inner product and an
H 1 inner product, and then employ a Galerkin projection methodology. Figure
7.1 depicts the ROM error, defined in (7.22), versus the number of the POD
modes for the two mentioned different ways of basis computations. We can
clearly see that the decay behaviour of the ROM error is not so steep. The error
decay is gradual owing to the travelling nature of the problem and also due
to the (significant) changes in the shape profile of the solution, which changes
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Figure 7.1: ROM error for the case with smooth initial data.

from a Gaussian to a triangular shape (not depicted here). It is observed that
the ROM errors, for the POD method with respect to an L 2 inner product,
could even increase with an increment in the basis size. It can be argued that
this could occur as a result of insufficiently many basis functions. Furthermore,
the ROM error for the POD with respect to an L 2 inner product shows a better
decay behaviour than the POD with respect to an H 1 inner product. From the
ROM error decay for the case where the POD modes are computed with respect
to an H 1 inner product, it is evident that the dimension of the reduced-order
model needs to be relatively high even to obtain a 1 percent relative error.

Non-smooth initial data

We now consider an initial data of the following form:

y0(x) =


x −2, 2 ≤ x ≤ 4,
(x−5)

2 , 5 ≤ x ≤ 7,

0, otherwise.

(7.26)
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Figure 7.2: ROM error for the case with non-smooth initial data.

The rest of the settings are kept similar to the numerical test with the smooth
initial data. For the setting under consideration, Figure 7.2 depicts the ROM
error, defined in (7.22), versus the number of the POD modes for the two men-
tioned different ways of basis computations. Again, the decay of the ROM error
with the increasing number of the POD modes is quite gradual. The qualitative
behaviour of the ROM error upon employing the POD with respect to an L 2 in-
ner product seems similar to the corresponding behaviour observed for the case
with the smooth initial data. However, such an observation, in general, does
not hold and happens to be a sheer coincidence. Furthermore, if we observe the
behaviour of the ROM error for the POD method with respect to an H 1 inner
product, we can see that it is significantly different than the corresponding be-
haviour with the smooth initial data. The behaviour of the error decay for the
POD method with respect to an H 1 inner product is much worse, and this is po-
tentially owing to the presence of two travelling discontinuous features and the
interaction of the head of the left wavefront with the tail of the right wavefront.
To conclude, the possible reduction in the dimension of the model does not turn
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out to be significant enough if the standard projection-based approaches are
employed.

7.5.2 Drift Flux Model

Many flow and transport models can be described by a set of PDEs represent-
ing conservation of mass, momentum and energy as a function of pressure and
temperature, and reconciled by the equations of state. The DFM, a system of
multiscale non-linear hyperbolic PDEs, is one such model. As mentioned in the
Part I of this dissertation, the DFM is typically used for hydraulic modelling in
the scope of the MPD. In view of real-time predictions and multi-query simula-
tions with such model, we aim to develop a reduced-order model of the DFM.
We also recall that capturing wave propagation phenomena, induced by slow or
fast transients, is a central challenge both for the high-fidelity and the reduced-
order hydraulic models. The DFM, governed by (6.1) and (2.3) - (2.6), exhibits
the presence of multiple travelling waves across both directions of the spatial
domain. In addition, the model has complexly distributed non-linearities, which
are further aggravated due to the numerical discretization reasons, such as the
use of the limiters; see Chapter 6 for physical and (high-fidelity) numerical in-
sights about the DFM.

We use the Flux Vector Splitting (FVS) and the Advection Upstream Split-
ting (AUSM) scheme for the computation of the numerical fluxes and rely on
corresponding first-order computations; see Section 6.3.1 for details about the
spatial discretization. For the sake of simplicity, we also employ a first-order
Forward Euler scheme to perform the temporal discretization. Since we employ
explicit time discretization, any temporal step size cannot be used. The choice
of the spatial and the temporal step size is linked via the CFL condition [57]:

∆t =C F L
∆x

max(|λ1 |, |λ2 |, |λ3 |)
. (7.27)

Given the spatial step size ∆x and the (constant) CFL, the temporal step size ∆t
can be computed by using (7.27). Different choices of the spatial step size are
considered, and their values will be provided within the respective test cases
which we are going to discuss next.

Case 1

We consider a representative multi-phase shock tube test case, inspired from
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Figure 7.3: Representative multi-phase shock tube test case.

[57, 90]. The authors in [57, 90] employed this test case in the scope of the
high-fidelity numerical computation of the DFM. Similar to [57], the geometry
and the initial conditions are depicted in Figure 7.3. The motivation behind the
consideration of such shock-tube type test cases has been explained in Section
6.5. We also refer the reader to Case B, Section 6.5.1 for the details regarding
the operating conditions of this test case. We recall that the simulation run-
time is chosen such that the travelling waves do not reach the end walls of the
bounded spatial domain. It can be said that this is a test case where the ef-
fect of the boundary conditions do not play any prominent role and, hence, no
boundary conditions are specified here. To this end, we perform the numerical
simulations over the temporal domain t ∈ [0,1]. Under the considered setting,
the numerical solution of the DFM is composed of a 1−shock, 2−contact discon-
tinuity, and a 3−shock. As a consequence, we will also refer this test case as the
S1-S3 case in the sequel.

We employ (only) the FVS scheme for the computation of the numerical
fluxes. Furthermore, similar to [57], we use the rough estimate of max(| λ1 |, |
λ2 |, | λ3 |) for computing the temporal step size given the spatial step size and
the CFL. We consider max(| λ1 |, | λ2 |, | λ3 |) = 1000 for computational purposes.
We consider CFL = 1 for the computations. Furthermore, we consider different
choices of spatial step sizes, i.e., ∆x = 0.5, ∆x = 0.25, ∆x = 0.125 and ∆x = 5×10−2,
to obtain insights about the performance of the reduced-order model developed
by employing the POD-Galerkin method.

Using the principles laid down in Chapter 6, the high-fidelity computation
can be performed. This yields the knowledge of the variables Q1 = α`ρ`,Q2 =
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Figure 7.4: behaviour of the decay of the singular values for the transported quantities
in the scope of the DFM.

αgρg and Q3 =α`ρ`v`+αgρg vg over the spatial mesh points for different time
instants. Using this, three snapshot matrices, corresponding to each of the three
quantities, can be constructed. The SVD can now be performed on each of
these snapshot matrices to build the basis (POD modes) during the offline phase
of the POD-Galerkin method. Figure 7.4 demonstrates the behaviour of the
singular values for the transported quantities Q1,Q2 and Q3 of the DFM. The
singular values are useful to determine the extent to which a high-fidelity system
can be well approximated by the one of lower dimension. It should be noted
that these singular values are not invariant and are a function of the chosen
initial condition(s). Moreover, the singular value spectrum is a function of the
simulation run-time as the problem under consideration is of transient nature.

Remark 7.5.1 A practical computation of the SVD may run into several issues if
a single SVD is performed on the snapshot matrix, which is composed by the aug-
mentation of Q1, Q2 and Q3. Unknowns, Q1 (or Q2) and Q3 represent different
physical quantities and the numerical value of one quantity dominates the other
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one by several orders of magnitude. In such cases, the contribution of the sub-
dominant variable to the computation of the basis may turn out to be marginal
or almost invisible. The relevant variables may be unnecessarily suppressed with-
out proper scaling. The information from the sub-dominant variables must be
preserved and, hence, SVD is performed separately on each of the three snapshot
matrices Q1, Q2 and Q3. This also holds if the eigenvalue decomposition based
approach is employed for the computation of the POD modes.

For this test case, we employ the eigenvalue decomposition based approach
for the computation of the POD modes corresponding to each of the three phys-
ical quantities Q1, Q2 and Q3. Furthermore, we consider the POD method with
respect to an H 1 inner product. Based on the number of finite volume cells
and the number of time samples, the “solver", in Algorithm 1, can be identified.
The “solver" is not equal to 1 in the numerical experiments that follow. The
implementation of Algorithm 1 returns us the POD modes.

Figure 7.5: S1-S3 Case: behaviour of the ROM error (for Q1,Q2 and Q3) versus the
number of the POD modes for varying number, N , of finite volume cells.
Here, N = 200, N = 400 and N = 800 correspond to the spatial sizes ∆x = 0.5,
∆x = 0.25 and ∆x = 0.125, respectively.
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Figure 7.5 depicts the behaviour of the ROM error, defined in (7.22), versus
the number of the POD modes for the three different physical quantities Q1,Q2

and Q3 over different spatial mesh resolutions, i.e., ∆x = 0.5, ∆x = 0.25 and
∆x = 0.125. Figure 7.6 represents the behaviour of the ROM error when the spa-
tial step size ∆x = 5×10−2. A larger spatial step size, for instance ∆x = 0.5, seems
to give an impression of an easy reducibility of the problem; see Figure 7.5.
However, this is not the case since the choice of ∆x = 0.5 does not correspond to
a mesh-independent solution, and the features, such as shocks, are smeared by
a large amount due to the coarseness level of the mesh. From Figure 7.5 and
7.6, it can be observed that the finer the mesh, the larger is the incurred relative
ROM error. This behaviour is attributed to the fact that the propagating fronts
become sharper (and, hence, less smeared) with refining the mesh, and other
features are also better resolved. If we observe Figure 7.6 closely, we can see
that the ROM error decays steeply for an initial increment in the number of the

Figure 7.6: S1-S3 Case: behaviour of the ROM error (for Q1,Q2 and Q3) versus the num-
ber of the POD modes when the spatial step size ∆x = 5×10−2.
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POD modes. This behaviour can be attributed to a large energy content in the
(dominant) macroscopic part of the response which can be easily approximated.
It is important to mention that the shock-type features, which are localized fea-
tures, do not necessarily contain a large energy content and, hence, may not
always be the most dominant feature. This is already evident from a sharp
error decay for the first few POD modes. The ROM error is seen to stagnate
around 10−2 after the first few POD modes. Such a stagnant behaviour of the
ROM error with the increasing number of the POD modes can be due to the fact
that the shock front is propagating with a (solution-dependent) speed across
the domain. In other words, the travelling nature of the problem becomes dom-
inant and renders the standard projection-based approaches to be ineffective.
We already observed such behaviour earlier in the scope of Burgers’ equation
(with non-smooth initial data) where the ROM error for the POD method with
respect to an H 1 inner product depicted a nearly stagnant behaviour with the
increasing number of the POD modes; see Figure 7.2. After a stagnation level
over a certain number of the POD modes, the ROM error, in Figure 7.6, again
shows decay. However, the error decays gradually. This decay could be linked
to the sub-macroscopic features in the response of the solution. One observa-

Figure 7.7: Evolution of Q1 over equidistant time samples. Here, blue colour indicates
the high-fidelity solution, and the red colour indicates the (reconstructed)
solution of the reduced-order model with reduced dimension r = 20.
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tion which holds across all the numerical experiments considered so far is that
the standard projection-based approaches fail to sufficiently reduce the dimen-
sionality of the high-fidelity model, particularly, due to the transport-dominated
effects.

Figure 7.7 demonstrates the evolution of Q1, obtained from the high-fidelity
and the reduced-order model computation, at 4 equidistant time instants, i.e.,
at 5000∆t , 10000∆t , 15000∆t and 20000∆t with ∆x = 5× 10−2. The dimension
of the reduced-order model has been considered to be equal to 20, which is a
number in the region where the ROM error stagnates in Figure 7.6. We can
clearly see that a (relatively) low number of modes yield a response which gives
rise to high frequency oscillations pre- and post-shock (or around a sharp gra-
dient). Although the oscillations are bounded, and the locations of the fronts
are relatively well captured, the magnitude of the oscillations, as observed for
Q1 in Figure 7.7, are not acceptable. The oscillations in Q1, along with those in
Q2 and Q3 (not shown) render a large perturbation in the computation of, for
instance, the pressure. We recall that the pressure needs to be kept bounded
within a small acceptable regime, and any (significant) perturbations outside
this regime could be catastrophic; also see Chapter 2.

Case 2

This test case is taken from [90] which dealt with the high-fidelity numeri-
cal approximation of the DFM. It also belongs to the shock-tube type test case.
However, unlike the previous test case, i.e., Case 1, the initial conditions are
chosen so that the solution is composed of a 1−rarefaction, a 2−contact discon-
tinuity, and a 3−rarefaction wave. We will, hence, refer this test case as the R1-
R3 case in the sequel. As in Case 1, a 100 m horizontal pipe is considered which
is initially separated into a left and right state at x0 = 50 m. Following [90],
the initial conditions of this test case are as follows: αg ,L = 0.35, v`,L = 1.868
m/s, pL = 192170 Pa, αg ,R = 0.3, v`,R = 14.47 m/s, pR = 196690 Pa, where the no-
tations carry the same meaning as introduced in Chapter 6. We again do not
specify the boundary conditions as we will choose the final simulation run-time
such that the travelling waves do not reach the boundary of the spatial do-
main. We perform numerical simulation over the following finite-time horizon:
t ∈ [0,1]. We consider the spatial step size ∆x = 5×10−2. As before, we consider
max(| λ1 |, | λ2 |, | λ3 |) = 1000 and CFL = 1 for computational purposes, and use
(7.27) to obtain the temporal step-size given the spatial step-size. Furthermore,
the computation of the POD modes is performed as in Case 1.

Figure 7.8 represents the behaviour of the ROM error, defined in (7.22), ver-



7.5 Numerical Test-Beds 233

Figure 7.8: R1-R3 case: behaviour of the ROM error (for Q1,Q2 and Q3) versus the num-
ber of the POD modes when the spatial step size ∆x = 5×10−2.

sus the number of the POD modes. The ROM errors, corresponding to each of
the three physical quantities Q1,Q2 and Q3, are represented in the same plot.
Furthermore, the behaviour of the ROM error under the application of differ-
ent numerical flux approximation schemes, namely the FVS and the AUSM. The
implementation of the AUSM results in a larger ROM error than that incurred
upon the implementation of the FVS. This is reasonable (and expected) since
the AUSM scheme is able to resolve the sharp gradient features more accurately
than the FVS scheme; also see [57] and Chapter 6 for the insights about the
numerical dissipation mechanisms of these schemes. Overall, the ROM error,
in this test case, shows a steeper decay with the increasing number of the POD
modes. Such a behaviour can be understood from the following (possible) rea-
soning. In this case, the only sharp front is due to the presence of the contact
discontinuity. However, as dictated by the eigenstructure of the problem, the
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Figure 7.9: Evolution of Q1 over equidistant time samples. Here, blue colour indicates
the high-fidelity solution, and the red circular marker indicates the (re-
constructed) solution of the reduced-order model with reduced dimension
r = 15. And, FVS scheme has been employed for numerical flux approxima-
tion.

front evolves at a slow speed across the spatial domain. This is also evident
from Figure 7.9, where the second front, i.e., the contact discontinuity, is slowly
shifting across the spatial domain. This behaviour is unlike the S1-S3 case,
where the (dominant) shock fronts propagate with a high speed. It is easier to
approximate a feature that is almost stationary than a (quick) travelling feature.
In this R1-R3 case, the macroscopic features happen to be dominant over the
propagation aspect of the contact-discontinuity front. In addition, these macro-
scopic features are easy to reduce as evident from the evolution response shown
in Figure 7.9.

Figure 7.9 illustrates the evolution of Q1, obtained from the high-fidelity
and the reduced-order model computation, at 4 equidistant time instants, i.e.,
at 5000∆t , 10000∆t , 15000∆t and 20000∆t with ∆x = 5× 10−2. The dimension
of the reduced-order model has been considered to be equal to 15, which is
a number corresponding to which a relative error er el (L 2,L 2)

r om in Figure 7.8 is
10−5. The reduced-order model solution of Q1 shows almost a perfect match
with its high-fidelity counterpart. We can observe some oscillations, but, unlike
the previous case, they are not too strong to turn catastrophic.
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7.6 Conclusions

In this chapter, we have implemented standard projection-based model order
reduction (MOR) approaches to obtain reduced-order models of Burgers’ equa-
tion and a two-phase flow model, namely, the Drift Flux Model (DFM). We
have specifically illustrated the performance of the POD-Galerkin methodology
in the scope of the MOR of hyperbolic partial differential equations (PDEs). It
is observed that the POD-Galerkin methodology, which solely relies on approxi-
mation using linear subspaces, is not appealing for the MOR of hyperbolic PDEs
due to an inherent transport-dominated nature of the problem, for instance,
due to moving shocks. Although the dimension of the high-fidelity model of
the problem of interest is reduced by invoking the standard projection-based
MOR approach, the reduced-order model is still required to be high-dimensional
to achieve an acceptable level of computational accuracy. Furthermore, (high
frequency) oscillations, due to Gibbs’ phenomena, are observed around the lo-
cation of the sharp gradients. As a consequence, the obtained reduced-order
models are still not amenable for the purposes of (near) real-time estimation
and control, and multi-query simulation purposes. Clearly, this instigates fur-
ther assessment of the extent to which the studied models can be reduced even
further to make it usable for drilling automation. In the next chapters, we
delve into assessing the reducibility of transport-dominated problems and de-
vise/propose new MOR framework in order to mitigate the issues observed with
the existing standard projection-based MOR approach.





Chapter 8
Method of Freezing combined
with Reduced Basis
Approximations

This chapter focuses on model complexity reduction for transport-dominated dy-
namical systems, in which the moving wavefronts hamper the performance of ex-
isting reduced-basis models. Moving discontinuous features, such as shocks, are
representative characteristics of a wave propagation phenomena, which needs to be
accurately resolved in the scope of modelling Managed Pressure Drilling (MPD) sys-
tems and several other scientific applications. The location of discontinuous fronts
and the speed of propagation varies for different parameters of interest and/or dif-
ferent states of the system. Furthermore, the fronts also interact with each other
while evolving across the spatial domain, which induces topological changes in
the solution. These evolving and localized discontinuous features affect the perfor-
mance of the standard projection-based model order reduction (MOR) approaches.
While standard MOR approaches do not exploit the underlying hyperbolic struc-
ture/physics/dynamics of the problem, we strive to utilize such system behaviour
in devising a novel MOR framework, in particular for problems with moving dis-
continuities. To this end, we employ the "Method of Freezing"/Symmetry Reduction
as a pre-processing ingredient before invoking the standard projection-based MOR
approaches. In the pursuit to develop a MOR framework for multiple moving, inter-
acting and possibly merging discontinuities, we make a fundamental modification
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in the formulation of the "Method of Freezing" by proposing a flux re-distribution
approach in order to curb the numerical instabilities induced by wavefront colli-
sions. Finally, we investigate the numerical performance of the combined approach
of the "Method of Freezing" and the standard projection-based reduced-basis ap-
proximations on few model problems, which embody the challenge faced in the
model reduction of MPD systems.

8.1 Introduction

We recall that we are interested in developing a Model Order Reduction (MOR)
framework for MPD systems. To this end, it is essential to develop a reduced-
order counterpart of single- and two-phase hydraulic models. Also, recall that
these hydraulic models are governed by (conditionally) hyperbolic partial differ-
ential equations (PDEs). In the previous chapter, we applied existing projection-
based methodology on one of the two-phase flow models, i.e., the Drift Flux
Model. We observed that the standard projection-based MOR approaches do
not yield accurate and stable reduced-order models of lowest dimensionality,
thereby further improvements are required in this context. Furthermore, an ef-
ficient MOR framework is required to be able to deal with wavefront movements
and topological changes induced due to wavefront interactions. This motivates
us to investigate and propose efficient, advanced and automated approaches
to obtain (stable) reduction of the desired order, while still guaranteeing the
accurate approximation of wave propagation phenomena.

A lot of interest has emerged within the scientific community to tackle the
challenges of the reduced-order representation of transport-dominated prob-
lems. Recently developed/proposed approaches can be classified as follows:
(i) (data-based and model-based) time and space-dependent coordinate trans-
formation/symmetry reduction framework [28,31,73,131,134,150,154,155],
(ii) optimal-transport based framework [55, 86, 151], (iii) interpolation/dic-
tionary/tracking framework [172,202,203], (iv) adaptive and stabilization strate-
gies [29,36,141], and (v) deep learning/neural network concepts [83,102].

While several approaches, as mentioned in the previous paragraph, have
been developed, we pursue the idea of expressing modes in a co-moving system,
i.e., coordinate transformation/symmetry reduction, to build (and improve) a
framework for model order reduction of transport-dominated problems. Such a
framework consists of, firstly, an important pre-processing step, then, a reduc-
tion step and, finally, post-processing of the quantity of interest. The additional
pre-processing framework, in the considered approach, is suitable for transport-
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dominated problems as it helps to obtain a faster decay of the singular values by
transforming a diagonal structure of the solution in space-time to a rectangular
structure in space-time. As a consequence, such a framework aids to obtain a
lowest possible dimensional representation.

Various strategies, that utilize the aforementioned novel pre-processing step
in the MOR framework, have been proposed to reduce the dimensionality of
transport-dominated problems. These include: the "Method of Freezing" in
conjunction with non-linear reduced basis approximations [134], the Shifted
POD [28, 150], the Approximated Lax Pair (ALP) approach [73, 74], etc. The
Shifted POD is a data-based MOR approach. The "Method of Freezing" (in con-
junction with reduced basis approximations) and the ALP approach use the un-
derlying PDE model to achieve a reduced-order model representation. In the
ALP approach, the basis is constructed by computing the eigenfunctions of a lin-
ear Schrodinger operator associated with an initial condition. The basis is then
propagated in a way that it remains an eigenbasis of the Schrodinger operator
at every time instant. However, no theoretical proof of choosing such an ansatz
has been presented. Moreover, the ALP approach relies on self-adjointness of
the operator, which cannot always be guaranteed, particularly for hyperbolic
PDEs/transport-dominated problems. The "Method of Freezing" is based on a
Lie group representing the translation of the solution. This method aims to pre-
process a solution manifold and separate the dynamics in the group direction
from the dynamics in the remaining directions of the phase space. In the pursuit
of developing a model-based reduction framework and in the wake of the po-
tential shortcomings of the ALP approach, we focus on the "Method of Freezing"
to develop a MOR framework for transport-dominated problems.

The concept of freezing a single wavefront (or a pulse), developed in [26],
has been applied for parabolic and hyperbolic problems in [134, 152]. The
authors in [152] employed the method for capturing similarity solutions (in
multi-dimensional setting), and not for developing a reduced-order model. The
only work which exploits the "Method of Freezing" in the scope of model order
reduction is [134]. A setting, considered in [134], falls in the realm of hyper-
bolic problems, where the advection is predominantly along a single direction.
Hence, the problem can be dealt with by establishing a single co-moving frame.
Furthermore, [134] considers the imposition of periodic boundary conditions.
In addition, the equivariance of the discrete operator is assumed to hold. This
equivariance property is exploited in [134] to obtain an efficient offline and
online decomposition by invoking the POD-Galerkin methodology in conjunc-
tion with the Empirical Operator Interpolation. However, the existing MOR
framework, as in [134], which builds on the "Method of Freezing" (for a sin-
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gle front), lacks consideration of dealing with multiple propagating fronts and
non-periodic boundary conditions. In the scope of the MPD, it is by now well
understood that multiple wavefronts are propagating across a one-dimensional
spatial domain; also see Chapters 6 and 7. Furthermore, the importance of im-
posing non-periodic boundary conditions is self evident in the physical context;
also see Chapter 6. The application motivated requirements along with the cur-
rent state-of-the-art of the "Method of Freezing" necessitate to extend the MOR
framework developed in [134].

The "Method of Freezing", first developed in [26], has been extended in [27]
to facilitate dealing with multiple fronts/pulses. However, such a concept of
freezing multiple fronts/pulses has not been extended/applied to hyperbolic
problems, particularly in the scope of model order reduction. A straightforward
adaptation of the method for the hyperbolic setting results in stability issues
even in the high-fidelity computations of the transformed model problem; see
Section 8.2.3 for further details. The observations can be supported via the
following reasoning. Firstly, the authors in [27] developed and numerically
analyzed the method in the scope of parabolic and semi-parabolic problems.
It is well-known that the solutions of parabolic problems are well-behaved (in
terms of regularity) compared to the solutions of hyperbolic problems. Sec-
ondly, the collision or merging of pulses, treated in [27], is technically different
from the collision or merging of (discontinuous) wavefronts. Furthermore, ac-
cording to [27], the method of creating multiple frames of reference is quite
robust with respect to the choice of partition functions. However, this robust-
ness is challenged when such a method is applied in the hyperbolic setting (see
Sections 8.2.3 and 8.4). We recall that we are eventually interested to build
a reduced-order model (unlike [27]), and that we seek for the features, ob-
tained from a transformed model problem, such that they guarantee an efficient
reduced-order representation. Hence, an approach which may be appropriate
to handle strong pulse interactions may not perform satisfactorily under strong
front interactions, particularly from the model order reduction point of view.
The above discussion puts forward the need of fundamental modifications to
extend the use of the "Method of Freezing" for a larger class of hyperbolic prob-
lems.

The aim of this chapter is to transform the model problem via the "Method
of Freezing" and then reduce it by using the standard POD-Galerkin methodol-
ogy. The combined approach of the "Method of Freezing" and the POD-Galerkin
methodology provides a complete novel MOR framework for dealing with the
non-linear transport-dominated problems.

It is worth mentioning that most of the recent literature, primarily built
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on the concept of time-dependent shifts, have just focused on the construction
of basis functions, and not on the construction of the reduced-order model;
see [150, 151]. Moreover, most of the existing literature have been built upon
a single co-moving frame construct; for instance, see [31]. Also, recently,
the complete framework, starting from the generation of the basis functions
upto constructing a fully reduced-order model, has been developed by using
the Shifted POD approach in [28] in the scope of dealing with multiple mov-
ing waves. However, the ability of the aforementioned framework in dealing
with interacting and merging discontinuous fronts is still subject to further re-
search/investigation. In this chapter, we not only demonstrate the generation
of basis functions, but also illustrate the use of these generated basis in con-
structing a reduced-order model for non-linear transport-dominated problems
with multiple moving, interacting and possibly merging waves.

The main contributions of this chapter are as follows: (i) we apply the ex-
isting principles of the "Method of Freezing" and assess the efficiency of the
approach in the scope of hyperbolic problems with multiple evolving and inter-
acting (discontinuous) wavefronts, (ii) we make a fundamental modification to
the "Method of Freezing" by proposing novel flux re-distribution approaches in
order to curb the additional travelling structures and/or numerical instabilities
that are induced during the interactions between the evolving fronts, (iii) we
modify the ansatz, responsible for yielding transformed variables, to account
for non-periodic boundary effects in the formulation of the "Method of Freez-
ing", (iv) we invoke the POD-Galerkin methodology to reduce the transformed
model problem that results after the application of the "Method of Freezing",
and (v) we assess the (combined) "Method of Freezing" and projection-based
methodology on several numerical test-beds that are representative of the inter-
action between the wavefronts propagating along the same or in the opposite
direction.

This chapter is organized as follows. Section 8.2 is dedicated to the mathe-
matical formulation of the "Method of Freezing" in the scope of hyperbolic prob-
lems. It also consists of aspects related to the numerical discretization of the
transformed model problem. Furthermore, it puts forward the issues pertaining
to an efficient offline and online decomposition, and also discusses about the
design and the choice of the formulation related variables/functions. In Section
8.3, we propose two methodologies to deal with discontinuous wavefront inter-
actions. We then discuss combining the approach of the "Method of Freezing"
with reduced basis approximations (POD-Galerkin methodology) to develop a
reduced-order model in Section 8.4. We perform several challenging numerical
experiments in Section 8.5 to assess the potential of the proposed approach,
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and also compare its performance with that of the standard projection-based
approach. Finally, Section 8.6 ends the chapter with conclusions.

8.2 Framework for freezing multiple wavefronts

We use the "Method of Freezing" [26, 27] as a pre-processing ingredient in
our MOR framework. The "Method of Freezing" is also known by the name of
symmetry reduction framework in some literature [154, 155]. This method is
inspired by geometric mechanics and was originally developed to study relative
equilibria of evolution equations. The "Method of Freezing" approach intuitively
seems powerful in exploiting the underlying structure and, thereby, facilitating
a much more effective model reduction. Concerning the underlying structure,
the transport-dominated problems, for e.g., advection equation, Burgers’ equa-
tion, etc., often possess translation invariance. This property can be used to
reduce the dimensionality of the problem. The "Method of Freezing", exploiting
this property, maps all symmetry-related solutions to a single class of solutions.
This method helps to decompose the original dynamics into shape dynamics and

Figure 8.1: Concept Illustration: Here, dashed lines represent the evolution of original
dynamics and solid lines represent the evolution of shape dynamics. Original
and shape dynamics co-incide at t0 = 0.
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travelling dynamics. We refer to Figure 8.1, which shows a schematic descrip-
tion of the evolution of shape dynamics, which are essentially frozen around the
initial configuration, and the original (and reconstructed) dynamics.

The dimensionality of the reduced-order model is generally large due to the
travelling nature of the solution. The travelling part of the solution is exactly the
component we aim to filter out from the solution dynamics. First, we formulate
the transformed model problem, and solve for shape dynamics and travelling
dynamics by using numerical discretization methods. We then invoke standard
projection-based MOR on the shape dynamics, which is devoid of the transla-
tional feature of the original realization. The aim is to approximate the shape
dynamics with a minimal number of modes/basis functions. This is crucial since
there is a one-to-one correlation between the number of modes/basis functions
and the resulting dimension of the reduced-order model. The reduced shape
dynamics are then acted upon by a (time-dependent) discrete shift operator,
which is built using the knowledge of the travelling dynamics, to give an ap-
proximate realization of the quantity of interest (QOI) in the reduced space.
An inverse group action can then be applied to lift the QOI/solution from the
reduced space to the high-fidelity space. We will call this lifted function as the
"reconstructed solution". Finally, we can analyze the errors accrued during the
numerical stages of the whole MOR framework. Figure 8.2 illustrates the whole
workflow in a schematic manner.

Remark 8.2.1 It should be mentioned that the consideration of non-periodic bound-
ary conditions also imposes the need of devising multiple co-moving frames. For

Figure 8.2: Flow diagram of the "Method of Freezing" in conjunction with reduced-basis
approximations.



244 Method of Freezing combined with Reduced Basis Approximations

instance, the inflow boundary conditions may result in the development of a front,
which propagates across the spatial domain as the time evolves. Other fronts may
already be present within the spatial domain due to the choice of the initial condi-
tions. Moreover, extra fronts could also develop due to the reflection at the bound-
aries. The evolution of these several fronts can ultimately lead to the interaction
between the propagating fronts. An evident requirement is to have a MOR frame-
work to deal with the multiple evolving and interacting fronts in the internal part
of the spatial domain, i.e., away from the boundary. Hence, in this section, we only
focus on developing multiple co-moving frames to deal with the multiple co-existing
and interacting wavefronts in the internal part of the spatial domain, and restrict
ourselves to the consideration of periodic boundary conditions.

Remark 8.2.2 We focus on reproducing the results of the time-dependent equation
via the standard and proposed MOR framework. This reproduction step is essential
before attempting to develop a parametric reduced-order model as we cannot hope
to have an effective low-complexity reduced-order model if the numerical approach
does not fare well in the reproduction step.

8.2.1 Standard (infinite-dimensional) formulation

Let us consider a scalar PDE, which can admit multiple pulses/wavefronts in its
solution profile, of the following form:

∂t u + f (u,∂x u) = 0, (8.1)

where x ∈ Ω represents the spatial domain and t ∈ [0, t f ] represents the time
domain with t f denoting the final simulation time, u ∈ H 1 is the solution we are
interested in, and f : H 1 × H 1 → H 1∗ is the associated flux function. Here H 1

denotes the Sobolev space of functions that also possess a weak derivative, and
H 1∗ denotes the dual space of H 1.

Remark 8.2.3 It is worth mentioning that the solutions of hyperbolic problems
are non-classical and do not generally lie in H 1. The derivation of the "Method
of Freezing" [26,27], originally developed and numerically analyzed for parabolic
problems, assumes that the solutions are smooth enough. It is hard to do numerical
analysis and show any properties, in the scope of the "Method of Freezing (and also
in general), for non-classical solutions.

We seek to establish multiple co-moving frames corresponding to individual
fronts present in the solution. The original solution can be expressed as a com-
bination, i.e., a simple superposition, of solutions in each co-moving frame and
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can be written as follows:

u(x, t ) =
N∑

j=1
v j (ξ j (x, t ), t ),with ξ j (x, t ) = x − g j (t ), (8.2)

where v j stands for the shape dynamics, g j stands for the travelling dynamics,
and N refers to the number of co-moving frames in consideration. Moreover,
ξ j = x − g j denotes the transformed space coordinate.

Remark 8.2.4 One could also think of a weighted combination of local solutions
in (8.2). However, in such a case, one would need to devise a rationale for comput-
ing the weights.

Let us now derive the dynamics that govern v j and g j such that u(x, t ) de-
fined in (8.2) is a solution of (8.1). Hereto, we first express ∂t u using (8.2),
leading to

∂t u =
N∑

j=1
[∂t v j (x − g j (t ), t )−∂ξ j v j (x − g j (t ), t )∂t g j ]. (8.3)

Using the decomposition illustrated in (8.2), applying the concept of chain rule
and using (8.1), the temporal derivative of the solution, i.e., ∂t u, can also be
expressed as follows:

∂t u =− f (
N∑

k=1
vk (x − gk (t ), t ),

N∑
k=1

∂ξk
vk (x − gk (t ), t )). (8.4)

We now invoke the concept of time-dependent partition of unity to couple
local functions in a non-local manner. Using this concept, (8.4) can be re-written
as follows:

∂t u =−
N∑

j=1
[

φ j (x − g j (t ))∑N
k=1φk (x − gk (t ))

f (
N∑

k=1
vk (x − gk (t ), t ),

N∑
k=1

∂ξk
vk (x − gk (t ), t ))], (8.5)

where φi , i ∈ {1,2, ..., N } are the functions constituting a partition of unity.

The right-hand sides of (8.3) and (8.5) can be equated to impose the governing
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dynamics in (8.1). This yields:

N∑
j=1

[∂t v j (x − g j (t ), t )−∂ξ j v j (x − g j (t ), t )∂t g j ] =

−
N∑

j=1
[

φ j (x − g j (t ))∑N
k=1φk (x − gk (t ))

f (
N∑

k=1
vk (x − gk (t ), t ),

N∑
k=1

∂ξk
vk (x − gk (t ), t ))]. (8.6)

Considering that the individual components in the left-hand side and the right-
hand side of (8.6) are equal for j ∈ {1,2, ..., N }, we obtain

∂t v j (x − g j (t ), t )−∂ξ j v j (x − g j (t ), t )∂t g j (t ) =

−[
φ j (x − g j (t ))∑N

k=1φk (x − gk (t ))
f (

N∑
k=1

vk (x − gk (t ), t ),
N∑

k=1
∂ξk

vk (x − gk (t ), t ))].
(8.7)

Remark 8.2.5 While (8.6) always holds, we have made a design choice that even
the individual components, which constitute the sum in the left-hand and the right-
hand side of (8.6), are equal. This design choice, leading to (8.7), is just a suffi-
cient condition and is not a necessary condition to formulate the governing shape
an travelling dynamics.

Defining ξ j := x − g j , and re-arranging some terms in (8.7), we obtain

∂t v j (ξ j , t ) = ∂ξ j v j (ξ j , t )∂t g j (t )− φ j (ξ j + g j (t )− g j (t ))∑N
k=1φk (ξ j + g j (t )− gk (t ))

×

f (
N∑

k=1
vk (ξ j + g j (t )− gk (t ), t ),

N∑
k=1

∂ξk
vk (ξ j + g j (t )− gk (t ), t )).

(8.8)

Equation (8.8) can be compactly written as follows:

∂t v j (ξ j , t ) = ∂ξ j v j (ξ j , t )∂t g j (t )− φ j (ξ j )∑N
k=1φk (ξg

k j )
f (

N∑
k=1

vk (ξg
k j , t ),

N∑
k=1

∂ξk
vk (ξg

k j , t )),

(8.9)
where ξg

k j := ξ j −gk (t )+g j (t ). Equation (8.9) expresses the shape dynamics. The
group component g j (t ), representing the travelling dynamics, satisfies:

∂t g j (t ) =µ j , (8.10)
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where µ j is still unknown. In other words, the notion of group component adds
additional degrees of freedom µ j and, thereby, introduces under-determinacy.
As a consequence, algebraic constraints or so-called phase conditions are re-
quired to have sufficient equations for the unknowns in the formulation. The
phase conditions aid to determine µ j , which upon using (8.10) provides the
knowledge of the group/travelling component g j . This implies that the phase
conditions are linked to the propagation speed of the fronts. It is known that the
hyperbolic PDEs are unforgiving when it comes to the propagation of spatial and
temporal truncation errors because the information flows with characteristic ve-
locities. Thus, the phase conditions should comply with the underlying physics
and yield correct transport speed(s) and direction(s). To this end, the phase
conditions are devised such that they decompose a space- and time-dependent
solution into a time-dependent group orbit and a spatial profile that demon-
strates minimum variation over time. Two variants for designing the phase
conditions exist in the literature. One of them is called the orthogonal phase
condition and the other is known as the fixed phase condition; see [26,27]. We
resort to use the orthogonal phase conditions throughout this chapter. These
are mathematically written as follows:

0 =< ∂ξ j v j ,
(
− φ j (ξ j )∑N

k=1φk (ξg
k j )

f (
N∑

k=1
vk (ξg

k j , t ),
N∑

k=1
∂ξk

vk (ξg
k j , t ))+µ j∂ξ j v j

)
>L 2 ,

(8.11)
where, < ., . >L 2 denotes the L 2 inner product.

Alternatively, the propagation speeds (or µ j ) can be prescribed a-priori for
some physical problems. However, a-priori prescription of these speeds will not
always be feasible and, hence, an automated methodology, such as the notion
of the phase conditions, is needed to determine the propagation speed and,
consequently, the shifts.

Remark 8.2.6 The notion of phase conditions for determining the propagation
speeds (and the shifts) is in contrast to the Shifted POD approach [150], where the
authors use peak or front tracking, threshold search or singular value maximiza-
tion for determining the shifts from the snapshot/simulation data. However, the
"Method of Freezing" does not require such a-posteriori analysis of the simulation
data to extract the information of the shape and velocities of the fronts present in
the original solution.

To summarize, the three key ingredients in the approach of the "Method of
Freezing" are: (i) shape dynamics governed by (8.9), (ii) travelling dynamics/-
group component governed by (8.10), and (iii) phase conditions governed by
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(8.11). The "Method of Freezing" transforms an original PDE (8.1) into a system
of Partial Differential Algebraic Equations (PDAEs) given by (8.9),(8.10) with
(8.11). Now, rather than seeking for the solution u via a numerical scheme, we
seek to solve for the shape dynamics v j and travelling dynamics g j by using a
suitable numerical method.

8.2.2 Discrete Framework

In this section, we provide brief insights about the spatial and temporal dis-
cretization methods employed for the high-fidelity computation of the trans-
formed model problem governed by (8.9),(8.10) and (8.11). The resulting sys-
tem of PDAEs to be discretized, for all j ∈ {1,2, . . . , N }, is summarized below:

∂t v j (ξ j , t ) =
H j ,1︷ ︸︸ ︷

∂ξ j
v j (ξ j , t )µ j (t )−

Q
g
j (ξ j ,t )︷ ︸︸ ︷
φ j (ξ j )∑M

k=1φk (ξ
g
k j )

H
shi f ted
j ,0︷ ︸︸ ︷

f (
N∑

k=1
vk (ξ

g
k j , t ),

N∑
k=1

∂ξk
vk (ξ

g
k j , t )), (8.12)

0 =< ∂ξ j
v j , (−

φ j (ξ j )∑N
k=1φk (ξ

g
k j )

f (
N∑

k=1
vk (ξ

g
k j , t ),

N∑
k=1

∂ξk
vk (ξ

g
k j , t ))+µ j ∂ξ j

v j ) >L 2 , (8.13)

∂t g j =µ j (t ). (8.14)

We first perform the spatial discretization to obtain a semi-discretized form of
the system of PDAEs and then perform the temporal discretization. We take the
Finite Volume (FV) approach to perform the spatial discretization. We employ
the Lax-Friedrichs scheme [105] or the Upwind scheme [105] to compute the
flux numerically. The spatial discretization of the PDAE system yields:

∂t v j =−(Qg
j H shi f ted

j ,0 )+ (H j ,1)µ j , (8.15)

(
H T

j ,1H j ,1

)
µ j =

(
H T

j ,1Qg
j H shi f ted

j ,0

)
, (8.16)

∂t g j =µ j (t ), (8.17)

where Qg
j , H shi f ted

j ,0 , and H j ,1 are discrete operators accounting for the spatial
discretization of the quantities as indicated in (8.12), and H T

j ,1 denotes the trans-
pose of the discrete operator H j ,1.
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Remark 8.2.7 The Lax-Friedrichs scheme is known to be monotonicity preserving
(and, hence, "Total Variation Diminishing" as well) under its standard application
to scalar conservation laws. This property ascertains that there will be no numer-
ical oscillations in the solution. It should, however, be realized that the spatial
discretization of the system of PDAEs (8.12) - (8.14) results in FV discrete opera-
tors, which are no longer standard FV discrete operators. Hence, the application
of the Lax-Friedrichs scheme calls for further numerical analysis and to obtain the
conditions under which the monotonicity can be guaranteed for the system under
consideration.

The semi-discretized system (8.15) - (8.17) can now be solved over time by
employing a suitable method for temporal discretization. We restrict ourselves
to the usage of an explicit first-order Forward Euler scheme for the temporal
discretization. We could also consider an implicit Euler scheme or higher-order
explicit Runge Kutta schemes for the temporal discretization.

Remark 8.2.8 We avoid exhaustive discussion about the numerical implementa-
tion of the spatial and temporal discretization as the considered methods are usu-
ally applied and well documented in the literature [105].

We have now obtained a fully discrete representation of the transformed
model problem. Before using the resulting knowledge in conjunction with the
reduced-basis approximations, we delve into the discussion about the rationale
behind the design of the partition functions φi and the choice of the number of
co-moving frames N .

8.2.3 Design of partition functions and choice of number of
frames

The partition functions form the building block in decomposing the solution
into the shape and travelling dynamics; see (8.5). In principle, the partition
functions φ j constitute a partition of unity if

∑N
k=1φk (·) = 1. It is not necessary

to ensure
∑N

k=1φk (·) = 1 for the formulation of the "Method of Freezing" to be
mathematically correct. However, it is necessary to ensure that

∑N
k=1φk (·) 6= 0.

The number of partition functions is decided by a-priori decision on the number
of co-moving frames N , which need to be considered in the scope of the problem
at hand. One of the possible choices of these partition functions is illustrated
in Figure 8.3, where we assume N = 3. Other possible choices of the partition



250 Method of Freezing combined with Reduced Basis Approximations

Figure 8.3: Possible choice of partition functions.

functions are illustrated in Figure 8.4, where we again consider N = 3. The par-
tition functions can also have a smooth profile, unlike that of Figures 8.3 and
8.4. Theoretically, there is a one-to-one link between the decomposition of the
solution field and the number of structures (fronts) with different transport ve-
locities. However, in principle additional frames are required to obtain desired
outcomes, particularly from the model order reduction point of view, which de-
mands that not more than one translating front should be present in each of
the decomposed components v j . Different types of partition functions result in
different qualitative and quantitative behaviour of the shape dynamics v j . It
should also be mentioned that it is necessary to have the overlap between the
constituting partition functions φi to avoid the numerical breakdown. Further-
more, these partition functions also impact the monotonicity behaviour of the
numerical scheme, such as the Lax-Friedrichs scheme.

There does not exist any strong theory that can help us in optimally choos-
ing the partition functions. To obtain some insights about the high-fidelity be-
haviour of the transformed model problem, we now construct a test case. We
will use it to showcase the challenges (and importance) of the design of par-
tition functions and the choice of number of frames. The test case falls in the
realm of scalar conservation laws. A few popular (non-linear) scalar conser-
vation laws are Burgers’ equation, Korteweg de Vries equation, etc. While the
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Figure 8.4: Possible choice of partition functions.

solitons obtained in the Korteweg de Vries equation can pass each other without
interacting non-linearly, the wavefronts in Burgers’ equation generally interact
non-linearly. In the scope of developing a MOR framework to deal with moving,
interacting and possibly merging discontinuities, Burgers’ equation is, hence,
suitable. In the sequel, we will use Burgers’ equation to test the robustness of
the "Method of Freezing".

The Burgers’ Equation can be written as follows:

∂t u +∂x (
u2

2
) = 0, x ∈ [0,L], t ∈ [0, t f ]. (8.18)

We impose periodic boundary conditions, u(0, t ) = u(L, t ), where L is the length
of the spatial domain, and the initial condition for the simulation is illustrated
in Figure 8.5. The ensuing discussion is based on this test case.

Clearly, the initial condition is characterized by two Gaussian pulses. These
Gaussian pulses are centred around different spatial points, and also have differ-
ent amplitude (and sign). It is well-known that the Gaussian pulse will develop
into a shock front after a finite period of time. Given the fact that two different
fronts (structures) develop, we strive to decompose the solution field into two
local constituents. We begin by using two smooth partition functions (with non-
compact support) to decompose the solution field. We then numerically solve
the original dynamics in (8.18) and the associated system of PDAEs: (8.12),
(8.13), (8.14) with f (u,∂x u) = ∂x ( u2

2 ). The reconstructed dynamics and the
original dynamics match perfectly. However, when the two wavefronts, propa-
gating from opposite directions, travel towards each other, we witness the con-
tributions of both propagating wavefronts in the shape dynamics corresponding
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Figure 8.5: Initial condition u(x, t = 0) for a test case with two opposite moving wave-
fronts.

to each of the two (local) co-moving frames. Such contributions can be math-
ematically attributed to the second term in the right-hand side of (8.12). It is
observed that the contribution from the wavefront in the left frame1 (resp., right
frame1) to the resulting shape dynamics of the right frame (resp., left frame) re-
sults in a shock of different height in the right frame (resp., left frame). Further-
more, an additional (discontinuous) front of a certain height with a non-zero
speed is observed in both co-moving frames. The height of this additional dis-
continuity is linked to the difference between the height of the already existing
(discontinuous) front in the co-moving frame and the "true" height of the cor-
responding (discontinuous) front in the original solution of (8.18). Moreover,
the shape profile of the already existing (discontinuous) front undergoes signif-
icant changes. Such features, in particular the additional travelling structure in
the co-moving frame, will have an impact on the decay of the singular values,
which are obtained after performing the singular value decomposition on the
snapshot matrix of the shape dynamics v j in each co-moving frame. Such an
observation is not something we envisioned initially from the "Method of Freez-
ing" as the main idea of this strategy is to factor out the travelling dynamics

1The co-moving frame localized around the left (resp., right) Gaussian pulse, depicted in Figure
8.5, is referred to as the left (resp., right) frame in the subsequent discussion.
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from the profile of the shape dynamics. As there still exist travelling structures
in the profile of the shape dynamics, we seek for a remedy and adopt an idea of
using additional frames of reference along with different shapes of the partition
functions. This idea is explained below using the same test case.

We make the support of the partition functions as small as possible. In order
to do so, we use non-smooth and compact indicator functions as partition func-
tions. Furthermore, we define an additional partition function, which takes a
constant value that is non-zero everywhere in the spatial domain. Such a choice
of the partition functions is schematically depicted in Figure 8.3. Henceforth, we
consider three co-moving frames, i.e., N = 3, for such a test case. The constant
partition function, i.e., φ2 in Figure 8.3, would correspond to the background
solution which does not contain any moving discontinuities in the "true" physical
space. Hence, we manually set the speed (and the shift) of the co-moving frame,
corresponding to the constant partition function, to zero. The automated shift
determination is done for two of the three co-moving frames by using the notion
of the phase conditions as discussed earlier in Section 8.2.1. High-fidelity nu-
merical experiments of the system of PDAEs, with aforementioned choice of the
partition functions and the number of frames, still yielded (i) extra structures
in the profile of the shape dynamics, and (ii) numerical oscillations/stability
issues. The extra structures include moving/stationary, but non-differentiable
continuous features2 in the shape dynamics. It is important to mention that the
approximation of such moving/stationary, non-differentiable features is as diffi-
cult (maybe more difficult) as the approximation of the moving fronts, which is
already a serious concern (see Chapter 7). It is, hence, necessary to obtain shape
dynamics that are devoid of such non-differentiable features. Furthermore, the
numerical oscillations/stability issues are observed when the compactly sup-
ported partition functions start overlapping in the "true" physical space. A low-
dimensional representation, which is our end goal, should not suffer from the
spurious behaviour and extra/unwanted structures and, hence, to begin with,
the high-fidelity representation of the shape dynamics v j should be devoid of
such features. The observations, so far, hint to the need of fundamental modifi-
cations to the framework of the "Method of Freezing". To this end, we need to
propose measures to enhance the ability of the framework in dealing with dis-

2The support of the partition functions can be tuned. It is observed that the shape dynamics may
no more constitute of the non-differentiable features. However, the support of the partition func-
tions needs to be changed appropriately depending on the direction of the propagating wavefronts
and the problem under consideration. To conclude, the choice of the support of the constituting
partition functions to avoid non-differentiable features is to-date a kind of a trial and error exercise
and does not have sound mathematical background yet.
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continuous wavefront interactions. These mitigating measures are elaborated
in the next section.

8.3 Flux re-distribution to deal with discontinuous
wavefront interactions

The need of fundamental modifications to the framework of the "Method of
Freezing" has been discussed in Section 8.2.3. In this section, we aim to im-
prove the performance of the "Method of Freezing" in dealing with merging
(discontinuous) wavefronts. We propose two flux re-distribution approaches in
order to curb the numerical instabilities and extra/unwanted structures induced
by wavefront interactions and collisions, and to ensure that the obtained shape
dynamics are easily reducible. We introduce the proposed approaches in this
section and, eventually, discuss the merits and demerits of the propositions in
Section 8.4 via numerical case studies.

8.3.1 Proposition 1

This approach can be seen as a modification of the design choice made in (8.7).
Figure 8.6 illustrates the idea of flux re-distribution in a schematic manner.
The partition functions, referred to as indicator functions in Figure 8.6, intro-
duced into the formalism in Section 8.2, serve as a tool to identify the region of
(strong) wave interaction in this proposed approach. The solid lines, shown in
red and purple, in Figure 8.6 represent the initial configuration of the partition
functions, which will be the same in the "true" physical space as well as in the
transformed space. These partition functions will propagate across the spatial
domain as the time evolves. The two associated partition functions, represented
in physical space by dotted lines, start to overlap after few time steps. We detect
the region of overlap and, as a preliminary step, we partition the overlap region
into two equal halves. We then allocate the flux corresponding to the left half of
the overlap region to the left frame. Similarly, we allocate the flux correspond-
ing to the right half of the overlap region to the right frame. In order to define
the approach mathematically, we consider the set

xp f = supp φ1 ∩ supp φ2, (8.19)

where φ1 and φ2 represent the partition functions associated to the left and
the right frame, respectively, and xp f is a collection of the discrete spatial co-
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Figure 8.6: An illustration of the proposed flux re-distribution approach (in physical
space).

ordinates where the two partition functions φ1 and φ2 overlap. If xp f =;, this
implies that the partition functions do not intersect/overlap. We recall the defi-
nition Qg

j (ξ j , t ) = φ j (ξ j )∑M
k=1φk (ξ

g
k j )

. We propose to modify this definition of Qg
j (ξ j , t ) if

xp f 6= ;. We first partition the set, constituting the discrete collection of spatial
coordinates, in the following way:

• If the cardinality of the set xp f is an even number l , then we split the
elements of the set into two equal parts: xp f 1 = [x1, x2, ..., x l

2
], xp f 2 =

[x l
2 +1, x l

2 +2, ..., xl ] such that xp f 1 ∪xp f 2 = xp f holds.

• If the cardinality of the set xp f is an odd number l , then we allocate one
extra element to either set xp f 1 or xp f 2. Suppose that we allocate an
extra element to the set xp f 1. We then have xp f 1 = [x1, x2, ..., x (l+1)

2
], and

xp f 2 = [x (l+1)
2 +1, x (l+1)

2 +2, ..., xl ], such that xp f 1 ∪xp f 2 = xp f holds.

Based on the aforementioned partitioning, we now define Qg
j for j = 1,2 as

follows:

Qg
1 (·, t ) =

{
1 ∀ (·) ∈ xp f 1,

0 ∀ (·) ∈ xp f 2.
(8.20)

Similarly,

Qg
2 (·, t ) =

{
0 ∀ (·) ∈ xp f 1,

1 ∀ (·) ∈ xp f 2.
(8.21)

In the above discussion, i.e., in (8.20) and (8.21), j = 1 will attribute to the left
frame and j = 2 will attribute to the right frame.
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Remark 8.3.1 The discrete way of defining Qg
j is ideal from the point of view of

numerical implementation.

Qg
1 (·, t ) in (8.20) and Qg

2 (, t ) in (8.21) can be determined if xp f 1 and xp f 2 are
known. Given the partition functions, the sets xp f 1 and xp f 2 can be easily be
obtained using (8.19).

The proposed approach needs the detection of the region of overlap between
the partition functions. It is easier to compute the region of overlap between
two compactly supported square (or indicator) functions than to compute it for
smooth functions with non-compact support. It is known and also can be in-
tuitively understood that the smooth functions with non-compact support can
intersect at multiple points in the physical space, thereby demanding the solu-
tion of a non-linear equation at every time iteration. In view of the additional
computational burden in detecting the region of overlap between the smooth
partition functions, we use non-smooth indicator functions/partition functions
in the numerical case studies pursued in this chapter.

All the concepts, except the modified definition of Qg
j , are the same as those

discussed extensively in Section 8.2. Using the new definition of Qg
j along with

all the notations and ingredients introduced in 8.2, we can assess the perfor-
mance of the proposed approach.

Next, we discuss another proposition to deal with wavefront interactions/-
collisions.

8.3.2 Proposition 2

It is apparent that the design of the partition functions is challenging and the nu-
merical results are sensitive to the choice of the partition functions; see Section
8.2.3 for an in-depth discussion about the effect of the choice of the partition
functions. The numerical sensitivity can be viewed from the viewpoint of the
"Method of Freezing" in terms of the stability issues. Alternatively, the sensitiv-
ity can also be viewed from the model order reduction viewpoint, particularly,
in terms of the decay of singular values corresponding to the snapshot matrix of
each of the shape dynamics. The following proposed measure seeks to address
the following questions:

• Can we perform the decomposition without invoking the concept of parti-
tion functions?

• Can we avoid the need of additional frames, which do not have a sound
theoretical basis, during the decomposition?
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Let us again consider a scalar PDE of the following form:

∂t u + f (u,∂x u) = 0. (8.22)

The original solution, u, is now decomposed as follows:

u(x, t ) := u1(x, t )+u2(x, t ) =
N=2∑
j=1

v j (x − g j (t ), t ), (8.23)

where it has been assumed that the solution u is decomposed into two parts
as we know that the solution to (8.18) will have two discontinuous fronts due
to the choice of the initial conditions as shown in Figure 8.5. Here, the v j ’s
are supposedly devoid of the travelling nature, and each of the decomposed
part u1(x, t ) and u2(x, t ) constitute not more than one travelling front. Also, the
features in the decomposed parts should be such that the travelling dynamics
is more dominant than the corresponding shape dynamics. This is important in
view of the effectivity of the model reduction strategy.

Remark 8.3.2 The number of decomposed parts, as in (8.23), are determined by
the know-how of the (possible) number of discontinuous features in the solution. In
principle, (8.23) and the framework that follows, in the scope of this proposition,
can be generalized. However, we limit ourselves to a specific setting in accordance
with the decomposition (8.23).

The temporal derivative of the solution u can now be expressed as follows:

∂t u =
N=2∑
j=1

(
∂t v j (x − g j (t ), t )−∂ξ j v j (x − g j (t ), t )∂t g j

)
, ξ j = x − g j . (8.24)

Using the decomposition illustrated in (8.23), applying the concept of chain
rule and using (8.22), the temporal derivative ∂t u of the solution can also be
expressed as follows:

∂t u = ∂t u1 +∂t u2 =− f (
N=2∑
k=1

vk (x − gk (t ), t ),
N=2∑
k=1

∂ξk
vk (x − gk (t ), t )). (8.25)

The flux function f is perceived to be composed of four terms, h11,h12,h21 and
h22. Mathematically, the flux function is equivalently expressed as follows:

f (
N=2∑
k=1

vk (x − gk (t ), t ),
N=2∑
k=1

∂ξk
vk (x − gk (t ), t )) = h11 +h12 +h21 +h22, (8.26)
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where the terms hlm refer to the contribution of the l th local component to
the mth frame. Using (8.25) and (8.26), and defining ∂t u1 and ∂t u2 as shown
below:

∂t u1 := ∂t v1(x − g1(t ), t )−∂ξ1 v1(x − g1(t ), t )∂t g1 =−(h11 +h21), (8.27)

∂t u2 := ∂t v2(x − g2(t ), t )−∂ξ2 v2(x − g2(t ), t )∂t g2 =−(h12 +h22), (8.28)

we obtain the decomposed components that satisfy the scalar PDE (8.22).
For Burgers’ equation, the flux function f can be written as follows:

f (u,∂x u) = u∂x u = (u1 +u2)(∂x u1 +∂x u2) = u1∂x u1︸ ︷︷ ︸
h11

+u1∂x u2︸ ︷︷ ︸
h12

+u2∂x u1︸ ︷︷ ︸
h21

+u2∂x u2︸ ︷︷ ︸
h22

, (8.29)

or

f (u,∂x u) = u∂x u = (u1 +u2)(∂x u1 +∂x u2) = u1∂x u1︸ ︷︷ ︸
h11

+u1∂x u2︸ ︷︷ ︸
h21

+u2∂x u1︸ ︷︷ ︸
h12

+u2∂x u2︸ ︷︷ ︸
h22

. (8.30)

Using (8.27), (8.28) and (8.29), the dynamics of the evolution of the decom-
posed components can be expressed as follows:

∂t u1 +u1∂x u1 +u2∂x u1 = 0, (8.31a)

∂t u2 +u2∂x u2 +u1∂x u2 = 0. (8.31b)

This approach does not fall into the category of strict hyperbolic systems as the
eigenvalues are real and equal rather than being real and distinct.

Alternatively, using (8.27), (8.28) and (8.30), the dynamics of the evolution
of the decomposed components can be expressed as follows:

∂t u1 +u1∂x u1 +u1∂x u2 = 0, (8.32a)

∂t u2 +u2∂x u2 +u2∂x u1 = 0. (8.32b)

This approach falls in the category of strict hyperbolic systems, except for the
case where u1 = u2.

Both approaches, as in (8.31) and (8.32), give rise to different local speeds.
In principle, any of these two approaches can be utilized in the scope of con-
structing a co-moving frame by using the knowledge of the local speed. How-
ever, the choice of the discretization method of the aforementioned two ap-
proaches is critical. The discretization methodology becomes furthermore im-
portant due to the presence of the non-conservative terms. The coupled Burgers’
system, as in (8.31) and (8.32), have been discretized in the past and, hence,
we do not delve into the details of the discretization of the obtained system(s).
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Remark 8.3.3 Recall that we envision to obtain the decomposed parts u1(x, t ) and
u2(x, t ) such that they do not constitute more than one travelling front. However,
contrary to our aim, the numerical results, obtained on discretizing (8.31), demon-
strate that one of the decomposed parts u2(x, t ) consists of two discontinuous fronts;
see at the top-right of Figure 8.7. We implement several numerical schemes to solve
(8.31) and (8.32) in the high-fidelity sense. However, none of the schemes yield
(only) one discontinuous feature in each of the two decomposed parts.

It is well-known that the solution of Burgers’ equation inherits sawtooth
wave profile as its solution features after a finite-time, irrespective of the ini-
tial conditions. One such sawtooth wave profile for a specific choice of ini-
tial conditions is depicted at the top-left in Figure 8.7. The decomposed solu-
tion, obtained after performing spatial and temporal discretization on (8.31),
looks as illustrated at the top-right in Figure 8.7. We can clearly observe that

Figure 8.7: A schematic illustrating the idea in proposition 2.
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a straight line connects the two evolving discontinuous fronts until the solution
corresponding to the second decomposed part is eventually eaten up. We now
suppose that we are primarily interested in the solution regime until the second
decomposed part, i.e., the one to the right, vanishes. We put to use the afore-
mentioned observation and seek to post-process the solutions obtained after the
discretization. We only post-process the solution corresponding to the second
decomposed part u2(x, t ), and do not perform any post-processing on the first
decomposed part u1(x, t ). The post-processed solution can be written as follows:

u(x, t ) = u11(x, t )+u22(x, t )−u33(x, t ), (8.33)

where all the three decomposed parts, i.e., u11(x, t ),u22(x, t ) and u33(x, t ) have a
travelling nature, but constitute only one evolving front. Using the fact that we
do not post-process the first decomposed part, we have that u11(x, t ) = u1(x, t ).
The other two decomposed parts u22(x, t ) and u33(x, t ) are obtained from u2(x, t )
by following the steps as mentioned next. We first identify the slope of the
straight line connecting the two sharp gradient features in the second decom-
posed part u2(x, t ); see at the top-right in Figure 8.7. We then extrapolate the
straight line backwards and find the spatial coordinate xm at which it passes
the x-axis and allocate the extra region, i.e., a triangular region shown in red-
dashed lines in Figure 8.7, to u22(x, t ). It should be noted that the solution
u2(x, t ) is also a part of u22(x, t ). Basically, the region under the yellow curve in
Figure 8.7 is the decomposed part u22(x, t ). It is observable that a small triangu-
lar region, i.e., the red-dashed part in Figure 8.7, is accounted both in u11(x, t )
and u22(x, t ). Hence, this doubly counted region should be subtracted once and
the solution corresponding to this overlapped region is interpreted as u33(x, t ).

To summarize, the approach renders triangular features in each decomposed
part. Such a decomposition is attractive from the view point of model order re-
duction. The proposed approach helps to avoid multiple discontinuities in each
decomposed part. Moreover, it should be noted that the post-processing is per-
formed outside the temporal integration routine and, hence, is not intrusive.
One of the limitations, however, is that the post-processing framework needs to
know the time instant when the discontinuous front in u1(x, t ) starts interact-
ing with the tail of u2(x, t ). Also, such an approach does not seem so easy to
generalize in order to deal with both scalar and system of conservation laws.

Remark 8.3.4 We would like to emphasize that the post-processing is not an ar-
tificial way to solve the problem, and actually has a physical meaning. The post-
processing can be interpreted as a flux re-distribution. One of the future research
directions would be to come up with a more natural decomposition framework that
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automatically gives rise to the nice features without any need of post-processing.
An automatic retrieval of the decomposition will also be attractive in the scope of
obtaining a MOR framework and would thus mitigate the challenges which the
current state-of-the-art approach to post-process poses.

Next, we combine the pre-processing ingredient, so-called "Method of Freez-
ing", with standard reduced-basis approximation techniques to develop a com-
plete MOR framework.

8.4 Combining Method of Freezing and reduced-
basis approximations

In this section, we invoke the POD-Galerkin methodology on the transformed
model problem governed by the system of PDAEs (8.12) - (8.14), and develop
a reduced-order model.

Employing the first-order Lax-Friedrichs scheme for the spatial discretization
of (8.12), (8.13) and (8.14), and the first-order Forward Euler scheme for the
temporal discretization of (8.15), (8.16) and (8.17) yields a numerical approxi-
mation of the shape dynamics v j for all j = {1,2, . . . , N } at several spatial locations
and time instants. The obtained approximation of the shape dynamics lives in
a high-fidelity space, say V j ,h , where h in the subscript indicates the dimension
of the high-fidelity model, and j stands for the co-moving frame under consid-
eration. Having computed the high-fidelity approximation of the transformed
model problem, we now construct a snapshot matrix of the shape dynamics cor-
responding to each co-moving frame. We then apply the method of snapshots
(with respect to the natural inner product) on each of the computed snapshot
matrices to obtain the basis functions or the POD-modes. We refer the reader
to Algorithm 1, Chapter 7 for the technical aspects pertaining to POD/method
of snapshots. Using the computed POD modes, we finally apply the Galerkin
projection methodology, discussed in Chapter 7, as briefly described next.

We reduce the system of PDAEs (8.12) - (8.14) via Galerkin projection onto
V j ,r ⊆ V j ,h , where V j ,r is a r -dimensional reduced space spanned by the func-
tions obtained from a truncated singular value decomposition of the snapshot
matrix of the shape dynamics v j corresponding to each co-moving frame. Upon
considering the projection operator PV j ,r : V j ,h →V j ,r , the governing dynamics of
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the reduced model for j = {1,2, . . . , N } are given by:

∂t v j ,r =µ j ,r PV j ,r
∂ξ j

(P T
V j ,r

v j ,r )−PV j ,r

φ j (ξ j )∑M
k=1

φk (ξ
g
k j

)
f
( N∑

k=1
P T

Vk,r
vk,r ,

N∑
k=1

∂ξk
(P T

Vk,r
vk,r )

)
, (8.34)

0 =< ∂ξ j
(P T

V j ,r
v j ,r ),

(
−

φ j (ξ j )∑N
k=1

φk (ξ
g
k j

)
f
( N∑

k=1
P T

Vk,r
vk,r ,

N∑
k=1

∂ξk
(P T

Vk,r
vk,r )

)
+µ j ,r ∂ξ j

(P T
V j ,r

v j ,r )
)
>L 2 ,

(8.35)

∂t g j ,r =µ j ,r , (8.36)

where v j ,r ,µ j ,r and g j ,r can be computed by again invoking the Lax-Friedrichs
(or any other) scheme for the spatial discretization and the first-order Forward
Euler (or its variants) for the temporal discretization. The reduced-solution v j ,r

can be lifted back to the high-dimensional space, and the travelling dynamics
g j ,r can be embedded to eventually obtain the solution to the PDE of interest.

Remark 8.4.1 As mentioned in Remark 7.4.5, an effective offline-online decom-
position is an important ingredient of reduced-basis approximations. However, its
discussion is not in the scope of this work. Although we do not pursue this aspect
in further detail, it is worth emphasizing that the operator

φ j (ξ j )∑N
k=1φk (ξ j − gk + g j )

. f (
N∑

k=1
vk (ξg

k j , t ),
N∑

k=1
vk,ξ(ξg

k j , t )) 6= f (v j , v j ,ξ), ∀ j ∈ {1,2, . . . , N },

(8.37)
is not equivariant3 due to the term φ j (ξ j )∑N

k=1φk (ξ j −gk+g j )
. Recall from Section 8.2.1 that

the decomposition, as in the "Method of Freezing" framework, relies on the concept
of the partition of unity. However, as shown in (8.37), the partition functions
hamper the equivariance property in the setting where multiple wavefronts evolve
across the spatial domain. As a consequence, an effective offline-online decompo-
sition becomes even more challenging, and it will be the subject of the research in
the future.

3An equivariant operator is defined as follows:

g−1 ◦L ◦ (g .v) = L ◦ (v),

where L is any differential operator, (g .v) represents the group action on the shape dynamics, g−1

stands for the inverse group action. In other words, the equivariance implies that a differential
operator acting on the shifted solution is exactly equivalent to applying the differential operator on
the original dynamics (g .v) followed by shifting the resulting solution.
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Remark 8.4.2 For the reduced scheme governed by (8.34) - (8.36), we need to
compute partition functions to be able to obtain v j ,r at every iteration while evolv-
ing the reduced-order model over time.

Remark 8.4.3 The pre-processing step, leading to the computation of the shape
dynamics, helps to construct the POD modes which capture the underlying dynam-
ical structure of a time-dependent problem.

Remark 8.4.4 Here, we only discussed about the construction of the reduced-order
model starting with the general form of the transformed model problem governed
by the system of PDAEs (8.12) - (8.14). The (general) form of these PDAEs au-
tomatically accounts for the modifications due to Proposition 1, which has been
introduced in 8.3.1. However, the idea of Proposition 2, introduced in 8.3.2, has
a slightly different framework, and the corresponding reduced-order model needs
to be separately constructed. We opt not to delve into the related discussion as
the reduced-order model can be easily written mathematically by employing the
POD-Galerkin methodology.

Having discussed the mathematical construction of a reduced-order model
with the proposed MOR framework, we now present numerical case studies
dealing with several challenging scenarios encompassing different types of dis-
continuous wavefront interactions.

8.5 Numerical case studies

In this section, we numerically test the proposed MOR framework built by com-
bining the approach of the "Method of Freezing" and the POD-Galerkin method-
ology, and also compare its performance with the standard (standalone) POD-
Galerkin methodology. We focus on the problems in the field of fluid dynamics,
in particular Burgers’ equation. A series of numerical experiments are presented
to verify and test the accuracy of the reduced-order model and, thus, illustrate
the ability of the proposed MOR framework in dealing with multiple moving,
interacting and possibly merging (discontinuous) fronts. We restrict to numer-
ical experiments in a one-dimensional setting. Furthermore, we use a uniform
discretization across space and time with spatial step size ∆x = 0.01 and tem-
poral step size ∆t = 0.0005. Moreover, we employ the Lax-Friedrichs scheme
for the spatial discretization, and the first-order Forward Euler for the temporal
discretization. In the following numerical experiments, we consider only pe-
riodic boundary conditions. The initial data, required for the completeness of
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Figure 8.8: Initial conditions for several test cases.

the problem, is considered of the following form. Figure 8.8 (left) is an initial
condition similar to the one used in [152, 154]. This experiment only involves
setting up a single co-moving frame. Figure 8.8 (middle and right) are the ad-
ditional initial conditions devised for specific reasons. In particular, Figure 8.8
(middle) helps to set up a scenario where two fronts are propagating along the
same direction. However, the left front propagates with a higher speed and soon
catches up with a slower moving front to its right, thereby undergoing interac-
tions and, consequently, evolving as per the governing dynamics. Figure 8.8
(right) sets up a scenario where the two fronts propagate in opposite directions
and, ultimately, interact. The test cases, corresponding to Figure 8.8 (middle
and right), require the need of establishing multiple co-moving frames.

8.5.1 Single wavefront setting

In this section, we demonstrate the numerical results for the test case illus-
trated in Figure 8.8 (left). We solve the system of PDAEs (8.12) - (8.14) with
f (u,∂x u) = ∂x ( u2

2 ) and N = 1, and collect the snapshot data of the shape dynam-
ics until t = 2, t = 4 and t = 6, i.e., for 4000,8000 and 12000 timesteps. We also
collect the snapshot data of the original dynamics obtained by solving Burgers’
equation (8.18) until t = 2, t = 4 and t = 6. We build the snapshot matrices from
the collected snapshot data. We then employ the SVD approach and perform
POD (with respect to the natural inner product) on these snapshot matrices to
compute the POD modes and the associated singular values. Figure 8.9 depicts
the behaviour of the decay of the computed singular values. The large differ-
ence between the decay behaviour of the singular values corresponding to the
original dynamics (depicted in dashed dotted lines) and those corresponding
to the shape dynamics (shown by using solid lines) demonstrates that most of
the bases are actually required to capture the travelling dynamics. It also indi-
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Figure 8.9: Behaviour of Singular Value Decay for test case with initial conditions as
illustrated in Figure 8.8 (left).

cates that very few bases functions are required to capture the shape dynamics.
This figure, thereby, shows the power of the pre-processing framework, i.e., the
"Method of Freezing", in facilitating more effective model reduction.

8.5.2 Multiple wavefront setting

In this section, we discuss the test cases with initial conditions as illustrated in
Figure 8.8 (middle) and Figure 8.8 (right).

We first discuss the test case with initial conditions as illustrated in Figure
8.8 (right). In view of the choice of the initial conditions and the discussion
in Section 8.2.3, we choose to employ three co-moving frames, i.e., N = 3. We
also use the flux re-distribution approach introduced in Section 8.3.1, and solve
the system of PDAEs (8.12) - (8.14) with f (u,∂x u) = ∂x ( u2

2 ). Contrary to the
observations, discussed earlier in Section 8.2.3, we do not witness numerical
instabilities as soon as the partition functions start overlapping in the "true"
physical space. However, numerical instabilities in the high-fidelity computa-
tions of the system of PDAEs (8.12) - (8.14) arise just when the two fronts in
the "true" physical space align themselves. In other words, we observe (high-
frequency) numerical oscillations when the two fronts propagating from oppo-
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site directions merge into each other and evolve as a single front. To summarize,
the flux re-distribution approach, proposed in Section 8.3.1, helps to delay the
onset of stability issues, but cannot deal with the scenario where the (discontin-
uous) fronts merge and evolve as a single entity. In view of this observation, the
"Method of Freezing" cannot be used as a pre-processing framework after the
wavefronts merge. Hence, we will limit our subsequent computations to time
t < t∗, where t∗ indicates the time instant when the fronts fully merge.

We recall that we seek to develop a reduced-order model as explained in
Section 8.4. To this end, we collect the snapshot data of the shape dynamics
in each co-moving frame until the point of collision of the two wavefronts. We
then perform POD with respect to the natural inner product on these snapshot
matrices by employing the SVD approach to compute the POD modes and the
associated singular values. We also solve Burgers’ equation (8.18) together with
the chosen initial conditions, and build the snapshot matrix from the computed
solution u. Then, as discussed in Chapter 7, we perform the SVD with respect to
the natural inner product to compute the POD modes and the associated singu-
lar values. Although multiple wavefronts propagate across the spatial domain
due to the considered initial condition, we seek to observe the role of the choice
of the number of co-moving frames. To this end, we collect the snapshot data
of the shape dynamics, use the SVD (with respect to the natural inner product)
to compute the POD modes and the associated singular values for the setting
where a single co-moving frame is considered, i.e., N = 1, instead of setting
up multiple co-moving frames. Multiple ways can be adopted to build such a
single co-moving frame for problems with multiple (discontinuous) wavefronts
propagating with different speeds. Several possibilities of building a single co-
moving frame are as follows: (i) the phase conditions can be devised to develop
a co-moving frame corresponding to the slow evolving wavefront, (ii) the phase
conditions can be tailored to develop a co-moving frame corresponding to the
fast evolving counterpart, and (iii) the phase conditions can be left free without
actually tailoring them for a specific evolution. However, either of the aforemen-
tioned ways of constructing only a single co-moving frame do not factor out the
travelling component completely. One of the wavefronts, out of the resulting
two due to the choice of the initial conditions, either slows down or speeds up.
Without tailoring the co-moving frame to evolve as per the slower wavefront
or as per the faster wavefront, we let the phase conditions themselves decide
the frame speed and, consequently, the shifts. Next, we discuss the numerical
observations in the scope of the possible reduction in the dimension of the high-
fidelity model both for N = 1 and N = 3, and also compare with the reduction
offered by the standard (standalone) POD-Galerkin methodology.
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Figure 8.10: Behaviour of Singular Value Decay for test case with initial conditions as
illustrated in Figure 8.8 (right).

Figure 8.10 depicts the behaviour of the decay of the singular values, com-
puted for the different settings described in the previous paragraph, versus the
number of the POD modes. We observe that the decay of the singular values,
obtained with the choice of a single co-moving frame, is better than the de-
cay observed for the standard setting where the "Method of Freezing" is not
employed before invoking the POD-Galerkin methodology. Figure 8.10 also re-
veals that the shape dynamics, in the context where multiple co-moving frames
are set up, can be represented by a relatively small number of basis functions
compared to using only a single co-moving frame. However, it can also be ob-
served that after a certain threshold accuracy level (associated to singular values
of the order of 10−5 in Figure 8.10), the shape dynamics corresponding to co-
moving frames 1 and 2 require large number of basis functions for an efficient
representation. We observe that the decay of the singular values, corresponding
to the shape dynamics in the co-moving frames (particularly frame 1 and 2),
stagnates around certain (but different) levels, which are well above the zero
machine precision level. This at first may seem to convey a poor performance
of the proposed approach compared to the decay observed with the standard
projection-based MOR framework. We can, however, argue against this view-
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point by using the following reasoning. We know that the high-fidelity solution
is accurate up to a certain level that is consistent with the order of the dis-
cretization error, and we cannot expect the reduced-order representation to be
any better than its high-fidelity counterpart. The stagnation in the decay of the
singular values, corresponding to the snapshot data of the shape dynamics, can
also be interpreted from a different perspective. It is well-known that express-
ing the mode decomposition in different velocity frames, other than the "true"
co-moving frame, requires many modes to describe the dynamics reasonably
well. This instigates to investigate whether the high frequency modes are well
resolved by the phase conditions. We investigated and found out that the high
frequency modes are well resolved in their respective frames and, hence, an in-
correct frame speed cannot be the reason behind the stagnation in the decay of
the singular values. The stagnation in the decay behaviour of the singular val-
ues can potentially be attributed to the presence of sub-scale moving/station-
ary, non-differentiable continuous features. These type of features have been
observed to be macroscopically present in the shape dynamics corresponding
to each co-moving frame; see Section 8.2.3. Tuning the partition functions, as
discussed in Section 8.2.3, probably makes the aforementioned features less ap-
parent on the macroscopic scale, but does not completely remove the unwanted
moving/stationary, non-differentiable continuous features.

Figure 8.11 depicts the absolute (L 2 in space and L 1 in time) error, com-
puted between the high-fidelity "truth" solution and the reduced solution both
with and without the "Method of Freezing", versus the number of the POD
modes. The benefits of the POD-Galerkin approximation combined with the
"Method of Freezing" are quite evident as we see orders of magnitude improve-
ment in the approximations, though until a certain threshold accuracy level. It
is also observed that the MOR approximation error behaves somewhat similar
to the decay profile of the singular values.

Remark 8.5.1 One could opt for different norms in space or time, as per the phys-
ical reasoning, while computing the MOR approximation error.

We now briefly discuss the test case with initial conditions as illustrated
in Figure 8.8 (middle). The naive flux re-distribution approach, introduced
in Section 8.3.1, does not work for the numerical setting under consideration,
and yields unwanted features in the high-fidelity computation of the shape dy-
namics in each co-moving frame. These unwanted features are similar to the
features discussed in Section 8.2.3 in the scope of the case study on Burgers’
equation with the initial condition illustrated in 8.5. As a consequence of the
aforementioned features, we cannot hope to develop a reduced-order model
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Figure 8.11: Test case with initial conditions as illustrated in Figure 8.8 (right): Ab-
solute (L 2 in space and L 1 in time) error, computed between the high-
fidelity "truth" solution and the reduced solution both with and without the
"Method of Freezing", versus the number of the POD modes.

with significantly smaller dimension. We also recall that although the approach
(based on Proposition 1) has been shown to work well for the setting where
the wavefronts propagate in opposite direction, it does not fare well once the
point of singularity is attained, i.e., the fronts merge. These limitations pose
the need of developing a more generic framework. To this end, Proposition
2, discussed in 8.3.2, is assessed. We particularly consider a numerical experi-
ment in the scope of dealing with the setting where the wavefronts propagate
along the same direction and undergo strong/weak interactions. We consider
the scenario with the initial conditions as illustrated in Figure 8.8 (middle).
We compute the high-fidelity numerical solution of the system of PDAEs (8.12)
- (8.14) with f (u,∂x u) = ∂x ( u2

2 ) and N = 3 until t = 3.5. Following the same
principles as before, we compute the singular values corresponding to original
dynamics and the shape dynamics in each co-moving frame. Figure 8.12 depicts
the behaviour of the decay of the singular values. It demonstrates the benefits
of the framework of the "Method of Freezing" as we can clearly observe that the
singular values of the sum of all the shape dynamics decay faster than the decay
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Figure 8.12: Behaviour of Singular Value Decay for test case with initial conditions as
illustrated in Figure 8.8 (middle).

of the singular values corresponding to the snapshot matrix constituted of the
original (travelling) dynamics. Considering the decay behaviour of the singular
values of the sum of all the shape dynamics is a conservative way to quantify the
performance of the proposed approach. The actual improvements offered will
be better than the standard POD-Galerkin approach by an even better factor.
Although the decay behaviour seems promising, it is worth mentioning that the
approach, in the scope of Proposition 2, is quite specific to the Burgers’ case,
and the possibility to generalize it is subject to question/further research.

8.6 Conclusions

In this chapter, we made investigations in the direction to develop a novel
MOR framework in order to deal with multiple moving, interacting and pos-
sibly merging discontinuous wavefronts. The proposed MOR framework re-
lies on two concepts: (i) the "Method of Freezing", and (ii) the POD-Galerkin
methodology. The "Method of Freezing" is used as a pre-processing ingredient
that provides transformed model variables that are (supposedly) easy to reduce.
This method can also yield unwanted features and the numerical instabilities in
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the high fidelity computations of the transformed problem under wavefront in-
teractions and collisions. This renders the computations of no use in the scope
of developing a reduced-order model. In order to mitigate the aforementioned
issues, we propose a flux re-distribution principle and modify the standard set-
ting of the "Method of Freezing". The proposed MOR framework, which ac-
counts for the flux re-distribution as introduced in Sections 8.3.1 and 8.3.2, do
perform better than the standard POD-Galerkin methodology. However, none
of the proposed approaches for flux re-distribution are able to deal with the
scenario where the wavefronts merge and evolve as a single front. Also, the
developed framework seems to work for specific test cases, and lack an easy
generalization to be able to encompass a relatively larger class of hyperbolic
problems admitting wavefront propagation, interaction and collision.

It is worth recalling that we tried to decompose the solution into several
parts even for the setting where the fronts merge and evolve as a single en-
tity. One may question the need of setting up multiple co-moving frames given
the fact that we know how the original solution to Burgers’ equation evolves
after the wavefronts merge and that a single co-moving frame might be suffi-
cient. Also, the more the decomposed parts, the larger is the system of Par-
tial Differential Algebraic Equations (PDAEs) that need to be solved. Solving
a system larger than necessary can also be questioned from the viewpoint of
the requirement of saving computational resources. One of the proposed idea,
henceforth, could be to switch from the setting of a multiple co-moving frame
to that of a single co-moving frame upon merging of the wavefronts. How-
ever, such an approach calls for an a-priori knowhow about the evolution of the
original dynamics. This is not always feasible for hyperbolic partial differen-
tial equations, which are very sensitive to the choice of the initial and boundary
conditions. Moreover, unlike the case of Burgers’ equation, the wavefronts prop-
agating from opposite directions, for instance, will not always merge to become
a single wavefront, particularly in the scope of the system of conservation laws.
Various physical scenarios are possible where instead of merging and evolving
as a single entity, the fronts would actually continue propagating with different
strengths and topology after passing through the region of strong interaction.
The need for an adaptive/automated framework to devise the number of co-
moving frames (hence, the (high-fidelity) system size) is quite evident from the
above discussion.

Furthermore, we recall that the mathematical framework and the numerical
case studies, discussed in this chapter, impose the restriction of periodicity of
boundary conditions. In view of implementing the pursued MOR framework for
real industrial scenarios, such as the drilling applications, it is essential to ex-
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tend the functionality such that the effects of non-periodic boundary conditions
can also be accounted for.

To conclude, there still does not exist a MOR framework that is suitable and
generic enough to deal with the scenarios where the (discontinuous) wavefronts
interact and merge, and that accounts for the non-periodic boundary conditions.
In the next chapter, we strive to develop a MOR framework that resolves the
former open question.



Chapter 9
Model order reduction for
problems with moving
discontinuities

In this chapter, the focus is to develop efficient reduced-order model representations
for (non-linear) transport-dominated problems and hyperbolic partial differential
equations. In particular, we aim to develop a novel model order reduction (MOR)
framework for tackling problems with multiple moving, interacting and possibly
merging discontinuous features. The main ingredient of the proposed approach is
a novel decomposition of the solution into a function that tracks evolving discon-
tinuities and a residual part that is devoid of shock features. This decomposition
ansatz is then combined with Proper Orthogonal Decomposition applied only to
the residual part to develop an efficient reduced-order model representation for the
problems of interest. Numerical case-studies show the potential of the approach in
terms of computational accuracy compared with standard MOR techniques.

9.1 Introduction

We recall from Chapters 6 - 8 that moving discontinuities, such as shock-fronts,
and interactions between the propagating wavefronts are representative fea-
tures of models governed by scalar or systems of non-linear hyperbolic partial
differential equations (PDEs). As mentioned/observed in Chapters 7 - 8, such
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moving, interacting and merging discontinuous wavefronts pose a major hin-
drance to obtain effective reduced-order model representations; also see [135].
Although we made progress in the scope of developing reduced-order model
representations for problems with multiple moving wavefronts in Chapter 8, we
do not yet have a model order reduction (MOR) framework that is suitable and
generic enough to particularly deal with the scenarios where the (discontinu-
ous) wavefronts interact and merge.

We recall from Chapter 8 that the complete MOR framework, built upon the
"Method of Freezing", depends on the choice of the partition functions and the
number of co-moving frames (see Sections 8.2 and 8.3.1), or relies on some
kind of a post-processing (see Section 8.3.2) to obtain features that are easy to
reduce. On the one hand, the choice of ingredients, such as the partition func-
tions, the number of co-moving frames, etc., do not have a sound theoretical
basis and need to be tuned for any problem of interest. On the other hand, the
post-processing based framework lacks the (online-efficient) automated iden-
tification of the switching point from a multiple wavefront setting to a single
wavefront setting upon the merging of the wavefronts, and is quite specifically
tailored to reduce the Burgers’ equation. We draw insights from the "Method of
Freezing" and propose an approach that is a stepping stone towards resolving
the aforementioned issues.

The main contribution of this chapter is to propose a new decomposition
ansatz that separates the solution into a basis function that tracks the evolving
discontinuities and a residual part that is expected to be devoid of shock fea-
tures. This decomposition renders the residual part to be amenable for reduced-
order approximation. We then use these generated bases to apply Proper Or-
thogonal Decomposition (POD) on the residual part and later reconstruct the
solution by lifting it to the high-dimensional problem space. We finally assess
the combined performance of decomposition, reduction and reconstruction ap-
proach (as opposed to conventional reduction and reconstruction approach) in
the scope of transport-dominated problems with moving, interacting and merg-
ing discontinuities.

The outline of this chapter is as follows. In Section 9.2, we provide the
mathematical formulation of the proposed approach. Section 9.3 is devoted to
numerically assess the performance of the proposed approach on several chal-
lenging test cases and compare it with the existing standard projection-based
MOR approach. Finally, Section 9.4 ends the chapter with conclusions.
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9.2 Mathematical Formulation

We consider a scalar one-dimensional (1D) conservation equation of the form:

∂t u(x, t )+∂x f (u(x, t )) = 0, x ∈Ω= [0,L], t ∈ [0, t f ], (9.1)

with u(x,0) = u0(x) and suitable boundary conditions. Here Ω stands for the
spatial domain of interest, L stands for the length of the spatial domain, and t f

indicates the final simulation time.
We assume that u(x,0) = u0(x) already has S number of discontinuities at lo-
cations x1(0), ..., xS (0) with values u−(xs (0),0), s = 1, ...,S from the left and val-
ues u+(xs (0),0), s = 1, ...,S from the right. We associate a single basis function
σs (x − xs (t )) to each discontinuity at their respective locations. This basis func-
tion has a jump of height 1, i.e., σ+

s (0)−σ−
s (0) = 1, at the location of the discon-

tinuity and can have any (preferably continuous and smooth) shape away from
the discontinuity.

We now decompose the solution of (9.1) in the following way:

u(x, t ) =
S∑

s=1
js (t )σs (x −xs (t ))+ur (x, t ),

where
js (t ) = u−(xs (t ), t )−u+(xs (t ), t ). (9.2)

If xs (t ) exactly matches the shock locations and (9.2) is exactly fulfilled, then
ur (x, t ) does not contain any discontinuities and is amenable to a low-rank ap-
proximation.

The time-stepping scheme is defined in the following way. In each time step,
we:

• Compute the updated shock locations xs (t n+1) at n+1-th time instant t n+1

for all s = 1, ...,S using the Rankine-Hugoniot condition [177].

• Compute u±(xs (t n+1), t n+1) in a neighborhood of xs (t n+1) and define the
jumps, js (t n+1), via (9.2) for all s = 1, ...,S.

• Compute the residual part ur (x, t n+1) from

ur (x, t n+1)−ur (x, t n) =
S∑

s=1
js (t n)σs (x −xs (t n))−

∆t∂x f (u(x, t n))−
S∑

s=1
js (t n+1)σs (x −xs (t n+1)). (9.3)
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The standard way to construct a reduced-order model (ROM) is to reduce
(9.1) by applying Galerkin projection on u; also see Chapter 7. Instead, we
reduce (9.3) via Galerkin projection onto VN ⊆Vh , where VN is a N -dimensional
reduced space spanned by the functions obtained from a truncated singular
value decomposition of the snapshot matrix composed of the high-fidelity com-
putations of the residual part ur , and Vh is a h-dimensional high-fidelity space.
Upon considering the projection operator PN : Vh → VN , the reduced scheme
takes the following form:

uk+1
r,N = uk

r,N +PN

( S∑
s=1

js,N (t k )σs (x −xs,N (t k ))−∆t∂x f (P T
N uk

N )−
S∑

s=1
js,N (t k+1)σs (x −xs,N (t k+1))

)
, (9.4)

where uk
r,N ∈VN , the superscript k (resp. k+1) indicates the k-th (resp. k+1-th)

time instant, uk
N is defined in the following form:

P T
N uk

N =
S∑

s=1
js,N (t k )σs (x −xs,N (t k ))+P T

N uk
r,N , (9.5)

and, js,N and xs,N are, respectively, the jumps and shock locations computed
during the ROM time-stepping. The jumps js,N and shock locations xs,N can
be obtained in a manner similar to the steps carried out during the full-order
model (FOM) time-stepping.

Remark 9.2.1 It is well known that the projection alone is not sufficient to reduce
the costs of computing the solution of a reduced-order model if the Finite Volume
operators are non-linear in nature. The Empirical Operator Interpolation [52]
method can be used here as a recipe for hyper-reduction. We do not delve into the
full and efficient offline and online decomposition as its discussion is not within
the scope of this work. However, we mention that we need to know js,N (t k ) and
ur,N (xs,N (t k ), t k ) for computing xs,N (t k+1). In a reduced scheme this means that
we need to keep the entire reduced basis in memory. However, the basis vectors are
only evaluated at the shock locations at each time step. The same consideration
holds for the computation of js,N (t k+1).

The proposed MOR approach is summarized below in an algorithmic man-
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ner:
Full-order model computation;
initialization;
while t ≤ t f do

Compute updated shock locations xs (t n+1) ∀s = {1,2, . . . ,S};
Compute jumps js (t n+1) ∀s = {1,2, . . . ,S};
Compute the residual part ur (x, t n+1) by solving (9.3);

end
Perform POD on the residual part ur to obtain PN ;
Reduced-order model computation (Galerkin Projection);
initialization using the built projector PN , i.e., u0

r,N = PN (u0
r ) ;

while t ≤ t f do
if case==1 then

Compute updated shock locations xs,N (t n+1) ∀s = {1,2, . . . ,S};
Compute jumps js,N (t n+1) ∀s = {1,2, . . . ,S};
Compute the residual part ur,N (x, t n+1) by solving (9.4);

else
Use xs (t n+1) and js (t n+1) computed during FOM time-stepping;
Compute the residual part ur,N (x, t n+1) by solving (9.4);

end
end

Algorithm 2: Proposed MOR Approach.

9.3 Test case scenarios

We numerically test the new approach and show its potential as a MOR tech-
nique. We reduce Burgers’ equation, which is given by:

∂t u +∂x (
u2

2
) = 0, x ∈ [0,L]. (9.6)

The case studies consider that the shock is already present in the initial data,
which for single and multiple wavefront scenarios, is respectively given by:

u(x,0) = u0(x) =
{

x, 0 ≤ x ≤ 1,

0, otherwise
and u(x,0) = u0(x) =


x −2, 2 ≤ x ≤ 4,
(x−5)

2 , 5 ≤ x ≤ 7,

0, otherwise.
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Furthermore, we consider only periodic boundary conditions. We use an up-
wind Finite Volume (FV) scheme for the spatial discretization and a first-order
Forward Euler for the time-stepping.

We quantify the performance of the standard and the proposed approach by
computing the reduced-order modeling (ROM) error. As described in Chapter
7, the ROM error can be defined in several ways. We refer the reader to (7.21),
(7.22) and (7.23) for different definitions of the ROM error incurred due to the
standard approach. In a similar manner, the ROM error incurred due to the
proposed approach is defined as described below.

• L 2 in space and L 2 in time absolute ROM error is given by:

er om =
√√√√∆t

NT +1∑
k=1

∆x
Nx∑
i=1

| ui ,k − (P T
N uk

N )i ,k |2, (9.7)

where ∆t is the temporal step size, ∆x is the spatial step size, NT is the
number of time-steps and Nx is the number of FV elements. And, ui ,k

stands for u at x = xi and t = tk (similarly for (P T
N uk

N )i ,k). Herewith, (9.7)
expresses the error which is the difference between the high-fidelity nu-
merical solution u and the reconstruction given by (9.5).

• L 2 in space and L 2 in time relative ROM error is given by:

er el (L 2,L 2)
r om =

√
∆t

∑NT +1
k=1 ∆x

∑Nx
i=1 | ui ,k − (P T

N uk
N )i ,k |2√

∆t
∑NT +1

k=1 ∆x
∑Nx

i=1 | ui ,k |2
, (9.8)

where the meaning of the notations is as explained earlier.

• L 2 in space and L∞ in time relative ROM error is given by:

er el (L 2,L∞)
r om =

max
k={1,2,...,NT +1}

(
∆x

∑Nx
i=1 | ui ,k − (P T

N uk
N )i ,k |2

)
max

k={1,2,...,NT +1}

(
∆x

∑Nx
i=1 | ui ,k |2

) . (9.9)

Single wavefront scenario

We first consider the scenario where only a single discontinuous front evolves
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across the spatial domain. Here, we use the following shape function for σs (x −
xs ):

σs (x −xs ) =
{

1+x −xs , xs −1 ≤ x ≤ xs ,

0, otherwise.
, s = 1, ..,S, (9.10)

with S = 1, xs (t = 0) = 1.
In the scope of this scenario, we consider the spatial domain to be of length

L = 10. We take 8000 steps in time, i.e., t ∈ [0,4] with a temporal step size of
0.0005. We consider three different spatial mesh resolutions, i.e., spatial step
size of 0.005, 0.002 and 0.001.

Multiple wavefront scenario

Here, we consider the setting where multiple (discontinuous) wavefronts evolve
across the spatial domain and also interact non-linearly with each other. We
particularly study the scenario where two wavefronts are present in the spatial
domain and the left front propagates faster than the right one. We study this
scenario under two different settings. We first restrict the study to only assess
the performance of the proposed approach in dealing with the interaction of the
head of one wavefront with the tail of the other one, and stop the simulation
before the propagating fronts completely merge and subsequently evolve as a
single front. We then consider a larger simulation run-time and check the abil-
ity of the proposed approach in automatically dealing with the merging of the
wavefronts. The former setting is referred to as Case A, while the latter setting
is referred to as Case B in the sequel.

We use the following shape function for σs (x − xs ) to study this scenario for
both Case A and Case B.

σs (x −xs ) =
{

1+ 1
2 (x −xs ), xs −2 ≤ x ≤ xs ,

0, otherwise
, s = 1, ..,S, (9.11)

with S = 2, xs=1(t = 0) = 4 and xs=2(t = 0) = 7.
In the scope of Case A, we consider the spatial domain to be of length L = 10.

We take 8000 steps in time, i.e., t ∈ [0,4] with a temporal step size of 0.0005. We
also consider three different spatial mesh resolutions, i.e., spatial step size of
0.005, 0.002 and 0.001.

In the scope of Case B, we consider the spatial domain to be of length L = 12.
We take 20000 steps in time, i.e., t ∈ [0,10] with a temporal step size of 0.0005,
and we consider a spatial step size of 0.002.
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9.3.1 Numerical Results

Interpolation of σs (x − xs (t )) onto the FV mesh results in numerical approxima-
tion error. As a result, we observe residual jumps in the residual part, ur (x, t ),
computed during FOM simulation. We recall from Algorithm 2 that the aim is to
build a reduced space by applying POD on the residual part. One option could
be to build the bases (or reduced space) from the computed residual part (with
residual jumps). An other alternative could be to post-process the residual part
(computed during FOM) in order to get rid of the residual jumps. Yet another
alternative could be to compute the exact residual part analytically, which is
feasible in the scope of scenarios of interest. The post-processed residual part
or the exact residual part, which are even more low-rank approximable than
the residual part with residual jumps, can be then used to build the (effective)
reduced space. We invoke one of these ways to generate the bases and build a
reduced-order model.

We first consider the single wavefront scenario and Case A in the scope of
multiple wavefront scenario. We further consider the setting where the shock
locations and jumps computed during FOM simulation are used during the ROM
time-stepping, i.e., we assume that js,N = js and xs,N = xs . Moreover, we use the
computed residual part (with residual jumps) to generate the bases by perform-
ing POD with respect to the natural inner product and, subsequently, build a
ROM. We can clearly see the benefits of the proposed approach in Figure 9.1,
which shows the behaviour of the ROM error for increasing basis sizes N across
different mesh resolutions. Firstly, the initial error incurred via the proposed
approach is clearly lower than that of the standard approach. This is attributed
to the fact that our decomposition approach associates a basis function corre-
sponding to the travelling discontinuity. Secondly, the rate of decay of the error
is better for the proposed approach compared to the standard approach. We
also see that the ROM error for the standard approach is larger for finer mesh-
sizes. This occurs as the effect of the shock becomes more pronounced for finer
meshes. Also, the finer mesh implies less numerical viscosity. We also observe
that the ROM error for the standard approach could even increase with an in-
crement in the basis size. It can be argued that this could occur as a result of
insufficiently many basis functions. However, the ROM error for the proposed
approach decreases with an increment in basis size. Moreover, the ROM error
is lower and stagnates later for finer mesh-sizes. This can be argued from the
fact that the proposed approach is able to resolve the shock more accurately at
finer meshes. This error behaviour is clearly in contrast to that of the standard
approach which fails to efficiently capture the shock. As a result, the difference
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Figure 9.1: L 2 in space and L 2 in time absolute ROM error upon using shock loca-
tions and jumps computed during FOM simulation: (left) single wavefront
scenario and (right) multiple wavefront scenario (Case A).

between the ROM error (at a certain number of basis function) computed via
standard and proposed approach becomes more pronounced for finer meshes.

Figure 9.2 demonstrates the performance for fully ROM computations, i.e.,
shocks locations, xs,N and jumps, js,N are computed during the ROM time-
stepping. We perform post-processing on the residual part computed during
FOM. The residual part ur is post-processed by a linear interpolation between
the locations x+

s , x−
s where the local minimum u+ and maximum u− in a neigh-

borhood of xs is attained. We then generate the bases from this post-processed
residual part. The post-processing was not needed in an earlier setting (dis-
cussed in the paragraph above) as we used accurate shock locations and jumps
computed during the FOM time-stepping. However, it becomes essential here
in order to approximate xs,N and js,N within the ROM time-stepping with good
accuracy. We observe that the proposed approach still performs better than
the standard approach. However, the proposed approach seems to incur larger
ROM error for larger POD mode numbers. Such issues do not exist when we
use the shock locations and jumps from FOM during the ROM time-stepping.
Hence, the issues could be caused from a poor approximation of the shock. A
possible explanation could be that we have more oscillations (around the shock
position in the residual part) as the number of POD modes increases. The os-
cillations, which appear due to the reduced regularity of the residual part, lead
to wrong computation of xs,N and js,N . It is clear that xs,N (and js,N ) need to
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Figure 9.2: L 2 in space and L 2 in time absolute ROM error under fully ROM computa-
tions for the single wavefront scenario.

be approximated with good accuracy. The error in xs,N , which would increase
over time, should be in the order of the discretization error to achieve an overall
ROM error in the order of the discretization error. The high-frequency modes
could also be a source of the problem.

Next, we seek to identify the reasons behind the performance observed in
Figure 9.2. To this end, we pursue the following thought process. Depending
upon the spatial mesh resolution and the numerical viscosity of an implemented
scheme for the (spatial) discretization, the shock features are known to be dis-
tributed over several FV cells. In order to compute the jumps js or js,N for all
s = {1,2, . . . ,S}, a neighbourhood around the shock locations xs or xs,N needs to
be defined. It is intuitively clear that not any neighbourhood will yield correct
computation of the jumps in the context of both the full-order model and the
reduced-order model. Since there is no sound underlying theory for defining
such a neighbourhood, we resort to numerically tuning the width of the neigh-
bourhood around the shock locations and assess its impact on the computation
of the jumps and, ultimately, on the quality of the ROM solution. Furthermore,
among various ways to generate the bases, we choose to do so by applying
POD (with respect to the L 2 inner product) on the exact residual part. We do
this in order to remove the (possible) sources of error due to post-processing of
the computed residual part (with residual jumps). Another reason to use the
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Figure 9.3: L 2 in space and L 2 in time relative ROM error under fully ROM computa-
tions for the single wavefront scenario.

exact residual part for generating the bases is that the computed residual part
with residual jumps is less favorable for an efficient low-rank approximation.
We also compute the discretization error and use it to argue the possibility of
further improvements in the reduced-order models. Furthermore, as in the pre-
vious paragraph, we seek to develop a reduced-order model without resorting to
any FOM computations, i.e., the counter "case" in Algorithm 2 is equal to one.
Moreover, we consider the spatial step size ∆x = 0.002 and the temporal step
size ∆t = 0.0005, and use the relative ROM error as defined in (7.22) and (9.8)
to assess the performance of the standard and the proposed approach. The
numerical observations in the scope of the single wavefront scenario and the
multiple wavefront scenario (Case A and Case B) are discussed in the following
paragraphs.

Figures 9.3 and 9.4, respectively, show the behaviour of the L 2 in space and
L 2 in time relative ROM error versus the number of the POD modes for the
single wavefront scenario and for Case A in the scope of the multiple wavefront
scenario. In Figure 9.3, the ROM error behaves (qualitatively) similarly for the
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first few number of the POD modes irrespective of the width of the neighbour-
hood around the shock location. The width of the neighbourhood around the
shock location clearly has as impact on the error behaviour, particularly for a
large number of the POD modes. Although the ROM error increases for higher
POD mode numbers, it stays (to a large extent) lower than the discretization
error, particularly for the case where 10 FV cells are employed in the neigh-
bourhood of the shock location. Any behaviour below the discretization error
is not of interest since it is known that if the ROM error is of the order of the
discretization error, then the corresponding ROM is acceptable. In the scope of
the single wavefront scenario, the choice of 10 FV cells in the neighbourhood
can be considered to be (nearly) optimal as the corresponding ROM error, after
showing an increasing behaviour, almost stagnates around a level which is well
below the discretization error. For Case A in the scope of the multiple wavefront
scenario, we consider 4, 10 and 20 FV cells in the neighbourhood around the
shock locations. From Figure 9.4, we can observe that the ROM error obtained
from the proposed approach with the choice of 4 FV cells in the neighbourhood
is lower than the one computed from the standard methodology. Furthermore,

Figure 9.4: L 2 in space and L 2 in time relative ROM error under fully ROM computa-
tions for Case A in the scope of the multiple wavefront scenario.
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this ROM error (in the proposed approach) decays to the level of the discretiza-
tion error and then nearly stagnates around it. The choice of 10 FV cells in the
neighbourhood yields a quite similar performance to that with 4 FV cells. Also,
it gives a relatively better performance than that observed with 4 FV cells for
POD mode number M ≤ 40. However, the choice of 10 FV cells in the neigh-
bourhood renders much higher (unacceptable) errors in the jump computations
for a larger number of the POD modes, and destroys the quality of the ROM.
Unlike the choice of 4 and 10 FV cells in the neighbourhood, invoking 20 FV
cells in the neighbourhood results in a highly oscillatory behaviour of the ROM
error, which also becomes (unacceptably) large for higher POD mode numbers.
Clearly, the ROM constructed with 4 FV cells in the neighbourhood outperforms
the other selections. Based on these observations, we will employ 4 FV cells in
the neighbourhood for further discussions in the scope of the cases falling in the
realm of the multiple wavefront scenario.

We now consider Case B in the scope of the multiple wavefront scenario.

Figure 9.5: L 2 in space and L 2 in time relative ROM error under fully ROM computa-
tions for Case B in the scope of the multiple wavefront scenario.



286 Model order reduction for problems with moving discontinuities

Figure 9.6: Evolution of the FOM and the ROM (obtained using the proposed approach)
over equidistant time samples for Case B in the scope of the multiple wave-
front scenario. Here, blue colour indicates the high-fidelity solution, and the
red colour indicates the (reconstructed) solution of the reduced-order model
with reduced dimension equal to 15.

Figure 9.5 demonstrates L 2 in space and L 2 in time relative ROM error versus
the number of the POD modes. We can observe that the ROM error incurred
in the proposed approach is lower than the one in the standard methodology.
Also, the rate of the decay of the ROM error is better for the proposed approach
compared to the standard one. Furthermore, the ROM error due to the proposed
approach is observed to be below the discretization error just by using 7 or
more POD modes. The ROM error due to the standard approach, on the other
hand, does not reach to the level of the discretization error even with 80 POD
modes. Consider that an orthogonal projector is built using 15 dominant modes,
and subsequently a reduced-order model is constructed. Figure 9.6 shows the
evolution of the solution obtained from the high-fidelity and the reduced-order
model computation at 4 equidistant time instants, i.e., 5000∆t ,10000∆t ,15000∆t
and 20000∆t . The dimension of the reduced-order model has been considered
to be equal to 15, which is a value around the small stagnation region after the
sharp decay in the ROM error. Unlike the standard approach which gives highly
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Figure 9.7: L 2 in space and L∞ in time relative ROM error under fully ROM computa-
tions for Case B in the scope of the multiple wavefront scenario.

oscillatory modes and is unable to resolve the shock, the proposed approach
is able to (almost) resolve the shock even after the discontinuous wavefronts
completely merge and evolve as a single entity. However, it can be observed that
the jumps are not computed accurately. Furthermore, there are time-instants
during the evolution where the error in the jumps are even larger than the
ones observed in the evolution shown in Figure 9.6. If one is interested in the
accurate computation of the jumps (and the shock locations), the evaluation of
the L 2 in space and L 2 in time relative ROM error is not indicative enough
as it overlooks this aspect. A better measure to quantify the performance in
such a situation is to compute the L 2 in space and L∞ in time relative ROM
error. Figure 9.7 depicts the behaviour of the aforementioned ROM error versus
the number of the POD modes. The ROM error via the proposed approach is
observed to again decay sharply for first few POD modes. It then stagnates
for next few POD mode numbers, and finally oscillates around some stagnation
level. It is clear that more than 60 POD modes are required to attain the level of
the discretization error. Although the proposed approach fares better than the
standard one, there is a potential to obtain much more effective reduction.
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9.4 Conclusions

We have proposed a decomposition ansatz and used it in conjunction with the
POD-Galerkin methodology. We have show-cased the performance of the stan-
dard and the proposed approach on Burgers’ equation. Unlike, the standard
approach, the proposed one is able to resolve the discontinuities and also offers
(significant) reduction in the ROM error. We have also shown that a care should
be taken in the selection of the "norm" that is used to compute the reduced-order
modelling error. Overall, the results are promising in the scope of developing
a model order reduction framework for problems with moving, interacting and
merging discontinuities. However, issues exist in the proposed approach, partic-
ularly for larger POD mode numbers. These issues are to some extent associated
to the selection of the neighbourhood around the shock location for the compu-
tation of the jumps. While the behaviour of the ROM error at higher POD mode
numbers is attributed to the possible poor approximation of the moving shock
(both location and the height/jump), the reason is still not fully clear, and needs
to be further investigated in the future. A mitigating measure could be to im-
prove shock approximation similar to [172] or to filter out the high-frequency
modes when advancing the shock. Furthermore, in view of the numerical ob-
servations, a sound theoretical paradigm should be laid to identify an optimal
neighbourhood around the shock locations. An inspiration could be drawn from
the results on the width of the boundary layer for singularly perturbed problems.

In view of the promising results, particularly where the shock locations and
jumps computed during the full-order model time-stepping are used, the pro-
posed approach needs to also be assessed on other (parametrized) scalar and
system of conservation laws. Furthermore, although we considered periodic
boundary conditions, the mathematical formulation can easily be adapted to
deal with the realistic non-periodic boundary conditions. Such aspects should
also be considered in future works.

One of the limitations of the proposed approach is that the initial data is
required to be non-smooth. Such a requirement is quite restrictive. It should
also be mentioned that although the "Method of Freezing" with reduced-basis
approximations suffers under wavefront interactions, it is able to deal with the
smooth initial data (see Chapter 8). A further study, using the principles of the
"Method of Freezing" and the ones proposed in this chapter, is required to de-
velop a model order reduction framework that can handle both the smooth/non-
smooth initial data and the merging/interaction of the wavefronts.



Chapter 10
Conclusions and
Recommendations

10.1 Conclusions

To conclude, in this dissertation, we developed a much needed framework for
modelling, (structure-preserving) discretization and model order reduction in
the scope of drilling automation. In Chapter 2, we introduced Managed Pressure
Drilling (MPD) systems and provided physical insights, particularly highlighting
the properties that need to be captured by the high-fidelity and reduced-order
models. The rest of this dissertation has been divided into two main parts. In
Part I (Chapters 3 - 6), we discussed about modelling and (structure-preserving)
discretization of hydraulic systems in the scope of MPD applications. These
hydraulic systems, governed by non-linear hyperbolic partial differential equa-
tions (PDEs), pose several theoretical and computational challenges. With these
open scientific challenges in mind, we provided answers to research questions
Q1 - Q5 formulated in Chapter 1. To this end, we met research objectives O1
- O7, which have been outlined in the introduction of this dissertation. In Part
II (Chapters 7 - 9), we discussed about model-complexity reduction of (high-
fidelity) hydraulic systems. In particular, we delved into model order reduction
of hyperbolic partial differential equations characterized by dominant transport
effects, and strove to find answers to several important open-ended questions.
We addressed research questions Q6 - Q7 by making promising steps in the di-
rection of achieving research objectives O8 - O10 that have been described in
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Chapter 1. The main results of the two parts of this dissertation are summarized
next in Sections 10.1.1 and 10.1.2.

10.1.1 Part I: Modelling and (structure-preserving) discretiza-
tion of hydraulic systems

In Chapter 3, we developed port-Hamiltonian formulations of two different
types of two-phase flow models: the Two-Fluid Model (TFM) and the Drift Flux
Model (DFM) (without slip) across a constant geometrical cross-section of the
drilling well. These port-Hamiltonian formulations are developed by, firstly, de-
riving dissipative Hamiltonian representations of the TFM and the DFM (with-
out slip). Secondly, the obtained dissipative Hamiltonian representations are
extended with boundary port variables, and the state-dependent Stokes-Dirac
structures associated with the skew-adjoint Hamiltonian operators are derived.
In this chapter, we also demonstrated that the DFM with the Zuber-Findlay
slip conditions is not an energy-consistent model for two-phase flow. The port-
Hamiltonian framework, developed in this chapter, is then extended to account
for spatially and temporally varying geometrical cross-sections in Chapter 4. In
particular, in Chapter 4, we developed port-Hamiltonian formulations of single-
phase flow model and the DFM (without slip) across spatially and temporally
varying geometrical cross-sections. It is observed that a special care needs to be
taken while formulating port-Hamiltonian representations, particularly in terms
of non-conservative state variables. Using the aforementioned results, a compo-
sitional port-Hamiltonian model is then constructed for MPD systems in Chapter
4. The single-phase flow model describing the dynamics inside the drill string,
the drill bit model, and the two-phase flow model describing the dynamics in-
side the annulus are interconnected in a power-preserving manner. Further-
more, we accounted for the interaction between the reservoir and the wellbore.
Composing the MPD system so as to obtain an aggregated port-Hamiltonian
structure led to finally deriving the condition for the passivity of the composed
MPD system. This derived condition is then numerically assessed on a specific
drilling well to identify the set of admissible operating conditions in the scope
of the drilling operations.

In Chapter 5, we developed a framework for the structure-preserving dis-
cretization of non-linear distributed-parameter port-Hamiltonian systems as-
sociated with (extended) state-dependent Stokes-Dirac structures obtained in
Chapters 3 and 4. We also accounted for the presence and absence of dissi-
pative/resistive effects while developing the discretization framework. We par-
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ticularly employed the mixed finite element method for the spatial discretiza-
tion of the TFM and the DFM (without slip), and obtained corresponding (ex-
tended) continuous-time, finite-dimensional Dirac structures. Subsequently, the
(symplectic) Gauss-Legendre collocation methods are invoked to perform the
temporal discretization while accounting for state-dependent system matrices
and feedthrough terms in state-space port-Hamiltonian representations. This
helps to obtain discrete-time, finite-dimensional Dirac structures. In the pur-
suit of developing the discretization framework, we derived the conditions that
must hold for the existence of the continuous-time and discrete-time, finite-
dimensional Dirac structures. Furthermore, the properties of finite-dimensional
Dirac structures have been exploited to interconnect the (discretized) mesh
cells in a power-preserving manner and, ultimately, obtain a complete finite-
dimensional port-Hamiltonian structure. Finally, we assessed the discretization
framework on a simple, yet representative test case.

We then forayed into the numerical analysis of the two-phase flow model,
in particular the DFM, in Chapter 6. It is proposed to account for the com-
pressiblity effects of the phases under consideration in the quest to obtain the
model for the speed of sound in the two-phase mixture. We numerically stud-
ied the behaviour of the wave propagation (for, e.g., the location and speed
of the wavefronts) under the usage of the surrogate sound speed model and
the proposed one in the discretization framework based on the Finite Volume
method. We tested the model and numerical methods with exact reference so-
lutions, and also employed the non-linear error transport approach to estimate
the discretization error. This, to the best of our knowledge, has been done for
the first time in the scope of the DFM. Furthermore, several key numerical prop-
erties, for, e.g., whether the numerical schemes follow Abgrall’s principle, are
assessed for different challenging test cases. Finally, the discretization error esti-
mates along with the performance metrics (e.g., the observed order of accuracy,
preservation of key numerical properties, etc.) paved the road for establishing
the relative order of merit of the numerical schemes.

10.1.2 Part II: Model order reduction for transport-dominated
problems

In Chapter 7, we developed reduced-order models of non-linear hyperbolic
PDEs by invoking standard projection-based model order reduction (MOR) tech-
nique, namely, the Proper Orthogonal Decomposition in conjunction with Galerkin
projection. In particular, we performed MOR on Burgers’ equation and a two-
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phase flow model, namely, the DFM. It is shown that the standard projection-
based MOR techniques offer limited success in dealing with hyperbolic PDEs due
to their inherent transport-dominated nature. The challenges in significantly re-
ducing the dimension of a high-fidelity counterpart and achieving acceptable
computational accuracy are compounded in the presence of non-smooth fea-
tures, such as shocks, which move and interact across the spatial domain. The
numerical results point out the need of developing a novel MOR framework in
order to significantly reduce the dimension of hyperbolic problems (with mov-
ing, interacting and merging discontinuities), while still maintaining an accept-
able computational accuracy.

Chapters 8 and 9 dealt with the development of the much needed MOR
framework in the scope of transport-dominated problems, in particular for the
scenarios in which the (multiple) moving wavefronts hamper the efficiency of
the standard projection-based MOR techniques. In Chapter 8, the "Method of
Freezing" in conjunction with reduced-basis approximations is proposed as a
novel MOR framework. We invoked the "Method of Freezing", a symmetry re-
duction framework, and employed it for dealing with hyperbolic PDEs. We
also proposed flux re-distribution principles to resolve numerical issues, such
as additional travelling structures and numerical instabilities upon the merging
of wavefronts, observed in the high-fidelity computations of the transformed
model problem obtained after employing the "Method of Freezing". The trans-
formed model problem is then reduced by applying the standard projection-
based MOR techniques. Although the proposed MOR framework yields promis-
ing results in the scope of reducing problems with multiple evolving wavefronts,
it cannot deal with the scenario of the (full) merging of wavefronts. Further-
more, the aforementioned framework lacks generic applicability to a large class
of hyperbolic PDEs/transport-dominated problems. This further instigated the
need to develop an approach that can mitigate the open issues. To this end,
we proposed a new MOR approach in Chapter 9. We decomposed the solu-
tion into a function that tracks the evolving discontinuities and a residual part
that is devoid of shock features. We then applied the standard projection-based
MOR techniques only on the residual part. This approach helps to develop suit-
able reduced-order model representations for problems with multiple moving
and possibly merging discontinuous features. It is shown that the proposed
approach is better than the existing standard approaches in terms of the at-
tainable reduction in the dimension of the high-fidelity model and the compu-
tational accuracy. The role of the norms used to compute the reduced-order
modelling error is also made evident by the reported numerical observations.
For instance, it is shown that L 2 in space and L 2 in time (relative) reduced-
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order modelling error can mask the possible errors in the computation of the
jump, i.e, the height of the sharp gradient features, which eventually reflects in
the form of mismatch with the "true" time response behaviour of the model of
interest. L 2 in space and L∞ in time (relative) reduced-order modelling error
is shown to be a more representative measure for error computations in the
scope of the problems with discontinuities. Although the proposed approach is
rather generic and works better than the existing approaches, we clearly see a
potential in further improvements, which is deferred to future works.

Although the mathematical construction of the approaches developed in
Chapters 8 and 9 is different, both of these exploit the underlying travelling
characteristic of the problem. Qualitatively speaking, the approaches proposed
in each of the aforementioned chapters have their own pros and cons as briefly
outlined next. On the one hand, the "Method of Freezing" with reduced-basis
approximations, proposed in Chapter 8, is able to handle the smooth initial
data, but suffers to (generically and efficiently) deal with the scenarios where
the wavefronts interact and merge. On the other hand, the approach proposed
in Chapter 9 is quite effective at dealing with the merging and the interaction
of the wavefronts, but is limited to deal with the non-smooth initial data. A
dedicated study is required in the future to develop a generic MOR framework
that can effectively handle any type of the initial data and also deal with the
merging and the interaction of the propagating wavefronts.

10.2 Outlook and recommendations for future work

In this section, recommendations are presented for further research in the scope
of modelling and structure-preserving discretization of hydraulic systems, and
in the scope of model order reduction of transport-dominated problems. We
provide recommendations in a broader sense both from the perspectives of the-
ory and application. The recommendations are summarized below.

R1 In Chapters 3 and 4, we presented port-Hamiltonian formulations for
single-phase and two-phase flow models accounting for flows across con-
stant and smoothly varying geometrical cross-sections. We recall that the
proposed/derived Stokes-Dirac structures are defined under the smooth-
ness and differentiability constraints, for instance on the state variables,
see Theorem 3.4.9, Theorem 3.4.11, Proposition 4.2.9 and Proposition
4.2.10. Such constraints are an outcome of the classical theory that hinges
on the fundamental lemma of calculus of variations, i.e., Lemma 3.4.8,
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and it is mathematically hard to define the Stokes-Dirac structures under
non-classical evolution of states. However, it is well-known that single-
phase and two-phase flow models can lead to shock fronts, rarefaction
waves and contact discontinuities. Moreover, non-smooth variations in
cross-sections are also admissible in real life applications, including MPD.
All these aforementioned situations eventually result in an instantaneous
jump in the state variables. Such a discontinuous evolution renders the
classical definitions of Stokes-Dirac structures inapplicable. In other words,
the structures defined in this dissertation are restrictive and fail to ac-
count for discontinuous behaviour (or an instantaneous jump). A par-
allel can, however, be drawn between switched dynamical systems and
the problems with evolving discontinuities. Few major works in the di-
rection of port-Hamiltonian representations for switched dynamical sys-
tems include [180,183]. These kind of dynamical systems encompass the
applications that require modelling fast transitions in physical systems,
which include power converters, robotics, hydraulic networks, etc. There
exist notions of switched Dirac structures. However, most of the work
in the realm of switched Dirac structures has been performed for finite-
dimensional dynamical systems. In the scope of the aforementioned chal-
lenge, it would be interesting to extend the definitions of finite-dimensional
switched Dirac structures to an infinite-dimensional setting and, ultimately,
obtain infinite-dimensional Stokes-Dirac structures in the scope of a large
class of system of hyperbolic PDEs.

R2 An alternative thread could be pursued in order to meet the objective
set out in R1. For instance, we know that the DFM can admit three dis-
continuous wavefronts, and that the solutions are smooth away from the
location of discontinuities. Also, the relation between the states at the left
and the right of the discontinuity can be obtained via Rankine-Hugoniot
conditions, for instance, see [177] in the scope of Euler equations. The
Rankine-Hugoniot principles can be used to find the relations between the
left and right states of a discontinuity in the scope of the DFM (and also
the TFM). Furthermore, we already know that Stokes-Dirac structures, de-
rived in Chapters 3 and 4, hold in the regions away from the discontinu-
ities. In the spirit of compositional port-Hamiltonian modelling pursued in
Chapter 4, and with the knowledge in hand, the objective laid in R1 would
be achieved if a finite-dimensional Dirac structure can be shown to exist
across the interface of a discontinuity. Similar ideas, though in the scope
of extrusion process modelling, have been pursued in the past [50]. Ba-
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sically, port-Hamiltonian systems have previously been coupled through
fixed and moving interface(s) [49], and an inspiration can be drawn to
prove the existence of the Dirac structure at the moving interface in vari-
ous contexts. To summarize, the objective (also related to R1) would be
to study the dynamics at the interface and cast it into a finite-dimensional
Dirac structure representation.

R3 Furthermore, looking from another viewpoint but related to R2 to some
extent, it is known that a drilling scenario, called tripping, includes axial
pipe movements, i.e., movements in the drill string. These axial move-
ments, which lead to so called water hammer effects, are essential to be
incorporated in the mathematical model governing the hydraulic dynam-
ics. While we composed the sub-systems in the scope of MPD applications
in Chapter 4, we did not account for the moving dynamics of the drill
string. Encoding such moving dynamics into a port-Hamiltonian struc-
ture will take us a step closer to obtain a holistic modelling and control
framework for MPD systems.

R4 In Chapters 3 and 4, we have derived the dissipative Hamiltonian repre-
sentations of the DFM and the associated Stokes-Dirac structures under
the assumption of zero slip conditions. It is also worth mentioning that
some of our attempts in the scope of developing a dissipative Hamiltonian
representation for the DFM with the Zuber-Findlay slip conditions have
been futile. There is an impression that the DFM with the Zuber-Findlay
slip conditions admits a port-Hamiltonian structure that holds condition-
ally. Such a conditional existence could potentially be linked to the condi-
tional hyperbolicity of the DFM under the Zuber-Findlay slip conditions.
In the first place, the applicability of the DFM under the loss of hyperbol-
icity is a serious (open) question. It could be argued that the model is
no longer physical in the regime dictating the loss of hyperbolicity and,
eventually, a corresponding port-Hamiltonian structure, which has physi-
cal premise, cannot be envisioned. It would be valuable to anyways assess
the link between the conditional hyperbolicity of the model and the condi-
tional existence of a corresponding port-Hamiltonian structure in a rather
rigorous sense. Furthermore, it would be worth to investigate whether
the dissipative Hamiltonian representations and the associated Stokes-Dirac
structures can be developed for the Zuber-Findlay slip conditions and gen-
eral slip laws. Alternatively, a potential research direction could be to find
the slip laws that are energy-consistent, and also render port-Hamiltonian
representations.
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R5 In Chapters 3 and 4, the boundary port variables are described in a non-
unique manner. In principle, it would be ideal to derive an admissible
set of boundary conditions in a parametrized way similar to [101], where
a parametrization was derived for a canonical skew-symmetric differen-
tial operator. A similar parametrization is, however, non-trivial for state-
dependent Stokes-Dirac structures obtained for the TFM and the DFM
without slip. As a consequence, fundamental modifications/extensions to
the theory in [101, 194] are needed to obtain parametrization of bound-
ary port variables in the scope of non-linear distributed parameter port-
Hamiltonian systems.

R6 The theoretical development of the framework for the structure-preserving
discretization constituted a major emphasis in Chapter 5. In the scope of
the numerical analysis, we conducted only one case study and assessed
the performance of the structure-preserving discretization framework, in
particular of the structure-preserving spatial discretization methodology.
Firstly, a rigourous numerical assessment should be performed for support-
ing the laid theoretical foundations. Secondly, the topic of the numerical
stability deserves a dedicated attention. Recall that, under certain spatial
and temporal mesh resolutions, we observed numerical instabilities after
a finite number of time steps for the test case with uniform conditions and
without any resistive/dissipative effects. We care to stress that the numer-
ical case study considered the structure-preserving spatial discretization
and employed non structure-preserving explicit time-integrators for the
reasons mentioned in Chapter 5. One could associate the observed insta-
bilities to non structure-preserving time-discretization techniques. How-
ever, there are definitely some phenomena occurring at a numerical level,
which are potentially not due to the choice of time-discretization tech-
niques, since the numerical instabilities are not observed at relatively
coarser spatial mesh resolutions even for a larger temporal step size. Gener-
ically speaking, the finer the mesh, the better are the results, which even-
tually tend to converge to the "truth" (mesh-independent) solutions. How-
ever, this does not seem to be the case here, and the source of the afore-
mentioned numerical phenomena needs to be better understood. It would
be valuable to derive an analogue of the CFL condition in order to quan-
tify the regime of numerical stability in the scope of the structure-preserving
port-Hamiltonian discretization framework. While such a measure would
largely be problem specific, the development of a general theory for the
numerical (in)stability, particularly for the (lossless) conservative setting,
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would aid significant advances in the port-Hamiltonian community. It is
also worth mentioning that the numerical stability is not offered as ’a free
lunch’ if the structure-preserving spatial and temporal discretization tech-
niques are employed. The quantity characteristic to port-Hamiltonian sys-
tems is the dissipation inequality or passivity, which is required to be pre-
served while developing finite-dimensional port-Hamiltonian representa-
tions. While the passivity and the stability can be closely related for the
linear systems, it is hard to make any statements on the stability for a pas-
sive non-linear system. A theoretical advancement is needed to fill the gap
by coining a methodology to study the (non-linear) stability with an a-priori
knowledge of the passivity of the system.

R7 In Chapter 5, we essentially discretized (extended) Stokes-Dirac structures
to obtain (extended) continuous-time, finite-dimensional and discrete-
time, finite-dimensional Dirac structures. Since the Stokes-Dirac struc-
tures are associated to classical solutions, the initial conditions and the
final simulation time is constrained to be chosen such that the solution
still belongs to the admissible function class. However, such a numerical
setting defers us from numerical simulations of interesting and relevant
features (such as moving shocks) of two-phase flow models. Closely tied
to the modelling aspect mentioned in R1, extending the developed theoret-
ical framework of structure-preserving discretization to be able to deal with
moving sharp gradient features would be of added value. Alternatively, it
might be meaningful to assess the developed theoretical structure-preserving
discretization framework even on situations admitting non-smooth solution
behaviour. The results can be subsequently studied/analyzed numerically.
In particular, it would be of significant interest to quantify the deviation
of the obtained results from the exact or accepted "truth" solutions.

R8 In Chapters 3 and 4, we resorted to model reformulations by eliminat-
ing auxilliary variables to obtain a system of PDEs with as many un-
knowns as equations. In other words, we converted an implicit system
of conservation and balance equations together with closure equations
into an explicit system of conservation and balance equations. Subse-
quently, we developed port-Hamiltonian representations. However, such
a methodology is not modular, for instance, model reformulations are a
must and all the steps have to be repeated even for a small change in the
type of equation of state or the slip law. Furthermore, the algebraic con-
straints (or closure laws) may not be exactly preserved in the discretized
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(or reduced) models if the starting point of port-Hamiltonian represen-
tations is the aforementioned model reformulation. In the pursuit to
develop a modular framework and preserve algebraic constraints, port-
Hamiltonian descriptor realizations, i.e., port-Hamiltonian partial differ-
ential algebraic equations (pH-PDAEs), are deemed suitable. General
representations of port-Hamiltonian differential algebraic equations (pH-
DAEs) have recently been introduced in [123]. The authors in [123] also
claim that this framework can be used to describe pH-PDAEs. However,
the existing framework in the scope of pH-PDAEs still has a room of general-
ization since the two-phase flow models, such as the DFM, cannot be for-
mulated in terms of pH-PDAE representations as in [123]. Furthermore,
structure-preserving discretization (and reduction) of pH-PDAEs is largely
an open question, and has not yet been taken up in the community. In
the scope of this open challenge, structure-perserving spatial discretization
of pH-PDAEs needs significant attention since other existing concepts can
then be utilized to proceed with the discretization and, ultimately, finite-
dimensional realizations.

R9 The framework developed in Chapters 3,4 and 5 should be exploited to
perform model order reduction, and controller and observer design in the
scope of MPD systems, and other applications where the studied single- and
two-phase flow models are also employed.

R10 In scope of the DFM, we have either assumed zero slip between the phases
or considered the Zuber-Findlay slip conditions; see Chapters 3 - 7. In
other words, we have considered a specific flow regime throughout the
wellbore. However, in principle, various flow regimes exist across differ-
ent sections of the wellbore. This indicates that the flux function in the
underlying hyperbolic PDE will be spatially dependent. Hence, overall,
the flux function will depend on both state and its spatial derivative. Al-
though some work has been done to develop numerical methods for spa-
tially dependent flux functions for hyperbolic PDEs, such an aspect has not
been considered so far in the scope of the TFM and the DFM. It would be
worth to incorporate the effect of multiple flow regimes across the wellbore
(mathematically speaking, spatially dependent flux functions) to simulate a
scenario closer to reality and, subsequently, to validate the results against
field experiments.

R11 In the scope of the MOR framework proposed in Chapter 8, it would be
of significant interest to pursue theoretical analysis pertaining to the design
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of partition functions, the choice of number of co-moving frames, and flux
re-distribution principle. The vision of such a theoretical analysis would
be to yield the decomposed solution features that are appealling from the
model order reduction point of view. Such a study would also help to
increase the level of automation in the proposed framework, i.e., fewer
"tunable" parameters would have to be manually tuned, and the choice of
"tunable" parameters would, in principle, have a sound theoretical basis.
This study will also potentially serve as a stepping stone to the possibility
of generalization of the framework.

R12 The MOR frameworks, proposed in Chapters 8 and 9, specifically deal with
one-dimensional scalar conservation laws, and in particular Burgers’ equa-
tion. Out of the two similar, yet different frameworks, the one proposed in
Chapter 9 seems promising in dealing with multiple moving, interacting
and merging scenarios. Hence, this framework deserves further investi-
gation. Although the proposed framework fares better than the standard
MOR framework, it is worth to study the possibility to further reduce the
dimension of the obtained reduced-order models under interaction/merger
of wavefronts. Also, the role of the number of neighbouring mesh cells in the
computation of the "jump" and, eventually, in the behaviour of the reduced-
order model needs to be rigorously investigated theoretically. Furthermore,
it is of interest to extend the framework in Chapter 9 to be able to deal with
system of non-linear conservation laws, such as the DFM and the TFM, and
also deal with multi-dimensional transport-dominated problems. Moreover,
in the quest of achieving significant cost savings, the performance of the
proposed framework should be assessed in conjunction with the Empirical
Operator Interpolation.

R13 The reduced-order models, developed in Chapters 7 - 9, possess an issue
of stability apart from the ones related to the resulting computational ac-
curacy and the (reduced) dimension. This occurs since the stability is not
inherently taken into account in the discussed frameworks. The topic of
stability is critical, particularly for problems with (moving) discontinuities
and non-differentiable features. It would be worth to develop a framework
or to extend the one proposed in Chapter 9 such that the stability of the
reduced-order model can also be guaranteed. In the scope of this aim, it
would be significantly valuable to delve into the concepts of Discontinuous
Petrov-Galerkin methods, which possess a nice property of stability, and use
the idea to embed the stability in the reduced-order models.
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Summary

Structure-preserving model order reduction for drilling
automation

The aim of the thesis is to develop a framework for multi-phase hydraulic
modelling and model-complexity reduction for conservation laws governed by
non-linear hyperbolic partial differential equations (PDEs) in the scope of drilling
automation. This work is a first step towards obtaining accurate and simple
enough (multi-phase) hydraulic models. The central goal is to develop model
reduction techniques that enable effective handling of distributed nonlinearities
and delays (due to pressure wave propagation), guarantee the preservation of
key system properties (such as stability and input-output behavior), efficiently
capture the relevant phenomena over the various spatio-temporal scales and
solve at a good level of accuracy within a reasonable computing time. Such
reduced-order models, developed by uniquely combining high predictive capac-
ity and low complexity, will enable the usage of hydraulic models in virtual
drilling scenario testing, estimator and controller design and drilling automa-
tion strategies for down-hole pressure management in the case of gas-influx into
the well.

Hydraulics in a Managed Pressure Drilling (MPD) model can be charac-
terized by interconnection of subsystems governed by single- and two-phase
flow models, and, mathematical models governed by non-linear ordinary dif-
ferential equations (for instance, a hydraulic model across a bit). We adopt
a port-Hamiltonian (pH) framework for modelling and (structure-preserving)
discretization of hydraulic systems since such formulations have several key
properties that include passivity, shifted passivity, existence of Casimirs and
compositionality. In particular, we develop pH representations (with respect
to Stokes-Dirac structures) for single-phase flow models with spatially (and
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temporally) varying cross-sections and for two-phase flow models, namely the
Two-Fluid Model (TFM) and the Drift Flux Model (DFM), with constant and
spatially (and temporally) varying cross-sections. We also exploit the property
of compositionality and compose a network of pH systems for an MPD set-up
via a power-preserving interconnection. Furthermore, we develop a framework
for structure-preserving discretization of state-dependent, non-linear infinite-
dimensional pH representations of two-phase flow models by employing (and
extending) the concept of mixed Finite Element Methods and Gauss-Legendre
collocation methods. Moreover, we perform the numerical analysis of the two-
phase flow model, in particular the DFM, by using the principles of the Finite
Volume Method, and numerically estimate the discretization error.

The response of single- and multi-phase hydraulic models is known to be
dominated by wave propagation characteristics. Moving discontinuities (shock-
fronts) are representative features of such class of models. These moving dis-
continuous features pose a major hindrance to obtain effective reduced-order
model representations. Hence, we investigate and propose efficient, advanced
and automated approaches to obtain reduced models, while still guaranteeing
the accurate approximation of wave-front propagation (and wave interaction)
phenomena (induced by slow or fast transients). We propose new model order
reduction (MOR) approach(es) to obtain effective reduction for such transport-
dominated problems or hyperbolic PDEs. We test our framework on challenging
scenarios, such as multiple moving and possibly merging discontinuities, that
embody the features of critical interest in the scope of multi-phase hydraulic
models. Numerical case-studies show the potential of the approach in terms of
computational accuracy compared with standard existing MOR techniques.

The two contributions of this thesis include: i) (compositional) modelling
and structure-preserving discretization of pH systems, and, ii) MOR for transport-
dominated problems as a drive towards obtaining an online-effective reduced-
order representation. On the one hand, the structure-preserving reduced-order
counterpart developed using a pH framework may be inherently stable/passive,
but not of lowest possible dimension. On the other hand, the novel model reduc-
tion approach, built around the principle of the “method of freezing”/symmetry
reduction, yields (nearly) online-effective reduced-order models, but is not nec-
essarily stable. The two fields, treated separately in this work, have been pur-
sued with a bigger goal in mind of future unification of these two aspects of min-
imality and stability in order to obtain a minimal structure-preserving reduced-
order model for transport-dominated problems or hyperbolic PDEs, particularly
characterized by moving discontinuous features for scalar and system of conser-
vation laws.
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