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Chapter 1

Introduction

Many current challenges in the context of real-time feedback control require that
the communication channels between sensors, controllers and actuators must be
shared with other (unknown) applications. Sharing a communication channel
naturally implies that network behavior related to properties that are crucial
to real-time feedback control, such as the data rate, will be uncertain. The
control community has realized that the sharing of communication resources
and the uncertainty of the network undermines basic assumptions on which
(traditional) feedback controllers rely. Therefore, the field of networked con-
trol systems (NCSs) is currently (further) developing theory and novel control
algorithms which can guarantee control properties, such as stability and perfor-
mance, in the presence of uncertain communication.

The sharing of communication channels is most common when the com-
munication distance is large due to the high installation costs of each channel.
Systems which span across such large distances are often desired to be controlled
in a decentralized manner. Therefore, the combination of NCS theory and de-
centralized control theory emerges as a highly relevant research field and, forms
the general topic that has been identified in this thesis. Before elaborating on
the specific contributions of the thesis, in the next section we will provide a brief
overview of how telecommunications advances have already enabled a variety of
control relevant applications to solve modern-day challenges, and, highlight new
control challenges for which current telecommunication advances do not offer a
solution.

1.1 Motivation

The dawn of the smart phone has caused data demand to skyrocket, thereby,
driving the telecommunications field to grow by leaps and bounds in an effort
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to meet this demand. It is possible today to have a faster internet connection
almost anywhere in the world via a hand-held smart phone with a 3G connec-
tion (14 Mbit/s) than just 20 years ago via a large PC with a dial-up modem
connection (56 Kbit/s). These high-speed networks can easily be connected to
and can, therefore, be used to create communication channels which can be, and
have already been, exploited by a variety of control related applications such as
wireless sensor networks (WSNs) and motion control.

WSNs have already been successful in exploiting wireless telecommunica-
tion advances in a variety of monitoring applications. These applications in-
clude forest fire detection [39, 70], air pollution monitoring [81], patient health
monitoring [27] and structural monitoring [124], just to mention a few. WSNs
are allowed to operate in the unlicensed 2.4GHz band, in which there are cur-
rently three major standards available: IEEE 802.11 for wireless local area
networks (WLAN/WiFi), IEEE 802.15.1 for wireless personal area networks
(WPAN/Bluetooth) and IEEE 802.15.4 for low-rate wireless personal area net-
works (LR-WPAN). Due to its low data rate, low power consumption and low
cost, IEEE 802.15.4 is a very suitable candidate for battery-powered WSNs.
Specifically, the IEEE 802.15.4 standard specifies the physical layer and the
media access control (MAC) layer for LR-WPANs. The ZigBee, ISA100.11a,
WirelessHART, and MiWi specifications are all different architectures (com-
monly referred to as ‘stacks’) built upon the IEEE 802.15.4 standard in an effort
to create a general networking architecture flexible enough to handle a variety
of potential applications. Due to the wide variety of applications, open-source
operating systems such as TinyOS [75] and the WaspMote API have been de-
veloped by computer science communities to enable developers to easily interact
with these devices and to contribute to the constantly growing software library.

Although motion control has not yet been able to (fully) exploit wireless
technology, it has been able to successfully exploit wired telecommunication
advances. A controller area network (CAN) bus [74], introduced in 1986, is a
dedicated wired network architecture designed originally for automotive systems
to cope with the increasingly large number of electrical systems within automo-
biles which must communicate in order to operate properly. Currently, like IEEE
802.15.4, the CAN standard has many custom architectures built upon it to serve
many different application areas other than automotive automation, including
industrial automation (DeviceNet, CANopen, SynqNet), aircraft and aerospace
automation (CANaerospace, ARINC 825), building automation (VSCP) and
many more. The reason for the popularity of the CAN standard is that, besides
the benefit of huge reductions in wiring, it is highly reliable. CAN has the ability
to guarantee a very high quality of service (QoS) level for control applications, in
the sense that it guarantees time-critical control related data will have priority
over other systems sharing the bus and that the latency is negligible.

However, in several new (motion) control challenges such a high QoS is not
available, e.g. especially in wireless environments. One of these new control chal-
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lenges regards the development of cooperative adaptive cruise control (CACC)
for vehicles. The research community focusing on this approach studies the
consequences of having vehicles wirelessly communicate in an effort to reduce
traffic congestion by autonomously regulating the spacing between vehicles that
are following each other [96,97,103]. It is obvious that communication between
vehicles can only be implemented over a wireless network; therefore, the un-
certainty inherent in wireless communication is unavoidable. This networked
uncertainty forms an interesting challenge for such a real-time feedback control
application since it may produce unsatisfactory performance or could even cause
vehicles to collide if not dealt with appropriately. Another situation, where a
high QoS of the network cannot be guaranteed, which is problematic for control
applications, occurs when communication is via the internet. The uncertainty of
internet traffic induces a significant variation in the data rate which limits tradi-
tionally designed controllers from achieving desired levels of performance [2,66].
So, although in the past, the telecommunication advances were able to provide a
high QoS for control applications (e.g. via a dedicated CAN bus), current chal-
lenges requiring more recent telecommunication advances (e.g. such as wireless
networks and the internet) impose a necessity to (further) develop control theory
in order to reliably use them in a real-time control context.

The ability of WSNs to still operate satisfactorily in monitoring applications
can be attributed to the dynamics being slow in general where as the dynam-
ics of control systems are typically faster (which is especially true for motion
control systems). Hence, monitoring applications do not suffer as much from
data-rate related issues as real-time control applications do. As experienced by
every cell phone user, there are times when the data-rate varies and even com-
pletely drops out when using a wireless telecommunication network. In order
for (motion) control applications to take advantage of the (globally) available
high-speed data network provided by telecommunication advances, NCS theory
must be (further) developed so that a fundamental understanding of control
properties, such as stability and performance, in relation to properties of this
(uncertain) communication medium can be obtained.

Other classes of new (motion) control challenges where a high QoS is not
available involve the control of large-scale systems. Arguably the most signifi-
cant advantage of current telecommunication networks is the ability to commu-
nicate across large (even interplanetary) distances. Installing dedicated wires
across even hundreds of meters for a particular application becomes expensive
and reduces the flexibility of the network layout. Moreover, implementing a
centralized controller that must collect all control-related data at one central
location in order to regulate systems which span across hundreds of meters is
often impractical due to the long communication distances required. As an ex-
ample, the EU-project WIDE, which supported the work in this thesis, focused
on regulating a city-wide water distribution system that spans anywhere from
a few hundred meters to tens of kilometers. Such an application benefits from



4 Chapter 1. Introduction

decentralized control implemented over communication networks. On the one
hand, using existing telecommunication networks offers a technological solution
for the expensive implementation (of the control strategies) based on installing
dedicated wires between all control devices. On the other hand, decentralized
regulation and coordination of this system is desirable for maintenance purposes
since occasionally the city is forced to shut down one section of the system and
it is desirable not to disrupt the operation of the rest of the system. Therefore,
the combination of NCS theory and decentralized control theory emerges as a
highly relevant research field, for which, a fundamental understanding is needed
of the joint effect of the decentralization of controllers and the networking com-
munication on system performance.

Summarizing, although the advances in telecommunication are steadily ex-
panding the diameter and distance of the data pipe, the uncertainty of net-
worked traffic worries and deters control engineers from using this communi-
cation medium for real-time feedback control applications. Trusty and reliable,
wired point-to-point communication is what control engineers conventionally rely
on. However, breaking free of the dependence on dedicated wiring for commu-
nication will solve many current challenges as well as open up many interesting
possibilities, and, therefore forms a highly relevant research field. This thesis
addresses four main challenges in this context:

(i.) the robust stability analysis of NCSs,

(ii.) robust decentralized controller synthesis for NCSs,

(iii.) software development aiming at making the tools for stability analysis
and controller synthesis for NCSs accessible to both control engineers and
theorists,

(iv.) experimental validation of network models and existing NCS stability anal-
ysis techniques.

In the remainder of this chapter, we will provide a general introduction to these
four topics, specific details regarding the related research objectives and obtained
contributions, and, an outline of the thesis. Detailed literature reviews can be
found in the individual chapters.

1.2 Control via Networked Communication

Classical control theory relies on the fact that communication between sensors,
actuators and controllers is ideal, meaning that data is communicated and com-
puted with zero delay and infinite precision. Of course, due to physical limi-
tations, any means of digital communication (and computation) induces a non-
zero delay and finite precision. Nevertheless, this assumption is acceptable when
the communication (and computation) hardware used for control is sufficiently
fast compared to the dynamics. In fact, under this assumption, a vast litera-
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ture on control theory is available which led to great advancements in automo-
tive applications, commercial air transportation, electron microscope technology,
high-tech manufacturing, satellite precision and reliability, space exploration and
many more high-tech applications.

However, the assumption of sufficiently fast hardware can be (extremely)
expensive to accommodate in practice, and in some situations, this assumption
simply cannot be met. Two specific examples of applications in which this
assumption can be only met at extreme cost are the regulation of a city-wide
water distribution system and cooperative vehicle following, mentioned earlier.
When the assumption on ideal communication (and computation) cannot be
made, the classical theory is no longer applicable and there are basically two
options. The first option is to purchase the most expensive hardware available to
attain as close to ideal communication (and computation) as financially possible
(which still may produce unsatisfactory behavior). The second option is to
develop and use (NCS) theory to be able to specify under what conditions slower,
less expensive, hardware can be used reliably in the sense of still guaranteeing
proper closed-loop behavior. This thesis presents results which work towards
making the second option possible by contributing towards the development of
NCS theory.

Networked control theory, which studies the properties of control systems
such as the one schematically depicted in Fig. 1.1, is built upon the realization
that there exist many relevant real-time feedback control applications where
communication between sensors, actuators and controllers is not always perfect.
Specifically, several network-induced effects can be introduced in the closed-loop:

• the presence of a shared communication medium,

• varying sampling/transmission intervals,

• varying transmission delays,

• packet dropouts,

• quantization.

It is generally known that any of these phenomenon degrade performance and
can even threaten closed-loop stability, see, e.g. [29, 63, 128]. Depending on the
network and/or application, the influence/importance of each of these five effects
can vary quite significantly. For example, systems which are able to transmit
sensor data in one packet do not suffer from a shared communication medium
but it might take longer to collect all the data and prepare the transmission
of the packet, resulting in delays (latencies) being dominant. Another exam-
ple is constituted by the case where sensors share a wired CAN bus, inducing
network sharing between the sensors, but packet dropouts and delays rarely oc-
cur due to the high QoS of the CAN communication infrastructure. The final
example we would like to present is the wireless stabilization of an experimen-
tal pendulum/cart setup described in Chapter 5 of this thesis in which all five
network-induced effects are present simultaneously. Therefore, it is important
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Figure 1.1: Block schematic of a networked control system.

to work with modeling and analysis frameworks which are general enough to
include all five effects.

In fact, in this thesis, we present two such frameworks: in Chapter 2, we
describe a framework based on jump-flow systems [52] and, in Chapter 3, we
describe a framework based on discrete-time switched linear systems [76,82] with
parametric uncertainty. These two frameworks are special cases within hybrid
system theory [32, 51, 56], which one typically resorts to when analyzing NCSs
subject to the mentioned network-induced imperfections. Hybrid system theory
was created to understand systems with both continuous flow dynamics and
discrete jump dynamics. Clearly, in an NCS the plant dynamics are continuous
while the network acts in a discrete, packet-based, fashion. Thus, the tools of
hybrid system theory can be used to determine specific properties of an NCS.
In fact, advances in hybrid system theory have enabled the NCS community to
relatively swiftly produce many breakthroughs over the past decade [12, 63, 72,
128].

Even though the two mentioned modeling and analysis frameworks for NCSs
are capable of dealing with all five network-induced imperfections, in this the-
sis, we concentrate our attention on the first three effects. The first effect, the
presence of a shared communication medium, requires a communication pro-
tocol which schedules the control related data. Although other authors have
considered the case when the protocol is stochastic, see, e.g. [6, 120], we as-
sume that the communication protocol is a deterministic process, as also as-
sumed in [38, 58, 94, 122]. The next two effects, varying transmission intervals
and varying transmission delays, are typically not considered to be determin-
istic and models for these effects come in different flavors in the NCS litera-
ture. Many authors have focused on the case where stochastic information is
included in models for delays and transmission intervals via a probability dis-
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tribution function [37, 63, 84, 114] or a Markov chain [112, 113]. In this thesis
we focus our attention on the ‘probability distribution free’ case, as also studied
in [28, 29, 38, 44, 58, 88, 94, 128]. In this case, the time-varying and uncertain
transmission intervals and transmission delays are taken from a bounded set,
without presuming any knowledge on the particular probability distribution of
this bounded support. Of course, if a reliable and accurate stochastic model of
the communication channels can be obtained, it is always more beneficial to use
incorporate this information into the model and analysis. However, in general,
an accurate stochastic model can be difficult to obtain, see, e.g. [9] and [72, p31-
74]. In any case, having a variety of tools available which consider different
network modeling assumptions is beneficial since networks exhibit very different
behaviors depending on the network configurations and the network standards
(e.g. 3G, WiFi, Bluetooth, CAN, etc.). For example, a ‘well-behaved’ dedicated
network which can be accurately modeled can exploit the advances in stochastic
NCS theory, while a more ‘volatile’ network subject to data traffic uncertainties
does not have an accurate stochastic representation, and, can make use of the
advances in the ‘probability distribution free’ case.

Besides the consideration of a variety of modeling assumptions of network-
induced effects, the NCS literature contains many different results regarding dif-
ferent classes of plant and controller models. Currently, there are many existing
results available on robust stability analysis of NCSs tailored to linear time-
invariant (LTI) plants and LTI controllers. For example, linear static controllers
were considered in [29,44,47,91,123], linear dynamic controllers were considered
in [38, 122] and observer-based controllers were considered in [84]. Robust sta-
bility analysis methods, which not only admit linear plants and controller but
also nonlinear plants and controllers, have been based on the jump-flow system
framework in [58, 94, 95]. One main drawback of their approach is that it was
shown to be conservative when applied to the special case of linear systems [38].
Therefore, it is important to further develop analysis techniques in the jump-flow
system framework which preserve the rare ability to analyze nonlinear systems,
while reducing the conservatism of the analysis. Chapter 2 describes a robust
stability analysis procedure which has been shown to reduce the conservatism of
the stability analysis within the jump-flow system framework.

1.3 Decentralized Control via Networked
Communication

The decentralization of controllers offers many possible benefits, namely, a
decrease in computation demand, an increase in the ease of reconfigurability, and
an increase in robustness towards a centralized failure. Decentralized control is
of particular interest for large-scale systems that are physically distributed over a
wide area, thereby rendering the wiring of all sensors, controllers and actuators
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expensive or impractical. Examples of such distributed systems are electrical
power distribution networks [20], water transportation networks [23], industrial
factories [85] and energy collection networks (such as wind farms [69,98]). Hence,
creating analysis and design tools for decentralized controllers operating over
(wireless) links is an important enabler for making decentralized control more
realistically applicable.

Although the benefits of combining decentralized control with networked
control (as depicted in Fig. 1.2) are clear, solving the controller synthesis and
stability analysis problem, however, is extremely challenging. In addition to the
challenges introduced by uncertain networked communication, decentralization,
which has been studied for the past forty years, see, e.g. the early results [3,111],
introduces different challenges and, still to this day, includes many open prob-
lems. Most notably, the problem of optimal decentralized controller synthesis
still remains (mostly) open. Recently, the authors in [110] were able to char-
acterize the set of decentralized problems which allow for convex synthesis of
optimal static feedback controllers via a condition called quadratic invariance.
Other recent challenges in decentralized control can be found in the survey [13]
and the references therein.

Despite the challenges, both decentralized control and networked control have
many useful theoretical tools available in the literature. Forging new theoretical
tools that are based on combining the theoretical tools available in both of
these fields and investigating their effectiveness serve as the first steps towards
developing a more comprehensive theory leading to control structures for this
increasingly relevant field. Working within the discrete-time switched linear
systems framework, Chapter 3 is the result from our effort in this endeavor
toward solving this complex but increasingly relevant problem.

1.4 NCS Analysis Software

The previous two sections motivated the development of novel theoretical tools
for the analysis and synthesis of (decentralized) controllers which are communi-
cating via shared networks. Just as important to developing such theory, is to
make the results readily accessible for the control community by developing nu-
merical tools that can easily analyze and synthesize NCSs. Despite the number of
breakthroughs in the field of NCS [12,63,72,128], currently there does not exist a
software toolbox so that engineers and theorists can easily apply the developed
NCS theory. Although toolboxes which analyze NCSs currently do not exist,
toolboxes which simulate NCSs have existed for almost a decade, see, e.g. [24].
Simulation toolboxes are useful because they can provide an accurate snapshot
impression of how the NCS will behave, but due to the inherent uncertainties of
NCSs, simulations can not provide any (long term) guarantees of control relevant
properties. Therefore, analysis toolboxes that guarantee control relevant proper-
ties of NCSs are needed to provide control engineers with tools that can bestow
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Figure 1.2: A decentralized NCS.

the peace of mind which comes with the guarantee of control relevant properties.
To pioneer the development of a general NCS toolbox which can assess control
relevant properties, Chapter 4 presents a prototype toolbox that has (amongst
other benefits) automated the theoretical developments in [29, 38,58,79].

In addition to providing software which can analyze the network configura-
tions addressed in the supporting literature, we would like our toolbox to be
versatile enough to aid in the analysis of very general network configurations
and the network standards (e.g. 3G, WiFi, Bluetooth, CAN, etc.). Therefore,
the toolbox design process itself is a fruitful process since it forces the designers
to think about how the theory can be generalized in a way that the (networked)
control community finds useful. Specifically, through the development of this
toolbox, we have been able to generalize the type of closed-loop NCS models
which are able to be analyzed. Meaning that, in addition to being able to an-
alyze the closed-loop models studied in the supporting literature, a user can
also analyze custom closed-loop models with the toolbox (given the closed-loop
model is able to be written in the presented general form). In this way, we are
empowering the community with software tools which can assess control relevant
properties in a variety of different network configurations. With the creation of
this toolbox, we are advocating that the NCS community also starts making
tools available which are able to not only reproduce published results, but also
to be customizable. Chapter 4 provides the details regarding our effort to achieve
this secondary goal.
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1.5 Closing the Wireless Feedback Loop
Experimentally

Once the tools for modeling and analysis of NCSs are available in software,
the next important step is validating the theory via experimental studies. In
the NCS setting, experiments are important for a number of reasons: (i) it pro-
vides insight into how real-life NCSs behave, (ii) it provides insight into which
network modeling assumptions are valid for different practical network config-
urations and (iii) it provides an indication of the conservatism of the applied
analysis/synthesis techniques. Linking developed theories to numerical tools
and experimental setups creates a “research feedback loop” from which deeper
insight can be gained.

Fortunately, it is currently becoming increasingly easier to close this feedback
loop (i.e. building an experimental networked control setup) partially due to the
success of WSNs. The TelosB [105] and the WaspMote are examples of versatile
wireless devices that have open-source operating systems systems which have
been developed by computer science communities to enable developers to easily
interact with these devices and to contribute to the constantly growing software
library. By using these open-source devices which are commercially available,
the code developed as a result of the work done in this thesis can be directly
implemented on compatible devices, thereby enabling other research groups to
quickly build similar experimental setups to verify their own theory or use our
developed software for analysis. In Chapter 5, we use TelosB devices to close
the wireless feedback loop on an experimental inverted pendulum/cart setup.

1.6 Objectives and Contributions

It is important to develop techniques and tools that can be used to analyze
and/or improve robustness properties of (decentralized) control systems which
communicate via a shared communication network. Therefore, the research ob-
jectives addressed in this thesis are stated as follows:

• develop theoretical tools for stability analysis of NCSs,

• develop theoretical tools for net-aware decentralized controller synthesis,

• develop a software toolbox for the analysis of NCSs,

• validate the theory and tools on a wireless control experimental case study.

In the area of analyzing robustness properties of stability with respect to
network-induced effects, a sum of squares (SOS) approach [73, 100, 101] for a
class of nonlinear NCSs incorporating bounded time-varying delays, bounded
time-varying transmission intervals and a shared communication medium will
be developed in Chapter 2. Mathematical models that describe these nonlinear
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NCSs will be provided and transformed into suitable hybrid systems formula-
tions. Based on these hybrid systems formulations, Lyapunov functions will be
constructed using SOS techniques that can be solved using linear matrix inequal-
ity (LMI)-based computational techniques. This will lead to several beneficial
features: (i) plants and controllers which are described by piecewise polyno-
mial differential equations can be analyzed, (ii) in contrast with various existing
approaches for NCSs, non-zero lower bounds on the delays and transmission in-
tervals can be incorporated, (iii) more flexibility in the Lyapunov functions is
allowed, thereby obtaining less conservative estimates of the maximal allowable
transmission intervals (MATI) and maximal allowable delay (MAD), and finally
(iv) it provides an automated method to address stability analysis problems in
nonlinear NCS.

Regarding the design of network-aware decentralized controllers guaranteeing
robust stability properties with respect to network-induced effects, a systematic
technique will be developed in Chapter 3. This technique offers an approach
to the synthesis of decentralized observer-based output-feedback controllers for
linear plants where the controllers, sensors and actuators are connected via a
shared communication network subject to time-varying transmission intervals
and delays. To effectively deal with the shared communication medium us-
ing observer-based controllers, we will adopt a switched observer structure that
switches based on the received measured outputs and a switched controller struc-
ture that switches based on the received control inputs at each transmission
time. By taking a discrete-time switched linear system perspective on model-
ing these decentralized NCSs, we will be able to derive a general model that
captures all these networked and decentralized control aspects. The proposed
synthesis method is based on decomposing the closed-loop model into a multi-
gain switched static output-feedback form. This decomposition will allow for
the formulation of LMI-based synthesis conditions which, if satisfied, provide
stabilizing observer-based controllers, which are both decentralized and robust
to network effects.

The developed theoretical contributions are crucial to obtain an improved
understanding of tradeoffs in NCSs. However, developing tools which implement
the theory is an equally important step towards making the results available for
practical usage and dissemination. For this reason, Chapter 4 introduces the
first prototype of a toolbox which was developed to automate (robust) stability
analysis and controller design for NCSs. Specifically, it will be shown that the
toolbox can be employed to efficiently verify if a linear time-invariant (LTI) plant
and an LTI controller interconnected with a shared network are robust to certain
network imperfections. We will explain how we aim to achieve the main intention
of the toolbox, which is to make the available theory readily accessible to and
applicable for the general control community. Additionally, it will be seen that
the software structure enables the incorporation of custom models or custom
stability/performance analysis conditions, enabling the control community to



12 Chapter 1. Introduction

contribute to the toolbox in an easy manner.
Finally, in Chapter 5, the experimental case study involving a wireless control

system used to stabilize an inverted pendulum will be investigated. In particular,
the communication network itself will be analyzed such that the network-induced
effects can be characterized, in terms of bounds on the transmission intervals
and transmission delays. With these bounds, the numerical toolbox discussed
above will be applied. The analysis done will provide the robustness regions
for different performance specifications, which aid in tuning the controller to
achieve more closed-loop robustness with respect to the network-induced effects.
This will be used to illustrate the effectiveness of the developed theory in an
experimental setting.

1.7 Outline of Thesis

This thesis is divided into four main chapters. Each of the chapters is based on a
research paper and is therefore self-contained with respect to the other chapters
and chapters can be read independently.

Chapter 2: In this chapter, the stability analysis of NCSs based on sum
of squares (SOS) techniques will be considered. The network-induced effects
considered are time-varying transmission intervals, time-varying delays and a
shared communication medium. This chapter is based on the journal paper [17],
of which a preliminary version was presented in [16].

Chapter 3: In this chapter, the problem of decentralized observer-based con-
troller synthesis for NCSs is considered using a discrete-time switched linear sys-
tems approach. The network-induced effects considered are time-varying trans-
mission intervals, time-varying delays and a shared communication medium.
This chapter is based on [14], of which an earlier version was presented in [15].

Chapter 4: In this chapter, the software toolbox aiding stability analysis
for NCS is discussed. This chapter is based on [18].

Chapter 5: In this chapter, wireless control experiments on a cart/pen-
dulum setup are provided and analyzed. The experiments were conducted to
validate the recently developed theory.

Finally, conclusions will be drawn in Chapter 6 and recommendations for
future research will be made.



Chapter 2

Stability Analysis of NCSs:
A Sum of Squares Approach

“We think in generalities, but we live in details.”

- Alfred North Whitehead

2.1 Introduction

Stability of networked control systems (NCSs) received considerable attention
in recent years and several approaches are currently available for tackling this
challenging problem. A distinction between the various approaches can be made
on the basis of the modeling setup being adopted, the types of plants and con-
trollers being allowed, and the network-induced imperfections being covered. In
particular, the network-induced imperfections can roughly be divided into the
following five categories: (i) quantization errors in the signals transmitted over
the network due to the finite word length of the packets, (ii) packet dropouts
caused by the unreliability of the network, (iii) variable sampling/transmission
intervals, (iv) variable communication delays (being smaller or larger than the
transmission interval) and (v) a shared communication medium imposing that
only one node consisting of several actuators and sensors is allowed to transmit
its information per transmission. The latter requires the presence of a network
protocol that schedules which node gets access to the network at a transmission
instant. In the analysis of NCSs exhibiting one or more of these networked-
induced imperfections, several research lines can be distinguished.

A first line of research that can be distinguished is the discrete-time modeling
approach, see e.g. [28, 29, 38, 47, 50, 59, 64, 115, 119, 123], which applies to linear
plants and linear controllers and is based on exact discretization of the NCS be-
tween two transmission times. The resulting discrete-time linear model in which
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the uncertain parameters such as the delay and transmission interval appear in
an exponential form are overapproximated by polytopic models in which new
uncertain parameters are introduced that appear in an affine form. These mod-
els are amendable for robust stability analysis methods based on linear matrix
inequalities (LMIs). The most general discrete-time modeling approaches, in the
sense of including the largest number of the above network-induced imperfec-
tions, are [28] including (ii), (iii) and (iv) (small and large delays), and [38] (ii),
(iii) and (v) (only allowing so-called periodic and quadratic protocols), where
(iv) with small delays can be easily included. Interestingly, in [38] the controllers
can be both in a continuous-time or discrete-time form. Based on these models
any of the available overapproximation techniques [59] can be applied to ob-
tain polytopic models. In [59] a comparison is presented between the different
overapproximation methods and the subsequent LMI-based stability analysis.

A second line of research on NCSs adopts the sampled-data modeling ap-
proach, which uses continuous-time models that describe the NCS dynamics in
the continuous-time domain (so without exploiting any form of discretization)
and perform stability analysis based on these sampled-data NCS models directly,
see e.g. [43, 45, 125, 127]. The models are in the form of delay-differential equa-
tions (DDEs) and Lyapunov-Krasovskii-functionals are used to assess stability
based on LMIs. In [83] it is shown that the use of such an approach for digi-
tal control systems neglects the piecewise constant nature of the control signal
due to the zero-order-hold mechanism thereby introducing conservatism when
exploiting such modeling for stability analysis. This spurred the development
of an alternative approach, recently proposed in [90, 91], which is based on im-
pulsive DDEs that do take into account the piecewise constant nature of the
control signal. Constructive LMI-based stability conditions in the latter line of
work apply for linear plants and linear controllers. These LMI conditions cannot
exploit the availability of non-zero lower bounds on transmission intervals and
delays in the sense that they always apply to the case where the minimum delay
and transmission interval are equal to zero. This approach includes (ii)-(iv) as
network-induced imperfections.

A third line of research is formed by the continuous-time modeling (or em-
ulation) approaches, which are inspired by the work in [122], and extended
in [22,25,58,92,94,95] and the recent work [57] that includes all five of the men-
tioned communication imperfections albeit under some restrictive assumptions.
To describe the NCS, this research line exploits the hybrid modeling formalisms
as advocated in [51]. The stability of the resulting hybrid system model is based
on Lyapunov functions constructed by combining separate Lyapunov functions
for the network-free closed-loop system (which has to be designed to satisfy
certain stability properties) on the one hand and the network protocol on the
other hand (or, alternatively, adopting directly small gain arguments). General
network protocols are allowed and the plant and controller in this context can
also be of a general nonlinear form, but have to be given as continuous-time
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differential equations. In addition Lp performance analysis [58,94] can be easily
incorporated in this framework. The available stability conditions all apply only
for the case of zero lower bounds on the transmission intervals and delays.

In this chapter we propose an alternative computational method for stabil-
ity analysis of NCSs, which from a modeling point of view is closest to the
continuous-time modeling approach as just discussed, although it includes also
the models based on impulsive DDEs [90, 91, 123], see Remark 2.4 in the main
text. In particular, we will consider here NCSs that exhibit varying transmis-
sion intervals, varying delays and a shared communication medium. In fact, a
preliminary version of our approach, applying to the case where the communi-
cation medium is not shared, is presented in [16]. In this extended version, we
adopt rather general NCS models including a shared communication medium.
These models will be converted into hybrid systems formulations [51]. Assum-
ing piecewise polynomial plant dynamics (including piecewise affine systems),
piecewise polynomial controller dynamics, and piecewise polynomial protocols
(characterized more precisely below) which include the well-known Round Robin
(RR) and Try-Once-Discard (TOD) protocols, Lyapunov functions can be con-
structed using sum of squares (SOS) tools [73, 100, 101]. As a result, this will
lead to LMI-based tests for stability given bounds on the delays and transmission
intervals. As such, this approach has the following beneficial features: (1) we
can deal with nonlinear (piecewise) polynomial controllers and systems, while
the constructive conditions in the discrete-time and sampled-data approach only
can handle linear plants and controllers, (2) we can easily incorporate non-zero
lower bounds on the transmission interval and delays, (3) we allow more flexi-
bility in the Lyapunov functions thereby obtaining less conservative results than
prior emulation-based approaches, see, e.g. [58, 94], (4) we can include perfor-
mance analysis in terms of Lp gains of the continuous-time NCS, which is much
harder for, for instance, the discrete-time approach due to the absence of in-
tersample behavior in the discrete-time models, (5) we obtain an automated
one-shot method to address stability analysis problems in nonlinear NCS, and
(6) we do not have to discretize nor perform any polytopic overapproximations
as in the discrete-time approach. Hence, the SOS-based stability analysis for
NCSs offers many (different) advantages with respect to the various methods
that already exist in the literature.

The rest of the chapter is organized as follows. In Section 2.2, we will present
the general NCS model. Next in Section 2.3, we will provide the relevant theory
for hybrid system stability and show how the stability conditions can be trans-
formed into SOS problems. In particular, we present a procedure that can deal
with the characteristics and peculiarities of the NCS models at hand. Finally
in Section 2.4, four examples will demonstrate the strengths of the proposed
approach.
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2.2 NCS Model

In this section, we describe a general NCS model that is schematically depicted
in Fig. 1.1. The specific model we consider here was discussed in [58], which
extends earlier work [94], that was inspired by [122]. This model includes time-
varying delays, time-varying transmission intervals and a shared communication
medium. In addition, dropouts might be included by modeling them as prolon-
gations of transmission intervals.

2.2.1 Description of the NCS

Consider the continuous-time plant

ẋp = fp(xp, û), y = gp(xp), (2.1)

in which xp ∈ R
np denotes the state of the plant, û ∈ R

nu denotes the control
values being implemented at the plant and y ∈ R

ny is the output of the plant.
The plant is controlled over a shared communication network by a controller,
given by

ẋc = fc(xc, ŷ), u = gc(xc, ŷ), (2.2)

where the variable xc ∈ R
nc is the state of the controller, ŷ ∈ R

ny contains the
most recent output measurements of the plant that are available at the controller
and u ∈ R

nu denotes the controller output. The presence of a communication
network causes u �= û and y �= ŷ, as indicated in Fig. 1.1. In particular, the
considered NCS setup assumes that the sensor acts in a time-driven fashion and
that both the controller and the actuator act in an event-driven fashion (i.e.
responding instantaneously to newly arrived data). The controller, sensors, and
actuators are connected through a shared network subject to varying transmis-
sion intervals and varying delays. The fact that the network imposes a shared
communication medium implies that not all sensor and actuator data can be
transmitted simultaneously and scheduling by a network protocol is necessary.

Varying Transmission Intervals

At the transmission instants, tk ∈ R≥0, k ∈ N, the plant outputs and control
values are sampled and sent over the network. The transmission instants tk
satisfy

tk =

k−1∑
i=0

hi ∀k ∈ N, (2.3)

which are non-equidistantly spaced in time due to the time-varying transmission
intervals hk := tk+1 − tk, with hk ∈ [hmin, hmax] for all k ∈ N, for some 0 ≤
hmin ≤ hmax. In the literature, see e.g. [58, 94, 122], where often hmin = 0,
hmax is sometimes called the maximally allowable transmission interval (MATI).
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We assume that the sequence of transmission instants t0, t1, t2, . . . is strictly
increasing in the sense that tk+1 > tk, for all k ∈ N and limk→∞ tk = ∞.

Varying Delays

The transmitted control values and measurement values are received after a
delay τk ∈ R≥0, with τk ∈ [τmin, τmax], for all k ∈ N, where 0 ≤ τmin ≤ τmax.
More specifically, the sensor measurements received by the controller, denoted
by ŷ, and the control commands received by the actuator(s), denoted by û, can
be expressed as ŷ(tk + τk) = y(tk) and û(tk + τk) = u(tk), respectively. In the
literature (e.g. [58], where τmin = 0), τmax is sometimes called the maximal
allowable delay (MAD). The delay is primarily due to the speed at which the
data travels through the network. Given the speed of current communication
hardware, it is realistic in several practical situations to assume that the delay
is smaller than the transmission interval required for control purposes. As such,
the following standing assumption is adopted to describe the admissible range
of transmission intervals and delays.

Assumption 2.1. The transmission intervals satisfy 0 ≤ hmin ≤ hk ≤ hmax

and hk > 0 for all k ∈ N such that limk→∞ tk = ∞, and the delays satisfy
0 ≤ τmin ≤ τk ≤ min{τmax, hk}, k ∈ N.

The latter condition implies that each transmitted packet arrives before the
next sample is taken (i.e. the so-called small delay case). Hence, under Assump-
tion 2.1, without loss of generality we can assume that τmax ≤ hmax.

Remark 2.1. Note that the small-delay case can always be obtained in practice
if the delays are bounded. This can be achieved by choosing the minimal trans-
mission/sampling interval hmin such that Assumption 2.1 is satisfied. However,
since increasing the minimal transmission interval might be undesirable from
both a stability and performance perspective, we refer the reader to, e.g. the
recent work [28,29], for the case where ‘large-delays’ are considered (along with
time-varying transmission intervals and dropouts), albeit in a different modeling
framework. �

Remark 2.2. Here we consider a channel-independent (global) bound on the
delay τk as considered in [58]. This implies that the delay bound is the same
for every input and output channel. Although the extension toward channel-
dependent delay bounds, i.e. τ ik ∈ [τ imin, τ

i
max], i ∈ {1, 2, ..., nu + ny}, can be

envisioned within this framework, here we focus only on the channel-independent
delay. The reason for doing so is to keep the main focus of the chapter on
(i) detailing how the SOS conditions which can guarantee robust stability can
be formulated, and, (ii) showing that the resulting robustness bounds can be
improved compared to the previous work [58]. �
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Shared Communication Medium

A shared communication medium prevents all control values and measurement
values from being sent at each transmission time. A collection of sensors and/or
actuators that are allowed to transmit their data simultaneously over the network
is called a node. In practical situations each node typically corresponds to either
a collection of sensors or a collection of actuators. At each transmission time tk,
k ∈ N, a protocol determines which node σk ∈ {1, 2, . . . , N} is granted access
to the network. We will use the left-continuous piecewise constant function
σ : R≥0 → {1, ..., N} given by

σ(t) = σk, t ∈ (tk, tk+1], k ∈ N, (2.4)

such that σ(t), t ∈ R≥0, is the node that was granted access at the most recent
transmission instant before time t. The sensors/actuators corresponding to the
node, which are granted access, collect their corresponding values in y(tk) or
u(tk) that will be sent over the communication network. They will arrive after
a transmission delay of τk time units, i.e. at time tk + τk.

To model this setup properly, we will denote the latest information available
at the plant as û and the latest information available at the controller as ŷ. In
addition, we will define the network-induced errors ey = ŷ − y and eu = û − u
to describe the difference between what is the most recent information that is
available at the controller/plant and the current value of the plant/controller
output, respectively. Sometimes we will write e = (eu, ey) ∈ R

ne , where we use
the notation (ey, eu) := [e�y , e

�
u ]

� and ne = ny + nu. In between the updates of
ŷ and û, the network is assumed to operate in a zero-order-hold (ZOH) fashion,
meaning that the values of ŷ and û remain constant in between the updating
times tk + τk and tk+1 + τk+1. At times tk + τk, k ∈ N, the updates satisfy

ŷ((tk + τk)
+) = y(tk) + hy(σ(tk), e(tk)) (2.5a)

û((tk + τk)
+) = u(tk) + hu(σ(tk), e(tk)). (2.5b)

The functions hy and hu are update functions that are related to the protocol,
which will be explained in more detail in the next paragraph. Based on (2.5) and
the ZOH assumption, the network-induced error ey for y behaves at the update
times tk + τk according to

ey((tk + τk)
+) = ŷ((tk + τk)

+)− y(tk + τk)

= y(tk) + hy(σ(tk), e(tk))− y(tk + τk)

= hy(σ(tk), e(tk)) + y(tk)− ŷ(tk)︸ ︷︷ ︸
−ey(tk)

+ ŷ(tk + τk)− y(tk + τk)︸ ︷︷ ︸
ey(tk+τk)

= hy(σ(tk), e(tk))− ey(tk) + ey(tk + τk),

where we used that ŷ(tk) = ŷ(tk + τk), which holds due the ZOH assumption.
A similar derivation holds for the network-induced error eu. Combining hu and
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hy into one function h as h = (hu, hy) leads to the network-induced error model

e((tk + τk)
+) = h(σ(tk), e(tk))− e(tk) + e(tk + τk). (2.6)

Remark 2.3. Note that here we adopt a ZOH assumption between updates, as
it is the standard convention for digital-to-analog signal conversion. Alterna-
tively, a generalized (possibly model-based) hold which predicts future control
values can be implemented at the actuators and a model-based estimator can be
implemented at the controller, as in e.g. [25, 106]. �

To provide insight into how the protocol h operates, let us consider the
two most well-known protocols being the Round Robin (RR) protocol and the
Try-Once-Discard (TOD) protocol. To introduce them, the error vector e will
be partitioned as e = (e1, e2, . . . , eN ) according to the nodes and the function
h will be partitioned similarly as h = (h1, ..., hN ), where N is the number of
nodes. In many situations, including the RR and TOD protocols, the proto-
col function h is given as h(σ, e) = h̃(δ(σ, e), e), where h̃(j, e) describes how
the updates in (2.5) take place when node j gets access to the network, and
δ : {1, ..., N} × R

ne → {1, ..., N} describes which node is given access. In partic-
ular, which node σk ∈ {1, ..., N} gets access to the network at the transmission
time tk is based on the previous node σ(tk) that got access at tk−1, and the
network-induced error e(tk) at tk. Although other choices for h̃ are possible (see
e.g. Example 2 in [95]), in most cases h̃ is defined as

h̃i(j, e) :=

{
0, if i = j,
ei, otherwise

(2.7)

for i, j ∈ {1, 2, . . . , N} and e ∈ R
ne . Hence, h̃ expresses that when node j gets

network access, the outputs yi that belong to node j satisfy ŷi((tk + τk)
+) =

yi(tk), according to (2.5), while the outputs not corresponding to node j are
not updated. Similar statements hold, of course, for the control inputs u. This
indicates that the values of ŷ and û corresponding to the node that gets access
are updated at time tk+τk to the values of y and u at time tk, which is natural for
many practical cases. Using the definition of h̃ as in (2.7), the RR protocol is now
specified by h(σ, e) = h̃(δRR(σ, e), e) with δRR(σ, e) defined for σ ∈ {1, ..., N}
and e ∈ R

ne by
δRR(σ, e) := (σ mod N) + 1 (2.8)

where mod denotes the modulo operator. For the TOD protocol, h(σ, e) =
h̃(δTOD(σ, e), e) with δTOD(σ, e) defined for σ ∈ {1, ..., N} and e ∈ R

ne by

δTOD(σ, e) := argmax |ej |, j = 1, ..., N. (2.9)

where | · | denotes the Euclidian norm. Hence, the RR protocol grants each
node access to the network in a periodic fashion, whereas the TOD protocol
grants access to whichever node has the largest network-induced error |ei(tk)| at



20
Chapter 2. Stability Analysis of NCSs:

A Sum of Squares Approach

transmission time tk, k ∈ N. In the case where two nodes have the largest error
magnitude, one node is chosen arbitrarily.

The problem that we aim to solve in this chapter is to determine stability
of the NCS given the protocol, such as the RR or TOD protocol, and bounds
hmin, hmax, τmin and τmax as in Assumption 2.1, or to determine these bounds
such that stability is guaranteed.

2.2.2 Hybrid System Formulation

To facilitate the stability analysis, the NCS model is transformed into a hybrid
system [51], [58] of the form

ξ̇ = F (ξ), ξ ∈ C, (2.10a)

ξ+ = G(ξ), ξ ∈ D, (2.10b)

where C and D are subsets of Rnξ , F : C → R
nξ and G : D → R

nξ are mappings
and ξ+ denotes the value of the state directly after the reset. We denote the
hybrid system (2.10) in brief sometimes by its data (C,D, F,G).

To transform the NCS setup given by (2.1)-(2.2) and (2.5) into (2.10), the
auxiliary variables1 s ∈ R

ne , τ ∈ [0, hmax], σ ∈ {1, ..., N} and � ∈ {0, 1} are
introduced to reformulate the model in terms of so-called flow equations (2.10a)
and reset equations (2.10b). The variable s is an auxiliary variable containing
the memory storing the value h(σ(tk), e(tk))− e(tk) at tk for the update of e at
the update instant tk + τk as in (2.6), τ is a timer to keep track of how much
time elapsed since the last transmission event, σ denotes the latest node that
got access to the network, as in (2.4), and � is a Boolean keeping track whether
the next event is a transmission event or an update event. To be precise, when
� = 0 the next event will be related to transmission (at times tk, k ∈ N) and
when � = 1 the next event will be an update (at times tk + τk, k ∈ N).

The state of our hybrid system ΣNCS is chosen as ξ = (x, e, s, τ, σ, �) ∈ R
nξ ,

where x = (xp, xc). The continuous flow map F can now be defined as

F (ξ) := (f(x, e), g(x, e), 0, 1, 0, 0), (2.11)

where f , g are appropriately defined functions depending on fp, gp, fc and gc.
See [94] for the explicit expressions of f and g. The state s is specified as a
memory variable, therefore, ṡ = 0. The state τ is a timer variable and thus
τ̇ = 1. Finally, the states σ and � are integer valued, which implies σ̇ = �̇ = 0.
Flow according to ξ̇ = F (ξ) occurs when the state ξ lies in the flow set

C := {ξ ∈ R
nξ | (� = 0 ∧ τ ∈ [0, hmax])

∨(� = 1 ∧ τ ∈ [0, τmax])}, (2.12)

1Here we slightly divert from the models as used in [58, 94, 122] where the hybrid system
had the state κ ∈ N, which indicated the number of the transmission, instead of σ ∈ {1, ..., N}.
This modification is more convenient for our purposes of stability analysis based on sum of
squares.
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Figure 2.1: One possible evolution of the states τ and �. This visually
conveys how these states are used in the definition of the sets
C and D (given in (2.12) and (2.15), respectively) in order to
model transmissions (at times tk, k ∈ N), i.e. applying (2.13),
and receptions/updates (at times tk+τk, k ∈ N), i.e. applying
(2.14), according to Assumption 2.1.

where ∧ denotes the logical ‘and’ operator and ∨ denotes the logical (non-
exclusive) ‘or’ operator. The jump map G inducing resets

(x+, e+, s+, τ+, σ+, �+) = G(x, e, s, τ, σ, �),

is obtained by combining the “transmission reset relations,” active at the trans-
mission instants {tk}k∈N, and the “update reset relations”, active at the update
instants {tk+τk}k∈N. Using (2.6), the jump map G is defined at the transmission
resets (when � = 0) as

G(x, e, s, τ, σ, 0) := (x, e, h(σ, e)− e, 0, δ(σ, e), 1) (2.13)

and the update resets (when � = 1) as

G(x, e, s, τ, σ, 1) := (x, s+ e, 0, τ, σ, 0). (2.14)

Note that when � = 1 the update s+ can be chosen arbitrarily since the state
variable s does not influence the future evolution of other state variables. We
choose s+ := 0 for convenience. The jump map G is allowed to reset the system
when the state is in the jump set

D := {ξ ∈ R
nξ | (� = 0 ∧ τ ∈ [hmin, hmax])

∨(� = 1 ∧ τ ∈ [τmin, τmax])}. (2.15)
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Note that the sets C and D are defined by a combination of the state variables
� and τ . Moreover, notice that in (2.13) and (2.14), � changes its value from 0
to 1 and vice versa, respectively, and τ is reset to 0 only in (2.13). Due to this
combination of � and τ and Assumption 2.1, only one timer variable is needed
for constraining both delays and transmission times. Fig. 2.1 is provided to help
visualize this explanation.

Finally, we define the equilibrium set of the hybrid system

A := {ξ ∈ C ∪D| x = 0 ∧ e = s = 0}, (2.16)

for which we would like to prove stability. Hence, the informal stability problem
phrased at the end of Section 2.2.1 translates now to the question of determining
global asymptotic stability (GAS) of the set A for ΣNCS := (C,D, F,G) (see [51]
for exact definitions of global asymptotic stability of sets). For the remainder of
the chapter, we will define

χ := (x, e, s) ∈ R
nχ , (2.17)

as this is the part of the state vector for which we would like to show convergence
to zero.
Remark 2.4. The sampled-data system as considered in [89], which lumped the
sensor-controller and controller-actuator delays into one delay, was modeled as
an impulsive delay-differential equation and focused on linear plant dynamics
ẋp = Axp + Bû with system matrix A, input matrix B and state feedback
controllers of the form u = −Kxp (i.e. y = xp = x). This model can also
be expressed in this hybrid framework by omitting σ, eu and xc and taking
f(x, e) = (A−BK)x−BKe, g(x, e) = (−A + BK)x + BKe and h(σ, e) = 0.
Note that, h(σ, e) = 0 implies that (2.5) simplifies to ŷ((tk + τk)

+) = y(tk). �

2.3 Stability Analysis

In this section, we will show how the set A of the hybrid NCS model ΣNCS

can be shown to be GAS by exploiting SOS techniques. We will first state
some fundamental hybrid system stability results relevant to our purposes and
then present the corresponding SOS theorems, which will be exploited to set up
SOS-based stability conditions for the presented NCS model.

2.3.1 Stability of Hybrid Systems

In this section, we will briefly summarize the relevant stability theory for a hybrid
system (2.10), as detailed in [51, 52]. First, we will formalize what is meant by
GAS for a compact set A of a hybrid system (2.10). Then we will provide the
relevant theorem on how GAS can be proven via Lyapunov-based arguments.
Before formalizing the GAS property, we define the distance of a vector ξ to the
set A as |ξ|A := infξ′∈A |ξ − ξ′|.
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Definition 2.1. [51] A compact set A ⊂ R
nξ of a hybrid system Σ = (C,F,D,G),

for which every solution exists for all times t ∈ [0,∞), is globally asymptotically
stable (GAS) if

(i.) for each ε > 0 there exists a δ > 0 such that |ξ(0)|A ≤ δ implies |ξ(t)|A ≤ ε
for all solutions ξ of Σ and all t ∈ R≥0 (i.e. A is stable),

(ii.) for any ξ(0) ∈ R
nξ it holds that |ξ(t)|A → 0 as t → ∞ (i.e. A is globally

attractive).

Next, we will use the following definition to specify a Lyapunov function
candidate V : dom V → R, with dom V ⊆ R

nξ , for a hybrid system as in (2.10).
We will use the concept of a sublevel set of V on a subset Ξ of dom V , which is
a set of the form {ξ ∈ Ξ | V (ξ) ≤ c} for some c ∈ R.

Definition 2.2. [51] Consider a hybrid system Σ = (C,D, F,G) and a compact
set A ⊂ R

nξ . The function V : dom V → R, with C∪D ⊆ dom V , is a Lyapunov
function candidate for (Σ,A) if

(i.) V is continuous and nonnegative on (C ∪D)\A ⊂ domV ,

(ii.) V is continuously differentiable on an open set O satisfying C\A ⊂ O ⊂
dom V ,

(iii.)
lim

x→A,x∈dom V ∩(C∪D)
V (x) = 0,

(iv.) the sublevel sets of V on dom V ∩ (C ∪D) are compact.

Finally, to prove GAS of the set A, we will make use of the following theorem,
where we use the notation 〈·, ·〉 to denote the standard inner product in Euclidean
spaces.

Theorem 2.1. Consider a hybrid system Σ = (C,F,D,G) and a compact set
A ⊂ R

nξ satisfying G(D ∩ A) ⊂ A. If every solution of Σ exists for all times
t ∈ [0,∞) and there exists a Lyapunov function candidate V for (Σ,A) that
satisfies Definition 2.2 and

〈∇V (ξ), F (ξ)〉 < 0 for all ξ ∈ C\A (2.18)

V (G(ξ))− V (ξ) ≤ 0 for all ξ ∈ D\A, (2.19)

then the set A is GAS.

Proof The proof can be based on [51].

2.3.2 Stability Using SOS Techniques

Constructing suitable Lyapunov functions to prove stability is known to be a
hard problem, certainly in the nonlinear and hybrid context. Here, we provide
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a computational approach to this problem based on polynomial Lyapunov func-
tions and sum of squares (SOS) techniques [26,60,73,99–101]. To formally define
a SOS we use the following definition, in which we use the notation R[x1, ..., xn]
to denote the set of polynomials in n variables x1, ..., xn with real coefficients.

Definition 2.3. A polynomial p ∈ R[x1, ..., xn] is called a sum of squares
if there exist m ∈ N and polynomials p1, p2, ..., pm ∈ R[x1, ..., xn] such that
p(x) =

∑m
i=1 p

2
i (x) for all x ∈ R

n.

Based on this definition, which implies that sum of squares are always non-
negative, inequalities, as in (2.18)2 and (2.19), can be guaranteed to be true if
their left-hand sides can be expressed as sums of squares (where S-procedure like
relaxations [21] can be used to incorporate the regional information ξ ∈ C\A
in (2.18) and ξ ∈ D\A in (2.19)). The appeal of SOS is that the solution
can be computed using convex semidefinite programming techniques. Indeed
p(x) =

∑m
i=1 p

2
i (x) can be checked by finding a positive semidefinite matrix Q,

and a vector of monomials Z(x) such that p(x) = Z�(x)QZ(x) for all x. If
a positive semidefinite matrix Q is found, we can use Choleski factorization to
obtain Q = L�L for some matrix L and thus write p(x) as a sum of squares
p(x) = Z�(x)L�LZ(x) = |LZ(x)|2 =

∑
i (LiZ(x))2, where Li denotes the ith

row of L, see e.g. [26, 73, 101] for more details.
In the context of stability of hybrid systems (2.10), when F and G are piece-

wise polynomial functions (which in the case of the NCS models presented ear-
lier, is true when fc, fp, h are piecewise polynomial and gc, gp are polynomial)
on their domains C and D, the Lyapunov stability conditions in Theorem 2.1
can be transformed into a set of polynomial inequalities. To formalize this idea,
we provide the following two definitions.

Definition 2.4. A set B is called a basic semialgebraic set if it can be described
as

B = { x ∈ R
n | bj(x) ≥ 0, j = 1, ..., nB and b̄l(x) = 0, l = 1, ..., n̄B}

for certain polynomials bj ∈ R[x1, ..., xn], j = 1, ..., nB, and b̄l ∈ R[x1, ..., xn], l =
1, ..., n̄B.

Definition 2.5. A function p : Ω → R with Ω ⊆ R
n is called piecewise

polynomial if there are M basic semialgebraic sets Ω1, ...,ΩM and polynomials
p1, ..., pM ∈ R[x1, ..., xn] such that

(i) Ω =
M⋃
i=1

Ωi,

(ii) ∀x ∈ Ω there exists an i ∈ {1, ...,M}
such that p(x) = pi(x) and x ∈ Ωi.

2Notice here that (2.18) is a strict inequality and requires special treatment, as done later.
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Remark 2.5. Note that in this definition the sets Ω1, ...,ΩM may overlap, which
is convenient as basic semialgebraic sets are closed and are not given by strict
inequalities. Basically stability of the hybrid system will be proven no matter
which pi(x) (e.g. in the flow or jumps of (2.10)) will be chosen in regions that
overlap. As such, also the arbitrariness in the TOD protocol (i.e. when two nodes
have the same largest networked induced error, see (2.9) and the discussion after
(2.9)) can be incorporated. �

To apply SOS techniques to the hybrid model (2.10), F : C → R
nξ and

G : D → R
nξ need to be piecewise polynomial as in Definition 2.5. The sets

C and D can then be expressed as C = ∪I
i=1Ci and D = ∪M

m=1Dm with
Ci, i = 1, ..., I, and Dm,m = 1, ...,M , basic semialgebraic sets, meaning that

Ci = {ξ ∈ R
nξ | ci,j(ξ) ≥ 0, for j = 1, .., ni

C ,
c̄i,l(ξ) = 0, for l = 1, .., n̄i

C}, (2.20)

Dm = {ξ ∈ R
nξ | dm,j(ξ) ≥ 0, for j = 1, .., nm

D ,
d̄m,l(ξ) = 0, for l = 1, .., n̄m

D} (2.21)

where ci,j , c̄i,l, dm,j and d̄m,l ∈ R[ξ] are polynomials. Moreover, there are polyno-
mials F1, ..., FI and G1, ..., GM such that for each ξ ∈ C there is an i ∈ {1, ..., I}
such that F (ξ) = Fi(ξ) and ξ ∈ Ci, and for each ξ ∈ D there is an m ∈ {1, ...,M}
such that G(ξ) = Gm(ξ) and ξ ∈ Dm. Hence, the hybrid system (2.10) can then
also be expressed as

ξ̇ = Fi(ξ), ξ ∈ Ci, i = 1, ..., I, (2.22a)

ξ+ = Gm(ξ), ξ ∈ Dm, m = 1, ...,M. (2.22b)

Remark 2.6. Note that, in general, a possible consequence of casting a hybrid
system of the general form (2.10) into the specific form (2.22) is the admittance
of a slightly richer set of solutions. This is due to the modeling restrictions we
specify for the model (2.22), e.g. the fact that Ci and Dm must be expressed as
semi-algebraic sets, in order to later apply SOS techniques. Interestingly, with
the modeling assumptions considered in this chapter, the NCS can be cast into
the form (2.22) without enriching the solution set. �

We will use the above notation to expand Theorem 2.1 in the spirit of [100] by
applying a technique similar to the S-procedure [21], called the positivstellensatz
[73,101], in order to encode the information that the inequalities (2.18) and (2.19)
only have to be satisfied on the sets C\A and D\A into the inequalities.

Theorem 2.2. Consider a hybrid system Σ = (C,F,D,G) as in (2.22) with the
sets C = ∪I

i=1Ci and D = ∪M
m=1Dm, where Ci is of the form (2.20) and Dm is

of the form (2.21), and Fi and Gm are polynomial functions for all i = 1, ..., I
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and m = 1, ...,M . Furthermore, consider a compact set A ⊂ R
nξ satisfying

G(D ∩ A) ⊂ A. If every solution of Σ exists for all times t ∈ [0,∞) and there ex-
ist (i.) a Lyapunov function candidate V for (Σ,A) that satisfies Definition 2.2,
(ii.) polynomials r̄i,l, s̄m,l ∈ R[ξ] and (iii.) SOS polynomials ri,j , sm,j ∈ R[ξ]
such that

〈∇V (ξ), Fi(ξ)〉+
ni
C∑

j=1

ri,j(ξ)ci,j(ξ)+

+

n̄i
C∑

l=1

r̄i,l(ξ)c̄i,l(ξ) < 0 ∀ ξ �∈ A, i = 1, ..., I, (2.23)

V (Gm(ξ))− V (ξ) +

nm
D∑

j=1

sm,j(ξ)dm,j(ξ)+

+

n̄m
D∑

l=1

s̄m,l(ξ)d̄m,l(ξ) ≤ 0 ∀ ξ �∈ A, m = 1, ...M, (2.24)

then the set A is GAS.

Proof If (2.23) holds, then since the terms ri,j(ξ)ci,j(ξ) are nonnega-
tive and the terms r̄i,j(ξ)c̄i,j(ξ) are zero when ξ ∈ Ci, it must be true that
〈∇V (ξ), Fi(ξ)〉 < 0 when ξ ∈ Ci\A. Using the fact that C = ∪I

i=1Ci and for
all ξ ∈ C there exists an i such that ξ ∈ Ci and F (ξ) = Fi(ξ), we have that
〈∇V (ξ), F (ξ)〉 < 0 when ξ ∈ C\A. Hence, (2.18) holds. By the same reason-
ing, if (2.24) holds then (2.19) must hold. Thus, if the function V satisfies the
hypotheses of Theorem 2.2, then it also satisfies the hypotheses of Theorem 2.1
thereby proving GAS of A. �
Remark 2.7. The SOS relaxation technique as in Theorem 2.2 can also be ap-
plied to encode that the (polynomial) function V only has to be nonnegative
on (C ∪D)\A (as required in Definition 2.2) into (polynomial) inequalities. We
encode this by introducing polynomials p̄m,l, q̄i,l ∈ R[ξ] and SOS polynomials
pm,j , qi,j ∈ R[ξ] leading to the following inequalities

V (ξ)−
ni
C∑

j=1

qi,j(ξ)ci,j(ξ)−
n̄i
C∑

l=1

q̄i,l(ξ)c̄i,l(ξ) ≥ 0,

∀ξ /∈ A, ∀i = 1, ..., I, (2.25)

V (ξ)−
nm
D∑

j=1

pm,j(ξ)dm,j(ξ)−
n̄m
D∑

l=1

p̄m,l(ξ)d̄m,l(ξ) ≥ 0,

∀ξ /∈ A, ∀m = 1, ...,M, (2.26)

which indeed guarantee that V (ξ) ≥ 0 for ξ ∈ (C ∪D)\A. �
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Remark 2.8. In Theorem 2.2 and Remark 2.7 we only used the polynomial con-
straints that define Ci and Dm themselves to relax the stability conditions,
and not their products. For instance, in (2.23) we could have also added
terms as

∑
l

∑
l̃ ri,l,l̃(ξ)ci,l(ξ)ci,l̃(ξ) with ri,l,l̃(ξ) SOS and still guarantee that

〈∇V (ξ), Fi(ξ)〉 < 0 when ξ ∈ Ci\A. Clearly this would result in a further
relaxation with respect to (2.23) (at the expense of a larger SOS program).
See [26,73,101] for more details on these relaxations, which can be implemented
for the stability analysis of NCSs along the same lines as discussed in this chap-
ter. For ease of exposition we restricted ourselves to the form in (2.23), (2.24),
(2.25) and (2.26) excluding such products. �

SOS conditions only guarantee non-negativity of polynomials (i.e. non-strict
inequalities) but proving asymptotic stability requires the Lyapunov derivative
(2.23) being negative definite (satisfying a strict inequality). Thus, we need a
way to verify that a given polynomial function is negative or positive definite
by checking SOS (positive semidefinite) conditions. We will use the following
proposition from [99] to check for positive definiteness of a given polynomial.

Proposition 2.1. Given a polynomial p ∈ R[ξ] of degree 2d, let W (ξ) =∑nξ

i=1

∑d
j=1 εi,jξ

2j
i be such that

d∑
j=1

εi,j > γ for all i = 1, ..., n (2.27)

with γ a positive number, and εi,j ≥ 0 for all i and j. Then the condition

p(ξ)−W (ξ) ≥ 0 (p(ξ)−W (ξ) is SOS) (2.28)

guarantees the positive definiteness of p, i.e. p(ξ) > 0 for all ξ �= 0.

Proposition 2.1 and Theorem 2.2 form the basis to build the SOS programs
that can prove stability of our NCS model (2.10) with (2.11)-(2.15).

2.3.3 Stability of Hybrid NCS Models via SOS Techniques

In this section we will specify how to verify GAS of the set A, as defined in (2.16),
of the hybrid NCS models using SOS techniques. We will distinguish three
cases. In all three cases, we choose a Lyapunov function candidate satisfying
Definition 2.2. Specifically, the candidate we choose is polynomial and we impose
as a constraint that it can be written as a SOS (using S-procedure like relaxations
as in Remark 2.7) so that (i.) and (ii.) are satisfied. Condition (iii.) will be
guaranteed by the explicit form and the continuity of the Lyapunov function
candidate. Condition (iv.) will be satisfied by imposing that V (ξ) ≥ W (χ) for
all ξ ∈ C ∪D\A where χ is defined in (2.17) and W (χ) is a (radially unbounded)
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function as given in Proposition 2.1. In this way, the conditions of Definition 2.2
are immediately satisfied.

Remark 2.9. In the case when f and g in (2.11) are linear functions, we do not
need to satisfy Condition (iv.) of Definition 2.2 to guarantee GAS of the set
A. Removing Condition (iv.) implies that the Lyapunov function candidate can
only prove local asymptotic stability in Theorem 2.1, see [51]. However, if f and
g are linear functions and the protocol function h satisfies h(σ, αe) = αh(σ, e)
for all σ ∈ {1, ..., N}, e ∈ R

ne and α ≥ 0 (as is the case for the RR and TOD
protocols), local asymptotic stability implies GAS due to the fact that an initial
state (x0, e0, s0, σ0, �0, τ0) at t = 0 has a solution (x, e, s, σ, �, τ) if and only if
initial state (αx0, αe0, αs0, σ0, �0, τ0) has a solution (αx, αe, αs, σ, �, τ) for α > 0.
Due to this positive homogeneity property, local asymptotic stability ofA implies
GAS of A in the linear case. �

In the remainder of this section we show how the SOS program can be set
up to solve the NCS stability problem in three cases. First we will address the
simplest case of an NCS without a shared communication medium, i.e. all sensor
and controller data is transmitted at every transmission time as discussed briefly
in Remark 2.4. Then we will expand those results to solve the case with RR
protocols and then finally consider TOD protocols. In each of these cases, the
essential steps are the transformation of these three NCS variants into hybrid
models (2.10) with F : C → R

nξ and G : D → R
nξ being piecewise polynomial

as in Definition 2.5 leading to (2.22), and applying Theorem 2.2 together with
Remark 2.7 and Proposition 2.1 to derive suitable SOS programs. For ease
of exposition we will assume that f and g are polynomials. The extension to
piecewise polynomials is straightforward. Also the extension to other protocols
for which δ : {1, ..., N}×R

ne → {1, ..., N} is a piecewise constant function where
the sets Sσ,j = {e ∈ R

ne | δ(σ, e) = j} are a finite union of basic semi-algebraic
sets for each σ, j ∈ {1, ..., N} can be obtained by following the same line of
reasoning as below. In fact, in line with Definition 4, we call the protocols with
the above mentioned property piecewise polynomial protocols.

Unshared Communication

Without the communication medium being shared, all sensor measurement and
control commands are sent (i.e. updated) at every transmission time. There-
fore, in accordance with (2.5), it holds that h(σ, e) = 0 for all σ and e, and
consequently, we can simplify the hybrid model by omitting σ from the state
ξ, resulting in ξ = (χ, τ, �). Given the definitions of C and D for ΣNCS , it is
necessary to partition C and D based on the discrete state � ∈ {0, 1} as

C0 = { ξ ∈ R
nξ | � = 0, τ ≥ 0, hmax − τ ≥ 0}, (2.29a)

C1 = { ξ ∈ R
nξ | � = 1, τ ≥ 0, τmax − τ ≥ 0}, (2.29b)
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with the corresponding polynomial flow map

F0(ξ) = F1(ξ) = F (χ, τ, �) = (f(x, e), g(x, e), 0, 1, 0) (2.30)

and

D0 = { ξ ∈ R
nξ | � = 0, τ − hmin ≥ 0, hmax − τ ≥ 0}, (2.31a)

D1 = { ξ ∈ R
nξ | � = 1, τ − τmin ≥ 0, τmax − τ ≥ 0}, (2.31b)

with the corresponding polynomial jump maps

G0(ξ) = G0(χ, τ, �) = (x, e,−e, 0, 1), (2.32a)

G1(ξ) = G1(χ, τ, �) = (x, s+ e, 0, τ, 0). (2.32b)

Note that C = C0 ∪ C1, with Ci, i = 0, 1, basic semialgebraic sets satisfying
(2.20), and D = D0 ∪D1, with Dm, m = 0, 1, basic semialgebraic sets satisfying
(2.21). In addition, the mappings G0, G1 and F0 = F1 = F are polynomial
functions, provided that f and g are polynomial functions. This shows that
F : C → R

nξ and G : D → R
nξ are piecewise polynomial, under the standing

assumption that f and g are polynomial. Using the above expressions for Ci, i =
0, 1 and Dm,m = 0, 1, the polynomials ci,j and dm,j are defined as shown in
Table 2.1.

ci,j dm,j

c0,1 = τ d0,1 = τ − hmin

c0,2 = hmax − τ d0,2 = hmax − τ
c1,1 = τ d1,1 = τ − τmin

c1,2 = τmax − τ d1,2 = τmax − τ

Table 2.1: SOS relaxations for an NCS with unshared communication.

We did not include the equality constraints (e.g. � = 0 for C0 or � = 1 for C1)
in Table 2.1 as we will encode them through the use of multiple Lyapunov func-
tions explicitly depending on �. The Lyapunov function candidate we propose
to use is of the form3

V (ξ) = V�(χ, τ) = ϕ�(τ)W̃�(χ). (2.33)

We specify that the function ϕ� ∈ R[τ ] is a polynomial of any degree and
W̃� ∈ R[χ] is a polynomial with an even degree for � = 0, 1. Although a more gen-
eral (polynomial) Lyapunov function candidate could also be considered within
this framework, the particular choice of Lyapunov function (2.33) offers a com-
putational reduction in the resulting SOS program due to the fact that fewer

3Note that the multiple Lyapunov function V (ξ) = V�(χ, τ) can be written as one single
polynomial Lyapunov function V (ξ) = �V1(χ, τ) + (1− �)V0(χ, τ).
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coefficients need to be determined. This computational reduction is essential in
enabling this SOS technique to analyze larger state-space dimensions effectively,
as will be shown in Section 2.4. Moreover, the form (2.33) was motivated by the
success of a similar form in the previous work [22,58]. To guarantee Condition (i.)
of Definition 2.2, we will use the regional information ci,j (as in Theorem 2.2) to
explicitly specify that V�(ξ) is nonnegative only when ξ ∈ C ∪D = C. Choosing
W̃� such that W̃�(χ) = 0 when χ = 0 ensures that Condition (iii.) of Defini-
tion 2.2 is satisfied. Combining Proposition 2.1 and Theorem 2.2 together with
Remark 2.7 leads to the polynomial constraints as shown in Table 2.2, where
the inequalities will be implemented through SOS conditions.

In Table 2.2, we use the notation Ḡi, i = 0, 1, to denote the jump map
Gi, i = 0, 1, restricted to the elements corresponding to χ and τ , i.e.

Ḡ0(χ, τ) = (x, e,−e, 0),

Ḡ1(χ, τ) = (x, s+ e, 0, τ).

The constraints in Table 2.2 must hold for all � ∈ {0, 1} and i ∈ {1, 2, .., nχ} and
fixed γ1 > 0 and γ2 > 0. The functions W1,�,W2,� ∈ R[χ] for � = 0, 1 are defined
as

W1,�(χ) =

nχ∑
i=1

d∑
j=1

ε�,i,jχ
2j
i (2.34a)

W2,�(χ) =

nχ∑
i=1

d∑
j=1

η�,i,jχ
2j
i (2.34b)

as in Proposition 2.1. These functions only need to depend on χ = (x, e, s) to
guarantee (2.23) of Theorem 2.2 and (iv.) of Definition 2.2 because A = {ξ ∈
C ∪D | χ = 0}. Note that we did not need to apply (2.26) of Remark 2.7 since
D ⊆ C. Constraint 3 in Table 2.2 is derived from combining (2.28) and (2.23).

Remark 2.10. Besides choosing the orders of ϕ� and W̃� in the Lyapunov func-
tion itself, the design freedom left available is to choose the order of the poly-
nomials q�,j(χ, τ), r�,j(χ, τ) and s�,j(χ, τ) such that the order of the product
q�,j(χ, τ)c�,j(τ) matches the order of V�(χ, τ), the order of r�,j(χ, τ)c�,j(τ) matches
the order of 〈∇V�(χ, τ), F (ξ)〉 and the order of s�,j(χ, τ)d�,j(τ) matches the or-
der of V�(χ, τ). The motivation behind this suggestion is to create sufficient
freedom for the relaxation terms in Table 2.2 to be effective but do not become
computationally burdensome. �

Hence, based on the previous reasoning, the feasibility of the SOS constraints
in Table 2.2 guarantees GAS of an NCS with varying delays and varying trans-
mission intervals, but without a shared communication medium. The commu-
nication medium being shared will be considered in the following two sections
for the RR and TOD protocols. Other piecewise polynomial protocols can be
handled in a similar fashion.
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Constraint Set - Unshared Communication

1a
∑d

j=1 ε�,i,j ≥ γ1, ε�,i,j ≥ 0

1b
∑d

j=1 η�,i,j ≥ γ2, η�,i,j ≥ 0

2 V�(χ, τ)−W1,�(χ)−
∑mC

j=1 q�,j(χ, τ)c�,j(τ) ≥ 0

3 −〈∇V�(χ, τ), F (ξ)〉 −W2,�(χ)−∑2
j=1 r�,j(χ, τ)c�,j(τ) ≥ 0

4a V0(χ, τ)− V1(Ḡ0(χ, τ))−∑2
j=1 s0,j(χ, τ)d0,j(τ) ≥ 0

4b V1(χ, τ)− V0(Ḡ1(χ, τ))−∑2
j=1 s1,j(χ, τ)d1,j(τ) ≥ 0

5 q�,j(χ, τ) ≥ 0, r�,j(χ, τ) ≥ 0, s�,j(χ, τ) ≥ 0

Table 2.2: SOS program for an NCS with unshared communication.

Round Robin Protocol

In the case of the Round Robin (RR) protocol, we exploit the periodicity present
in the RR protocol G0(χ, τ, σ, �) = G0(χ, τ, σ +N, �) to modify the region D0

to be node-dependent in the sense that the jump map G0 can be written in a
piecewise polynomial form. Specifically, we partition Dm,m = 0, 1, as in (2.31),
further as

D0,1 = { ξ ∈ R
nξ | � = 0, τ − hmin ≥ 0, hmax − τ ≥ 0, σ = N}

D0,j = { ξ ∈ R
nξ | � = 0, τ − hmin ≥ 0, hmax − τ ≥ 0, σ + 1 = j}

D1 = { ξ ∈ R
nξ | � = 1, τ − τmin ≥ 0, τmax − τ ≥ 0}

for j = 2, ..., N . Now G is specified by

G0,j(χ, τ, σ, �) = (x, e, h̃(j, e)− e, 0, j, 1) (2.35a)

G1(χ, τ, σ, �) = (x, s+ e, 0, τ, σ, 0) (2.35b)

for j = 1, ..., N , where h̃ is given as in (2.7). Hence, D0 = ∪N
j=1D0,j and each

function G0,j is polynomial, thus we have obtained a hybrid system of the form
(2.22). The definitions of D0,j , j = 1, ..., N , and D1 allow us to again use the
polynomials defined in Table 2.1.

The Lyapunov function we consider to prove stability for ΣNCS with RR
protocols is the following:

V (ξ) = V�,σ(χ, τ) = ϕ�,σ(τ)W̃�,σ(χ). (2.36)

The explicit dependence on σ provides extra freedom in the Lyapunov function
candidate. With this new Lyapunov candidate, we obtain, in a similar way as
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Constraint Set - RR Protocol

1a
∑d

j=1 ε�,σ1,i,j ≥ γ1, ε�,σ1,i,j ≥ 0

1b
∑d

j=1 η�,σ1,i,j ≥ γ2, η�,i,j ≥ 0

2 V�,σ1
(χ, τ)−W1,�,σ1

(χ)−
mC∑
j=1

q�,j(χ, τ)c�,j(τ) ≥ 0

3 −〈∇V�,σ1
(χ, τ), F (ξ)〉 −W2,�,σ1

(χ)−∑2
j=1 r�,j(χ, τ)c�,j(τ) ≥ 0

4a V0,N (χ, τ)− V1,1(Ḡ0,1(χ, τ))−∑2
j=1 s0,j(χ, τ)d0,j(τ) ≥ 0

4b V0,σ2(χ, τ)− V1,σ2+1(Ḡ0,σ2+1(χ, τ))−∑2
j=1 s0,j(χ, τ)d0,j(τ) ≥ 0

4c V1,σ1
(χ, τ)− V0,σ1

(Ḡ1(χ, τ))−∑2
j=1 s1,j(χ, τ)d1,j(τ) ≥ 0

5 q�,j(χ, τ) ≥ 0, r�,j(χ, τ) ≥ 0, s�,j(χ, τ) ≥ 0

Table 2.3: SOS program for an NCS with the RR Protocol.

in Section 2.3.3, the constraint set as shown in Table 2.3. We use the notation
Ḡ0,j for j = 1, ..., N to denote the jump map G0,j restricted to the first elements
corresponding to χ and τ , i.e.,

Ḡ0,j(χ, τ) = (x, e, h̃(j, e)− e, 0).

The constraints in Table 2.3 must hold for all � ∈ {0, 1}, i ∈ {1, 2, .., nχ}, σ1 ∈
{1, 2, ..., N} and σ2 ∈ {1, 2, ..., N−1} and fixed γ1 > 0 and γ2 > 0. The functions
W1,�,σ1

, W2,�,σ1
∈ R[χ] are of the form (2.34).

Try-Once-Discard Protocol

For the TOD protocol, we know that at the time a jump occurs when � = 0,
the node that is granted network access has a greater (or equal) error |ej | than
all other nodes, i.e. |ej | ≥ |ei| for all i (see (2.9)). We will use this knowledge
to modify the region D0 so that the jump map G0 is written as a piecewise
polynomial function. We express D0 as ∪jD0,j with D0,j , j = 1, ..., N , basic
semialgebraic sets given by

D0,j = { ξ ∈ R
nξ | � = 0, τ − hmin ≥ 0,

hmax − τ ≥ 0, |ej |2 − |ei|2 ≥ 0 ∀i = 1, ..., N}.



2.4 Comparative Examples 33

Constraint Set - TOD Protocol

1a
∑d

j=1 ε�,σ1,i,j ≥ γ1, ε�,σ1,i,j ≥ 0

1b
∑d

j=1 η�,σ1,i,j ≥ γ2, η�,i,j ≥ 0

2 V�,σ1
(χ, τ)−W1,�,σ1

(χ)−
mC∑
j=1

q�,j(χ, τ)c�,j(τ) ≥ 0

3 −〈∇V�,σ1
(χ, τ), F (ξ)〉 −W2,�,σ1

(χ)−∑2
j=1 r�,j(χ, τ)c�,j(τ) ≥ 0

4a V0,σ1
(χ, τ)− V1,σ2

(Ḡ0,σ2
(χ, τ))−∑2

j=1 s0,j(χ, τ)d0,j(τ)−∑N
j=1 (|eσ2 |2 − |ej |2)bσ2,j(χ, τ) ≥ 0

4b V1,σ1(χ, τ)− V0,σ1(Ḡ1(χ, τ))−∑2
j=1 s1,j(χ, τ)d1,j(τ) ≥ 0

5 q�,j(χ, τ) ≥ 0, r�,j(χ, τ) ≥ 0,

s�,j(χ, τ) ≥ 0, bσ2,j(χ, τ) ≥ 0

Table 2.4: SOS program for an NCS with the TOD Protocol.

In addition,

D1 = { ξ ∈ R
nξ | � = 1, τ − τmin ≥ 0, τmax − τ ≥ 0}.

The corresponding jump maps G0,j and G1 are given by (2.35),the flow map
Fi is again described by (2.30) and the corresponding flow set Ci, i = 0, 1, is
described by (2.29). Now we have arrived at a system of the form (2.22) and we
can apply Theorem 2.2 together with Remark 2.7 and Proposition 2.1.

We consider the Lyapunov function (2.36) to prove stability for ΣNCS with
TOD protocols. Notice that we do not need σ in the hybrid model of the NCS as
h(σ, e) = h(e). However, we do use σ to provide extra freedom in the (multiple)
Lyapunov function (as in the RR case). The resulting constraint set guaranteeing
GAS of A is shown in Table 2.4. The constraints must hold for all � ∈ {0, 1},
i ∈ {1, 2, .., nχ}, and σ1, σ2 ∈ {1, 2, ..., N} and fixed γ1 > 0 and γ2 > 0. The
functions W1,�,σ1 , W2,�,σ1 ∈ R[χ] are of the form (2.34).

2.4 Comparative Examples

We will illustrate our SOS approach by applying it to four different NCS ex-
amples. In the first example, we use the sampled-data model without the com-
munication medium being shared. In the second and third examples, we study
a linear plant connected to a linear controller via a shared network, and thus



34
Chapter 2. Stability Analysis of NCSs:

A Sum of Squares Approach

include network protocols. We compare the SOS approach developed in this
chapter with the technique developed in [58]. We show that our results are less
conservative than the results obtained using the technique developed in [58]. As
these three examples consider linear plants and controllers, the fourth example
will illustrate that the SOS approach can easily be used to show stability for
plants and controllers with polynomial dynamics as well.

Our calculations result in tradeoff curves for combinations of hmax and τmax

(where we take hmin = τmin = 0 to be able to compare the results to [58]).
These tradeoff curves are created by a gridding procedure in the sense that for
different combinations of hmax and τmax, the feasibility of the SOS program is
assessed using SOSTOOLS [108].

Remark 2.11. Note that in the case of linear plants and controllers (as considered
in the first three examples), GAS of A can be guaranteed by proving only local
asymptotic stability of A, as mentioned in Remark 2.9. This means that the
SOS constraint sets detailed in Section 2.3.3 can be relaxed by removing the
polynomial W1,�(ξ), as defined in (2.34a). This relaxation is possible because
the only purpose of including W1,�(ξ) in the constraint sets is to ensure the
Lyapunov function candidate is radially unbounded (and hence being capable of
proving the global asymptotic stability property). �

2.4.1 Example 1 - Unshared Communication

A ‘classic’ and well-studied system (see [77] and the reference therein), is given
by (2.1), (2.2) where ẋp = û, y = xp, u = −ŷ. For constant transmission
interval and no delays, the system can be guaranteed to be stable for transmission
intervals up to 2 seconds. In [77], stability of the system for variable transmission
intervals is guaranteed for hk ∈ [0 1.99], k ∈ N, in a delay-free situation, which
corresponds to hmin = 0 and a MATI hmax of 1.99 seconds. This does not
include much conservatism, as can be concluded from the constant transmission
interval result. The results obtained in [77], when delays are present, are given
in Fig. 2.2.

Two SOS programs (SOSPs) are constructed with the constraints from Sec-
tion 2.3.3. The first program used a third-order V�, which consists of a linear
function ϕ� ∈ R[τ ] and quadratic W̃� ∈ R[χ], whereas the second program uses
a fifth-order V�, which consists of a third-order function for ϕ� and quadratic
W̃�. Already with ϕ� being a polynomial of third order, the results of [77], which
according to the above do not contain much conservatism, are almost replicated,
as shown in Fig. 2.2. The tradeoff curve for a linear ϕ� still includes consider-
able conservatism. The flexibility of our SOS approach allows us to gradually
increase the order of ϕ� to reduce conservatism in the results, as Fig. 2.2 clearly
shows.

To illustrate the form of Lyapunov functions used and to indicate some nu-
merical values, let us provide them for the situation (hmax, τmax) = (0.45, 0.1).
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Figure 2.2: Tradeoff curves for a sampled-data NCS with an unshared
communication medium.

The stability of this situation is proven by a third-order polynomial Lyapunov
function as in (2.33) consisting of a linear function ϕ� and quadratic W̃� given
by the SOS program as

V0(χ, τ) = 49.187x+ 3.885τx2 − 0.340τex+ 52.275e2

− 105.470τe2 + 121.670s2 − 69.402τs2,

V1(χ, τ) = 49.187x+ 31.165τx2 − 18.355τex+ 61.087e2

− 132.550τe2 − 56.680τxs+ 112.200es

− 134.830τes+ 55.747s2 − 30.193τs2.

Note that although setting hmin = τmin = 0 was chosen for reasons of
comparison to the earlier work [77] which cannot exploit nonzero lower bounds,
in many practical situations there exists a nonzero lower bound due to hardware
limitations. If we assume that the transmission frequency of the network cannot
exceed 10Hz (i.e. hmin = 0.1) and the minimum delay is 10ms (τmin = 0.01) then
new tradeoff curves in Fig. 2.2 can be computed. To provide some indication
of how these non-zero lower bounds can lead to larger hmax, τmax guaranteeing
robust stability, we focus on the point (hmax, τmax) = (1.54, 0.1), which lies on
the SOS fifth-order curve in Fig. 2.2 (and thus corresponds to hmin = τmin = 0).
Adopting the nonzero lower bounds hmin = 0.1 and τmin = 0.01, this point
becomes (1.85, 0.1), which is a 20% increase in robustness, in terms of hmax,
with respect to the case of zero lower bounds. This clearly shows the benefit of
being able to include non-zero lower bounds on delays and transmission intervals
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Figure 2.3: Tradeoff curves for an NCS with a shared communication
medium.

in the analysis. While our method can easily exploit non-zero bounds, several
existing methods cannot.

2.4.2 Example 2 - Shared Communication

In this example, we consider the plant and controller given in the form (2.1),
(2.2) where

ẋp =

[
0 1
0 −0.1

]
xp +

[
0
0.1

]
û, y = xp,

u = − [
3.75 11.5

]
ŷ,

which was studied in [128], although without a shared communication medium
and, hence, without protocols. We will compare our method with the technique
in [58].

We consider a shared communication medium, as well as varying transmission
intervals and delays, and compute stability regions for both the RR and TOD
protocols. We assume that only the two states are transmitted over the network,
while u(t) = û(t) for all t ∈ R≥0. This results in the networked error e = ey,
where y = xp. The constraints from Table 2.3 and Table 2.4 are implemented
in a SOS program for the RR and TOD protocols, respectively. A third-order
V�,σ, which consists of a linear ϕ�,σ ∈ R[τ ] and a quadratic W̃�,σ ∈ R[χ], and a

fifth-order V�,σ, which consists of a third-order ϕ�,σ and a quadratic W̃�,σ, are
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Figure 2.4: Tradeoff curves for the NCS benchmark batch reactor.

used. The resulting tradeoff curves for the method in [58] and our SOS method
are shown in Fig. 2.3. The SOS method proposed in this chapter clearly reduces
conservatism in the obtained tradeoff curves compared to [58] when considering
a third-order V�,σ, and reduced conservatism even further when considering a
fifth-order V�,σ polynomial Lyapunov candidate.

2.4.3 Example 3 - Batch Reactor

In this example, the NCS benchmark system consisting of the batch reactor
[22, 58, 94, 122] is compared. The batch reactor is given by a plant containing
four states and a controller containing two states. For the actual system matrices,
see the references provided. The two outputs y of the plant share the network,
implying that they cannot communicate simultaneously, and the two controlled
inputs u of the plant are considered wired to the controller (i.e. u(t) = û(t) for
all t ∈ R≥0). The results for the batch reactor are shown in Fig. 2.4 and are
compared to the results of the approach in [58].

From Fig. 2.4 it can be seen that the SOS approach presented in this chapter
again results in less conservative results than in [58] when considering a third-
order V�,σ, which consists of a linear ϕ�,σ ∈ R[τ ] and quadratic W̃�,σ ∈ R[χ].
We also computed a fifth-order V�,σ, which consists of a third-order ϕ�,σ and

quadratic W̃�,σ, for the delay-free case. Interestingly, in this delay-free case,
the least conservative theoretical result, until recently, for hmax that still guar-
antees stability was given in [22] as hmax = 0.0108 using the TOD protocol,
while we obtain hmax = 0.0606. In [122], hmax was estimated (using simula-
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Figure 2.5: Tradeoff curves for an NCS with polynomial plant dynamics.

tions) to be between 0.06 and 0.08 for the TOD protocol. For the RR pro-
tocol, [22] provides the bound hmax = 0.009 in the delay-free case, while we
obtain hmax = 0.0519. Only recently, based on a new linear discrete-time ap-
proach, [38] achieved hmax = 0.066 for the TOD protocol and hmax = 0.064
for the RR protocol in the delay-free case. These results are comparable to
the results calculated with our SOS-based analysis by just using a fifth-order
Lyapunov function. Hence, using the SOS-based approach, results are obtained
which are close to the available upper bounds on hmax, while, at the same time,
offering several additional beneficial features mentioned in the introduction. For
instance, robust stability of the example in the next section cannot be assessed
by [38].

The computational burden of the SOSP based on a fifth-order polynomial
Lyapunov function for NCSs including delays becomes rather high and these
results are therefore not provided. This indicates the only drawback of the
proposed method: the computational complexity might grow quickly with the
state dimension and the order of the Lyapunov function. Improved solvers for
SOS programs are needed to reduce the computation time for such complex
problems.

2.4.4 Example 4 - Polynomial Sampled-Data System

In this example, we will show that our method can also prove GAS for NCSs
with the plant having polynomial dynamics. The system we consider is given
by (2.1), (2.2) where ẋp = x3

p + x2
pû, y = xp and u = −5ŷ. The network effects
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we consider for this example are varying transmission intervals and delays (the
communication medium is not shared). In fact, we take hmin = τmin = 0 and
aim at determining values for τmax and hmax for which the NCS is GAS.

To do so, the constraints from Section 2.3.3 are implemented in a SOS pro-
gram. For linear plants and controllers the order of W̃� ∈ R[χ] in (2.33) is often
taken to be 2, i.e. quadratic, since the (x, e) flow map is then also linear. How-
ever, for polynomial plants and controllers (of at least order 2), the (x, e) flow
map is nonlinear and higher-order terms are (commonly) needed to provide the
stability characterization sufficient flexibility. Therefore we specify the order of
W̃� to be 6. In addition, we specify that the function ϕ� ∈ R[τ ] is linear. This
results in the tradeoff curves as provided in Fig. 2.5, showing indeed that we can
analyze an NCS with a polynomial plant and controller in a systematic manner.

2.5 Conclusions

In this chapter we have presented a sum of squares (SOS) approach for the stabil-
ity analysis of NCSs that exhibit varying delays, varying transmission intervals
and a shared communication medium. The NCS was modeled as a hybrid sys-
tem, which allows for general continuous-time piecewise polynomial plant and
controller dynamics. In order to use SOS techniques, the flow and jump maps
of the hybrid system were transformed into piecewise polynomial descriptions.
This transformation was explicitly shown for three important cases consisting of
a pure sampled-data system without a shared communication medium, and NCSs
with a shared communication medium and using either the Try-Once-Discard
(TOD) or Round Robin (RR) protocol. We were able to show that by using
SOS techniques, it is possible to improve existing results in the literature signifi-
cantly. As expected, increasing the order of the polynomial Lyapunov functions
leads to improved bounds on the delays and transmission intervals (at the cost
of higher computational complexity). Next to a reduction in conservatism, our
method offers various other beneficial features, such as dealing with non-zero
lower bounds on varying delays and transmission intervals, dealing with nonlin-
ear (polynomial) plants and controllers, not requiring an overapproximation of
the NCS (as in the discrete-time approach) and finally, offering an automated
method to tackle the stability problem for NCS including varying delays, trans-
mission intervals and a shared communication medium. The only drawback of
the proposed method is that the computational complexity grows quickly with
the state dimension and the order of the Lyapunov function. Improved solvers
for SOS programs are needed to reduce the computation time for such complex
problems.





Chapter 3

Decentralized Observer-Based Control
via Networked Communication

“Nobody climbs mountains for scientific reasons. Science is used to
raise money for the expeditions, but you really climb for the hell of it.”

- Sir Edmund Hillary

3.1 Introduction

Recently, there has been an enormous interest in the control of large-scale net-
worked systems that are physically distributed over a wide area [86]. Examples
of such distributed systems are electrical power distribution networks [20], wa-
ter transportation networks [23], industrial factories [85] and energy collection
networks (such as wind farms [69]). The purpose of developing control theory
in this large-scale setting is to work towards the goal of a streamlined design
process which consistently results in efficient operation of these vital systems.
Our contribution towards this goal is in the area of stabilizing controller design.
This problem setting has many features that seriously challenge the controller
design.

The first feature which challenges controller design is that the controller is
decentralized, in the sense that it consists of a number of local controllers that do
not share information. Although a centralized controller could alternatively be
considered, the achievable bandwidth associated with using a centralized control
structure would be limited by long delays induced by the communication between
the centralized controller and distant sensors and actuators over a (wireless)
communication network [1]. The difficulty of decentralized control synthesis lies
in the fact that each local controller has only local information to utilize for
control, which implies that the other local control actions are unknown and can
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be perceived as disturbances. This fundamental problem has received ample
attention [3, 111, 121], but still many issues are actively researched today. A
recent survey [13] highlights newly developed techniques to solve this problem in
different settings and recommends that research should consider interconnected
systems which are controlled over realistic communication channels. This forms
the exact topic of the presented chapter.

The problem of synthesizing decentralized linear controllers is often referred
to as the ‘information-constrained’ synthesis problem or the ‘structured’ synthe-
sis problem due to the presence of zeros in the controller matrices corresponding
to the decentralized structure. This synthesis problem is, in general, non-convex.
It was shown in [110] that linear time-invariant systems which satisfy a property
called ‘quadratic invariance,’ with respect to the controller information struc-
ture, allow for convex synthesis of optimal static feedback controllers. For the
specific case of block diagonal static state feedback control design, [49] discov-
ered that through a change of variable, linear matrix inequality (LMI) synthesis
conditions could be formulated which guarantee robust stability. However, in
the decentralized (block diagonal) dynamic output-feedback setting, the (robust)
controller synthesis problem is far more complex [117].

The second feature which challenges controller design comes from the fact
that when considering control of a large-scale system, it would be unreasonable
to assume that all states are measured. Therefore an output-based controller
is needed. This chapter will, in fact, consider an observer-based control setup,
which offers the additional advantage of reducing the number of sensors needed.
The later aspect alleviates the demands on the communication network design.
However, it has been shown that, in general, it is hard to obtain decentralized
observers providing state estimates converging to the ‘true’ states [121]. In
[117, 129], synthesis conditions for robust decentralized observer-based control
with respect to unknown non-linear subsystem coupling, which is sector bounded
and state-dependent, were presented. In both the paper and this chapter, a
decoupled quadratic Lyapunov function candidate was used to derive stabilizing
gains that could be synthesized by transforming a linear minimization problem
subject to a bilinear matrix inequality (BMI) into a two-step linear minimization
problem subject to LMIs. It was also mentioned in [117] that in the simpler
setting of the subsystem coupling matrices being linear and known, as is the
setting in the current chapter, the robust synthesis conditions are still obtained
by convexifying the overlying problem of linear minimization subject to a BMI.
Finally, we point out that all the aforementioned decentralized results, excluding
the notable exception of [110] which includes communication delays, consider the
communication channels between sensors, actuators and controllers to be ideal.

The third feature which challenges controller design arises from the fact
that the implementation of a decentralized control strategy may not be eco-
nomically feasible without a way to inexpensively connect the sensors, actua-
tors and controllers. Indeed, the advantages of using a wired/wireless network
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compared to dedicated point-to-point (wired) connections between all sensors,
controllers and actuators. are inexpensive and easily modifiable communication
links. However, the drawback is that the control system is susceptible to un-
desirable (possibly destabilizing) side-effects such as time-varying transmission
intervals, time-varying delays, packet dropouts, quantization and a shared com-
munication medium (the latter implying that not all information can be sent
over the network at once). Clearly, the decentralized observer-based controller
needs to have certain robustness properties with respect to these effects. For
modeling simplicity, we only consider time-varying transmission intervals and
the communication medium to be shared in this work, although extensions in-
cluding the other side effects can be envisioned within the presented framework.
In fact, the extension to including time-varying delays will be discussed explicitly
in Remark 3.6.

In the Networked Control System (NCS) literature, there are many existing
results on stability analysis which consider linear static controllers [29,44,47,91,
123], linear dynamic controllers [38,122], nonlinear dynamic controllers [17,58,94]
and observer-based controllers [84]. However, results on controller synthesis for
NCSs are rare [63]. LMI conditions for synthesis of state feedback [28] and static
output-feedback [54] only became available recently. For general linear dynamic
controller synthesis, [34] considered the simultaneous design of the protocol,
without considering time-varying transmission intervals or delays, and resulted
in a linearized BMI algorithm. General linear dynamic controller synthesis con-
ditions were also formulated in [46], where the NCS included quantization, delay
and packet dropout but without a shared communication medium, which re-
sulted in LMI conditions only when a specific design variable (ε in [46]) is fixed.
Synthesis conditions for observer gains that stabilize the state estimation error
(but not the state of the plant itself) in the presence of a shared communica-
tion medium were given in [35]. The inclusion of varying transmission intervals
were recently presented in [107]. In [126], gramian-based tools were used to
synthesize observer-based gains that stabilize the closed-loop in the presence of
a shared communication medium but they did not consider time-varying trans-
mission intervals nor delays. Conditions for observer-based controller synthesis
in the presence of time-varying delay, time-varying transmission intervals, and
dropouts were given in [87]. The synthesis conditions were derived by changing
a non-convex feasibility problem into a linear minimization problem via a linear
cone complementarity algorithm. It is worth mentioning that all the aforemen-
tioned NCS results consider the centralized controller problem setting.

To summarize, we note that although a decentralized observer-based control
structure is reasonable to use in practice, its design is extremely complex due
to the fact that we simultaneously face the issues of (i) a decentralized control
structure (ii) limited measurement information and (iii) communication side-
effects. In this context, the contribution of this chapter is twofold: firstly, a
model describing the controller decentralization and the communication side-
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effects is derived, and, secondly, the most significant contribution is LMI-based
synthesis conditions for decentralized switched observer-based controllers and
decentralized switched static feedback controllers, which are robust to commu-
nication imperfections. For the simpler case of static output feedback, we refer
the reader to [15].

3.1.1 Nomenclature

The following notation will be used. diag(A1, . . . , AN ) denotes a block-diagonal
matrix with the matrices A1, . . . , AN on the diagonal and A� ∈ R

m×n denotes
the transpose of the matrix A ∈ R

n×m. For a vector x ∈ R
n, ‖x‖ :=

√
x�x

denotes its Euclidean norm. We denote by ‖A‖ :=
√

λmax(A�A) the spectral
norm of a matrix A, which is the square-root of the maximum eigenvalue of the
matrix A�A. For brevity, we sometimes write symmetric matrices of the form[

A B

B� C

]
as

[
A B
� C

]
. For a matrix A ∈ R

n×m and two subsets I ⊆ {1, ..., n} and

J ⊆ {1, ...,m}, the (I,J)-submatrix of A is defined as (A)I,J := (aij)i∈I,j∈J. In
case I = {1, ..., n}, we also write (A)•,J.

3.2 The Model & Problem Definition

We consider a collection of coupled continuous-time linear subsystems P1, ...,PN

given by

Pi :

⎧⎨
⎩

ẋi(t) = Aixi(t) +Biûi(t) +
∑N

j=1
j 
=i

(Ai,jxj(t) +Bi,j ûj(t)) ,

yi(t) = Cixi(t) +
∑N

j=1
j 
=i

Ci,jxj(t),
(3.1)

for i ∈ {1, ..., N}, where xi ∈ R
nxi , ûi ∈ R

nui , and yi ∈ R
nyi are the subsys-

tem state, input and output vectors, respectively. The subsystem interaction
matrices, Ai,j , Bi,j , Ci,j , i �= j, represent how subsystem j affects subsystem i
via state, input and output coupling, respectively. We consider this collection of
subsystems to be disjoint, i.e. in the sense of [121], that is the entire collection
can be compactly written as

P :

{
ẋ(t) = Ax(t) +Bû(t),
y(t) = Cx(t),

(3.2)

with state x = [x�
1 , x

�
2 , ..., x

�
N ]� ∈ R

nx , control input û = [û�
1 , û

�
2 , ..., û

�
N ]� ∈

R
nu and measured output y = [y�1 , y

�
2 , ..., y

�
N ]� ∈ R

ny . The matrices A, B and
C are defined as

A :=

⎡
⎢⎢⎢⎣

A1 A1,2 · · · A1,N

A2,1 A2

...
..
.

. . .

AN,1 · · · AN

⎤
⎥⎥⎥⎦, B :=

⎡
⎢⎢⎢⎣

B1 B1,2 · · · B1,N

B2,1 B2

...
..
.

. . .

BN,1 · · · BN

⎤
⎥⎥⎥⎦,
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Figure 3.1: A decentralized NCS.

C :=

⎡
⎢⎢⎢⎣

C1 C1,2 · · · C1,N

C2,1 C2

...
...

. . .

CN,1 · · · CN

⎤
⎥⎥⎥⎦.

The objective of this chapter is to present an approach for synthesis of a
controller for system (3.2) that has the following features: (i) discrete-time
(desirable for networked sampled-data implementation); (ii) decentralized; (iii)
output-based; (iv) robustly stabilizes the origin of system (3.2) despite the un-
certain time-varying transmission intervals hk ∈ [hmin, hmax]; (v) operates in
the presence of a shared communication medium: not all measured outputs and
control inputs can be communicated simultaneously and a protocol schedules
which information is sent at the transmission instants.

Due to these design features, we consider a decentralized control structure
consisting of N local controllers Ci, i ∈ {1, ..., N}, which communicate with the
sensors and actuators of the plant via a shared network. The decentralized
control structure we consider, ‘parallels’ the chosen plant decomposition as in
(3.1). This is depicted in Fig. 3.1, where the ith controller receives measurements
from and sends control commands to the ith subsystem only.

In the next sections, we will provide additional information regarding the
setup in Fig. 3.1 by discussing the consequences of the design features of the
controller in more detail. In particular, in Section 3.2.1, a description of the
network imperfections is provided for which the controller has to be robust.
In Section 3.2.1, a switching observer-based control structure will be presented
that will switch based on the received measurement information and, finally, in
Section 3.2.3 and Section 3.3, a closed-loop model suitable for controller synthesis
is derived incorporating the aforementioned aspects.
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3.2.1 Network Description

Communication between sensors, actuators and controllers will take place via a
shared network, see Fig. 3.1. Here, we will consider two network effects: namely,
time-varying transmission intervals and a shared communication medium, where
the latter imposes the need for a scheduling protocol to determine what mea-
surement and control command data is transmitted at each transmission instant.
In Remark 3.6, we will also explain how time-varying delays can be incorporated
in a straightforward manner.

Assuming that the transmission intervals hk = tk+1 − tk are contained in
[hmin, hmax] for some 0 < hmin ≤ hmax, i.e. hk ∈ [hmin, hmax] for all k ∈ N and
a zero-order-hold assumption on the inputs û, meaning that

û(t) = ûk for all t ∈ [tk, tk+1), k ∈ N, (3.3)

the exact discrete-time equivalent of (3.2) is

Phk
:

{
xk+1 = Āhk

xk + B̄hk
ûk,

yk = Cxk,
(3.4)

where Āhk
:= eAhk and B̄hk

:=
∫ hk

0
eAsdsB. In (3.4), xk := x(tk), yk := y(tk),

with tk the transmission instants, and ûk is the discrete-time control action
available at the plant at t = tk.

Since the plant and controller are communicating through a network with a
shared communication medium, the actual input of the plant ûk ∈ R

nu is not
equal to the controller output uk and the actual input of the controller ŷk ∈ R

ny

is not equal to the sampled plant output yk. Instead, ûk and ŷk are ‘networked’
versions of uk and yk, respectively. In Section 3.2.1, we will detail how the
controller output uk will be determined based on ŷk (see Fig. 3.1).

To explain the effect of the shared communication medium and thus the
difference between ŷk and yk, and ûk and uk, k ∈ N, realize that the plant has
ny sensors and nu actuators. In fact, the actuators and sensors are grouped into
N̄ nodes, where, in principle, it is allowed that a node can contain both sensors
and actuators. The set of actuator and sensor indices corresponding to node
l ∈ {1, ..., N̄} are denoted by

J̄u
l ⊆ {1, ..., nu}, J̄y

l ⊆ {1, ..., ny},
respectively.

At each transmission instant, only one node obtains access to the network
and transmits its corresponding u and/or y values. Only the transmitted values
will be updated, while all other values remain unchanged. This constrained data
exchange can be expressed as

ûk = Γu
σk
uk + (I − Γu

σk
)ûk−1, (3.5a)

ŷk = Γy
σk
yk + (I − Γy

σk
)ŷk−1, (3.5b)
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where the value of σk ∈ {1, ..., N̄} indicates which node is given access to the net-
work at the transmission instant k ∈ N, and Γu

l ∈ R
nu×nu and Γy

l ∈ R
ny×ny ,

for l ∈ {1, ..., N̄}, are diagonal matrices where

(Γu
l )i,i :=

{
1, if i ∈ J̄u

l ,
0, otherwise,

(Γy
l )i,i :=

{
1, if i ∈ J̄y

l ,
0, otherwise.

The mechanisms determining σk at transmission instant tk are known as
protocols. In this chapter, we focus on the general class of periodic protocols
[38, 67], which are characterized by

σk+Ñ = σk, for all k ∈ N, (3.6a)

{σk| 1 ≤ k ≤ Ñ} ⊇ {1, ..., N̄}, (3.6b)

where Ñ ≥ N̄ and Ñ ∈ N is the period of the protocol. Note that {σk| 1 ≤
k ≤ Ñ} ⊇ {1, ..., N̄} means that every node is addressed at least once in every
period of the protocol. This condition is very natural as nodes that are never
used do not need to be defined. The well-known Round Robin protocol [122]
belongs to this class of periodic protocols, which is characterized by (3.6) and
Ñ = N̄ . Implementation of such a protocol can be accomplished by using the
channel access method known as (multi-channel) time division multiple access
(TDMA).

Remark 3.1. A commonly studied (dynamic) protocol in the NCS literature is
the Try-Once-Discard (TOD) protocol, which was introduced in [122] and stud-
ied in Chapter 2 as well as in [34,38,58]. Although analysis of this protocol has
shown improvement in the level of robustness with respect to network-induced
effects (compared with periodic protocols), designing an output-based controller
using a dynamic protocol is extremely challenging, even in the centralized set-
ting, see, e.g. [34] in which constant transmission intervals have been considered.
Considering the additional challenges that decentralization introduces into the
NCS setting, in this paper, we choose to focus on periodic protocols for which
an LMI-based design procedure will be offered. �

To characterize the decentralized NCS, we need to determine the sets of
actuators and sensors that are associated with node l ∈ {1, ..., N̄} and belong
to subsystem i ∈ {1, ..., N}. To achieve this we can use the structure present in
the disjoint decomposition. Due to the fact that we consider the decomposition
of (3.2) to be disjoint, as given in (3.1), we have that the input vector ûk,
output vector yk and state vector xk are ordered such that the set of indices
corresponding to actuators ûk, sensors yk, and states xk belonging to subsystem
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i are defined as

Ju
i :=

{∑i−1
j=0 nuj + 1,

∑i−1
j=0 nuj + 2, ... ,

∑i
j=0 nuj

}
,

Jy
i :=

{∑i−1
j=0 nyj

+ 1,
∑i−1

j=0 nyj
+ 2, ... ,

∑i
j=0 nyj

}
,

Jx
i :=

{∑i−1
j=0 nxj

+ 1,
∑i−1

j=0 nxj
+ 2, ... ,

∑i
j=0 nxj

}
,

respectively, for i ∈ {1, ..., N}, where nu0 = ny0 = nx0 := 0 and nui , nyi and nxi

denote the number of actuators, sensors and states, respectively, belonging to
subsystem i ∈ {1, ..., N}. With these sets defined, we have that the set J̄u

l ∩ Ju
i

consists exactly of the indices of the actuators which are associated with node l
and belong to subsystem i. A similar interpretation holds for J̄y

l ∩ Jy
i regarding

the indices of the sensors. We say that subsystem i is associated with node l
if J̄u

l ∩ Ju
i �= ∅ or J̄y

l ∩ Jy
i �= ∅, meaning, that at least one sensor or actuator in

node l belongs to subsystem i.

3.2.2 Decentralized Networked Observer-Based
Controllers

In this chapter, we will use decentralized observer-based controllers in the
sense that for each subsystem of the plant we have one observer-based controller
which does not exchange information, see Fig. 3.1. Therefore, the individual ob-
servers have no information about externally coupled states, inputs, or outputs.

To obtain approximate discrete-time subsystem models for usage in the ob-
server, we discretize (3.2) with a suitably chosen constant transmission interval
h� and then discard the subsystem coupling matrices (as the observers to be
designed cannot use information about either the external coupling or the time-
varying nature of the sampling interval). The resulting discrete-time plant model
for the ith subsystem is then

Ph�,i :

{
x̌k+1,i = Āh�,ix̌k,i + B̄h�,iûk,i,
y̌k,i = Cix̌k,i,

(3.7)

for i ∈ {1, ..., N}, where h� is a constant transmission interval, x̌k,i ∈ R
nxi ,

ûk,i := ûi(tk) ∈ R
nui and y̌k,i ∈ R

nyi are the state, input and output vectors,
respectively, of the ith approximate discrete-time model at discrete time k ∈ N,
and Āh�,i := (Āh�

)Jx
i ,J

x
i
and B̄h�,i := (B̄h�

)Jx
i ,J

u
i
where Āh�

and B̄h�
have been

defined below (3.4). The observer-based controllers will use the approximate
discrete-time subsystem models (3.7) that are based on the constant transmission
interval h�, while the exact discrete-time model (3.4) corresponds to an uncertain
and time-varying transmission interval hk, which in general is not equal to h�.
Hence, the variation in the transmission interval will act as a disturbance on the
state estimation error dynamics as the observer model does not coincide with the
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true model. Clearly, the coupling terms are neglected in (3.7) which contributes
to a further difference between the models (3.7) and the true model (3.4). The
designed observer and controller gains have to be designed in order to counteract
these differences.

Using (3.7) as the ith (approximate) subsystem model, we propose the ith

observer-based controller to be of the form

Cσk,i :

{
x̃k+1,i = Āh�,ix̃k,i + B̄h�,iûk,i + Lσk,iΓ

y
σk,i

(ŷk,i − Cix̃k,i),

uk,i = Kσk,ix̃k,i,
(3.8)

for i ∈ {1, ..., N}, where x̃k,i ∈ R
nxi , ŷk,i ∈ R

nyi and uk,i ∈ R
nui are the state

estimate, input, and output vectors of the ith observer-based controller at the dis-
crete time k ∈ N, respectively. The matrices Γu

l,i := (Γu
l )Ju

i ,J
u
i
, Γy

l,i := (Γy
l )Jy

i ,J
y
i
,

Ll,i ∈ R
nxi

×nyi and Kl,i ∈ R
nui

×nxi are defined for i ∈ {1, .., N}, l ∈ {1, ..., N̄},
where Ll,i and Kl,i are the observer and controller gains, respectively. Hence, we
adopt a switched observer and controller structure (notice the σk-dependence of
Lσk,i and Kσk,i in (3.8)) to deal with the communication medium being shared.
The presence of Γy

σk,i
in (3.8) is used so that the standard output injection is only

applied to the newly received measurements. If no measurements are received
from subsystem i at transmission time tk (i.e. Γy

σk,i
= 0) then (3.8) reduces to a

standard model-based prediction step (according to the model in (3.7)).

Similar to the plant, the dynamics of all the controllers (3.8) can be described
by a single discrete-time system, which will consist of block diagonal matrices
due to the decoupled nature of the controllers:

Cσk
:

{
x̃k+1 = ĀDx̃k + B̄Dûk + Lσk

Γy
σk
(ŷk − CDx̃k)

uk = Kσk
x̃k,

(3.9)

where ĀD := diag(Āh�,1, Āh�,2, ..., Āh�,N ), B̄D and CD defined similarly, and the
observer gains

Ll = diag(Ll,1, Ll,2, ..., Ll,N ), for l ∈ {1, ..., N̄}, (3.10a)

Kl = diag(Kl,1,Kl,2, ...,Kl,N ), for l ∈ {1, ..., N̄}. (3.10b)

3.2.3 Closed-Loop Model

To derive an expression for the closed-loop dynamics, we will adopt the state
vector

x̄k = [e�k x�
k û�

k−1 ŷ�k−1]
� ∈ R

n,

where ek denotes the state estimation error defined as ek := x̃k − xk, k ∈ N,
and n = 2nx + nu + ny. Combining (3.4), (3.5), and (3.9) results in the overall
closed-loop system

x̄k+1 = Ãσk,hk
x̄k, (3.11)
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where

Ãl,h =

[
Ψ1,1(l, h) Ψ1,2(l, h)
Ψ2,1(l) Ψ2,2(l)

]
, (3.12)

and

Ψ1,1(l, h) :=[
ĀD − LlΓ

y
l CD + (B̄D − B̄h)Γ

u
l Kl (ĀD − Āh) − LlΓ

y
l (CD − C) + (B̄D − B̄h)Γ

u
l Kl

B̄hΓ
u
l Kl Āh + B̄hΓ

u
l Kl

]
,

Ψ1,2(l, h) :=

[
(B̄D − B̄h)(I − Γu

l ) 0
B̄h(I − Γu

l ) 0

]
, Ψ2,1(l) :=

[
Γu
l Kl Γu

l Kl

0 Γy
l C

]
,

Ψ2,2(l) :=

[
(I − Γu

l ) 0
0 (I − Γy

l )

]
,

l ∈ {1, ..., N̄}, and h ∈ [hmin, hmax]. In deriving (3.12) note that Γy
σk
(I−Γy

σk
) =

0 was used. The closed-loop system (3.11) is a discrete-time switched linear
parameter-varying (SLPV) system where the switching, as given by σk, is due
to the communication medium being shared and the parameter uncertainty is
caused by the uncertainty in the transmission interval hk ∈ [hmin, hmax].

3.3 Polytopic Overapproximation

In the previous section, we obtained a decentralized NCS model in the form of a
switched uncertain system. However, the form as in (3.11), (3.12) is not conve-
nient to develop efficient techniques for stability analysis and controller synthesis
due to the nonlinear dependence of Ãσk,hk

in (3.12) on the uncertain parameter
hk. To make the system amenable for analysis and synthesis, a procedure is
proposed to overapproximate system (3.11), (3.12) by a polytopic system with
norm-bounded additive uncertainty, i.e.,

x̄k+1 =

M∑
m=1

αm
k (Fσk,m + GmΔkHσk

) x̄k, (3.13)

where Fl,m ∈ R
n×n, Gm ∈ R

n×2nx , Hl ∈ R
2nx×n, for l ∈ {1, . . . , N̄} and

m ∈ {1, . . . ,M}, with M the number of vertices of the polytope. The vector
αk = [α1

k . . . αM
k ]� ∈ Ω, for all k ∈ N, is time-varying with

Ω =
{
α ∈ R

M
∣∣∑M

m=1 α
m = 1 and αm ≥ 0, for m ∈ {1, . . . ,M}

}
(3.14)

and Δk ∈ Δ, for all k ∈ N, with the additive uncertainty set Δ ⊆ R
2nx×2nx

given by

Δ =
{
diag(Δ1, . . . ,Δ2Q) | Δq+jQ ∈ R

nλq×nλq ,

‖Δq+jQ‖ ≤ 1, q ∈ {1, . . . , Q}, j ∈ {0, 1}} , (3.15)
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where nλq
× nλq

, q ∈ {1, ..., Q}, are the dimensions of the qth real Jordan block
[68] of A and Q is the number of real Jordan blocks of A. See Procedure 3.1
for below for more details regarding this overapproximation. System (3.13) is
an overapproximation of system (3.11) in the sense that for all l ∈ {1, . . . , N̄},
it holds that{

Ãl,h | h ∈ [hmin, hmax]
}
⊆
{∑M

m=1 α
m (Fl,m + GmΔHl) |α ∈ Ω,Δ ∈ Δ

}
.

(3.16)

Due to this inclusion, stability of (3.13) with αk ∈ Ω and Δk ∈ Δ, k ∈ N, implies
stability of (3.11) for hk ∈ [hmin, hmax]. Although many overapproximation
techniques are available, see e.g. the survey [59], here we provide a gridding-based
procedure based on [38] to overapproximate system (3.11), such that (3.16) holds.
This choice is motivated by the favorable properties that this method possesses,
see [59].

The overapproximation procedure we present here is a slight modification of
the procedure presented in [38]. Namely, the procedure presented in [38] is for
an NCS model that includes bounded time-varying delays, as well as bounded
time-varying transmission intervals, while the procedure presented here is for
an NCS model that only includes bounded time-varying transmission intervals.
As such, the NCS model given here has fewer nonlinear uncertainty terms that
require overapproximation. However, including bounded time-varying delays in
the NCS model (as in [38]) is a straightforward extension, see Remark 3.6 below.
Moreover, [38] uses a parameter εu > 0, which is defined as the user-specified
tightness of the overapproximation, to determine when to terminate the proce-
dure. For reasons related to controller synthesis, we cannot use this criterion.
Instead, we use a user-specified number of grid points to determine when to
terminate the procedure. Both the procedure presented in this paper, as well
as the one presented in [38], iteratively place grid points at the locations of the
worst-case approximation error and, hence, in both procedures, the overapprox-
imation becomes tighter when either the user-specified number of grid points
increased or the user-specified tightness is decreased, respectively.

Procedure 3.1.

1. Select a desired number of grid points Mdes ≥ 2.

2. Decompose the matrix A, as given in (3.2), into its real Jordan form [68],
i.e. A := TΛT−1, where T is an invertible matrix and

Λ = diag(Λ1, . . . ,ΛQ) (3.17)

with Λq ∈ R
nλq×nλq , q ∈ {1, . . . , Q}, the qth real Jordan block of A.

3. Define the set of grid points G := {h̃1, h̃2}, where h̃1 =: hmin and h̃2 := hmax,
and define M := 2.
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4. Compute for each line segment S� = [h̃�, h̃�+1], � ∈ {1, . . . ,M − 1}, and
for each real Jordan block Λi, q ∈ {1, . . . , Q}, the worst case approximation
error, i.e.

δ̃Aq,� = max
α̃1+α̃2=1, α̃1,α̃2≥0

δ̂Aq,�,α̃1,α̃2
, (3.18a)

δ̃Eq,� = max
α̃1+α̃2=1, α̃1,α̃2≥0

δ̂Eq,�,α̃1,α̃2
, (3.18b)

where

δ̂Aq,�,α̃1,α̃2
:=

∥∥∥eΛq(α̃1h̃�+α̃2h̃�+1) −
2∑

j=1

α̃je
Λqh̃�+j−1

∥∥∥,
δ̂Eq,�,α̃1,α̃2

:=
∥∥∥ 2∑

j=1

α̃j

∫ α̃1h̃�+α̃2h̃�+1

h̃�+j−1

eΛqsds
∥∥∥.

For a detailed explanation of the origin of the approximation error bounds,
see [38].

5. If the number of grid points equals the desired number of grid points (M =
Mdes), go to step 9, else go to step 6.

6. Place an additional grid point at the location of the worst case approxima-
tion error. The new grid point is defined as hnew := α̃�

1h̃�� + α̃�
2h̃��+1 for

a line segment �� and constants α̃�
1, α̃�

2 ≥ 0 where α̃�
1 + α̃�

2 = 1 determined
as follows. If maxq,� δ̃

E
q,� ≥ maxq,� δ̃

A
q,� then α̃�

1, α̃�
2 and �� are given by

(q�, ��) = argmax δ̃Eq,� and

(α̃�
1, α̃

�
2) ∈ arg max

α̃1+α̃2=1, α̃1,α̃2≥0
δ̂Eq�,��,α̃1,α̃2

,

else α̃�
1, α̃

�
2 and �� are given by (q�, ��) = argmax δ̃Aq,� and

(α̃�
1, α̃

�
2) ∈ arg max

α̃1+α̃2=1, α̃1,α̃2≥0
δ̂Aq�,��,α̃1,α̃2

.

7. Set M := M + 1 and G := G ∪ {hnew}.
8. Order the grid points according to G = {h̃1, ...h̃M} such that hmin := h̃1 <

h̃2 < ... < h̃M−1 < h̃M := hmax and go to step 4.

9. Map the obtained bounds (3.18) at each line segment S�, � ∈ {1, . . . ,M−1},
for each Jordan block Λq, q ∈ {1, . . . , Q}, to their corresponding vertices
m ∈ {1, . . . ,M}, according to

δAq,m = max{δ̃Aq,m−1, δ̃
A
q,m}, δEq,m = max{δ̃Eq,m−1, δ̃

E
q,m},

where δ̃Aq,0 = δ̃Aq,M = δ̃Eq,0 = δ̃Eq,M := 0 for all q ∈ {1, . . . , Q}.
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10. Finally, define Fl,m := Ãl,h̃m
, for l ∈ {1, ..., N̄}, m ∈ {1, ...,M}, and

define

Hl :=

[
0 T−1 0 0

T−1BΓu
l Kl T−1BΓu

l Kl T−1B(I − Γu
l ) 0

]
, (3.20)

for l ∈ {1, ..., N̄}, and

Gm :=

⎡
⎢⎢⎣
−T −T
T T
0 0
0 0

⎤
⎥⎥⎦Um, for m ∈ {1, ...,M}, (3.21)

in which

Um = diag(δA1,mI1, . . . , δ
A
Q,mIQ, δ

E
1,mI1, . . . , δ

E
Q,mIQ) (3.22)

where Iq is the nλq × nλq identity matrix and B is given in (3.2).

Theorem 3.1. Consider system (3.11), where hk ∈ [hmin, hmax], k ∈ N, and
Ãl,h, l ∈ {1, ..., N̄}, h ∈ R, is given as in (3.12). If system (3.13) is obtained by
following Procedure 3.1, (3.13) is an overapproximation of (3.11) in the sense
that (3.16) holds for all l ∈ {1, ..., N̄}.
Proof. The proof can be obtained along the lines of the proof of [38, Theorem
III.2].

We care to stress that the most appealing aspect of this particular overap-
proximation technique is the fact that it introduces arbitrarily little conservatism
when employed in Lyapunov-based stability analysis. More specifically, in [38],
it was proven that if the original system (without any overapproximation), is
uniformly globally exponentially stable (UGES) in the sense that a parameter-
dependent quadratic Lyapunov function exists, the presented LMI-based stabil-
ity check based on the overapproximation will guarantee UGES and will find
a respective parameter-dependent quadratic Lyapunov function, given that the
overapproximation consists of a collection of grid points which are sufficiently
refined, i.e. the desired number of grid points in Procedure 3.1 sufficiently large
(see [38, Theorem V.1]). Therefore, in this sense, no conservatism is introduced
by making a convex overapproximation according to Procedure 3.1.

Remark 3.2. The stability analysis problem, i.e. determining whether the system
(3.11), (3.12) with given controller gains Kl, Ll, l ∈ {1, ..., N̄}, is uniformly glob-
ally exponentially stable (UGES) for a given scheduling protocol, as in (3.6), and
given bounds on the transmission interval, i.e. hk ∈ [hmin, hmax] for all k ∈ N,
can be addressed by using the overapproximated model (3.13) combined with
the proposed LMI conditions in [38]. The focus of the current chapter is on the
more challenging problem of controller synthesis, see Section 3.4. �
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Remark 3.3. Using a reasoning similar as in [93], it can be shown that UGES
of the discrete-time model (3.11), (3.12) with a protocol satisfying (3.6) implies
UGES of the sampled-data NCS (3.2), (3.3), (3.5), (3.9), with the same protocol
and including the intersample behavior. �

3.4 Controller Synthesis

In the previous sections, we derived a model describing an LTI plant intercon-
nected with a decentralized switched observer-based output-feedback controller
by a communication network. In this section, we will present the main con-
tribution of this chapter consisting of LMI-based conditions for designing the
decentralized controller and observer gains Kl and Ll, respectively, in (3.9) by
using the overapproximated model (3.13).

For reasons of transparency, we choose to divide the presentation of our solu-
tion into two sections. In Section 3.4.1, LMI conditions which synthesize stabi-
lizing controllers are derived for the case when the subsystems are restricted to
communicate in a serial fashion (i.e. only one subsystem is allowed to commu-
nicate at each transmission instant). Then, in Section 3.4.2, the foundation laid
in Section 3.4.1 is built upon to derive LMI conditions which synthesize stabiliz-
ing controllers for the more general case when the subsystems can communicate
(also) in parallel (i.e. multiple subsystems are allowed to communicate at each
transmission instant).

3.4.1 Serial Subsystem Communication

In this section, we will adopt the network assumption presented below. Next
to the transparency reason already given before, a second reason to treat the
case corresponding to this assumption separately, is that it represents a relevant
subclass of the synthesis problem. In Section 3.4.2, details are provided regarding
how this assumption can be removed.

Assumption 3.1. All sensors or actuators associated with a node must be mem-
bers of the same subsystem, i.e. for each node l ∈ {1, ..., N̄}, there exists a
subsystem i ∈ {1, ..., N} such that J̄u

l ⊆ Ju
i and J̄y

l ⊆ Jy
i .

Remark 3.4. Due to Assumption 3.1, only one subsystem can communicate (a
part of) its corresponding signals at each transmission time. Indeed, when node
l ∈ {1, ..., N̄} attains access to the network, only one (corresponding) subsystem
i ∈ {1, ..., N} can communicate over the network and, hence, one gain Kl,i and
one gain Ll,i, as in (3.10), influence the closed loop dynamics given by either
(3.11) or (3.16) (due to the presence of Γy

σk
in (3.9) and the fact that ûk, given

in (3.5), is the input to the plant). As a consequence, some of the gains Kl,i

and Ll,i, which are defined for all i ∈ {1, ..., N}, have no influence when node
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l ∈ {1, ..., N̄} attains access (in fact all of them that do not correspond to node
l will have no influence). We care to stress that we explicitly account for this
fact in the synthesis theorems in Section 3.4. Moreover, we choose to keep the
more general definitions, as in (3.10), since we provide explicit details on how to
remove Assumption 3.1 in Section 3.4.2 (meaning that possibly all of the gains
Kl,i and Ll,i, i ∈ {1, ..., N}, influence the closed-loop dynamics when node l
communicates). �

Before we can use the overapproximated model (3.13) for synthesis, an es-
sential step must be taken so that the model (3.13) can be rewritten in a form
which is suitable for controller synthesis. The essential step in achieving LMI-
based synthesis conditions is reformulating (3.12) such that the design variables
are non-structured matrices, instead of the structured (block diagonal) matrices
Kσk

and Lσk
, as in (3.10), respectively, that are currently present. To achieve

this, we first introduce the set of state indices belonging to subsystems associated
with node l as

J̄x
l ⊆ {1, ..., nx}.

Due to Assumption 3.1, only one subsystem i is associated with node l and,
hence, J̄x

l is the set of the state indices corresponding to the subsystem i that
is associated with node l (i.e. if i is the subsystem associated with node l then
J̄x
l = Jx

i ). With these sets defined, we introduce

Υu
l :=

{
(Γu

l )•,J̄u
l
, if l ∈ Lu,

0, otherwise,
(3.23a)

Υy
l :=

{
(Γy

l )•,J̄y
l
, if l ∈ Ly,

0, otherwise,
(3.23b)

Υx
l := (Ix)•,J̄x

l
, (3.23c)

for l ∈ {1, ..., N̄}, where Ix ∈ R
nx×nx is the identity matrix and

Lu := {l ∈ {1, ..., N̄} | J̄u
l �= ∅}, (3.24a)

Ly := {l ∈ {1, ..., N̄} | J̄y
l �= ∅}, (3.24b)

are the sets of node indices that contain at least one actuator or sensor, re-
spectively. Note that Υu

l and Υy
l are simply matrices consisting of the non-zero

columns of Γu
l and Γy

l , respectively. Finally, we define

K̄l :=

{
(Kl)J̄u

l ,J̄
x
l
, if l ∈ Lu,

0, otherwise,
(3.25a)

L̄l :=

{
(Ll)J̄x

l ,J̄
y
l
, if l ∈ Ly,

0, otherwise,
(3.25b)

for l ∈ {1, ..., N̄}. Notice that K̄l and L̄l consist of all the non-restricted elements
of Γu

l Kl and LlΓ
y
l , respectively. With these matrices defined and Assumption 3.1
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adopted, we have that the following equations hold

Γu
l Kl = Υu

l K̄lΥ
x�
l , LlΓ

y
l = Υx

l L̄lΥ
y�
l . (3.26)

Now, (3.26) allows the closed-loop matrix Ãσk,hk
in (3.12) to be expressed in

terms of the non-structured matrices K̄σk
and L̄σk

instead of the structured
(block diagonal) matrices Kσk

and Lσk
. The benefit of this is that the synthe-

sis problem for decentralized control, which naturally imposes ‘structural’ con-
straints, can now be formulated as a ‘non-structured synthesis’ problem when
Assumption 3.1 is adopted. To help convey (3.23), (3.25) and (3.26), we will
explicitly define these matrices for the example given in Section 3.5.

Recall that after employment of the overapproximation technique described
in Section 3.3, we now have a system of the form (3.13), where the matrices
Fl,m = Ãl,h̃m

are given by (3.12) with h ∈ {h̃1, ..., h̃m} and the matrices Hl and
Gm are given in (3.20) and (3.21), respectively. Using (3.26), we can decompose
Fl,m and Hl in the following way

Fl,m = Al,m + Bl,mK̄lEl −DlL̄lCl, (3.27a)

Hl = Il + JlK̄lEl, (3.27b)

where

Al,m :=

⎡
⎢⎢⎣
ĀD ĀD − Āh̃m

(B̄D − B̄h̃m
)(I − Γu

l ) 0

0 Āh̃m
B̄h̃m

(I − Γu
l ) 0

0 0 I − Γu
l 0

0 Γy
l C 0 I − Γy

l

⎤
⎥⎥⎦ , (3.28a)

Bl,m :=

⎡
⎢⎢⎣
(B̄D − B̄h̃m

)Υu
l

B̄h̃m
Υu

l

Υu
l

0

⎤
⎥⎥⎦ , El :=

[
Υx�

l Υx�
l 0 0

]
, (3.28b)

Dl :=

⎡
⎢⎢⎣
Υx

l

0
0
0

⎤
⎥⎥⎦ , Cl :=

[
Υy�

l CD Υy�
l (CD − C) 0 0

]
, (3.28c)

Il :=
[
0 T−1 0 0
0 0 T−1B(I − Γu

l ) 0

]
, Jl :=

[
0

T−1BΥu
l

]
. (3.28d)

Now we are ready to state our main result. Notice that (3.13) with (3.27)
describes a discrete-time switched linear parameter-varying (SLPV) system with
norm-bounded uncertainty. No results are available in the literature to synthe-
size the controller gains K̄l and L̄l, at present. However, LMI-based synthesis
conditions can be obtained by generalizing the results in [33,116] in three direc-
tions. In particular, the first extension is the accommodation of norm-bounded
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uncertainty GmΔHσk
in (3.13), where Δ ∈ Δ, and the second extension is that

the switching sequence (3.6) that we consider is ordered (periodic in this case),
whereas [33] considered the case of arbitrary switching. Finally, the third ex-
tension is generalizing the set of LMI-based conditions in [33] so that solutions
for the multi-gain switched static output-feedback problem can be included. Al-
though the required extensions of the ideas in [33] contribute toward our main
result, we would like to emphasize that using (3.26) for the formulation of (3.27)
is the foundation upon which our main result is built. Stabilizing controller and
observer gains Kl and Ll for the NCS given by (3.11) with hk ∈ [hmin, hmax]
and a protocol satisfying (3.6) can be synthesized according to the following
theorem. In the formulation of the theorem, the matrix set

R :=
{
diag(r1I1, . . . , rQIQ, rQ+1I1, . . . , r2QIQ)

∈ R
2nx×2nx | rq̃ ∈ R, rq̃ > 0, q̃ ∈ {1, 2, ..., 2Q}

}
(3.29)

is used, where, as in (3.22), Iq is the nλq
× nλq

identity matrix.

Theorem 3.2. Consider the system (3.11), (3.12) with hk ∈ [hmin, hmax],
k ∈ N, and its overapproximation given by (3.13), (3.21), (3.27). Assume that
Assumption 3.1 holds, the protocol satisfies (3.6) and any node l ∈ {1, ..., N̄}
containing at least one sensor, i.e. J̄y

l �= ∅, consists of linearly independent sen-
sors, i.e. (C)J̄y

l ,• has full row rank. Suppose there exist symmetric matrices Pj,

matrices Rj,m ∈ R, with R as in (3.29), and matrices Gl, Z1,l, Z2,l, X1,l and

X2,l where j ∈ {1, ..., Ñ}, m ∈ {1, ...,M}, l ∈ {1, ..., N̄} such that⎡
⎢⎢⎣
Gσj +G�

σj
− Pj Ξ1(j,m)� 0 Ξ2(j)

�

� Pj+1 GmRj,m 0
� � Rj,m 0
� � � Rj,m

⎤
⎥⎥⎦ � 0, (3.30)

for j ∈ {1, ..., Ñ}, m ∈ {1, ...,M}, and
X1,lEl = ElGl, for l ∈ Lu, (3.31a)

X2,lCl = ClGl, for l ∈ Ly, (3.31b)

for which we define

Ξ1(j,m) := Aσj ,mGσj
+ Bσj ,mZ1,σj

Eσj
−Dσj

Z2,σj
Cσj

,

Ξ2(j) := Iσj
Gσj

+ Jσj
Z1,σj

Eσj
,

for j ∈ {1, ..., Ñ}, m ∈ {1, ...,M}, with PÑ+1 := P1 and the sets Lu and Ly

are defined in (3.24), respectively. Then the controller gains Kl, defined by
(3.25), (3.26) and K̄l = Z1,lX

−1
1,l , l ∈ Lu, and the observer gains, defined by

(3.25), (3.26) and L̄l = Z2,lX
−1
2,l , l ∈ Ly, render the system (3.11), (3.12), with

hk ∈ [hmin, hmax], k ∈ N, and the mentioned periodic protocol, UGES.
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Proof. Before going to the construction of a Lyapunov function to prove the
theorem, we first establish some technical facts that we need in the sequel:

• Due to (3.30), Pj � 0 for j ∈ {1, ..., Ñ}.
• Feasibility of (3.30) implies that Gσj

+ G�
σj

− Pj � 0, and thus Gl is

invertible for all l ∈ {1, ..., N̄}. Indeed, suppose that Gσj
x̄ = 0 for some x̄,

then 0 = x̄�(Gσj
+G�

σj
)x̄ � x̄�Pj x̄. Since Pj � 0, this implies that x̄ = 0

and thus Gl, l ∈ {1, ..., N̄}, is invertible.
• Using the fact that Cl has full row rank when (C)J̄y

l ,• = Υy�
l C has full row

rank and El is full row rank by definition, then it follows from (3.31) and
invertibility of Gl, l ∈ {1, ..., N̄}, that X1,l, l ∈ Lu, must have full rank
and X2,l, l ∈ Ly, must have full rank and thus be invertible. Hence, the
controller gains K̄l = Z1,lX

−1
1,l , l ∈ Lu, and observer gains L̄l = Z2,lX

−1
2,l ,

l ∈ Ly, are well defined.

Now we are ready to prove that the controller gains K̄l = Z1,lV
−1
1,l , l ∈ Lu,

and observer gains L̄l = Z2,lV
−1
2,l , l ∈ Ly, with (3.25) and (3.26) stabilize (3.11),

(3.12) with hk ∈ [hmin, hmax] and a given protocol satisfying (3.6) by proving
that (3.30) and (3.31) guarantee the existence of a Lyapunov function proving
uniform global exponential stability (UGES) of (3.13), (3.21), (3.27) with αk ∈
Ω, Δk ∈ Δ and the same protocol satisfying (3.6). This is a direct consequence
as (3.13) is an overapproximation of (3.11), (3.12) in the sense that (3.16) holds.

Let us consider the following Lyapunov function candidate

Vk(x̄k) = x̄�
k P

−1
j x̄k, (3.32)

where j = k − rÑ for some r ∈ N such that j ∈ {1, ..., Ñ}. Clearly, there exist
c1, c2 > 0 such that c1||x̄||2 ≤ Vk(x̄) ≤ c2||x̄||2 for all k ∈ N and x̄ ∈ R

n due
to the positive definiteness of P−1

1 , ..., P−1

Ñ
. Due to the fact that σk is periodic,

see (3.6), we only have to show that the Lyapunov function candidate decreases
along solutions of (3.13), (3.21), (3.27) for k = {1, ..., Ñ}. UGES of (3.13),
(3.21), (3.27) is established if this Lyapunov function candidate satisfies

P−1
j −

M∑
m

1
=1

αm1 (Fσj ,m1
+ Gm

1
ΔHσj

)�

P−1
j+1

M∑
m

2
=1

αm2 (Fσj ,m2
+ Gm2

ΔHσj
) � 0 (3.33)

for all j ∈ {1, ..., Ñ}, Δ ∈ Δ and α ∈ Ω where PÑ+1 = P1 as this would
guarantee the existence of an ε > 0 such that ΔVk(x̄k) := Vk+1(x̄k+1)−Vk(x̄k) ≤
−ε‖x̄k‖2 for all x̄k ∈ R

n and all k ∈ N.
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Now we will prove that satisfaction of (3.33) for all Δ ∈ Δ and α ∈ Ω
is implied by satisfaction of (3.30) and (3.31) with K̄l = Z1,lX

−1
1,l , l ∈ Lu and

L̄l = Z2,lX
−1
2,l , l ∈ Ly. By a Schur complement we can observe that the condition

in (3.33) is equivalent to satisfying
∑M

m=1 α
mQj,m � 0, where

Qj,m :=

[
P−1
j (Fσj ,m + GmΔHσj

)�

(Fσj ,m + GmΔHσj ) Pj+1

]
,

α ∈ Ω and Δ ∈ Δ for all j = {1, ..., Ñ}. A necessary and sufficient condition

for the satisfaction of
∑M

m=1 α
mQj,m � 0 for all α ∈ Ω and for all Δ ∈ Δ is to

require that Qj,m � 0 for all Δ ∈ Δ and for all j ∈ {1, ..., Ñ}, m ∈ {1, ...,M}.
Now observe that for all Δj ∈ Δ, it holds that H�

σj
(R−1

j,m −Δ�R−1
j,mΔ)Hσj

� 0,

for all R−1
j,m ∈ R, j ∈ {1, . . . , Ñ} and m ∈ {1, . . . ,M} by the definitions of Δ in

(3.15) and R in (3.29). Hence, Qj,m � 0 is satisfied if[
P−1
j (Fσj ,m + GmΔHσj )

�

(Fσj ,m + GmΔHσj ) Pj+1

]
�[

H�
σj

(R−1
j,m −Δ�R−1

j,mΔ)Hσj 0

0 0

]
,

or equivalently that S�
j,mQ̄j,mSj,m � 0, where

Q̄j,m :=

⎡
⎢⎣G�

σj
P−1
j Gσj (Fσj ,mGσj )

� 0 (HσjGσj )
�

� Pj+1 GmRj,m 0
� � Rj,m 0
� � � Rj,m

⎤
⎥⎦ ,

and

Sj,m :=

⎡
⎢⎢⎣

G−1
σj

0

0 I
R−1

j,mΔHσj
0

−R−1
j,mHσj

0

⎤
⎥⎥⎦ .

The matrix inequality S�
j,mQ̄j,mSj,m � 0 is satisfied if Q̄j,m � 0 since Sj,m is full

column-rank. Using the fact that it holds that G�
σj
P−1
j Gσj

� Gσj
+ G�

σj
− Pj ,

the satisfaction of Q̄j,m � 0 is implied by the satisfaction of⎡
⎢⎣

Gσj +G�
σj

− Pj (Fσj ,mGσj )
� 0 (HσjGσj )

�

� Pj+1 GmRj,m 0
� � Rj,m 0
� � � Rj,m

⎤
⎥⎦ � 0. (3.34)

Note that G�
σj
P−1
j Gσj

� Gσj
+G�

σj
− Pj follows from the fact that if P−1

j � 0

then (Gσj
− Pj)

�P−1
j (Gσj

− Pj) � 0.
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Finally, combining Z2,σj
Cσj

= L̄σj
Cσj

Gσj
, which is derived from (3.31b) and

L̄σj
= Z2,σj

X−1
2,σj

, and Z1,σj
Eσj

= K̄σj
Eσj

Gσj
, which is derived from (3.31a) and

K̄σj = Z1,σjX
−1
1,σj

, with (3.27), we can substitute

Fσj ,mGσj
= Aσj ,mGσj

+ Bσj ,mK̄σj
Eσj

Gσj
−Dσj

L̄σj
Cσj

Gσj

= Aσj ,mGσj
+ Bσj ,mZ1,σj

Eσj
−Dσj

Z2,σj
Cσj

,

Hσj
Gσj

= Iσj
Gσj

+ Jσj K̄σj
Eσj

Gσj

= Iσj
Gσj

+ Jσj
Z1,σj

Eσj
,

into (3.34), which yields (3.30). The above substitution of Z2,lCl = L̄lClGl, thus
using (3.31b), is only needed when l ∈ Ly since, by definition, Υy

l = 0 when
l �∈ Ly (and thus Cl = 0). Similarly, substitution of Z1,lEl = K̄lElGl, thus using
(3.31a), is only needed when l ∈ Lu since Υu

l = 0 when l �∈ Lu (and thus Jl = 0
and Bl,m = 0 for all m ∈ {1, ...,M}).

We have shown that satisfaction of (3.30) and (3.31) yield K̄l and L̄l which
satisfy (3.33) for all j ∈ {1, ..., Ñ}, α ∈ Ω and Δ ∈ Δ. Hence, using standard
Lyapunov arguments, UGES of (3.13), (3.21), (3.27) with αk ∈ Ω, Δk ∈ Δ and
the given protocol satisfying (3.6) is guaranteed and yields also UGES of (3.11),
(3.12) with hk ∈ [hmin, hmax] and the same periodic protocol.

Remark 3.5. The requirement that any node l ∈ {1, ..., N̄} containing at least
one sensor, consists of linearly independent sensors, i.e. (C)J̄y

l ,• has full row rank,
is a rather mild condition. Indeed, the natural situation of C having full row
rank is a sufficient condition for this requirement. �

3.4.2 Parallel Subsystem Communication

In this section, we will generalize the reasoning in Section 3.4.1 to allow the
subsystems to communicate in parallel. Specifically, we will explain why As-
sumption 3.1 is included and how it is possible to remove Assumption 3.1 from
Theorem 3.2. If Assumption 3.1 does not hold, sensors and/or actuators from
two (or more) subsystems are grouped into one node and, hence, communicate
at the same transmission instant. The consequence of two subsystems commu-
nicating is that K̄l and L̄l as defined in (3.25) will remain structured, as these
gains will then contain elements that must be equal to zero. Due to these design
variables containing structure, solutions to Theorem 3.2 using (3.26) will not be
valid. In order to remove Assumption 3.1, (3.26) needs to be generalized to

Γu
l Kl =

N∑
i=1

Υu
l,iK̄l,iΥ

x�
l,i , LlΓ

y
l =

N∑
i=1

Υx
l,iL̄l,iΥ

y�
l,i , (3.35)
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where (3.23) is then generalized to

Υu
l,i :=

{
(Γu

l )•,J̄u
l ∩Ju

i
, if l ∈ Lu,i,

0, otherwise,

Υy
l,i :=

{
(Γy

l )•,J̄y
l ∩Jy

i
, if l ∈ Ly,i,

0, otherwise,

Υx
l,i :=

{
(Ix)•,J̄x

l ∩Jx
i
, if J̄x

l ∩ Jx
i �= ∅,

0, otherwise,

where (3.24) is generalized to

Lu,i := {l ∈ {1, ..., N̄} | J̄u
l ∩ Ju

i �= ∅}, (3.36a)

Ly,i := {l ∈ {1, ..., N̄} | J̄y
l ∩ Jy

i �= ∅}, (3.36b)

and, finally, (3.25) is generalized to

K̄l,i :=

{
(Kl)J̄u

l ∩Ju
i ,J̄

x
l ∩Jx

i
, if l ∈ Lu,i,

0, otherwise,
(3.37a)

L̄l,i :=

{
(Ll)J̄x

l ∩Jx
i ,J̄

y
l ∩Jy

i
, if l ∈ Ly,i,

0, otherwise.
(3.37b)

Notice that, using (3.35), if multiple subsystems communicate simultaneously
then each non-zero gain K̄l,i and L̄l,i is non-structured. In the case that Assump-
tion 3.1 is adopted, for each l ∈ {1, ..., N̄}, there exists only one i ∈ {1, ..., N}
where Υx

l,i �= 0, and thus, (3.35) simplifies to (3.26). With (3.35), we have that
(3.27) becomes

Fl,m = Al,m +

N∑
i=1

(Bl,m,iK̄l,iEl,i −Dl,iL̄l,iCl,i), (3.38a)

Hl = Il +
N∑
i=1

Jl,iK̄l,iEl,i, (3.38b)

where Bl,m,i, El,i,Dl,i, Cl,i and Jl,i are of the form Bl,m, El,Dl, Cl and Jl in
(3.28) with Υu

l,i,Υ
y
l,i and Υx

l,i substituted for Υu
l ,Υ

y
l and Υx

l , respectively. These
extensions lead to the following theorem, which is a generalization of Theorem
3.2.

Theorem 3.3. Consider the system (3.11), (3.12) with hk ∈ [hmin, hmax],
k ∈ N, and its overapproximation given by (3.13), (3.21), (3.38). Assume that
the protocol satisfies (3.6) and any node l ∈ {1, ..., N̄} containing at least one
sensor from subsystem i, i.e. J̄y

l ∩ Jy
i �= ∅, consists of linearly independent sub-

system sensors, i.e. (C)J̄y
l ∩Jy

i ,• has full row rank. Suppose there exist symmetric



62
Chapter 3. Decentralized Observer-Based Control

via Networked Communication

matrices Pj, matrices Rj,m ∈ R, with R as in (3.29), and matrices Gl, Z1,l,i,

Z2,l,i, X1,l,i and X2,l,i where i ∈ {1, ..., N}, j ∈ {1, ..., Ñ}, m ∈ {1, ...,M}, l ∈
{1, ..., N̄} such that (3.30) holds for j ∈ {1, ..., Ñ}, m ∈ {1, ...,M}, and

X1,l,iEl,i = El,iGl, for l ∈ Lu,i, i ∈ {1, ..., N}
X2,l,iCl,i = Cl,iGl, for l ∈ Ly,i, i ∈ {1, ..., N}

for which we define

Ξ1(j,m) := Aσj ,mGσj
+

N∑
i=1

(Bσj ,m,iZ1,σj ,iEσj ,i −Dσj ,iZ2,σj ,iCσj ,i),

Ξ2(j) := Iσj
Gσj

+

N∑
i=1

Jσj ,iZ1,σj ,iEσj ,i,

for j ∈ {1, ..., Ñ}, m ∈ {1, ...,M}, with PÑ+1 := P1 and the sets Lu,i and Ly,i,
i ∈ {1, ..., N}, are defined in (3.36), respectively. Then the controller gains
Kl, defined by (3.35), (3.37) and K̄l,i = Z1,l,iX

−1
1,l,i, l ∈ Lu,i, i ∈ {1, ..., N},

and the observer gains, defined by (3.35), (3.37) and L̄l,i = Z2,l,iX
−1
2,l,i, l ∈ Ly,i,

i ∈ {1, ..., N}, render the system (3.11), with hk ∈ [hmin, hmax], k ∈ N, and the
mentioned periodic protocol, UGES.

Proof. The proof follows directly from Theorem 3.2.

Remark 3.6. The NCS model presented here can be extended to include time-
varying communication delays τk ∈ [τmax, τmax], where τk < hk for all k ∈ N,
using the results in [38], in a straightforward manner. Such an extension only

requires redefining B̄hk
to be B̄hk,τk =

∫ hk

τk
eA(hk−s)dsB and adding an addi-

tional term Whk,τk ûk−1 =
∫ τk
0

eA(hk−s)dsBûk−1 to xk+1 in (3.4). As a direct
consequence, the closed-loop system matrix (3.12) will depend on τk. This delay-
induced uncertainty can be incorporated into an overapproximated system of the
form (3.13), where the additive uncertainty setΔ then becomes part of R3nx×3nx

instead of R2nx×2nx . The decomposition of this overapproximated system into
the form (3.13) with (3.27) can still be achieved and, hence, Theorem 3.3 can
still be applied. �

3.5 Example

In this section, we illustrate the presented theory using a well-known benchmark
example [17, 34, 38, 58, 94, 122] in the NCS literature consisting of a linearized
model of an unstable batch reactor. This benchmark example has been used
primarily to compare conservatism in stability analysis techniques, where the
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dynamic output-based stabilizing controller is assumed to be given. In [34],
dynamic output-feedback controllers were synthesized for this problem in the
presence of a shared communication medium, but with a constant transmission
interval. These are the first results which synthesizes dynamic output-based sta-
bilizing controllers for this problem with both a shared communication medium
and time-varying transmission intervals. Moreover, we synthesize controllers
while imposing constraints regarding controller decentralization. First we will
synthesize stabilizing decentralized controllers for a single batch reactor in Sec-
tion 3.5.1 and then, in Section 3.5.2, synthesize stabilizing controllers for multiple
batch reactors. The single batch reactor will be considered primarily for reasons
of comparison to previous work, and the multiple batch reactor case will be
considered to explore the (computational) limitations of the presented synthesis
technique.

3.5.1 Single Batch Reactor

The system matrices for the linearized batch reactor are given in [122]. This sys-
tem is not in an ideal form to be expressed as a collection of disjoint subsystems
as in (3.1). So we use a linear state transformation z = T̄ x, where

T̄ =

⎡
⎣0 1 0 0
0 0 1 1
1 0 1 −1
0 0 −1 1

⎤
⎦

and we reverse the order of the output vector y to arrive at the following system
matrices for the system in the form (3.2):

[
A B
C

]
=

⎡
⎢⎢⎢⎣
−4.290 0.675 −0.581 −0.581 5.679 0
4.273 −0.761 0.048 −1.295 1.136 0

−0.208 1.039 2.399 3.681 0 −3.146
0 0 −1.019 −9.016 0 3.146
1 0 0 0
0 0 1 0

⎤
⎥⎥⎥⎦. (3.39)

The two disjoint subsystems of (3.39) are denoted by the dashed lines. We will
use the system matrices in (3.39) as the plant model (3.2) for the remainder of
this example. We will compare four different controller structures, denoted C1,
C2, C3 and C4.

C1 - The first controller (C1) is a centralized controller (N = 1) of the form
(3.9) where the communication medium is not shared, meaning all sensors and
actuators are in one node (N̄ = 1) and Γu

1 = Γy
1 = I. This is the simplest setting

for which Theorem 3.2 applies.
C2 - The second controller (C2) is a decentralized controller (N = 2) of

the form (3.9) where the decentralized structure is indicated in (3.39) by the
dashed lines. The communication medium is not shared, meaning all sensors and
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actuators are in one node (N̄ = 1) and Γu
1 = Γy

1 = I. Since the communication
medium is not shared and the controller is decentralized, the subsystems will
communicate in parallel and Theorem 3.3 must be used.

C3 - The third controller (C3) is a decentralized controller (N = 2) of the
form (3.9) where the decentralized structure is indicated in (3.39) with the
dashed lines. In addition, the communication medium is shared. We specify that
each sensor and actuator is placed into a separate node. Hence, there are N̄ = 4
nodes, where Γu

1 = diag(1, 0), Γu
2 = diag(0, 1), Γu

3 = Γu
4 = Γy

1 = Γy
2 = diag(0, 0),

Γy
3 = diag(1, 0) and Γy

4 = diag(0, 1). We specify the protocol to be the well-
known Round Robin protocol given by (3.6) with σl = l, l ∈ {1, ..., 4} and
Ñ = 4. With this decentralized structure and communication protocol, the
subsystems communicate in a serial fashion and Theorem 3.2 applies.

To help clarify (3.26) we now explicitly provide the matrices Υu
l , Υ

y
l , Υ

x
l , K̄l

and L̄l, l ∈ {1, ..., 4} associated with this controller. If we define the elements of
Kl and Ll as

Kl :=
[

Kl,1 Kl,2 0 0
0 0 Kl,3 Kl,4

]
,

L�
l :=

[
Ll,1 Ll,2 0 0
0 0 Ll,3 Ll,4

]
,

then we have that (3.26) translates to

Γu
1K1 = Υu

1K̄1Υ
x�
1 =

[
1
0

]
[K1,1 K1,2]

[
1 0 0 0
0 1 0 0

]
,

Γu
2K2 = Υu

2K̄2Υ
x�
2 =

[
0
1

]
[K2,3 K2,4]

[
0 0 1 0
0 0 0 1

]
,

Γu
3K3 = Γu

4K4 = 0, L1Γ
y
1 = L2Γ

y
2 = 0,

L3Γ
y
3 = Υx

3 L̄3Υ
y�
3 =

⎡
⎣1 0
0 1
0 0
0 0

⎤
⎦[

L3,1

L3,2

]
[1 0],

L4Γ
y
4 = Υx

4 L̄4Υ
y�
4 =

⎡
⎣0 0
0 0
1 0
0 1

⎤
⎦[

L4,3

L4,4

]
[0 1].

C4 - The fourth controller (C4) is an exact discretization of the dynamic
controller considered in [17, 38, 58, 94, 122] which, when discretized, becomes of
the form x̃k+1 = Acx̃k +Bcŷk, uk = Ccx̃k +Dcŷk−1, where

[
Ac Bc

Cc Dc

]
=

⎡
⎣ 1 0 h� 0

0 1 0 h�

−2 0 −2 0
0 8 0 5

⎤
⎦,
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Figure 3.2: Maximum hmax (with hmin = 10−3) for which (i) stabilizing
controller gains for the batch reactor system could be synthe-
sized for C1 and C3 using Theorem 3.2 and C2 using Theo-
rem 3.3 and (ii) stability could be guaranteed for C4.

h� is the nominal sampling interval used for controller discretization and the
decentralized structure is indicated with dashed lines. This discrete-time con-
troller was also studied in [34]. We consider the communication medium to be
shared and impose the same nodes and Round Robin protocol as specified for
controller C3.

For each of the controllers C1, C2 and C3 we took different values of h�

and used the YALMIP interface [78] with the SeDuMi solver [118] to ver-
ify the conditions of Theorem 3.2 or Theorem 3.3 in order to find stabiliz-
ing gains Kl and Ll which maximize hmax such that the NCS (3.11) is sta-
ble for [hmin, hmax] = [10−3, hmax], k ∈ N, i.e. for a fixed lower bound on
the transmission interval. In the NCS literature, this problem setting is also
known as finding the maximum allowable transmission interval (MATI) that
still guarantees stability [17, 38, 58, 94, 122]. Unlike the aforementioned refer-
ences which consider the controller as given, we now have the advantage of
using controller synthesis to push the MATI to an even higher value. For C4,
the closed-loop model and stability analysis technique given in [38] (see Re-
mark 3.2) were used to verify stability in order to maximize the uncertainty
range [hmin, hmax] = [10−3, hmax], k ∈ N. For C1, C2, C3 and C4 we consid-
ered an overapproximation of the closed-loop dynamics using 10 gridpoints.

The result of applying Theorem 3.2 to C1 and C3 and applying Theorem
3.3 to C2 is plotted in Fig. 3.2. The regions for which closed-loop stability can
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be guaranteed for controller structures C1, C2, C3 and C4 lie below the lines
corresponding to C1, C2, C3 and C4, respectively. Furthermore, the regions
lying below the lines corresponding to C1, C2 and C3 represent the set of sta-
bilizing controllers that can be found by iteratively applying Theorem 3.2 or
Theorem 3.3. One can see that, as expected, the case of a centralized controller
and a communication medium which is not shared (C1) achieves the largest ro-
bustness margins and yields the largest set of stabilizing controllers. Imposing
decentralized structural constraints (C2) and both decentralized structural con-
straints and a shared communication medium (C3) results in lower robustness
margins and smaller sets of controllers. Lastly, analyzing stability of the ‘con-
ventional’ batch reactor controller (C4) yields the smallest region. The stability
analysis technique used to analyze C4 was shown in [38] to greatly reduce con-
servatism compared to robustness margins proven in previous work. However,
every point (h�, hmax), which lies between the lines corresponding to C3 and C4
in Fig. 3.2, represents a decentralized observer-based controller (3.9) that has
improved closed-loop robustness compared to the existing controller C4. Hence,
the presented technique, which synthesizes decentralized dynamic controllers for
C3, results in finding an entire set of controllers that have significantly improved
robustness margins compared to the given decentralized controller C4.

As a final remark, the amount of time taken to solve the LMI feasibility
problem given in Theorem 3.2 or Theorem 3.3 was, on average, 5 seconds for C1
and C2 and 20 seconds for C3 using a laptop containing a 2.5GHz Core2 Duo
CPU and 3GB of RAM, which illustrates the computational feasibility of the
presented approach for small-scale problems.

3.5.2 Multiple Batch Reactors

In this section, we will apply the synthesis techniques to the case where ν ∈ N

batch reactors are considered. Thus, the system matrices Â, B̂ and Ĉ considered
in this section are block diagonal, where the number of blocks is equal to ν
and the blocks themselves are equal to the A, B and C matrices in (3.39),
respectively. Hence, we have that Â = diag(A,A, ..., A), B̂ = diag(B,B, ..., B)
and Ĉ = diag(C,C, ..., C). The scenario we aim to study is a factory setting
where multiple batch reactors are using wireless communication to transmit
their sensor values. We can perform a similar analysis as in the previous section,
which compares the resulting robustness for different controller configurations.
We will again consider an overapproximation of the closed-loop dynamics using
M = 10 grid points, as in the previous section.

For this multi-batch-reactor situation, we will again consider the controller
structures C1 and C2 introduced in the previous section. In this section, C2
is a decentralized controller (N = 2ν) of the form (3.9) where the decentralized
structure for each batch reactor is indicated in (3.39) with the dashed lines. Al-
though synthesizing robustly stabilizing controllers C1 or C2 for a single batch
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reactor does guarantee robust stability when applied to multiple batch reactors
(due to a lack of network and subsystem coupling), the main reason for consider-
ing these two controller structures is to explore the computational limitations of
the developed synthesis technique when the closed-loop dimension is increased.
In addition to C1 and C2, we also want to investigate the resulting robustness
for a decentralized controller structure that does introduce network coupling,
denoted C5, described below.

C5 - The fifth controller (C5) is a decentralized controller (N = 2ν) of the
form (3.9) where the decentralized structure for each batch reactor is indicated in
(3.39) with the dashed lines. In addition, the communication medium is shared.
We specify that each sensor is placed into a separate node and all actuators are
updated at each transmission instant. Hence, there are N̄ = 2ν nodes, where
Γu
l = I for all l ∈ {1, ..., 2ν} and (Γy

l )(r,r) = 1 when l = r and is zero otherwise
for all l ∈ {1, ..., 2ν}. We specify the protocol to be the well-known Round
Robin protocol given by (3.6) with σl = l, l ∈ {1, ..., 2ν} and Ñ = 2ν. With this
decentralized structure and communication protocol, the subsystems’ actuators
communicate in a parallel fashion and Theorem 3.3 applies.

The controller structure C5 models the practical situation where each (decen-
tralized) controller is co-located at each actuator. Although the batch reactors
themselves are not coupled, the presence of a shared communication network
couples the individual batch reactor’s dynamics. Unlike C1 and C2, a controller
C5 that robustly stabilizes a single batch reactor is not guaranteed to be stabi-
lizing when applied to multiple batch reactors. Hence, stabilizing multiple batch
reactors by using this practical (wireless) controller structure requires a synthesis
technique that includes both decentralized and shared networked aspects, such
as the one provided in Theorem 3.3.

The result of applying the synthesis theorems to this setting is shown in
Fig. 3.3. Due to the lack of a shared communication medium, the amount of
robustness that can be guaranteed employing controllers corresponding to C1
and C2 is equal to that in Fig. 3.2 for any number of batch reactors. This
is, of course, expected since the controller structures C1 and C2 do not cou-
ple the batch reactors in any way. However, for C5, which considers a shared
communication medium, we can see that the amount of robustness that can be
guaranteed decreases with an increasing number of batch reactors as more sen-
sors are required to share the medium. For the case of ν = 3 batch reactors,
the proposed synthesis technique can be used to synthesize a decentralized con-
troller that robustly stabilizes the closed-loop NCS for hmax = 0.011. Due to
the memory limitations of the computer used for computation (mentioned be-
fore), stabilizing controllers could be synthesized for a maximum of ν = 4 batch
reactors for C1 and C2, whereas stabilizing controllers could be synthesized for a
maximum number of ν = 3 batch reactors for C5. This indicates the limitations
of this technique when implemented in current commercially available computer
hardware.
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Figure 3.3: Maximum hmax (with hmin = 10−3 and h� = 0.010) for which
(i) stabilizing controller gains for the batch reactor system
could be synthesized for C1 using Theorem 3.2 and C2 and
C5 using Theorem 3.3.

To provide a better (solver/hardware independent) indication of how the
computational complexity (i.e. memory/computational time required) scales with
the state dimension, we will provide an analytical expression which specifies the
number of free variables which must be determined to synthesize controller C5
as a function of the number of batch reactors (and grid points). This expression
is

nvars = nP + nR + nG + nX + nZ (3.40)

where nP , nR, nG, nX and nZ indicate the number free variables in the P , R,
G, X and Z matrices of Theorem 3.3, respectively. For the controller structure
C5, it can be determined that

nP = 144ν3 + 12ν2, nR = 16Mν2, nG = 288ν3,

nX = 8ν2 + 4ν, nZ = 16ν2 + 2ν,
(3.41)

where M ∈ N is the number of grid points (and ν is the number of batch
reactors). This representation illustrates the computational penalty incurred
from each component, and gives insight into how the computational complexity
would be reduced if certain elements were removed or modified. For example,
performing robust stability analysis (as mentioned in Remark 3.2) only requires
the computation of the P and R matrices and, therefore, nvars = nP + nR.
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Figure 3.4: The number of variables which must be solved as a function of
the number of batch reactors ν. Both the cases of controller
synthesis and stability analysis are plotted with different num-
ber of grid points M .

Therefore, we can conclude that for this switched system framework, the com-
putational complexity has polynomial growth (of third order in this case) in
terms of the number of batch reactors considered. Interestingly, the decentral-
ized synthesis technique presented in this paper has the same order of complexity
as the simpler stability analysis problem.

In Fig. 3.4, the number of free variables is plotted as a function of the num-
ber of batch reactors, as specified in (3.40) with (3.41). This plot considers the
number of variables required to both synthesize controllers C5 and determin-
ing robust stability analysis of a given controller C5 (based on [38]). We can
observe how many more additional variables the synthesis technique presented
in this paper requires than the stability analysis technique. Recalling that the
maximum number of batch reactors able to synthesized for C5 was ν = 3 (which
corresponds to a closed-loop dimension of size 36), we can see that ≈ 104 vari-
ables need to be determined by the LMI solver, which, from Fig. 3.4, implies
that robust stability analysis of C5 can be assessed for at least ν = 4 batch
reactors (which corresponds to a closed-loop dimension of size 48). We also
observe that the addition of more grid points does not introduce a large compu-
tational penalty in terms of additional variables as M enters linearly in (3.40),
(3.41). Finally, Fig. 3.4 provides an indication of the amount of memory (and
computational time) required to solve larger problems, and suggests where the
limitations of one-shot LMI-based techniques currently are.



70
Chapter 3. Decentralized Observer-Based Control

via Networked Communication

3.6 Conclusion

In this chapter, we have presented LMI-based synthesis conditions for designing
decentralized observer-based control laws in the presence of a shared commu-
nication medium, which are robust with respect to time-varying transmission
intervals and time-varying delays. This result was obtained by expressing the
observer-based controller design problem as a multi-gain switched static output-
feedback problem (with additive uncertainty), for which, the gains can be effi-
ciently solved by LMI-based feasibility conditions. These LMI-based synthesis
conditions, if satisfied, provide stabilizing gains for both the decentralized prob-
lem setting and the NCS problem setting in isolation, as well as the unification
of these two problem settings. Using a benchmark example in the NCS lit-
erature, it was shown that this synthesis technique was able to find an entire
set of controllers that significantly improved the closed-loop robustness com-
pared to that of a dynamical controller, extensively studied in the literature.
However, the computational complexity of the proposed approach limits this
one-shot technique to synthesizing (decentralized) controllers for small and mid-
size state-space dimensions. This limitation is primarily due to the fact that,
although offering low levels of conservatism and efficient verification for small-
scale problems, the number of variables that must be solved using a (switched)
quadratic Lyapunov function candidate grows polynomially with respect to the
state dimension. Therefore, this advocates that future techniques should not
only focus on providing low levels of conservatism but also focus on having low
levels of computational complexity. Accomplishing lower levels of computational
complexity, improved solvers, and distributed solving of LMIs would enhance the
possible application of the proposed methodology for large-scale systems. In any
event, the framework laid down in this paper forms one of the first systematic
methodologies for the synthesis of stabilizing controllers that incorporate both
decentralized and (shared) networked features.



Chapter 4

Networked Control Systems Toolbox:
Robust Stability Analysis Made Easy

“When you do things right, people won’t be sure you’ve done any-
thing at all.”

- Futurama, “Godfellas”

4.1 Introduction

In recent years, there have been many theoretical developments in the area of
stability analysis for networked control systems (NCSs), however, computational
tools which implement the theory are lacking. For this reason, we have developed
a prototype MATLAB toolbox with the primary goal of increasing the number
of people that can interact with and use the stability theory for NCSs in a simple
manner. In fact, there are multiple other reasons for creating an NCS toolbox:
(i) to provide a user-friendly way to apply the existing theoretical developments
to NCS problems of choice; (ii) to remove the burden of implementing some of
the more complex algorithms employed in the theory; (iii) to gain feedback from
the community to improve the quality and overall usefulness of both the toolbox
and the theory. To appeal to the widest range of people, we have designed the
toolbox such that it is useful for both the basic user (general control engineers)
and the advanced user (members of the NCS community).

To appeal to the basic user, we have completely automated the stability
analysis procedure such that the user is only required to input a plant model,
a controller model, and bounds on the network uncertainties (described in Sec-
tion 4.2) and can directly start analyzing robust stability of the corresponding
closed-loop NCS. Moreover, we have recognized that NCS models can contain
a considerable amount of variables, which can be intimidating to someone who
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is not familiar with the NCS nomenclature. For example, in addition to the
matrices required to define the plant and controller dynamics, variables charac-
terizing all the network-induced effects listed in Section 4.2 must also be defined.
Therefore, we created a graphical user interface (GUI), see Fig. 4.3, such that
the variables are displayed and can be edited in a very intuitive manner. An
additional stumbling block that is encountered when learning about NCS the-
ory is related to the fact that there exist several mathematical techniques used
for analysis. To provide easy access to the usage of the results in two mathe-
matical frameworks (based on continuous-time hybrid models, as considered in
Chapter 2, and discrete-time switched systems, as considered in Chapter 3) that
have been developed for robust stability analysis, an additional analysis GUI
was created, see Fig. 4.4.

To appeal to the advanced user, we enabled the use of (command-line) func-
tionality outside the GUI to aid in analyzing more specific problem settings.
First, researchers can add functionality for stability analysis to the toolbox by
writing their own programs which can visualize entire stability regions for their
problem of interest. Second, to encourage community participation in the future
development of the toolbox, we made it possible for the researcher to incorporate
their own discrete-time models (provided that the network-induced uncertainties
enter the model in the appropriate way, described below). In the discrete-time
framework, a polytopic overapproximation of the closed-loop NCS model is nec-
essary before linear matrix inequalities can be used to determine if stability can
be guaranteed. Acquiring a polytopic overapproximation (possibly with norm-
bounded uncertainty) is the most tedious aspect of implementing a discrete-time
approach to stability analysis of NCSs. The toolbox in this chapter automates
this overapproximation procedure for a general class of models using a choice of
different techniques and allows the NCS community to use the resulting overap-
proximation for analysis of customized stability or performance properties.

The MATLAB toolbox presented in this chapter has automated the theo-
retical developments in [29, 38, 58, 79]. In [29, 38, 79] a discrete-time framework
was used and in [58] a continuous-time hybrid framework (built upon the work
in [94]) was used to analyze stability properties of NCSs. In the discrete-time
framework it has been shown that the amount of conservatism when analyzing
stability can be minimized, however this framework is limited to the analysis
of only linear plants and (switched) linear controllers. On the other hand, the
hybrid formulation has the advantage of being able to analyze general nonlin-
ear plants and controllers and study Lp-gain type of performance criterion. So
it is beneficial to consider both frameworks. However, for the sake of brevity,
in this chapter, we focus on the toolbox implementation of the discrete-time
framework even though the analysis tools in the hybrid framework have been
implemented for linear plants and controllers as well. By using this toolbox, the
user is able to make multi-disciplinary design tradeoffs between control proper-
ties such as stability and performance, and network-related properties such as



4.2 Description of the NCS 73

û y

Communication Network

Sensors

u ŷ
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Figure 4.1: Block Schematic of a networked control system.

delays, scheduling, bandwidth limitations etc., in a user-friendly manner. Fi-
nally, we would like to emphasize here that there are many other results in the
NCS literature which either use the discrete-time or hybrid framework that are
currently not implemented in the the toolbox. We hope that the prototype
toolbox presented here serves as a platform to which the NCS community can
contribute.

The outline of this chapter is as follows. In Section 4.2, a description of the
NCS model as implemented in the toolbox will be given; then in Section 4.3,
the software structure will be presented. In Section 4.4, we describe how the
basic user can quickly assess robust stability of an NCS model. In Section 4.5,
we describe how the advanced user can plot stability regions and how custom
models can be incorporated. In Section 4.6, we give an example of how the
prototype toolbox can be used to investigate the conservatism introduced via
one of the overapproximation techniques and demonstrate how stability regions
can be plotted. Finally, conclusions and future developments are presented in
Section 4.7.

4.2 Description of the NCS

The general schematic of an NCS is depicted in Fig. 4.1. It consists of a linear
time-invariant (LTI) continuous-time plant and an LTI linear controller, which
are interconnected through a communication network that induces

• uncertain time-varying transmission intervals h in the range
[hmin, hmax];

• uncertain time-varying network delays τ in the range
[τmin,min{h, τmax}];
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• uncertain dropouts sequences, where the number of successive
dropouts is bounded by δmax;

• quantization;

• a shared communication medium, which prevents all sensor and actuator
signals from being transmitted simultaneously.

Due to the communication medium being shared, the sensors and actuators
are grouped into N nodes. At each transmission instant, one node obtains
access to the network and transmits its corresponding values (implied by the red
arrow shown in Fig. 4.1). Note that if there is only one node which contains all
sensors and actuators, then the ‘classical’ (sampled-data) control setup, where
all sensor and actuator signals are transmitted at each transmission time, is
recovered. In case of multiple nodes, a mechanism is needed that orchestrates
which node is given access, when the network is available. This mechanism is
called a scheduling protocol. In this toolbox, we provide analysis techniques
for two well-known protocols, namely, the Round Robin (RR) protocol and the
Try-Once-Discard (TOD) protocol, see [122].

Incorporating the communication network (including the protocol) between
the plant and controller, leads to the following operation aspects of the NCS in
Fig. 4.1. First, the sensor acts in a time-driven fashion (i.e. sends data at each
transmission instant) and both the controller and actuator act in an event-driven
fashion (i.e. they respond instantaneously to newly arrived data). Second, the
dropouts are modeled as prolongations of the sampling interval, meaning that,
if a packet is considered ‘dropped’ then a new packet is transmitted at the next
transmission time with new data. Third, the discrete-time control commands are
converted to a continuous-time control signal by using a zero-order-hold (ZOH)
function, see Fig. 4.1. Finally, the delays are assumed to be smaller than the
transmission intervals. Note that retransmissions of packets can be modeled
as prolongations of the delays. More information regarding the mathematical
modeling and assumptions can be found in [29,38,58,79].

4.3 Software Structure

The overall structure of the MATLAB software based on the discrete-time NCS
framework is given in Fig. 4.2. What the toolbox currently offers is the possibility
to analyze three different controller structures via three different overapproxima-
tion techniques and assess stability of two standard communication protocols.
By carefully considering and implementing the software structure, horizontal ex-
pansion (e.g. including different controllers/models, different overapproximation
techniques and different stability analysis conditions) is straightforward since
the vertical links are defined in a generalized manner. Adopting this structure,
we pave the road for the addition of custom models and create the possibility
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for using the resulting overapproximations in customized conditions for analysis
(e.g. analysis of different protocols). In this way, we hope to encourage the NCS
community to use and contribute to the toolbox as well.

The structure of the toolbox reflects the goal of appealing to both the basic
user and the advanced user. The basic user can simply interact with the first
and last layer of the toolbox through the GUIs. However, for advanced users,
the set of standard models provided with this toolbox might not include the
exact model or stability analysis technique they are interested in studying. We
provide the possibility for the advanced user to incorporate their own model
and/or use their own stability or performance techniques, as will be discussed
in Section 4.5.2.

4.4 Basic Functionality

The NCS Toolbox contains a number of features which make it easy to effi-
ciently verify whether an LTI plant and an LTI controller interconnected with
a network are robust to the aforementioned network imperfections. This is ex-
tremely convenient to someone who designed a linear controller and wants to
quickly verify these robustness properties. We provide easy model management,
overapproximation automation and automated stability verification.

4.4.1 Model Management

An NCS class object (which describes the model covered in Section 4.2) consists
of an LTI plant, an LTI controller and network variables (bounds on time-varying
sampling intervals, bounds on time-varying delays, a bound on the maximum
number of successive dropouts, the type of quantizer, the node definitions and
the protocol). Creating an NCS object is easily done by using the NCS Editor
(GUI) shown in Fig. 4.3.

To display the NCS Editor, simply type ncsEditor in the MATLAB com-
mand line and the GUI will appear. Here the NCS properties can be defined
and an NCS object can be exported to the MATLAB workspace by clicking ‘File
> Export’. Modifications to an NCS object can be made by clicking on ‘File >
Import’. We will now briefly discuss the specific elements of the NCS object.

Plant

In this toolbox the plant, as shown in Fig. 4.1, is an LTI continuous-time system
expressed as

ẋ(t) = Ax(t) +Bû(t),

y(t) = Cx(t).
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Figure 4.2: The software structure for the discrete-time NCS framework.

The matrices A, B and C are the first input parameters to define an NCS object.
The signals û (and ŷ) result from transmitting y and u, respectively, through the
network, as depicted in Fig. 4.1. In the related input boxes, see Fig. 4.3, either
matrices can be input directly or variables defined in the MATLAB workspace
can be used.

Controller

Next, the controller, as shown in Fig. 4.1, needs to be specified. The controller
type can be defined by clicking on a choice from the drop down dialog box,
see Fig. 4.3. There are three possible controller types currently available in
this toolbox. The first is ‘Static Feedback’ where the feedback law is of the form
u(t) = Kŷ(t). The second controller type is a ‘C-LTI Dynamic Feedback’ control
law, which is given by the following continuous-time linear dynamic control law:

ẋc(t) = Acxc(t) +Bcŷ(t),

u(t) = Ccxc(t) +Dcŷ(t).

The third controller type is a ‘D-LTI Dynamic Feedback’ control law, which is
given by the following discrete-time linear dynamic control law:

xc
k+1 = Acxc

k +Bcŷk,

u(tk) = Ccxc
k +Dcŷ(tk),
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Figure 4.3: Graphical user interface to define an NCS object.

where tk is the kth transmission time. The matrices K or Ac, Bc, Cc and Dc

are entered into the corresponding text boxes, see Fig. 4.3. In these text boxes,
either matrices can be input directly or variables defined in the workspace can
be used. Being able to input variables from the workspace is convenient if the
controller was designed using a different tool (e.g. based on loop-shaping or
H∞-based tools).

Network

Lastly, the network effects need to be defined. The bounds on the time-varying
transmission intervals and time-varying delays are entered into the corresponding
input box, see Fig. 4.3. If the transmission intervals or delays are considered
constant then the ‘min’ value can be set equal to the ‘max’ value. If delays are
not considered, then both the ‘min’ value and the ‘max’ value can be set equal
to zero. Next, a bound on successive packet dropouts needs to be specified. If
dropouts do not occur, this value can be set to zero.

Next, there is a check box to indicate whether or not the communication
medium is shared (restricting all actuators and sensors from communicating at
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the same transmission time). Once this box is checked, the button ‘Define Nodes’
is enabled. Another GUI will appear where the nodes can be defined by ‘adding’
inputs and outputs to each node. Nodes can be added or removed and moved up
and down to change the ordering. Next, in the NCS Editor, the protocol type
needs to be chosen as ‘RR’ for Round Robin or ‘TOD’ for Try-Once-Discard.

Finally, a type of quantizer can be chosen from a drop down menu as ‘none’,
‘uniform’ or ‘logarithmic’. For further information about quantizer modeling
and analysis, see [79].

Once all the fields are filled in, all the NCS parameters can be exported to
the workspace in a single NCS object and saved for later use.

4.4.2 Automated Overapproximation

The discrete-time closed-loop NCS models given in [29,38,79] can all be expressed
in the general form

x̄k+1 =

⎛
⎝Aσk

+Bσk

⎡
⎣Âhk

0 0

0 Êhk
0

0 0 Êhk−τk

⎤
⎦Cσk

⎞
⎠ x̄k+

⎛
⎝Eσk

+Dσk

⎡
⎣Âhk

0 0

0 Êhk
0

0 0 Êhk−τk

⎤
⎦ Jσk

⎞
⎠ωk (4.1)

where k ∈ N is a counter related to the number of transmissions, σk ∈ {1, ..., N}
is the node which receives network access at transmission time tk, hk ∈ [hmin, hmax]
is the sampling interval at the kth transmission time, τk ∈ [τmin, τmax] is the
delay at the kth transmission time, ωk ∈ R

nω is a disturbance on the closed-loop

system and Âρ = eÃρ and Êρ =
∫ ρ

0
eÃsds for some matrix Ã. Due to the expo-

nential form in which the uncertainty parameters hk and τk appear in (4.1), i.e.
in the matrices Âhk

∈ Γ1, Êhk
∈ Γ2, and Êhk−τk ∈ Γ3, where

Γ1 :=
{
eÃh | h ∈ [hmin, hmax]

}
,

Γ2 :=
{∫ h

0
eÃsds | h ∈ [hmin, hmax]

}
,

Γ3 :=
{∫ h−τ

0
eÃsds | h ∈ [hmin, hmax], τ ∈ [τmin, τmax]

}
,

the discrete-time model (4.1) is not directly suitable to construct LMI conditions
for stability verification. To make the model amendable for LMI-based stability
analysis, we aim to overapproximate the set of matrices Γi, i = 1, 2, 3, as

Γi ⊆
{

L∑
l=1

αlF̄i,l + ḠiΔiH̄i | α =

[
α1

.

.

.
αL

]
∈ A, Δi ∈ Δ

}
,
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where F̄i,l, Ḡi, H̄i, l = 1, ..., L, i = 1, 2, 3, are suitably constructed matrices,
see, e.g. [59], with L the number of vertices in the polytopic overapproximation.
In addition, Δ is a specific set of structured matrices (e.g. with a norm bound
||Δ|| :=

√
λmax(Δ�Δ) ≤ 1) and

A =

{
α ∈ R

L | αl ≥ 0, l = 1, ..., L and

L∑
l=1

αl = 1

}
.

In the toolbox, we provide techniques to overapproximate the matrix sets Γi

leading to the transformation of the closed-loop system (4.1) into

x̄k+1 =

(
L∑

l=1

αl
kĀσk,l + B̄σk

Δ̄kC̄σk

)
x̄k+

(
L∑

l=1

αl
kĒσk,l + D̄σk

Δ̄kJ̄σk

)
ωk (4.2)

for l ∈ {1, ..., L} and σk ∈ {1, ..., N} with αl
k ∈ A and Δ̄k ∈ Δ, k ∈ N. Three

overapproximation techniques are automated in this toolbox: an approach based
on gridding and norm bounding (GNB), see, e.g., [38], an approach based on the
Jordan normal form (JNF), see, e.g., [29] and an approach based on the Cayley-
Hamilton theorem (CH), see, e.g., [50]. For a theoretical comparison between
these three methods, the reader is referred to [59].

Although each of these three techniques are mathematically interesting, a
fairly strong familiarity with the notation is required in order to implement
(and actually use) these techniques in software. So for the control engineer
who would like to determine if their specific closed-loop system is robust to
network-induced effects, it will cost him or her a significant amount of time and
effort to understand and implement these techniques. The NCS toolbox allows
the control engineer to quickly verify if his control setup possesses robustness
properties without having to know the all the (mathematical) details about a
polytopic overapproximation besides the basic idea and the fact that they may
introduce some conservatism.

4.4.3 Automated Stability Verification

To analyze stability of the NCS, linear matrix inequality (LMI) conditions are
verified on the polytopic overapproximation described in the previous section.
The sufficient LMI conditions (derived in the supporting literature [38, 59, 79])
are verified1 using the YALMIP interface, [78], with the SeDuMi solver, [118].

1The primal residuals of the matrices provided by the LMI solver (which are equivalent to
the eigenvalues) are checked for strict positivity to determine if the solution is valid. If the
LMI solver encounters numerical problems, only a warning is displayed. In this way, the user
is aware of the numerical problems and can make a decision on whether to accept the solution
or not.
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Figure 4.4: Graphical user interface to determine stability.

Stability of an NCS configuration can be assessed directly from the NCS Editor
by clicking on the button ‘Analyze Stability’ in the lower left corner of the NCS
Editor shown in Fig. 4.3 which opens the NCS Analyzer (GUI) shown in Fig. 4.4.

The NCS Analyzer was designed such that a user who is not familiar with the
theory can quickly glance at the layout and intuitively understand that there are
two main frameworks and the options available within each framework. In this
way, a basic user can easily understand the overview of modeling and stability
techniques of an NCS without having to first understand any of the mathematical
details. Verifying closed-loop stability of the NCS can be done by clicking on the
‘Verify Stability’ button. After the stability verification is complete, the result is
displayed on the rightmost column (see Fig. 4.4). The result includes information
regarding the number of vertices in the overapproximation as well as whether the
closed-loop NCS could be determined robustly stable. By making it easy to test
stability with various options, the user can understand that some methods fail
at proving stability while others succeed due to different levels of conservatism
introduced by the different methods. Moreover, the user can directly compare
the computational effort required by the different approaches when applied to
different NCSs of their choice. This way, the basic user can experience first-
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hand the capabilities (and limitations) of the robust stability analysis tools in
the supporting literature [29,38,58,79].

4.5 Advanced Functionality

Of course, having a GUI to interact with the NCS theory is useful to people who
want to quickly verify stability properties of the provided NCS setups; however,
it is also possible to plot entire regions for which robust stability can be guaran-
teed by iteratively calling the function to assess robust stability. By providing
a simple function to assess stability, the advanced user can write their own pro-
grams to plot robust stability regions for different parameters of interest. In this
section, we will provide MATLAB code which demonstrates how to plot stability
regions when hmax and τmax are the parameters of interest. Furthermore, we
recognize that the NCS configurations included in the toolbox might not suit
the needs of a particular NCS problem. This is why we made it possible for
advanced users to incorporate their own models and use their own stability or
performance conditions.

4.5.1 Plotting Robust Stability Regions

With the capability to assess stability of a single set of conditions, it is also
possible to vary certain parameters to discover how robust the closed-loop system
is for such parameter variations and to gain an understanding of where certain
design tradeoffs lie. Assessing stability is achieved by executing the function

>> ncs.isNcsStable(ovrAprxType,quantVars,eu,M)

where ovrAprxType is either ‘GNB’, ‘JNF’ or ‘CH’ to indicate the type of
overapproximation, quantVars is a structure containing data regarding quanti-
zation (if applicable), and eu and M are optional parameters used for the GNB
algorithm. By iteratively using the above command, the NCS toolbox presented
here can be used to produce tradeoff curves between networked properties (e.g.
delays) and control properties (e.g. L2 gain) such as the ones given in previously
published papers (e.g. in [38, 58, 59, 79]). In Section 4.6, we will provide simple
example code which demonstrates how to plot stability regions.

4.5.2 Automated Overapproximation for Custom Models

To encourage community development, the NCS toolbox allows users to incor-
porate custom models for robust stability to be assessed using the discrete-time
NCS framework. For example, one might be interested in an NCS setup where a
different type of hold mechanism is used (besides the zero order hold) or where
a multi-hop network needs to be modeled or where specific inputs and outputs
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are directly wired to the controller and others are connected via a network. Cre-
ating a discrete-time model (of the form (4.1)) in these situations is not a very
time-consuming task. However, the implementation of an overapproximation
technique is generally a very time consuming task, which is why we have au-
tomated the overapproximation procedure for closed-loop models that can be
expressed in the form (4.1). By providing the matrices Aσ, Bσ, Cσ, Dσ, Eσ,
Jσ, σ ∈ {1, ..., N} and Ã, the user can subsequently employ the automated pro-
cedure to create a polytopic model (4.2) for l ∈ {1, ..., L} and σ ∈ {1, ..., N}
by using either the GNB, JNF or CH overapproximation technique. To create
an overapproximation (4.2) of a model (4.1), the user just needs to execute the
command

>> ovrAprx = genPolyOvrAprx(mdlVars,ovrAprxType,eu,M)

where mdlVars is a variable containing the matrices needed to express a
custom NCS model in the form (4.1), ovrAprxType is either ‘GNB’, ‘JNF’ or
‘CH’, and eu and M are optional parameters used for the GNB algorithm. The
output of this function is a variable called ovrAprx, which contains the matrices
in (4.2) and other information about the overapproximation technique. The data
in ovrAprx is suitable to use for any type of performance or stability analysis
conditions based on LMIs, such as those implemented in the toolbox which were
specified in the supporting literature [29, 38,79].

4.6 Example

In this example, we will analyze the batch reactor system, studied in [38,94,122]
and others, to demonstrate how stability regions can be visualized, as described
in Section 4.5.1. In particular, we will investigate the conservatism introduced by
using the GNB technique. The GNB algorithm iteratively tightens the overap-
proximation by iteratively adding grid points to the overapproximated model at
the location of the worst-case approximation error, until either the user-specified
maximum number of grid points are reached or the user-specified desired tight-
ness of the overapproximation is achieved, see [38]. The resulting tightness of
the overapproximation that is obtained, denoted ε, is a norm related to the over-
approximation error. This is the fundamental idea behind the GNB algorithm,
and this is all the user needs to know before he/she can start investigating the
technique through numerical examples.

In order to investigate the conservatism, we will use the following simple
MATLAB script:
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for taumax =0:0.005:0.03

for hmax =0.01:0.01:0.07

if hmax >= taumax

ncs.tau = [0 taumax ];

ncs.h = [1e-3 hmax];

stable =

ncs.isNcsStable(’GNB’,[],eu ,M);

if stable ==1

plot(ncs.h(2),ncs.tau(2),’b.’);

else

plot(ncs.h(2),ncs.tau(2),’rx’);

end

end

end

end

In this script, ncs is an NCS object containing all the parameters specified
in [38], which was created using the NCS Editor shown in Fig. 4.3. This script
tests combinations of maximal transmission intervals and delays, (hmax,taumax),
by modifying the parameters ncs.h and ncs.tau and then calling the function
isNcsStable. If the NCS is determined stable, then we specify to plot a blue
dot, otherwise if stability cannot be guaranteed, we specify to plot a red ‘x’ (see,
e.g. Fig. 4.5). The input parameters to isNcsStable are the ncs variable, the
string ‘GNB’ (to specify the overapproximation technique), [] to indicate that
a quantizer is not used, and two additional parameters that need to be speci-
fied: the maximum number of grid points allowed, denoted m, and the desired
approximation tightness, denoted eu. We will investigate the GNB technique by
varying these parameters and observing the resulting conservatism introduced.

For the first case, denoted GNB1, we take M=50 and eu=2. For this exam-
ple, the maximum of 50 grid points is never reached, so the overapproximation
tightness ε ≤ 2 is guaranteed.

To compare with a second case, denoted GNB2, we set M=10 and keep eu=2.
With these parameters, the overapproximation technique is limited to using a
maximum of 10 grid points or less, depending on if ε ≤ 2 can be obtained within
10 grid points. This situation can be convenient if the user would prefer a re-
duction in computational time at the cost of a possible increase in conservatism.
These results, along with the stability boundry plotted in [38], are shown in
Fig. 4.5.

From Fig. 4.5(a), we can see that using GNB1, we have successfully approx-
imated the results in [38] since all the blue dots lie to the left of the dashed
line and all the red x’s lie to the right of the dashed line. However, limiting
the maximum number of grid points to 10 introduces conservatism, as for some
points in Fig. 4.5(b) the approach (GNB2) is not able to prove stability, were
these points were proven stable by the GNB1 approach. In any case, the stabil-
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Figure 4.5: Batch reactor stability plot. (a) is associated with GNB1 and
(b) is associated with GNB2.

ity regions indicated in Fig. 4.5 provide a quantitative indication of the robust
stability region when two parameters of interest, namely hmax and τmax, are set
to different values. In a similar manner, this toolbox enables the advanced user
to easily create other robust stability regions for different parameters.

To further investigate the GNB technique and the resulting conservatism
which was observed in Fig. 4.5(b), the toolbox enables the user to access the
parameter ε for each point (hmax, taumax) by using the second output from
the isNcsStable function. The second output is a structure which contains
useful information about the overapproximation used for verifying stability.
So, the algorithm above can be modified such that the isNcsStable outputs
[stable, ovrAprx] instead of just stable and the variable ovrAprx contains
a property ovrAprx.MaxEps which is the ε obtained from the GNB algorithm.
Plotting this value for each (hmax, taumax) results in the figures given in Fig. 4.6.
As can be seen from Fig. 4.6, GNB1 is able to guarantee ε ≤ 2 while the ε asso-
ciated with GNB2 is higher due to the 10 grid point limit specified.

This example shows that by using the functions provided in the toolbox
within simple iterative procedures, the control community can quickly begin ex-
perimenting with these techniques to gain insights which are not readily available
from reading the literature.

4.7 Conclusions and Future Development

In this chapter, we introduced a prototype of a toolbox that automates stability
analysis of NCSs based on the theoretical contributions in [29, 38, 58, 79]. The
toolbox was designed such that the general control engineer can immediately
start assessing robust stability of LTI plants and controllers interconnected via
a network. Moreover, the software was coded in such a way that the NCS com-
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Figure 4.6: Batch reactor overapproximation tightness, ε, plot. (a) shows
ε for each (hmax, τmax) associated with GNB1 and (b) shows
ε for each (hmax, τmax) associated with GNB2.

munity can easily apply the overapproximation theory (used within a discrete-
time approach for NCS) on any closed-loop model which is able to be written
in the general form (4.1). Finally, the resulting overapproximation can be used
in custom conditions for performance or stability analysis, further promoting
community development.

This first NCS toolbox prototype focuses only on analysis; however, in future
releases, we plan to include automation of the controller synthesis techniques
given in [15,28] and the stochastic results given in [37].





Chapter 5

Experimental Exploration
of Wireless Control

“As far as the laws of mathematics refer to reality, they are not certain;
and as far as they are certain, they do not refer to reality.”

- Albert Einstein

5.1 Introduction

In this chapter, a wireless control system that stabilizes an experimental in-
verted pendulum setup will be constructed and analyzed. The controller will
be computing control commands based on the received measurements from a
wireless sensor network (WSN) consisting of two sensor nodes. By logging the
network data during the closed-loop experiments, we will see that this fairly
simple networked control system (NCS) exhibits very rich behavior in terms of
the network-induced effects. The mechanisms which produce this rich behav-
ior are a result of the many years of work on the development of reliable radio
communication hardware and the standards to which the hardware adheres. To
begin explaining these mechanisms, let us first describe the operation of WSNs
in somewhat moderate detail.

WSNs are allowed to operate in the unlicensed 2.4GHz band, in which there
are currently three major standards available: IEEE 802.11 for wireless local
area networks (WLAN/WiFi), IEEE 802.15.1 for wireless personal area networks
(WPAN/Bluetooth) and IEEE 802.15.4 for low-rate wireless personal area net-
works (LR-WPAN). Due to its low data rate, low power consumption and low
cost, IEEE 802.15.4 is a very suitable candidate for battery-powered WSNs. The
IEEE 802.15.4 standard specifies the physical layer and the media access con-
trol (MAC) layer for LR-WPANs. The ZigBee, ISA100.11a, WirelessHART, and



88
Chapter 5. Experimental Exploration

of Wireless Control

Figure 5.1: Photograph of the wireless control experimental setup.

MiWi specifications are different architectures (commonly referred to as ‘stacks’)
all built upon the IEEE 802.15.4 standard in an effort to create a general net-
working architecture flexible enough to handle a variety of different applications.
In fact, WSNs have been successfully used in a variety of monitoring applications
such as forest fire detection [39,70], air pollution monitoring [81], patient health
monitoring [27] and structural monitoring [124], just to name a few. Due to the
wide variety of applications, open-source operating systems such as TinyOS [75]
and the WaspMote API have been developed by computer science communities
to enable developers to easily interact with these devices and to contribute to
the constantly growing software library.

Despite the success of WSNs in monitoring applications, using wireless com-
munication for real-time feedback control is still in its infancy. The success of
WSNs ability to operate satisfactorily in monitoring applications despite the
uncertainty in the wireless environment can be attributed to the dynamics of
monitoring applications being slow in general where as the dynamics of control
are faster (which is especially true for motion control systems). Hence, monitor-
ing applications do not suffer as much from data-rate (i.e. timing) related issues
whereas typical control problems do. Some recent experiments on industrial
applications using wireless communication for real-time feedback include the de-
velopment of cooperative adaptive cruise control (CACC) for vehicles [96,97,103]
and the development of a ventilation regulation system for industrial mines [36].
Industrial applications are invaluable since they demonstrate the practical useful-
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ness of the wireless technology for real-time control and the existing (academic)
analysis and synthesis techniques for NCSs. In fact, there are many more theo-
retical results in the NCS field which would benefit from experimental validation
but, using an industrial application for validation is costly. Therefore, it would
be beneficial to construct experimental setups that can be accessed easily and
allow for inexpensive experimentation, e.g. as done in [8, 61]. Inspired by the
work done in [61], in this chapter we will develop a wireless control experimen-
tal setup as in [61], but with different implementation aspects and validating
different (analysis and design) techniques for NCS.

The experimental setup considered here investigates the use of wireless sensor
communication for motion control. The application of WSNs to motion control
is of particular interest to companies whose machines experience significant dis-
turbances (due to vibrations of the cables used for communication) and frequent
repair (due to cables breaking). Hence, removing cables in certainly beneficial in
such motion control applications. However, wireless communication also intro-
duces negative effects. This chapter will investigate these effects when controlling
a well-known and exemplary academic motion system, consisting of the pendu-
lum/cart system in an experimental setting, see Fig. 5.1. When using wired
communication, the pendulum/cart system is primarily used to investigate clas-
sical control theory since an accurate linear state-space model (valid within the
desired range of operation) can be obtained from a linearizing a first-principles
nonlinear dynamic model [41]. A typical model of this setup consists of four
states, two outputs and a single control input. Hence, this setup requires output
feedback controller synthesis techniques to design controllers with desired per-
formance. The pendulum/cart system allows the consideration of two possible
configurations: the pendulum inverted and the pendulum gantry. The pendulum
gantry has a stable equilibrium, which is therefore more suitable for investigat-
ing performance properties related to damping out unwanted oscillations. Still,
the pendulum gantry can also be used to investigate stability boundaries un-
der network-induced effects as it has been shown in e.g. [29] that a controller
designed without network considerations can destabilize the closed-loop, when
network-effects are present. However, for stability considerations, the inverted
pendulum is more interesting as it has an (open-loop) unstable equilibrium. For
this reason, we focus in this chapter on the inverted pendulum configuration of
the pendulum/cart system.

Let us now discuss in more detail the experimental setup as shown in the
photo in Fig. 5.1. In this photo, the sensor data is being wirelessly transmitted
using TelosB devices [105] to a controller node which is directly connected to the
actuator. Since there are two sensors, namely the cart position sensor and the
pendulum angle sensor, that need to share the same communication channel,
we have implemented communication logic according to the Round Robin (RR)
communication protocol. In addition to a shared communication medium, it
will be shown in this chapter that time-varying transmission intervals, time-
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varying delays, packet dropouts and quantization of the sensor readings are
present and relevant in the context of this control problem. So indeed, all five
network effects mentioned in the introduction to this thesis are present and their
significance/impact will be evaluated in practice.

The benefit of considering an academic experimental setup, as the pendu-
lum/cart system, is the ability to be configured both in a ‘traditional’ wired
setting and wireless setting. Opposed to the more experimental wireless setting,
the wired setting has the benefit of being able to interface with user-friendly
computer aided tools such as MATLAB Simulink. By running the same con-
troller in the wired and wireless setting, we can see first hand the distortion
of the measurement and control signals caused by the wireless network. In ad-
dition to such an analysis of the closed-loop system, the network itself will be
analyzed such that a characterization of the communication network, in terms
of the bounds on the transmission intervals and transmission delays, can be de-
termined. With these bounds, the theoretical tools developed in the previous
chapters can be applied and validated. The analysis performed using these tools
will provide robustness regions for different performance specifications, which
aid in tuning the controller to achieve more closed-loop robustness with respect
to the network-induced effects. We will see that the modular structure of the
toolbox developed in Chapter 4 is indeed useful to analyze this NCS experimen-
tal setup, as it does not fit into any of the ‘standard’ NCS setups which are
studied in the supporting literature, see, e.g. [38].

Even though wireless control of the inverted pendulum was also achieved
in [61], there are various interesting differences in the setup and analysis con-
sidered in this thesis. First, the primary difference is that work done in [61]
focused mainly on designing the IEEE 802.15.4 ‘stack’ to achieve a certain net-
work Quality of Service (QoS) which is suitable for control applications. The
communication network was essentially setup such that the network-induced ef-
fects were removed to the largest extent possible. Although this is of course
interesting, in this chapter, we consider the network-induced effects as created
by using the standard ‘stack’ provided by the open-source TinyOS [75] operat-
ing system. We focus our attention on evaluating these given network-induced
effects in order to assess the robustness of the NCS using the existing and de-
veloped theoretical tools. Second, here we tune and compare different Linear
Quadratic Gaussian (LQG) controllers with each other, both in the wired and
the wireless setting, whereas in [61], a single time-varying LQG controller was
designed without any comparison. Third, in [61], the so-called ‘beacon-enabled’
communication was (further) developed and used for communication, whereas in
this chapter, we choose to use ‘non-beacon’ enabled communication which is the
standard operating mode for TelosB devices. A comparison of beacon and non-
beacon enabled communication will be given in Section 5.2.3. Finally, as being
mostly an aesthetic note, we were able to reduce the number of wires by powering
the sensor nodes using a 3V battery pack, see Fig. 5.1, whereas the design spec-
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Figure 5.2: Schematic of the NCS.

ified in [61] required a 5V power supply. To the best of the authors’ knowledge,
the results presented in this chapter form, next to [61], the only other work which
experimentally examines an inverted pendulum/cart setup with wireless control
using IEEE 802.15.4. Other wireless control experimental investigations on the
rotary inverted pendulum have been performed using Bluetooth, see, e.g. [40],
and WiFi, see, e.g. [104].

The objectives of the experiments conducted in this chapter are to (i) inves-
tigate whether the theoretical tools developed and implemented in the toolbox
are able to aid in the analysis and design of stabilizing controllers in practice,
(ii) gain additional insight into the behavior of a real-life wireless NCS and (iii)
possibly identify open problems requiring new or improved analysis/design tech-
niques. With these objectives in mind, the rest of this chapter is organized as
follows. In Section 5.2 a description of the experimental setup will be given.
This includes a brief description of the pendulum/cart system, descriptions of
the (TelosB) wireless transmitters and the communication logic. In Section 5.3,
the wireless communication network will be analyzed and characterized in terms
of the five general categories of the network-induced effects, as mentioned in the
introduction to this thesis. Once the network is properties have been character-
ized experimentally, a procedure will be given in Section 5.4 on how to tune a
LQG controller, which is originally designed for the wired setting, in order to
increase robustness when implemented in the wireless setting, and, an exper-
imental comparison will be provided using two different controllers. Next, in
Section 5.5, the observer-based synthesis tools developed in Chapter 3 will be
applied to the pendulum/cart system. Finally, in Section 5.6 conclusions and
recommendations for future research will be given.

5.2 Description of the Experimental Setup

The experimental setup consists of a pendulum/cart system and TelosB motes
used for wireless transmission, as shown in Fig. 5.1. The corresponding NCS,
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schematically depicted in Fig. 5.2, consists of two sensors, one that measures
the cart’s position and one that measures the pendulum’s angle, that wirelessly
transmit their data separately (implying a shared communication medium) to a
controller, which is directly wired to the actuator. Each of the sensors and the
controller are implemented on separate TelosB motes, as shown in Fig. 5.1.

Remark 5.1. Note that unlike the previous chapters, where both sensor mea-
surements and control commands were transmitted through the shared network,
here we assume that only the sensor measurements are transmitted through the
network. The reason for this choice is threefold. The first reason is that this
‘special case’ already exhibits rich enough network behavior to investigate many
interesting NCS aspects. The second reason is that in wireless control networks,
there must be some computational capabilities at the actuators for message re-
ception/tranmission, which, can be exploited for control. Hence, it is practically
relevant to investigate this scenario. Finally, we will show that the prototype
toolbox, discussed in Chapter 4, is flexible enough to analyze this ‘special-case’
network configuration, which requires using the custom model functionality in-
cluded in the toolbox. �

Next, we will describe the pendulum/cart system, introduce the TelosB motes
and specify the communication logic the motes will obey.

5.2.1 Pendulum/Cart System

The physical setup we consider is a freely swinging pendulum attached to a cart
which can be driven directly, as schematically shown in Fig. 5.3. This system
has two degrees of freedom, resulting in a model with four states. The cart-
pendulum setup has two optical encoders that measure the position of the cart
and the angle of the pendulum. The actuator is a DC motor located on the cart
which can drive the cart along one translational degree of freedom. The first-
principles based dynamic model of this system (also used in [61]) was derived
in [109]. For our purposes, here we will only provide the linearized model given
by

ẋ = Ax+Bu,
y = Cx,

(5.1)

where x = [xc θ ẋc θ̇]� with xc the position of the cart (m), ẋc is the cart
velocity (m/s), θ is the angle of the pendulum (rad), θ̇ is the angular velocity
of the pendulum (rad/s) and u is the input force (N) applied by the DC motor.
The matrices in (5.1) are given by

A =

⎡
⎢⎢⎣
0 0 1 0
0 0 0 1
0 2.2755 −6.8848 −0.0089
0 29.0261 −15.9037 −0.0935

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0
0

1.6011
3.6985

⎤
⎥⎥⎦ ,
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Figure 5.3: Schematic of the pendulum/cart system.

C =

[
1 0 0 0
0 1 0 0

]
,

resulting in the set of eigenvalues of the matrix A above given by {0, 4.9929,
−8.1257, −3.8455}, indicating that the equilibrium of this system is open-loop
unstable.

The objective is to synthesize a controller that stabilizes the origin of this
system (which corresponds to the upright positions of the pendulum). However,
the measurements y, consisting of xc and θ will be transmitted wirelessly, thereby
introducing network-induced imperfections.

5.2.2 TelosB Motes

The wireless devices which connect the two optical encoders to the controller are
TelosB motes [105], shown in Fig. 5.4. The TelosB motes are low-powered em-
bedded devices that have been developed for quick prototyping purposes. The
TelosB motes communicate wirelessly via a CC2420 radio chip which commu-
nicates at 250kbps in the 2.4GHz band and is IEEE 802.15.4 compliant. For
computation, the devices have an 8MHz TI MSP430 microcontroller with 48kB
ROM and 10kB RAM. Finally, the devices are equipped with 1MB of flash mem-
ory for data logging. The controller node will use the flash memory to store the
received messages, as well as controller information to be used for network and
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(a) TelosB device. (b) TelosB schematic.

Figure 5.4: TelosB device.

control signal analysis.

The devices can be conveniently programmed and accessed via a standard
USB connection. The devices are programmed with the open source embed-
ded operating system called TinyOS [75]. The TinyOS code is written in the
nesC programming language [48], which is a variant of C. The available software
libraries are based on a flexible three layer hardware abstraction architecture
(HAA) [53], where the programming level, i.e. the depth of hardware interaction,
can be increased as required by the application. TinyOS provides interfaces and
components for common hardware abstractions such as packet communication,
routing, sensing, actuation and storage.

These devices are ideal for a wireless control experimental setup for a number
of reasons. First, they are small, battery-powered, wireless devices which can
be easily installed and maintained. Second, their development community is
quite large and still very active, whose forums provide an invaluable resource for
debugging. Third, the development environment for these embedded devices is
very intuitive for someone who is familiar with C programming, which results
in quick and easy code adaptation. Finally, the devices are versatile enough to
interact with a number of other sensors and devices.

Remark 5.2. The TelosB motes do not have the computational capacity to accu-
rately count the pulses generated by the optical encoder. This results in sensor
drift, e.g. the measured value received by the controller contains a time-varying
offset from the true value. Any offset in the measurement of the pendulum’s
angle will prevent the controller from successfully stabilizing the inverted pen-
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dulum due to the track limit for the cart. Therefore, a hardware modification is
needed to successfully stabilize the inverted pendulum. In this experiment, we
augmented the TelosB motes to interact with the LS7366R (a 32-bit quadrature
counter) chip and used the TinyOS library functions resulting from the work
done in [61]. This hardware modification is shown just below the position node
in Fig. 5.1. �

5.2.3 Communication Logic

For this experimental setup, we must implement a scheduling protocol since
we have each optical encoder reading being transmitted to the controller node
separately. In this manner, the radio transmission of the nearby nodes do not
interfere with each other. We will implement the Round Robin (RR) protocol
which operates via the channel access method known as time division multiple
access (TDMA). In this fashion, the RR protocol requires that nodes communi-
cate based on a fixed sequence that periodically repeats itself. Since the node’s
clocks are not synchronized, a scheduling policy based on the node’s internal
clock will not guarantee a RR-like operation. There are two alternatives: (i)
each node decides when to communicate based on when its predecessor node
communicated or (ii) there is a coordinator node which transmits evenly spaced
beacons in time, indicating when the individual nodes should transmit. Either
of these strategies result in the desired RR behavior.

The choice between these two communication strategies largely depends on
the hardware used for wireless communication. Since we are using TelosB de-
vices, the wireless communication is done via the CC2420 radio chip, which
imposes the communication protocol to be IEEE 802.15.4 compliant. The IEEE
802.15.4 standard specifies channel access algorithms, data verification and packet
acknowledgement to ensure reliable packet delivery. An IEEE 802.15.4 network
has two modes of operation: a beacon-enabled mode or a non-beacon mode. We
will now provide a brief overview of these two modes; for a thorough overview,
the reader is referred to [71].

The first alternative, namely the strategy where each nodes decides when to
communicate based on the predecessor node, can be implemented in the non-
beacon operation mode. In this mode, a node that wants to transmit uses carrier
sense multiple access with ‘unslotted’ collision avoidance (CSMA/CA) to decide
on the exact moment when to transmit the message. Basically, the node senses
the medium (in an effort to estimate the network traffic) to determine if the
medium is free and then decides to transmit if it is free, or, it otherwise waits a
random back-off time until attempting to transmit again. The CSMA/CA mech-
anism is crucial for reliable packet delivery since the 2.4GHz band is crowded
with WiFi, cordless telephone and bluetooth traffic (even microwave ovens emit
radiation at that frequency). If each node decides to communicate based on
when its predecessor node communicated, as suggested above, then the nodes
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Figure 5.5: An example of the superframe structure when employing
beacon-enabled communication. In this example, the con-
tention free period (CFP) has four guaranteed time slots
(GTS).

can communicate without competing with each other, but they will still use the
CSMA/CA mechanism due to the crowded (uncertain) nature when using the
2.4GHz carrier frequency for communication.

The second alternative, namely the strategy which uses a coordinator node,
can be implemented in the beacon-enabled mode. In this mode, a coordinating
node is assigned which transmits beacons that indicate equally spaced transmis-
sion frames, known as ‘superframes’. The equally spaced superframes are divided
into a contention access period (CAP), where ‘slotted’ CSMA/CA is used, and
an optional contention free period (CFP), where no CSMA/CA is used, which
contains guaranteed time slots (GTS) for specific nodes, as illustrated in Fig. 5.5.
The CFP can be used for various purposes depending on the application. For
example, it can be used to grant access to nodes which have been unsuccessful
at transmitting in the CAP for an extended period of time.

Remark 5.3. One of the coordinator node’s main functions is to establish a
global reference clock for the rest of the network, thereby synchronizing the
clock of every node in the network. This synchronization is very advantageous
since it aids in reducing the variation of the transmission intervals throughout the
network. When a coordinator node is not present, clock synchronization methods
could still be implemented (by sending timing information in each packet) to still
reduce the variation of the transmission intervals. However, in general, the clock
synchronization problem is quite challenging, especially when unknown delays
are present, see, e.g. [42]. �

Since the beacon-enabled architectures available for TinyOS devices are still
somewhat experimental due to the CC2420 limitations [31], we choose to use the
standard TinyOS CC2420 radio stack (non-beacon mode) and simply have each
node decide when to communicate based on when its predecessor node commu-
nicated. This communication strategy does not suffer from the time critical be-
havior required by beacon-enabled communication. Work on the implementation
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Figure 5.6: Communication logic for node S2. Node S1 is the predecessor
node which is before node S2 in the transmission sequence.
Node S3 is the successor node scheduled to transmit after
node S2 in the transmission sequence.

of beacon-enabled communication for TinyOS devices has been done with the
TKN15.4 architecture [55] (extended in [61]) and the open-ZB architecture [30].
These beacon-enabled communication architectures for TinyOS still have a few
(minor) known issues and are currently under development.

More specifically, the sensor nodes decide when to communicate based on
the logic shown in Fig. 5.6. Since the nodes are in a constant state of listening
by default, this logic was coded within the receive event handler of each node.
We programmed the sensor nodes to transmit unicast messages directed to the
successor node (scheduled to transmit next) while the controller was programmed
to act as a ‘snooping’ receiver, meaning that it receives all messages transmitted
from the sensor nodes. To explain the reasoning for using this logic, consider
the following:
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• The nodes decide when to transmit based on when they hear that the
predecessor node in the fixed transmission sequence has transmitted. Since
the individual nodes decide when to communicate, there is no need for a
supervisory scheduling/coordinating node in this scenario.

• The use of acknowledgements (ACK in Fig. 5.6) is to increase the robust-
ness toward the transmission sequence ending. Indeed, without acknowl-
edgements the chosen communication logic might result in the ending of all
transmissions. Consider the case when a node scheduled to transmit next
does not hear that its predecessor node has transmitted, even though it
actually did. Then, the node that is scheduled to transmit does not know
that it is its turn to transmit and no new transmission would take place
anymore, thereby breaking the feedback loop. In the proposed communica-
tion logic, each node keeps re-sampling and transmitting new packets until
an acknowledgement from the successor node is received. A consequence of
using acknowledgements is the introduction of an additional transmission
delay. In the proposed communication logic, this additional transmission
delay is negligible since the acknowledgement procedure is executed within
the MAC layer when unicast messages are used.

• The use of ‘Wait TB s’ is to ensure that the controller has enough time
to compute the control command and implement the control action before
the next packet is received. In this way, the controller will not miss any
messages and the ‘small delay’ assumption (i.e. the delay being smaller
than the transmission interval) is guaranteed. The value TB can be ad-
justed based on the computational capacity of the controller node and the
computational complexity of the control algorithm.

• Notice that acknowledgements are only to be received from the successor
node in the transmission sequence. Hence, if the controller is not consid-
ered a node (e.g. it does not wirelessly transmit its data), it simply receives
the data being transmitted and does not send an acknowledgement (i.e. it
does not influence the retransmission of dropped packets).

Remark 5.4. An alternative strategy to packet retransmission is to simply re-
transmit the packet immediately (without waiting TB seconds) after an acknowl-
edgement is not received. A potential problem with this scenario is that the
controller might not receive the messages which are retransmitted. Consider the
case when a packet is successfully received by the controller but not by the other
sensor. In this situation, the transmitting node does not receive an acknowledge-
ment from the predecessor node and a retransmission will occur immediately.
However, the controller will miss this retransmission since it will be busy comput-
ing a control action using the previous message which was successfully received.
�
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Figure 5.7: Failure modes that can occur when the transmitting sensor
node, denoted S1, is transmitting to the successor sensor node,
denoted S2 and a controller, denoted C. In (a), there is a
failure only between S1 and S2. In (b), there is a failure only
between S1 and C. In (c), there is a failure between S1 and
S2 and a failure between S1 and C.

Remark 5.5. As in the previous chapters, we assume (in Section 5.4.1) that
the controller acts in an event-based fashion, in the sense that when it receives
a new measurement packet, it immediately updates its state and computes a
new control action. Using the proposed communication logic, this implies that
the controller updates (which occur at approximately every TB seconds) are
based on only partial measurement information. Another strategy is to have
the sensor nodes all transmit (immediately after each other), and, have the
controller update its state and control command once all sensor measurements
are received. Such a strategy would enable the controller to compute a control
command based on more complete measurement information. We intentionally
chose the communication logic described above so that we can investigate the
(negative) consequences of having the controller update its state and control
command based only on partial measurement information, as it is commonly
assumed in the NCS literature, see, e.g. [17, 34, 38, 58, 94, 122]. �

In this experimental setup, there are two communication links where packets
can drop. First of all, a drop can occur between a sensor and the controller,
and, second, between the currently transmitting sensor node and the successor
sensor node. These transmission ‘links’ can fail separately or they both fail
simultaneously, as depicted in Fig. 5.7. To describe the effect that dropouts
have on the timing of the data received by the controller, we will first introduce
some relevant terminology. The controller’s global reception interval, denoted
Δrk, k ∈ N, is the time difference between two consecutively received messages
from any node. The controller’s reception interval of only the ith node, denoted
Δrik, k ∈ N, is the time difference between two consecutively received messages
from node i. Additionally, we will denote Δr̄k and Δr̄ik as the average global
reception interval and average reception interval of the ith node, respectively.

Each type of failure has a different impact on the controller’s global reception
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interval1 and the reception interval of the individual nodes, as explained below:

• only sensor to sensor drop: If a packet drops between sensor node S1 and
the receiving (successor) node S2, as depicted in Fig. 5.7(a), S1 will then
re-sample and transmit a new message. Since the controller received the
previous message, the controller will receive two consecutive messages from
S1 (i.e. Δr1k ≈ 1

2Δr̄1k), and, consequentially, Δr2k ≈ 3
2Δr̄2k, but Δrk ≈ Δr̄k,

as illustrated in Fig. 5.8(b).

• only sensor to controller drop: If a packet drops between a sensor node
S1 and the controller, as depicted in Fig. 5.7(b), S1 will not transmit a
new message and the next message C receives is again from S2. Hence,
the reception interval of S2 will not be affected (i.e. Δr2k ≈ Δr̄2k), but
Δr1k ≈ 2Δr̄1k and Δrk ≈ 2Δr̄k, as illustrated in Fig. 5.8(c).

• both sensor to sensor and sensor to controller drops: If a packet is dropped
both between sensor nodes S1 and S2 and sensor node S1 and the controller
C, as depicted in Fig. 5.7(c), then S1 will re-sample and transmit a new
message. In this case, it is as if the dropped message was never trans-
mitted so Δr1k ≈ 3

2Δr̄1k, Δr2k ≈ 3
2Δr̄2k and Δrk ≈ 2Δr̄k, as illustrated in

Fig. 5.8(d).

• acknowledgement (ACK) drop: It is possible that a sent acknowledgement
is not received by the other node. In this case, both nodes will attempt to
transmit simultaneously. However, the CSMA/CA mechanism will cause
one node to send first, and possibly then successfully receive an acknowl-
edgment. So, although the behavior cannot be predicted deterministically,
the transmission sequence will not end.

The analysis above, which considered how dropouts impact the reception
intervals, can also be carried out to understand the impact on the periodic
transmission sequence, denoted σk, k ∈ N. A packet drop between two sensor
nodes, depicted in Fig. 5.7(a), or a packet drop between a sensor node and
the controller node, depicted in Fig. 5.7(b), will result in a perturbation of the
periodic transmission sequence (i.e. σk = σk+1 for some k), as illustrated in
Fig. 5.8(b) and Fig. 5.8(c), respectively. These situations cause the controller
node to receive two consecutive messages from the same node without receiving
a message from the other node. Although a packet drop by both the successor
sensor node and the controller, depicted in Fig. 5.7(c), will have an effect on the
reception interval, the transmission sequence will not be affected, as illustrated
in Fig. 5.8(d).

1Although here we describe how dropouts perturb the controller’s reception interval(s), we
are, in fact, interested in how dropouts perturb the transmission interval hk, k ∈ N, as defined
in Chapter 2, 3 and 4. Later, in Remark 5.6, we specify how the transmission interval hk is
defined such that it is related to the global reception interval Δrk, k ∈ N.
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Figure 5.8: An illustration of how different dropout modes, shown in
Fig. 5.7, perturb the controller’s reception interval and the
transmission sequence. The number next to the upward stem
indicates which node is received by the controller and an ‘x’
indicates that the controller dropped that packet. The situa-
tions depicted are when (a) no packets are dropped, (b) only
sensor node 2 drops a packet sent from sensor node 1, (c) only
the controller drops a packet sent from sensor node 1 (d) both
the sensor node 2 and the controller drop a packet sent from
sensor node 1.
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5.3 Network Characterization

To apply the analysis tools described in the previous chapters, we would like
to be able to obtain the characteristics of the behavior of the packet dropouts,
the transmission delays and the transmission intervals. In this section, we will
discuss the presence of the five network-induced effects (listed in the introduction
of this thesis) in this experimental setup. For our purposes, the characteristics
of the network will be determined experimentally, however, there exist several
performance analysis techniques which can also be employed to obtain more
(detailed) characteristics, see, e.g. [19].

Before we discuss the network-induced effects, we will first mention the com-
putational delay of the controller node. From measuring the difference between
the time when a message is received by the controller node (when the receive

event is signaled) and the time when the digital to analog (DAC) output of the
controller node is updated, we concluded that the controller takes a constant
τC = 0.020s to compute a control command. Based on this value, we can take
TB = 0.024s to ensure that the controller will have computed and updated the
control signal before a new packet is transmitted from a sensor to the controller.
Next, we will explain how the nodes are programmed to measure the network-
induced effects.

The first network-induced effect we would like to measure is the packet
dropout behavior. As depicted in Fig. 5.7, each packet transmitted by a sen-
sor node has three failure modes. For our analysis, we would like to not only
measure when a dropout occurred but also be able to determine which message
was lost and exactly which dropout failure mode occurred. To achieve this, we
programmed the sensor nodes to transmit a (monotonically increasing) integer
message identifier (also known as a packet sequence number) and an integer
node identifier (node ID) along with the encoder reading to the controller. In
this way, the controller can log which message numbers were received from which
nodes. With this information, we can extract two sequences of message numbers
(one from each sensor node), which we denote by MSGi

k, k ∈ N, i ∈ {1, 2},
and the transmission sequence, which we denote by σk, k ∈ N. This provides
enough information to determine the three failure types illustrated in Fig. 5.7.
The situation depicted in Fig.5.7(a) occurs when there is only a perturbation
in the transmission sequence (without a perturbation in the message number
sequence of sensor node S1). The situation depicted in Fig.5.7(b) occurs when
there is a perturbation in both the transmission sequence and the message se-
quence of a sensor node S1. The situation depicted in Fig.5.7(c) occurs when
there is only a perturbation in the message number sequence of a sensor node
S1 (without a perturbation in the transmission sequence). These conclusions
can be drawn with the help of Fig. 5.8 by assigning a (monotonically increasing)
message identifier to the messages received from each node.

Along with packet dropouts, we also aim to measure the transmission inter-
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Figure 5.9: Timing diagram.

vals and the delays. The challenge here is that the transmission intervals can-
not be directly measured due to the facts that (i) the two sensor nodes decide
when to transmit independently, (ii) there is no clock synchronization between
the devices and (iii) the controller only knows when messages are received, not
transmitted. However, the transmission intervals can be reconstructed from the
measurements of other network timing parameters. In Fig. 5.9, we have provided
a diagram to introduce the relevant network timing parameters. In this figure,
k ∈ N is the transmission number, τk ∈ R≥0 is the transmission delay, hk ∈ R≥0

is the transmission interval, rk ∈ R≥0 is the reception time and TB = 0.024s is
the back-off time parameter to ensure the controller has enough time to compute
the control command before the next message is transmitted by a sensor. We
can conclude from Fig. 5.9 that we can extract hk from τk, τk+1, rk and rk+1 by
using the relationship

hk + τk+1 = Δrk + τk, (5.2)

where, as introduced in Section 5.2.3, Δrk := rk+1 − rk is the global reception
interval. Fortunately, the global reception times rk, k ∈ N, and the transmission
delays τk, k ∈ N, can be measured locally. The global reception times rk, k ∈ N,
can be measured locally at the controller by programming the device to take
a time stamp when the receive event is signaled. Moreover, the transmission
delay τk, k ∈ N, can be measured locally at each of the sensor nodes by pro-
gramming the devices to transmit the time difference between when the send

command is called and the sendDone event is signaled. Interestingly, we will
see that this time difference is primarily caused by the mechanisms predefined
by the TinyOS radio stack to ensure reliable packet delivery. Thus, both the
sequence of transmission intervals and the sequence of transmission delays can
be determined.

Remark 5.6. Since hk is derived from the controller’s global reception interval
Δrk (indicated in (5.2)), using this equation implies that if a single packet was
dropped at the controller, then it is the same as if it was not transmitted.
So, although the dropped packet may have been transmitted, the transmission
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interval, as derived from (5.2), will be longer than it technically should be. In
fact, the transmission interval will be, on average, equal to the global reception
interval, see, e.g. Fig. 5.12. However, we are interested in studying the network
effects from the controller’s perspective, so, a dropped packet is the same as
if it was never transmitted. In this way, dropout modeling which assumes a
prolongation of the transmission interval can be evaluated. �
Remark 5.7. Although the nodes are programmed such that TB is a constant
value, the hardware of the nodes does not guarantee TB to be exactly equal to
24ms. Hence, by using (5.2) instead of hk = τk + TB (as can also be concluded
from Fig. 5.9), we avoid the pitfall of assuming that TB is constant in the analysis
while in practice it is not. In fact, included in Fig. 5.10 is a plot of TB where
its value at each transmission time was determined from the measurements τk,
τk+1, rk and rk+1. This clearly indicates that TB is (slightly) time-varying and
it is indeed better to use (5.2) to determine hk. �

With the data collection methods implemented in the nodes as described
above, we are now ready to present and analyze the resulting network effects. In
the following analysis, the network-induced effects were measured in two scenar-
ios, both of which were measured when the controller was stabilizing the pendu-
lum. The first scenario is when only the two sensor nodes are communicating.
The network measurements corresponding to this scenario are given in Fig. 5.10
and Fig. 5.11. The second scenario is when the two sensor nodes are com-
municating along with two traffic-inducing nodes. These traffic-inducing nodes
are additional TelosB motes which were programmed to create network traffic
by specifying that they communicate at 20ms intervals. The additional TelosB
motes were also communicating in a non-beacon fashion using CSMA/CA. These
experiments were performed to emulate a situation where multiple IEEE 802.15.4
devices are sharing a common communication medium. The network measure-
ments corresponding to this scenario are given in Fig. 5.12 and Fig. 5.13.

Transmission Delays: Transmission delays, without the presence of the
traffic-inducing nodes, can be seen in the τk-plot of Fig. 5.10. Here it can be
concluded that τk ∈ [0.005, 0.016]. The transmission delays are varying primarily
due to the CSMA/CA mechanism. When two traffic-inducing nodes are present,
then, according to Fig 5.12, the range of transmission delays increases slightly
to τk ∈ [0.005, 0.018].

Transmission Intervals: From the hk-plot in Fig. 5.10, without the pres-
ence of the traffic-inducing nodes, it can be seen that hk ∈ [0.029, 0.041]. The
relationship hk = τk + TB (derived from Fig. 5.9) implies that the variation of
the transmission delay, in fact, induces the variation of the transmission inter-
val since TB is approximately constant. This relationship can be confirmed by
looking at a (h, τ) histogram plot given in Fig. 5.11 and noting that all of the
measured data points are clustered around the line h = τ+TB . Hence, the varia-
tion of the transmission intervals can be attributed to the chosen communication
logic, i.e. having the nodes transmit based on the time that the predecessor node
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Figure 5.10: Network timing measurements without dropouts present.
From top to bottom: reception intervals, transmission de-
lays, transmission intervals and the back-off parameter.

transmitted (due to the absence of a global clock). In the case when two traffic-
inducing nodes are present, then, according to Fig 5.12, hk ∈ [0.029, 0.120],
indicating a maximum of two consecutive dropouts occurred at least once.

Packet Dropouts: As can be concluded from Fig. 5.10, the CSMA/CA
mechanism prevents packet dropouts from occurring during the recording of
that data set. The result of having traffic-inducing nodes transmitting is plotted
in Fig 5.12. We can see packet dropouts occurring in Fig. 5.12 by noticing the
spikes in the transmission interval hk and reception interval Δrk, compared with
Fig. 5.10. Although these traffic-inducing nodes are causing more communica-
tion traffic, the CSMA/CA mechanism, which causes the variation in both the
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Figure 5.11: Histogram of transmission intervals and transmission delays
without dropouts present.

transmission intervals and the transmission delay, is able to reduce the number
of dropouts occurring.

Fig. 5.12 gives some indication when dropouts occur. However, in order to
determine which node was not able to successfully deliver its message and which
of the two communication ‘links’ failed, we need to consider Fig. 5.13, which is
an analysis of the same recorded data as in Fig. 5.12. On the bottom plot of
Fig. 5.13, we plot the perturbation of the message sequences, defined by

ΔMSGi
k := MSGi

k+1 −MSGi
k − 1, i ∈ {1, 2},

and the perturbation of the transmission sequence, defined by

Δσk =

{ − 1
2 , if σk = σk+1,
0, otherwise.

Hence, we can see an upward spike if there is a perturbation in the message
sequences of the angle node or position node (i.e. when messages transmitted
by the angle node or position node were not received by the controller node).
The height of the spike indicates the magnitude of the perturbation (i.e. the
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Figure 5.12: Network timing measurements with two traffic-inducing
nodes present. From top to bottom: reception intervals,
transmission delays and transmission intervals.

number of consecutively missed messages). Also, a downward spike indicates
when there was a perturbation in the periodic transmission sequence σk. Since
there are only two nodes, the perturbation in the transmission sequence can only
have a magnitude of at most one. As explained in the beginning of this section,
by using these two pieces of data, we can determine exactly where the drop
occurred. For example, the first five dropouts all have a perturbation of the angle
node’s message sequence and experienced a disturbance on the transmission
sequence. This behavior, similar to that of Fig. 5.8(c), occurs if a packet dropout
was experienced between the angle node and the controller, i.e. as depicted in
Fig 5.7(b). Similarly, perturbation of the positions node’s message sequence
and a disturbance on the transmission sequence indicates that a packet dropout
between the position node and the controller occurred. On the other hand, at
around k ≈ 850, there is a perturbation on the angle node’s message sequence,
but no disturbance on the transmission sequence. This behavior, similar to that
of Fig. 5.8(d), occurs when a packet sent by the angle node was dropped by both
the position sensor node and the controller, i.e. as depicted in Fig 5.7(c).
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Figure 5.13: Network timing measurements with two traffic-inducing
nodes present. The reception intervals of individual nodes
Δrik are shown on the top and the perturbations on the
node’s message sequences ΔMSGi

k, along with perturbations
to the transmission sequence Δσk, is shown on the bottom.

Perhaps the most interesting aspect of Fig. 5.13 is a distinct reduction in
the individual node’s reception interval Δrik-plot just before k ≈ 400. Actually,
around this time, as indicated by the thickness of the line, multiple consecutive
dropouts occur, but the dropouts we are interested in are the ones that caused
a reduction in the individual node’s reception interval. A reduction in the re-
ception interval of an individual node is indicative of a packet drop between the
sensor nodes (as in Fig. 5.7(a)) since the node which just transmitted will then
transmit again (after TB seconds). However, in the global reception interval
Δrk-plot and in the transmission interval hk-plot in Fig. 5.12, no such reduction
is seen since the next packet (transmitted by the same node) is received within
the ‘standard’ interval. This type of dropout only perturbs the transmission
sequence, not the transmission interval. Hence, modeling dropouts as a prolon-
gation of the sampling intervals or delays, as done in [38,58,95], cannot include
this type of dropout.

Quantization: Quantization is a result of the optical encoder accuracy (the
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number of pulses generated per rotation) and the mode of quadrature counting.
In this experimental setup, the encoder accuracy is given by 0.0015 radian/count
for the pendulum’s optical encoder and 2.275× 10−5 meter/count for the cart’s
optical encoder. As such, the only variable left free is the mode of quadrature
counting. We used the common 4X mode, which increments the position counter
based on every pulse edge (both rising and falling) sent from the optical encoder,
and, provides the highest resolution possible. In fact, this 4X mode renders the
effect due to quantization negligible. However, it is also possible to use the 1X
and 2X modes, which only increments the position counter based on a subset of
the pulse edges sent from the optical encoders. This results in a lower resolution
and therefore induces a larger quantization effect.

Shared Communication: Since each of the sensor nodes are transmitting
separately, the communication medium must be shared. As mentioned before,
we are aiming to implement the RR protocol. From Fig. 5.10, we can conclude
that the packets are being received, on an average, every 35ms by the controller,
and, since the node’s identifier is contained in the message, we can confirm that
they are being received in a RR fashion.

As can be concluded, all five network-induced effects are present in this sim-
ple experimental NCS. The effects which are considered in this thesis, time-
varying transmission intervals, time-varying delays and a shared communication
medium, are, moreover, inherently present in the NCS, i.e. their influence is un-
avoidable given this network configuration. Packet dropouts, however, rarely oc-
cur due to the CSMA/CA mechanism unless traffic-generating nodes are present.
It has been experimentally verified that the most dominant cause of packet
dropouts for LR-WPANs is due to the so-called ‘co-existence’ of LR-WPANs
with other devices which utilize the 2.4GHz spectrum (such as Bluetooth, WiFi
and other LR-WPANs), see, e.g. [80,102]. Interestingly, the CSMA/CA mecha-
nism induces the variation of the transmission delays (and transmission intervals)
in order to reduce the number number of packet dropouts. Thereby, it increases
the influence of one (or in this case two) network-induced effect(s) to reduce
that of an other. Finally, the influence of quantization appears to be negligible.
In the next section, we will observe first hand the consequences of using this
wireless network for sensor to controller communication in a feedback motion
control loop.

5.4 LQG Controller Tuning & Closed-Loop
Analysis

In this section, we will design an LQG controller which will be implemented
on a telosB device and used for wireless control experimentation. Since the telosB
devices are low-powered, the hardware resources available for computing control
commands is limited. In this respect, discrete-time controllers are preferred



110
Chapter 5. Experimental Exploration

of Wireless Control

over continuous-time controllers since the implementation of a continuous-time
control law in digital hardware requires a nearly continuous evaluation of a
discretized approximation, i.e. running a discrete-time controller at a very high
sampling frequency (>1kHz). The controller that will be implemented in a
TelosB device will be in the form of a discrete-time observer-based controller,
given by

x̃k+1 = Āx̃k + B̄uk + L(ŷk − Cx̃k),
uk = Kx̃k,

(5.3)

where k ∈ N indicates the transmission number, x̃k is the controller’s estimation
of the plant state and, as in Chapter 3 and Chapter 4, due to the presence of
the shared communication medium,

ŷk = Γy
σk
yk + (I − Γy

σk
)ŷk−1. (5.4)

The matrices Ā and B̄ are taken as Ā = eAh� and B̄ =
∫ h�

0
eAsdsB for some

constant h�. We choose the ‘nominal’ transmission interval h� = 0.035 as 35ms is
the average value of the reception times, indicated in Fig. 5.10. We consider this
controller to operate in an event-based fashion, in the sense that when it receives
a new measurement packet, it immediately updates its state and computes a new
control action.

To determine the numerical values in (5.3), we first will design an LQG
controller for the wired setting (i.e. ŷk = yk, hk = h� and τk = 0). The cor-
responding performance will be experimentally evaluated and considered as a
reference performance used for comparison to the situation in which sensor-to-
controller communication is performed wirelessly. Then, we will propose a design
procedure to tune (and, in fact, reduce) the controller aggressiveness to allow for
more robustness to the network-induced effects using the NCS toolbox presented
in Chapter 4. Lastly, we will perform closed-loop experiments and analyze the
performance of the LQG controller in both the wired and the wireless setting.

5.4.1 Wired LQG Controller Design

In this section we will be tuning the gains K and L of the controller in (5.3)
based on LQG principles such that a desired closed-loop behavior is produced
when the control system is wired (i.e. ŷk = yk, hk = h� and τk = 0). In this
chapter, desired behavior means that the controller is able to stabilize the angle
of the pendulum and the position of the cart within a desired set of (narrow)
error margins. After a controller with desired performance is designed in the
wired setting, we will tune the controller in the wireless setting to determine
if/when robustness towards network-effects is guaranteed and to which extent.
To design a ‘traditional’ wired LQG controller, it is well known that the separa-
tion principle holds [11,62], i.e. the design of the optimal estimator and optimal
state-feedback controller can be done separately.
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The design of optimal output injection gain, L in (5.3), is accomplished by
solving the linear quadratic estimator (LQE) problem, which assumes that a
disturbance, d ∈ R, and noise, n ∈ R

2, enter the plant dynamics (5.1) affinely,
i.e.

ẋ = Ax+Bu+ Ed,
y = Cx+ n,

(5.5)

and, informally speaking, assumes that the disturbance and the noise are uncor-
related zero-mean Gaussian stochastic processes with covariance matrices

E[dd�] = Rn, E[nn�] = β−1Qn, Rn, Qn � 0. (5.6)

The matrices Rn, Qn and the constant β > 0 are weights to be chosen by the
designer to achieve desired closed-loop behavior (possibly resembling the actual
covariance matrices). For this setup, the main component in d is the disturbance
which is entering the DC motor. Therefore, we specify E = B. Since our
controller (5.3) is in discrete-time, the LQE problem we are aiming to solve is
to find the matrix L in (5.3) which minimizes the discrete-time cost function
limk→∞ E[||xk− x̃k||2] where this cost function is determined by discretizing the
continuous-time plant model (5.5) (using h� = 0.035) and the disturbance/noise
characteristics, for which an analytical solutions exist. The MATLAB function
kalmd performs this exact discretization and produces the matrix L by solving
the resulting discrete-time algebraic Riccati equation (DARE). For a formal
derivation and details on the discretization, the reader is referred to [10, p82-
83]. With some trial and error, choosing Rn = 105, Qn = I and β = 1 results in
what will be referred to as desired observer performance. The parameter β can be
increased or decreased to make the observer more or less aggressive, respectively.
This type of observer is also commonly referred to as a (discrete-time) Kalman
filter.

The design of the optimal state feedback gain, K in (5.3), is accomplished by
solving the linear quadratic regulator (LQR) problem, which is finding a control
law uk = Kxk such that the cost function

J(x0,u) =

∞∑
k=0

x�
k Qxk + γ−1u�

k Ruk (5.7)

is minimized where u = (u0, u1, ...). Similar to the LQE case, the matrices
Q � 0, R � 0 and the constant γ > 0 are weights to be chosen by the designer
to achieve desired closed-loop behavior. Using the discrete-time plant model
xk+1 = Āxk + B̄uk, the solution to this problem (determining K) can be con-
structed analytically by formulating the problem as a DARE. The solution can
be (and was) efficiently computed using the MATLAB command dlqr. With
some trial and error, choosing the matrices Q = diag(104, 104, 1, 1), R = 1 and
γ = 1 results in what will be referred to as desired controller performance. Sim-
ilar to the LQE case, the parameter γ can be increased or decreased to make
the controller more aggressive or less aggressive, respectively.
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Now that a controller that produces desired closed-loop behavior in the wired
setting has been designed (i.e. when hk = 0.035, τk = 0 and ŷk = yk), we will
now elaborate on what is meant by ‘desired behavior’. Fig. 5.18 shows the ex-
perimental data collected when γ = β = 1. We can conclude that the controller
is able to keep the pendulum upright, however, there is an apparent steady-
state oscillation on the cart position, the pendulum angle and the input signal.
This oscillation is suspected to be primarily caused by friction-related nonlin-
earities. Indeed, the cart will not respond to an input voltage which produces
a force less than that of the opposing static friction force(s), so the controller
will keep increasing the force requested until this friction force is overcome and
the cart moves to catch the pendulum, thereby causing the steady-state oscilla-
tion. Hence, an aggressive controller is desirable since it will ramp up its input
more rapidly and be able to keep the pendulum within a very small range. If
we decrease the controller aggressiveness by taking γ = 0.04 and β = 1, then
we have the steady-state response given in Fig. 5.19. As can be concluded, the
controller is still able to keep the pendulum upright, however, the steady-state
oscillations have larger amplitudes. Finally, decreasing the aggressiveness even
further by taking γ = 0.01 and β = 1, then we have the steady-state response
given in Fig. 5.20 where the steady-state oscillations have even larger ampli-
tudes. Given that the length of the track is 0.99m, the controller with γ = 0.01,
which oscillates with an amplitude of ≈ 0.30m, does not have much room left to
react to (network-induced) disturbances. In fact, it was experimentally verified
that γ = 0.002 is the lowest value such that the controller is able to keep the
pendulum upright within the track limits. We consider the response given by
γ = β = 1 desirable since it can stabilize the pendulum within the narrowest
margins (while not producing too much noise on the DC motor input). As γ is
decreased then the controller becomes less aggressive and, consequentially, the
margins within which the pendulum can be stabilized by the controller increase,
which we consider as worse performance. Hence, the controller aggressiveness γ
will be used also as our performance characteristic as it is directly related to the
desired performance23.

Although the LQG design has the benefit of optimizing the controller pa-
rameters to achieve a desired performance, implementing this type of controller
over a wireless network violates some of the design assumptions. First, the type
of closed-loop disturbances caused by varying transmission intervals and varying

2Note that the performance characteristic γ is defined in the wired setting. Although the
performance characteristic does not have the same precise interpretation in the wireless setting,
we experimentally observe in Section 5.4.4 that decreasing the controller aggressiveness γ in
the wireless setting will also cause the cart and pendulum oscillations to increase in a similar
manner to that of the wired setting. Therefore, with a slight abuse of notation, we will use γ
as the performance characteristic also in the wireless setting.

3Although that the value of β also affects the controller’s performance, throughout this
chapter β is taken as β = 1 as decreasing β does not have a significant influence on increasing
the robustness to network-induced effects, see Remark 5.9.



5.4 LQG Controller Tuning & Closed-Loop Analysis 113

delays were not taken into account in the design. Second, the controller design
assumes that all measurement data is received at each time transmission time
tk, e.g. yk is fully available. However, with the wireless network present, the
sensors must share the wireless medium and, hence, simultaneous reception of
both measurements cannot occur. In particular, only ŷk, the networked version
of yk, is available. Hence, implementing such a control law implies (in the man-
ner discussed before) that the observer will update its state, x̃k, and compute
uk each time an individual measurement is received, as opposed to receiving
all measurements. Despite these design violations, we still have two parame-
ters, γ and β, which we can tune to refine the controller in an effort to increase
robustness for these network-induced perturbations. The tuning of these two
parameters will later be investigated to achieve a desired robustness in the face
of network-induced uncertainties.

Remark 5.8. Since the control law is formulated in discrete time and the small-
delay case is guaranteed, the transmission delay from either sensor to the con-
troller does not affect the dynamics of the controller. Indeed, the controller
applies the same update rule no matter if the sensor value arrives early in the
transmission interval or late. However, the transmission delay does influence
when the control command uk is implemented at the actuator. The control com-
mand is implemented at the actuator after both the transmission delay and the
computation delay. Hence, we can ‘lump’ these two delays as done in [28,29,128]
and assume the overall delay τ̄k ∈ [τC + τmin, τC + τmax], where τC ∈ R≥0 is the
computational delay and τk ∈ [τmin, τmax] is the transmission delay. �

5.4.2 Closed-Loop Modeling

In an effort to find suitable controller parameters β and γ, in (5.6) and (5.7),
respectively, for the controller (5.3) in the wireless setting, we will evaluate the
stability regions associated with this NCS under different parameter settings
for β and γ by using the NCS toolbox presented in Chapter 4. However, the
first important observation is that the NCS setup here does not exactly match
that of the ‘standard’ NCS setups included in the toolbox, i.e. are not explicitly
studied in the supporting literature (on which the toolbox developments were
based). Still, it is possible (and in fact quite easy) to analyze this NCS using
the toolbox, provided that the closed-loop NCS model can be expressed in the
general form proposed in (4.1). To create a closed-loop model in the form (4.1),
we need the following derivations. First of all, we exactly discretize the plant’s
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dynamics (5.1), leading to

xk+1 = eAhkxk +

∫ τ̄k

0

eA(hk−s)dsBuk−1 +

∫ hk

τ̄k

eA(hk−s)dsBuk

= eAhkxk +

∫ hk

hk−τ̄k

eAsdsBuk−1 +

∫ hk−τ̄k

0

eAsdsBuk

= Âhk
xk + (Êhk

B − Êhk−τ̄kB)uk−1 + Êhk−τ̄kBuk,

where, as in Chapter 4, Âρ = eÃρ and Êρ =
∫ ρ

0
eÃsds and, for this experimental

setup Ã = A. Combining the above equation with (5.4) and the discrete-time
controller (5.3), results in the closed-loop system model

x̄k+1 = Ãhk,τ̄k,σk
x̄k (5.8)

where x̄k = [x�
k x̃�

k uk−1 ŷ�k−1]
� and

Ãhk,τ̄k,σk
=

⎡
⎢⎢⎣

Âhk
Êhk−τ̄kBK Êhk

B − Êhk−τ̄kB 0
LΓy

σk
C Ā+ B̄K − LC 0 L(I − Γy

σk
)

0 K 0 0
Γy
σk
C 0 0 (I − Γy

σk
)

⎤
⎥⎥⎦ .

The RR protocol implemented imposes that

σk =

{
1, for k odd
2, for k even

(5.9)

and Γy
1 = diag(1, 0) and Γy

2 = diag(0, 1). Now it follows that the closed-loop
system (5.8) can be expressed in the form (4.1) by taking

Aσk
=

⎡
⎢⎢⎣

0 0 0 0
LΓy

σk
C Ā+ B̄K − LC 0 L(I − Γy

σk
)

0 K 0 0
Γy
σk
C 0 0 (I − Γy

σk
)

⎤
⎥⎥⎦ ,

Bσk
=

⎡
⎢⎢⎣
I I I
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎦ , Cσk

=

⎡
⎣I 0 0 0
0 0 B 0
0 BK −B 0

⎤
⎦ ,

Dσk
= 0, Eσk

= 0 and Jσk
= 0. Hence, we can now use the toolbox and

apply the RR analysis tools by using the functions genPolyOverAprx.m and
analyzePolyOvrAprx.m as mention in Section 4.5.2.
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5.4.3 LQG Controller Tuning

In this section, we will use the closed-loop NCS model (5.8) along with the
NCS toolbox presented in Chapter 4 to tune the LQG controller parameters
β and γ specified in Section 5.4.1 for robustness in the wireless setting. First
we will provide a procedure to determine coarse ranges these parameters must
lie within to satisfy a necessary condition for robust stability. Then we will
provide a procedure based on a sufficient test for robust stability to fine tune
the values by quantifying the amount of robustness that is able to be guaranteed
for different values of β and γ. For this analysis, we will not consider packet
dropouts and quantization.

Coarse Tuning of the Weighting Parameters β and γ

First, to coarsely tune the LQG parameters γ and β, we will use (5.8) to de-
termine the regions in the (h, τ̄)-space that are stable for constant hk = h and
constant τ̄k = τ̄ , k ∈ N. In this way, we can quickly determine the ranges
where γ and β should lie in order to to satisfy a necessary condition for robust
stability of the NCS when h and τ̄ are both varying in time. This evaluation
can be obtained quickly since it amounts to an eigenvalue test, as for constant
h and τ̄ , a periodically time-varying closed-loop system is obtained. Fig. 5.14
displays the regions of constant h and τ̄ that correspond to a closed-loop sta-
ble system for different values of γ. The region defined by the dashed polygon,
which we will denote by Ω1, represents the region where the combinations of hk

and τ̄k = τk + τC were measured, according to Fig. 5.11. If Ω1 is surrounded
by a shaded stability region, then we know at least for each constant (h, τ̄)-
combination, the closed-loop system is stable for the corresponding value of γ.
From Fig. 5.14, we conclude that choosing γ = 1 will result in having an overall
small stability region and, moreover, every point in Ω1 is unstable for all constant
combinations of h and τ̄ . Decreasing the controller aggressiveness by choosing
γ = 0.01 will result in having every constant combination of h and τ̄ , which is
within Ω1, stable. Recalling that γ = 1 was controller aggressiveness value which
produced our desired behavior, we can see that decreasing γ results in a larger
stability region (most probably) at the cost of less desirable performance. We
can conclude from Fig. 5.14 that γ < 0.1 will result in at least a subregion of Ω1

which is stable for constant values of h and τ̄ . Hence, although choosing γ = 1
resulted in desired performance for the wired case, γ ≈ 0.01 should be chosen to
satisfy (at least) a necessary condition for robust stability in the wireless case.

Remark 5.9. The LQG controller parameter β in (5.6) can also be tuned to affect
the shape of the stability region. It was observed that, for our particular choice
of weighting matrices, changing β does not have a significant influence on the
overall size of the region, and, we therefore chose to keep β = 1 throughout this
chapter. However, in general, the stability regions resulting from tuning both
parameters should be explored. �
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Figure 5.14: Stability regions given by NCS toolbox with RR protocol
and hk and τ̄k constant. The observer tuning parameter is
set to β = 1.

Fine Tuning of the Weighting Parameters β and γ

Now that we have a coarse range determined for γ, we can fine tune the LQG
parameters by analyzing the NCS with time-varying h and time-varying τ̄ . For
this analysis we will rely on the sufficient LMI conditions as obtained in [38]
(which are implemented in the toolbox) to verify if robust stability can be guar-
anteed. What we aim to quantify is how much robustness can be guaranteed
for different values of γ. To do so, we introduce the parameter δ ∈ [0, 1] which
indicates what fraction of the total area of the dashed polygon of interest shown
in Fig. 5.14 (which we denoted as Ω1) can be guaranteed robustly stable. Each
value of δ will correspond to a unique polygon Ωδ which covers a fraction (equal
to δ) of the total area. These polygons Ωδ, δ ∈ [0, 1], are defined as indicated in
Fig. 5.15, where we used the following philosophy to define them:

1. All polygons Ωδ, δ ∈ [0, 1], include a central point (h′, τ̄ ′), i.e. (h′, τ̄ ′) ⊂ Ωδ

for all δ ∈ (0, 1] and Ω0 = {(h′, τ̄ ′)}.
2. For any δ′ ∈ (0, 1] and all 0 ≤ δ < δ′, it holds that Ωδ ⊂ Ωδ′ .

3. The polygons expand such that (to the best of our ability), first, the regions
of highest probability (shown in Fig. 5.11) are covered and, then, expands
into the regions of lower probability until the entire region Ω1 is covered
(i.e. δ = 1).
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Now that the robustness regions are characterized by δ, we can iteratively run
the sufficient robust stability test to determine the maximum δ for which robust
stability can be guaranteed for different values of γ (i.e. different performance
characteristics). The robust stability test used the GNB overapproximation
method and specified the overapproximation tightness, ε = 0.01, which results
in a worst-case maximum number of 35 grid points.

We care to stress that the most appealing aspect of the GNB overapprox-
imation technique is the fact that it introduces arbitrarily little conservatism
when employed in (quadratic) Lyapunov-based stability analysis. More specif-
ically, in [38], it was proven that if the original system (without any overap-
proximation), is uniformly globally exponentially stable (UGES) in the sense
that a parameter-dependent quadratic Lyapunov function exists, the presented
LMI-based stability check based on the overapproximation will guarantee UGES
and will find a respective parameter-dependent quadratic Lyapunov function,
given that the overapproximation consists of a collection of grid points which
are sufficiently refined, i.e. the overapproximation tightness ε is sufficiently small
(see [38, Theorem V.1]). Therefore, in this sense, very little conservatism is in-
troduced by making a convex overapproximation by using the GNB method (at
some computational cost).

Remark 5.10. Notice that the GNB overapproximation technique included in the
toolbox presented in Chapter 4 (which implemented the theory in [38]) assumes
that (hk, τ̄k) ∈ Θ where

Θ =
{
(h, τ) ∈ R

2 | h ∈ [hmin, hmax], τ̄ ∈ [τ̄min,min{h, τ̄max})
}
. (5.10)

In Fig. 5.14, the region given by the dotted polygon is defined by Θ, as in (5.10),
where the bounds hmin, hmax, τmin and τmax where extracted from the network
measurements. We can see from Fig. 5.14 that Θ is a very conservatively chosen
superset of the true uncertainty Ω1 since a significant part of the uncertainty
space is included in Θ that does not occur in practice. This introduces unnec-
essary conservatism in the stability analysis of this practical NCS. Fortunately,
restricting our uncertainty region to be of the form (5.10) is not a necessary
choice and, in fact, there is no obstruction in taking (hk, τ̄k) ∈ Φ, k ∈ N, where
Φ is any arbitrary polygon. The toolbox indeed includes this more general case
for robust stability analysis thereby avoiding this conservatism (when using the
GNB approach). This extension was easily incorporated and further advocates
the usefulness of developing software tools.

The extension to analyze arbitrary polygons in the (h, τ̄)-space (i.e. (hk, τ̄k) ∈
Φ, k ∈ N) can be concluded from [38] by carefully examining the first step of [38,
Procedure III.1]. The first step in the procedure specifies that distinct pairs (h, τ̄)
be initially selected such that the uncertainty region defined by (5.10) is covered
by the convex combination of these initially selected points. However, this initial
set of points can be selected to cover any uncertainty region in the (h, τ̄)-space
(such that the small-delay assumption is guaranteed). Therefore, the ability
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Figure 5.16: Tradeoff between the degree of controller aggressiveness, γ,
and the degree of NCS robustness, δ, assuming different com-
putational delays. The observer tuning parameter is set to
β = 1.
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of the GNB technique to assess robust stability of arbitrary polygons in the
(h, τ̄)-space avoids introducing the conservatism associated with including parts
of the uncertainty space that do no occur in practice. Not all overapproximation
techniques possess this property; the overapproximation techniques based on the
real Jordan form, see, e.g. [29], the Cayley-Hamilton theorem [50] and Taylor
series [65] cannot assess robust stability of arbitrary polygons directly. Although
stability analysis can be envisioned by approximating an arbitrary polygon Φ by
taking the union of smaller Θ regions, the computational penalty is enormous.
�

The stability regions in terms of the maximum δ for different values of γ
that were obtained by using the sufficient test for robust stability are shown in
Fig. 5.16. For the computational delay measured in this experimental setup,
τC = 0.020, γ ≈ 0.06 is the largest value (best performance) such that robust
stability can be guaranteed when (hk, τk) ∈ Ωδ for some δ > 0. As γ is decreased
(less performance) then the region which is robustly stabilizing increases. In
order to guarantee robust stability for the entire region of operation (i.e. when
(hk, τk) ∈ Ω1), γ < 0.0015 must be chosen. However, as explained in the previous
section, γ = 0.002 was the lowest value able to keep the pendulum within the
track limits and, hence, the case with γ < 0.0015 cannot be tested. To further
improve the robustness margins, there are two options; redesign the controller
for a longer transmission interval, i.e. h� > 0.035, hoping for more robustness, or
consider purchasing faster hardware in order to reduce the computational delay
at the controller node.

The results from performing the robust stability analysis assuming different
computational delays can quickly be obtained and are also included in Fig. 5.16.
The only modification that needs to be made to the robust stability test is that
the uncertainty set Ω1, shown in Fig. 5.14, needs to be shifted downward by
the difference of the computational time. If we redo the analysis taking the
computational delay, τC , to be either 10 ms or 0 ms, the toolbox results in the
(γ, δ)-curves shown in Fig. 5.16. In these plots, it can be concluded that reduc-
ing the computational delay to 10ms results in being able to guarantee robust
stability the closed-loop NCS with (hk, τk) ∈ Ω1 (i.e. δ = 1) for γ < 0.022, which
is an ≈ 1, 300% larger γ than when τC = 0.020. Moreover, removing the com-
putational delay entirely would enable us to use γ < 0.085 that will guarantee
robust stability for any (hk, τk) ∈ Ω1. Given the network, this provides a proce-
dure to tune the controller’s parameters and provide hardware specifications to
guarantee different levels of robust stability with a measure of performance.

Remark 5.11. In this analysis, the Lyapunov function candidate was of the form
V (x̄k) = x̄�

k Pσk
x̄k, σk ∈ {1, ..., N}, (in this case N = 2) which is common for all

the grid points. An alternative, less conservative, Lyapunov function candidate
would be grid-point-dependent, e.g. Ṽ (xk) = x̄�

k Pσk,mk
x̄k, with mk ∈ {1, ...,M}

the grid point index. However, although less conservative, guaranteeing arbi-
trary switching between the grid points using a grid-point-dependent Lyapunov
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function Ṽ would require NM2 +NM LMIs to be solved, whereas using a grid-
point independent Lyapunov function V would require only NM + N LMIs.
This fact raises an interesting question from a computational complexity point
of view regarding whether it is more efficient to verify robust stability using
fewer grid points with a grid-point dependent Lyapunov function (i.e. a less
conservative Lyapunov function candidate), or using many grid points with a
grid-point-independent Lyapunov function (i.e. a less conservative overapproxi-
mation). �
Remark 5.12. The probabilistic information available in Fig. 5.11 was not used
in the sufficient test for robust stability analysis. Robust mean-square stability
with a higher γ than shown in Fig. 5.16 should be able to be proven using such
probabilistic information since a more detailed network model provides more in-
formation about the system, thus, leading to less conservative results. Although
not implemented in the toolbox yet, the results which include stochastic infor-
mation, e.g. those in [5, 7, 37], should be investigated and their effectiveness at
aiding in controller design should also be evaluated. �
Remark 5.13. Although not done here, the SOS stability analysis tools in Chap-
ter 2 can also be applied to this pendulum/cart setup. Despite the fact that
the analysis technique in Chapter 2 was based on a continuous-time controller,
analyzing discrete-time controllers can be envisioned within the framework of
Chapter 2. Moreover, similar to the discrete-time analysis performed in this
chapter using the GNB approach, a very general class of shapes in the (h, τ̄)-
space can be analyzed for robust stability by modifying the hybrid model jump
map to include additional polynomial constraints that describe the shape of the
uncertainty region. The drawback of using the hybrid SOS analysis on this NCS
is that the state dimension is comparable to that of the batch reactor exam-
ple in Chapter 2 and Chapter 3, which induces a heavy computational burden.
The previous work, see [58], which also used a hybrid modeling approach, is
not able to exploit the particular shape of admissible (hk, τ̄k), k ∈ N, based on
the assumption on zero lower bounds for transmission intervals and delays (i.e.
hmin = τ̄min = 0). It seems that incorporating arbitrary shapes in the (h, τ̄)-
space is not straightforward and, therefore, forms an interesting topic for future
research. �

5.4.4 Experimental Analysis of the Wireless Control
System

In this section we will investigate the consequences of implementing an LQG
control law over a wireless communication link. We will compare two different
controllers, one with γ = 0.01 and the other with γ = 0.04. The analysis
results, shown in Fig. 5.16, indicate that Ω0.10 (10% of the uncertainty region) is
guaranteed to be robustly stable for the controller corresponding to γ = 0.04 and
Ω0.25 (25% of the uncertainty region) is guaranteed to be robustly stable for the
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controller corresponding to γ = 0.01. The result of implementing the controller
with γ = 0.01 and the controller with γ = 0.04 via wireless communication
is shown in Fig. 5.21 and Fig 5.22, respectively. Although these plots depict
that the inverted pendulum is stabilized, some experiments (not shown here)
resulted in the cart exhibiting unstable behavior and, consequently, hitting the
limits of the track. Nonetheless, comparing the wireless data in Fig. 5.21 and
Fig 5.22 with the wired data in Fig. 5.19 and Fig 5.20, the signals associated with
the wireless experiments are still periodic but slightly irregular, the amplitudes
are noticeably larger and the input signals are noisier. Moreover, compared
to their wired counterpart, the data associated with γ = 0.04 appears to be
more irregular and noisy than that of γ = 0.01. This confirms an intuitive
robustness versus performance tradeoff; the more performance we would like to
have, the larger the (negative) influence of the network-induced effects becomes.
Finally, considering the reception intervals of the individual nodes (Δrik-plots)
in Fig. 5.21 and Fig 5.22, we can see that no dropouts occurred during this
experiment, as also assumed in the analysis.

The results of the analysis performed in Section 5.4.3 (shown in Fig. 5.16)
indicated that the LQG controllers tested (corresponding to γ = 0.04 and γ =
0.01) were not completely robustly stabilizing in the presence of the network-
induced effects. Although there existed segments of time where the controller
was able to keep the pendulum upright, there were also instances where the cart
exhibited unstable behavior and, consequently, hit the limits of the track. This
suggests that although there might be long periods of time where the closed-
loop appears stable, a worst-case sequence (of, e.g. delays) can occur at any
time and destabilize the NCS, possibly resulting in damage to the system being
controlled. This clearly indicates the importance of developing tools which are
able to assess worst-case robustness properties for NCSs, especially for systems
which are desired to be left unattended for extensive periods of time.

The fact that the ‘traditional’ LQG design method chosen was not able to
produce a robustly stabilizing controller demonstrates the insufficiency of tra-
ditional controller design techniques when they are implemented in this (fairly
basic) networked setting. Although we successfully constructed a wireless exper-
imental setup for which current NCS theory can be validated, without a robustly
stabilizing wireless controller (which can keep the pendulum upright within the
track limits), we can not experimentally determine the amount of conservatism
introduced by the sufficient test for robust stability analysis. A promising di-
rection towards achieving a robustly stabilizing controller includes designing a
switched LQG observer (via periodic Riccati equation techniques) to account for
the shared communication medium, and, also incorporating information regard-
ing the delay. A controller of this type should also be able to be analyzed by
the prototype toolbox and, therefore, can also be used for validation purposes.
In the next section, we will evaluate the effectiveness of the controller design
technique proposed in Chapter 3.
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Figure 5.17: Maximum robustness achievable when using different linear
coordinate transformation matrices T̃ ∈ R

4×4, i.e. evaluating
state-space models using (5.1) and the linear transformation
z = T̃ x, where the elements T̃ij were random values such

that T̃ij ∈ [−1, 1] for all i, j ∈ {1, 2, 3, 4}. The transmission
interval hk = [δ̄ − h�, δ̄ + h�], the computation delay τC = 0
and the transmission delay τk = 0.

5.5 Robust Observer-based Controller Synthesis

In this section we will apply the synthesis techniques developed in Chapter 3,
to the linearized plant model (5.1). Unlike previously where h� = 0.035, we
will synthesize controllers for different values of h� and determine how much
robustness can be guaranteed. Although, the synthesis technique presented in
Chapter 3 did not explicitly include delays in the NCS model, in fact, delays can
be included, see Remark 3.6. Moreover, the technique can be used to synthesize
controllers which are robust to uncertainties of arbitrary shapes in the (hk, τ̄k)-
space due to the fact that it is based on the GNB overapproximation technique,
see Remark 5.10. Therefore, the framework is general enough to create a (h�, δ)-
plot, where δ was defined in Section 5.4.3, which is based on synthesizing of
robustly stabilizing controllers. However, in this section, we limit the analysis to
the case where delays are not considered, i.e. τ̄k = 0. Specifically, for each h� to
be chosen in the observer-based controller (3.9), we aim to find the largest δ̄ ∈
[0, 1) such that the NCS (3.11) is stable for [hmin, hmax] = [(1− δ̄)h�, (1 + δ̄)h�],
k ∈ N, i.e. we consider a symmetric uncertainty interval around h�.

The synthesis techniques in Chapter 3 cannot directly produce any stabiliz-
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ing controllers for any h� using the plant model as defined in (5.1) (even without
shared communication and hk = h�). However, robustly stabilizing controllers
(which include shared communication) could be found when the synthesis tech-
nique was applied to algebraically equivalent plant models (i.e. when using a
linear state coordinate transformation). Fig. 5.17 provides a resulting plot of
the maximum robustness achievable for different linear coordinate transforma-
tion matrices T̃ ∈ R

4×4, i.e. evaluating state-space models using (5.1) and the
linear transformation z = T̃ x, where the elements T̃ij were random values such

that T̃ij ∈ [−1, 1] for all i, j ∈ {1, 2, 3, 4}. Recalling that for this experimental
NCS setup hk ∈ [0.029, 0.041] (implying that h� = 0.035 and δ̄h� = 0.006), we
can conclude that the synthesis technique is not able to find a robustly stabi-
lizing controller which covers this entire range, even with τk = 0. So, although
the synthesis technique was able to theoretically find stabilizing controllers, the
robustness margins are small. Besides, is currently not equipped to provide per-
formance guarantees. The origin of this conservatism is suspected to be due to
the choice of the state coordinate representation, as indicated in [116]. To the
best of the authors knowledge, the determination of a suitable linear coordinate
transformation matrix T̃ , even in the simpler setting of static output feedback
stabilization of linear time-invariant systems, is currently still an open problem.
This indicates that a future research topic could be the investigation into the
origin of this conservatism and how it can be eliminated before extending the
technique to include performance.

5.6 Conclusions and Future Recommendations

In this chapter, a wireless control experimental setup was presented. In this
setup, two sensor nodes shared network access to a wireless network using a RR
protocol when communicating to the controller. The controller itself was wired
to the actuator. It was shown that the NCS toolbox presented in Chapter 4
was useful in quantifying the amount of robustness achievable for a given per-
formance characteristic. In fact, a traditionally designed LQG controller could
be tuned to increase robustness of the NCS at the cost of decreasing transient
performance. Hence, the theoretical tools implemented in the prototype toolbox
were successfully employed to aid in the stability analysis and controller design
for this practical NCS. In addition to validating the developed theory, many new
insights were gained.

We have seen that plotting a time-varying transmission interval versus time-
varying delay histogram (based on experimental data) is extremely useful in
order to accurately define a bounding set for these network-induced uncertain-
ties. This experimentally determined bounding set was, in fact, only a subset
of the corresponding bounding set that was commonly adopted in the NCS lit-
erature. Therefore, using this commonly adopted bounding set will introduce
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conservatism in the stability analysis as it will include additional uncertainties
which do not actually occur in practice. The limitation of the commonly adopted
bounding set is due to the assumptions which predetermine its geometry (once
the bounds on the transmission intervals and delays were determined). There-
fore, the direct application of several analysis techniques such as those based on
the real Jordan form, the Cayley-Hamilton theorem and the Taylor series expan-
sion will be conservative as they can only analyze uncertain regions characterized
by such assumptions. These techniques can approximate an experimentally-
determined bounding set by taking the union of multiple sets which obey the
geometric assumptions; however, this will incur a heavy computational burden
on the stability analysis. Therefore to reduce this type of conservatism in the
analysis, analysis techniques that are developed in the future should be able to
directly analyze arbitrarily shaped sets that bound the transmission intervals
and delays (such as the GNB technique and the SOS technique).

Also new insights were gained related to the different ways that packet drops
can occur in the experimental setup. It was determined that, using the imple-
mented communication logic, there were two communication links that could fail
which result in possible three failure types for each sensor node. Each failure
affects the reception/transmission intervals and the transmission sequence dif-
ferently. Therefore, to accurately capture this behavior, dropout models should
result in inducing a combination of both a perturbation on the reception/trans-
mission interval and a perturbation on the transmission sequence. Dropout
models which only consider dropouts to prolong the transmission interval can-
not capture dropouts that only perturb the transmission sequence (i.e. between
two sensor nodes). Therefore, it of interest to develop packet dropout models
capturing this combined behavior and to develop corresponding robust stability
analysis techniques.

Moreover, when a dropped packet did perturb the transmission interval, the
perturbed transmission interval was approximately twice that of the average
‘regular’ transmission interval. As a result, there will be two disjoint bound-
ing sets in the uncertainty space, one centered at the average of the ‘regular’
transmission interval and one centered at twice this ‘regular’ value. Assuming
a prolongation of the transmission interval would result in analyzing a super-
set which includes all the points which define these two disjoint polygons and,
therefore, include parts of the uncertainty space which do not occur. This will,
in general, significantly increase the conservatism. Hence, it would be beneficial
to develop techniques (based on LMI conditions) which can analyze the union
of two disjoint bounding sets in order to reduce conservatism compared to the
standard prolongation of the transmission interval.

The developed theoretical tools which were applied to this NCS were based
on a ‘worst-case’ modeling of the uncertainties on the delays and transmission
intervals. However, the wireless communication based on the CSMA/CA mecha-
nism is fairly ‘well-behaved’ in the sense that a particular sequence, which might



5.6 Conclusions and Future Recommendations 125

be considered the worst-case (e.g. τ̄k = τ̄max for all k), might never occur (or
with a low probability). Therefore, it is of future interest to analyze stochastic
tools for NCSs, to implement them in the toolbox and to study the application
of these results in an experimental setup.

Other than the research topics raised from the insight mentioned above, this
experiment has lead to the discovery of several other possible future research
topics:

1. A comparison between non-beacon enabled communication and beacon
enabled communication should be performed and analyzed.

2. A comparison between the current IEEE 802.15.4 setup and setups which
use IEEE 802.11 (WiFi) and IEEE 802.15.1 (Bluetooth) compliant trans-
mitters should be done.

3. The implementation and investigation of other protocols (i.e. the try-once-
discard (TOD) protocol or the roll-out protocol [4]) over a wireless link
should be investigated.

4. An investigation with other controller types (e.g. a switched Kalman filter)
might provide more robustness with respect to network-induced effects.

5. Implementing the controller on a node which has more computational
power (i.e. lowering the computational delay τC) should be investigated
to determine if robust stability of this experimental NCS can be achieved.

6. In addition to having the sensors transmitting data wirelessly to the con-
troller, the controller-to-actuator channel could also be made wireless. In
this scenario, the input is updated much less frequently, so computing and
sending a packet containing several future control actions to the actuator
node could be experimentally studied and validated.

7. Adapting the SOS techniques presented in Chapter 2 such that this exper-
imental NCS containing a discrete-time controller can be investigated and
is of practical intrest.

8. The synthesis techniques developed in Chapter 3 were shown to be fairly
conservative when applied to this inverted pendulum model. It is of interest
to investigate what is the exact cause of the conservatism and how it can
be eliminated.

9. The validation of NCS simulation software, such as ones, e.g. described
in [24], should also be investigated with this experimental NCS setup.

Hence, this experimental exploration provided several new insights and intro-
duced many new and exciting research questions. The open issues raised above
demonstrate that clearly.
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Figure 5.18: Controller performance with γ = 1 and β = 1 and sensor
communication is wired.
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Figure 5.19: Controller performance with γ = 0.04 and β = 1 and sensor
communication is wired.
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Figure 5.20: Controller performance with γ = 0.01 and β = 1 and sensor
communication is wired.
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Figure 5.21: Controller performance with γ = 0.04 and β = 1 and sensor
communication is wireless.
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Figure 5.22: Controller performance with γ = 0.01 and β = 1 and sensor
communication is wireless.



Chapter 6

Conclusions, Recommendations
and Final Thoughts

This thesis will close with some concluding remarks, recommendations for future
research and final thoughts.

6.1 Conclusions

In this thesis, specific challenges in the field of networked control systems (NCSs)
were addressed. This field of research is motivated by the realization that in
many current control problems, communication between sensors, actuators and
controllers is not always perfect. These imperfections stem from the fact that
current telecommunications advances, such as wireless communication, cannot
always guarantee the high quality of service (QoS) levels which are required
to successfully implement controllers that are based on ‘classic’ control the-
ory. Specifically, these imperfections perturb the timing associated with control-
related data (i.e. when data is transmitted and received) and limit the amount
of control-related data which can be communicated at any given time. If not
accounted for, these imperfections can degrade performance and even threaten
closed-loop stability of the control system. Therefore, it is crucial to develop
tools which can quantify control-relevant properties such as stability and perfor-
mance in the case of imperfect communication between sensors, actuators and
controllers. To cope with the corresponding challenges, this thesis provided the
following main contributions:

(i.) the development of theoretical tools for robust stability analysis of NCSs
was provided in Chapter 2,
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(ii.) the development of theoretical tools for robust (decentralized) controller
synthesis for NCSs was provided in Chapter 3,

(iii.) the development of NCS analysis software to provide easy access to sta-
bility analysis tools for control engineers and to facilitate the future de-
velopment of the current theory was provided in Chapter 4,

(iv.) the validation of tools and theory on a wireless control experimental case
study was provided in Chapter 5.

We will now describe these contributions in more detail.

In the area of robust stability analysis, Chapter 2 presented a method which
can be used to analyze robust stability of nonlinear (piecewise) polynomial plants
and controllers with respect to network-induced effects. The proposed solution
was formulated in a hybrid system modeling framework and was based on sum of
squares (SOS) techniques. The network-induced effects considered were bounded
time-varying delays, bounded time-varying transmission intervals and a shared
communication medium. This technique was shown to be less conservative than
previously proposed techniques which can analyze robust stability of nonlin-
ear (piecewise) polynomial plants and polynomial controllers, see, e.g. [58, 94].
Moreover, there are several other beneficial features of the technique proposed in
Chapter 2: (i) it allows for non-zero lower bounds on the delays and transmission
intervals in contrast with various existing approaches, e.g. [22,25,58,90–92,94,95],
(ii) it allows more flexibility in the Lyapunov functions thereby obtaining less
conservative estimates of the maximal allowable transmission intervals (MATI)
and maximal allowable delay (MAD) than prior emulation-based approaches,
see, e.g. [58, 94], (iii) it provides an automated one-shot method to address sta-
bility analysis problems of nonlinear systems in the NCS setting, and finally
(iv) the framework was general enough to incorporate arbitrarily shaped uncer-
tainty sets that bound the transmission intervals and delays, as mentioned in
Remark 5.10. Although the technique was shown to be less conservative than
previously proposed techniques, the price payed was that the computation time
required to solve the SOS program grows quite significantly with the size of the
state space dimension.

In the area of robust decentralized controller synthesis, Chapter 3 presented
one of the first techniques which can synthesize decentralized observer-based con-
trollers which are robustly stabilizing in the presence of network-induced effects.
The proposed solution was formulated in the discrete-time linear switched sys-
tem modeling framework and was based on polytopic overapproximations with
norm-bounded uncertainties. The network effects considered were bounded time-
varying transmission intervals and a shared communication medium, where the
extension to bounded time-varying delays is straightforward using the work in
[38]. To effectively deal with the shared communication medium using observer-
based controllers, we adopted a switched observer structure that switched based
on the received measured outputs and a switched controller structure that switched
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based on received control inputs at each transmission time. The developed linear
matrix inequality (LMI)-based synthesis conditions, if satisfied, provided stabi-
lizing (observer and controller) gains for both the decentralized problem setting
and the NCS problem setting in isolation, as well as the unification of these two
problem settings. Using a benchmark example in the NCS literature, it was
shown that this synthesis technique was able to find an entire set of controllers
that significantly improved the closed-loop robustness compared to that of an
existing dynamical controller, extensively studied in the NCS literature. Due to
the fact that this synthesis technique is based on the gridding and norm bounding
(GNB) overapproximation procedure, the extension toward the synthesis of con-
trollers which must be robust for arbitrarily shaped uncertainty sets that bound
the transmission intervals and delays can easily be done. Although we aimed
to develop a synthesis technique applicable to large-scale problems (hundreds
to thousands of states), the applicability of this technique is limited to analyz-
ing small- to medium-scale problems (i.e. tens of states) due to computational
complexity. This limitation is primarily due to the fact that, although offering
low levels of conservatism and efficient verification for small-scale problems, the
number of variables that must be solved using a (switched) quadratic Lyapunov
function candidate grows polynomially with respect to the state dimension.

In an effort to make our developed theory available to the control community,
Chapter 4 presented a prototype NCS toolbox. Specifically, the toolbox can be
employed to efficiently verify if a linear time-invariant (LTI) plant and an LTI
controller interconnected with a shared network is robust to certain network
imperfections. The toolbox was developed so that it appealed to both basic
users, e.g. students or control engineers that are not so familiar with NCS the-
ory, and advanced users, e.g. researchers that would like to use custom models
and custom analysis conditions. By using this toolbox, the user is able to make
multi-disciplinary design tradeoffs between control properties, such as stability
and performance, and network-related properties, such as delays, scheduling,
bandwidth limitations, etc., in a user-friendly manner. This toolbox provides
a user-friendly way to interact with the existing theoretical developments and
removes the burden of implementing some of the more complex algorithms em-
ployed in the theory.

Finally, experiments with wireless control were conducted in Chapter 5. The
experimental setup chosen was the wireless control of an inverted pendulum/-
cart system. The wireless nodes used to communicate between the sensors and
the controller were programmed in such a way that the theory and prototype
toolbox developed in this thesis could be applied and validated. After a detailed
experimental analysis of the network effects induced by the wireless communica-
tion, it was determined that indeed all five network-induced effects were present;
however, the three effects focused on in Chapter 2 and Chapter 3, namely time-
varying transmission intervals, time-varying delays and a shared communication
medium, were shown to be dominant. Although dropouts were present with
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the introduction of traffic-inducing nodes and new insights into the dropout be-
havior were gained, dropouts were not considered in the analysis. Applying
the prototype toolbox to analyze robust stability of the NCS with respect time
time-varying transmission intervals, time-varying delays and the presence of a
shared communication medium resulted in providing tradeoff plots which quan-
tified how much robustness could be gained at the cost of decreasing transient
performance. Experiments indicated that the controllers, although able to in-
duce stabilizing behavior for a period of time, were not robustly stabilizing in
the presence of the network-induced effects, as indicated in the analysis. This
suggests that although there might be long periods of time where the closed-loop
appears stable, a worst-case sequence (of, e.g. delays) can occur at any time and
destabilize the NCS, possibly resulting in damage to the system being controlled.
This clearly indicates the importance of developing tools which enable us to as-
sess worst-case robustness properties for NCSs, especially for systems which are
desired to operate autonomously.

6.2 Recommendations for Future Research

There are still many directions to explore in the area of networked control sys-
tems. Determining which direction to pursue in order to make the theory more
applicable in practice is an important, though challenging, task. As a result of
the work done in this thesis, several directions could be considered.

Reducing the curse of dimensionality: Although being able to demon-
strate low levels of conservatism, the applicability of both the theoretical de-
velopments in Chapter 2 and Chapter 3 are limited by the dimension of the
closed-loop state vector due to computational burden imposed by LMI-based
stability analysis and controller synthesis techniques. One of the main benefits
of using shared communication channels is the ability to inexpensively install
large-scale control systems which are able to regulate systems characterized by
hundreds or even thousands of states. Although improving the efficiency of the
LMI- or SOS-based solvers offers one solution, we recommend that the NCS
community not only focuses on developing techniques which have low levels of
conservatism but also focuses on developing techniques which also have low lev-
els of computational complexity. Hence, we are stressing the importance to not
only decentralize the controllers themselves, but also to decentralize or distribute
the computational conditions which are used to design them.

Reducing the conservatism in the stability analysis for time-varying
transmission intervals and delays: We have observed that an experimen-
tally determined bounding set for time-varying transmission intervals and time-
varying delays was, in fact, only a subset of the corresponding bounding set that
was commonly assumed in the NCS literature, see, e.g. the recent results [38,58].
Therefore, using this commonly assumed bounding set will introduce conser-
vatism in the stability analysis as it will include additional uncertainties which
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do not actually occur in practice. To reduce this type of conservatism in the
analysis, analysis techniques to be developed in the future must be able to di-
rectly analyze arbitrarily shaped sets that bound the transmission intervals and
delays. In this thesis, we already showed that the gridding-and-norm bounding
(GNB) technique (employed in Chapter 3) and the SOS technique (developed in
Chapter 2) can easily be adapted to incorporate these arbitrarily shaped sets in a
non-conservative manner. However, how to do this for other (existing) methods
is presently unclear.

Improving dropout modeling and related NCS stability analysis:
We have experimentally observed in Chapter 5 that when a packet dropout
occurs, a perturbation of both the transmission interval and the transmission
sequence can occur. Hence, modeling dropouts as only a prolongation of the
transmission interval (as done in the current version of the toolbox) does not
capture the dropout modes which also induce a perturbation in the transmission
sequence. Therefore a more accurate dropout modeling approach is needed such
that the robustness for controllers that are implemented in wireless networks
(such as ones in the experimental setup) can be analyzed in the presence of a
traffic-congested wireless medium.

Extending the toolbox functionality: The prototype toolbox developed
currently only includes robust stability analysis tools. This was done accord-
ing to a modular software structure in order to create a platform onto which
functionality can easily be added. Incorporating the additional functionality of
robust controller synthesis and some stochastic analysis techniques should be
pursued and is relatively straightforward due to the modular software structure
of the toolbox. Additionally, extending the toolbox to analyze delays which are
longer than the transmission interval is recommended. Once implemented, the
aforementioned extensions should also be tested on experimental setups such as
the wirelessly controlled inverted pendulum setup.

Continuing the experimental exploration: The insights gained from
the experimental setup that was constructed as a result of this thesis clearly
demonstrate the considerable number of benefits that experimental exploration
offers. We strongly encourage the NCS community to construct similar (but
different) experimental setups in order to investigate, verify and validate many
other (common) network modeling assumptions and theoretical results. The
resulting collection of such experimental work will help to steer the NCS com-
munity towards developing theory that is more readily applicable to practical
NCSs.
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6.3 Final Thoughts

One day, reliable control systems will be effortlessly and inexpensively imple-
mented by using existing (uncertain) telecommunication infrastructures which
are shared by other applications. So far, in the first decade of the twenty-first
century, the NCS community has been very successful in achieving swift theoreti-
cal progress towards achieving this goal. As an example, today, the maximum al-
lowable transmission interval (MATI) able to be proven for the benchmark batch
reactor example has been improved by an impressive 650,000%, see [38], com-
pared to the robustness margins able to be proven in the pioneering work [122].
Although NCS theory is much stronger than just a decade ago, it is far from
achieving the ‘ultimate’ goal of solving large-scale control system design prob-
lems. There are, of course, many paths which can be taken to arrive at this goal.
At this point in time, the most natural direction to proceed seems to be that of
combined experimental validation and inspired theoretical progress.

Fortunately, the construction of experimental NCS setups is a recently grow-
ing trend within the field. Research groups which build experimental setups have
the advantage of experimentally validating their network models and theoretical
results. However, there are many other research groups which have results which
could also benefit from experimental validation. Collaboration between research
groups that have experimental setups and research groups that would benefit
from having their theory experimentally validated is eased when the theory is
accessible in the form of a toolbox. Given the amount of theoretical break-
throughs over the past decade, now is the time to increase collaboration within
the community by developing software which can be easily applied to different
experimental setups. Such collaboration will result in identifying which network
assumptions work well in practice for different network settings and which analy-
sis techniques are most effective, thereby, paving an experimentally-driven path
to identify the most promising research directions and gear new (theoretical)
advances accordingly. The success of building such an experimentally-driven
research path will grab the attention of high-tech companies who will then, in
turn, also invest in NCS research, until, ultimately, the design of a reliable NCS
becomes a common engineering practice.
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[94] D. Nešić and A.R. Teel. Input-output stability properties of networked control
systems. IEEE Trans. Autom. Control, 49(10):1650–1667, 2004.
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Summary

Networked Control Systems
From Theory to Experiments

Driven by recent telecommunication demand, shared communication chan-
nels are more abundant today than ever before. These shared wired/wireless
networks for communication are being exploited more and more in control sys-
tems to connect sensors, controllers and actuators resulting in so-called net-
worked control systems (NCSs). NCSs replace the more traditional control sys-
tems where dedicated point-to-point (wired) connections are being used. The
advantages of using NCS technology are inexpensive and easily modifiable com-
munication links which allow control algorithms to be easily implemented in
situations where dedicated connections are not possible (either economically or
physically). However, the drawback is that the control system is susceptible to
undesirable (possibly destabilizing) side-effects such as time-varying transmis-
sion intervals, time-varying delays, packet dropouts, quantization and a shared
communication medium. These network-induced effects undermine fundamental
assumptions on which traditional control theory is built and, therefore, it is es-
sential to develop new techniques and tools that can be used to analyze and/or
design control systems which communicate via a shared network. This thesis ad-
vances NCS analysis and design methodologies by contributing new theoretical
developments, new software tools and new experimental validation results.

The first new theoretical development is in the area of analyzing robust sta-
bility properties with respect to network-induced effects. A sum of squares (SOS)
approach for a class of nonlinear NCSs incorporating bounded time-varying de-
lays, bounded time-varying transmission intervals and a shared communication
medium is developed. Mathematical models that describe these nonlinear NCSs
are cast into suitable hybrid system formulations. Based on these hybrid system
formulations, (families of) Lyapunov functions are constructed using SOS tech-
niques. Amongst other benefits, it is shown that this technique improves the
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guaranteed robustness margins compared to existing work.
The second new theoretical development concerns the design of network-

aware decentralized controllers guaranteeing robust stability properties with
respect to network-induced effects. We develop one of the first approaches
based on semidefinite programming techniques to synthesize stabilizing decen-
tralized observer-based output-feedback controllers for linear plants where the
controllers, sensors and actuators are connected via a shared communication net-
work subject to time-varying transmission intervals and delays. To effectively
deal with the shared communication medium, a switched observer structure is
adopted that switches based on the transmitted measured outputs and a switched
controller structure is also adopted that switches based on the transmitted con-
trol inputs at each transmission time. By taking a discrete-time switched linear
system perspective on modeling these decentralized NCSs, we are able to de-
rive a general model that captures all these networked and decentralized control
aspects. We provide linear matrix inequality (LMI)-based synthesis conditions
which, if satisfied, provide stabilizing observer-based controllers that are both
decentralized and robust to network effects.

Regarding new software tools, the first prototype of a toolbox is developed
to automate (robust) stability analysis (and controller design) for NCSs. Specif-
ically, it is shown that the toolbox can be employed to efficiently verify if a linear
time-invariant (LTI) plant and an LTI controller interconnected with a shared
network are robust to certain network imperfections. The main intention of
the toolbox is to make the available theory readily accessible to and applicable
for the general control community. Additionally, the chosen software structure
enables the incorporation of custom models or custom stability/performance
analysis conditions in an easy manner, thereby allowing the control community
to contribute and to further develop the toolbox.

Finally, an experimental case study involving a wirelessly controlled inverted
pendulum/cart system is investigated. In particular, the communication network
itself is analyzed such that the network-induced effects can be characterized in
terms of bounds on the transmission intervals and transmission delays. Based on
these bounds, the prototype toolbox is applied to analyze the robustness regions
for different performance specifications, which aid in tuning the controller to
achieve more closed-loop robustness with respect to the network-induced effects.
This leads to a validation of the developed theory in an experimental setting. In
addition to the validation of the developed theory, many new insights into the
network behavior are obtained and explained, thereby raising new interesting
questions for future research on NCSs.



Acknowledgements

Four years ago, I was given the opportunity to embark on an adventure. Like any
good adventure, the need to travel to a land far far away and being confronted
with many new challenges were required. I made the decision to go on this
adventure primarily based on a good feeling. Although this might not have
been the most sound reasoning, looking back, I can confidently say this was the
best decision I have ever made. As a result of this journey, I have grown to
understand mathematics and science better, to understand myself better and to
understand the world better. I owe many thanks to the people who have made
this journey possible and the people who have made the outcome successful by
providing their continuous support.

First, I would like to thank my advisor Maurice Heemels. Maurice, your
positive attitude has always motivated me to get back up and keep trying when I
fell (which believe me, was quite often). You have not only been a great scientific
advisor, but also a great mentor and for that I feel truly blessed. Thank you for
your exemplary enthusiasm and constant support throughout my journey.

Next, I would like to thank my co-advisor Nathan van de Wouw. Nathan,
your calm personality has made every meeting enjoyable and your critical eye for
detail has helped refine mine tremendously. I have truly enjoyed working with
you and have learned many valuable lessons and skills that I will carry with me
throughout my career.

I would like to especially thank Andrew Teel for guiding me during my Mas-
ter’s study and being a large part of the reason that I have produced this thesis.

I would also like to thank Jamal Daafouz, Mikael Johansson and Siep Weiland
for being a part of the reading committee and for giving detailed comments on
the draft version of my thesis.

In addition to my own blood, sweat and tears, this thesis contains the hard
work of two former Master’s students, Paul Maas and Bas van Loon. These two
guys were a pleasure to work with and really did great work towards making
this thesis possible.



150 Acknowledgements

The WIDE project team has also played a large role in the production of
this thesis. I would like to thank Vicenç Puig, Juli Romera and Diego Garcia
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