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Summary

Reset Control and Control Allocation
for High-precision Motion Systems

Motion control is a key enabling technology in a broad range of high-tech
applications ranging from electron microscopes, pick-and-place machines, and
copiers to wafer scanners, thereby representing an enormous value for the Dutch
economy. The corresponding high-tech industries are currently facing numer-
ous challenges in order to maintain their competitive position in the market.
Namely, there is an ever increasing performance demand on speed and accuracy
of motion systems, and essential system-level tradeoffs between cost and per-
formance need to be made. In order to cope with these challenges, this thesis
considers the development of novel motion control techniques for high-tech mo-
tion systems. In particular, two industrially relevant topics are addressed. Novel
control architectures are developed for 1) motion systems with friction, and for
2) industrial over-actuated systems, where we aim to overcome the performance
limitations inherent to classical control solutions for such systems.

For high-tech industrial motion platforms, current mechatronic design speci-
fications often lead to the usage of high-cost equipment such as actuators, bear-
ings, and sensors. When moving away from these stringent design requirements
by using cheaper hardware components, the resulting system may suffer from
nonlinearities induced by low-cost mechatronic system components. Specifically,
the use of low-cost actuators and bearings can induce friction in the motion plat-
form. It is well-known that friction is a performance-limiting factor in terms of
speed and accuracy when state-of-practice, linear control techniques are em-
ployed. First, a classical PID controller (often embraced by industry for fric-
tional systems) applied to a motion system with Coulomb friction results in long
settling times, adversely affecting the machine throughput. Second, when a clas-
sical PID controller is applied to motion systems suffering from friction including
the velocity-weakening Stribeck effect, stability of the setpoint (and thereby po-
sitioning accuracy) is compromised. The first part of this thesis involves the
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design of two novel hybrid control architectures, and a learning controller, ad-
dressing the above-mentioned limitations for frictional motion systems. First,
we propose a hybrid controller that significantly improves transient performance
(in terms of settling time) of motion systems with unknown Coulomb friction. In
particular, a reset integrator is applied to circumvent the depletion and refilling
process of a linear integrator when the system overshoots the setpoint, thereby
significantly reducing settling time. Stability properties of the closed-loop sys-
tem are analyzed using a discontinuous Lyapunov-like function. Moreover, the
effectiveness of the reset control strategy is experimentally demonstrated on a
high-precision motion stage of an electron microscope. Second, we present a hy-
brid controller that achieves stability of the setpoint for systems with unknown
Coulomb and Stribeck friction. The proposed reset integrator hence results in
improved positioning accuracy. The closed-loop system dynamics are formulated
in a hybrid systems framework, using a novel hybrid description of the Coulomb
friction element, and stability of the setpoint is proven accordingly. The working
principle of the controller is demonstrated experimentally on a motion stage of
an electron microscope, showing superior performance over standard PID con-
trol. Both reset control strategies can be considered as hybrid extensions of
the classical PID controller. By building upon a well-known control strategy
embraced by industry, we reduce the threshold for control engineers to use the
proposed performance-improving nonlinear controllers in industry. The third
contribution is the design of a PID-based learning controller for systems with
Coulomb and Stribeck friction, which perform a repetitive motion profile. In par-
ticular, we propose a time-varying integral controller gain. The integral gain is
iteratively designed using measured performance data, by employing a sampled-
data extremum-seeking approach. The proposed technique resembles iterative
learning control, but does not require any model information, which is beneficial
given the fact that friction is often uncertain or unknown.

The second part of the thesis is devoted to the modeling of and control de-
sign for two industrial over-actuated motion systems. By employing intelligent
control solutions, the over-actuated topology of the considered systems can be
exploited to improve performance, compared to classical, linear control solutions
currently applied in industry. First, we design a control allocation framework for
an industrial high-precision transportation and positioning system. The consid-
ered system consists of multiple carriers that move on horizontal tracks, actuated
by inverted three-phase motors (i.e., coils in the tracks and permanent magnets
on the carriers, so that the carriers do not have any electronics or cables attached
to them). Compared to the state-of-practice (linear) controller, the developed
allocation control architecture results in improved accuracy, increased freedom
in motion profile design, and relaxed hardware design specifications (the latter
allows for a more cost-effective system design). The benefits are experimentally
demonstrated on an industrial platform. The second contribution is the develop-
ment of a dynamical model and accompanying controller design for an industrial
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sheetfed printer paper path. Sheets of paper are transported alternately by one
or two pinches throughout the paper path, which gives rise to a hybrid system
dynamics. In particular, the developed model is formulated in a hybrid systems
framework, which facilitates the design of hybrid controller concepts (taking into
account the hybrid nature of the system) for the considered application. As a
stepping stone towards this goal, we propose a controller that regulates both
the motion of the transported sheets and traction forces in the sheets, when
transported by two pinches (exploiting the over-actuated topology). The effec-
tiveness of the controller is illustrated by means of a simulation example, and
demonstrated on an experimental paper path setup.

The control architectures presented in this thesis yield an improved perfor-
mance of industrial motion systems, compared to state-of-practice linear con-
trollers, and may allow for a cost-effective mechatronic system design. The
proposed controllers can be designed and tuned using well-known loop-shaping
techniques, enabling industrial acceptance of the proposed control architectures.





Societal summary

Motion control is a key enabling technology in a broad range of high-tech applica-
tions ranging from electron microscopes, pick-and-place machines, and copiers to
wafer scanners, thereby representing an enormous value for the Dutch economy.
The corresponding high-tech industries are currently facing numerous challenges,
namely, there is an ever increasing performance demand on speed and accuracy
of motion systems, and essential system-level tradeoffs between cost and per-
formance need to be made. In order to cope with these challenges, this thesis
considers the development of novel motion control techniques for high-tech mo-
tion systems. In particular, two industrially relevant topics are addressed. Novel
control architectures are developed for 1) motion systems with friction, and for
2) industrial over-actuated systems, where we aim to overcome the performance
limitations inherent to classical control solutions for such systems.

Current mechatronic design specifications often lead to the usage of high-cost
equipment such as actuators, bearings, and sensors. When moving away from
these stringent design requirements by using cheaper hardware components, the
resulting system may suffer from undesired effects caused by friction, induced
by low-cost mechatronic system components. Friction is a performance-limiting
factor, that can typically not be overcome by classical control solutions. The
first part of this thesis therefore involves the design of novel control architectures,
addressing the limitations for frictional motion systems.

Another challenge currently faced by industry is the ever increasing demand
on speed and accuracy of motion systems. The second part of this thesis is
devoted to controller design of a specific class of industrial systems (i.e., over-
actuated motion systems), that outperform the state-of-practice control solutions
currently applied in industry.

The control architectures presented in this thesis yield an improved perfor-
mance of industrial motion systems, compared to state-of-practice linear con-
trollers, and may allow for a cost-effective mechatronic system design. The
proposed controllers can be designed and tuned using conventional techniques
already used in practice, enabling industrial acceptance of the proposed control
architectures.
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Chapter 1

Introduction

Motion control is a key enabling technology in a broad range of high-tech
applications ranging from electron microscopes, pick-and-place machines, and
high-precision transportation systems, to industrial printers and wafer scanners,
thereby representing an enormous value for the Dutch economy. The corre-
sponding high-tech industries are currently facing numerous challenges in order
to maintain their competitive position in the market. Namely, there is an ever-
increasing performance demand on speed and accuracy of motion systems, and
essential system-level tradeoffs between cost and performance need to be made.
In order to cope with these challenges, this thesis considers the development
of novel motion control techniques for high-tech motion systems. In particular,
two industrially relevant topics are addressed. Novel control architectures are
developed for 1) motion systems with friction, and for 2) industrial over-actuated
motion systems, where we aim to overcome the performance limitations inherent
to classical control solutions for such systems.

This chapter provides a high-level introduction to the thesis, in order to
highlight the main research goals and contributions. More detailed literature
reviews on the different topics discussed in this thesis are given in the individual
chapters. In Section 1.1, (recently developed) motion control techniques for
industrial systems are briefly reviewed. In Section 1.1.1 and Section 1.1.2, control
strategies for motion systems with friction, and for over-actuated motion systems
are discussed, respectively, related to the two main topics addressed in this thesis.
The objectives and contributions of this thesis are presented in Section 1.2, and
the outline of this thesis is given in Section 1.3. Finally, the embedding of this
thesis into the research programme CHAMeleon, of which this research was part,
is presented in Section 1.4.
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1.1 Motion control for industrial high-precision
systems

Industrial high-precision motion systems are generally well-designed, such that
the dynamics of these systems can be represented by linear system models (and
are therefore referred to as “linear systems”). This allows for the use of linear
feedback control techniques, which are applied in the vast majority of indus-
trial motion systems. In particular, the classical, linear, proportional-derivative-
integral (PID) type controller, see, e.g., [9, 125], is commonly employed due to
its effectiveness in practical control problems. Control practitioners are often
well-trained in linear controller design, and the existence of intuitive (graphical)
design and tuning tools for linear controllers (e.g., loop-shaping [57, 138] or H∞
controller synthesis techniques [154, Ch. 16-18]) makes linear control popular in
practice.

Besides the requirement that the to-be-controlled mechatronic system must
be linear in order to reliably employ linear control techniques, PID-type feedback
controllers suffer from distinct performance limitations. Well-known examples of
these limitations are the so-called “waterbed-effect” (i.e., increasing the band-
width of a linear control system improves low-frequency disturbance rejection
properties, but increases sensitivity to high-frequency disturbances), and the
trade-off between low-frequency disturbance rejection and increasing overshoot
when using integral action, see [134]. In order to (partly) overcome some of the
performance limitations associated with linear control, hybrid or reset control
strategies for linear systems have been developed in the past decades.

Whereas linear controllers only generate a continuous control signal, such
hybrid control strategies are able to generate a mixed continuous/discontinuous
control signal, thereby offering more freedom for controlling the system. The
discrete part of the control signal is commonly the result of resetting (some
of) the controller state(s) to a specified value, when certain conditions on the
system and controller states are satisfied. A well-known early example of such
a reset control strategy is the Clegg integrator [46], which resets the integrator
state to zero upon a zero-crossing of the input, thereby reducing the amount of
overshoot, compared to its linear counterpart. Subsequently, the more general
First Order Reset Element and corresponding analysis procedures have been
presented in [24, 42, 76, 107, 151]. A generalization of the Clegg integrator
is presented in [96], which allows for the use of a stability analysis based on
frequency response data, essentially realizing the use of reset elements in loop-
shaped controller designs. Further developments led to the Split-path Nonlinear
Integrator [97, 98] (which flips the sign of the output of the integral control
action upon a zero-crossing of the position error to reduce overshoot), and the
hybrid integrator-gain system [52, 136], which offers similar benefits to a Clegg
reset integrator, but avoids a discontinuous control signal.
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Despite the ongoing development of novel (hybrid) control techniques that
balance certain performance tradeoffs for linear systems in a more desirable man-
ner, the high-tech industry is still facing numerous challenges. In this thesis, two
industrially relevant topics are addressed in order to cope with these challenges.
First, there exist essential system-level tradeoffs between hardware cost and
system performance. In particular, for high-tech industrial motion platforms,
current mechatronic design specifications often lead to the usage of high-cost
equipment such as actuators, bearings, and sensors, in order to realize a system
that can be represented by a linear system model, and, hence, controlled by well-
understood linear controllers. When moving away from these stringent design
requirements by using cheaper hardware components, the resulting system may
suffer from nonlinearities induced by low-cost mechatronic system components,
such as nonlinear effects due to friction, backlash, or actuator nonlinearities.
Such motion systems can then no longer be represented as a linear system, and,
consequently, linear control techniques (and even the aforementioned hybrid con-
trollers) may no longer be sufficient to realize the desired performance. In the
first part of this thesis, we specifically address the performance limitations in-
duced by friction, as a result of using cheaper hardware components such as
bearings and actuators, while still guaranteeing high-end performance and ease
of implementation and tuning.

The second challenge currently faced by industry is the ever-increasing de-
mand on speed and accuracy of motion systems, preferably without having to
invest in high-cost hardware. Although the hybrid control concepts discussed in
this section provide already suitable tools to do so for (commonly) single-input
linear motion systems, we address the performance improvement of over-actuated
motion systems (i.e., motion systems with more actuators than rigid-body de-
grees of freedom) in the second part of the thesis. In particular, by employing
intelligent control allocation-based solutions, the over-actuated topology of the
considered systems can be exploited to improve performance, compared to clas-
sical, linear control solutions currently applied in industry.

1.1.1 Control of motion systems with friction

The study of friction dates back as far as the fifteenth and sixteenth century,
where Leonardo Da Vinci reported his findings on sliding and rolling friction
in his famous codices and manuscripts. Da Vinci’s findings and experiments,
recently summarized and revisited in [78] and [119], marked the start of the
development of physical understanding of friction. Roughly one and a half cen-
tury after Da Vinci wrote down his discoveries, Guillaume Amontons, and later
Charles-Augustin de Coulomb, developed the first static friction models (see [6])
that are still widely recognized today. These models provide a static mapping
between the velocity of the sliding body and the friction force, where the fric-
tion force is proportional to normal load, but independent of the contact surface
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area (known as Amonton’s paradox). Morin [105] showed that, at zero veloc-
ity, the friction force balances with the external forces applied to the body,
where static friction may be larger than Coulomb friction (which has eventually
led to the mathematical set-valued description of static friction, see, e.g., [93]).
In 1902, Stribeck showed a continuous, velocity-dependent decrease from static
to Coulomb friction levels [139], commonly present in lubricated contacts and
widely known as the Stribeck effect.

With static friction models, we can distinguish the logical states “stick” (i.e.,
zero velocity while the external forces do not exceed the static friction level) and
“slip” (nonzero velocity), see, e.g., [20, Sec. 2]. However, static friction models
do not capture well the physics in the “stick” regime. Indeed, there exists a small
regime in which friction force is shown to be dominantly a (hysteresis) function
of displacement rather than velocity [12, 53], which gives rise to an effect known
as presliding. Such an effect can only be captured by more advanced dynamic
friction models, proposed by, e.g., Dahl [51], who proposed a single-state dynamic
model that is generalized to include the Stribeck effect in [39], leading to the
well-known LuGre model. The latter enjoys suitable passivity properties in line
with the dissipative nature of friction, see [13]. An extension of the LuGre model
is proposed in [140], and other enhanced friction models are presented in, e.g., [4,
90, 124]. In this thesis, however, a static description of friction is adopted that,
on one hand, captures the dominant frictional effects, and, on the other hand,
is suitable for controller design and closed-loop analysis without introducing the
complexity associated with the more enhanced (dynamic) friction models.

Friction is generally a performance-limiting factor in industrial high-precision
motion systems, in the sense of achievable positioning accuracy and settling
times. Many different control strategies for frictional motion systems have been
developed in the past decades. Some of them use friction models for online com-
pensation, see, e.g., [11, 12, 58, 91, 100, 101, 112, 140]. Such model-based fric-
tion compensation techniques, however, have a common disadvantage. Namely,
model mismatch typically arises due to uncertainties in the friction characteristic
or unreliable friction measurements, possibly resulting in over- or undercompen-
sation of friction, which compromises positioning accuracy. Non-model-based
control techniques do not aim at friction compensation using a friction model,
but change the response by applying specific control signals, thereby obtaining
the desired performance despite the apparent friction. Examples of such tech-
niques are impulsive control, see, e.g., [115, 148], and dithering-based techniques,
see, e.g., [79, 116]. Impulsive control applies a carefully determined impulsive
control signal so that the system escapes stick phases with non-zero position
errors. Dithering-based techniques apply a persistent high-frequency control sig-
nal to smooth the discontinuity induced by Coulomb friction. In general, these
non-model-based control techniques are not straightforward to implement and
to tune, and rely on the persistent injection of high-frequency control signals,
which may be undesirable in industrial systems.
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Despite the existence of the above control techniques, linear controllers are
still applied in the vast majority of industrial motion systems with friction due
to the existence of intuitive design and tuning tools. In particular, the classical
PID controller is most commonly used for frictional systems, since the integrator
action results in compensation of unknown static friction by integrating the
position error.

However, PID control is prone to performance limitations as well. First,
employing the classical PID controller on a motion system with Coulomb and
viscous friction results in long settling times, see, e.g., [29, Remark 3]. Inte-
grator action is frequently used in frictional systems to escape a stick phase by
building up the control force to overcome the (commonly unknown) static fric-
tion. However, if the system overshoots the setpoint, the control signal must be
pointed in the reverse direction to overcome the static friction again. To this
end, the integrator buffer needs to deplete and refill, which takes increasingly
more time with a decreasing position error. This results in long settling times,
adversely affecting the machine throughput, see ( ) in Figure 1.1. Second,
the use of a linear PID controller on a motion system with friction including
the velocity-weakening (i.e., Stribeck) effect may induce limit cycling (hunting,
see, e.g., [74]). Whereas integrator action compensates for the static part of
the friction, overcompensation of friction occurs as velocity increases, due to the
velocity-weakening effect. Consequently, (asymptotic) stability of the setpoint
is lost, so that the achievable positioning accuracy is limited, as illustrated by
( ) in Figure 1.1.

In this thesis, we aim to overcome the aforementioned limitations of PID con-
trol for frictional motion systems in two particular ways. First, since hybrid or
reset controllers have shown to be successful in overshoot reduction and transient
performance improvement of linear systems (as highlighted in the brief literature
overview in the previous section), it seems promising to develop such controllers
for nonlinear (frictional) motion systems. Since integral action plays an impor-
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Figure 1.1. Friction characteristics and corresponding typical PID-controlled
responses of a motion system with static friction ( ), and with static and
Stribeck friction ( ).
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tant role in (static) friction compensation, we embrace the reset control paradigm
to modify the integral part of loop-shaped PID controllers, to overcome the lim-
itations of PID control for motion systems with friction. The second strategy
(tailored to motion systems performing a repetitive motion profile) is to employ
a time-varying integrator gain, to counteract the velocity-weakening effect, and
iteratively learn its characteristic. Such learning mechanism has resemblance
with iterative feedback tuning (see, e.g., [73, 94]) and iterative learning control
(see, e.g., [36, 146]). Since these methods have proven merit in a linear motion
control setting, it motivates to apply a learning strategy to a nonlinear motion
system with friction. More specifically, the optimal tuning of the time-varying
integrator gain may be obtained by means of a sampled-data extremum-seeking
control (ESC) framework (see, e.g., [85, 89]), since ESC is able to deal with
unknown, uncertain, and time-varying nonlinear systems. By building upon
the widely embraced PID control strategy, such reset and learning controllers
can be designed and tuned using well-known loop-shaping techniques, enabling
industrial acceptance of the proposed control architectures.

1.1.2 Control of over-actuated motion systems

Many control systems, reaching far beyond the field of high-tech motion systems,
have more actuators than rigid-body degrees of freedom. Such an over-actuated
system topology requires specific control solutions to distribute the control task
over the available actuators. Numerous control strategies that deal with actuator
redundancy have been presented. A well-known approach is optimal control, see,
e.g., [68, 154], which, especially for linear systems, has received much attention
in the literature. For instance, linear quadratic control [154, Ch. 15],[8], H∞-
control [154, Ch. 16-18], and Model Predictive Control (MPC) [59, 103] are
able to deal with actuator redundancy. Whereas such optimal control strategies
commonly decide the control input and distribution directly, control allocation,
see, e.g., [81, 118], separates the regulation task from the distribution task. This
thesis takes the viewpoint that such a separated approach favors acceptance
by industry, since the underlying motion controller can then be designed using
well-known (e.g., loop-shaping) design techniques. Once the control signal is
determined by the loop-shaped motion controller, an allocator then distributes
the control force over the available actuators in a specific manner. The latter is
often performed statically by solving an optimization problem online, respecting
certain performance criteria on, e.g., position errors and power consumption.
Actuator limitations can readily be taken into account as constraints to the
optimization problem. Dynamic allocators exist as well, see, e.g., [80, 150],
that deal with actuator limitations in a different manner. In the literature,
control allocation has been applied on a broad range of applications. Examples
are control allocation for flight control [113], and for marine vehicles [56]. For
mechanical (motion) systems, control allocation is employed, e.g., on a dual-
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stage actuator for harddisk drives [102], and robotic systems [95].
In this thesis, we address two industrial over-actuated systems. First, we

design a control allocation framework for an industrial high-precision transport
system, where multiple carriers move independently over horizontal tracks. The
carriers are driven by several inverted three-phase actuators, which are located
on the tracks and may influence multiple carriers at the same time. This gives
rise to conflicting control objectives, hardware restrictions, and limited freedom
in motion profile design when using the state-of-practice (linear) control solution
currently applied by the manufacturer. We aim to tackle these restrictions by
employing a static control allocation technique. Second, we develop a control
allocation framework that improves the performance of an industrial sheetfed
printer. The state-of-practice control solution results in unacceptable position
tracking errors of the transported paper sheets, and undesired large traction
forces in the sheets. Exploiting the over-actuated topology of the system, a
manual control allocation scheme is designed, based on engineering insight, that
addresses these control problems.

1.2 Objectives and contributions

The concise literature overview in Section 1.1 suggests that hybrid control strate-
gies may improve the system’s performance, compared to classical, linear control
techniques. However, such control strategies are mostly employed to improve
performance of linear systems. For the performance improvement of nonlinear
motion systems with friction, hybrid controllers are generally lacking. Second,
we embrace the philosophy of substituting the integrator in a classical PID con-
troller with a time-varying integrator (and learn its characteristic), to counteract
the velocity-weakening effect, for motion systems performing a repetitive motion
profile. The first objective of the thesis is hence formalized as follows:

Objective 1. Develop (hybrid and learning) control techniques for motion sys-
tems with friction, that improve stability and performance properties com-
pared to classical linear control solutions, and are applicable to industrial
high-tech systems.

Objective 1 explicitly takes into account the practical implementability of
the to-be-designed controllers on industrial systems. Since control practitioners
are often well-trained in linear controller design, the application of a nonlinear
or hybrid control strategy may impose a gap between state-of-practice linear
controllers and novel controllers developed in academia. One way of bridging
the gap between academia and industry is to build the design of hybrid and
learning control elements upon the widely embraced PID-type controller, that
can be designed and tuned using well-understood tools from linear control design
methodologies.
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Addressing the industrially relevant problem of improving performance of
over-actuated motion systems, control allocation represents a promising ap-
proach to do so. Since the controller design phase is strictly separated from the
distribution of the resulting control effort, control practitioners can still design
the controller using well-known (loop-shaping) design techniques. The second
objective of this thesis is therefore formalized as follows:

Objective 2. Develop control allocation techniques tailored to specific industrial
over-actuated systems, that outperform the state-of-practice (linear) control
solutions.

In order to bridge the gap between academia and industry, the developed con-
trol techniques should be verified and tested on industrial benchmark systems,
which provides the third objective of this thesis:

Objective 3. Experimental validation of the proposed controllers on industrial
benchmark systems.

The main contributions of this thesis are outlined in Section 1.2.1, and the
specific contributions of each chapter are presented in Section 1.2.2.

1.2.1 Contributions of the thesis

The main contributions of this thesis can be summarized in terms of contribu-
tions on 1) novel controller designs that allow for cost-aware mechatronic system
designs, 2) novel controller designs for frictional systems, 3) development of tai-
lored control allocation techniques for industrial over-actuated systems, and 4)
validation on industrial benchmark systems:

1. Novel controller designs that allow for cost-aware mechatronic system de-
signs: all controller designs proposed in this thesis address cost-awareness
in one way or another. Specifically, the first part of this thesis (Chap-
ters 2-4) presents three controller designs for motion systems with friction.
Friction in mechanical motion systems can be caused by the use of cheaper
hardware components such as bearings or actuators. The proposed con-
trol techniques are designed such that high performance in the sense of
speed and accuracy is obtained, despite the system being nonlinear due
to the presence of friction. The second part of this thesis presents con-
trol allocation techniques for industrial over-actuated systems. Chapter 5
presents a control allocation framework for a high-precision transport and
positioning system. The allocation framework not only achieves superior
position tracking performance, compared to the state-of-practice linear
control solution, but also minimizes power consumption to reduce opera-
tional costs. Moreover, the control allocation framework allows for relaxed
hardware design specifications, allowing for a more cost-effective system
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design. Chapter 6 presents a dynamic model and a manual control alloca-
tion architecture for a next-generation industrial sheetfed printer. Whereas
the current generation printers are driven by DC motors, the manufacturer
opts for the use of stepper motors in future sheetfed printers, due to the
lower hardware costs. We design a control framework that explicitly han-
dles stepper motor control in an over-actuated context.

2. Novel (hybrid and learning) controller designs for systems with friction,
applicable to industrial applications: considering the inherent performance
limitations of PID control for frictional systems as discussed in Sec-
tion 1.1.1, Chapters 2 and 3 present novel reset controllers to overcome
these limitations. In particular, a reset controller that improves the tran-
sient performance of systems with Coulomb and viscous friction is proposed
in Chapter 2, in the sense of significantly reducing settling times. A reset
controller that achieves stability of the setpoint for systems with Stribeck
friction is proposed in Chapter 3, thereby significantly improving position-
ing accuracy. In Chapter 4, a time-varying PID-based learning controller
for systems with Stribeck friction performing a repetitive motion profile
is proposed. High setpoint accuracy is obtained by iterative tuning of the
controller parameters. All three control strategies are enhancements of the
classical PID controller, which favors industrial acceptance.

3. Performance-enhancing control allocation techniques tailored for over-
actuated industrial applications: allocation-based controller designs for two
industrial over-actuated systems are presented in this thesis. In Chapter 5,
a control allocation framework for a high-precision transport and posi-
tioning system is presented, that outperforms the state-of-practice con-
trol solution in terms of accuracy. In Chapter 6, a dynamic model and
a control architecture for an over-actuated stepper motor-driven sheetfed
printer is presented. The control architecture exploits the over-actuated
system topology and achieves improved tracking accuracy of the paper
sheets throughout the paper path, compared to the state-of-practice con-
trol solution, and, at the same time, regulates traction forces in the sheets.

4. Validation on industrial benchmark systems: all controllers proposed in
this thesis are experimentally validated on industrial benchmark systems.
The effectiveness of the (hybrid and learning) control strategies proposed
in Chapters 2-4 are verified on a high-precision motion stage of an electron
microscope. The control allocation architecture of Chapter 5 is experimen-
tally validated on an industrial high-precision transport and positioning
system. Finally, the working principle and the effectiveness of the control
architecture for sheetfed printers in Chapter 6 are experimentally demon-
strated on a prototype sheetfed printer paper path setup.
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1.2.2 Contributions of the individual chapters

Chapter 2 presents a novel reset controller that significantly improves tran-
sient performance (in terms of settling time) of motion systems with unknown
Coulomb and viscous friction. As discussed in Section 1.1.1, the classical PID
controller is often employed in industry for frictional systems, since integrator
action is instrumental in escaping a stick phase by building up the control force
to overcome the (unknown) static friction. However, if the system overshoots the
setpoint, the control signal must be pointed in the reverse direction to overcome
the static friction again. To this end, the integrator buffer needs to deplete and
refill. Despite achieving stability of the setpoint, this process takes increasingly
more time with a decreasing position error. This results in long settling times,
adversely affecting the machine throughput (cf. Figure 1.1). We therefore pro-
pose a reset integrator to circumvent the depletion and and refilling process of a
linear integrator when the system overshoots the setpoint, thereby significantly
reducing settling time. Stability properties of the hybrid closed-loop system
are analyzed using a discontinuous Lyapunov-like function and a meagre-limsup
invariance argument. Moreover, the effectiveness of the reset control strategy
is experimentally demonstrated on a high-precision motion stage of an electron
microscope.

Chapter 3 presents a novel reset integral controller that achieves asymptotic
stability of the setpoint for motion systems with unknown Coulomb and velocity-
dependent friction, including the velocity-weakening Stribeck effect. For the
classical (linear) PID controller and such a friction characteristic, asymptotic
stability of the setpoint is typically not achieved and limit cycling occurs, as
discussed in Section 1.1.1 and shown in Figure 1.1. The proposed reset integrator
hence results in improved positioning accuracy, compared to the classical PID
controller. The closed-loop system dynamics are formulated in a hybrid systems
framework, using a novel hybrid description of the Coulomb friction element.
Using this model, stability of the setpoint is proven. The working principle
and effectiveness of the controller is demonstrated experimentally on a motion
stage of an electron microscope, showing superior performance over standard
PID control.

Chapter 4 presents a time-varying PID-based learning controller for systems
with Coulomb and Stribeck friction, that perform a repetitive motion profile.
In particular, we propose a time-varying integral controller gain, parametrized
by a set of suitable basis functions. Due to the unknown nature of the friction
characteristic, the optimal tuning of the time-varying integrator gain is itera-
tively obtained using measured performance data, by employing a sampled-data
extremum-seeking control approach, see, e.g., [85, 89]. The proposed technique
resembles iterative learning control and iterative feedback tuning, but does not
require any model information. The working principle and effectiveness of the
control architecture is experimentally validated on a high-precision motion stage
of an electron microscope.
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The developments presented in Chapter 4 are the result of a collaboration
with Leroy Hazeleger. The author contributed to the controller design and
underlying theoretical analysis, and assisted with the experimental validation of
the proposed controller.

Chapter 5 presents the design of a control allocation framework for an in-
dustrial high-precision transportation and positioning system. The considered
system consists of multiple carriers that move on horizontal tracks, actuated by
inverted three-phase motors. The control allocation is performed in the α − β
current frame (see, e.g., [144, Ch. 10]) to ensure a minimal set of decision vari-
ables. Exploiting the over-actuated topology of the system, the control effort is
distributed in such a way that power consumption is minimized, thereby reducing
operational costs. Moreover, a decentralized allocation algorithm is presented
that enhances computational efficiency, such that the proposed control allocation
technique can be implemented online at high sampling rates, and facilitates the
scalability to larger system configurations. Compared to the state-of-practice
(linear) control solution currently applied by the manufacturer, the developed
allocation control architecture results in improved positioning and tracking ac-
curacy, increased freedom in motion profile design, and relaxed hardware design
specifications (the latter allows for a more cost-effective system design). The
benefits are experimentally demonstrated on an industrial platform.

Chapter 6 presents the development of a dynamical model and a control
framework for an industrial sheetfed printer paper path. In such a system, sheets
of paper are transported by pinches, consisting of two sets of rollers between
which the paper is clamped and transported accordingly. Sheets are transported
alternately by one or two pinches throughout the paper path, which gives rise
to a hybrid system dynamics, where the double-pinch transport phase is over-
actuated. The developed dynamical model is formulated in a hybrid systems
framework, which facilitates the design of hybrid controller concepts (taking
into account the hybrid nature of the system) for the considered application. We
propose a controller that regulates both the motion of the transported sheets
and traction forces in the sheets, when transported by two pinches (exploiting
the over-actuated topology). The effectiveness of the controller is illustrated by
means of a simulation study, and demonstrated on an experimental paper path
setup.

1.3 Outline of this thesis

This thesis consists of two parts. Part I consists of Chapters 2-4, which presents
novel (hybrid and learning) controller designs for motion systems with friction.
Part II consists of Chapters 5 and 6, which presents control allocation techniques
for over-actuated industrial motion systems. Chapters 2-5 are based on research
papers and are self-contained. Also Chapter 6 contains sufficient background
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information to be self-contained, so that all chapters can be read independently.
Conclusions and recommendations for future work are presented in Chapter 7.

1.4 Embedding of the thesis in the NWO
project

The research presented in this thesis is part of the research programme
CHAMeleon: hybrid solutions for cost-aware high-performance motion control
with project number 13896, which is (partly) financed by the Netherlands Or-
ganisation for Scientific Research (NWO).

The objective of this programme is to design novel control techniques that
cope with the tradeoffs between cost and performance and between performance
and system adaptibility to changing operating conditions. The research pro-
gramme consists of two main topics. Topic I can be subdivided into two ob-
jectives: i) to develop control strategies that deal with nonlinearities in the
motion system, as a result of the use of cheaper hardware components, and
ii) to develop controllers that venture beyond the state-of-practice, linear con-
trollers, overcoming fundamental limitations inherent to linear control solutions.
Topic II involves the design of performance optimization techniques to ensure
optimal performance in diverse, uncertain, and changing conditions of machine
usage. The research reported in this thesis has been mainly devoted to Topic I.
Novel hybrid controller designs for nonlinear motion systems with friction, and
control allocation techniques that outperform linear controllers are presented in
this thesis, in line with objective i) and ii), respectively. Additionally, the con-
trol architecture in Chapter 4 employs a performance optimization technique for
optimal tuning of the controller, which contributes to Topic II.
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Control of Motion Systems
with Friction





Chapter 2

Reset integral control for
improved settling of motion

systems with friction

Abstract − In this chapter, we present a reset control approach to improve the transient

performance of a PID-controlled motion system subject to Coulomb and viscous friction. A

reset integrator is applied to circumvent the depletion and refilling process of a linear integrator

when the solution overshoots the setpoint, thereby significantly reducing the settling time.

Robustness for unknown static friction levels is obtained. The closed-loop system is formulated

through a hybrid systems framework, within which stability is proven using a discontinuous

Lyapunov-like function and a meagre-limsup invariance argument. The working principle of the

proposed reset controller is analyzed in an experimental benchmark study on a high-precision

positioning stage of an electron microscope.

2.1 Introduction

In this chapter, we present a reset integral control approach to improve settling
(transient) performance of a PID-controlled mechanical motion system subject
to friction. Friction is a performance-limiting factor in many high-precision po-
sitioning systems, in the sense of, e.g., achievable setpoint accuracy and settling
times. Control of motion systems with friction has been an active field of research
in the past decades, and many different control solutions have been developed.
Several control approaches rely on developing as-accurate-as-possible friction
models in order to compensate for friction in the control loop, see, e.g., [11, 12,

This chapter is based on [19] and [20].
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58, 91, 100, 101, 140] and the references therein, or for controller synthesis, see,
e.g., [3, 127]. However, model-based friction compensation techniques may suffer
from over- and undercompensation of friction due to unreliable friction measure-
ments, uncertainties in the friction characteristic, and model mismatches. Con-
sequently, the system may exhibit limit cycles or nonzero steady-state errors
(thereby losing stability of the setpoint), as thoroughly analyzed in [121]. Adap-
tive control methods, see, e.g., [7, 43, 106], have inherently some robustness to
a changing friction characteristic by adapting friction model parameters online,
but model mismatches (and the associated performance limitations) still remain.
Non-model-based control techniques do not aim at friction compensation using
a friction model, but change the response by applying specific control signals,
thereby obtaining the desired performance despite the apparent friction. Impul-
sive control (see, e.g., [115, 148, 149]) applies a carefully determined impulsive
control signal to a mass with friction to escape the stick phases with a non-zero
position error. In [148], finite-time stability of the setpoint is achieved, which is
a strong result in terms of settling time, but exact knowledge of the mass, and
knowledge of a lower and upper uncertainty bound on the friction characteris-
tic are required, which may hinder practical implementation. Dithering-based
techniques (see, e.g., [79, 116, 143]) apply a persistent high-frequency control
signal to smooth the discontinuity induced by Coulomb friction. Asymptotic
stability of the setpoint is, however, not achieved due to the persistent injection
of an oscillatory signal. Sliding mode control (see, e.g., [145]) has inherently
some robustness to frictional disturbances, but first-order sliding mode control
induces chattering. Second-order sliding mode control has been applied to set-
point control of frictional systems in, e.g., [14, 15]. Once the sliding surface is
reached, the setpoint is approached from one side (i.e., the velocity does not
change sign), rendering the Coulomb friction a constant disturbance. Although
an exponential convergence result is obtained, the resulting control force is dis-
continuous with high-frequency content. A switched controller in [114] achieves
stability of the setpoint by applying a constant control force, whose sign depends
on the sign of the position error. By design of the controller, chattering occurs
when the system is close to the setpoint. In general, these non-model-based con-
trol techniques have a common disadvantage. Namely, the persistent injection
of high-frequency control signals may excite unmodeled high-frequency system
dynamics, which is highly undesirable in motion systems, and, therefore, these
techniques are not appealing for being used in industrial applications.

Despite the existence of the above control techniques, linear controllers are
still applied in the vast majority of industrial motion systems. Control prac-
titioners are often well-trained in linear control design (loop-shaping), and the
existence of intuitive tuning tools for linear controllers makes them undiminished
popular in industry. In particular, the classical proportional-integral-derivative
(PID) controller [9, 125] is most commonly used for frictional systems, since the
integrator action results in compensation of unknown static friction by integrat-
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ing the position error. However, PID control is prone to performance limitations
as well. Firstly, the integrator action in the presence of the velocity-weakening
(i.e., Stribeck) effect may induce limit cycling (hunting), thereby losing asymp-
totic stability of the setpoint [12, 74, 101]. A second limitation is the slow
convergence (and resulting long settling times) in the presence of static friction,
see, e.g., [29, Remark 3]. Integrator action is required to escape a stick phase
by building up the control force to overcome the (possibly unknown) static fric-
tion. However, if the solution overshoots the setpoint, the control signal must
be pointed in the reverse direction to overcome the static friction again. To this
end, the integrator buffer needs to deplete and refill. Despite achieving stability
of the setpoint, this process takes increasingly more time with a decreasing po-
sition error. This results in long settling times, adversely affecting the machine
throughput.

In this chapter, we address the second limitation in the context of PID con-
trol. In particular, we propose a reset integral control scheme that significantly
improves transient performance in terms of settling time, and is applicable as an
add-on to loop-shaped PID controllers, as designed for industrial motion applica-
tions. By building upon a well-known control strategy embraced by the industry,
we aim at reducing the threshold for control engineers to use a nonlinear control
technique in an industrial environment. Inspired by the Clegg integrator [46]
and the First Order Reset Element [76], reset controllers (see, e.g., [1, 107] and
[40, 96, 108] for corresponding analysis tools) have been used to increase tracking
performance in motion control applications. The hybrid integrator-gain system
in [52] offers similar benefits to the First Order Reset Element, but it induces
less high-frequency excitations. The Split-path Nonlinear Integrator, see [97],
flips the sign of the integral control action upon a zero-crossing, to reduce over-
shoot in linear motion systems. Overshoot reduction using reset control is also
addressed in [25, 120, 152], and in [77] by a variable gain integral controller.
Improved disturbance attenuation using reset control is presented in [153]. To
the best of the author’s knowledge, reset integrators have indeed been used to
enhance performance of linear motion systems as in the works above, but have
not yet been applied to improve settling performance of (nonlinear) systems with
friction.

The main contributions of this chapter can be summarized as follows. The
first one is a novel reset control design for systems with friction that both im-
proves transient performance with respect to a classical PID controller, and
achieves robust stability with respect to uncertainties in the static friction. The
reset mechanism is robust to velocity measurement noise, and can be readily
made robust for asymmetric static friction, if needed. Moreover, the proposed
controller minimizes the risk of exciting unmodeled high-frequency dynamics,
despite the presence of a discontinuous control signal, thereby addressing a ma-
jor concern of control engineers in industry. The second contribution is the
stability analysis of the resulting hybrid closed-loop system, which exploits a
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meagre-limsup invariance argument [63, Sec. 8.4]. The third contribution is a
demonstration of the transient performance improvements using the proposed re-
set control architecture by means of a case study on an industrial high-precision
positioning application (a manipulation stage of an electron microscope).

The chapter is organized as follows. In Section 2.2, a model of the consid-
ered motion system with a classical PID controller is presented together with
the reset integrator control law. A numerical example showing the achievable
transient performance benefits is then briefly discussed. The closed-loop dy-
namics are written in a hybrid systems formalism in Section 2.3 and a stability
analysis is given in Section 2.4. In Section 2.5, a case study on a high-precision
positioning application is discussed, and conclusions are presented in Section 2.6.

Notation: sign(·) (with a lower-case s) denotes the classical sign function, i.e.,
sign(y) := y/|y| for y 6= 0 and sign(0) := 0. Sign(·) (with an upper-case S)
denotes the set-valued sign function, i.e., Sign(y) := {sign(y)} for y 6= 0, and
Sign(y) := [−1, 1] for y = 0. For c > 0, the deadzone function is defined as:
dzc(x) := 0 if |x| ≤ c, dzc(x) := x − c if x > c, dzc(x) := x + c if x < −c. A
function f : D → R is lower semicontinuous if lim infx→x0

f(x) ≥ f(x0) for each
point x0 in its domain D. The lower right Dini derivative D+h of a function

h is defined as D+h(t) := lim infε→0+
h(t+ε)−h(t)

ε . The logical OR and AND
are denoted by ∨ and ∧, respectively. The hybrid systems modeling framework
and corresponding solution concept of [63], used in this chapter, is introduced
in Appendix A.

2.2 Reset integral control design

In this section, we describe the considered motion system with friction and
its friction characteristics, and discuss the design of the reset control law in
Section 2.2.1. We then show a simulation example in Section 2.2.2 to illustrate
the achievable transient performance improvements.

2.2.1 System modelling and reset control design

Consider a single-degree-of-freedom mass m sliding on a horizontal plane with
position z1 and velocity z2. The mass is subject to a control input ū and a friction
force belonging to a friction set Ψ(z2) for a velocity z2, where z2 ⇒ Ψ(z2) is a
set-valued mapping. The system dynamics are then given by the differential
inclusion

ż1 = z2, ż2 ∈ 1
m (Ψ(z2) + ū) . (2.1)

The set-valued friction characteristic Ψ consists of Coulomb friction with un-
known static friction F̄s > 0, and a viscous contribution γz2, where γ ≥ 0 is the
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viscous friction coefficient:

Ψ(z2) := −F̄s Sign(z2)− γz2. (2.2)

Existence of solutions2 to (2.1)-(2.2) follows from [55, Sec. 7, Thm. 1] because
the set-valued mapping in (2.1) is outer semicontinuous and locally bounded
with nonempty compact convex values.

Since this chapter is primarily focused on robust compensation of unknown
Coulomb friction and on transient performance improvement, we have assumed
that a velocity-weakening (Stribeck) effect is absent in the friction characteristic
Ψ (in the presence of such an effect, a velocity-dependent compensation control
term may be employed as in [21]). The goal is to control the mass to the constant
setpoint (z1, z2) = (r, 0).

Let us formulate the control problem addressed in this chapter.

Problem 2.1. Design a reset PID controller for input ū in (2.1)-(2.2) that 1)
globally asymptotically stabilizes the setpoint (z1, z2) = (r, 0) robustly w.r.t. any
unknown static friction F̄s, for any constant r, and 2) improves the settling time
(transient performance), compared to a classical PID controller with the same
controller gains.

The presence of an integrator action in ū is motivated by the fact that it
is able to compensate for an unknown static friction F̄s, which is typically the
case in motion applications, so that the controller can robustly deal with the
Coulomb friction effect. Before presenting our proposed reset PID controller,
we first introduce the classical PID controller generating ū as

ū = −k̄p(z1 − r)− k̄dz2 − k̄iz3,

ż3 = z1 − r,
(2.3)

where k̄p, k̄d, k̄i> 0 represent the proportional, derivative and integral gains,
respectively. We apply then the following definitions to obtain mass-normalized
system dynamics that favor clarity in the analysis of the upcoming sections:

kp :=
k̄p
m , kd := k̄d+γ

m , ki := k̄i
m , Fs := F̄s

m . (2.4)

By using (2.4), the resulting mass-normalized, closed-loop dynamics given
by (2.1)-(2.3) satisfy

ż1 = z2,

ż2 ∈ −Fs Sign(z2)− kp(z1 − r)− kdz2 − kiz3,

ż3 = z1 − r,
(2.5)

with the state vector z = (z1, z2, z3) ∈ R3. We select the (normalized) controller
gains such that the next assumption is satisfied.

2A solution is any locally absolutely continuous function z that satisfies (2.1) for almost
all t.
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Assumption 2.2. The control parameters kp, kd, ki satisfy ki > 0, kp > 0,
kpkd > ki.

When Fs = 0 (a special, linear case of our setting), this assumption is equiv-
alent, by the Routh-Hurwitz stability criterion, to ensuring global exponential
stability of the equilibrium z1 = r, z2 = z3 = 0 through a stabilizing PID
controller. Assumption 2.2 is hence not restrictive.

In [29], it is proven that the set of equilibria

A := {z = (r, 0, z3) | |z3| ≤ Fs/ki} (2.6)

of (2.5) is globally asymptotically stable under Assumption 2.2. However, the
PID-controlled system (2.5) typically results in long settling times due to the
depletion and refilling of the integral buffer that is required to overcome the static
friction Fs upon overshoot, resulting in a change of sign of the integrator state
of the PID (as illustrated in [19, Sec. V and Fig. 3]). This process is generally
slow and takes increasingly more time with a decreasing position error, resulting
in long periods of stick and thus a poor transient performance in the sense of
settling times. Note that the system is said to be in a stick or slip phase when
the state belongs respectively to the sets

Estick :={z ∈ R3 |z2 = 0, |kiz3 + kp(z1 − r)| ≤ Fs} (2.7a)

Eslip :=R3\Estick. (2.7b)

In this chapter, we propose a novel reset PID control scheme to solve Prob-
lem 2.1. In particular, the objective of the proposed reset integral controller is
to obtain a significantly faster settling time (i.e., the time for the position error
to reach and remain in a specified accuracy band) compared to the classical PID
design in (2.3), resulting in (2.5). To this end, we replace the integrator in the
PID controller (2.3) with a reset integrator. The key mechanism behind the
reset integrator is that a large part of the time-consuming depletion and refill-
ing process of the integrator buffer (needed to overcome the static friction) is
circumvented, whenever the system overshoots the setpoint. The reset in (2.8c)
below ensures that the control force after a reset points in the direction of the
setpoint, as close as possible to the (unknown) static friction value. This results
in the following reset PID controller:

ū = −k̄p(z1 − r)− k̄dz2 − k̄iz3, (2.8a)

ż3 = z1 − r, (2.8b)

z+
3 = −αz3 − (1 + α)

kp
ki

(z1 − r), (2.8c)

where z+
3 denotes the updated value of z3 upon a reset, occurring only when the

conditions (2.8e) below are satisfied. The design parameter α ∈ [0, 1] enables
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the reset to be scaled, and its role is elaborated further in Section 2.5. Position
z1 and velocity z2 do not change at a reset:

z+
1 = z1, z+

2 = z2. (2.8d)

The integrator should be reset (as in (2.8e) below) whenever i) the system
overshoots the setpoint, and ii) it enters a stick phase. Resetting the integra-
tor when the system is in stick minimizes the risk of exciting high-frequency
system dynamics because the discontinuity associated with the controller reset
is compensated by the set-valued friction. We will elaborate further on this in
Section 2.2.2 below. Intuitively speaking, condition i) is met when the position
error and the proportional-integral (PI) component of the controller have oppo-
site sign. The satisfaction of condition ii) requires the detection of zero velocity,
which may be hard in practice due to measurement noise. Although robust zero-
velocity detection mechanisms exist, we choose to evaluate the product of the
PI control force and the velocity signal in order to robustly detect hitting zero
velocity (see also Remark 2.3 below). Finally, we introduce a design parameter
ε > 0 whose purpose is to avoid Zeno behavior [63, pp. 28–29]. This discussion
motivates the controller reset conditions:

ki(z1 − r) (kp(z1 − r) + kiz3) ≤ 0,

∧ − z2(kp(z1 − r) + kiz3) ≤ 0,

∧ |kpki(z1 − r)2 + k2
i (z1 − r)z3| ≥ ε.

(2.8e)

In Section 2.3, we further elaborate on the reset map in (2.8c), the reset condi-
tions in (2.8e), and the role of ε by showing that the reset conditions correspond
indeed to (robust) detection of overshoot and stick (see (2.7a)). Moreover, we
show in Section 2.4 that the reset map in (2.8c) preserves global asymptotic
stability of the set of equilibria (2.6) for α ∈ [0, 1] and ε > 0. Summarizing,
the resulting closed-loop system with the proposed reset PID controller is given
by (2.5), (2.8c)-(2.8e).

2.2.2 Illustrative example

To illustrate the achievable transient performance benefits of the proposed re-
set controller, we perform a simulation study using a numerical time-stepping
scheme [2, Ch. 10] that is able to correctly deal with the set-valued friction
characteristic Ψ.

Let r = 0 be the constant position setpoint. First, consider system (2.5),
where only the classical PID controller (2.3) is employed. The mass m is unitary
and the friction parameters are F̄s = 0.981 N, and γ = 0.5. We take k̄p = 18
N/m, k̄d = 2.5 Ns/m, and k̄i = 40 N/(ms), satisfying Assumption 2.2, and initial
conditions z1(0) = −0.05 m, z2(0) = 0 m/s, and z3(0) = 0 ms. The position
response is visualized in Figure 2.1a and 2.1b ( ), where the long periods of
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stick (see (2.7a)) and the resulting long settling times are evident. The control
force ū in (2.3) is presented in Figure 2.1c, where the depletion and refilling
process of the integrator buffer, causing long periods of stick, is clearly visible.
This process takes increasingly more time with a decreasing position error, which
results in increasingly longer periods of stick when the position error decreases.

Now consider the closed-loop system (2.5), (2.8c)-(2.8e), where the proposed
reset controller is employed. We take α = 1 and ε = 10−8. The position response
is given in Figure 2.1a and 2.1b ( ), where the circles indicate the instants of
controller resets. As it can be observed in the control force ū in Figure 2.1c, the
reset mechanism circumvents a large part of the depletion and refilling process
of the integrator, resulting in a significant decrease of the settling time. Note
that the overshoot behavior is not influenced by the controller, as resets take
place only as soon as a stick condition is reached.

The discontinuity in the control force (see Figure 2.1c) caused by the pro-
posed reset mechanism does not increase the risk of exciting high-frequency
system dynamics, compared to the application of the classical PID controller,
by design of the reset conditions in (2.8e). This is an important feature of the
proposed reset controller in view of practical applications, as in Section 2.5. The
essential insight is that, for both the linear and the proposed reset integrator,
discontinuities in the net force acting on the mass (see Figure 2.1e) are similar
and primarily induced by friction. Consider Figure 2.1d. Discontinuities are in-
deed experienced only when the system enters the stick phase, even for the case
without resets, and are thus inherent to the frictional nature of the system. The
proposed controller is designed in such a way that resets occur when the system
enters a stick phase (as we will elaborate further in Section 2.3). From (2.7a)
and (2.8c), it is evident that stick is preserved after the reset, so that the dis-
continuity in the control force is fully compensated by the resulting friction due
to its set-valued nature. As a result, although the discontinuity in the friction
force (compensating for the controller reset) is larger (see Figure 2.1d), the dis-
continuity in the net force acting on the mass is not larger (see Figure 2.1e), as
we will now elaborate.

Due to the fact that solutions to (2.11) are absolutely continuous during flow
by definition and that each solution x cannot exhibit more than one consecutive
jump (due to the definition of g and D in (2.11)), solutions from C always enter
D at a point at which v = 0 (see also the right plot in Figure 2.3 below). As
a result, jumps only occur at zero velocity (except for the first jump if the
initial conditions are chosen in the interior of D). Given a state x, the net
force Fnet(x) acting on the mass takes a value in the set mφ− F̄s Sign(v)− k̄dv.
Consider the case of no controller reset and, correspondingly, a solution x∗ to
only (2.11a) (with C = R3) which experiences a slip-to-stick transition at time
t∗. Also consider times t∗− and t∗+ arbitrarily close to the left and right of t∗,
respectively. At t = t∗−, we have that Fnet(x

∗(t∗−)) = mφ∗(t∗−)−F̄s sign(v∗(t∗−))−
k̄dv
∗(t∗−) 6= 0, which is associated to a nonzero deceleration. At t = t∗+, we
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Figure 2.1. Simulated position response with Coulomb and viscous friction
(a), zoomed view (b), control force (c), friction force (d), and net force acting
on the system (e), for the classical PID controller ( ), and the proposed reset
controller ( ) with the same controller gains. The circles indicate the instants
of a controller reset.
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have Fnet(x
∗(t∗+)) ∈ mφ(t∗+) − F̄s Sign(0). We have v∗(t∗+) = 0 and |φ∗(t∗+)| ≤

Fs since x∗(t∗+) ∈ Estick, and thus m|φ∗(t∗+)| ≤ F̄s. It then follows from the
combination of the system dynamics and the set-valued friction force law that
the actual friction force (taken from the set F̄s Sign(0)) equals −mφ∗(t∗+) and
thus Fnet(x

∗(t∗+)) = 0. Note that this result is independent of the sign of φ∗ due
to the set-valued friction force law, as shown in Figure 2.1.

Therefore, the proposed hybrid PID controller achieves a significant transient
performance improvement w.r.t. a classical PID controller, while not increasing
the risk of exciting high-frequency system dynamics.

2.3 Hybrid system formulation

In this section, we rewrite the closed-loop reset control system (2.5), (2.8c)-
(2.8e) in the hybrid systems formalism of [63] to elaborate on the design of the
proposed reset law. Furthermore, the derived hybrid system is used later for the
stability analysis of Section 2.4.

Let us start with a useful state transformation, which allows for a simpler
description of the system, transforms any constant setpoint r to the setpoint
0, and which facilitates the construction of a Lyapunov-like function for the
stability analysis in Section 2.4. Following [29], this state transformation is

x :=

σφ
v

 :=

 −ki(z1 − r)
−kp(z1 − r)− kiz3

z2

 , (2.9)

where σ is a generalized position error, φ is the controller state encompassing
the proportional and integral control actions, and v is the velocity of the mass.
The state transformation in (2.9) rewrites the stick set in (2.7a) as

Estick = {x ∈ R3 | v = 0, |φ| ≤ Fs}. (2.10)

The generalized controller state φ represents all the nonzero components of the
control action at zero velocity (that is, the proportional and integral terms),
and the difference between φ and the static friction Fs at v = 0 determines then
whether the system resides in a stick phase or not, see (2.10).

With the state transformation (2.9), we rewrite the closed-loop dynam-
ics (2.5) with the reset law (2.8c)-(2.8d) in the hybrid formalism of [63] as
in (2.11) below. Note that the reset law (2.8c)-(2.8d) expressed in the state
x yields a scaled sign change of φ when the reset criteria are met.

ẋ ∈ F (x) :=

 −kiv
σ − kpv

φ− kdv − Fs Sign(v)

 , x ∈ C, (2.11a)
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x+ = g(x) :=

 σ
−αφ
v

 , x ∈ D, (2.11b)

where F and g are the flow and jump map, respectively. Using (2.9), the reset
conditions in (2.8e) transform into

D :=
{
x ∈ R3 | φσ ≤ 0, φv ≤ 0, |φσ| ≥ ε

}
. (2.11c)

Finally, the flow set is given by

C := R3 \ D. (2.11d)

Let us elaborate on the rationale behind the design of the jump set D using
Figures 2.2 and 2.3, which show the response of the example in Section 2.2.2
in the coordinates x. Recall that we want the integrator to be reset (i.e., a
jump is desired in the hybrid formulation in (2.11)) when the system satisfies
the following two conditions at the same time: 1) it enters a stick phase, and 2)
the position overshoots the setpoint. Namely, a reset in such conditions greatly
reduces the time needed for the depletion and refilling of the integrator buffer,
and consequently the stick duration. This is the key mechanism for improving
the transient performance in terms of settling using reset control and contributes
to solving item 2) of Problem 2.1. Let us now discuss Figures 2.2 and 2.3:

1) Suppose the solution has initial condition σ > 0, φ > 0, and v = 0, and
starts in a stick phase (time interval 1 in Figure 2.2). Due to the dynamics
of the integrator, φ > Fs will eventually be reached, which results in a slip
phase (intervals 2 and 3 in Figure 2.2). The solution enters a stick phase
again (interval 4 in Figure 2.2) when v = 0 is reached and the controller
state φ satisfies 0 < φ < Fs, see the phase portraits in Figure 2.3. At this
point, the condition φv ≤ 0 is satisfied.

σ
,φ
,v

time [s]

1 2 3 4

Fs

−Fs

0.5 1 1.5 2 2.5 3

2

0

Figure 2.2. Evolution of the states σ ( ), φ ( ), and v ( ) with the pro-
posed controller, see the example in Section 2.2.2. The integrator resets through
a sign change of φ are clearly visible by the discontinuities in its evolution.
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D

0

0

0

0

Fs
Fs

−Fs−Fs

t0t0
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v σ

DD

D
D

t1
t2

t3 t4

t1

t2

t3
t4

Figure 2.3. Phase portraits corresponding to the response in Figure 2.2. The
jump criteria φv ≤ 0 (left) and φσ ≤ 0 (right) are indicated by the blue areas.
The discrete jumps, initiated at the black dots, are indicated by dashed arrows.
For the sake of clarity, the condition |φσ| ≥ ε is not taken into account in the
figure.

A reset should not take place if the solution enters a stick phase without the
occurrence of an overshoot, due to, e.g., different initial conditions, tuning, or
friction characteristics. In such situations the solution still enters a stick phase
and item 1) is satisfied. For this reason, we require the additional condition
φσ ≤ 0 in the jump set D in (2.11c):

2) Before an overshoot of the setpoint (interval 2 in Figure 2.2), we have
positive σ and φ, and thus φσ > 0. After an overshoot (interval 3 in
Figure 2.2), σ changes sign so that φσ ≤ 0. Along with item 1), we
conclude that the requirement φσ ≤ 0 in D indeed enforces that a reset
only takes place when the solution enters a stick phase after an overshoot.

Finally, the condition |φσ| ≥ ε in (2.11c), for some design parameter ε > 0,
prevents a jump when σ or φ are zero, so that Zeno behavior is avoided. We will
transform this criterion into a more intuitive one in Section 2.5 (while leaving
intact the stability results presented in the next section), where we provide
tuning guidelines for ε as well.

Remark 2.3. To detect the stick phase, the criterion φv ≤ 0 is chosen in the
jump set D in (2.11c) rather than just v = 0, since the latter is hard to check in
practice due to velocity measurement noise. Although measurement noise around
zero velocity may also render the product φv sign indefinite due to chattering in
the sign of v, the additional condition φσ ≤ 0 in D prevents the system from
experiencing undesired multiple jumps. Indeed, after the first reset, the jump
map (2.11b) ensures that φσ > 0, thus x+ 6∈ D. In this way the design of the
reset condition warrants robustness against measurement noise in v. y
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Remark 2.4. The jump set D is expressed in (2.11c) in terms of the new states
x. The states φ and σ are not measurable in the case of an unknown mass m,
as one can see from (2.9) and (2.4). The same observation clearly holds for
the condition in (2.8e). However, even for an unknown mass m, we can define
from (2.9) and (2.4) the measurable states

ς := mσ = −k̄i(z1 − r), (2.12a)

ϕ := mφ = −k̄p(z1 − r)− k̄iz3. (2.12b)

This leads to jump conditions that can be checked based on the measurable states
ς and ϕ, in which m does not appear. Note that for some ε > 0, |ϕς| ≥ ε can
replace |φσ| ≥ ε since ε is a design parameter. y

2.4 Stability analysis

In this section, we show that (2.13) is globally asymptotically stable for (2.11),
solving item 1) of Problem 1. To this end, the set of equilibria (2.6) is rewritten
by the state transformation in (2.9) as

A = {x ∈ R3 | σ = v = 0, |φ| ≤ Fs}. (2.13)

Let us now formalize the intended stability result by the next theorem.

Theorem 2.5. Under Assumption 2.2, for each α ∈ [0, 1] and ε > 0, A in (2.13)
is globally asymptotically stable for the hybrid dynamics (2.11).

The remainder of this section is devoted to the proof of Theorem 2.5. In
particular, we establish in Lemma 2.9 that A is globally attractive, and in
Lemma 2.11 that A is Lyapunov stable for (2.11). The proof builds upon the re-
sults in [29], but is significantly challenged by the addition of the reset controller
that gives rise to a hybrid (and no longer purely continuous-time) closed-loop
system.

Consider the discontinuous Lyapunov-like function V : R3 → R proposed
in [29] and defined as

V (x) :=

[
σ
v

]>[ kd
ki

−1

−1 kp

][
σ
v

]
+ min
F∈Fs Sign(v)

(φ− F )2. (2.14)

We start by providing some properties of solutions while flowing, as in
Lemma 2.6 below. To this end, we note that (2.11a) (and function (2.14)) sug-
gests that during flow there are three relevant affine subsystems corresponding
to the system being in slip with nonnegative or nonpositive velocity, and being
in stick (cf. (2.7b) and (2.10)). With the definitions

A :=

0 0 −ki
1 0 −kp
0 1 −kd

 , b :=

 0
0
Fs

 , P :=

 kd
ki

0 −1

0 1 0
−1 0 kp

 , (2.15)
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these three subsystems are defined as

ξ̇ = f1(ξ) :=Aξ − b, ξ(t0) = ξ1, (2.16a)

ξ̇ = f0(ξ) :=
[

0 0 0
1 0 0
0 0 0

]
ξ, ξ(t0) = ξ0, (2.16b)

ξ̇ = f−1(ξ) :=Aξ + b, ξ(t0) = ξ−1. (2.16c)

For ξ = (ξσ, ξφ, ξv) ∈ R3 and |ξ|2P := ξTPξ, define also

V1(ξ) :=

∣∣∣∣[ ξσ
ξφ−Fs
ξv

]∣∣∣∣2
P

, V0(ξ) :=
∣∣∣[ ξσ0

0

]∣∣∣2
P
, V−1(ξ) :=

∣∣∣∣[ ξσ
ξφ+Fs
ξv

]∣∣∣∣2
P

. (2.16d)

With these definitions in place, we can state Lemma 2.6 below. Item (i) asserts
that flowing solutions to (2.11) are unique (in spite of the differential inclusion
in (2.11a)), whereas item (ii) relates such a (unique) flowing solution with the
solution of one of the subsystems (2.16a)-(2.16c). The solution x to a hybrid
dynamical system and its hybrid time domain domx are defined respectively
in [63, Def. 2.6] and [63, Def. 2.3].

Lemma 2.6. For each solution x to (2.11), each interval Ij := {t : (t, j) ∈
domx} =: [tj , tj+1] with nonempty interior, and for all t ∈ (tj , tj+1),

(i) if x̂ = (σ̂, φ̂, v̂) is a solution to (2.11) on [t, t′)×{j} with t < t′ ≤ tj+1 and
x̂(t, j) = x(t, j), then x̂ coincides with x on [t, t′)× {j};

(ii) one can select k ∈ {−1, 0, 1} and T > 0 such that the unique solution
ξ = (ξσ, ξφ, ξv) to (2.16) with initial condition ξk = x(t, j) and t0 = t,
coincides on [t, t+ T ] with x(·, j) and, additionally, V in (2.14) and Vk in
(2.16d) evaluated along ξ satisfy for all τ ∈ [t, t+ T ]:

V (ξ(τ)) = Vk(ξ(τ)) and (2.17a)
d
dτ Vk(ξ(τ)) ≤ −c|ξv(τ)|2, (2.17b)

with
c := 2(kpkd − ki) > 0. (2.18)

Proof. See Appendix 2.A.1 �

Exploiting Lemma 2.6, we are ready to present the properties of V in (2.14)
in Lemma 2.7 below. We will use fact that the distance of a point x ∈ R3 to the
attractor A in (2.13) is obtained from the definition as

|x|2A :=
(

inf
y∈A
|x− y|

)2
= σ2 + v2 + dzFs(φ)2, (2.19)

by separating the cases φ < −Fs, |φ| ≤ Fs, φ > Fs.
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Lemma 2.7. V in (2.14) is lower semicontinuous (lsc) and enjoys the following
properties:

1. V (x) = 0 for all x ∈ A and there exists c1 > 0 such that c1|x|2A ≤ V (x)
for all x ∈ R3.

2. Given c in (2.18), each solution x satisfies

V (x(t2, j))− V (x(t1, j)) ≤ −c
∫ t2

t1

v(t, j)2dt (2.20)

for all t1, t2 in each (flow) interval Ij := {t : (t, j) ∈ domx} with nonempty
interior, and t1 ≤ t2.

3. For all x ∈ D in (2.11c) it holds that

V (g(x))− V (x) ≤ 0. (2.21)

Proof. See Appendix 2.A.2. �

The properties of V in Lemma 2.7 imply that maximal solutions are complete
[63, Sec. 2.3], as per the next lemma.

Lemma 2.8. For each initial condition x̄ ∈ R3, each maximal solution x
to (2.11) with x(0, 0) = x̄ is complete.

Proof. See Appendix 2.A.3. �

We can now prove global attractivity ofA in (2.13) through a meagre-limpsup
invariance principle [63, Thm. 8.11] in the next lemma.

Lemma 2.9. The set of equilibria A in (2.13) is globally attractive for hybrid
dynamics (2.11).

Proof. See Appendix 2.A.4. �

Finally, we now turn to proving stability of A in (2.13). As in [29], we need
the auxiliary function

V̂ (x) := 1
2k1σ

2 + 1
2k2

(
dzFs(φ)

)2
+ k3|σ||v|+ 1

2k4v
2, (2.22)

in order to prove stability through bound (2.24) below, in spite of the discon-
tinuity of V in (2.14). Indeed, because of such discontinuity at points in the
attractor A, an upper bound of the type c2|x|2A (for some c2 > 0) for V (x) does
not hold in R3, unlike the lower bound in Lemma 2.7 (item 1), and stability
of A cannot be concluded directly from V . However, such lower and upper
bounds, together with suitable growth bounds along solutions, can be estab-
lished for V and V̂ , respectively, in the following partition of the state space,
i.e., R := {x | v(φ − sign(v)Fs) ≥ 0} and R̂ := R3\R, as characterized in the
next lemma.
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Lemma 2.10. For suitable positive scalars k1, k2, k3, k4 in (2.22), there exist
positive scalars c1, c2, ĉ1, ĉ2 such that

c1|x|2A ≤ V (x) ≤ c2|x|2A, ∀x ∈ R, (2.23a)

ĉ1|x|2A ≤ V̂ (x) ≤ ĉ2|x|2A, ∀x ∈ R3, (2.23b)

V̂ ◦(x) := max
v∈∂V̂ (x),f∈F (x)

〈v, f〉 ≤ 0, ∀x ∈ R̂, (2.23c)

V̂ (g(x))− V̂ (x) ≤ 0 ∀x ∈ R̂, (2.23d)

where ∂V̂ (x) denotes the generalized gradient of V̂ at x as in [45, §1.2], F is as
in (2.11a), and g is as in (2.11b).

Proof. Equations (2.23a)-(2.23b) are proved analogously to [29, (19a)-(19b)].
This is also true for (2.23c), since the flow map F is the same as well. Fi-

nally, (2.23d) holds since
(
dzFs(−αφ)

)2 ≤ (dzFs(φ)
)2

for α ∈ [0, 1]. �

By composing the relations of Lemma 2.10 and Lemma 2.7 for V and V̂ ,
the bound (2.24) of the next lemma can be obtained, which establishes (uniform
global) stability (see [63, Def. 3.6]) of A in (2.13).

Lemma 2.11. Given the scalars c1, c2, ĉ1, ĉ2 in (2.23), each solution x to (2.11)
satisfies

|x(t, j)|A ≤
√
c2ĉ2
c1ĉ1
|x(0, 0)|A ∀(t, j) ∈ domx. (2.24)

Proof. See Appendix 2.A.5. �

Remark 2.12. Since A is compact, and the hybrid system (2.11) satisfies the
hybrid basic conditions [63, Assumption 6.5], the stability and global attractivity
results proven above imply uniform global asymptotic stability for (2.11) in terms
of a class-KL estimate. They also imply global robust KL asymptotic stability of
A for (2.11) [63, Thm. 7.21] and semiglobal practical robust asymptotic stability
of A [63, Thm. 7.12 and Lemma 7.20]. The last result is useful when the friction
characteristic also contains the velocity-weakening (Stribeck) effect, which may be
considered as a perturbation of Ψ in (2.2). We can then use the practical stability
result to show that A is globally input-to-state stable w.r.t. the perturbation size
in the same way as in [29, Prop. 2]. y

2.5 Experimental case study on a
high-accuracy positioning machine

In this section, we demonstrate the working principle and the effectiveness of
the proposed reset controller on an industrial high-precision positioning stage.
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The considered stage represents a sample manipulation stage of an electron
microscope [142]. In particular, we show 1) the robust stability properties of
the controller in the presence of unknown static friction and measurement noise,
2) that the transient performance is indeed improved w.r.t. the classical PID
controller, as in item 2 of Problem 1, and 3) how the tuning of the reset controller
affects performance.

2.5.1 Experimental setup

The experimental setup is presented in Figure 2.4. The setup consists of a Maxon
RE25 DC servo motor 1 connected to a spindle 2 via a coupling 3 that is
stiff in the rotational direction while being flexible in the translational direction.
The spindle drives a nut 4 , transforming the rotary motion of the spindle to a
translational motion of the attached carriage 5 , with a ratio of 7.96·10−5 m/rad.
The position of the carriage is measured by a linear Renishaw encoder 6 with a
resolution of 1 nm (and peak noise level of 4 nm). A coiled spring 7 connects the
carriage to the fixed world frame to eliminate any backlash between the spindle
and the nut. The desired position accuracy to be achieved is 10 nm, as specified
by the manufacturer.

For frequencies up to 200 Hz, the system dynamics can be well described
by (2.1) for which Theorem 2.5 applies when interconnected with the reset PID

1

2
3

5

6

7

48
8

z1

1 3 4

8 8 27 5

6

Figure 2.4. Experimental setup of a nano-positioning motion stage.
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controller. In this case, z1 represents the position of the carriage. The mass
m = 172.6 kg consists of the transformed inertia of the motor and the spindle
(with an equivalent mass of 171 kg), and of the mass of the carriage (1.6 kg).
For frequencies higher than 200 Hz, the motor-spindle and carriage decouple
dynamically due to the finite rotational stiffness of the coupling between the
motor 1 and the spindle 3 .

The friction force for Ψ in (2.1) is mainly induced by the bearings supporting
the motor axis and the spindle (see 8 in Figure 2.4), and by the contact between
the spindle and the nut. Since the system is rigid and behaves as a single mass
for frequencies up to 200 Hz, these friction forces can be summed up to provide
a single net friction characteristic Ψ in (2.1). For illustrative purposes, the net
friction characteristic is identified by performing experiments for the static and
velocity-dependent parts separately. The static friction values are determined by
gradually increasing the actuator force from zero until breakaway of the carriage
is measured. At this stick-to-slip transition, the input force is equal to the
static friction force. The experiment is repeated for different positions, and for
both directions of motion. On average, the static friction values are 32.7 N
and 33.1 N for positive and negative motions, respectively, indicating a small
level of asymmetry in the friction characteristic. The velocity-dependent part
of the friction characteristic is obtained by performing closed-loop experiments,
where the carriage tracks a constant velocity setpoint. The force applied by the
actuator is then equal to the velocity-dependent friction force at one particular
(constant) velocity. These experiments are repeated for multiple velocities and
initial positions of the carriage.

The resulting overall friction characteristic is visualized in Figure 2.5, where
it can be observed that the experimental setup shows dominantly static Coulomb
friction. On the other hand, it also shows a small Stribeck effect. The Stribeck
effect, however, is insignificant as compared to the static friction, and does not
require an additional compensation term in ū. As we will show below, the closed-
loop with a (reset) PID controller results in asymptotic stability of the position
setpoint, instead of hunting limit cycling (which may occur in the presence of
a more pronounced Stribeck effect). This indicates that the considered system
controlled by either the classical PID controller or the proposed reset controller
has some robustness to small Stribeck effects. Finally, we emphasize that we
do not use any information about the friction characteristic in the controller,
but we provide the measured friction for illustrative purposes only. Namely, the
proposed controller is robust for unknown static friction due to the presence of
integral action.

2.5.2 Reset controller tuning

The purpose of the experimental case study is to demonstrate the transient
performance benefits that can be obtained with the proposed reset controller, in
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Figure 2.5. Measured friction characteristic. The circles are static friction val-
ues obtained from breakaway experiments, and the solid lines connect velocity-
dependent friction values for different initial positions.

terms of settling time, relative to the classical PID controller. The PID controller
gains k̄p = 107 N/m, k̄d = 2 · 103 Ns/m, and k̄i = 108 N/(ms) are obtained by
well-known linear loop-shaping techniques often applied in industry [57], and
result in a bandwidth of 36 Hz and sufficient robustness margins. The proposed
reset integrator does not require additional tuning constraints other than the
“linear” stability conditions in Assumption 2.2 (indeed necessary for the special
case F̄s = 0) that are equivalent to

k̄i > 0, k̄p > 0,
k̄p(k̄d + γ)

m
> k̄i.

The last one holds since γ > 0 and the PID controller gains above satisfy
k̄pk̄d
m >

k̄i.
Secondly, we discuss the role of the tuning parameter α. Most importantly,

α ∈ [0, 1] directly affects the transient performance (a larger α leads to a faster
convergence). Additionally, α accommodates the developments in Sections 2.2-
2.4 for symmetric friction to possible asymmetries in the experimental friction
characteristics. On the one hand, α closer to one yields a larger reset and
a correspondingly shorter stick duration. Choosing α as large as possible is
thus favorable for the transient performance improvement, and we will show
the implications of the value for α on the transient performance in the next
subsection. On the other hand, a smaller α results in a relaxed reset, hence
a longer stick duration, which enhances robustness for frictional asymmetry as
explained in detail in Remark 2.13 below.

Remark 2.13. A smaller α yields robustness to an asymmetric friction charac-
teristic. If the static friction value in the positive direction of motion is signifi-
cantly larger than the static friction value in the negative direction of motion, the
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integrator has to build up a larger control force in the positive direction. It may
then happen that after the reset ensuing the beginning of a stick phase, the value
for the proportional and integral action exceeds the static friction value, resulting
in an immediate escape from the stick phase and possibly unstable behavior. In
other words, a controller reset (with α large) combined with asymmetric friction
may lead to overcompensation, compromising the stability of the setpoint as an-
alyzed in [121]. Hence, in the presence of frictional asymmetry, a smaller α is
beneficial for robustness. Note that robustness for the worst-case asymmetry in
the friction characteristic (i.e., zero friction in one direction of the velocity, and
nonzero friction in the other) is ensured by α = 0. However, the friction in the
application considered here has only mild asymmetry (see Figure 2.5). y

The last tuning parameter ε comes from the criterion |ϕς| ≥ ε which replaces
|φσ| ≥ ε in D, as noted in Remark 2.4. The purpose of |ϕς| ≥ ε is to prevent a
discrete jump when the measurable states ς or ϕ in (2.12) are zero, so that Zeno
behavior is avoided. For practical implementation, we redefine this criterion
to the more intuitive criteria |ς| ≥ η1, |ϕ| ≥ η2, with η1, η2 > 0. We choose
η1 = k̄i · 10−8 = 1 N/s, so that resets are inhibited when the carriage is within
the desired position error accuracy band of 10−8 m (10 nm). Also, η2 = 1 N·m·s
is chosen so that resets are inhibited when ϕ is small, in order to avoid Zeno
behavior. Note that this is achieved for any η2 > 0. Using as in Remark 2.4 the
measurable states ς and ϕ in (2.12), and the above alternative criteria, the jump
set used for the experiments is then given by

D∗ := {(ς, ϕ, v) ∈ R3 | ϕς ≤ 0, ϕv ≤ 0, |ς| ≥ η1, |ϕ| ≥ η2}. (2.25)

Note that ς is obtained from the position error measurement z1 − r, and ϕ
is obtained from both the position error measurement, and a recording of the
integrator state z3. We emphasize also that our main result in Theorem 2.5 and
its proof hold unchanged if D∗ replaces D in (2.11c).

Remark 2.14. We emphasize that the tuning of the controller gains k̄p, k̄d, and
k̄i is not necessarily optimal in the sense of minimizing settling times. The gains
are chosen such that standard linear stability and robustness margins are satis-
fied. Optimal tuning for settling may further improve the transient performance.

y

2.5.3 Transient performance comparison

We now demonstrate the transient performance benefits of the proposed reset
controller. According to standard operation of the nano-positioning stage in an
electron microscope, a fourth-order reference trajectory is applied to the stage
so that it moves by one millimeter in one second. After the trajectory has ended,
the stage has a nonzero positioning error due to the presence of friction. This
is the starting point of our window of interest during the experiments, and from
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this point on, the goal is to control the system towards a specified position error
accuracy of 10 nm using the proposed reset controller. In particular, we will show
the relative improvement in terms of settling time (i.e., the required time for the
position error to reach and remain in the error band of 10 nm), as compared to
the underlying classical PID controller without resets.

The responses for the position error z1 − r and the corresponding scaled
control force ū/(4k̄i) are presented in Figure 2.6 for the classical PID and the
reset PID (with different values of α). All experiments are performed with the
same initial conditions. Variations in the position errors and time instants of
the initial stick phases between the presented responses are due to the fact that
the friction characteristic is slightly different for each experiment, due to, e.g.,
small temperature changes as a result of continued system operation. Since the
setup operates on a very small position error regime, even minor changes in the
friction may have a significant impact on the response. It can be observed in
Figure 2.6 that the application of the reset controller (see the three bottom plots
for different values for α) results in shorter stick periods and hence decreased
settling times, as compared to the classical PID controller (see the top plot).
In particular, in the presented responses, the desired accuracy is achieved at
respectively, 56.7, 25.3 and 8.4 seconds corresponding to values for α of 0.3, 0.8
and 1. In contrast to the reset controller, the classical PID controller (with the
same controller gains), did not reach the desired accuracy within the maximal
measurement window of 120 seconds.

To further illustrate the results, we present in Figure 2.7 the cumulative
position error (CPE) of the carriage. Due to sampling of the position er-
ror in the experiments, the discrete-time CPE is determined as CPE(t(k)) :=∑k
l=1 |z1(t(l)) − r|, k ∈ {1, · · · , N}, where k = 1 corresponds to the beginning

of the first stick phase for the considered experiment, and k = N to the end of
the experiment. The CPE values at the end of the experiment at k = N , i.e.,
CPE(t(N)), are 3.2 · 10−3 m, 2.1 · 10−3 m, 9.8 · 10−4 m, and 7.9 · 10−4 m for the
cases of no reset, α = 0.3, α = 0.8, and α = 1, respectively, from which the
performance improvement in terms of position accuracy is evident.

Finally, we emphasize that false resets are not triggered due to the robust
design of the jump set D (and its implementable version D∗ in (2.25)) with
respect to velocity measurement noise, as pointed out in Remark 2.3. The inset
in the second subplot in Figure 2.6 shows that indeed a reset is triggered as soon
as the velocity hits zero (characterizing the start of a stick phase, as in (2.7a)).
After the reset has occurred, the velocity signal keeps crossing zero during the
stick phase, due to noise, but undesired multiple resets are prevented by the
robust design of the reset conditions, in accordance with Remark 2.4.
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Figure 2.7. Cumulative position error for the cases without reset ( ), α = 0.3
( ), α = 0.8 ( ), and α = 1 ( ).

2.5.4 Unmodeled frictional effects

We now discuss the impact of frictional effects on the response shown in Fig-
ure 2.6, that are not contained in the static set-valued friction model of (2.2).
Due to the low position error levels in the operating conditions of the setup,
microscopic frictional effects that are present in the friction characteristic are
significant compared to the static friction effect in this particular application.
The experimental results above show that the proposed control strategy also
exhibits some robustness against these effects, although not formally taken into
account in the stability analysis of Section 2.4.

Frictional creep

As compared to the response in the example of Section 2.2.2, a controller reset
occurs some time after the beginning of a macroscopic stick phase. This effect
is caused by frictional creep3 (see, e.g., [11, Ch. 2]) at the start of (and during)
a macroscopic stick phase (see the inset in the first subplot of Figure 2.6). Such
an effect hinders a discrete jump at the end of a macroscopic slip phase because
of the nonzero velocity. Hitting v = 0 (so that ϕv ≤ 0 in D∗ is satisfied) can be
detected only when creep stops. This is illustrated by the inset in the second
subplot of Figure 2.6, where we highlight the velocity signal during such a period
of creep. A nonzero velocity is indeed observed during creep, and the controller
is reset only as soon as the velocity signal hits zero (indicated by the black
dashed horizontal line). The reset delay associated to creep allows then the
integrator buffer to deplete, which, in turn, causes a milder reset. This milder
reset further motivates to choose α = 1 despite the (minor) asymmetry in the
friction characteristics (see Figure 2.5).

3or microslip in the so-called presliding regime (see, e.g., [5], [131]), which can be captured
by more enhanced (dynamic) frictional models, as illustrated in Section 1.1.1.
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Frictional stiffness effects

A second phenomenon caused by unmodeled frictional effects are the small stick-
to-stick jumps in the position error response upon resets, see the inset in the third
subplot of Figure 2.6. This phenomenon can be explained by the presence of
stiffness-like characteristics in the friction, see e.g., [12, Sec. 2.1]. The associated
effects are significant due to the fact that the setup operates in regimes with
nano-scale position errors. To illustrate this, note that the magnitude of these
stiffness-like effects can be estimated by dividing the difference in the control
force associated with a controller reset, by the resulting change in position. This
results in values between 8 · 108 and 7 · 109 N/m. Although these estimated
stiffness coefficients are very large, the associated effect is significant due to the
small position errors in the operating conditions. Note that the system still
resides in the stick phase in macroscopic sense after the controller reset. In this
case, these effects are not unfavourable, as they force the system towards the
setpoint. On the other hand, the position error after such a jump is smaller, so
that it takes more time for the integrator to compensate for the static friction.

2.6 Conclusions

We proposed a novel reset integrator control strategy for motion systems with
friction that achieves, firstly, robust global asymptotic stability of the setpoint
for unknown static friction and, secondly, improves transient performance by
reducing the settling time. The reset conditions are designed so that a controller
reset is correctly triggered despite measurement noise, and does not increase the
risk of exciting high-frequency system dynamics. Global asymptotic stability
of the setpoint is proven based on a generalized invariance principle for hybrid
dynamical systems. An experimental case study on a high-precision positioning
application shows the improved settling time when using the proposed reset
controller, as compared to its classical PID counterpart.
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2.A Proofs

2.A.1 Proof of Lemma 2.6

The proof of Lemma 2.6 is based on the proofs of [29, Lemma 1 and Claim 1].
Note that c > 0 in (2.18) by Assumption 2.2.

Item (i). Define δ = (δσ, δφ, δv) := x − x̂ on [t, t′) × {j} so that δ(t, j) = 0.
Since both x and x̂ flow on [t, t′)×{j}, we have that almost everywhere in [t, t′]:

δ̇ ∈ Aδ +

 0
0

Fs(−Sign(v) + Sign(v − δv))

 ,
and .︷ ︷(

δ>δ
2

)
∈ δ>Aδ + δv[−Fs Sign(v) + Fs Sign(v − δv)].

With λ denoting the largest singular value of A, we have

d
dτ

(
δ(τ,j)>δ(τ,j)

2

)
≤ λ|δ(τ, j)|2 +M(τ, j)

M(τ, j) := max
f2∈Fs Sign(v(τ,j)−δv(τ,j))

f1∈Fs Sign(v(τ,j))

δv(τ, j)[f2 − f1].

Whether v(τ, j)−δv(τ, j) and v(τ, j) are positive, zero or negative, inspecting all

cases reveals that M(τ, j) ≤ 0 for all τ ∈ [t, t′]. As a result, d
dτ

(
δ(τ,j)>δ(τ,j)

2

)
≤

λ|δ(τ, j)|2 for almost all τ ∈ [t, t′], and standard comparison theorems (such
as [83, Sec. 3.4]) imply from δ(t, j) = 0 that δ = 0 on [t, t′)× {j}.

Item (ii). For each possible initial condition (σ̄, φ̄, v̄) := x(t, j), k in item
(ii) is selected based on Table 2.1. The proof is then carried out analogously
to [29, Appendix A] by substituting into (2.11) the solution ξ to the k-th affine
subsystem ξ̇ = fk(ξ) among (2.16a)-(2.16c) and verifying that (2.11) holds for ξ.
Moreover, by evaluating V and Vk along the same ξ, and finally by differentiating
Vk(ξ(·)) w.r.t. time, we obtain (2.17). �

Table 2.1. Selection of k in item (ii) of Lemma 2.6 for each possible initial
condition.

Initial condition (σ̄, φ̄, v̄) := x(t, j) k

(v̄ > 0) ∨ (v̄ = 0 ∧ φ̄ > Fs) ∨ (v̄ = 0 ∧ φ̄ = Fs ∧ σ̄ > 0) 1

(v̄ = 0 ∧ φ̄ = Fs ∧ σ̄ ≤ 0)

∨ (v̄ = 0 ∧ |φ̄| < Fs) ∨ (v̄ = 0 ∧ φ̄ = −Fs ∧ σ̄ ≥ 0)
0

(v̄ = 0 ∧ φ̄ = −Fs ∧ σ̄ < 0) ∨ (v̄ = 0 ∧ φ̄ < −Fs) ∨ (v̄ < 0) −1
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2.A.2 Proof of Lemma 2.7

Based on Assumption 2.2, the proof of V being lsc and of item (1) is identical
to [29, Proof of Lemma 2].

Item (2). To prove this item, we use [66, Thm. 9] with the variant in [66,
Sec. 5 (point a.)], as in the following Fact 2.15. The statement is specialized
for an integrable function l, so that the standard integral can replace the upper
integral in [66, Thm. 9], as noted after [66, Def. 8].

Fact 2.15. [66] Given t2 > t1 ≥ 0, suppose that h is lower semicontinuous and
that l is locally integrable in [t1, t2]. If D+h(τ) ≤ l(τ) for all τ ∈ [t1, t2], then

h(t2)− h(t1) ≤
∫ t2
t1
l(τ)dτ .

By the preliminary Lemma 2.6, (2.20) in item (2) is a mere application of
Fact 2.15 for h(·) = V (x(·, j)) and l(·) = −cv(·, j)2 where x = (σ, φ, v) is a
solution to (2.11). So, we need to check that the assumptions of Fact 2.15 are
verified. We already established above that V (·) is lsc. Solutions x to (2.11)
are such that for each j ∈ Z≥0, t 7→ x(t, j) is locally absolutely continuous
by [63, Def. 2.4 and 2.6]. Then, because the composition of a lsc and a contin-
uous function is lsc [128, Exercise 1.40], the Lyapunov-like function V in (2.14)
evaluated along the flow portion of a solution to (2.11) is lsc in t. Because of
the local absolute continuity of flowing portions of solutions, −cv(·, j)2 is locally
integrable.

Finally, it was proven in item (ii) of Lemma 2.6 that on Ij , the solution x
to (2.11) coincides with the solution ξ to one of the three affine systems in (2.16)
(numbered k) on [t, t + T ]. Moreover, that same item states that V (ξ(·)) co-
incides in [t, t + T ] with the function Vk(ξ(·)) in (2.17), which is differentiable,
hence V (x(·, j)) is at least differentiable from the right at t and the lower right
Dini derivative coincides with the right derivative. In particular, we established
in (2.17) that this right derivative is upper bounded by −cv(·, j)2.

Item (3). For all x ∈ D in (2.11c), V (g(x))− V (x) = minF∈Fs Sign(v)(−αφ−
F )2 −minF∈Fs Sign(v)(φ − F )2 where for each v, the set Fs Sign(v) is compact.
We obtain

V (g(x))− V (x) =

(α2 − 1)φ2 + 2(α+ 1)φFs sign(v), if v 6= 0,(
αdzFs

α
(φ)
)2 − (dzFs(φ)

)2
, if v = 0,

(2.26)

by evaluating the different cases for v and φ. The inequality in (2.21) follows
from (2.26) since 0 ≤ α ≤ 1 and φv ≤ 0 in the jump set D. �

2.A.3 Proof of Lemma 2.8

The proof is based on [63, Prop. 6.10], which can be applied since (2.11) satis-
fies the so-called hybrid basic conditions [63, As. 6.5]. Condition (VC) of [63,
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Prop. 6.10] holds for every ξ ∈ C\D, otherwise we would contradict completeness
in [29, Lem. 1]. Therefore, each solution x satisfies exactly one of [63, Prop. 6.10,
(a)-(c)]. Note that (2.20) and (2.21) imply together that

V (x(t, j)) ≤ V (x(0, 0)) (2.27)

for each (t, j) ∈ domx. If [63, Prop. 6.10, (b)] is verified (that is,
limt→supt dom x |x(t, supj domx)| = +∞), then also V grows unbounded because
of the lower bound of V in Item 1 of Lemma 2.7. But this is a contradiction
of (2.27), so we can exclude [63, Prop. 6.10, (b)] for each solution. Also [63,
Prop. 6.10, (c)] can be excluded since C ∪ D is R3 in (2.11). Then only [63,
Prop. 6.10, (a)] remains, i.e., each solution x is complete. �

2.A.4 Proof of Lemma 2.9

[63, Thm. 8.11] is applicable because [63, As. 6.5] is satisfied by (2.11). Note
that, since each maximal solution x to (2.11) is complete by Lemma 2.8, the
conclusions of [63, Thm. 8.11] will hold for each maximal solution x once we
verify that each such x satisfies the meagre-limsup conditions (a)-(b) below.
More specifically, introduce the continuous functions x 7→ `c(x) := v2 and x 7→
`d(x) := 1. Then, [63, Thm. 8.11] holds if:

(a) if supt domx = ∞, then t 7→ `c(x(t, j(t)) is weakly meagre (as defined
on [63, p. 178]), where j(t) := min(t,j)∈dom x j;

(b) for each maximal solution x∗ to (2.11), if (t, j−1), (t, j), (t, j+1) ∈ domx∗,
then `d(x

∗(t, j)) = 0.

Let us check condition (a). Lemma 2.7 (items 2-3) implies, for each solution

x and a generic (t, j) ∈ domx, that V (x(t, j))−V (x(0, 0)) ≤ −c
∫ t

0
v(τ, j(τ))2dτ ,

by splitting into flow intervals and jumps. We then have
∫ t

0
`c(x(τ, j(τ)))dτ ≤

V (x(0,0))−V (x(t,j))
c ≤ V (x(0,0))

c by Lemma 2.7 (item 1). By letting t → +∞, this
means that t 7→ `c(x(t, j(t))) is absolutely integrable on R≥0 and is hence weakly
meagre (see [63, p. 178]).

Let us check condition (b). For all maximal solutions x∗ to (2.11), there
are no (t, j − 1), (t, j), (t, j + 1) ∈ domx∗ since each x∗ cannot exhibit two or
more consecutive jumps (by the definitions of g and D, if both (t, j − 1) and
(t, j) ∈ domx∗, then x∗(t, j − 1) ∈ D and x∗(t, j) ∈ C\D). So, condition (b) is
(vacuously) satisfied.

Since (a) and (b) above hold, then [63, Thm. 8.11] concludes that for each
solution x, Ω(x) ⊂ {χ ∈ rgex : v = 0}, where Ω(x) is the ω-limit set of solution
x [63, Def. 6.17] and rgex denotes the closure of the range of x. Due to the
properties of Ω(x) in [63, Prop. 6.21], its weak invariance implies that for each
complete solution x, Ω(x) does not contain points where σ 6= 0 or |φ| > Fs,
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because from these points all complete solutions eventually exhibit a nonzero
velocity component. As a consequence, Ω(x) ⊂ A for each complete solution x,
which implies by [63, Prop. 6.21] that all complete solutions converge to A, i.e.,
global attractivity of A. �

2.A.5 Proof of Lemma 2.11

Consider the two mutually exclusive cases:
Case (A): x(t, j) /∈ R for all (t, j) ∈ domx. Since R ∪ R̂ = R3, x(t, j) ∈ R̂

for all (t, j) ∈ domx. (2.23c) implies that V̂ does not increase while such a
solution x flows. In other words: for any such x, for each j ∈ Z≥0 such that
Ij := {t : (t, j) ∈ domx} has a nonempty interior, for each t1, t2 ∈ Ij satisfying
t1 ≤ t2, we have that

V̂ (x(t1, j)) ≤ V̂ (x(t2, j)) (2.28)

because in (2.23c) V̂ ◦(x(t, j)) ≤ 0 for all t ∈ [t1, t2]. Moreover, (2.23d) implies
that V̂ does not increase over jumps of x, that is,

V̂ (x(t, j)) ≤ V̂ (x(t, j − 1)) (2.29)

for all (t, j), (t, j − 1) ∈ domx. By (2.23b), we have then

ĉ1|x(t, j)|2A ≤ V̂ (x(t, j)) ≤ V̂ (x(0, 0)) ≤ ĉ2|x(0, 0)|2A

for all (t, j) ∈ domx. This implies (2.24) since 1 ≤
√

c2
c1

.

Case (B): there exists (t̄, j̄) ∈ domx such that x(t̄, j̄) ∈ R. Consider the
(t̄, j̄) ∈ domx such that t̄ + j̄ is smallest and x(t̄, j̄) ∈ R (the existence of such
a “smallest” time follows from R being closed). Then, following the analysis of
Case (A) for hybrid times up to (t̄, j̄) (which can possibly be (0, 0)), we obtain

ĉ1|x(t, j)|2A ≤ ĉ2|x(0, 0)|2A (2.30)

for all (t, j) ∈ domx with t + j ≤ t̄ + j̄. Since x(t̄, j̄) ∈ R, we apply (2.23a)
and (2.30) to obtain V (x(t̄, j̄)) ≤ c2|x(t̄, j̄)|2A ≤ c2

ĉ2
ĉ1
|x(0, 0)|2A. Finally, by

Lemma 2.7, items 1-3,

c1|x(t, j)|2A ≤ V (x(t, j)) ≤ V (x(t̄, j̄)) ≤ c2
ĉ2
ĉ1
|x(0, 0)|2A (2.31)

for all (t, j) ∈ domx with t + j ≥ t̄ + j̄. Analogously as [29, Eqs. (21b)-(21c)],
the combination of (2.30) and (2.31) proves (2.24). �







Chapter 3

Reset control for setpoint
stability of motion systems with

Stribeck friction

Abstract − In this chapter, we present a reset control approach to achieve stability of

the setpoint of a PID-based motion system subject friction including a Coulomb part and

a velocity-weakening (Stribeck) contribution. Whereas classical PID control results in limit

cycling around the setpoint (hunting), the proposed reset mechanism realizes stability of the

setpoint, and significant overshoot reduction. Moreover, robustness for unknown static friction

levels, and an unknown Stribeck contribution, is obtained. The closed-loop system dynamics

are formulated in a hybrid systems framework, using a novel hybrid description of the Coulomb

friction element, and asymptotic stability of the setpoint is proven accordingly. The working

principle of the controller is demonstrated experimentally on a motion stage of an electron

microscope, showing superior performance over classical PID control.

3.1 Introduction

In this chapter, we present a reset integral control approach for setpoint stabiliza-
tion of motion systems with unknown Coulomb and Stribeck friction. Friction
is a performance-limiting factor in many high-precision motion systems, in the
sense that it limits achievable positioning accuracy and settling times. Many dif-
ferent control techniques for frictional motion systems have been presented in the
literature. Several control solutions rely on developing as-accurate-as-possible
friction models, used for online compensation in a control loop, see, e.g., [11, 12,

This chapter is based on [18]. Related preliminary results are reported in [28].
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58, 90, 100], or for controller synthesis, see, e.g., [3, 127]. Model-based friction
compensation methods are typically prone to model mismatches due to, e.g.,
unreliable friction measurements, or a changing or uncertain friction character-
istic. These techniques, therefore, may suffer from over- or undercompensation
of friction, resulting in loss of stability of the setpoint [121], thereby limiting
the achievable positioning accuracy. Adaptive control methods, see, e.g., [7,
43, 106], have some robustness to a changing friction characteristic, but model
mismatches (and the associated performance limitations) still remain. Also non-
model-based control techniques have been proposed, examples of which are im-
pulsive control (see, e.g., [115, 148]), dithering-based techniques (see, eg., [79,
116, 143]), sliding-mode control (see, e.g., [14, 15]), or switched control [114].
These non-model-based controllers, however, employ high-frequency control sig-
nals, risking excitation of high-frequency system dynamics. Moverover, tuning
and implementation of such controllers is not straightforward.

Despite availability of a wide range of control techniques for frictional sys-
tems, linear controllers are still used in the vast majority of industrial motion
systems due to the existence of intuitive design and tuning tools. In industry,
the classical proportional-integral-derivative (PID) controller is most commonly
used for motion systems with friction. Namely, integrator action is capable of
compensating for unknown static friction, due to the build up of control force by
integrating the position error. However, PID control suffers from two distinct
performance limitations when applied to frictional motion systems. First, the
use of a classical PID controller on motion systems with with static (Coulomb)
friction results in long settling times, see Chapter 2, adversely affecting ma-
chine throughput. This limitation has been addressed in the previous chapter,
where a reset integrator is proposed that significantly improves transient per-
formance and decreases settling times. The second limitation of PID control
for frictional motion systems is that, for friction characteristics including the
velocity-weakening (i.e., Stribeck) effect, stability of the setpoint is not achieved,
so that the achievable positioning accuracy is limited. Whereas integrator action
compensates for the static part of the friction, overcompensation of the friction
occurs as velocity increases, due to the velocity-weakening effect. As a result,
the system overshoots the setpoint and ends up in a stick-slip limit cycle (i.e.,
hunting), see, e.g.,[10, 74], compromising stability of the setpoint. In particular,
the Stribeck effect can be viewed as a specific perturbation of the Coulomb fric-
tion model, where only input-to-state stability with respect to such perturbation
is achieved, see [29, Prop. 2].

In this chapter, we address the setpoint stabilization problem of a PID-
controlled motion system with Stribeck friction. In particular, we propose a
reset integral controller (which design is essentially different compared to the one
presented in the previous chapter) that achieves stability of the setpoint, despite
the presence of unknown static friction, and an unknown velocity-weakening
effect in the friction characteristic. We aim at lowering the threshold for control
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practitioners to use a nonlinear control strategy in industry, by building upon
the well-known PID controller. In particular, the proposed reset enhancements
can be used in parallel to a classical, loop-shaped PID controller.

Reset and hybrid controllers have been an active field of research in the past
decades. Developments started with the Clegg integrator [46] and the First Or-
der Reset Element [76]. Since then, reset controllers have mainly been used
to improve performance of linear motion systems, see, e.g., [1, 107]. Specific
examples are the hybrid integrator-gain system [52], improving tracking perfor-
mance while minimizing high-frequency content in the control signal. Overshoot
reduction of linear systems using hybrid control is presented in, e.g., [25, 97].
Analysis and design tools for reset controllers are presented in [40, 96, 108]. In
the context of frictional systems, reset control has been applied in Chapter 2
of this thesis, where transient performance of PID-based systems with Coulomb
friction is improved. In general, reset controllers have been applied to improve
performance of motion systems, but, to the best of the author’s knowledge, not
yet for stabilization of nonlinear, frictional motion systems, as we consider in
this chapter.

The contributions of this chapter are as follows. The first one is the design
of a novel reset controller for systems with Stribeck friction, aiming at achieving
stability of a constant setpoint. The second contribution is the development of a
hybrid model formulation of the closed-loop system, where the Coulomb friction
element is modeled through a hybrid representation, instead of the commonly
used set-valued force law (see, e.g., [2, Sec. 1.3]). The third contribution is a
stability analysis of the hybrid closed-loop system, and the fourth contribution
is an experimental demonstration of the effectiveness of the proposed controller
on an industrial high-precision positioning system (a manipulation stage of an
electron microscope).

The remainder of this chapter is organized as follows. In Section 3.2, a
model of the considered motion system with a classical PID controller is pre-
sented, along with some useful properties of the closed-loop system that we use
throughout the chapter. Subsequently, the reset integrator control law is pre-
sented, and a model-based example illustrates the working principles of the pro-
posed reset controller. The closed-loop dynamics are written as a hybrid system
in Section 3.3, and we present a comprehensive stability analysis in Section 3.4.
In Section 3.5, the proposed reset controller is experimentally demonstrated in a
case study on a high-accuracy positioning system, and conclusions are presented
in Section 3.6. Finally, we present a brief discussion on employing the Clegg
integrator for frictional systems in Section 3.8, which insight have been obtained
in retrospect to the main developments in this chapter.

Notation: For a vector x ∈ Rn, |x| denotes its Euclidean norm. B denotes the
closed unit ball of appropriate dimensions, in the Euclidean norm. sign(·) (with
a lower-case s) denotes the classical sign function, i.e., sign(y) := y/|y| for y 6= 0
and sign(0) := 0. Sign(·) (with an upper-case S) denotes the set-valued sign
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function, i.e., Sign(y) := {sign(y)} for y 6= 0, and Sign(y) := [−1, 1] for y = 0.
For c > 0, the deadzone function y 7→ dzc(y) is defined as: dzc(y) := 0 if |y| ≤ c,
dzc(y) := y − c if y > c, dzc(y) := y + c if y < −c. e3 := (0, 0, 1)> is the third
unit vector of R3.

The hybrid systems modeling framework and corresponding solution concept
of [63], used in this chapter, is introduced in Appendix A. In addition, the
function j(·) is defined as j(t) := min(t,j)∈domψ j. For a hybrid system H,
ψ ∈ SH(x) (respectively, ψ ∈ SH(S)) means that ψ is a maximal solution to H
with ψ(0, 0) = x (respectively, ψ(0, 0) ∈ S), and rgeψ denotes the range of ψ.

3.2 System description and controller design

In this section, we first describe the motion system with friction and formulate
the control problem addressed in this chapter. We then discuss a classical PID
controller, and provide some useful properties of the PID controlled system that
we use throughout the chapter. Thereafter, we discuss the design of the reset
control law and provide an illustrative example.

A single-degree-of-freedom mass m sliding on a horizontal plane with position
z1 and velocity z2 is subject to a control input ū and a friction force belonging
to a set Ψ(z2), governed by the dynamics

ż1 = z2,

ż2 ∈
1

m
(Ψ(z2) + ū) .

(3.1)

The friction characteristic is modeled by the following set-valued mapping of the
velocity:

z2 ⇒ Ψ(z2) := −F̄s Sign(z2)− αz2 + f̄(z2), (3.2)

where F̄s is the static friction, αz2 the viscous friction contribution (with α ≥ 0
the viscous friction coefficient), and f̄ a nonlinear velocity-dependent friction
contribution, encompassing the Stribeck effect (for which some (mild) require-
ments are given in Assumption 3.2 below).

With the goal to control the mass to the constant setpoint (z1, z2) = (r, 0),
the control problem of this chapter is formulated as follows.

Problem 3.1. Design a reset PID controller for input ū in (3.1)-(3.2), that
globally asymptotically stabilizes the setpoint (z1, z2) = (r, 0), in the presence of
unknown static friction F̄s and an unknown velocity-dependent friction charac-
teristic f̄(z2).

The presence of integrator action in the controller is motivated by the fact
that it is able to compensate for an unknown static friction force F̄s, so that the
controller can robustly overcome the Coulomb friction force. However, due to
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the overcompensation of friction in the slip phase, limit cycling occurs so that
stability of the setpoint is not possible with a classical PID controller. Enhancing
the classical PID controller with resets instead results in stability of the setpoint,
as we will show in this chapter.

3.2.1 Classical PID controller

Let us start with a classical PID controller for input ū in (3.1), i.e.,

ū = −k̄p(z1 − r)− k̄dz2 − k̄iz3,

ż3 = z1 − r,
(3.3)

where z3 is the integral state of the PID controller, and k̄p, k̄d, k̄i represent the
proportional, derivative and integral gains, respectively. We now present some
properties of the resulting closed-loop system (3.1)-(3.3) that we use throughout
this chapter. With state vector z := (z1, z2, z3)>, we can formulate the closed-
loop model as

ż =

ż1

ż2

ż3

 ∈
 z2

1
m

(
Ψ(z2)− k̄p(z1 − r)− k̄dz2 − k̄iz3

)
z1 − r

 . (3.4)

As in Chapter 2, we introduce mass-normalized parameters that allow for a
simpler description of the system, transform any constant setpoint r to the
setpoint 0, and facilitate the construction of Lyapunov functions for the stability
analysis in Section 3.4:

kp :=
k̄p
m
, kd :=

k̄d + α

m
, ki :=

k̄i
m
, Fs :=

F̄s
m
, f :=

f̄

m
. (3.5)

Next, consider the following state transformation:

x̂ :=

σ̂φ̂
v̂

 =

 −ki(z1 − r)
−kp(z1 − r)− kiz3

z2

 , (3.6)

where σ̂ represents the normalized position error, φ̂ is the controller state en-
compassing the proportional and integral control actions, and v̂ is the velocity
of the mass. After the reparametrization in (3.5) and the change of coordinates
in (3.6), the model (3.4) is equivalent to

˙̂x =

 ˙̂σ
˙̂
φ
˙̂v

 ∈
 −kiv̂

σ̂ − kpv̂
φ̂− kdv̂ − Fs Sign(v̂) + f(v̂)

 =: F̂x(x̂). (3.7)
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With the model in the new coordinates in place, we formally define “stick” and
“slip”. The system is said to be in a stick or slip phase when the state x̂ belongs
respectively to the sets

Estick :={x̂ ∈ R3 |v = 0, |φ̂| ≤ Fs}, (3.8a)

Eslip :=R3\Estick. (3.8b)

The controller state φ̂ represents all nonzero components of the control action
at zero velocity (that is, the proportional and integral terms), and the difference

between φ̂ and Fs at v̂ = 0 determines whether the system resides in a stick
phase or not, see (3.8a).

Let us now adopt the following assumptions on the velocity-dependent fric-
tion characteristic f and the controller gains.

Assumption 3.2. The function f is continuously differentiable and satisfies

(i) |f(v̂)| ≤ Fs for all v̂;

(ii) v̂f(v̂) ≥ 0 for all v̂;

(iii) f is globally Lipschitz with Lipschitz constant L > 0;

(iv) for some εv > 0 and L2 ∈ (kd, L], f(v̂) = L2v̂ for all |v̂| ≤ εv.

A possible f satisfying Assumption 3.2 is depicted in Figure 3.1. As for item
(iv) of the assumption, we emphasize that εv can be selected arbitrarily small.
As a result, this part of the assumption is hardly restrictive (note that items
(i)-(iii) are not restrictive as well).

Assumption 3.3. The control parameters kp, kd, ki satisfy kp > 0, ki > 0,
kpkd > ki.

εv

−εv
v̂

friction

L2

force

Figure 3.1. Example of a friction force satisfying Assumption 3.2. Total
friction Ψ ( ), static contribution F̄s ( ), velocity-dependent contribution f̄
( ). For |v̂| ≤ εv, f satisfies f(v̂) = L2v̂.
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The selection of gains according to Assumption 3.3 is equivalent to the origin
being globally asymptotically stable for (3.7) in the frictionless case (i.e., Fs = 0
and f(v̂) = 0 for all v̂) by the Routh-Hurwitz criterion, and is therefore not
restrictive.

Before introducing the controller reset policy, we show some useful properties
of the PID-controlled mass in (3.7). Consider the set-valued mapping

F̂x(x̂) :=

 −kiv̂
σ̂ − kpv̂

φ̂− kdv̂ − Fs Sign(v̂) + f(v̂)


=

0 0 −ki
1 0 −kp
0 1 −kd

σ̂φ̂
v̂

− e3(Fs Sign(v̂)−f(v̂))

=: Ax̂− e3(Fs Sign(v̂)− f(v̂)).

(3.9)

Given (3.9), we have the next claim that shows the decomposition of the dif-
ferential inclusion model in (3.7) into three subsystems. As it will turn out,
the claim will simplify the analysis of the differential inclusion (3.7) (and later
in (3.21b)).

Claim 3.4. Let Assumptions 3.2-3.3 hold and consider the differential inclusion

˙̂x ∈ F̂x(x̂) (3.10)

and the initial conditions in Table 3.1.

(i) For each initial condition x̂0 ∈ R3, there exists a complete solution2 x̂
to (3.10) and the solution is unique.

Table 3.1. Initial conditions considered in Claim 3.4.

(v̂0 > 0) ∨ (v̂0 = 0 ∧ φ̂0 > Fs)

∨ (v̂0 = 0 ∧ φ̂0 = Fs ∧ σ̂0 > 0)
(3.11)

(v̂0 = 0 ∧ σ̂0 > 0 ∧ φ̂0 ∈ [−Fs, Fs))

∨ (v̂0 = 0 ∧ σ̂0 = 0 ∧ φ̂0 ∈ [−Fs, Fs])

∨ (v̂0 = 0 ∧ σ̂0 < 0 ∧ φ̂0 ∈ (−Fs, Fs])

(3.12)

(v̂0 < 0) ∨ (v̂0 = 0 ∧ φ̂0 < −Fs)

∨ (v̂0 = 0 ∧ φ̂0 = −Fs ∧ σ̂0 < 0).
(3.13)

2A solution is any locally absolutely continuous function x̂ that satisfies (3.9) for almost
all t.
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(ii) For each initial condition x̂0 = (σ̂0, φ̂0, v̂0) in (3.11), there exists T > 0
such that the unique solution x̂ to (3.10) (with x̂(0) = x̂0) coincides over
[0, T ] with the unique solution x̃ (with x̃(0) = x̂0) to

˙̃x = Ax̃− e3(Fs − f(ṽ)), (3.14)

which satisfies ṽ(t) > 0 for all t ∈ (0, T ].

(iii) For each initial condition x̂0 = (σ̂0, φ̂0, v̂0) in (3.12), there exists T > 0
such that the unique solution x̂ to (3.10) (with x̂(0) = x̂0) coincides over
[0, T ] with the unique solution x̃ (with x̃(0) = x̂0) to

˙̃x :=

 ˙̃σ
˙̃
φ
˙̃v

 =

0
σ̃
0

 , (3.15)

which satisfies ṽ(t) = 0 for all t ∈ [0, T ].

(iv) For each initial condition x̂0 = (σ̂0, φ̂0, v̂0) in (3.13), there exists T > 0
such that the unique solution x̂ (with x̂(0) = x̂0) to (3.10) coincides over
[0, T ] with the unique solution x̃ (with x̃(0) = x̂0) to

˙̃x = Ax̃− e3(−Fs − f(ṽ)), (3.16)

which satisfies ṽ(t) < 0 for all t ∈ (0, T ].

Proof. see Appendix 3.A.1. �

3.2.2 Reset controller design

In order to solve Problem 3.1, we replace the integrator in (3.4) and (3.7) with a
reset integrator. The integrator performs two particular resets, which design is
best explained in the original coordinates z. The key mechanism of these resets
is to enforce that the integrator control force (given by k̄iz3) always points in
the direction of the setpoint, namely

(z1 − r)z3 ≥ 0, (3.17)

which is then satisfied along all hybrid solutions of the resulting closed loop3.
Due to the phase lag associated with a linear integrator, this goal cannot be
achieved with a classical PID controller, see, e.g., [134]. We will show in this
chapter that the frictional system augmented with the reset controller indeed
results in stability of the setpoint, solving Problem 3.1.

3Note that this controller design philosophy imposes an initialization constraint on the
integrator state z3.
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In order to end up with well-defined reset conditions satisfying (3.17), we

introduce a boolean state b̂ ∈ {−1, 1}, to capture whether the mass moves to-

wards the setpoint (i.e, b̂ = 1), or away from the setpoint (i.e., b̂ = −1). The

latter occurs typically after an overshoot of the position error. More precisely, b̂
is suitably initialized and always satisfies

b̂(z1 − r)z2 ≤ 0, (3.18)

along all hybrid solutions. To ensure (3.17) and (3.18), we employ the following
resets. The first reset entails a sign change of the integrator state z3 at a zero-
crossing of the position error z1 − r. We also toggle b̂ at this instant because a
zero-crossing of the position marks the start of overshoot. The first reset law is
then given by

z+
3 = −z3, b̂+ = −b̂, (3.19a)

occurring when the following reset condition is satisfied:

z1 − r = 0 ∧ b̂ = 1. (3.19b)

The reset in (3.19a), (3.19b) has some resemblance with the one proposed in [97],
designed for overshoot reduction of linear control systems without friction. How-
ever, in [97] a sign change of the output of the integral control force is employed,
whereas in (3.19a) the sign of the intergrator state is changed. Besides the fact
that the reset in (3.19a) is required to obtain stability of the setpoint, it results
in overshoot reduction as well, as we will illustrate in Section 3.2.3.

The second reset yields a reset of the integrator state z3 to zero, when the
velocity z2 hits zero after overshoot, i.e.,

z+
3 = 0, b̂+ = −b̂, (3.19c)

occurring when the following reset condition is satisfied:

z2 = 0 ∧ b̂ = −1. (3.19d)

The reset in (3.19c)-(3.19d) is required to obtain asymptotic stability of the
setpoint. Indeed, if it were absent, the reset in (3.19a) would not allow the inte-
grator state z3 to decrease in absolute sense. A sufficiently large initial condition
for z3 would then hinder asymptotic stability of the setpoint. Summarizing, the
resulting closed-loop system with the proposed reset PID controller is given
by (3.1)-(3.3), and (3.19).

3.2.3 Illustrative example

We will illustrate the working principle of the proposed reset controller by means
of a simulation example, using a numerical time-stepping scheme [2, Ch. 10]



56 Chapter 3. Reset control for stability of systems with Stribeck friction

in order to correctly deal with the set-valued friction characteristic Ψ. First
consider system (3.4), where only a classical PID controller (3.3) is employed.
The mass m is unitary, the static friction is F̄s = 0.981 N, and the velocity-
dependent friction contribution is given by

f(v̂) =

{
L2v̂, |v̂| ≤ εv
(F̄s − F̄c)κv̂/(1 + κ|v̂|)−1, |v̂| > εv,

(3.20)

with F̄c = F̄s/3 the Coulomb friction, κ = 20 is the Stribeck shape parameter,
L2 = 12.8 Ns/m, and εv = 10−3 m/s. We take k̄p = 18 N/m, k̄d = 2 Ns/m,
and k̄i = 30 N/(ms), satisfying Assumption 3.3. The constant position setpoint
is r = 0, and the initial conditions are z1(0) = −0.05 m, z2(0) = 0 m/s, and
z3(0) = 0 ms. The position response is presented in the top plot of Figure 3.2
( ), where limit cycling (hunting) is evident.

Now consider the closed-loop system (3.1)-(3.3), (3.19), where the PID con-
troller with reset enhancements is employed (the same controller gains are used
as in the classical PID case). The reset controller achieves, first, asymptotic sta-
bility of the setpoint (z1, z2) = (0, 0) (as we will prove in the next sections), and,
second, a significant overshoot reduction compared to the classical PID response,
see the top plot in Figure 3.2 ( ). Controller resets according to (3.19a)-(3.19b)
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Figure 3.2. Simulated response of z1 and control force ū for the classical ( )
and reset ( ) PID controller.
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(i.e., at a zero-crossing of the position error) and according to (3.19c)-(3.19d)
(i.e., when the velocity hits zero after the previous reset has occurred) are indi-
cated in the insets. The arising (discontinuous) control force is presented in the
bottom plot of Figure 3.2.

3.3 Hybrid system formulation of the closed
loop

In this section, we rewrite the closed-loop reset control system (3.1)-(3.3), (3.19)
in the hybrid formalism of [63] in Section 3.3.1. We provide an analysis of
relevant properties of the resulting hybrid system in Section 3.3.2.

3.3.1 Hybrid system formulation

Using the state transformation in (3.6), and the mass normalization in (3.5), we
reformulate the proposed closed-loop reset control system as a hybrid system,
denoted by Ĥ. Consider hereto the augmented state vector ranging in a con-
strained set, comprising a correct initialization of b̂ and the controller state φ̂:

ξ̂ := (x̂, b̂) = (σ̂, φ̂, v̂, b̂) ∈ Ξ̂,

Ξ̂ := {(x̂, b̂) ∈ R3 × {−1, 1} : b̂v̂σ̂ ≥ 0, σ̂φ̂ ≥ kp
ki
σ̂2, b̂v̂φ̂ ≥ 0}.

(3.21a)

The first two constraints in Ξ̂ come from the reset mechanism in (3.19a)-(3.19d)

and impose that b̂v̂ and σ̂, and σ̂ and φ̂ never have opposite signs. More specif-
ically, we exclude σ̂φ̂ <

kp
ki
σ̂2 because of the design philosophy of the controller:

the fact that z3 should always point in the direction of the setpoint implies
(z1 − r)z3 ≥ 0, and thus, by (3.6), that σ̂φ̂ ≥ kp

ki
σ̂2. Finally, it should also

be imposed that b̂v̂ and φ̂ never have opposite signs, as realized by the third
constraint in Ξ̂. We present the closed-loop model (3.7), augmented with the
resets, as the following hybrid system Ĥ:

Ĥ :


˙̂
ξ ∈ F̂(ξ̂), ξ̂ ∈ Ĉ,

ξ̂+ = ĝσ(ξ̂), ξ̂ ∈ D̂σ,

ξ̂+ = ĝv(ξ̂), ξ̂ ∈ D̂v

(3.21b)

(3.21c)

Herein, the flow map is given by

F̂(ξ̂) :=


−kiv̂
σ̂ − kpv̂

φ̂− kdv̂ − Fs Sign(v̂) + f(v̂)
0

 =

[
F̂x(x̂)

0

]
, (3.21d)
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and the jump maps are given by

ĝσ(ξ̂) :=


σ̂

−φ̂
v̂

−b̂

 , ĝv(ξ̂) :=


σ̂
kp
ki
σ̂

v̂

−b̂

 . (3.21e)

The flow and jump sets are given by

Ĉ := Ξ̂, (3.21f)

D̂σ := {ξ̂ ∈ Ξ̂ : σ̂ = 0, b̂ = 1}, (3.21g)

D̂v := {ξ̂ ∈ Ξ̂ : v̂ = 0, b̂ = −1}, (3.21h)

D̂ := D̂σ ∪ D̂v. (3.21i)

We emphasize that the sets D̂σ and D̂v are disjoints, because they correspond
to two different values of b̂.

3.3.2 Properties of Ĥ

We now present some useful properties of the hybrid closed-loop system Ĥ.
An immediate consequence of Claim 3.4 is the uniqueness of flowing solutions
to (3.21) as in the next lemma:

Lemma 3.5. Let Assumptions 3.2-3.3 hold. For each solution ξ̂1 to (3.21), each

interval Ij := {t : (t, j) ∈ dom ξ̂1} =: [tj , tj+1] with nonempty interior, and for

all t ∈ (tj , tj+1), if ξ̂2 is a solution to (3.21) on [t, t′) × {j} with t < t′ ≤ tj+1

and ξ̂2(t, j) = ξ̂1(t, j), then ξ̂2(τ, j) = ξ̂1(τ, j) for all τ ∈ [t, t′).

Proof. The lemma follows immediately from Claim 3.4, item (i) since for each

ξ̂, F̂(ξ̂) =
[
F̂x(x̂)

0

]
, and

˙̂
b = 0 in (3.21b). �

Maximal solutions to Ĥ are complete as per the next lemma.

Lemma 3.6. Under Assumptions 3.2-3.3, all maximal solutions ξ̂ to (3.21) with

ξ̂(0, 0) = ξ̂0 ∈ Ĉ ∪ D̂, are complete.

Proof. See Appendix 3.A.2. �

Consider the set

Â := {ξ̂ ∈ Ξ̂ : σ̂ = 0, |φ̂| ≤ Fs, v̂ = 0}, (3.22)

corresponding to the set of all possible equilibria for the flow map (3.21d) of Ĥ
for the state ξ̂ ∈ Ξ̂. It is immediate to show the next result.
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Lemma 3.7. For each ξ̂ ∈ SĤ(Â), rge ξ̂ ⊂ Â, i.e., Â is strongly forward invari-
ant [63, Def. 6.25].

Proof. The claim follows by inspection of all possible solutions with initial
condition in Â, which may flow in Ĉ or jump in D̂σ or D̂v. Indeed, for flow in
Ĉ ∩ Â, Claim 3.4(iii) guarantees that σ̂, φ̂, and v̂ remain constant; ĝσ(Â) ⊂ Â;
ĝv(Â) ⊂ Â. Then, Â is strongly forward invariant since solutions are complete
by Lemma 3.6. �

We formalize in the next lemma that solutions to the hybrid system (3.21)
are bounded, which is an important stepping stone towards the stability analysis
in Section 3.4 below.

Lemma 3.8. Under Assumptions 3.2-3.3, for each compact set K ⊂ Ĉ∪D̂, there
exists M > 0 such that each solution ξ̂ ∈ SĤ(K) satisfies ξ̂(t, j) ∈ MB for all

(t, j) ∈ dom ξ̂.

Proof. See Appendix 3.A.3. �

Next, we establish a useful property of Ĥ, namely that stick-to-slip transitions
must occur at instants of time separated by a guaranteed “waiting” time (or
dwell time). This dwell time is uniform in any compact set of initial conditions,
therefore it is semiglobal. To formalize such dwell time result, define the sets

Ŝ1 :={ξ̂ ∈ Ξ̂ : σ̂ ≥ 0, φ̂ ≥ Fs, v̂ = 0, b̂ = 1},

Ŝ−1 :={ξ̂ ∈ Ξ̂ : σ̂ ≤ 0, φ̂ ≤−Fs, v̂ = 0, b̂ = 1},
(3.23)

which are intuitively associated with stick-to-slip transitions, see also (3.8). We
show in Lemma 3.9 that, when the velocity v̂ reaches one of these sets, there
exists a uniform semiglobal dwell time before the velocity changes its sign, unless
it reaches the set of equilibria Â. This result plays an important role in the
stability analysis of Ĥ, since it rules out undesired Zeno solutions in Ĥ (and
in the hybrid model we present later in Section 3.4.1, where we use a hybrid
description for the Coulomb friction element).

Lemma 3.9. Let Assumptions 3.2-3.3 hold. For each compact set K ⊂ Ĉ ∪ D̂,
there exists δ(K) > 0 such that each solution ξ̂ = (σ̂, φ̂, v̂, b̂) ∈ SĤ(K) with

ξ̂(t, j) ∈ Ŝ1 (ξ̂(t, j) ∈ Ŝ−1, respectively) for (t, j) ∈ dom ξ̂ satisfies v̂(τ, j(τ)) ≥ 0
(v̂(τ, j(τ)) ≤ 0, respectively) for all τ ∈ [t, t+ δ(K)].

Proof. See Appendix 3.A.5. �

Intuitively speaking, Lemma 3.9 entails the existence of a uniform dwell time
between two subsequent stick-to-slip transitions or velocity reversals. Finally,
we show that solutions are complete also in the ordinary-time direction (i.e.,
t-completeness) as long as these evolve outside Â in (3.22).
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Lemma 3.10. Under Assumptions 3.2-3.3, all maximal solutions ξ̂ to (3.21)

with ξ̂(t, j) /∈ Â for all (t, j) ∈ dom ξ̂, satisfy supt dom ξ̂ = +∞.

Proof. see Appendix 3.A.7. �

Note that solutions in the set of equilibria Â may evolve in different ways,
i.e., different flow/jump combinations, including Zeno solutions. In any case,
stability of the closed-loop system is preserved by Lemma 3.7.

3.4 Stability analysis

Using the properties of the closed-loop system Ĥ as analyzed in the previous
section, we prove in this section that the set of equilibria Â in (3.22) is globally
asymptotically stable for closed-loop system Ĥ in (3.21). In order to arrive at
such a result, we take the following steps. First, we introduce a hybrid systemHδ
in Section 3.4.1, that is (semiglobally) equivalent to Ĥ in (3.21). In particular,
we exploit a hybrid description of the set-valued Coulomb friction element and
show that solutions to Ĥ are contained in the solution set of Hδ. We then
prove global asymptotic stability of a suitable attractor to the proposed hybrid
model Hδ in Section 3.4.2. Finally, we formalize global asymptotic stability of
Â for dynamics Ĥ in Theorem 3.14 below, and prove the theorem using the
aforementioned ingredients in Section 3.4.3.

3.4.1 Hybrid model Hδ

We now present a hybrid modelHδ based on a hybrid description of the Coulomb
friction element. The proposed model Hδ captures the evolution between the
logical states “stick” and “slip” (cf. (3.8)) via appropriate jump policies. To this
end, we introduce the state q ∈ {−1, 0, 1}, which is used to distinguish whether
the system is in stick (q = 0), slip with nonnegative velocity (q = 1), or slip with
nonpositive velocity (q = −1). With the state q, it becomes possible to write
the Coulomb friction element in Ĥ as a hybrid system, instead of a differential
inclusion. Moreover, we introduce a timer τ ∈ [0, 2δ] that ensures the absence of
Zeno solutions in Hδ, related to the existence of a uniform δ > 0 (in a semiglobal
fashion) by Lemma 3.9.

Consider the hybrid system Hδ in (3.24), parameterized by δ > 0, with
overall state

ξ := (σ, φ, v, b, q, τ) ∈ Ξ,

Ξ := {ξ ∈ R3 × {−1, 1} × {−1, 0, 1} × [0, 2δ] :

qv ≥ 0, bqσ ≥ 0, σφ ≥ kp
ki
σ2, bqφ ≥ 0}.

(3.24a)
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For each δ > 0, Hδ is defined as

Hδ :


ξ̇ = F(ξ), ξ ∈ Cslip ∪ Cstick

ξ+ ∈
⋃

p∈{σ,v,1,−1,0} :
ξ∈Dp

{gp(ξ)} =: G(ξ), ξ ∈
⋃

p∈{σ,v,1,−1,0}

Dp.

(3.24b)

(3.24c)

The flow map is given by

F(ξ) :=


−kiv
σ − kpv

−kdv + |q|φ− q(Fs − h(v))
0
0

1− dz1(τ/δ)

 , (3.24d)

with h defined from the velocity-dependent contribution of the friction f as

v 7→ h(v) := |f(v)|. (3.24e)

The jump maps are given by

gσ(ξ) :=
[
σ −φ v −b q τ

]>
,

gv(ξ) :=
[
σ

kp
ki
σ v −b q τ

]>
,

g1(ξ) :=
[
σ φ v b 1 0

]>
,

g−1(ξ) :=
[
σ φ v b −1 0

]>
,

g0(ξ) :=
[
σ φ v b 0 τ

]>
.

(3.24f)

The flow and jump sets are defined as

Cslip := {ξ ∈ Ξ: |q| = 1},
Cstick := {ξ ∈ Ξ: q = 0, v = 0, |φ| ≤ Fs},
Dσ := {ξ ∈ Ξ: |q| = 1, σ = 0, b = 1},
Dv := {ξ ∈ Ξ: q = 0, v = 0, b = −1},
D1 := {ξ ∈ Ξ: q = 0, v = 0, φ ≥ Fs, b = 1, τ ∈ [δ, 2δ]},
D−1 := {ξ ∈ Ξ: q = 0, v = 0, φ ≤ −Fs, b = 1, τ ∈ [δ, 2δ]},
D0 := {ξ ∈ Ξ: |q| = 1, v = 0},

(3.24g)

and are visualized in Figure 3.3. Based on (3.24g), we define

C := Cslip ∪ Cstick,
D := Dσ ∪ Dv ∪ D1 ∪ D−1 ∪ D0,

(3.24h)
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Dσ
Dv

−Fs

Figure 3.3. Projections to the (σ, φ, v) space of the flow and jump sets

in (3.24g), indicating the sector condition σφ ≥ kp
ki
σ2.

and note that C∪D ⊂ Ξ. The hybrid automaton corresponding to Hδ is depicted
in Figure 3.4.

We will now show that the hybrid automaton model Hδ in (3.24) captures all
solutions to the original closed-loop model Ĥ in (3.21) in a semiglobal fashion,
which verifies the equivalence between the two models. For a hybrid solution
ψ, we use the notation jψ(t) := min(t,j)∈domψ j to emphasize that for the same
t ≥ 0, jξ(t) may be different from jξ̂(t). We then have the next lemma.

Lemma 3.11. Let Assumptions 3.2-3.3 hold. For each compact set K ⊂
Ĉ ∪ D̂, there exists δ(K) > 0 such that for each solution ξ̂ = (σ̂, φ̂, v̂, b̂) ∈
SĤ(K), there exists q0, τ0 such that, for some solution ξ = (σ, φ, v, b, q, τ) ∈
SHδ(K)

((ξ̂0, q0, τ0)), it holds for all t ≥ 0 such that ξ̂(t, j(t)) 6∈ Â that

σ̂(t, jξ̂(t)) = σ(t, jξ(t)), φ̂(t, jξ̂(t)) = φ(t, jξ(t)),

v̂(t, jξ̂(t)) = v(t, jξ(t)), b̂(t, jξ̂(t)) = b(t, jξ(t)).
(3.25)

Proof. see Appendix 3.A.8. �

Note that the statement of Lemma 3.11 builds directly upon the t-completeness
of maximal solutions ξ̂ by Lemma 3.10.

q = 1

b = 1

q = 1

b = −1

q = −1
b = 1

q = −1
b = −1

q = 0 Dσ
D0

D0
Dσ D0 D0

τ +

=
0

τ
+
=
0

Dv

τ ∈
[δ
, 2
δ]
τ ∈

[δ, 2δ]

D1D−1

Figure 3.4. Hybrid-automaton illustration of (3.24).
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3.4.2 Stability analysis of Hδ

Define the set

A := {ξ ∈ Ξ : σ = v = 0, φ ∈ Fs Sign(bq)}. (3.26)

We prove global asymptotic stability of A for (3.24). To this end, consider the
Lyapunov function

V (ξ) =

[
σ
v

]> [ kd
ki

−1

−1 kp

] [
σ
v

]
+ |q|(φ− bqFs)2

+ (1− |q|)dz2
Fs(φ) + 2

kp
ki
Fs (bqσ + (1− |q|)|σ|) , (3.27)

where the first three terms can be seen as a smooth version of the Lyapunov
function employed in [29, Eq. (13)]. Consider the following definitions. For a
jump map gp : Rn → Rn indexed by p, and function V : Rn → Rn, ∆Vp(ξ) :=
V (gp(ξ)) − V (ξ). We denote ∂V (y) as the Clarke generalized gradient of V at
y (see [45, Ch. 2] for a formal definition). With these definitions in place, the
next lemma asserts that V is nonincreasing along solutions to Hδ.

Lemma 3.12. Under Assumptions 3.2-3.3, the Lyapunov function V in (3.27)
satisfies the next properties.

1. For each ξ ∈ C ∪ D, V (ξ) ≥ 0 and V (ξ) = 0 if and only if ξ ∈ A;

2. V ◦(ξ) := max
ν∈∂V (ξ)

〈ν,F(ξ)〉 ≤ −2(kpkd − ki)v2 − 2|q||σ|h(v) − 2kpqv(Fs −

h(v)) ≤ 0 for all ξ ∈ C;

3. ∆Vσ(ξ) = 0 for all ξ ∈ Dσ;

4. ∆Vv(ξ) ≤ 0 for all ξ ∈ Dv;

5. ∆Vi(ξ) ≤ 0 for all ξ ∈ Di, i ∈ {1,−1};

6. ∆V0(ξ) ≤ 0 for all ξ ∈ D0.

Proof. See Appendix 3.A.9. �

We now turn to global asymptotic stability of the set A for Hδ. Its proof is
based on a hybrid invariance principle presented in [135].

Proposition 3.13. Under Assumptions 3.2-3.3 and δ > 0, the set A in (3.26)
is globally asymptotically stable for Hδ in (3.24).

Proof. See Appendix 3.A.10. �
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3.4.3 Global asymptotic stability of Â for Ĥ

We now exploit the fact that solutions to Ĥ are contained inHδ (by Lemma 3.11),
and the fact that A is globally asymptotically stable forHδ (by Proposition 3.13)
to prove global asymptotic stability of Â for Ĥ. Consider hereto the following
theorem.

Theorem 3.14. Under Assumptions 3.2-3.3, Â in (3.22) is globally asymptot-
ically stable for Ĥ in (3.21).

Proof. see Appendix 3.A.11. �

3.5 Experimental case study

In this section, we demonstrate the working principle and the effectiveness of
the proposed reset controller on the sample manipulation stage of an electron
microscope, discussed in Section 2.5.1. First, we show that employing a clas-
sical (linear) PID controller indeed leads to limit cycling (hunting), as pointed
out in Section 3.1. Second, we discuss particular conditions for the robust de-
tection of a zero crossing of the position error, and for the detection of zero
velocity, facilitating the application of our proposed reset controller. Then, we
show 1) the stability properties of the reset controller in the presence of fric-
tion with unknown static and velocity-dependent contributions (including the
Stribeck effect), and 2) that overshoot is reduced with respect to the classical
PID controller.

For frequencies up to 200 Hz, the system dynamics can be well described
by (3.1) for which Theorem 3.14 applies when interconnected with the proposed
reset PID controller. In this case, z1 represents the position of the carriage.
The mass m = 172.6 kg consists of the transformed inertia of the motor and
the spindle (with an equivalent mass of 171 kg), and of the mass of the carriage
(1.6 kg). The friction force is mainly induced by the bearings supporting the
motor axis and the spindle (see 8 in Figure 2.4), by the contact between the
spindle and the nut, and, to a lesser extent, by the contact between the carriage
and the guidance. The contact between the spindle and the nut is lubricated,
which induces the Stribeck effect. Since the system is rigid and behaves as a
single mass for frequencies up to 200 Hz, these friction forces can be summed
up to provide a single net friction characteristic Ψ in (3.1). The desired position
accuracy to be achieved is 10 nm, as specified by the manufacturer.

Remark 3.15. The experimental setup is also used in the case study of Chap-
ter 2, where dominantly Coulomb and viscous friction was present. For the
experiments in this chapter, however, a different carriage position and spindle
orientation, and different lubrication conditions are used, that result in a signif-
icant Stribeck effect instead, as illustrated in the next section. y
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3.5.1 Classical PID control

Experiments with a classical PID controller have been performed with controller
gains k̄p = 107 N/m, k̄d = 2 · 103 Ns/m, and k̄i = 108 N/(ms) satisfying As-
sumption 3.3. Indeed, the conditions in Assumption 3.3 are equivalent to k̄p > 0,

k̄i > 0, and
k̄p(k̄d+α)

m > k̄i. The latter holds since α > 0 and the PID controller

gains above satisfy
k̄pk̄d
m > k̄i. The position response and corresponding control

force are visualized in Figure 3.5 for three different experiments. Limit cycling,
and thus the lack of asymptotic stability of the setpoint, is clearly visible, and
confirms the presence of a significant Stribeck effect.

3.5.2 Reset PID control

We now employ the proposed reset controller, with the same controller gains as
for the classical PID case. Note first that the jump sets and maps of the reset
controller (3.3), (3.19) are given by

D̂σ := {(z, b̂) : (z1 − r) = 0, b̂ = 1}, (3.28a)

D̂v := {(z, b̂) : z2 = 0, (z1 − r)z3 ≥ 0, b̂ = −1}, (3.28b)

ĝσ = (z1, z2,−z3,−b̂), (3.28c)
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Figure 3.5. Position response and control force for three experiments with a
classical PID controller. The desired accuracy band (see ( ) in the top plot)
is clearly not achieved with the classical PID controller
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ĝv = (z1, z2, 0,−b̂). (3.28d)

The controller reset conditions in (3.28) are not robust to measurement noise, in
the sense that detecting (z1 − r) = 0 and in particular z2 = 0 in the presence of
noise is challenging. We therefore need to apply robust detection laws for a zero-
crossing of z1, and for z2 hitting zero. Moreover, a suitable stopping criterion is
employed such that resets are disabled as soon as the position error is within the
desired accuracy band of 10 nm, specified by the manufacturer. Such a stopping
criterion prevents the system from experiencing multiple (undesired) consecutive
controller resets, that are (possibly) triggered by measurement noise, when the
system is sufficiently close to the setpoint. Although other robust detection
mechanisms exist, we choose here to apply the following conditions. Overshoot
(i.e., a zero-crossing of (z1 − r)) is detected in the same way as in (2.8e), by
evaluating the product of the PI control force and the position error. Hitting
zero velocity is detected in the same way as in (2.8e) as well, by evaluating
the product between the PI control force and the velocity. The robust reset
conditions are then given by the following jump sets:

D̄σ := {(z, b̂) : k̄i(z1 − r)(k̄p(z1 − r) + k̄iz3) ≤ 0, b̂ = 1}, (3.29a)

D̄v := {(z, b̂) : − z2(k̄p(z1 − r) + k̄iz3) ≥ 0, (z1 − r)z3 ≥ 0, b̂ = −1}. (3.29b)

Controller resets are disabled whenever |z1 − r| ≤ 10 nm, after a reset in D̄v
to avoid chattering due to resets triggered by measurement noise. Note that
k̄i(z1 − r)(k̄p(z1 − r) + k̄iz3) ≤ 0 in (3.29a) is satisfied as soon as (z1 − r)
hits zero (see also Sections 2.2 and 2.3), corresponding to a zero-crossing of the
position error. Moreover, −z2(k̄p(z1− r) + k̄iz3) ≥ 0 in (3.29b) is satisfied (after
a zero-crossing of the error) as soon as the velocity z2 hits zero (as desired),
similar to the zero velocity detection mechanism in Sections 2.2 and 2.3.

Consider Figure 3.6, where the position error and control force for three
experiments with the proposed reset controller are presented. The controller
resets are enabled as soon as the PI control force and the position error have the
same sign after the first zero crossing of the error, indicated by the vertical dashed
lines. First and foremost, we observe that, using the reset enhancements, the
system settles within the desired accuracy band of 10 nm after a single reset in
D̄σ and D̄v, see the top subplot (in contrast to the classical PID controller, which
does not result in the desired positioning accuracy, cf. Figure 3.5). Secondly,
the controller reset in D̄σ suppresses overshoot, compared to the classical PID
controller with the same gains. Third, the reset conditions in the jump sets D̄σ
and D̄v indeed cause the controller to reset at the correct instances, despite the
presence of measurement noise. The corresponding control force, displayed in
the lower subplot, is discontinuous due to the controller resets, as highlighted in
the inset.

Let us now analyze the response at the nanometer scale in more detail. Con-
sider hereto the position error response as a result of the controller resets in
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Figure 3.6. Position response and control force for three experiments with the
reset PID controller.

more detail, using Figure 3.7. In this figure, a time interval where b̂ = −1 is
indicated in gray; its boundaries then indicate a reset instant. Similarly, the
white areas correspond to an interval where b̂ = 1. First, consider the upper left
subplot, which shows a zoomed view of the position error of the blue response
of Figure 3.6. As soon as the error crosses zero, a controller reset is triggered
that toggles the sign of z3, according to (3.28c). As a result of stiffness-like ef-
fects in the friction characteristic of the system (see Section 2.5.4, [12, Sec. 2.1])
combined with the sudden (large) change in control force, a “jump” in the posi-
tion error is observed, which prevents the system from actual overshooting the
setpoint. Thereafter, the reset according to (3.28d) occurs which resets z3 zero.
Similarly, due to the stiffness effects, a jump in the position error occurs again
(but lower in magnitude due to the smaller discontinuity in the control force,
compared to a reset in D̄σ). We then observe that the position error crosses
zero slowly as a result of frictional creep effects (see Sections 1.1.1 and 2.5.4,
and [131]), see the inset in the top subplot of Figure 3.6, but the position error
remains well within the desired accuracy band of 10 nm, so further resets are
disabled according to our stopping criterion.

Remark 3.16. The stopping criterion, i.e., |z1 − r| ≤ 10 nm, is evaluated only
after each reset in (3.28d), because having zero integral action in combination
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with the presence of static friction yields robustness to other force disturbances.
y

Next, we analyze the reset conditions in (3.29a) and (3.29b). Consider hereto
the upper right and lower subplot in Figure 3.7, which show the reset conditions
as a function of time for the blue response in Figure 3.6. From the upper
left and right subplots, it is evident that indeed a reset according to (3.28c)

occurs whenever b̂ = 1 and k̄i(z1 − r)(k̄p(z1 − r) + k̄iz3) ≤ 0, which is satis-
fied as soon as the position error crosses zero (see also Figure 3.6). Because
overshoot is prevented due to the frictional stiffness effects, the reset condition
k̄i(z1 − r)(k̄p(z1 − r) + k̄iz3) ≤ 0 remains true after the reset. However, b̂ = −1
prevents further resets in D̄σ, which shows that the proposed reset controller
exhibits further robustness characteristics with respect to such small-scale fric-
tional effects as well.

Now consider the lower left subplot, and recall that a reset according
to (3.28d) should occur whenever b̂ = −1 (satisfied because of the occur-
rence of the previous reset according (3.28c)), and when the velocity hits
zero. Detecting the latter is successfully done by evaluating the inequality
−z2(k̄p(z1 − r) + k̄iz3) ≥ 0, cf. (3.29b), even though the velocity signal ex-
periences lag due to online lowpass filtering to reduce noise. Since the error
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z1 − r is now within the desired accuracy band, the stopping criterion prevents
further resets.

Summarizing, the use of the proposed reset control strategy results in a high
setpoint-accuracy, in contrast to the use of a classical PID controller, which
results in limit cycling. Moreover, overshoot is suppressed, and the controller
reset conditions rely only on measurable signals, causing the controller to reset
at the correct instances, despite the presence of inevitable measurement noise.

3.6 Conclusions

We proposed a novel reset integrator control strategy for motion systems with
Coulomb and velocity-dependent friction (including the Stribeck effect) that
achieves 1) global asymptotic stability of the setpoint for unknown static and
unknown velocity-dependent friction, and, 2) reduces overshoot with respect to
the classical PID controller with the same controller gains. The closed-loop sys-
tem dynamics is formulated as a hybrid system, using a novel hybrid description
of the Coulomb friction element, and global asymptotic stability of the setpoint is
proven. The working principle and effectiveness of the controller are experimen-
tally demonstrated in a case study on a high-precision positioning application,
using reset conditions that are designed such that controller resets are correctly
triggered despite the presence of measurement noise.

3.7 Final remarks

The developments in this chapter focussed primarily on stabilization of the set-
point, whereas transient performance in terms of settling time has not been ad-
dressed explicitly. Stability of the setpoint is indeed achieved with the proposed
reset controller, but the intervals of stick in the resulting position error response
increase with a decreasing position error, clearly illustrated in Figure 3.2. As
discussed in Chapter 2, such a response leads to large settling times. The re-
set controller proposed in Chapter 2 addresses transient performance instead
(although not taking into account the Stribeck effect), which design philosophy
may be applied to the reset controller proposed in this chapter, so that settling
times may be reduced in this case as well.

3.8 In retrospect: experimental case study on a
Clegg reset controller

So far, we have proposed and analyzed a reset control strategy for setpoint
stabilization of motion systems with Stribeck friction. The controller contains
two resets in order to guarantee setpoint stability, as proven in Section 3.4 and
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validated experimentally in Section 3.5. In this section, we show experimentally
that the application of a Clegg reset integrator, see [46], also removes the hunting
limit cycle (present when a classical PID controller is employed), and results in
a high positioning accuracy as well. Although setpoint stability is not proven
formally here for such Clegg integrator applied to a frictional motion control
problem, the Clegg reset integrator is easier to implement. In particular, there
is no need for velocity measurements to detect the reset conditions, as opposed
to the controller in the main result of this chapter.

In hindsight of the developments presented so far in this chapter, the key
mechanism of breaching persistent friction-induced limit cycling is to prevent
overcompensation of friction in the slip phase (subsequent to a stick phase). In
other words, the control force acting on the system should decrease more than
the decrease in friction force associated with the velocity-weakening effect. Due
to the unknown nature of the friction characteristic, we will show experimentally
that a sufficient decrease in control force can be realized by employing a Clegg
reset integrator as well.

Let us first analyze the friction-induced limit cycles in more detail. To this
end, consider the PID controlled inertia subject to Stribeck friction as in (3.1)-
(3.3) (where we assume that r = 0 and m = 1, without loss of generality). The
mechanical energy of the system given by

E =
1

2
z2

2 +
1

2
kpz

2
1 . (3.30)

Consider Figure 3.8, which depicts a simulation result of closed-loop sys-
tem (3.1)-(3.3) with a friction characteristic and controller parameters as in Sec-
tion 3.2.3, and initial conditions z1(0) = −0.3 m, z2(0) = 0 m/s, and z3(0) = 0
ms. After the transient, hunting is indeed observed in the top subplot. The
middle subplot denotes the control force, where it can be seen that the integra-
tor builds up control force during a stick phase, eventually compensating for the
static friction. As soon as the mass starts to slip, the friction force decreases
due to the velocity-weakening effect, but the integral buffer has not yet been
depleted such that the control force overcompensates the friction force. This
repeating process results in a stick-slip limit cycle around the setpoint. The
energy E in (3.30) as a function of time is presented in the lower left subplot,
where the energy during a single interval of slip [ta, tb] is highlighted in gray.
Observe that E(ta) = E(tb) since z2(ta) = z2(tb) = 0, and z1(ta) = z1(tb). The
rate of change in mechanical energy is nonzero only in the slip phases, and is for
the PID-controlled system (3.1)-(3.3) given by

Ė = −z2F̄s sign(z2) + z2f̄(z2)− k̄dz2
2 − k̄iz2z3

≤ −k̄dz2
2 − k̄iz2z3, ∀ z2 6= 0,

(3.31)

because z2F̄s sign(z2) > z2f̄(z2) by Assumption 3.2. As a result, only the sign-
indefinite term −k̄iz2z3 contributes to an increase in E so that E(tb) = E(ta) is
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Figure 3.8. Position response, control force, and energy (as in (3.30)) for a
PID controller with linear integrator ( ) and Clegg reset integrator ( ).

indeed obtained. By manipulating the integrator state z3 on the interval [ta, tb],
we may achieve a net energy dissipation in the slip phase such that a limit cycle
is prevented.

Consider the following PID-based controller, where the linear integrator ac-
tion as in (3.3) is now replaced by a Clegg integrator (see [46]) augmented with
a temporal regularization, see [151, Eq. (8)-(10)], i.e.,[

ż3

τ̇

]
=

[
z1

1

]
when z1z3 ≥ 0 or τ ≤ ρ (3.32a)

[
z+

3

τ+

]
=

[
0
0

]
when z1z3 ≤ 0 and τ ≥ ρ (3.32b)

ū = −k̄pz1 − k̄dz2 − k̄iz3, (3.32c)

with τ ≥ 0 a timer variable. The integrator in (3.32) acts like a linear integrator
whenever its input (i.e., the position error z1) and state (i.e., z3) have the same
sign, and resets its state z3 to zero otherwise. A controller reset hence occurs
at a zero-crossing of z1. Furthermore, we employ the temporal regularization to
eliminate Zeno behavior (see [63, Def. 2.5] and Appendix A). In practice, the
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temporal regularization avoids chattering of the control signal by imposing that
after any controller reset, at least a time interval of length ρ > 0 has to expire
before a subsequent reset is allowed.

Consider again the rate of change in the energy in (3.31). For the reset
controller (3.32), it holds that the term −k̄iz2z3 is positive before overshoot (i.e.,
a zero-crossing of z1), similar to the classical PID controller. After overshoot,
however, z1 changes sign such that a reset according to (3.32b) is triggered,
rendering the term −k̄iz2z3 strictly negative (because z2 is nonzero during slip).
Hence, by employing the controller reset, we enforce a strict decrease in energy
in the slip phase after overshoot, which is not obtained by the classical PID
controller. As a result of this dissipation, it is expected that a limit cycling can
not be maintained. Consider the simulation results in Figure 3.8, where, with
the Clegg integrator applied, indeed a net decrease in energy is obtained during
each slip interval, as depicted in the lower right subplot. The top subplot shows
a decreasing error response, indicating stability of the setpoint.

We now demonstrate the working principle of the Clegg reset controller (3.32)
on the experimental setup discussed in Section 2.5.1. Note that the application
of a classical PID controller results in limit cycles, as already demonstrated in
Figure 3.5. Several experiments with the Clegg integral controller (3.32) have
been performed. Three responses are visualized in Figure 3.9, where we enable
resets after 10 s (i.e., on the interval [0, 10] a classical integrator is active).
Using the Clegg reset controller, the system consistently achieves a setpoint
accuracy close to the noise level of the position measurements, and well within
the specified accuracy band of 10 nm, after two resets. The lower subplot in
Figure 3.9 shows the control force. The effect of resetting the integrator to zero
upon a zero-crossing of z1 is evident. Moreover, the dwell-time parameter τ
in (3.32) avoids persistent controller resets when the setpoint has been reached
within the measurement accuracy, thereby avoiding a chattering control signal
(see the insets in Figure 3.9). Moreover, the reset mechanism avoids that the
integrator state grows when the system is close to the setpoint, so that the control
force is significantly lower than the static friction value, providing robustness to
other force disturbances.

As the experimental results indicate, employing the Clegg integrator on a
system with Stribeck friction may result in a high setpoint accuracy, in contrast
to the classical PID controller. The essential insight is that a Clegg integrator
realizes a sufficient reduction of the control force that counteracts the decrease
in friction force as a result of the Stribeck effect. Overcompensation of friction
is thereby avoided (a formal proof of stability has not been given, which is an
interesting challenge for future research). We care to emphasize that such insight
played a key role in the design of the reset controller in the main result of this
chapter as well.
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3.A Proofs

3.A.1 Proof of Claim 3.4

We prove each item separately.
Item (i). As for completeness of solutions from each x̂0 ∈ R3, note first that

the set-valued mapping F̂x is outer semicontinuous, locally bounded, and such
that, for each x̂ ∈ R3, F̂(x̂) is nonempty and convex. Then, results such as [63,
Prop. 6.10] guarantee completeness of maximal solutions because no finite escape
times can occur for (3.10).

We prove then uniqueness of complete solutions from x̂0. With L in Assump-
tion 3.2(iii), define

fL(v̂) := Lv̂ − f(v̂), (3.33)

and note that fL is nondecreasing. Indeed, for v̂1 < v̂2, −L(v̂2 − v̂1) ≤ f(v̂2)−
f(v̂1) ≤ L(v̂2 − v̂1) from Assumption 3.2(iii), hence Lv̂1 − f(v̂1) ≤ Lv̂2 − f(v̂2),
so that v̂1 < v̂2 implies

fL(v̂1) := Lv̂1 − f(v̂1) ≤ Lv̂2 − f(v̂2) =: fL(v̂2).

By defining
ΨL(v̂) := Fs Sign(v̂) + fL(v̂), (3.34)

(3.10) is equivalently rewritten as

˙̂x ∈

0 0 −ki
1 0 −kp
0 1 L− kd

 x̂−
0

0
1

ΨL(v̂)

=: ALx̂− e3ΨL(v̂).

(3.35)

Consider two complete solutions x̂a = (σ̂a, φ̂a, v̂a) and x̂b = (σ̂b, φ̂b, v̂b) with
the same initial condition x̂0, i.e., x̂a(0) = x̂b(0) = x̂0, and we show now that
x̂a(t) = x̂b(t) for all t ≥ 0. Define η = (η1, η2, η3) := x̂a − x̂b, so that η(0) = 0.
The solutions x̂a and x̂b are complete, so we have by (3.35) that for almost all
t ≥ 0

η̇(t) ∈ ALη(t)− e3 (ΨL(v̂a(t))−ΨL(v̂b(t))) .

With λ denoting the maximum singular value of AL, we have for almost all t ≥ 0

d

dt

|η(t)|2

2
∈ η(t)>ALη(t) + η3(t) (ΨL(v̂b(t))−ΨL(v̂a(t)))

=⇒ d

dt

|η(t)|2

2
≤ λ|η(t)|2 +N(t), (3.36)

where
N(t) := max

fb∈ΨL(v̂a(t)−η3(t))
fa∈ΨL(v̂a(t))

η3(t) (fb − fa) . (3.37)
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Note that N(t) in (3.37) can be rewritten equivalently by (3.34) as

N(t) = max
f ′b∈Fs Sign(v̂a(t)−η3(t))

f ′a∈Fs Sign(v̂a(t))

η3(t)
(
f ′b − f ′a + fL

(
v̂a(t)− η3(t)

)
− fL

(
v̂a(t)

))
.

Whether v̂a(t) and v̂a(t)− η3(t) are positive, zero, or negative, inspection of all
cases reveals that N(t) ≤ 0 for all t ≥ 0 because we established above that fL is
nondecreasing. As a result, (3.36) satisfies

d

dt

|η(t)|2

2
≤ λ|η(t)|2, (3.38)

for almost all t ≥ 0. Then, η(0) = 0 implies η(t) = 0 for all t ≥ 0 by standard
comparison theorems (e.g., [83, Lem. 3.4]).

Item (ii). The proof of this item and the following ones is based on the proof

of [29, Claim 1]. We only consider v̂0 = 0, φ̂0 > Fs because the other cases are
handled similarly. From (3.14) we have ˙̃v = φ̃ − kdṽ − Fs + f(ṽ) with ṽ0 = 0,
φ̃0 > Fs so that ˙̃v(0) > 0. Hence, there exists T > 0 such that for all t ∈ (0, T ],
ṽ(t) > 0 and Fs Sign(ṽ(t)) = {Fs}. Therefore, this unique solution x̃ to (3.14)
substituted in (3.10) satisfies indeed ˙̃x(t) ∈ F̂x(x̃(t)) for almost all t ∈ [0, T ].

Item (iii). We only consider v̂0 = 0, σ̂0 > 0, φ̂0 ∈ [−Fs, Fs) because the other
cases are handled similarly. The explicit solution to (3.15) is then σ̃(t) = σ̂0 > 0,

φ̃(t) = φ̂0+σ̂0t, ṽ(t) = 0 on the interval [0, T ] := [0, Fs−φ̂0

σ̂0
]. This unique solution

x̃ to (3.15) substituted in (3.10) satisfies indeed ˙̃x(t) ∈ F̂x(x̃(t)) for almost all
t ∈ [0, T ] because for all t ∈ [0, T ] a value of Sign(0) can be selected such that

0 ∈ φ̂0 + σ̂0t− Fs Sign(0).
Item (iv). This item is proven as item (ii).

3.A.2 Proof of Lemma 3.6

First, we show that for each ξ̂0 = (σ̂0, φ̂0, v̂0, b̂0) ∈ Ĉ ∪ D̂ there exists a nontrivial

solution ξ̂ to Ĥ starting from ξ̂0 (i.e., dom ξ̂ contains at least one point different
from (0, 0)). For convenience, we rephrase the conditions in Ĉ = Ξ̂ as:

h1(ξ̂) := b̂σ̂v̂ ≥ 0, h2(ξ̂) := σ̂φ̂− kp
ki
σ̂2 ≥ 0, h3(ξ̂) := b̂v̂φ̂ ≥ 0. (3.39)

We divide into the cases b̂0 = 1 and b̂0 = −1.
For b̂0 = 1, a nontrivial solution exists for ξ̂0 ∈ D̂σ, where σ̂0 = 0. We then

need to show that for each ξ̂0 ∈ Ĉ\D̂σ, there exists a nontrivial flowing solution

(i.e., an absolutely continuous function ξ̂ : [0, T ] → R4 with T > 0 satisfying
˙̂
ξ(t) ∈ F̂(ξ̂(t)) for almost all t ∈ [0, T ], such that ξ̂(0) = ξ̂0 and ξ̂(t) ∈ Ĉ for all

t ∈ (0, T ]). We then list all possible cases for ξ̂0 ∈ Ĉ\D̂σ, and show that there
exists a nontrivial flowing solution starting from each of these cases.
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1. σ̂0 > 0, v̂0 > 0, φ̂0 >
kp
ki
σ̂0 or σ̂0 < 0, v̂0 < 0, φ̂0 <

kp
ki
σ̂0: a nontrivial flow-

ing solution defined as above exists because these points belong to the interior
of Ĉ.

2. σ̂0 > 0, v̂0 > 0, φ̂0 =
kp
ki
σ̂0 or σ̂0 < 0, v̂0 < 0, φ̂0 =

kp
ki
σ̂0: in the

former case, we need to verify that the corresponding flowing solution belongs
to Ĉ in (3.21f). Since σ̂0, v̂0, and φ̂ are strictly positive, it holds h1(ξ̂(t)) > 0

and h3(ξ̂(t)) > 0 for t ∈ [0, T ] with T > 0. Since φ̂0 =
kp
ki
σ̂0, it holds that

h2(ξ̂(0)) = 0. It is sufficient to verify that ḣ2(ξ̂(0)) > 0 to conclude the existence

of a nontrivial flowing solution. Indeed, ḣ2(ξ̂(0)) = −kiv̂0φ̂0 + σ̂0(σ̂0 − kpv̂0) −
2
kp
ki
σ̂0(−kiv̂0) = σ̂2

0 > 0. The latter case follows analogously.

3. σ̂0 > 0, v̂0 = 0, φ̂0 >
kp
ki
σ̂0 or σ̂0 < 0, v̂0 = 0, φ̂0 <

kp
ki
σ̂0: in the

former case, σ̂0 > 0, v̂0 = 0, φ̂0 >
kp
ki
σ̂0 > 0 can only correspond to an initial

condition in (3.11) or (3.12) in Claim 3.4, which both give rise to v̂(t) ≥ 0 for

all t ∈ [0, T ] by Claim 3.4, items (ii) and (iii). Then, it holds h1(ξ̂(t)) ≥ 0 and

h3(ξ̂(t)) ≥ 0 for t ∈ [0, T ] with T > 0 (by shrinking T > 0 if needed). Moreover,

ḣ2(ξ̂(0)) = −kiv̂0φ̂0 + σ̂0(σ̂0 − kpv̂0) − 2
kp
ki
σ̂0(−kiv̂0) = σ̂2

0 > 0, so it also holds

that h2(ξ̂(t)) ≥ 0 for t ∈ [0, T ] with T > 0 and a nontrivial flowing solution
exists. The latter case follows analogously.

4. σ̂0 > 0, v̂0 = 0, φ̂0 =
kp
ki
σ̂0 or σ̂0 < 0, v̂0 = 0, φ̂0 =

kp
ki
σ̂0: analogous to

item 3) above.

For b̂0 = −1, a nontrivial solution exists for ξ̂0 ∈ D̂v, where v̂0 = 0. We
then need to show that for each ξ̂0 ∈ Ĉ\D̂v, there exists a nontrivial flowing

solution. We then list all possible cases for ξ̂0 ∈ Ĉ\D̂v, and show that there
exists a nontrivial flowing solution starting from each of these cases.

1’ v̂0 > 0, σ̂0 < 0, φ̂0 <
kp
ki
σ̂0 or v̂0 < 0, σ̂0 > 0, φ̂0 >

kp
ki
σ̂0: a nontrivial flow-

ing solution defined as above exists because these points belong to the interior
of Ĉ.

2’ v̂0 > 0, σ̂0 < 0, φ̂0 =
kp
ki
σ̂0 or v̂0 < 0, σ̂0 > 0, φ̂0 =

kp
ki
σ̂0: in the former

case, the conditions for h1 and h3 hold trivially. The condition for h2 holds
because ḣ2(ξ̂(0)) = σ̂2

0 > 0. The latter case follows analogously.

3’ v̂0 > 0, σ̂0 = 0, φ̂0 <
kp
ki
σ̂0 or v̂0 < 0, σ̂0 = 0, φ̂0 >

kp
ki
σ̂0: in the former

case, the condition for h3 holds trivally, the condition for h1 holds because ˙̂σ(0) =

−kiv̂(0) < 0, and the condition for h2 holds because ḣ2(ξ̂(0)) = −kiv̂0φ̂0 > 0.
The latter case follows analogously.

4’ v̂0 > 0, σ̂0 = 0, φ̂0 =
kp
ki
σ̂0 or v̂0 < 0, σ̂0 = 0, φ̂0 =

kp
ki
σ̂0: in the former

case, the condition for h1 holds because ˙̂σ(0) = −kiv̂(0) < 0, the condition for
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h2 holds because ḣ2(ξ̂(0)) = 0 and, after some computations, ḧ2(ξ̂(0)) = 0 and
...
h 2(ξ̂(0)) = 3k2

i v̂
2
0 > 0. Finally, the condition for h3 holds because ḣ3(ξ̂(0)) > 0.

The latter case follows analogously.

Second, we show that solutions are complete through [62, Thm. S3], which is
applicable because the hybrid system Ĥ satisfies the Basic Assumptions of [62,
p. 43]. Then, only one of the cases (a)-(c) of the theorem holds. First, [62,
Thm. S3, case (b)] cannot occur because the flow map is a linear system with
bounded input. Second, [62, Thm. S3, case (c)] cannot occur because ĝσ(D̂σ) ∪
ĝv(D̂v) ⊂ Ĉ ∪ D̂ (as it can be verified through (3.21e), (3.21g), (3.21h)). Then

only [62, Thm. S3, case (a)] remains, i.e., each solution ξ̂ is complete.

3.A.3 Proof of Lemma 3.8

Consider dynamics (3.21) and notice that the state b̂ is bounded because it
evolves in a bounded set. Focusing the attention on the remaining states
x̂ = (σ̂, φ̂, v̂), their flow obeys the dynamics in (3.9) where A is Hurwitz due
to Assumption 3.3, and the term multiplying e3 is bounded by Fs, due to As-
sumption 3.2. In particular, from standard BIBO results for linear systems, there
exist scalars kA ≥ 1 and hA > 0 such that any solution ξ̂ = (x̂, b̂) satisfies 4

|x̂(t, j)|2 ≤ kA|x̂(tj , j)|2 + hA, ∀t ∈ [tj , tj+1], (3.40)

where tj , j ≥ 1, denotes a jump time, t0 = 0 and possibly tj+1 = +∞ with
the last flowing interval being open and unbounded. Consider now a solution
to (3.21) which may: a) flow forever (i.e., experiences no jumps), in which case
bound (3.40) with j = 0 provides the desired global bound; b) exhibit one jump
only, in which case a global bound is obtained by concatenating twice bound
(3.40); c) flow and/or jump multiple times, in which case, due the peculiar

toggling nature of b̂, the solution alternately jumps from D̂σ and D̂v. Hence, the
solution jumps from D̂v at either t1 or (at most) at t2. Consider the scenario

of a first jump happening from D̂σ at time (t1, 0), which leads to |ξ̂(t1, 1)|2 =

|ξ̂(t1, 0)|2 due to the design of ĝσ in (3.21e), and then a second jump from D̂v
at time (t2, 1), which leads to |ξ̂(t2, 2)|2 ≤ |ξ̂(t2, 1)|2 due to the design of ĝv in

(3.21e) and of D̂v in (3.21h) (in particular the condition σ̂φ̂ ≥ kp
ki
σ̂2). For this

described scenario, concatenating bounds yields

max
(t,j)∈dom ξ̂
t+j≤t2+2

|x̂(t, j)|2 ≤ k̄A|x̂(0, 0)|2 + h̄A, (3.41)

where we used k̄A := k2
A ≥ kA ≥ 1, h̄A := hA(1 + kA) > hA. This described sce-

nario can be viewed as the worst-case-scenario, because bound (3.41) also applies

4Note that classical BIBO bounds involve the norm not squared, but those easily extend
to (3.40) by using (k|x0|+ h)2 ≤ (k2 + 2kh)|x0|2 + (h2 + 2kh).
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to the other scenario where the jump from D̂σ does not occur and the jump from
D̂v occurs at t1, because k̄A ≥ kA and h̄A ≥ hA. Then, we can consider only
this described worst-case-scenario without loss of generality. Inequality (3.41)
hence establishes a uniform bound for all solutions, until a first jump from D̂v.

To complete the proof we must establish a (uniform) bound on solutions

performing a jump from ξ̂(t2, 1) ∈ D̂v. To this end, consider the following
Lyapunov-like function, inspired by [29, Eq. (14)]:

W (ξ̂) =

[
σ̂
v̂

]> [ kd
ki

−1

−1 kp

] [
σ̂
v̂

]
+ min
F∈Fs Sign(v̂)

(b̂φ̂− F )2. (3.42)

For W in (3.42) it holds that the matrix

[
kd
ki
−1

−1 kp

]
is positive definite (by As-

sumption 3.3), and it holds that φ̂2

2 − F 2
s ≤ (b̂φ̂ − F )2 ≤ 2φ̂2 + 2F 2

s (since
F ∈ [−Fs, Fs]). Using these properties, we construct the following bounds:

W (ξ̂) ≤ c̄W |x̂|2 + 2F 2
s , |x̂|2 ≤ cWW (ξ̂) + cWF

2
s , (3.43)

for some scalars c̄W ≥ 1, cW ≥ 1. Bounds (3.43) show that boundedness of
W (x̂) is equivalent to boundedness of |x̂|. Given

c3 := 2(kpkd − ki) > 0 (3.44)

by Assumption 3.3, W enjoys the following useful properties in the next claim.

Claim 3.17. Function W in (3.42) with c3 in (3.44) enjoys the following prop-
erties along dynamics (3.21):

1. For all i ∈ {σ, v}, for all ξ̂ ∈ Di,

W (gi(ξ̂))−W (ξ̂) ≤ 0. (3.45)

2. For any ξ̂ = (σ̂, φ̂, v̂, b̂) ∈ SĤ and each flowing interval Ij := {t : (t, j) ∈
dom ξ̂} with b̂(tj , j) = −1,

W (ξ̂(t2, j))−W (ξ̂(t1, j)) ≤
∫ t2

t1

−c3v̂(t, j)2dt, (3.46)

for all t1, t2 ∈ Ij with t1 ≤ t2.

3. There exists a scalar W̄ > 0 such that any solution ξ̂ = (σ̂, φ̂, v̂, b̂) ∈ SĤ
satisfying ξ̂(tj , j − 1) ∈ D̂v, jumping to ξ̂(tj , j) = ĝv(ξ̂(tj , j − 1)) and then

flowing up to ξ̂(tj+1, j) ∈ D̂σ satisfies:

W (ξ̂(tj , j)) ≥ W̄ =⇒ W (ξ̂(tj+1, j)) ≤W (ξ̂(tj , j)). (3.47)
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Proof. see Appendix 3.A.4. �

For function W we use bounds (3.43) with (3.40) to arrive at

W (ξ̂(t, j)) ≤ kWW (ξ̂(tj , j)) + hW , ∀t ∈ [tj , tj+1], (3.48)

along any flowing solution, where kW := c̄W cW kA ≥ 1 (since c̄W ≥ 1, cW ≥ 1,
and kA ≥ 1) and hW := c̄W (kAcWF

2
s + hA) + 2F 2

s > 0.
We are now ready to complete bound (3.41) beyond hybrid time (t2, 2). To

simplify the notation, we focus on solutions exhibiting infinitely many jumps, by
noting that the analysis also applies to solutions that eventually stop jumping,
because the last bound established below will hold on the last (unbounded)

flowing interval. Given any such solution ξ̂ that keeps exhibiting jumps, denote

W0 := W (ξ̂(t2, 2)) ≤ c̄W (k̄A|x̂(0, 0)|2 + h̄A) + 2F 2
s , (3.49)

where we combined (3.41) and (3.43). Due to the peculiar toggling nature of

b̂ in dynamics (3.21), jumps must occur alternatively from D̂v at times (t2, 1),
(t4, 3) and so on (at jump times with even indices), and from D̂σ at jump times
with odd indices. We proceed by induction. Assume that at time (t2i, 2i) (after
a jump from D̂v) we have

W (ξ̂(t2i, 2i)) ≤ max{kW W̄ + hW ,W0}, (3.50)

which is clearly true for i = 1 (the base case of induction), because of (3.49). As
for the induction step, (3.48) yields

W (ξ̂(t, 2i)) ≤ kWW (ξ̂(t2i, 2i)) + hW , ∀t ∈ [t2i, t2i+1]. (3.51)

We obtain that W (ξ̂(t2i+1, 2i)) ≤ max{kW W̄ + hW ,W (ξ̂(t2i, 2i))} because for

W (ξ̂(t2i, 2i)) ≥ W̄ , it holds that W (ξ̂(t2i+1, 2i)) ≤ W (ξ̂(t2i, 2i)) (by (3.47) in

Claim 3.17), and for W (ξ̂(t2i, 2i)) < W̄ , it holds that W (ξ̂(t2i+1, 2i)) ≤ kW W̄ +

hW (by (3.50)). Then, W (ξ̂(t2i+1, 2i)) ≤ max{kW W̄ +hW ,W (ξ̂(t2i, 2i))} can be
propagated to the subsequent time interval using the nonincreasing properties
of W established in (3.45) and (3.46) of Claim 3.17, as follows:

W (ξ̂(t, 2i+1)) ≤ max{kW W̄ +hW ,W (ξ̂(t2i, 2i))}, ∀t ∈ [t2i+1, t2(i+1)]. (3.52)

Finally, using again the nonincrease in (3.45) and bound (3.50), we obtain

W (ξ̂(t2(i+1), 2(i+ 1))) ≤ max{kW W̄ + hW ,W (ξ̂(t2i, 2i))}
≤ max{kW W̄ + hW ,W0},

which corresponds to (3.50), completes the induction proof, and establishes then
that (3.50) holds for all i ≥ 1.
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Summarizing, we combine bounds (3.51) and (3.52) (together with (3.49) and

kW ≥ 1 and hW > 0) to obtain, for all (t, j) ∈ dom ξ̂ such that t+ j ≥ t2 + 2,

W (ξ̂(t, j)) ≤ max{k2
W W̄ + kWhW + hW ,

kW c̄W k̄A|x̂(0, 0)|2 + kW (c̄W h̄A + 2F 2
s ) + hW }.

That is, W remains bounded which, combined with (3.43), implies boundedness

of x̂, and the fact that b̂ evolves in a bounded set completes the proof of uniform
boundedness of solutions to Ĥ.

3.A.4 Proof of Claim 3.17

We prove the claim item by item.

Proof of item 1. For all ξ̂ ∈ D̂σ, we have

W (gσ(ξ̂))−W (ξ̂) = min
F∈Fs Sign(v̂)

((b̂φ̂)+ − F )2 − min
F∈Fs Sign(v̂)

(b̂φ̂− F )2 = 0,

because (b̂φ̂)+ = (b̂φ̂). For all ξ̂ ∈ D̂v, we have

W (gv(ξ̂))−W (ξ̂) = min
F∈Fs Sign(0)

((b̂φ̂)+ − F )2 − min
F∈Fs Sign(0)

(b̂φ̂− F )2

= min
F∈[−Fs,Fs]

(
kp
ki
σ̂ − F )2 − min

F∈[−Fs,Fs]
(−φ̂− F )2

= min
F∈[−Fs,Fs]

(
kp
ki
σ̂ − F )2 − min

F∈[−Fs,Fs]
(φ̂− F )2

= dz2
Fs(

kp
ki
σ̂)− dz2

Fs(φ̂) ≤ 0,

because |φ̂| ≥ kp
ki
|σ̂| due to the fact that σ̂φ̂ ≥ kp

ki
σ̂2 in D̂v.

Proof of item 2. By Claim 3.4, for each initial condition, the component x̂
of the (unique) flowing solution ξ̂ coincides with the unique solution x̃ to one
of (3.14)-(3.16) on a finite time interval with length T . Because such unique
solution to (3.14), (3.15), (3.16) has respectively ṽ positive, zero, negative over
such interval with length T by Claim 3.4, it can be shown respectively that for
all t in such interval

W (
[
x̃(t)
−1

]
) = W1(x̃(t)), W (

[
x̃(t)
−1

]
) = W0(x̃(t)), W (

[
x̃(t)
−1

]
) = W−1(x̃(t)),

with

W1(x̃) :=

[
σ̃
ṽ

]> [ kd
ki

−1

−1 kp

] [
σ̃
ṽ

]
+ (−φ̃− Fs)2 (3.53)

W0(x̃) :=
kd
ki
σ̃2 (3.54)
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W−1(x̃) :=

[
σ̃
ṽ

]> [ kd
ki

−1

−1 kp

] [
σ̃
ṽ

]
+ (−φ̃+ Fs)

2, (3.55)

in the same way as [29, Claim 1, item 2)].
In the rest of the proof we consider W1 (or W0 or W−1, respectively) instead

of W during the flow of ξ̂ only when the component x̂ of the solution ξ̂ coincides
with the solution x̃ to (3.14) (or (3.15) or (3.16), respectively). So, we can exploit

the conditions satisfied by ξ̂ while flowing in the flow set (3.21f), in particular

b̂σ̂v̂ ≥ 0. For b̂ = −1 we have then σ̃(t)ṽ(t) ≤ 0. When considering the solution
x̃ to (3.14) (resp. (3.16)), ṽ(t) > 0 (resp. ṽ(t) < 0), so σ̂(t)v̂(t) ≤ 0 implies
σ̃(t) ≤ 0 (resp. σ̃(t) ≥ 0). We use these conditions for the bounds in the
following (3.56). Some computations yield the derivative of W1 along solutions
to (3.14), of W0 along solutions to (3.15), and of W−1 along solutions to (3.16),
respectively, as

d
dτW1(x̃(t)) = − c3ṽ(t)2 + 2σ̃(t)(Fs − f(ṽ(t)))

− 2kpṽ(t)(Fs − f(ṽ(t))) + 2Fsσ̃(t)− 2Fskpṽ(t)

≤ −c3ṽ(t)2

d
dτW0(x̃(t)) = 0 ≤ −c3ṽ(t)2

d
dτW−1(x̃(t)) = − c3ṽ(t)2 − 2σ̃(t)(Fs + f(ṽ(t)))

+ 2kpṽ(t)(Fs + f(ṽ(t)))− 2Fsσ̃(t) + 2Fskpṽ(t)

≤ −c3ṽ(t)2,

(3.56)

where the bounds were justified before and, as for W0, v̂ is identically zero.
We now use (3.56) together with the reasoning in [29, Sec. V.A] as follows:

ξ̂ 7→ W (ξ̂) and t 7→ W (ξ̂(t)) are lower semicontinuous by the same argument
as in [29, Sec. V.A]. Moreover, W1(x̃(·)), W0(x̃(·)), and W−1(x̃(·)) are differen-

tiable, thus W
( [

x̂(·)
−1

] )
is at least differentiable from the right. The lower right

Dini derivative coincides with the right derivative, and the right derivative is
upper bounded on each interval with length T by −c3v̂(t, j)2 from (3.56). This
allows to invoke [66, Thm. 9] same as in [29, Fact 1], which leads to (3.46).

Proof of item 3. Consider any solution ξ̂ = (σ̂, φ̂, v̂, b̂) = (x̂, b̂) ∈ SĤ to (3.21)

satisfying ξ̂(tj , j − 1) ∈ D̂v in (3.21h), jumping to ξ̂(tj , j) = ĝv(ξ̂(tj , j − 1))

in (3.21e) and then necessarily flowing up to ξ̂(tj+1, j) ∈ D̂σ, because we consider

W (ξ̂(tj , j)) > W̄ , and this implies |σ̂(tj , j)| sufficiently large, as argued below.

Moreover, b̂ is constant and equal to 1 along this interval of flow. Using the
expression of F̂x(x̂) in (3.9), and the fact that matrix A therein is Hurwitz by
Assumption 3.3, by linearity we may split the arising response in a homogeneous

(or free, or zero-input) response x̂h from x̂0 = x̂(tj , j) = σ̂(tj , j)

[
1
kp
ki
0

]
(by (3.21e)
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and (3.21h)), and a forced response x̂f from a zero initial condition caused by
the bounded input |e3(Fs Sign(v̂) − f(v̂))| ≤ Fs (where the bound comes from
Assumption 3.2). Let us drop the dependence on “j” to simplify the following
derivations.

Inspired by (3.42), define

V̂ (x̂) := x̂T P̂ x̂ := x̂T

 kd
ki

0 −1

0 1 0
−1 0 kp

 x̂,
with P̂ > 0 (by Assumption 3.3), and satisfying

AT P̂ + P̂A = −
[

0 0 0
0 0 0
0 0 c3

]
,

with c3 > 0 in (3.44), which provides a weak Lyapunov function for ˙̂x = Ax̂, due

to observability of the pair ([ 0 0 c3 ] , A). Recall that the solution ξ̂ necessarily

flows at (tj , j), because we consider W (ξ̂(tj , j)) ≥ W̄ , which implies |σ̂(tj , j)|
sufficiently large (as argued below in the proof). Then, the interval [tj , tj+1]

is nonempty by [63, Def. 2.6], so tj+1 > tj . Then, V̂ being a weak Lyapunov

function for for ˙̂x = Ax̂, and the observability of ([ 0 0 c3 ] , A) imply that there
exists a positive η < 1 such that

V̂ (x̂h(tj+1)) = η2V̂ (x̂0) = η2σ̂(tj , j)
2V̂

([
1
kp
ki
0

])
, (3.57)

because V (x̂h(·)) would remain constant on [tj , tj+1] only for x̂ identically zero,
which is excluded by the fact that we consider |σ̂(tj , j)| sufficiently large. On
the other hand, from BIBO stability of dynamics (3.7), we have that

|x̂(tj+1)− x̂h(tj+1)| = |x̂f (tj+1)| ≤ ĥA, (3.58)

for some ĥA > 0 (cf. (3.40)). Consider now the homogeneous of degree 1 function

Û(x̂) :=

√
V̂ (x̂), which is globally Lipschitz (namely, |U(x̂)−U(x̂h)| ≤ LU |x̂−x̂h|

for all x̂, x̂h ∈ R3 and some Lipschitz constant LU > 0) because its gradient is
constant along rays starting at the origin. Using (3.57) and (3.58), we have

Û(x̂(tj+1)) ≤ Û(x̂h(tj+1)) + LU |x̂(tj+1)− x̂h(tj+1)|

≤ η|σ̂(tj , j)|U0 + LU ĥA,

where U0 := Û

([
1
kp
ki
0

])
is a positive constant. As a consequence we have

V̂ (x̂(tj+1)) ≤
(
η|σ̂(tj , j)|U0 + LU ĥA

)2

= V̂ (x̂0)

(
η +

LU ĥA
|σ̂(tj , j)|U0

)2

.

(3.59)
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For η ∈ (0, 1) it is possible to select η̃V ∈ (η, 1) and σM1 > 0 sufficiently large
such that

η +
LU ĥA
σM1U0

= η̃V . (3.60)

With this equation, we obtain for η̃V ∈ (η, 1)

|σ̂(tj , j)| ≥ σM1 =⇒ V̂ (x̂(tj+1)) ≤ η̃2
V V̂ (x̂0). (3.61)

Consider now function W defined in (3.42) and relate it to V̂ through

V̂ (x̂0) = σ̂(tj , j)
2
[

1
kp
ki

]> [ kd
ki

0

0 1

] [
1
kp
ki

]
=
(
kd
ki

+
k2p
k2i

)
σ̂(tj , j)

2. (3.62)

Introduce σM2 := ki
kp
Fs max{1, 1

1−
√
η̃V
} (recall η̃V < 1). For |σ̂(tj , j)| ≥ σM2, we

have

W (ξ̂(tj , j)) = σ̂(tj , j)
2 kd
ki

+

(
kp
ki
|σ̂(tj , j)| − Fs

)2

≥ kd
ki

(
|σ̂(tj , j)| −

ki
kp
Fs

)2

+
k2
p

k2
i

(
|σ̂(tj , j)| −

ki
kp
Fs

)2

=

(
kd
ki

+
k2
p

k2
i

)
σ̂(tj , j)

2

(
1− kiFs

kp|σ̂(tj , j)|

)2

≥ V̂ (x̂0)η̃V ,

where, in the given order, the first equality follows from x̂(tj , j) = σ̂(tj , j)

[
1
kp
ki
0

]
(cf. (3.21e)) and minF∈[−Fs,Fs](φ̂(tj , j)− F )2 = (|φ̂(tj , j)| − Fs)2 for |σ̂(tj , j)| ≥
ki
kp
Fs, the first inequality follows from |σ̂(tj , j)| ≥ ki

kp
Fs, the second inequality fol-

lows from the expression of V̂ (x̂0) in (3.62), and |σ̂(tj , j)| ≥ σM2 ≥ ki
kp
Fs

1
1−
√
η̃V

.

Then,

|σ̂(tj , j)| ≥ σM2 =⇒ W (ξ̂(tj , j)) ≥ η̃V V̂ (x̂0). (3.63)

Finally, during flow with b̂ = 1, we have b̂v̂σ̂ ≥ 0 and σ̂φ̂ ≥ kp
ki
σ̂2 (cf. (3.21f)).

So, if σ̂(tj , j) > 0, we have from b̂v̂σ̂ ≥ 0 that v̂ ≥ 0, and from σ̂φ̂ ≥ kp
ki
σ̂2 that

φ̂ ≥ 0 on [tj , tj+1]. Similarly, for σ̂(tj , j) < 0 we have v̂ ≤ 0 and φ̂ ≤ 0. In

both cases v̂(tj+1, j) ≥ 0, φ̂(tj+1, j) ≥ 0 and v̂(tj+1, j) ≤ 0, φ̂(tj+1, j) ≤ 0, we

have W (ξ̂(tj+1, j)) ≤ V̂ (x̂(tj+1)) +F 2
s , which may be combined with (3.61) and

(3.63) to obtain

W (ξ̂(tj+1, j)) ≤ V̂ (x̂(tj+1)) + F 2
s ≤ η̃2

V V̂ (x̂0) + F 2
s

≤ η̃VW (ξ̂(tj , j)) + F 2
s ≤W (ξ̂(tj , j)),

(3.64)
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by taking W (ξ̂(tj , j)) ≥ W̄ := max{2F 2
s + σ2

M

(
kd
ki

+ 2
k2p
k2i

)
,

F 2
s

1−ηV } for σM :=

max{σM1, σM2}, where W (ξ̂(tj , j)) ≥ F 2
s

1−η̃V guarantees the last inequality

in (3.64) andW (ξ̂(tj , j)) ≥ 2F 2
s +σ2

M

(
kd
ki

+ 2
k2p
k2i

)
guarantees that |σ̂(tj , j)| ≥ σM

holds (which was used in (3.64)) because from (3.42) we have from x̂(tj , j) =

σ̂(tj , j)

[
1
kp
ki
0

]
and minF∈[−Fs,Fs](φ̂− F )2 = dz2

Fs(φ̂) ≤ (|φ̂|+ Fs)
2 :

W (ξ̂(tj , j)) ≤
kd
ki
σ̂(tj , j)

2 +

(
kp
ki
|σ̂(tj , j)|+ Fs

)2

≤

(
kd
ki

+ 2
k2
p

k2
i

)
σ̂(tj , j)

2 + 2F 2
s .

(3.65)

3.A.5 Proof of Lemma 3.9

We start with the next auxiliary claim, where L2 is defined in Assumption 3.2(iv).

Claim 3.18. Let Assumptions 3.2-3.3 hold.

(i) For each M > 0, there exists δ0(M) > 0 such that for each initial condition
x̃0 = (σ̃0, φ̃0, 0) ∈ MB, the unique solution x̃ (with x̃(0) = x̃0) to (3.14)
coincides over [0, δ0(M)] with the unique solution x̌ (with x̌(0) = x̃0) to

˙̌x = Ax̌− e3(Fs − L2v̌). (3.66)

(ii) There exists δ1 > 0 such that for each initial condition x̌0 = (σ̌0, φ̌0, 0)
with

σ̌0 ≥ 0, φ̌0 ≥ Fs,
[
σ̌0

φ̌0

]
6=
[

0
Fs

]
(3.67)

(σ̌0 ≤ 0, φ̌0 ≤ −Fs,
[
σ̌0

φ̌0

]
6=
[

0
−Fs

]
, respectively), the unique solution x̌

(with x̌(0) = x̌0) to (3.66) satisfies for all t ∈ (0, δ1], v̌(t) > 0 and φ̌(t) > Fs
(v̌(t) < 0 and φ̌(t) < −Fs, respectively).

Proof. see Appendix 3.A.6. �

We now turn to proving Lemma 3.9. We only consider the case ξ̂(t, j) ∈ Ŝ1,

because the case ξ̂(t, j) ∈ Ŝ−1 relies on parallel arguments. Within the proof,
we also exploit that maximal solutions are complete by Lemma 3.6, e.g., when
we conclude that a maximal solution must flow if it cannot jump.

Evolution 3.9.1 (equilibrium)

Consider first ξ̂(t, j) = (0, Fs, 0, 1) ∈ Ŝ1. Since (0, Fs, 0, 1) ∈ Â, we conclude by
Lemma 3.7 that v̂(τ, j(τ)) = 0 for all τ ≥ t.
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We can then assume without loss of generality that ξ̂(t, j) 6= (0, Fs, 0, 1) in
the rest of the proof. To prove the statement, we show that v̂ is nonnegative for
all possible evolutions of ξ̂ from ξ̂(t, j).

By Lemma 3.8, we know that for each compact set K, there exists M > 0
such that for all (t, j) ∈ dom ξ̂, when ξ̂(t, j) ∈ Ŝ1, it holds that ξ̂(t, j) ∈ Ŝ1∩MB.
Define

δ′(K) = min{δ0(M), δ1} > 0

with δ0(M) and δ1 as in Claim 3.18 and consider the time interval [t, t+ δ′(K)].

Evolution 3.9.2 (flow only).

Suppose ξ̂ = (x̂, b̂) with ξ̂(t, j) ∈ Ŝ1\{(0, Fs, 0, 1)} ∩MB flows on [t, t + δ′(K)].

Note that this flowing solution from ξ̂(t, j) is unique by Lemma 3.5.

Since ξ̂(t, j) ∈ Ŝ1\{(0, Fs, 0, 1)} ∩MB by Lemma 3.8, it holds that x̂(t, j) =

(σ̂(t, j), φ̂(t, j), 0) ∈ MB. Then, Claim 3.18(i) ensures that the unique solution
x̃ to (3.14) with x̃(t) = x̂(t, j) coincides over the interval [t, t + δ′(K)] with the
unique solution x̌ to (3.66) with x̌(t) = x̂(t, j), which is such that v̌(τ) > 0 and
φ̌(τ) > Fs for all τ ∈ (t, t + δ′(K)] by Claim 3.18(ii) because x̌(t) = x̂(t, j) ∈
Ŝ1\{(0, Fs, 0, 1)} and satisfies (3.67).

This solution x̃, in turn, coincides on the interval [t, t + δ′(K)] with the

component x̂ of ξ̂ by Claim 3.4(ii), since ξ̂(t, j) ∈ Ŝ1 \{(0, Fs, 0, 1)} and v̌(τ) > 0

for all τ ∈ (t, t + δ′(K)]. Then, v̂(τ, j(τ)) ≥ 0 and φ̂(τ, j(τ)) ≥ Fs for all
τ ∈ [t, t+ δ′(K)].

Evolution 3.9.3 (flow and jumps).

The only other possible evolution of ξ̂ entails a jump in D̂σ for some τ1 ∈ [t, t+

δ′(K)) such that σ̂(τ1, j) = 0 (the solution ξ̂ cannot jump in D̂v due to b̂(t, j) = 1

and
˙̂
b = 0 in (3.21d)). Since [t, τ1] ⊂ [t, t+ δ′(K)], we know from Evolution 3.9.2

that v̂(τ1, j) ≥ 0 and φ̂(τ1, j) ≥ Fs if ξ̂ flows in Ĉ before jumping in D̂σ. Then,

by ĝσ in (3.21e), σ̂(τ1, j + 1) = σ̂(τ1, j) = 0, φ̂(τ1, j + 1) = −φ̂(τ1, j) ≤ −Fs,
v̂(τ1, j + 1) = v̂(τ1, j) ≥ 0 , b̂(τ1, j + 1) = −b̂(t1, j) = −1. Define τ2 as the time
τ2 ≥ τ1 such that

v̂(τ, j + 1)> 0 for all τ ∈ (τ1, τ2), and v̂(τ2, j + 1)= 0. (3.68)

Note that τ2 = τ1 is not excluded, and indeed the solution ξ̂ can only flow over
(τ1, τ2) until the velocity becomes zero since, with b̂(τ1, j + 1) = −1, jumps can
only occur in D̂v, where v̂ has to be 0.
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Note also that from (3.68) that for all τ ∈ [τ1, τ2]

σ̂(τ, j + 1) = σ̂(τ1, j + 1) +

∫ τ

τ1

−kiv̂(τ̃ , j + 1)dτ̃ ≤ 0

φ̂(τ, j + 1) = φ̂(τ1, j + 1) +

∫ τ

τ1

(σ̂(τ̃ , j + 1)− kpv̂(τ̃ , j + 1))dτ̃

≤ φ̂(τ1, j + 1) ≤ −Fs,

hence
v̂(τ2, j + 1) = 0, σ̂(τ2, j + 1) ≤ 0,

φ̂(τ2, j + 1) ≤ −Fs,
[
σ̂(τ2,j+1)

φ̂(τ2,j+1)

]
6=
[

0
Fs

] (3.69)

where
[

0
−Fs

]
does not need to be considered, similar to the reasoning as in

Evolution 3.9.1.
We rule out the possibility that ξ̂ flows from (3.69) at (τ2, j + 1). Indeed, if

ξ̂ would flow, Claim 3.4(iv) would imply that there exists some T > 0 such that
the solution component x̂ coincides over [τ2, τ2 + T ] with the unique solution x̃
to (3.16) with x̃(τ2) = x̂(τ2, j+1), which satisfies ṽ(τ) < 0 for all τ ∈ (τ2, τ2 +T ].

Such a flowing evolution, however, is not possible because the condition b̂v̂φ̂ ≥ 0
would be violated on (τ2, τ2 + T ] by shrinking T if needed. Then, the only
possible evolution from (3.69) at (τ2, j + 1) is a jump in D̂v.

Now consider two cases for σ̂(τ2, j + 1) in (3.69) by defining

σ̂th :=
Fs
2

ki
kp

> 0 and δ′′ :=
Fs

2σ̂th
=
kp
ki

> 0, (3.70)

by Assumption 3.3.

Evolution 3.9.3.1 (two possible solutions)
First, consider σ̂(τ2, j + 1) ∈ [−σ̂th, 0]. By ĝv in (3.21e), σ̂(τ2, j + 2) = σ̂(τ2, j +

1) ∈ [−σ̂th, 0], φ̂(τ2, j + 2) =
kp
ki
σ̂(τ2, j + 1) ∈

[
−Fs2 , 0

]
and b̂(τ2, j + 2) = 1. If

σ̂(τ2, j + 2) = 0, then the lemma is proven. Otherwise, no jump can occur over
[τ2, τ2 + δ′′) with δ′′ in (3.70), and v̂(τ, j + 2) = 0 for all τ ∈ [τ2, τ2 + δ′′]. Then,
v̂(τ, j(τ)) ≥ 0 for all τ ∈ [t, t+ δ′′] (with τ2 ≥ t from before).

Evolution 3.9.3.2 (one possible solution)
Second, consider σ̂(τ2, j + 1) ∈ (−∞,−σ̂th). Recall that σ̂(τ1, j + 1) = 0 and
note that for all τ ∈ [τ1, τ2],

| ˙̂σ(τ, j + 1)| ≤ | ˙̂x(τ, j + 1)| ≤ |A|M + 2Fs,

from (3.21d) and by Lemma 3.8. Hence, from σ̂(τ2, j + 1) = σ̂(τ1, j + 1) +∫ τ2
τ1

˙̂σ(τ, j + 1)dτ =
∫ τ2
τ1

˙̂σ(τ, j + 1)dτ , we have

|σ̂(τ2, j + 1)| ≤ (|A|M + 2Fs)(τ2 − τ1). (3.71)
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Since |σ̂(τ2, j + 1)| ≥ σ̂th for σ̂(τ2, j + 1) ∈ (−∞,−σ̂th), (3.71) implies

(|A|M + 2Fs)(τ2 − τ1) ≥ σ̂th

⇐⇒ τ2 − τ1 >
σ̂th

|A|M + 2Fs
=: δ′′′(K) > 0.

Then, v̂(τ, j(τ)) ≥ 0 for all τ ∈ [t, τ1 + δ′′′(K)] (with τ1 ≥ t from before).
The proof is completed by selecting δ(K) := min{δ′(K), δ′′, δ′′′(K)}.

3.A.6 Proof of Claim 3.18

We prove each item separately.

Item (i). (3.14) can be written as

˙̃x = Ax̃− e3u, with |u| ≤ 2Fs, (3.72)

where A is Hurwitz by Assumption 3.3 and bounded-input-bounded-output sta-
bility holds for (3.72). Then, for each M > 0 and x̃0 ∈ MB, there exist M(M)
such that |x̃(t)| ≤ M(M) for all t ≥ 0. Define

δ0(M) :=
εv

|A|M(M) + 2Fs
> 0, (3.73)

which is indeed uniform over the initial condition x̂0. Then, (3.72) yields for
t ≥ 0

| ˙̃v(t)| ≤ | ˙̃x(t)| ≤ |A||x̃(t)|+ 2Fs

≤ |A|M(M) + 2Fs ≤
εv

δ0(M)
.

(3.74)

So, (3.74) and ṽ(0) = 0 imply that as long as t ∈ [0, δ0(M)], it holds that
|ṽ(t)| ≤ εv. By Assumption 3.2(iv), (3.14) boils down to the differential equation
in (3.66) and solutions with the same initial condition coincide over [0, δ0(M)].

Item (ii). Define ϕ̌ := φ̌− Fs and rewrite (3.66) as ˙̌σ
˙̌ϕ
˙̌v

 =

0 0 −ki
1 0 −kp
0 1 −kd + L2

σ̌ϕ̌
v̌


=: AL2

x̌.

(3.75)

Expand the matrix exponential governing the solution to (3.75) from x̌(0) =
(σ̌0, φ̌0, 0):

σ̌(t)= σ̌0

(
1+O(t3))+ϕ̌0(−kit

2

2 +O(t3)), (3.76a)

ϕ̌(t)= σ̌0(t+O(t3))+ϕ̌0(1− kpt
2

2 +O(t3)), (3.76b)
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v̌(t)= σ̌0( t
2

2 +O(t3))+ϕ̌0(t− (kd−L2)t2

2 +O(t3)), (3.76c)

where O(t3) denotes the terms of order t3 or higher in the Taylor expansion, and
ϕ̌0 ≥ 0 since φ̌0 ≥ Fs by (3.67). Based on (3.76b)-(3.76c), note that

∃δa > 0: ∀t ∈ (0, δa] t+O(t3) > 0

∃δb > 0: ∀t ∈ (0, δb] 1− kpt
2

2 +O(t3) > 0

∃δc > 0: ∀t ∈ (0, δc]
t2

2 +O(t3) > 0

∃δd > 0: ∀t ∈ (0, δd] t− (kd−L2)t2

2 +O(t3) > 0,

where δa, . . . , δd do not depend on the initial condition σ̌0, ϕ̌0. Take δ1 :=
min{δa, δb, δc, δd} > 0. Then, for t ∈ (0, δ1], v̌(t) > 0 and ϕ̌(t) > 0 (since in (3.76)
at least one among σ̌0 and ϕ̌0 is strictly positive and both are nonnegative
by (3.67)), i.e., v̌(t) > 0 and φ̌(t) > Fs.

3.A.7 Proof of Lemma 3.10

Suppose by contradiction that there exists a maximal solution ξ̂ such that
ξ̂(t′, j′) 6∈ Â for all (t′, j′) ∈ dom ξ̂, and supt dom ξ̂ = T̄ < +∞. Then, since

solutions are complete by Lemma 3.6, supj dom ξ̂ = +∞. Because of the al-

ternating sign of b̂ in the jump maps and jump sets in (3.21), we note that
jumps in D̂σ and D̂v occur alternately. An infinite amount of jumps in D̂
yields then an infinite amount of jumps in D̂v. Moreover, ξ̂ is bounded by
Lemma 3.8, so rge ξ̂ ⊂ K for some compact set K, and for this compact set
K, Lemma 3.9 guarantees the existence of δ(K) and a certain dwell-time for ξ̂.

Because there are infinitely many jumps in D̂v, there exists (τ, j − 1) ∈ dom ξ̂

with τ ∈ [T̄ − δ(K)
2 , T̄ ] such that ξ̂(τ, j − 1) ∈ D̂v. For the case ξ̂(τ, j − 1) ∈ D̂v

and σ̂(τ, j − 1) ≥ 0, we show now that ξ̂(t, j) ∈ Ŝ1 for some t ≥ τ . The

case ξ̂(τ, j − 1) ∈ D̂v and σ̂(τ, j − 1) ≤ 0 follows from parallel arguments. In-

deed, ξ̂(τ, j) = ĝv(ξ̂(τ, j − 1)) satisfies σ̂(τ, j) ≥ 0, v̂(τ, j) = 0, b̂(τ, j) = 1 and

φ̂(τ, j) =
kp
ki
σ̂(τ, j) ≥ 0. If φ̂(τ, j) ≥ Fs, then ξ̂(τ, j) ∈ Ŝ1. If φ̂(τ, j) ∈ [0, Fs)

and σ̂(τ, j) > 0, we have by Claim 3.4, item (iii) that
˙̂
φ(τ ′, j) = σ(τ, j) > 0

for all τ ′ ∈ [τ, t] := [τ, τ + Fs−φ̂(τ,j)
σ̂(τ,j) ] so that φ̂(t, j) = Fs and ξ̂(t, j) ∈ Ŝ1. Fi-

nally, φ̂(τ, j) ∈ [0, Fs), σ̂(τ, j) = 0 is not considered since ξ̂(t′, j′) /∈ Â for all

(t′, j′) ∈ dom ξ̂. We have then shown that ξ̂(t, j) ∈ Ŝ1 for some t ≥ τ , so the

conclusions of Lemma 3.9 apply for ξ̂(t, j), and we show next that this leads to

a contradiction of the fact that supt dom ξ̂ = T̄ < +∞. Evolution 3.9.1 given in

the proof of Lemma 3.9 does not apply since ξ̂(t′, j′) /∈ Â for all (t′, j′) ∈ dom ξ̂

by assumption. Evolution 3.9.2 given in the proof of Lemma 3.9 implies that ξ̂

flows over [t, t+ δ(K)]×{j} and since t+ δ(K) ≥ τ + δ(K) ≥ T̄ + δ(K)
2 , we have a
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contradiction. Evolution 3.9.3.1 given in the proof of Lemma 3.9 implies for the
only relevant solution (with ξ̂(t′, j′) /∈ Â for all (t′, j′) ∈ dom ξ̂) that ξ̂ flows over
[τ2, τ2 + δ(K)] × {j + 2} with τ2 ≥ t and, by the same argument as above, we
have a contradiction. Evolution 3.9.3.2 given in the proof of Lemma 3.9 implies
that ξ̂ flows over [τ1, τ1 + δ(K)]×{j+ 1} with τ1 ≥ t and, by the same argument

as above, we have a contradiction. Hence, the solution ξ̂ exhibits an infinite
amount of flow and satisfies supt dom ξ̂ = +∞.

3.A.8 Proof of Lemma 3.11

The proof of this lemma is structured in two parts. Part A shows that (3.25)
holds when the timer τ is discarded (as well as its corresponding flow/jump equa-
tions and conditions in flow/jump maps). Part A entails defining an auxiliary
hybrid system without the timer as in (3.78) below, and then proving Claim 3.19.
Part B shows that (3.25) still holds when the timer τ is considered, due to the

intrinsic dwell time of each solution ξ̂ proven in Lemma 3.9. Part B proves then
the statement of this lemma. Note also that in both the lemma and the auxiliary
Claim 3.19, the statements need to be proven only for all t ≥ 0 such that ξ̂ does
not belong to Â, since the set Â is strongly forward invariant as per Lemma 3.7.

Part A: the timer τ is discarded

Consider the following auxiliary hybrid systemH that corresponds simply to dis-
carding in Hδ the timer τ , its corresponding flow/jump equations and conditions
in flow/jump maps. The overall state vector of H is

ζ := (σ, φ, v, b, q) ∈ Z,
Z := {R3 × {−1, 1} × {−1, 0, 1} :

qv ≥ 0, bqσ ≥ 0, σφ ≥ kp
ki
σ2, bqφ ≥ 0}.

(3.78a)

H is defined as

H :


ζ̇ = F (ζ), ζ ∈ Cslip ∪ Cstick,

ζ+ ∈
⋃

p∈{σ,v,1,−1,0} : ζ∈Dp

{γp(ζ)}, ζ ∈
⋃

p∈{σ,v,1,−1,0}

Dp.

(3.78b)

(3.78c)

The flow map of H is given by

F (ζ) :=


−kiv
σ − kpv

−kdv + |q|φ− q(Fs − h(v))
0
0

 . (3.78d)
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The jump maps are given by

γσ(ζ) :=
[
σ −φ v −b q

]>
,

γv(ζ) :=
[
σ

kp
ki
σ v −b q

]>
,

γ1(ζ) :=
[
σ φ v b 1

]>
,

γ−1(ζ) :=
[
σ φ v b −1

]>
,

γ0(ζ) :=
[
σ φ v b 0

]>
.

(3.78e)

The flow and jump sets are defined as

Cslip := {ζ ∈ Z : |q| = 1}
Cstick := {ζ ∈ Z : q = 0, v = 0, |φ| ≤ Fs}
Dσ := {ζ ∈ Z : |q| = 1, σ = 0, b = 1},
Dv := {ζ ∈ Z : q = 0, v = 0, b = −1},
D1 := {ζ ∈ Z : q = 0, v = 0, φ ≥ Fs, b = 1},
D−1 := {ζ ∈ Z : q = 0, v = 0, φ ≤ −Fs, b = 1},
D0 := {ζ ∈ Z : |q| = 1, v = 0},

(3.78f)

and, finally,

C := Cslip ∪ Cstick,

D := Dσ ∪Dv ∪D1 ∪D−1 ∪D0.
(3.78g)

Based on the auxiliary hybrid system in (3.78), consider the next intermediate
claim.

Claim 3.19. For each solution ξ̂ = (σ̂, φ̂, v̂, b̂) ∈ SĤ with ξ̂(0, 0) = ξ̂0 ∈ Ĉ ∪ D̂,

there exists q0 such that, for some solution ζ = (σ, φ, v, b, q) ∈ SH((ξ̂0, q0)), for

all t ≥ 0 such that ξ̂(t, j(t)) /∈ Â, (3.25) holds.

Proof. For each solution ξ̂ to (3.21), we are going to construct a suitable hybrid

signal q such that (ξ̂, q) is a solution ζ to H in (3.78) (as in [63, Def. 2.6 and

p. 124]) for all t ≥ 0 such that ξ̂(t, j(t)) /∈ Â and modulo a reparametrization

of the jump counter of ξ̂ (yielding possibly different jξ(t) and jξ̂(t) for the same

t ≥ 0). Then, (3.25) holds by construction.

Each solution ξ̂ to (3.21) can only flow in Ĉ, jump in D̂σ or jump in D̂v, and
in each of these three cases the definition of solution in [63, Def. 2.6 and p. 124]

implies the following. If ξ̂ flows in Ĉ, for each j ∈ Z≥0 such that Ij := {t :
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(t, j) ∈ dom ξ̂} has nonempty interior,

b̂(t, j)v̂(t, j)σ̂(t, j) ≥ 0

σ̂(t, j)φ̂(t, j) ≥ kp
ki
σ̂(t, j)2

b̂(t, j)v̂(t, j)φ̂(t, j) ≥ 0

 for all t ∈ Ij ; (3.79a)

˙̂
ξ(t, j) ∈ F̂(ξ̂(t, j)) for almost all t ∈ Ij . (3.79b)

If ξ̂ jumps in D̂σ, for each (t, j) ∈ dom ξ̂ such that (t, j + 1) ∈ dom ξ̂,

σ̂(t, j) = 0, b̂(t, j) = 1, v̂(t, j)φ̂(t, j) ≥ 0; (3.80a)

σ̂(t, j + 1) = σ̂(t, j), φ̂(t, j + 1) = −φ̂(t, j),

v̂(t, j + 1) = v̂(t, j), b̂(t, j + 1) = −b̂(t, j).
(3.80b)

If ξ̂ jumps in D̂v, for each (t, j) ∈ dom ξ̂ such that (t, j + 1) ∈ dom ξ̂,

v̂(t, j) = 0, σ̂(t, j)φ̂(t, j) ≥ kp
ki
σ̂(t, j)2, b̂(t, j) = −1; (3.81a)

σ̂(t, j + 1) = σ̂(t, j), φ̂(t, j + 1) =
kp
ki
σ̂(t, j),

v̂(t, j + 1) = v̂(t, j), b̂(t, j + 1) = −b̂(t, j).
(3.81b)

Let us then consider the construction of the suitable hybrid signal q starting
from time (0, 0) and separately in these three cases (3.79), (3.80), (3.81).

Suppose ξ̂ flows in Ĉ on the interval I0 =: [t0, t1] = [0, t1] with t1 > 0. Note

that for each ξ̂ ∈ Ξ̂, F̂(ξ̂) =
[
F̂x(x̂)

0

]
, and the evolution according to F̂x is

determined in Claim 3.4(ii)-(iv). For convenience, we report the cases (3.11)-
(3.13) here as

S1 := {x̂ ∈ R3 : (v̂ > 0) ∨ (v̂ = 0 ∧ φ̂ > Fs)

∨ (v̂ = 0 ∧ φ̂ = Fs ∧ σ̂ > 0)},
(3.82)

S0 := {x̂ ∈ R3 : (v̂ = 0 ∧ σ̂ > 0 ∧ φ̂ ∈ [−Fs, Fs))},

∨ (v̂ = 0 ∧ σ̂ = 0 ∧ φ̂ ∈ [−Fs, Fs])

∨ (v̂ = 0 ∧ σ̂ < 0 ∧ φ̂ ∈ (−Fs, Fs])}

(3.83)

S−1 := {x̂ ∈ R3 : (v̂ < 0) ∨ (v̂ = 0 ∧ φ̂ < −Fs)

∨ (v̂ = 0 ∧ φ̂ = −Fs ∧ σ̂ < 0)}.
(3.84)

Note that S1, S0, S−1 form a partition of R3 (i.e., ∪i∈{1,0,−1}Si = R3 and

Si ∩ Sk = ∅ for each i, k ∈ {1, 0,−1} with i 6= k). For ξ̂(0, 0) = (x̂(0, 0), b̂(0, 0)),
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σ̂

φ̂
v̂

σ̂

φ̂
v̂

σ̂

φ̂
v̂

−Fs
Fs

Fs Fs

−Fs −Fs

Figure 3.10. Intersections of the sets S−1, S0, S1 with {x̂ ∈ R3 : v̂ = 0}.
Solid and dashed lines at the boundary of each set mean respectively that those
points belong and do not belong to that set.

assign q(0, 0) as 1, 0, −1 if x̂(0, 0) belongs respectively to S1, S0, S−1. Consider
t?1 as the smallest time in (0, t1] (t?1 > 0 by Claim 3.4) such that

t?1 = t1, x̂(t, 0) ∈ Sq(0,0) ∀t ∈ [0, t?1], or (3.85a)

t?1 < t1, x̂(t, 0) ∈ Sq(0,0) ∀t ∈ [0, t?1), x̂(t?1, 0) /∈ Sq(0,0). (3.85b)

Note that no other cases than (3.85a)-(3.85b) need considering since solutions
are locally absolutely continuous during flow by [63, Def. 2.4]. Hence, the
solutions need to hit the set {x̂ ∈ R3 : v̂ = 0} to traverse from Si to Sk (with
i, k ∈ {1, 0,−1} and i 6= k). The intersections of the sets S−1, S0, S1 with
{x̂ ∈ R3 : v̂ = 0} are visualized in Figure 3.10.

Define q(t, 0) = q(0, 0) for all t ∈ [0, t?1]. We show now that, under (3.79),

(ξ̂(t, 0), q(t, 0)) ∈ Cslip ∪ Cstick for all t ∈ [0, t?1] (3.86a)[
˙̂
ξ(t,0)
q̇(t,0)

]
= F

( [
ξ̂(t,0)
q(t,0)

] )
for almost all t ∈ [0, t?1]. (3.86b)

Indeed, consider separately the cases q(0, 0) equal to 1, 0, −1 and note that
by the definition of t?1 in (3.85), they imply respectively that v(t, 0) is nonneg-
ative, zero, nonpositive for all t ∈ [0, t?1]. As for q(0, 0) = 1, we have that
for all t ∈ [0, t?1], q(t, 0) = 1 by our construction, v̂(t, 0) ≥ 0 by the defi-

nition of t?1 in (3.85), b̂(t, 0)q(t, 0)σ̂(t, 0) ≥ 0, σ̂(t, 0)φ̂(t, 0) ≥ kp
ki
σ̂(t, 0)2, and

b̂(t, 0)q(t, 0)φ̂(t, 0) ≥ 0 by (3.79a) and the first two relationships. Then, for all

t ∈ [0, t?1], (ξ̂(t, 0), q(t, 0)) ∈ Cslip in (3.78f), so (3.86a) holds true. Moreover,
(3.79b) and Claim 3.4(ii) yield that for almost all t ∈ [0, t?1]

˙̂x(t, 0) = Ax̂(t, 0)− e3(Fs − f(v̂(t, 0)))

˙̂
b(t, 0) = 0,

so that for almost all t ∈ [0, t?1]

[
˙̂
ξ(t,0)
q̇(t,0)

]
=

 −kiv̂(t,0)
σ̂(t,0)−kpv̂(t,0)

−kdv̂(t,0)+φ̂(t,0)−(Fs−f(v̂(t,0)))
0
0

 = F
( [

ξ̂(t,0)
q(t,0)

] )
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and (3.86b) holds true as well. As for q(0, 0) = 0, we have that for all t ∈ [0, t?1],

q(t, 0) = 0 by our construction, v̂(t, 0) = 0 and |φ̂(t, 0)| ≤ Fs by the definition

of t?1 in (3.85), σ̂(t, 0)φ̂(t, 0) ≥ kp
ki
σ̂(t, 0)2 by (3.79a). Then, for all t ∈ [0, t?1],

(ξ̂(t, 0), q(t, 0)) ∈ Cstick in (3.78f), so (3.86a) holds true. Moreover, (3.79b) and

Claim 3.4(iii) yield that for almost all t ∈ [0, t?1], ˙̂x(t, 0) =
[

0
σ̂(t,0)

0

]
and

˙̂
b(t, 0) = 0,

so that for almost all t ∈ [0, t?1],
[

˙̂
ξ(t,0)
q̇(t,0)

]
= F

( [
ξ̂(t,0)
q(t,0)

] )
, and (3.86b) holds true

as well. As for q(0, 0) = −1, we follow similar steps to q(0, 0) = 1.

We now show that given q(t?1, 0) and x̂(t?1, 0) and if t?1 < t1 as in (3.85b)

(this analysis is indeed not needed if (3.85a) holds), we can select q so that (ξ̂, q)
jumps in D1, D0 or D−1. Consider all the following possible cases, whereby we
note that, e.g., q(t?1, 0) = 1 and x̂(t?1, 0) ∈ S1 is not a case to consider by the
definition of t?1 in (3.85b).

As for q(t?1, 0) = 1 and x̂(t?1, 0) ∈ S0,
[
ξ̂(t?1 ,0)

q(t?1 ,0)

]
∈ D0 since for all t ∈ [0, t?1),

x̂(t, 0) ∈ S1, hence we can deduce b̂(t, 0)σ̂(t, 0) ≥ 0, σ̂(t, 0)φ̂(t, 0) ≥ kp
ki
σ̂(t, 0)2,

and b̂(t, 0)φ̂(t, 0) ≥ 0 from (3.79a). Moreover,
[
ξ(t?1 ,1)

q(t?1 ,1)

]
= γ0(

[
ξ̂(t?1 ,0)

q(t?1 ,0)

]
) =[

ξ̂(t?1 ,0)
0

]
, where we note that both (t?1, 0) and (t?1, 1) belong to dom ξ = dom q

whereas (t?1, 1) does not belong to dom ξ̂, and this corresponds to the neces-

sary reparameterization of the jump counter of ξ̂ mentioned at the beginning of
the proof of the claim. Parallel arguments hold in the case q(t?1, 0) = −1 and
x̂(t?1, 0) ∈ S0.

As for q(t?1, 0) = 0 and x̂(t?1, 0) ∈ S1, the definition of t?1 in (3.85b), x̂(t?1, 0) ∈
S1 and q(t?1, 0) = 0, and the local absolute continuity of solutions [63, Def. 2.4]

imply that v̂(t?1, 0) = 0 and φ̂(t?1, 0) = Fs. The latter implies σ̂(t?1, 0) ≥ 0 from

σ̂(t?1, 0)φ̂(t?1, 0) ≥ kp
ki
σ̂(t?1, 0)2 ≥ 0 in (3.79a). Moreover, x̂(t?1, 0) ∈ S1 implies

b̂(t?1, 0) = 1 from the fact that ξ̂ flows on [0, t1] with t1 > t?1, and the condition

b̂v̂φ̂ ≥ 0 in (3.79a) (since φ̂(t?1, 0) = Fs and v̂(t, 0) > 0 for all t ∈ (t?1, t
?
1 + T ′]

for some T ′ > 0 by Claim 3.4(ii), the condition b̂v̂φ̂ ≥ 0 gives b̂ = 1). We have

then
[
ξ̂(t?1 ,0)

q(t?1 ,0)

]
∈ D1 since q(t?1, 0) = 0 in this case, v̂(t?1, 0) = 0 and φ̂(t?1, 0) = Fs

(as motivated above), σ̂(t?1, 0)φ̂(t?1, 0) ≥ kp
ki
σ̂(t?1, 0)2 (by (3.79a)) and b̂(t?1, 0) = 1

(as just motivated). Moreover,
[
ξ(t?1 ,1)

q(t?1 ,1)

]
= γ1(

[
ξ̂(t?1 ,0)

q(t?1 ,0)

]
) =

[
ξ̂(t?1 ,0)

1

]
. Parallel

arguments hold in the case q(t?1, 0) = 0 and x̂(t?1, 0) ∈ S−1.

As for q(t?1, 0) = −1 and x̂(t?1, 0) ∈ S1,
[
ξ̂(t?1 ,0)

q(t?1 ,0)

]
∈ D0 since for all t ∈ [0, t?1),

x̂(t, 0) ∈ S−1, hence we can deduce b̂(t, 0)σ̂(t, 0) ≤ 0, σ̂(t, 0)φ̂(t, 0) ≥ kp
ki
σ̂(t, 0)2,

and b̂(t, 0)φ̂(t, 0) ≤ 0 from (3.79a). It also holds
[
ξ(t?1 ,1)

q(t?1 ,1)

]
= γ0(

[
ξ̂(t?1 ,0)

q(t?1 ,0)

]
) =[

ξ̂(t?1 ,0)
0

]
. Similarly to the previous case q(t?1, 0) = 0 and x̂(t?1, 0) ∈ S1, we have
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v̂(t?1, 0) = 0 and φ̂(t?1, 0) ≥ Fs. x̂(t?1, 0) ∈ S1 and φ̂(t?1, 0) > Fs imply again

b̂(t?1, 0) = 1 from the fact that ξ̂ flows on [0, t1] with t1 > t?1, and the condition

b̂v̂φ̂ ≥ 0 in (3.79a). Hence,
[
ξ(t?1 ,1)

q(t?1 ,1)

]
∈ D1 and

[
ξ(t?1 ,2)

q(t?1 ,2)

]
= γ1(

[
ξ(t?1 ,1)

q(t?1 ,1)

]
) =[

ξ̂(t?1 ,0)
1

]
. Parallel arguments hold in the case q(t?1, 0) = 1 and x̂(t?1, 0) ∈ S−1.

This concludes the examination of all possible cases. It is then sufficient to
repeat the reasoning presented for a flow on [0, t?1] and the reasoning presented
for jumps in D1, D0, D−1 to cover the whole interval I0 by identifying possibly
t?2, t?3, etc.

Suppose ξ̂ jumps in D̂σ at (0, 0). We make the following observation. If ξ̂

jumps in D̂σ, b̂(0, 1) = −1 so it cannot jump in D̂σ at (0, 1). If ξ̂ jumps in
D̂v at (0, 1), then v̂(0, 2) = v̂(0, 1) = 0 (otherwise a jump in D̂v cannot occur),
σ̂(0, 2) = σ̂(0, 1) = σ̂(0, 0) = 0 (otherwise a jump in D̂σ could not have occurred)

and φ̂(0, 2) =
kp
ki
σ̂(0, 1) = 0 due to ĝv in (3.21e). Then, two consecutive jumps

in D̂σ and D̂v are such that ξ̂(0, 2) ∈ Â and we do not need to prove anything
in this case due to Lemma 3.7.

Based on this observation, the only case to consider is when ξ̂ (which is
complete by Lemma 3.6) flows in Ĉ after the jump in D̂σ. If x̂(0, 1) ∈ S1,
v̂(0, 1) = v̂(0, 0) ≥ 0 and we need q(0, 1) to be 1. This is achieved by se-
lecting q(0, 0) = 1. Since |q(0, 0)| = 1, q(0, 0)v̂(0, 0) ≥ 0, σ̂(0, 0) = 0 and

b̂(0, 0) = 1 (the last two by (3.80a)),
[
ξ̂(0,0)
q(0,0)

]
∈ Dσ and

[
ξ̂(0,1)
q(0,1)

]
= γσ(

[
ξ̂(0,0)
q(0,0)

]
)

because the first four components of γσ in (3.78e) coincide with ĝσ in (3.21e),
and q(0, 1) = q(0, 0) = 1 as needed. If x̂(0, 1) ∈ S−1, parallel arguments yield the
same conclusion by selecting q(0, 0) = −1. If x̂(0, 1) ∈ S0, v̂(0, 1) = v̂(0, 0) = 0

and |φ̂(0, 1)| ≤ Fs. Since σ̂(0, 1) = 0, ξ̂(0, 1) ∈ Â and we do not need to prove
anything in this case.

Suppose ξ̂ jumps in D̂v at (0, 0). As noted for the case of ξ̂ jumping in D̂σ,

ξ̂(0, 1) cannot jump in D̂v again and if it jumps in D̂σ, ξ̂(0, 2) ∈ Â. Then, the

only case to consider is when ξ̂, which is complete by Lemma 3.6, flows in Ĉ
after the jump in D̂v. Then, ξ̂ flows in either S0, S1, or S−1, depending on
σ̂(0, 1), and in all cases we select q(0, 0) = 0 in order jump in the correspond-
ing Dv in (3.78f). If x̂(0, 1) ∈ S0, we need q(0, 1) to be 0. Since q(0, 0) = 0,

v̂(0, 0) = 0, σ̂(0, 0)φ̂(0, 0) ≥ kp
ki
σ̂(0, 0)2, b̂(0, 0) = −1 (the last three by (3.81a)),[

ξ̂(0,0)
q(0,0)

]
∈ Dv and

[
ξ̂(0,1)
q(0,1)

]
= γv(

[
ξ̂(0,0)
q(0,0)

]
) because the first four components of

γv coincide with ĝv in (3.21e) and q(0, 1) = q(0, 0) = 0 as needed. If x̂(0, 1) ∈ S1,
we need q(0, 2) to be 1, which is achieved by jumping additionally in D1. In-

deed, we have q(0, 1) = 0, v̂(0, 1) = 0, σ̂(0, 1)φ̂(0, 1) =
kp
ki
σ̂(0, 1)2 (because

φ̂(0, 1) =
kp
ki
σ̂(0, 0) and σ̂(0, 1) = σ̂(0, 0)), φ̂(0, 1) ≥ Fs (because x̂(0, 1) ∈ Ŝ1),

and b̂(0, 1) = −b̂(0, 0) = 1 so that
[
ξ̂(0,1)
q(0,1)

]
∈ D1 and

[
ξ(0,2)
q(0,2)

]
= γ1(

[
ξ̂(0,1)

0

]
) =
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[
ξ̂(0,1)

1

]
with q(0, 2) = 1 as needed. The case x̂(0, 1) ∈ S−1 follows from parallel

arguments.

Up to now, we have shown that if ξ̂ flows in Ĉ, jumps in D̂σ or jumps in D̂v
at (0, 0), then the hybrid signal q can be selected suitably. Based on the same
observation at the beginning of the cases of a jump in D̂σ or D̂v at (0, 0), we can
discard in the proof without loss of generality the cases of two consecutive jumps
in D̂σ and D̂v, or in D̂v and D̂σ, since after these two jumps, ξ̂ would belong
to Â. For the proof, this implies that each jump in D̂σ or in D̂v is preceded
(except at (0, 0), which we have already addressed) and followed by a flow in Ĉ.
In the latter case, we have already shown how to select q so that the appropriate
flow for (ξ̂, q) occurs in H. So, if we show that, regardless of the selection of q

dictated by the preceding flow (the former case), a jump in Dσ or in Dv for (ξ̂, q)

can be achieved, then the procedure outlined for ξ̂ flowing in Ĉ, jumping in D̂σ
or in D̂v at (0, 0), can be easily extended for all t ≥ 0 such that ξ̂(t, j(t)) /∈ Â
and the proof of the claim is complete. So, we show this last point, i.e., that
regardless of the selection of q dictated by the preceding flow, a jump in Dσ or
in Dv for (ξ̂, q) can be achieved.

Suppose ξ̂ jumps in D̂σ at (t, j) after a flow in Ĉ. Note that because of
the extra jumps in D1, D0, D−1 that have appeared so far, we may need to
reparametrize the jump counter as follows. For each (t, j) ∈ dom ξ̂, there exist
j? ≥ 0 such that (t, j+ j?) ∈ dom q. If |q(t, j+ j?)| = 1 from the preceding flow,

a jump in Dσ is achieved since |q(t, j+ j?)| = 1,σ̂(t, j) = 0, and b̂(t, j) = 1 (both

by (3.80a)), q(t, j + j?)v̂(t, j) ≥ 0 and q(t, j + j?)φ̂(t, j) ≥ 0 (both since (ξ̂, q)

flowed in Cslip). If q(t, j+ j?) = 0 from the preceding flow, (ξ̂, q) flowed in Cstick

so v̂(t, j) = 0 and |φ̂(t, j)| ≤ Fs. These two conditions together with σ̂(t, j) = 0

(by (3.80a)), imply that ξ̂(t, j) ∈ Â so there is nothing to check.

Suppose ξ̂ jumps in D̂v at (t, j) after a flow in Ĉ. Adopt the same jump
reparametrization through j? described for a jump in D̂σ. If q(t, j+j?) = 0 from
the preceding flow, a jump in Dv is achieved thanks to (3.81a). If |q(t, j+j?)| = 1

from the preceding flow, (ξ̂, q) flowed in Cslip so that

b̂(t, j)q(t, j + j?)σ̂(t, j) ≥ 0,

σ̂(t, j)φ̂(t, j) ≥ kp
ki
σ̂(t, j)2,

b̂(t, j)q(t, j + j?)φ̂(t, j) ≥ 0.

(3.87)

Then, a jump in D0 is possible since |q(t, j + j?)| = 1, v̂(t, j) = 0 (by (3.81a))

and (3.87) holds since (ξ̂, q) flowed in Cslip. By jumping in D0, ξ̂ does not change
and q(t, j + j? + 1) = 0 so that we fall back to the case q(t, j + j?) = 0 just
analyzed. �
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Part B: the timer τ is considered

H has been written so that the only difference with Hδ (for any δ > 0) is the
presence of the timer τ that must satisfy the condition τ ∈ [δ, 2δ] for jumps to
occur in D1 and D−1, whereas the timer τ and this condition are absent in H.
Note that if τ(0, 0) = τ0 ∈ [0, 2δ], then τ(t, j) ≤ 2δ for all (t, j) ∈ dom τ because
of the flow and jump maps for τ in (3.24d) and (3.24f). Then, the lemma is
proven if we show that for each compact set K, there exists δ(K) > 0 such that

for each solution ξ̂ ∈ SĤ(K), the solution ζ corresponding to ξ̂ and constructed
as in Claim 3.19, is by itself such that if it jumps in D1 or D−1 in (3.78f) at
(t, j), it can evolve without jumping in D1 ∪ D−1 for any (t′, j′) ∈ dom ζ with
t′ ∈ (t, t+ δ(K)) and j′ ≥ j. Let us take (t, j) = (0, 0) without loss of generality.

We only show that if the solution ζ corresponding to ξ̂ jumps in D1, then it can
evolve without jumping in D1 ∪ D−1, since parallel arguments hold for when
such ζ jumps in D−1.

If ξ̂ is such that ζ jumps in D1, Claim 3.19 guarantees by the construction
of ζ in its proof that also v̂(0, 0) = 0, φ̂(0, 0) ≥ Fs, σ̂(0, 0)φ̂(0, 0) ≥ kp

ki
σ̂(0, 0)2

(hence σ̂(0, 0) ≥ 0), b̂(0, 0) = 1. Then, ξ̂(0, 0) ∈ Ŝ1 in (3.23), so the conclusions

of Lemma 3.9 hold for ξ̂, and consequently for the corresponding ζ by Claim 3.19.
We prove this lemma by using for each compact set K the same δ(K) > 0 as in
Lemma 3.9, which can be found due to boundedness of solutions in Lemma 3.8.
Evolution 3.9.1 given in the proof of Lemma 3.9 is not relevant here since ξ̂(0, 0) ∈
Â in that case, so we only need to show that in both Evolutions 3.9.2 and 3.9.3
given in the proof of Lemma: 3.9, ξ̂ is such that ζ can evolve without jumping
in D1 or D−1.

Consider Evolution 3.9.2 for ξ̂ given in the proof of Lemma 3.9, namely
ξ̂ = (x̂, b̂) flowing in Ĉ on [0, δ(K)] × {0}. Since x̂ flows with v̂(t, 0) > 0 for all
t ∈ (0, δ(K)] as proven in Lemma 3.9, we can select q(t, 0) = 1 for all t ∈ [0, δ(K)]
as we did in the proof of Claim 3.19. With this q, ζ can flow in Cslip on [0, δ(K)]×
{0} since q(t, 0) = 1, q(t, 0)v̂(t, 0) ≥ 0 (by the selection of q and Lemma 3.9),

b̂(t, 0)q(t, 0)σ̂(t, 0) ≥ 0, σ̂(t, 0)φ̂(t, 0) ≥ kp
ki
σ̂(t, 0)2, and b̂(t, 0)q(t, 0)φ̂(t, 0) ≥ 0

(the last three since ξ̂ flows in Ĉ). Since ζ evolves indeed without jumping in D1

or D−1, the statement of this lemma is proven for Evolution 3.9.2.

Consider Evolution 3.9.3 for ξ̂ given in the proof of Lemma 3.9, namely ξ̂
possibly flowing in Ĉ on [0, t1] × {0} for some t1 ≥ 0, jumping in D̂σ at (t1, 0),
possibly flowing in Ĉ on [t1, t2] × {1} for some t2 ≥ t1, jumping in D̂v at (t2, 1)
and possibly flowing in Ĉ on [t2, t3] × {2} for some t3 ≥ t2. If t1 > 0, flow in Ĉ
occurs as in Evolution 3.9.2, we select q(t, 0) = 1 for all t ∈ [0, t1] and ζ flows
in Cslip on [0, t1] × {0}. Since q(t1, 0) = 1, ζ can jump in Dσ as shown in the

proof of Claim 3.19, and q(t1, 1) = 1. If t1 < t2, flow in Ĉ occurs, v̂(t, 1) > 0
for all t ∈ (t1, t2) as proven in Lemma 3.9 (see (3.68)), we select q(t, 1) = 1 for

all t ∈ [t1, t2], and ζ flows in Cslip. With q(t2, 1) = 1 and since ξ̂ jumps in D̂v
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at (t2, 1), the construction in the proof of Claim 3.19 shows that a jump of ζ in
D0 is possible (so, q(t2, 2) = 0), followed by a jump of ζ in Dv (so, q(t2, 3) = 0).
We now distinguish the cases in Evolutions 3.9.3.1 and 3.9.3.2 given in the proof
of Lemma 3.9. If σ̂(t2, 1) ∈ [−σ̂th, 0] as in Evolution 3.9.3.1, we have in the

nontrivial case σ̂(t2, 1) 6= 0 (if σ̂(t2, 1) = 0, then ξ̂(t2, 2) ∈ Â) that ξ̂ flows with
v̂(t, 2) = 0 for all t ∈ [t2, t2+δ(K)), so ζ can flow in Cstick on at least [t2, t2+δ(K)].

If σ̂(t2, 1) ∈ (−∞,−σ̂th) as in Evolution 3.9.3.2, ξ̂ flows in Ĉ on [t1, t2]×{1} with
t2− t1 > δ(K), whereby ζ flows in Cslip. These possible evolutions indeed evolve
without a jump of ζ in D1 or D−1 for all (t′, j′) ∈ dom ξ with t′ ∈ (t, t+ δ(K)),
so the statement of this lemma is proven for these evolutions as well.

3.A.9 Proof of Lemma 3.12

We prove the lemma item by item and use throughout the proof that bqσ ≥ 0
in C ∪ D.

1. For each ξ ∈ C ∪ D, V is a sum of nonnegative terms in (3.27) since the
2 × 2 matrix is positive definite from Assumption 3.3, and bqσ ≥ 0 in C ∪ D.
Moreover, for each ξ ∈ C ∪ D, V (ξ) = 0 if and only if ξ ∈ A because ξ ∈ A
implies that V (ξ) = |q|(φ− bqFs)2 = 0 and V (ξ) = 0 implies that all the terms
of the sum in (3.27) must be zero, hence σ = v = 0 and, for |q| = 1, φ = bqFs
and, for q = 0, φ ∈ [−Fs, Fs]. The last two cases imply together φ ∈ Fs Sign(bq).

2. For the derivation of V ◦ below, we use d
dφ

(
dz2
Fs(φ)

)
= 2dzFs(φ), and

∂(|σ|) = Sign(σ).

V ◦(ξ) = 2
kd
ki
σσ̇ − 2vσ̇ − 2σv̇ + 2kpvv̇ + 2|q|(φ− bqFs)φ̇

+ 2(1− |q|)dzFs(φ)φ̇+ 2
kp
ki
Fsbqσ̇ + max

ς∈Sign(σ)

(
2(1− |q|)kp

ki
Fsςσ̇

)

= 2
kd
ki
σ(−kiv)− 2v(−kiv)− 2σ

(
− kdv + |q|φ− q(Fs − h(v))

)
+ 2kpv

(
− kdv + |q|φ− q(Fs − h(v))

)
+ 2|q|(φ− bqFs)(σ − kpv)

+ 2(1− |q|)dzFs(φ)(σ − kpv) + 2
kp
ki
Fsbq(−kiv)

+ max
ς∈Sign(σ)

(
2(1− |q|)kp

ki
Fsς(−kiv)

)
,

where the deadzone term is zero because |q| = 1 in Cslip, and q = 0 and |φ| ≤ Fs
in Cstick. Similarly, the term in the maximum is zero because because |q| = 1 in
Cslip, and q = 0 and v = 0 in Cstick. Since |q|q = q for ξ ∈ Ξ, some computations
yield

V ◦(ξ) = −2(kpkd − ki)v2 + 2qσ(Fs − h(v))− 2Fsbqσ − 2kpqv(Fs − h(v)).



98 Chapter 3. Reset control for stability of systems with Stribeck friction

Because Fs − h(v) ≥ 0 (by (3.24e) and Assumption 3.2(i)), bqσ ≥ 0, and |b| =
1, it holds that 2qσ(Fs − h(v)) − 2Fsbqσ ≤ 2|q||σ|(Fs − h(v)) − 2Fs|q||σ| =
−2|q||σ|h(v). Then, we have

V ◦(ξ) ≤ −2(kpkd − ki)v2 − 2|q||σ|h(v)− 2kpqv(Fs − h(v)) ≤ 0

because kpkd − ki > 0 by Assumption 3.3, h(v) ≥ 0 for all v by (3.24e),
Fs − h(v) ≥ 0 by (3.24e) and Assumption 3.2, and qv ≥ 0 in the flow set
C.

3. Since |q| = |q+| = 1 and σ = 0,

∆Vσ(ξ) = (φ+ − b+qFs)2 − (φ− bqFs)2 + 2
kp
ki
Fsb

+qσ − 2
kp
ki
Fsbqσ

= (−φ+ bqFs)
2 − (φ− bqFs)2 = 0.

4. Since q = q+ = 0 and σ = σ+,

∆Vv(ξ) = dz2
Fs(φ

+)− dz2
Fs(φ) = dz2

Fs(|φ
+|)− dz2

Fs(|φ|). (3.88)

ξ ∈ Dv satisfies σφ ≥ kp
ki
σ2 ≥ 0, which is equivalent to |σ||φ| ≥ kp

ki
|σ|2 and

|φ| ≥ kp
ki
|σ|. Then, |φ+| =

kp
ki
|σ| ≤ |φ|. The relation |φ+| ≤ |φ| concludes in

(3.88) that ∆Vv(ξ) ≤ 0 for all ξ ∈ Dv.

5. For i ∈ {−1, 1}, we have b = b+ = 1, q = 0 and |q+| = 1, so

∆Vi(ξ) = (φ− bq+Fs)
2 − dz2

Fs(φ) + 2
kp
ki
Fsbq

+σ − 2
kp
ki
Fs|σ|

≤ (φ− q+Fs)
2 − dz2

Fs(φ) = 0.

where the inequality holds since bq+σ ≤ |σ| and the last equality holds since
q+φ ≥ Fs.

6. Since |q| = 1 and q+ = 0,

∆V0(ξ) = dz2
Fs(φ)− (φ− bqFs)2 + 2

kp
ki
Fs|σ| − 2

kp
ki
Fsbqσ

= dz2
Fs(φ)− (φ− bqFs)2 ≤ 0,

because bqσ = |σ| (by bqσ ≥ 0 and |b| = |q| = 1 in D0), so the corresponding
terms cancel. Also, (φ− bqFs)2 ≥ dz2

Fs(φ) so that we conclude ∆V0(ξ) ≤ 0, for
all ξ ∈ D0.
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q = 1

b = 1

q = 1

b = −1

q = −1
b = 1

q = −1
b = −1

q = 0 Dσ
D0

D0
Dσ D0 D0

Dv

Figure 3.11. The auxiliary version of the hybrid automaton in Figure 3.4 used
in the proof of Proposition 3.13.

3.A.10 Proof of Proposition 3.13

The proof is based on [135, Thm. 1]. The set A in (3.26) is compact and Hδ
in (3.24) satisfies the hybrid basic conditions [63, Assumption 6.5]. We check
the other criteria of [135, Thm. 1] in the following steps.

(i) G(D ∩ A) ⊂ A for G in (3.24c). Indeed, G(D ∩ A) ⊂ A and G(A) ⊂ A
because gσ(A) ⊂ (A), gv(A) ⊂ A, g1(A) ⊂ A, g−1(A) ⊂ A, and g0(A) ⊂ A.

(ii) Conditions on V . The Lyapunov function in V satisfies C∪D ⊂ domV , V is
continuous in C∪D and locally Lipschitz near each point in C, is positive definite
with respect to A in C ∪ D (by Lemma 3.12, item 1)), and radially unbounded
relative to C ∪ D. The Lyapunov nonincrease conditions have been established
in Lemma 3.12.

(iii) No complete solution keeps V constant and nonzero. Suppose by contradic-
tion that there exists a complete solution ξbad to Hδ that keeps V constant and
nonzero.

We preliminarily show that the dwell time enforced by the timer τ in Hδ and
the logical variables imply that complete solutions exhibit an infinite amount
of flow. Suppose by contradiction that this is not true and that there exists
a complete solution ξjump with supt ξjump =: Tjump < +∞ and supj ξjump =
+∞. Consider the hybrid time (Tjump − δ/2, j̄) ∈ dom ξjump for some j̄. For
hybrid times (t, j) � (Tjump − δ/2, j̄), a jump in D1 or D−1 can only occur
once. Indeed, by considering Figure 3.4, the second jump could only occur at
(t′, j′) ∈ dom ξjump with t′ ≥ Tjump−δ/2+δ = Tjump+δ/2, which contradicts the
definition of Tjump. After these jumps in D1 or D−1, the possible jump evolutions
of Figure 3.4 become those in Figure 3.11. For ξjump to jump infinitely many
times, only jumps in Dv remain, but this is also not possible because after the
first jump in Dv the variable b is toggled to 1 and jumps in Dv are no longer
enabled. Then, we have shown that such solution ξjump cannot exist and then
complete solutions exhibit an infinite amount of flow.
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Due to the decrease property along flow in Lemma 3.12, item 2) and because
v remains constant across any possible jump, the only possibility for ξbad to exist
is that it flows outside A (otherwise V along ξbad would be zero by Lemma 3.12,
item 1)) with v identically equal to zero (otherwise V would decrease from
Lemma 3.12, item 2, in any arbitrarily small interval of variation of v).

Such flowing solution with v ≡ 0 is impossible in Cslip\A. Indeed, f(v) = L2v
for all |v| ≤ εv by Assumption 3.2(iv), we have then from (3.24d) that the first
three components of F are for q = 1, v ≥ 0 and q = −1, v ≤ 0 are respectively −kiv

σ − kpv
−kdv + φ− Fs + L2v

 =: AL2

σφ
v

+

 0
0
−Fs

 ,
and  −kiv

σ − kpv
−kdv + φ+ Fs + L2v

 =: AL2

σφ
v

+

 0
0
Fs

 ,
the pair ([ 0 0 1 ] , AL2) is observable, so the only solution (σ, φ, v) compatible
with v ≡ 0 would be in A.

Such flowing above with v ≡ 0 is also impossible in Cstick\A. Indeed, the first
three components of F are (0, σ, 0) with the σ component nonzero (otherwise,
ξbad would be in A), the φ component grows unbounded and this contradicts
that |φ| ≤ Fs in Cstick\A. Hence, such a solution ξbad cannot exists and the
proof is completed.

3.A.11 Proof of Theorem 3.14

First, define

Â6 := {(σ̂, φ̂, v̂, b̂, τ, q) : σ̂ = v̂ = 0, |φ̂| ≤ Fs,

b̂ ∈ {−1, 1}, q ∈ {−1, 0, 1}, τ ∈ [0, 2δ]}, (3.89)

which writes Â in (3.22) as a subset of R6, instead of R4. It holds that Â6 ⊃ A
with A in (3.26). Then,

|ξ|A := inf
y∈A
|ξ − y| ≥ inf

y∈Â6

|ξ − y| = inf
y∈Â6

|(ξ̂, τ, q)− y| = |ξ̂|Â. (3.90)

We need to show stability and global attractivity of Â, where the latter entails
by [63, Def. 7.1] that for each solution ξ̂ with ξ̂(0, 0) ∈ Ξ̂, ξ̂ is bounded and
satisfies

lim
t+j→∞

|ξ̂(t, j)|Â = 0, (3.91)
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since maximal solutions are complete by Lemma 3.6. Boundedness of solutions is
guaranteed by Lemma 3.8. Lemma 3.11 guarantees that for each compact set K,
there exists δ(K) > 0 such that each solution ξ̂ ∈ SĤ(K) coincides with the (x, b)

components of some solution ξ to Hδ(K) for all t ≥ 0 such that ξ̂(t, j(t)) 6∈ Â, i.e.,

ξ(t, j(t)) =
(
ξ̂(t, j(t)), q(t, j(t)), τ(t, j(t))

)
for all t ≥ 0 such that ξ̂(t, j(t)) 6∈ Â

from (3.25). Then, (3.90) concludes that

|ξ(t, j(t))|A ≥ |ξ̂(t, j(t))|Â (3.92)

for all t ≥ 0 such that ξ̂(t, j(t)) 6∈ Â. If there exists t′ ≥ 0 such that

ξ̂(t′, j(t′)) ∈ Â, then (3.91) is proven by Lemma 3.7. If, otherwise, for all t ≥ 0,

ξ̂(t, j(t)) /∈ Â, then supt ξ̂ = +∞ by Lemma 3.10, supt ξ = +∞ as well by (3.25),

limt→∞ |ξ(t, j(t))|A = 0 by Proposition 3.13, limt→∞ |ξ̂(t, j(t))|Â = 0 by (3.92),

which also proves (3.91), namely global attractivity of Â.
Since both H and Ĥ satisfy the hybrid basic conditions [63, As. 6.5], global

asymptotic stability of A for H in Proposition 3.13 actually implies uniform
global asymptotic stability [63, Thm. 7.12] and uniform global attractivity.
Hence, Â is uniformly globally attractive. Since Â is also strongly forward
invariant by Lemma 3.7, Â is stable by [63, Prop. 7.5], which, together with its
global attractivity, implies global asymptotic stability.





Chapter 4

PID-based learning control for
repetitive positioning of frictional

motion systems

Abstract− In this chapter, we propose a time-varying PID-based feedback controller for high-

accuracy positioning of motion systems with friction, performing a repetitive motion profile. In

particular, we design a time-varying integrator gain, parametrized by a set of basis functions.

To ensure optimal setpoint positioning accuracy, a data-based sampled-data extremum-seeking

architecture is employed to obtain the optimal tuning of the time-varying integrator gain. The

proposed approach does not require knowledge of the friction characteristic. The effectiveness

of the proposed controller is experimentally demonstrated on an industrial nano-positioning

motion stage of a high-end electron microscope.

4.1 Introduction

Many industrial motion systems perform repetitive tasks, e.g., repetitive mo-
tion profiles in pick-and-place machines [97, Sec. 5], large-scale transferring of
circuit topology to silicon wafers in lithography systems [38], and automated
scanning procedures in electron microscopes. Due to demands on hardware cost
reduction in the design phase or wear in the operational phase, friction is com-
monly present in such high-precision positioning systems, thereby limiting the
achievable positioning accuracy.

Various control solutions have been presented throughout the literature to
cope with frictional effects in motion systems. Model-based compensation tech-

This chapter is based on [70]. Related preliminary results are reported in [69].
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niques (see, e.g., [100], [58]), exploit parametric models in the control loop to
compensate for friction. However, as friction characteristics are commonly un-
known, uncertain, and (slowly) time-varying, model-based methods are prone
to modeling errors, ultimately compromising positioning performance. Non-
model-based methods, e.g., impulsive control (see, e.g., [148]), dithering-based
techniques (see, e.g., [79]), and sliding-mode control (see, e.g., [14]), may re-
sult in stability of the setpoint. However, tuning and implementation of such
controllers is not straightforward.

Despite the existence of the above control techniques, the vast majority of the
high-precision industry still employs classical proportional-integral-derivative
(PID) control [9, 125], since control practitioners are often well-trained in linear
control design (loop-shaping). Moreover, it is well-known that integral action
in PID control is capable of compensating for unknown static friction in motion
systems. However, PID control is prone to performance limitations as well. For
example, friction-induced limit cycling (i.e., hunting, see Chapter 3) is observed
when integral control is employed on systems where the friction characteristic
includes the velocity-weakening (Stribeck) effect, so that stability of the setpoint
is lost. Even if stability can be warranted, rise-time, overshoot, settling time (see
Chapter 2), and positioning accuracy depend on the particular friction charac-
teristic, which is highly uncertain in practice. Hence, despite the popularity of
the PID controller in industry, friction is a performance- and reliability-limiting
factor in PID-controlled motion systems. This motivates the development of a
more advanced control strategy, while preserving the benefits and intuition of
classical PID feedback control design.

The PID-based reset control technique presented in Chapter 3 achieves set-
point stability by employing particular resets of the integrator. However, no
guarantees on transient response or settling time can be given, so that this tech-
nique may be less suitable if a certain accuracy is desired within a limited time
interval. In this chapter, we therefore propose a different PID-based controller,
tailored for frictional systems performing a repetitive motion profile, typically
within a finite time interval. This setting poses strict requirements on the set-
tling time, in order to arrive at the desired accuracy. In particular, we propose
a PID-based learning controller for repetitive tasks in motion systems subject
to unknown static and velocity-dependent friction, including the Stribeck effect.
The PID-based learning controller consists of two elements. First, a PID control
architecture with a time-varying integrator gain design is proposed, facilitating
a tailored design for any repetitive motion profile and friction characteristic at
hand. In this manner, friction-induced limit cycles can be avoided, and high
accuracy repetitive setpoint positioning and improved transient behavior can
be achieved instead. In addition, similar robustness properties as achieved with
classical PD control at the desired setpoint can be obtained. Second, we propose
a data-driven, model-free optimization strategy, in order to iteratively find the
optimal time-varying integrator gain in the presence of unknown friction. Such
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a data-driven tuning procedure yields optimal setpoint accuracy and improved
transient behavior.

In this work, the finite-horizon optimization problem of finding the opti-
mal time-varying integrator gain for repetitive motion tasks is formulated in
terms of a model-free sampled-data extremum-seeking control (ESC) problem
(see, e.g., [85, 89, 141]). This is achieved by exploiting a suitable basis func-
tion parametrization of the time-varying integrator gain. The extremum seeking
mechanism is then designed to iteratively improve system performance by adap-
tive tuning of the parameters of the basis function parametrization. Such learn-
ing mechanism has resemblance with iterative feedback tuning (see, e.g., [73,
75, 94]) and iterative learning control (ILC, see, e.g., [36, 146]). These methods
have proven merit in a linear motion control setting. However, for our nonlinear
setting, employing an extremum-seeking approach instead is beneficial. Namely,
ESC is able to deal with unknown, uncertain, time-varying, and general non-
linear systems, and is therefore suitable to be used in the presence of unknown
nonlinear frictional effects. Moreover, the potential of ESC in the context of
iterative learning control and optimizing transient behavior has been shown in,
e.g., [26, 84, 86, 126]. However, it must be noted that the extremum-seeking
strategy to iteratively improve the system’s transient behavior proposed in this
work is different. Namely, we iteratively learn a time-varying feedback controller
gain using ESC, whereas in [26, 86], ESC is used for iterative tuning of PID con-
trollers having constant gains, and in [84, 126], (sampled-data) ESC is employed
to iteratively tune a system input signal.

The main contributions of this chapter can be summarized as follows. The
first contribution is a parametrized time-varying integrator gain design for mo-
tion systems with unknown static and velocity-dependent friction, the latter
possibly including the Stribeck effect. The second contribution is an automatic
controller tuning procedure based on a sampled-data extremum-seeking frame-
work. The third contribution is an experimental case study on an industrial
high-precision motion stage of an electron microscope.

The remainder of this chapter is organized as follows. We formalize the con-
trol problem in Section 4.2, and we present the PID-based controller with time-
varying integrator gain in Section 4.3. In Section 4.4, we present the extremum-
seeking-based iterative learning mechanism. In Section 4.5, we experimentally
show the working principles of the proposed PID-based learning controller, ap-
plied to an industrial nano-positioning motion stage. Conclusions are presented
in Section 4.6.

Notation: Sign(·) (with an upper-case S) denotes the set-valued sign function,
i.e., Sign(y) := 1 for y > 0, Sign(y) := −1 for y < 0, and Sign(y) := [−1, 1] for
y = 0. B denotes the closed unit ball of appropriate dimensions, in the Euclidean
norm.
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4.2 Control problem formulation

In this section, we first present the considered motion system with friction,
controlled by a classical P(I)D controller to illustrate the shortcomings of P(I)D
control for frictional motion systems. Second, we state the control problem
formulation for repetitive positioning of frictional motion systems addressed in
this chapter.

4.2.1 System description

Consider a single-degree-of-freedom motion system, consisting of a mass m slid-
ing on a horizontal plane, with measurable position z1, velocity z2, control input
uc, and subject to a friction force Ff . The friction force Ff takes values accord-
ing to the set-valued mapping of the velocity z2 ⇒ Ψ(z2). The set-valued friction
characteristic Ψ consists of a Coulomb friction component with (unknown) static
friction Fs, a viscous contribution γz2 (where γ ≥ 0 is the viscous friction coeffi-
cient), and a nonlinear velocity-dependent friction component f , encompassing
the Stribeck effect, i.e.,

Ff ∈ Ψ(z2) := −Fs Sign(z2)− γz2 + f(z2), (4.1)

We pose the following assumption on the velocity-dependent friction component
f .

Assumption 4.1. The function f : R → R is continuously differentiable and
satisfies

(i) |f(z2)| ≤ Fs for all z2;

(ii) z2f(z2) ≥ 0 for all z2;

(iii) f is globally Lipschitz with Lipschitz constant L > 0.

The dynamics are governed by the following differential inclusion:

ż1 = z2,

ż2 ∈
1

m
(Ψ(z2) + uc) .

(4.2)

Let us first consider a classical PID controller for input uc in (4.2), i.e.,

uc = kpe+ kdė+ kiz3,

ż3 = e,
(4.3)

where e := r − z1 denotes the setpoint error with r the reference signal, z3 the
integrator state, and kp, kd, and ki the proportional, derivative, and integral
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controller gains, respectively. For frictional motion systems, the presence of an
integrator action in (4.3) is motivated by the fact that it is able to compensate
for unknown static friction, due to the build-up of control force by integrating
the position error. In general motion control systems, integrator action is widely
used to improve low-frequency disturbance rejection properties and shorten rise-
times, the latter being beneficial for machine throughput. As an illustration,
consider a constant reference r, i.e., a point-to-point motion, so that the resulting
set of equilibria of closed-loop system (4.1)-(4.3) is given by

Epid = {(e, ė, z3) ∈ R3 | e = 0, ė = 0, |z3| ≤ Fs/ki}, (4.4)

which is globally asymptotically stable for closed-loop system dynamics (4.1)-
(4.3) only when f(·) = 0, i.e., in the absence of the velocity-weakening (Stribeck)
effect, see [29]. In the presence of the Stribeck effect, however, solutions do not
converge to Epid and limit cycling (hunting) occurs, see also Chapter 3 of this
thesis. Although static friction is eventually compensated by the integrator
action, friction is overcompensated in the slip phase that follows due to the
velocity-weakening effect, resulting in overshoot of the setpoint. This process
repeats and results in stick-slip limit cycling, compromising setpoint stability.
The hunting phenomenon is illustrated experimentally in the third subplot in
Figure 4.1, which shows two measured error responses and the corresponding
control forces of the industrial nano-positioning motion stage setup, discussed
in Section 2.5.1. A relatively large positioning error of about 200 nm is then
obtained when using a classical PID controller. Hunting can be avoided by
omitting the integrator action (i.e., PD control for input uc in (4.2)), which
results in the set of equilibria for (4.1)-(4.3) given by

Epd = {(e, ė) ∈ R2 | |e| ≤ Fs/kp, ė = 0}. (4.5)

For a PD-controlled system, solutions converge to the set (4.5) (see [121]), but
zero steady-state error is not guaranteed, as also illustrated in Figure 4.1. In
particular, the size of the achievable steady-state error depends inversely on
the proportional gain kp, which cannot be chosen arbitrarily large for stability
purposes. The drawbacks of P(I)D control for frictional motion systems, per-
forming a repetitive motion on a finite time interval, motivate the design of a
more suitable control architecture. Recall that no settling time guarantees can
be given for the reset control approach of Chapter 3, despite achieving stability
of the setpoint. We therefore propose a time-varying PID-based controller in
Section 4.3, that is able to achieve a high setpoint accuracy on a finite time
interval. Before presenting the controller, let us formalize the control problem
in the next section.

4.2.2 Control problem formulation

In this chapter, we focus on achieving high-accuracy positioning for frictional
motion systems that perform a T -repetitive motion. We consider, for the position
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Figure 4.1. Measured error responses of an industrial high-precision motion
stage (see Section 2.5.1) subject to a third-order reference trajectory ( ) and
the corresponding control forces of a PD controller ( ), and a PID controller
with fixed integrator gain ki = 108 N/(ms) ( ) and ( ). The PD controller
yields a non-zero steady-state positioning error, and the PID controller induces
limit cycling.

z1, a desired repetitive reference r, defined on the time interval [0, T ], where the
system starts and ends at rest. Specifically, we separate the time interval [0, T ]
into two particular parts, specified as follows:

i) t ∈ [0, TB); the so-called transient time window, during which the system
is allowed to move from 0 to r;

ii) t ∈ [TB , T ]; the so-called standstill time window, during which standstill
at r is required. The time interval [TB , T ] is typically used by the indus-
trial machine, of which the motion system is part, to perform a certain
machining operation for which accurate positioning is required.
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Respecting the popularity of PID control in industry, and taking into account
the advantages of classical P(I)D control, in this chapter we address the following
setpoint control problem in this chapter.

Problem 4.2. Design a PID-based control strategy for motion systems of the
form (4.1),(4.2), that perform a repetitive motion profile and are subject to un-
known static and velocity-dependent friction, such that 1) high-accuracy setpoint
positioning during the standstill time window, and 2) optimal transient behavior
during the transient time window is achieved.

The desired performance, i.e., an optimal transient response on [0, TB), and
optimal setpoint accuracy on [TB , T ], can be captured by the following cost
function J to be minimized:

J(e) :=

∫ T

0

|w(t)e(t)|2dt, (4.6)

with weighting function w(t) defined as follows:

w(t) :=

{
w1 if t ∈ [0, TB)
w2 if t ∈ [TB , T ]

, (4.7)

with w1, w2 ∈ R suitable weighting factors, trading off the emphasis on transient
performance versus setpoint accuracy. Other (transient) performance relevant
variables, such as the control effort uc, or the velocity z2 of the mass can be
taken into account in (4.6) as well.

4.3 Time-varying PID controller

In this section, first the time-varying integrator design is presented, and subse-
quently the achievable performance benefits are shown in a numerical example.

4.3.1 Time-varying integrator gain design

The limit-cycle present in the case of PID control with constant integrator gain,
see, e.g., Fig 4.1, is caused by the build-up of integrator action (during transients
and the stick phase) in interplay with the friction characteristic. This observation
motivates the design of a novel time-varying integrator gain ki(t) for point-to-
point motion for the following reasons:

1. the presence of integrator action still allows the system to escape undesired
stick phases;

2. overcompensation of friction due to the Stribeck effect can be avoided by
altering ki(t) during the slip phase;
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3. zero integral action can be enforced at the setpoint when standstill of the
system is required, such that robustness against other force disturbances
is provided by the static friction.

The resulting controller is then given by

uc = kpe+ kdė+ ki(t)z3, (4.8a)

ż3 = ς(t)e, (4.8b)

with ς(t) ∈ {0, 1} a to-be-designed switching function that prevents uncontrolled
growth of z3. Furthermore, the to-be-designed time-varying integral gain ki(t)
should be bounded, i.e., |ki(t)| < +∞ for all t ∈ [0, T ]. We opt to employ
a time-varying integrator gain, instead of an appropriate feedforward control
signal in combination with a constant integrator gain as commonly done in
iterative learning control to, e.g., counteract recurring disturbances [36, 146].
This choice is motivated by the fact that, with the proposed controller, we are
able to 1) escape undesired stick phases by enabling ki 6= 0 during the transient
time window, and 2) create robustness to other force disturbances close to the
setpoint, by enforcing ki = 0 during the standstill time window. Integrator
action is then disabled, so that the system remains in standstill since build up
of control force is prevented.

Remark 4.3. Note that the presented engineering intuition here only applies
when the integrator gain ki is placed at the right-hand side in (4.8a), instead of
at the right-hand side in (4.8b). Indeed, in the latter case, ki = 0 would still
yield a constant integral control force in uc. y

We now propose a parametric design for ki(t), parameterized by a finite set
of basis functions ϑ(j), j ∈ {1, 2, . . . , b}, as follows:

ki(t) :=

b∑
j=1

ϑ(j)(v, t), (4.9)

where b denotes the number of basis functions, and v ∈ Rnv is a to-
be-designed parameter vector. Next, we give two examples of basis function
parametrizations that can be employed to facilitate solving Problem 4.2.

Example 4.4. [69] Step-like basis functions, i.e., ϑ(j)(v, t) := v(j)Θ(j)(t) with
Θ(j)(t) defined as follows:

Θ(j)(t) :=

{
1, t ∈ [(j − 1)ts, jts)
0, t /∈ [(j − 1)ts, jts)

for j = 1, . . . , b, (4.10)

where ts satisfies T = bts, and the to-be-designed parameter vector v ∈ Rnv , with
nv = b.
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Example 4.5. Linear spline basis functions, i.e., ϑ(j)(v, t) := [v(j) v(j+1)]Θ(j)(t)
with Θ(j)(t) defined as follows:

Θ(j)(t) :=


[

1− t−jts
ts

t−jts
ts

]
, t ∈ [(j − 1)ts, jts)[

0 0
]>
, t /∈ [(j − 1)ts, jts)

for j = 1, . . . , b,

(4.11)

where ts satisfies T = bts, and the parameter vector v ∈ Rnv , with nv = b+ 1.

Remark 4.6. Other types of basis function designs can be adopted from the
iterative learning control literature. For example, polynomial bases (see, e.g.,
[147], [104]) and rational bases (see, e.g., [31]) can similarly be exploited. y

In the remainder of this chapter, we opt for a linear spline basis function
parametrization of ki(t), as illustrated in Example 4.5, as it yields a continu-
ous control signal. In contrast, the step-like basis function parametrization, as
illustrated in Example 4.4 (see also [69]) results in discontinuities in the control
signal, which may risk excitation of high-frequency system dynamics.

The switching function ς(t) in (4.8) is analogously designed as

ς(t) :=

{
1, t ∈ [0, TB),

0, t ∈ [TB , T ],
(4.12)

so that the evolution of the integrator state is disabled on the interval [TB , T ].
Summarizing, the resulting closed-loop system with the proposed design for the
time-varying integrator gain is given by (4.1), (4.2), (4.8), (4.9), (4.11), (4.12).

Let us now present some properties of the resulting closed-loop system, which
will be instrumental in the data-based sampled-data extremum seeking architec-
ture presented in Section 4.4. In particular, the following proposition asserts that
each bounded realization of ki(t) results in a unique solution z = (z1, z2, z3)> of
the closed-loop system, which is bounded on the interval [0, T ].

Proposition 4.7. Under Assumption 4.1, for any constant r, each bounded
realization of ki(t) in (4.8) satisfying ki(t) = 0 for t ∈ [TB , T ], each initial
condition satisfying z(0) ∈ K1B with K1 ≥ 0, and ς(t) as in (4.12), solutions
z(t) to closed-loop system (4.1), (4.2), (4.8), (4.9), (4.11), (4.12) are unique, and
satisfy z(t) ∈ K2B for some bounded K2 > 0, for all t ∈ [0, T ].

Proof. See Appendix 4.A. �

4.3.2 Illustrative example

We illustrate the achievable benefits of the proposed time-varying integra-
tor gain by means of a numerical example. Consider closed-loop sys-



112 Chapter 4. Learning control for repetitive positioning of frictional systems

tem (4.1), (4.2), (4.8), (4.9), (4.11), (4.12), where we adopt the following nu-
merical values: m = 1, kp = 18 N/m, kd = 2 Ns/m, Fs = 0.981 N, and γ = 0.5.
The Stribeck contribution of the friction f is given by

f(x2) = ((Fs − Fc)ηx2) (1 + η|x2|)−1
, (4.13)

with Fc the Coulomb friction force, and η the Stribeck shape parameter. The
motion profile interval is characterized by T = 1.5 s, and TB = 0.75 s. For the
time-varying integrator gain design, we take b = 6, and the parameter vector v
is given by v = [v(1) v(2) v(3) 0 0 0 0]>. Moreover, v(1) is kept fixed to v(1) = 25
N/(ms), which enables integral action at least for t ∈ [0, ts) to escape a potential
initial stick phase. The parameters v(2) and v(3) are tunable, and affect the error
response of the closed-loop system, as illustrated next.

We illustrate the potential performance benefits of the controller by consider-
ing two cases with different friction characteristics, i.e., 1) Fc = Fs/2 N, η = 20,
γ = 0 Ns/m, and, 2) Fc = Fs/3 N, η = 60, γ = 1 Ns/m. Consider Figure 4.2,
where each column of subplots depict the friction characteristic, position error,
and the time-varying integrator gain ki(t) for the two cases, respectively. For
both cases, the error response with a classical PID controller (i.e., with a fixed
integrator gain ki = 25 N/(ms)) denoted by ( ) in the middle plots, leads to
significant overshoot, and eventually limit cycling (the latter explicitly visible
for case 2; see also Figure 4.1 for such a limit-cycling effect). Selecting different
values for the parameters v(2) and v(3) yield different error responses. For ex-
ample, ( ) in case 1 results in significant overshoot, and ( ) in undershoot.
The optimal choice for v(2) and v(3) instead results in zero error, see ( ). The
friction characteristic in case 2 has a more severe Stribeck effect compared to
the characteristic in case 1 (see the top subplot), whereby the optimal settings
for v(2) and v(3) become negative, but zero steady-state error is still achieved,
see ( ) in the second and lower subplot. The proposed time-varying PID con-
troller is hence capable of achieving optimal positioning performance, despite
the presence of friction, by proper tuning of the parameters in v.

Since the friction characteristic Ψ in (4.2) is generally unknown, uncertain,
and can change (slowly) in time, the optimal design for the tunable parameters in
v is challenging, or even impossible using a model-based approach only. There-
fore, we propose a data-based extremum-seeking-based (learning) algorithm in
the next section, to learn the optimal ki(t) by adaptive tuning of the parameter
vector v, on the basis of measured error responses.
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Figure 4.2. Simulation results, where each column presents from top to bot-
tom the friction characteristic, error response, and time-varying integrator gain
for case 1 and 2, respectively. The different error responses in the middle sub-
plots correspond to simulations with different realizations of the time-varying
integrator gain as in the lower subplots, and the classical PID responses with
constant ki are indicated by ( ).

4.4 Sampled-data extremum-seeking for
iterative controller tuning

4.4.1 Sampled-data extremum-seeking framework

In this section, we propose a sampled-data extremum seeking strategy, akin to it-
erative learning control, to optimize the time-varying integrator gain design pre-
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sented in Section 4.3 to achieve high-accuracy setpoint positioning. Specifically,
given the cost function in (4.6) and (linear spline) basis function parametriza-
tion of the time-varying integrator gain in (4.9), we can formulate the finite
horizon optimization problem as a model-free sampled-data extremum seeking
problem (see, e.g., [85], [84]). Namely, consider the cascade connection of the
PID-controlled motion system given by (4.1), (4.2), (4.8), (4.9), (4.11), (4.12),
and the cost function J in (4.6). In addition, we consider the to-be-designed
parameter vector to be decomposed as follows: v = v0 +Cu, where v0 ∈ Rnv is a
user-defined parameter vector, C ∈ Rnv×p is a user-defined selection matrix, and
u ∈ Rp is the vector of parameters to be optimized by the extremum-seeking algo-
rithm. This cascade connection yields the following unknown static input-output
map Q : Rp → R for the cascaded system (4.1), (4.2), (4.8), (4.9), (4.11), (4.12),
and (4.6):

Q(u) :=

∫ T

0

|w(t)e(t)|2dt, (4.14)

where the weighting function w(t) is defined in (4.7). It must be noted that
periodic re-initialization of the states to fixed values (i.e., x(kT ) = x0 for all
k = 1, 2, . . .), in combination with Proposition 4.7, is needed for extremum seek-
ing control to be applicable in an iterative learning context. Only under these
conditions (re-initialization and uniqueness of solutions provided by Proposi-
tion 4.7), Q in (4.14) is uniquely defined, see also Remark 4.9 below. In ad-
dition, the fact that solutions to the closed-loop system remain bounded by
Proposition 4.7 guarantees that Q(u) is bounded.

Based solely on output measurements, which we use to compute Q in
(4.14), extremum-seeking control is exploited to adaptively find the param-
eters u that minimize Q. Figure 4.3 schematically depicts the sampled-
data extremum-seeking framework, i.e., the interconnection of the PID-
based controlled frictional motion system with a basis function parametriza-
tion (4.1), (4.2), (4.8), (4.9), (4.11), (4.12), and the cost function J in (4.6)
implemented as follows:

y(t) := J(e(t)) =

∫ t

t−T
|w(s)e(s)|2ds, (4.15)

where e(s) = 0 for s ∈ [−T, 0), and with the weighting function implemented as
follows:

w(t) :=

{
w1 if mod(t, T ) ∈ [0, TB)
w2 if mod(t, T ) ∈ [TB , T ]

, (4.16)

with a T -periodic sampler, a discrete-time extremum-seeking algorithm Σ, and a
zero-order hold (ZOH) element. Let {uk}∞k=0 be a sequence of vectors generated
by the extremum-seeking algorithm Σ based on collected measurements, and
define the ZOH operation as follows:

u(t) := uk ∀t ∈ [kT, (k + 1)T ), (4.17)
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Figure 4.3. Sampled-data extremum-seeking framework based on a sampled-
data control law with periodic sampling time T , and sampler and zero-order
hold elements.

with k = 0, 1, 2, . . . , and sampling period T > 0 with uk ∈ Rp, for all k. Let us
define the ideal periodic sampling operation:

yk := y(kT ), k = 1, 2, . . . , (4.18)

where yk = Q(uk−1) are the collected measurements as used by the extremum-
seeking algorithm Σ, see Figure 4.3. We care to stress that T is the sampling
period of the extremum-seeking controller, which conforms to the period time of
the motion profile, and T is not the sampling period of the underlying motion
system, which is typically much smaller.

Remark 4.8. In most (sampled-data) extremum-seeking literature, Q reflects
the steady-state behavior of the dynamical system. In those cases, the sampling
period T , or so-called waiting time T , see, e.g., [141], [85], [89], needs to be
chosen sufficiently large by the user such that the closed-loop extremum-seeking
scheme is robust against inexact measurements of the cost Q due to the transient
behavior of the system. Here, Q in (4.14) actually incorporates the transient
behavior of the system, which ultimately determines positioning accuracy. As
such, the role of the waiting time T is different here, and is conveniently chosen
equal to the period time T of the repetitive motion profile. y

Remark 4.9. A common requirement in the extremum-seeking literature is that
the input-output mapping Q is independent of initial conditions. Here, the tran-
sient behavior is partly determined by the initial conditions, and re-initialization
after each setpoint operation is theoretically required for an input-output mapping
Q as in (4.14) to be uniquely defined. Re-initialization for transient performance
optimization is also a well-known and commonly accepted requirement in the it-
erative learning control literature, see, e.g., [110] and [36]. y
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4.4.2 Extremum-seeking algorithm

Let the extremum-seeking algorithm Σ be any algorithm that solves the opti-
mization problem of finding the minimum y∗ of Q(u):

y∗ := min
u
Q(u). (4.19)

Within the periodic sampled-data extremum seeking framework, and depend-
ing on the nature of the input-output mapping Q, many algorithms from the
optimization literature can be employed to solve (4.19). For example, in [85]
the so-called DIRECT and Shubert algorithms (see [82] and [137], respectively)
are employed to find the global extremum of Q. If finding a local minimum
suffices or if Q possesses only a single extremum, the classical gradient descent
or Newton method can be used (see, e.g., [35]).

Without loss of generality, we employ here the following gradient descent
algorithm to optimize the vector u:

uk = uk−1 − λ∇Q(uk−1), (4.20)

with λ the optimizer gain. Since Q is unknown, its gradient ∇Q is unknown. As
such, the gradient of Q will be estimated based on finite differences as follows:

∇Q(u) ≈ 1

τ

 Q(u+ τd1)−Q(u)
...

Q(u+ τdp)−Q(u)

 , (4.21)

where τ is the step size of the gradient estimator, and dj with j = 1, . . . , p are
dither signals, i.e., vectors where the jth element is equal to one, and all other
elements are zero. Moreover, d0 denotes a zero vector. Dithering needs to be
done in a sequential manner to acquire the elements in (4.21).

In order to improve the accuracy of the gradient estimation in the pres-
ence of, e.g., measurement noise, we include the possibility to repeat each iter-
ation q times, and average the measured costs over the q repetitions. As such,
the gradient descent algorithm in (4.20) and the sequence of dithers to obtain
the approximate gradient in (4.21) can be implemented through the following
extremum-seeking algorithm:

uk =

{
uk−n + τdn−m

q
if n 6= 0

uk−q(p+1) − λ∇Q(uk−q(p+1)) if n = 0
, (4.22)

for all k = 1, 2, . . ., with n = mod(k, q(p + 1)) ∈ N and m = mod(k, q) ∈ N,
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initial input u0, p to-be-optimized parameters, q repeated iterations, and

∇Q(uk−q(p+1)) =
1

qτ



q−1∑
j=0

(
Q(uk−qp+j)−Q(uk−q(p+1)+j)

)
...

q−1∑
j=0

(
Q(uk−q+j)−Q(uk−q(p+1)+j)

)

 . (4.23)

Note that the case n = 0 in (4.22) implements an update of the control signal u.

4.5 Experimental case study

In this section, we demonstrate the working principle and the effectiveness of
the proposed PID-based learning controller on the industrial nano-positioning
stage in an electron microscope, as discussed in Section 2.5.1.

Remark 4.10. The experimental setup is the same as the setup used for the case
study in Chapter 2, where dominantly Coulomb and viscous friction was present.
For the experimental case study in this chapter (and the one in Chapter 3), a
different carriage position and spindle orientation, and different lubrication con-
ditions result in a significant Stribeck effect instead, as illustrated in Figure 4.1
and the experimental results below. y

According to standard operation of the nano-positioning stage in an electron
microscope, we can only use a higher-order reference trajectory. Therefore, the
step reference r = 1 mm is mimicked by a fast third-order reference trajectory.
We require the carriage to be in standstill at r = 1 mm at TB = 1.5 s, and
the setpoint operation ends at T = 3 s. After each setpoint operation, the
system is re-initialized to its starting position z1 = 0 m using an internal homing
procedure.

4.5.1 Controller settings and ESC-based optimal tuning

The design of the PID-based controller with time-varying integrator gain used in
the experiments is discussed in Section 4.3. First, the PID-controller gains are
tuned using linear loop-shaping techniques [57], resulting in kp = 107 N/m, and
kd = 2 · 103 Ns/m. The time-varying integrator gain is parameterized by (4.9)
with b = 6 linear spline basis functions as in Example 4.5, from which it follows
that ts = T

b = 0.5 seconds. We select p = 2 parameters to-be-optimized. The
parameter vector v = v0 + Cu is designed with initial parameter vector

v0 = [1 · 108 0 0 0 0 0 0]>,
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and selection matrix

C =

[
0 1 0 0 0 0 0
0 0 1 0 0 0 0

]>
.

The first element of vector v0 is equal to the constant integrator gain of a classical
PID controller, as obtained by the loop-shaping procedure (Figure 4.1 shows the
measured responses with these settings). The vector u ∈ R2×1 will be determined
by the ESC algorithm discussed in Section 4.4.2, and the performance of the
control system in the sense of (4.14) depends on the value of these parameters.

For the current case study, we focus on setpoint accuracy rather than tran-
sient performance. Therefore, we define the system’s performance by the objec-
tive function Q in (4.14) and implemented by (4.15), where we have taken w1 = 0
and w2 = 1 · 108 in (4.16). Moreover, we augment Q with a logarithmic barrier
function [71] in order to restrict the values of the parameter values found by the
extremum-seeking controller, such that ki(t) remains bounded for all t ∈ [0, T ].
In particular, ki(t) then satisfies ki ≤ ki(t) ≤ ki, with ki = −0.2 · 108, and
ki = 1.2 · 108. The augmented objective function is then given by

Q̃(u) := Q(u) + µB(u), (4.24)

with Q(u) as in (4.14), µ = 1 the barrier parameter, and the logarithmic barrier
function B given by

B(u) := −
4∑
i=1

log(−Gi(u)), (4.25)

with G1(u) = u(1) − ki, G2(u) = ki − u(1), G3(u) = u(2) − ki, G4(u) = ki −
u(2). To minimize Q̃, we employ the gradient descent algorithm as discussed in
Section 4.4.2, with q = 3, p = 2, step size τ = 0.25 · 107, and gain λ = 2 · 1016,
unless stated otherwise.

4.5.2 Static input-output mapping

The dependence of the achievable setpoint accuracy, captured by the perfor-
mance metric Q̃ in (4.24) to be minimized, on the vector u is depicted by means
of an measured input-output mapping Q̃ in Figure 4.4. We use this mapping
to verify the time-domain results presented later on. Two regions are observed
where Q̃ is small, indicating integrator gain settings that can lead to a high
setpoint accuracy. Such an input-output mapping, however, is in general time-
consuming to obtain, and can vary (slowly) over time, and can vary from machine
to machine. Hence, such an offline, brute-force approach to performance opti-
mization is not feasible in practice. Therefore, the optimal parameter settings
are iteratively obtained by the online ESC algorithm presented in Section 4.4.2,
solely based on real-time output measurements.
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Figure 4.4. Contour plot of an experimentally obtained input-output mapping
Q̃(u), which shows two regions where Q̃(u) is small, indicating integrator gain
settings that yield accurate setpoint positioning.

4.5.3 Time-domain results obtained by extremum seeking

Consider Figure 4.5, which shows the measured augmented performance cost
Q̃(uk) as in (4.24) and the corresponding vector of parameters uk as determined
by the extremum-seeking controller, as a function of the controller updates,
starting with initial parameter vector u0 = [0.85, 0.175]> · 108. Moreover, Fig-
ure 4.6 depicts the setpoint error e(t), the corresponding time-varying integrator
gain design ki(t), and the resulting control force uc for four different controller
updates (final and three intermediate). It can be observed that limit cycling is
indeed prevented since ki(t) = 0 for all t ∈ [TB , T ], and we only observe one
interval of stick (during the standstill time window, as desired). Moreover, the
extremum-seeking controller iteratively finds controller parameters uk that re-
sult in a relatively small time-varying integrator gain design ki(t) on t ∈ [0, 1.5),
yielding a position error in the range of 4− 6 nm, depicted by ( ). In contrast,
the classical PID controller for this particular measurement yields an absolute
error of about 100 nm on the same time interval (see Figure 4.1), and does not
provide robustness during the standstill time window. This clearly illustrates
the performance benefits of the proposed PID-based learning controller in terms
of the ability to cope with Stribeck friction and achieving superior setpoint po-
sitioning accuracy. The parameter evolution of this experiment is visualized by
( ) in the input-output mapping in Figure 4.7.
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Figure 4.6. Experimental results illustrating the optimization of the setpoint
error (for t > 1.5 s) by adaptation of ki(t). The error, corresponding ki(t), and
uc are shown for the initial parameter setting ( ), the 2nd ( ), 4th ( ), and
7th ( ) extremum-seeking controller update. The achieved accuracy is 4-6 nm.
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Another interesting optimization experiment and resulting time-domain re-
sponse is the one depicted in Figure 4.8 by ( ), which shows the time-domain
results after the final extremum seeking controller update, when using initial
parameter vector u0 = [0.9, 0.4]> · 108. Again, the parameter evolution of this
experiment is visualized by ( ) in the input-output mapping in Figure 4.7.
The parameters now converge towards the local minimum in the upper right
corner of the input-output mapping in Figure 4.7. The existence of this partic-
ular (local) minimum can be explained by considering the upper two subplots
of Figure 4.8, depicting the position error and time-varying integrator gain de-
sign ki(t), respectively. Due to the relatively large time-varying integrator gain
ki(t) for t ∈ [0, 1.5) obtained by the extremum-seeking controller and depicted
by ( ), the associated integral action during the transient results in significant
overshoot of the setpoint. The significant overshoot can be attributed to the
weight w1 = 0, chosen during the transient time window, which implies that
large transients are not penalized. The system then arrives in a stick phase,
where control force is built up by the integrator action. Eventually the system
slips and, due to the Stribeck effect in combination with the decreasing integrator
gain, the system arrives in a stick phase again close to the setpoint.

The experimental results show that the proposed time-varying PID controller
results in superior positioning accuracy (compared to classical PID control), and
that the extremum-seeking controller successfully finds the optimal tuning of the
time-varying integrator gain, regardless of the initial values of u, for the unknown
frictional situation at hand.

4.6 Conclusions

We have presented a novel time-varying integrator gain design for motion systems
with unknown Coulomb and velocity-dependent friction (including the Stribeck
effect), performing a repetitive motion profile. The proposed controller is capa-
ble of achieving a high positioning accuracy, in contrast to classical PID control,
which often leads to limit cycling, i.e., loss of setpoint stability. The time-varying
integrator gain is parametrized by linear basis functions, resulting in a continu-
ous control signal. The specific tuning of the time-varying integrator gain, that
results in a high setpoint accuracy in the presence of unknown friction, is it-
eratively obtained by employing a sampled-data extremum-seeking framework.
The performance benefits of the proposed control architecture are experimentally
demonstrated on a nano-positioning stage in an electron microscope, illustrating
its superior performance over classical PID control.
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Figure 4.7. Input-output mapping Q̃(u) with the evolution of extremum-
seeking controller towards the optimal integrator gain settings for two series of
experiments.
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Figure 4.8. Experimental results illustrating the setpoint error e, and cor-
responding ki(t) and uc(t) after the final extremum-seeking controller update,
for two different series of experiments. The results correspond to the same
color-coded extremum-seeking parameter evolutions depicted in Figure 4.7.
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4.A Proof of Proposition 4.7

The proof is based on the proof of Claim 3.4, item (i). Without loss of generality,
consider r = 0 (which implies e = −z1 in (4.8)), and we consider the intervals
[0, TB) and [TB , T ] separately.

By design, we have ς = 1 on the interval [0, TB). Then, with state vec-
tor z := [z1, z2, z3]>, for all t ∈ [0, TB), we rewrite the closed-loop sys-
tem (4.1), (4.2), (4.8) as

ż ∈ A(t)z − e2(Fs Sign(z2)− f(z2)) (4.26)

with

A(t) =

 0 1 0
−kp −kd − γ −ki(t)

1 0 0

 , e2 =

0
1
0

 . (4.27)

Define fL(z2) := Lx2 − f(z2), which satisfies fL(z2,a) ≤ fL(z2,b) for each z2,a <
z2,b and L > 0 by Assumption 4.1(iii), i.e., fL(z2) is nondecreasing. Next, define
ΨL(z2) := Fs Sign(z2) + fL(z2), and rewrite (4.26) as

ż ∈

 0 1 0
−kp L− kd − γ ki(t)
−1 0 0

 z − e2ΨL(x2)

=: AL(t)z − e2ΨL(z2).

(4.28)

Existence of solutions2 to (4.28) follows from [55, Sec. 7, Thm. 1] because
the set-valued mapping in (4.28) is outer semicontinuous and locally bounded
with nonempty compact convex values. Consider then two solutions za and zb
to (4.28) with za(0) = zb(0), and define δ := za − zb. For almost all t ∈ [0, TB),

δ̇ ∈ AL(t)δ − e2(ΨL(z2,a)−ΨL(z2,b)).

Since ki(t) is bounded by design, there exists M1 > 0 such that |A(t)| ≤M1 for
all t ∈ [0, TB), with |A(t)| the (induced) 2-norm of matrix A(t). Then, we have

1

2

d

dt
|δ|2 ∈ δ>AL(t)δ + δ>2 (ΨL(z2,b)−ΨL(z2,a))

≤M1|δ|2 + max
fb∈ΨL(z2,a(t)−δ2(t))

fa∈ΨL(z2,a(t))

δ2(fb − fa)

=: M1|δ|2 +N(t).

(4.29)

Whether z2,a(t) and z2,a(t) − δ2(t) are positive, zero, or negative, inspection of
all cases reveals that N(t) ≤ 0 for all t ∈ [0, TB) because fL is nondecreasing,

2A solution to (4.28) is any locally absolutely continuous function z that satisfies (4.26)
for almost all t ∈ [0, TB).
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which implies that ΨL is nondecreasing. As a result, (4.29) satisfies

1

2

d

dt
|δ|2 ≤M1|δ(t)|2, (4.30)

for almost all t ∈ [0, TB). Then, δ(0) = 0 implies δ(t) = 0 for all t ∈ [0, TB) by
standard comparison theorems (e.g., [83, Lemma 3.4]).

On [TB , T ], we have ż3 = ςz1 = 0 because, by design, the switching function
ς = 0 on the considered interval, so that z3(t) = z3(TB) for all t ∈ [TB , T ].
Moreover, ki(t) = 0 for t ∈ [TB , T ]. With

ż ∈

 0 1 0
−kp L− kd − γ 0

0 0 0

 z − e2ΨL(z2)

=: AL2
(t)z − e2ΨL(z2).

(4.31)

we obtain analogously to the previous case

1

2

d

dt
|δ|2 ≤M2|δ(t)|2, (4.32)

for almost all t ∈ [TB , T ], with M2 := λ(AL2
) the largest singular value of

AL2 . Using absolute continuity of solutions, and the fact that δ(t) = 0 for all
t ∈ [0, TB) (as established above), we have that δ(TB) = 0, and (4.32) implies
that δ(t) = 0 for all t ∈ [TB , T ]. Uniqueness of solutions on [0, T ] is then proven.

We now turn to proving that solutions to the closed-loop system remain
bounded on [0, T ]. Let za be a generic solution to the closed-loop system, with
za(0) ∈ K1B and K1 ≥ 0, and take zb(0) = (0, 0, 0), so that zb(t) = 0 for all
t ∈ [0, T ], and δ(0) ∈ K1B. The solutions za and zb satisfy (4.30) and (4.32)
on [0, TB) and [TB , T ], respectively. In both inequalities, the right-hand side
is bounded for all t in its domain, which excludes finite escape times for δ on
[0, T ]. Hence, there exists K2 > 0 such that δ(t) ∈ K2B for all t ∈ [0, T ]. Since
zb(t) = 0 for all t ∈ [0, T ], we have za(t) ∈ K2B for all t ∈ [0, T ], which completes
the proof.
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Chapter 5

Control allocation for a
high-precision transportation and

positioning system

Abstract − In this chapter, we present a control allocation framework to improve the per-

formance of an industrial high-precision translational transportation and positioning system,

based on an inverted permanent-magnet linear synchronous motor. Compared to the state-of-

practice control solution, the proposed allocation technique achieves enhanced tracking perfor-

mance, enlarged motion freedom, minimizes power consumption, incorporates actuator limita-

tions, and realizes relaxed hardware design specifications. A decentralized allocation algorithm

is presented that enhances computational efficiency, such that the proposed control allocation

technique can be implemented online at high sampling rates, and facilitates the scalability

to large-scale system configurations. The performance benefits of the proposed technique are

illustrated by means of a simulation study, and and extensive experimental case study.

5.1 Introduction

In this chapter, we present a control allocation framework to improve the perfor-
mance of industrial high-precision transportation and positioning systems (see
Figure 5.1), with respect to current state-of-practice control solutions. In par-
ticular, we consider a linear (i.e., translational) motion system, where multiple
carriers can move on horizontal tracks, using the inverted permanent-magnet lin-
ear synchronous motor (IPMLSM) actuation principle, see, e.g., [129]. In such
a system, the coils of the three-phase actuators are located on the tracks and

This chapter is based on [22] and [23].
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actuator carrier operation stage

Figure 5.1. 3D visualization of a (two-story) industrial IPMLSM-based trans-
portation and positioning system, via [34].

the permanent magnets are placed on the carriers, see Figure 5.1, such that the
moving carriers do not have any electronics or cables attached to them. This
principle makes the system highly suitable to be used in automated production
lines involving, e.g., operation in vacuum, high temperature, or chemical envi-
ronments. Due to these characteristics, such systems are widely used in industry
in, e.g., the production of flat screens, OLED lighting, and photovoltaic solar
cells [33].

Multiple carriers, transporting (semi-finished) products, can move over fixed
guidance tracks of arbitrary length in an automated production line. At specific
locations along the production line, the carriers may be required to be positioned
accurately, such that a certain operation on the product can be executed. At
the same time, a subsequent carrier may move towards this operation stage and
queues until the first carrier has moved on. This requires the system to allow
for flexible, and independent, motion of each carrier on arbitrary positions on
the track. Furthermore, the system is typically over-actuated, since a carrier
may commute with more than one set of coils in the track at the same time
(i.e., one carrier is actuated by multiple actuators simultaneously), or multiple
carriers may be influenced by the same set of coils (actuator) simultaneously.
This may lead to conflicting control objectives for the actuators, and results
in large position errors or the inability to control carriers independently when
using state-of-practice control solutions. Moreover, the actuator characteristics
suffer from position dependency and end-effects (to be discussed in more detail
in Section 5.2), which pose design limitations in the sense that actuators must
currently be placed at specific locations on the tracks. In this work, we aim to
overcome the above limitations by means of intelligent (allocation-based) control.

IPMLSM-based transportation systems are often controlled using Field Ori-
ented Control (or vector control), see, e.g., [30, 60], where actuator redundancy
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is often handled through the use of commutation algorithms, see [17, 129]. How-
ever, these existing commutation algorithms cannot handle independent con-
trol of multiple carriers simultaneously. There exist numerous control strate-
gies for over-actuated systems. A well-known approach is optimal control, see,
e.g., [68, 154], which, especially for linear systems, has received much attention
in the literature. For instance, linear quadratic control [154, Ch. 15],[8], H∞-
control [154, Ch. 16-18], and Model Predictive Control (MPC) [59, 99, 103] are
able to deal with actuator redundancy. Whereas such optimal control strategies
commonly decide the control input and distribution directly, control allocation,
see, e.g., [81], separates the regulation task from the distribution task. Such
a separated approach motivates the choice of using control allocation for the
current application, since the underlying motion controller can then be designed
using well-known loop-shaping techniques [57], widely adopted in industry. Con-
trol allocation have been applied on a broad range of applications. Examples
are control allocation for flight control [113], marine vehicles [56], electric vehi-
cles [44], and dual-stage actuator control for harddisk drives [102].

The main contributions of this chapter are as follows. The first contribution
is a control allocation framework for an IPMLSM-based transportation and po-
sitioning system. Compared to the state-of-practice control solution currently
applied by the manufacturer, the proposed allocation technique achieves 1) im-
proved tracking performance, 2) the possibility to perform independent motion
of multiple carriers, 3) minimization of power consumption, 4) a relaxation of
hardware design rules, and 5) the possibility to take actuator limits into account.
Secondly, we propose a decentralized control allocation approach that allows for
real-time implementation of the proposed allocation scheme, by significantly re-
ducing computational effort. The third contribution is an experimental case
study on an industrial application.

The remainder of this chapter is organized as follows. In Section 5.2, we
provide a detailed system description, and the proposed control allocation ar-
chitecture is discussed in Section 5.3. The benefits of the proposed control ar-
chitecture is analyzed by means of an experimental case study in Section 5.4.1,
and a simulation study in Section 5.4.2 (the latter taking into account actuator
limitations). Conclusions are presented in Section 5.5.

5.2 System description

This section starts with the basic actuation principle of an IPMLSM and the
control challenges, followed by a model of the considered transportation system.

5.2.1 Actuation principle and control problems

A conventional linear permanent-magnet synchronous motor (linear PMSM) has
permanent magnets attached to the tracks (stator), and coils in the moving parts
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(the carriers). By applying a three-phase current to the coils, a magnetic field
is created which interacts with the magnetic field generated by the magnets,
resulting in a force applied to the carriers, see, e.g., [60]. An inverted linear
permanent-magnet synchronous motor has a magnet array attached to the car-
riers, whereas the coils are fixed to the tracks. The main advantage of such a
design is that, opposed to the classical linear PMSM, no cables are attached to
the carriers, providing significantly more motion freedom since the carriers are
able to move on tracks of arbitrary length. In PMSM-based motion systems,
the required three-phase currents to obtain the desired motion profile are typi-
cally generated in the so-called dq0 -reference frame (see, e.g., [60, Ch. 6], [144,
Ch. 10]), to simplify the control problem. Consider Figure 5.2. The three-phase
currents ia, ib, and ic (red) can be mapped onto the stationary α, β-frame (blue)
via the Clarke transformation [144, Ch. 10]. Next, the coil currents expressed
in the dq0 -frame are obtained by the Park transformation [144, Ch. 10], i.e., by
rotating the α, β-frame by the commutation angle θ. The coil currents are now
expressed by the direct current id and quadrature current iq (green). For a trans-
lational system, this transformation results in a moving reference frame fixed to
the carrier, where the q-direction is aligned with the direction of movement, by
choosing the commutation angle in a specific way (depending on the carrier po-
sition). In this way, it can be realized that iq is the only force-generating current
by controlling id to zero, such that only one input signal needs to be generated
by a motion controller to achieve the desired motion of the carriers.

The considered inverted linear PMSM, however, suffers from end-effects. Due
to the fact that the stator is segmented into groups of three-phase coils, there
exist regions where the electronics in the tracks partially overlap a magnet array
on a carrier. The correct commutation angle (i.e., such that iq indeed implements
the desired control force, generated by the motion controller, on the carrier) is
then a nonlinear function of the carrier position. The motor gain (i.e., the gain
between the applied quadrature current and resulting force on the carrier) thus
depends on the carrier position and the commutation angle.

The segmentation of coils also gives rise to the following control problems:

θ
iα

id

iβiq

ib

ic

ia

Figure 5.2. Current reference frames for PMSMs.
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1) Given typical physical dimensions, carriers may be influenced by either
one or two sets of coils (from now on referred to as “actuators”), leading to an
over-actuated system.

2) Actuators may also influence multiple carriers at the same time. However,
since an actuator is only able to implement a correct commutation angle (and
thus a correct control force) for a single carrier, the other carrier experiences large
disturbance forces as a result of the difference between the desired and attained
control force. This restricts the freedom in motion profile design, in the sense
that two adjacent carriers cannot perform an independent motion accurately, as
we will illustrate in Section 5.4.1.

3) Besides the aforementioned motion restrictions, an inverted linear PMSM
suffers from hardware restrictions. The spacing between actuators has to be
specifically related to the length of the magnet array on the carrier to achieve a
smooth transition of a carrier between two actuators, see Figure 5.3 (where we
assume that the magnet arrays have the same length as the carriers). That is,
the center distance of two actuators must be equal to the length of the magnet
array L. When using this particular spacing, the sum of the motor gains of the
actuators that influence a given carrier is constant for all carrier positions. Then,
if the same quadrature current iq is applied to multiple actuators, the applied
force is independent of the carrier position. That is, there is no difference in
the applied force to a carrier, regardless of whether the carrier is influenced
by either one or two actuators. In this way, a single carrier may indeed be
controlled accurately when actuated by multiple actuators (but does not allow
for the control of multiple neighbouring carriers by the same actuator).

To address the above limitations, we propose a control allocation framework
in Section 5.3 that results in 1) enhanced tracking performance, 2) allowing in-
dependent motion of multiple carriers, despite the conflicting control objectives,
3) reduces power consumption, 4) relaxed hardware design specifications, and 5)
the possibility to take actuator limitations into account.

5.2.2 Carrier transportation system modeling

Consider an IPMLSM-based carrier transportation system consisting of n car-
riers and m actuators, see Figure 5.3. Let j ∈ n̄ := {1, 2, . . . , n} be the carrier
index, and k ∈ m̄ := {1, 2, . . . ,m} the actuator index, used to uniquely identify
all carriers and actuators in the system. The carrier transportation system is
governed by the following dynamics:

Mÿ = B(y)u, (5.1)

with y = [y1, . . . , yn]> the position of the carriers (yj = 0 indicates the lower end
of the tracks), and M the diagonal mass matrix containing the carrier masses.
We consider the α, β-currents for each actuator as control inputs, instead of
the frequently used iq-current of the dq0 -frame. The essential motivation of
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j = 1 2 3 4 5

k = 1 2 3 4 5 6 7 8

L

y1
y2 y3

yj = 0

Figure 5.3. Schematic representation of the IPMLSM-based transportation
system. The region of influence of an actuator is marked in gray, and arrows
denote the influence of an actuator (index k) on a carrier (index j). Actuators
marked in red influence two carriers.

using the fixed α, β-frame is that the motor gain matrix B(y) in (5.3) below
is then independent of the commutation angle θ. The motor gain matrix B(y)
then solely depends on the carrier positions, thereby simplifying the allocation
problem in Section 5.3 (see also Remark 5.4 below). The input vector u is then
given by

u = [iα1, iβ1, . . . , iαm, iβm]>. (5.2)

Due to the position dependency of the commutation between the carriers and
the coils, the position-dependent motor gain matrix is given by

B(y) =

b
α
11(y1) bβ11(y1) . . . bα1m(y1) bβ1m(y1)

...
...

. . .
...

...

bαn1(yn) bβn1(yn) . . . bαnm(yn) bβnm(yn)

 , (5.3)

where bαjk and bβjk are actuator-specific, position-dependent motor gains. The
right-hand side of (5.1) then results in a column with forces applied on the
carriers, i.e.,

τ = B(y)u =

[
m∑
k=1

τ1k . . .
m∑
k=1

τnk

]>
. (5.4)

In (5.4), τjk is the force applied by actuator k on carrier j, and is straightfor-
wardly given by

τjk = bαjk(yj)iαk + bβjk(yj)iβk. (5.5)

Note that some elements τjk in (5.4) may be zero if actuator k does not influence
carrier j, which is the case when the carrier is not close enough to the actuator
in order to commute.

Let us introduce the relative position of carrier j with respect to actuator k,
i.e., zjk := yj − Yk, with Yk the position of actuator k on the tracks, defined as
the minimum position yj where actuator k starts influencing a carrier j, i.e.,

Yk := min
{
yj | bαjk(yj) 6= 0 ∨ bβjk(yj) 6= 0

}
. (5.6)
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Note that (5.6) is independent of j. We are now ready to pose the following as-
sumptions regarding controllability of each carrier and similarity of the hardware
components.

Assumption 5.1. Rank(B(y)) = n.

Assumption 5.2. All three-phase coil segments and permanent magnet arrays
are identical.

As a result of Assumption 5.1, any carrier at any position on the tracks is
influenced by at least one actuator, so that any desired τjk can be realized by
the actuators at any time. Assumption 5.2 is not necessarily needed for the
developments in this chapter, but leads to significantly reduced complexity of
B and therefore to easier implementation. A consequence of this assumption
is that the motor gains of each actuator k with respect to each carrier j are
identical. We can then simplify the motor gain matrix B in (5.3) by writing bαjk
and bβjk in (5.3) as:

bαjk(yj) = bα(zjk), bβjk(yj) = bβ(zjk). (5.7)

The motor gains in (5.7) are typically obtained from FEM-based electromagnetic
simulations on the interaction between a carrier and an actuator, see [129]. By
Assumption 5.2, we only have to perform these simulations for a single actu-
ator/carrier interaction, thereby simplifying the implementation of the control
allocation architecture below (where the gain matrix B is explicitly used).

5.3 Control architecture

In this section, the proposed control allocation architecture is presented. We
will first discuss the high-level control scheme, and subsequently the allocation
algorithm. Finally, we present a decomposition algorithm that enhances compu-
tational efficiency, so that the control allocation architecture can be evaluated
online at high sampling rates and facilitates implementation on large-scale sys-
tem configurations.

5.3.1 High-level control scheme

Consider Figure 5.4. The reference signals r (one for each carrier on the track)
and error signals e between the reference and the carrier positions y are provided
to a motion controller (composed of a feedback and feedforward part). This
controller is typically designed using well-known loop-shaping techniques [57],
and generates the desired control force for each carrier τc = [τc1, . . . , τcn]>. These
desired control forces should then be applied to the carriers by the AC actuators.
The primary objective of the control allocator is thus to find the currents iαk
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plantrn×1

en×1

τn×1
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control
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electronics
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−
Cfb
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motion controller

Figure 5.4. High-level control architecture. Cfb and Cff indicate the feedback
and feedforward parts of the motion controller, respectively. The superscripts
on the signals indicate their dimensions.

and iβk in the control input u in (5.2), such that the actuators indeed implement
the desired control forces given by τc. In other words, the actual forces acting
on the carriers, denoted by τ in Figure 5.4, should be equal to the desired
control forces as determined by the motion controller, i.e., τ = B(y)u = τc.
Due to the over-actuated nature of the system, the solution to the allocation
problem τ = τc (if attainable by the actuators) is not unique. We will exploit
this freedom to introduce a second control objective, namely the minimization
of power consumption by the actuators, which may reduce operational costs.

We will now discuss an unconstrained and a constrained allocation procedure.
The latter incorporates a saturation constraint on the input, which is motivated
by the desire from industry to use cost-effective (less powerful) actuators.

5.3.2 Unconstrained control allocation

We aim at implementing the desired control force generated by the motion con-
troller on each carrier, while minimizing the power consumption. The control
allocation can then be described by the following convex quadratic programming
problem (QP) [35, Ch. 4]:

min
u
u>Wu, (5.8a)

subject to
τc = B(y)u, (5.8b)

where u>Wu is a quadratic metric for the power consumption, and W is a
symmetric weighting matrix. Since the optimization problem in (5.8a) is convex
and only contains one equality constraint, the explicit solution is given by [32]:

u = W−1B>(y)
(
B(y)W−1B>(y)

)−1
τc. (5.9)

5.3.3 Constrained control allocation

In case there is a maximum allowable control input due to, e.g., cost-effective
hardware design, the criterion τ = τc may not be attainable at all times. To
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deal with this scenario, we introduce a constraint on u in the form of a limit on
the current, and the difference between the desired, and attained control forces
eτ = τc − τ . This is combined in an allocation problem that can be described
by the convex, quadratically constrained quadratic program (QCQP) [35, Ch. 4]
given by

min
u,eτ

e>τ Qeτ + u>Wu, (5.10a)

subject to

eτ = τc −B(y)u,

i2αk + i2βk ≤ i2max,k, for all k ∈ m̄,
(5.10b)

with W and Q symmetric weighting matrices, and imax,k is the current limit on
actuator k. The QCQP in (5.10) can be solved online using efficient algorithms as
CPLEX [49] or Gurobi [65]. However, we propose a specific decomposition of the
optimization problem in (5.10) to enhance computational efficiency. This favors
solving (5.10) online at high sampling rates in large scale industrial applications
with many carriers and actuators. The proposed decomposition method also
favors online computations of (5.9) in the unconstrained case.

Remark 5.3. Although the constraint in (5.10b) indeed resembles a constraint
on the maximum current to be provided by the actuator, we can approximate the
constraint by a set of polyhedral constraints. Then, the control problem reduces to
a linear allocation problem, see [81], for which efficient quadratic programming
(QP) algorithms are available, e.g., active-set or interior-point methods [109],
which are studied in the context of control allocation in, e.g., [67] and [117]. y

Remark 5.4. We choose here to perform the control allocation in the α, β-
frame. In this way, we do not have to find an optimal commutation angle θ
for each actuator, which would appear in the above minimization problems as
an extra decision variable when we would have chosen to apply the allocation
in the dq0-frame. Moreover, the motor gain matrix B in (5.3) then would not
only depend on the carrier position y, but on θ as well, making the equality
constraint in (5.8a) nonlinear. Performing the allocation in the α, β-frame thus
significantly simplifies the control allocation problem. y

5.3.4 Distributed control allocation

To reduce computational costs (which favors real-time implementation on large-
scale transportation systems), we decompose the allocation problems in (5.8a)
and (5.10), by 1) excluding actuators that do not influence any carrier from the
allocation problem, and 2) solving multiple, less complex allocation problems
subsequently, instead of the full allocation problem at once. The decomposition
is done at every sampling instant, by assigning carriers and actuators to specific
subsets, and solving the optimization problem (5.8a) or (5.10) for each subset
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separately. The only (mild) requirement for the proposed decomposition to apply
is that the matrices Q and W are diagonal (to have decoupled costs in (5.8a)
and (5.10)). By the dimensions of the carriers, each carrier is influenced by up
to two actuators, whereas each actuator can influence up to two carriers. We
first introduce the boolean variables cjk ∈ {0, 1}, given by

cjk =

{
1, when bα(zjk) 6= 0 ∨ bβ(zjk) 6= 0,

0, otherwise,
(5.11)

for any j ∈ n̄ and k ∈ m̄. In other words, cjk = 1 holds if and only if actuator k
influences carrier j.

Let us now discuss assigning the subsets of carriers. A carrier subset is given
by Jp ⊆ n̄, p ∈ p̄ := {1, 2, . . . , P} (where p is the subset number, and P the
total number of subsets), and the related actuator subset is given by Kp ⊆ m̄.
Explaining the assignment of carriers and actuators to the subsets is best done
by considering the problem in terms of a bipartite graph (see, e.g., [41, Ch. 5]).
Consider hereto Figure 5.5. Let G = (V,E) be a bipartite graph with m + n
vertices, consisting of n carrier vertices C1, . . . , Cn, and m actuator vertices
A1, . . . , Am (see Figure 5.5). Hence, V = {C1, . . . , Cn, A1, . . . , Am}. The set of
edges E ⊂ V × V is such that there is an edge between carrier vertex Cj and
actuator vertex Ak if and only if cjk = 1 (cf. (5.11)). To explain our procedure
to arrive at Jp and Kp, p ∈ p̄, we need the following definitions. A path (of
length l) is given by v1v2 . . . vl, where (vi, vi+1) ∈ E, i = 1, . . . , l−1 (in our case,
this implies that a path consists of alternating carrier and actuator vertices).
A subgraph G′ = (V ′, E′) of G is a graph V ′ ⊂ V and E′ ⊂ E, where E′

only consist of edges (v, v′) with both v and v′ ∈ E′. A (sub)graph is called
connected if there is a path between all the vertices of the (sub)graph. With
this terminology in place, we can now state the decomposition of the allocation
problems (5.8a) and (5.10).

In our problem, we decompose the set V now into its connected subgraphs
with vertex sets Vp′ , p

′ ∈ p̄′ := {1, · · · , P ′} (for which algorithms exist, see,
e.g., [54, Ch. 6]). In case there are sets Vp′ , p

′ ∈ p̄′, consisting only of actuators,
we discard these sets such that we can exclude the associated actuators from the
allocation problem, because these do not influence any carrier (i.e., the currents
iα and iβ are zero for those particular actuators). A reordering then leads to
the sets Vp, p ∈ p̄, where P ≤ P ′ because the sets in Vp′ consisting only of
actuator vertices are discarded, see Figure 5.5. Due to physical properties, there
are no sets in V1, . . . , VP that only consists of carrier vertices, as each carrier is
influenced by at least one actuator, see Assumption 5.1.

We decompose the remaining sets Vp, p ∈ p̄, as Vp = J̃p ∪ K̃p, with J̃p
consisting only of carrier vertices and K̃p consisting only of actuator vertices,
as indicated in Figure 5.5. In this way, we obtain that the carriers are assigned
to disjoint subsets Jp ⊆ n̄, p ∈ p̄, where Jp contains the indices of the carriers
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V1 V2 V3J̃1

K̃1

J̃2 J̃3

K̃2 K̃3

C1 C2 C3 C4 C5

A1 A2 A3 A4 A5 A6 A7 A8

Figure 5.5. Bipartite graph G (corresponding to the schematic system rep-
resentation in Figure 5.3) with carrier vertices C1, . . . , C5 (white) and actuator
vertices A1, . . . , A8 (gray). Its connected subgraphs V1, V2, V3 are indicated by
dashed lines, where subgraphs containing only actuator vertices are discarded
(hence, in this example P ′ = 4 and P = 3).

contained in J̃p, i.e., J̃p = {Cj | j ∈ Jp}. Similarly, the actuators are assigned
to disjoint subsets Kp ⊆ m̄, p = 1, 2, . . . , P . Clearly, Jp and Kp are related in
the sense that the carriers in Jp are only influenced by actuators in Kp (and
not by any others, see Figure 5.3 and 5.5). Moreover, an actuator in Kp has
an influence on at least one carrier in Jp, i.e., if k ∈ Kp there is j ∈ Jp such

that cjk = 1. We have that Jp ∩ Jp′ = ∅ when p 6= p′ and
⋃P
p=1 Jp = n̄ by

Assumption 1 (i.e., {J1, . . . , JP } forms a partition of n̄). Also, Kp ∩ Kp′ = ∅
when p 6= p′ and

⋃P
p=1Kp ⊂ m̄, and thus {K1, . . . ,KP } forms a partition of

{k ∈ m̄ | cjk = 1 for some j ∈ n̄}. Hence, actuators that do not influence any

carrier are not in
⋃P
p=1Kp. As a result, these actuators are excluded from the

allocation problem, improving computational efficiency. Note that two carriers
are in the same set Jp if and only if there is a connection (path) via multiple
actuators/carriers between them (cf. Figure 5.5) and, hence, in the allocation
problem these have to be treated simultaneously. Sets Jp (combined with Kp)
and Jp′ (combined with Kp′) for p 6= p′ can be considered separately in the
allocation problem as there is no path between any of the elements in Jp (and
Kp) and Jp′ (and Kp′).

Algorithms are available to decompose a graph in its connected subgraphs
(see, e.g., [54, Ch. 6]). However, in our case, we obtain the sets Jp and Kp,
p ∈ p̄ by exploiting a physical ordering of the carriers and actuators (without
loss of generality): the carriers and actuators are logically numbered 1 to n from
left to right on the tracks (see also Figure 5.3). Moreover, using the fact that a
carrier is influenced by either one or two carriers, and each actuator influences
at most two carriers, we can simplify the generic algorithms typically used to
decompose a graph into its connected subgraphs (see, e.g., [54, Ch. 6]), leading to
Algorithms 1 and 2 below. We use these algorithms in the experimental results
that follow later in Section 5.4.1.

As a result of the decomposition, the solution for u in (5.9) in the uncon-
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strained allocation problem (5.8a) changes to the following set of solutions:

up = W−1
p B>p (yp)

(
Bp(yp)W

−1
p B>p (yp)

)−1
τpc , (5.12)

for all p ∈ p̄, where yp and τpc are the positions of the carriers and the desired
control forces in subset Jp, respectively. Moreover, Bp and Wp correspond to the
submatrices of the motor gain matrix B and the (diagonal) weighting matrix W ,
respectively, corresponding to Kp. Using this decomposition method, the com-
putational effort (in the sense of computing the inverse in (5.9)) is significantly
reduced due to the smaller matrix Bp, compared to B. The constrained opti-
mization problem in (5.10) now changes to a set of problems, which are solved
subsequently for all p ∈ p̄:

min
up,epτ

epτ
>Qpe

p
τ + up>Wpu

p (5.13a)

subject to
epτ = τpc −Bp(yp)up, (5.13b)

i2αk + i2βk ≤ imax,k2, for all k ∈ Kp, (5.13c)

where Qp corresponds to the submatrix of the (diagonal) matrix Q corresponding
to Jp. The decomposed optimization problem (5.13) contains less decision vari-
ables compared to its nominal counterpart in (5.10) because only active actuators
are taken into account and, therefore, requires less computational cost. More-
over, solving multiple optimization problems subsequently requires less compu-
tational cost compared to solving all the problems at once (as in (5.10)), since

Algorithm 1 assigning carriers to subsets

1: J1 = {1}; p = 1;
2: for j = 2, 3, . . . , n do
3: if c(j−1)k = 1 ∧ cjk = 1 for any k ∈ m̄ then
4: Jp = Jp ∪ {j};
5: else
6: p = p + 1; Jp = {j};
7: end if
8: end for
9: P = p;

Algorithm 2 assigning actuators to subsets

1: for p ∈ {1, 2, . . . , P} do
2: Kp = ∅;
3: for k ∈ m̄ do
4: if bα(zjk) 6= 0 ∨ bβ(zjk) 6= 0 for any j ∈ Jp then
5: Kp = Kp ∪ {k};
6: end if
7: end for
8: end for
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the complexity of a QCQP or QP does not scale linearly with the number of
decision variables [35].

5.4 Case study

In this section, we validate the proposed allocation technique on an industrial
IPMLSM-based transportation system, presented in Figure 5.6, by means of an
experimental and simulation study. In particular, we show experimentally the
performance improvements of the proposed control allocation strategy without
constraints, compared to the state-of-practice control solution currently applied
by the manufacturer. Moreover, we illustrate the implications of actuator con-
straints on the system’s performance in a simulation study, for both the alloca-
tion approach and the state-of-practice controller.

5.4.1 Experimental case study

The considered system consists of two carriers and six actuators (cf. Figure 5.6),
and is modeled by (5.1)-(5.3) with n = 2 and m = 6. The carrier mass is 10.8 kg.
The system is driven by an industrial precision motion control system (NYCe
4000), developed by the same manufacturer. All experiments are carried out
at a sampling rate of 4kHz, and, using the decentralized approach in Section
III-C, the allocation problem can be solved well within each sampling interval.
By the dimensions of the actuators and carriers, an actuator may influence at
most two carriers. The actuators are spaced such that the center distance be-
tween subsequent actuators is equal to the carrier length (cf. Figure 5.3), unless
specifically stated otherwise. Both the state-of-practice control strategy and the
allocation strategy use a dedicated high-level (loop-shaped) motion controller

Figure 5.6. Industrial IPMLSM-based transportation and positioning system
used for the case study. The carriers are indicated in blue, and the actuators in
red.
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for each carrier separately. For the experimental case study, we use the same
motion controller (identical to the one designed by the manufacturer) for both
carriers, consisting of a feedback term Cfb (lead filter, integrator, and a lowpass
filter), and a feedforward term Cff , see Figure 5.4. The feedback term for each
carrier in the Laplace domain is given by

τfb,j(s) = Cfb(s)ej(s) =
1.58·108s2+8.6·109s+8.31·1010

2.11·10−4s4+0.45s3+473.3s2+1.26·105s
ej(s), (5.14)

with s ∈ C, and where ej = rj−yj the position error signal of carrier j, and rj the
position reference of carrier j. The stabilizing feedback controller achieves the
specified crossover frequency of 20 Hz and satisfies standard robustness margins.
The feedforward control signal consists of an acceleration feedforward term, a
Coulomb friction compensation term, and a term Fδ,j that compensates for
magnet interaction forces between carriers, i.e.,

τff,j = 0.9Mj r̈j .+KF sign(ṙj) + Fδ,j . (5.15)

Although the Coulomb friction in the system slightly varies over time and may
be position-dependent, the experimentally validated value KF = 4.9 N is chosen
such that no overcompensation of Coulomb friction takes place, but still com-
pensates for a significant part of it. The magnet interaction compensation term
Fδ,j is identified as follows. A carrier is controlled to a fixed position, whereby
a second carrier is placed at different distances from the first one. At each dis-
tance, the control force of the first carrier is traced, from which the attraction
force is determined. A model is then fitted on the measured data. The total
desired control force on carrier j is then given by τc,j = τff,j + τfb,j . Both the
state-of-practice controller as the proposed allocation scheme aim at implement-
ing the desired control force τc,j for each carrier in a different manner (leading
to a different performance) as we will illustrate below.

State-of-practice control strategy

The state-of-practice control strategy currently used by the manufacturer oper-
ates in the dq0 reference frame (see Figure 5.2) so that iq is the only control
input for each carrier (for the considered control system, the direct current id
is controlled to zero). The force-generating component iq is then obtained by
dividing the desired control force τc by a fixed motor gain Bq = 23.565 N/A,
see Figure 5.7. By employing a strict actuator spacing, actuator end-effects are
balanced so that the sum of the motor gains of the active actuators is approx-
imately constant, regardless of the carrier position on the tracks. This control
signal is then applied to each actuator that commutes with the considered carrier
by means of a selector. However, when an actuator influences two carriers, the
selector implements the control signal for the carrier that overlaps the actuator
the most.
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Figure 5.7. State-of-practice control strategy. Cfb and Cff indicate the feed-
back and feedforward parts of the motion controller, respectively. The super-
scripts on the signals indicate their dimensions.

If an actuator commutes with only a single carrier, then this control strategy
works well, as the actuator indeed applies the desired control force on the carrier
by applying the correct commutation angle (which is a function of the carrier
position). This control strategy, however, does no longer work properly when
an actuator influences two carriers. The correct commutation angle is then only
applied for the most overlapping carrier, which results in a wrong commutation
angle for the second carrier. As a result, there is a mismatch between the desired
and implemented control force on the carrier that overlaps the actuator the least,
compromising tracking performance. The implications of this fact are illustrated
by the experimental results below.

Remark 5.5. Although the state-of-practice control strategy may be improved
by manual compensation of the mentioned disturbance forces for simple system
layouts, the proposed allocation technique offers a systematic and scalable ap-
proach for robustly improving tracking performance also suitable for large-scale
systems with many carriers and actuators. y

Proposed control allocation strategy

In contrast to the state-of-practice control strategy, the allocation scheme is
applied in the α, β reference frame. The coefficients of the position-dependent
motor gain matrix B(y) in (5.3), (5.7) are obtained from FEM-based electro-
magnetic simulations, see [129], by measuring the relative position zjk of carrier
j with respect to actuator k. We assume that all actuators are identical, see As-
sumption 5.2. The motor gains, as a function of zjk, are presented in Figure 5.8,
where the deterioration of the gains at both ends of the region of influence can
be observed (i.e., the end-effects). The weighting matrices are Q = 104I and
W = I, with I the identity matrix of appropriate dimensions.

Comparative performance evaluation

We have implemented both the state-of-practice and the unconstrained alloca-
tion control strategy (see Section 5.3.2) on the experimental setup of Figure 5.6.
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Figure 5.8. Motor gains bα(zjk) ( ) and bβ(zjk) ( ) as a function of the
relative position.

The setup is an industrial product, designed with sufficiently powerful actuators
that are easily able to realize the desired currents. We do not artificially include
constraints in the experimental study, because the performance benefits of the
allocation approach are most distinct when the full capacity of the actuators are
used. Instead, we show the benefits of the allocation approach, when actuator
constraints are taken into account, in a simulation study in the next section.

For the experiments, the following scenarios are studied:

a) tracking of a demanding motion profile for a single carrier, with strict
actuator spacing;

b) tracking of a motion profile for a single carrier, with relaxed actuator spac-
ing;

c) a parallel motion of two carriers;

d) a complex motion of two carriers, combining independent and adjacent
motion.

We will now discuss the results for each scenario, and compare the performance
of both control strategies. The results for the scenarios a)-d) are presented in
Figure 5.9-5.12 below. In these figures, five subplots are presented which show
the following: the top subplot shows the reference trajectories of the carriers,
and the second subplot shows the active actuators at each time instant. In here,
the time intervals where an actuator influences two carriers are indicated by
gray patches (in Figure 5.11 and 5.12). The third subplot shows the position
errors of the two carriers, for both the state-of-practice, and control allocation
experiments. For additional clarification, the fourth subplot shows the Euclidian
norm of the position error |e|2 (with e = [e1, · · · , en]>). The fifth subplot shows
u>Wu as a function of time, which is a metric for power consumption.
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Scenario a)
Consider Figure 5.9. A carrier tracks a demanding motion profile with relatively
large accelerations and decelerations (see the top subplot). As expected, both
the state-of-practice and the control allocation strategies perform well during
the constant velocity phase, despite the fact that multiple actuators influence
the carrier. The state-of-practice controller performs well in this scenario due
to the strict actuator spacing, (so that the sum of the motor gains is constant
for all carrier positions) that results in a smooth transition of a carrier between
actuators (see Section 5.2-A), and the fact that there is only one carrier on
the tracks in this scenario. At the start of the experiment, however, a peak
in the position error is observed for the state-of-practice control solution. At
this point, the carrier does not fully overlap the first actuator yet, which is not
compensated for by the control scheme. In such a situation, the motor gain B is
typically lower than the constant one assumed by the state-of-practice controller
(see also Figure 5.8). Recall that this controller assumes a constant value for B,
see also Figure 5.7. The proposed control allocation scheme is able to adapt the
control input instead, so that position errors are reduced. A similar situation
occurs at the end of the experiment. Finally, the remaining smaller peaks in
the position error are a result of the nonexact Coulomb friction compensation.
Since friction is typically unknown, and, in this case, under-compensated, the
resulting contributions of friction cause increased position errors at the start of
the experiment and at velocity reversals.

Scenario b)
Consider Figure 5.10, which shows the experimental results of a single carrier
performing a back and forth motion, where the actuator spacing has been re-
laxed. In particular, the second actuator has been shifted to the right by 6 mm.
A strict actuator spacing realizes that the sum of the motor gains of the active
actuators is constant, regardless of the carrier position on the tracks. In the cur-
rent scenario, this property is violated by the relaxed actuator spacing, and, as
a result, the state-of-practice control strategy implements a force that deviates
from the desired control force coming from the motion controller. As can be
observed in the third and fourth subplot of Figure 5.10, this results in increased
position errors in the regions where multiple actuators are active. The proposed
allocation architecture is instead able to adapt, and realizes a low tracking er-
ror while minimizing power consumption. The increased position error at the
start of the experiment and velocity reversals is due to any remaining Coulomb
friction.

Scenario c)
For this experiment, the strict actuator spacing has been restored. Consider
Figure 5.11. Two carriers perform an adjacent back and forth motion, with two
time intervals at which actuator 2 influences both carriers. In these intervals,
the state-of-practice controller results in large position errors, which is caused by
the fact that the shared actuators are only able to take the correct commutation
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angle for the most overlapping carrier. The other carrier then experiences a
control force that deviates from the desired control force coming from the motion
controller, due to a mismatch in the correct and attained commutation angle.
The proposed allocation scheme is instead able to adapt, and finds a control
input such that the trajectory can be followed well with significantly reduced
position errors. Moreover, as the bottom subplot indicates, the power usage is
decreased as well. As in the former two scenarios, peak position errors remain
due to the presence of friction.

Scenario d)
Consider Figure 5.12. In this experiment, two carriers perform a complex mo-
tion. The carriers move independently as well as adjacent, where actuator 2
influences both carriers during the majority of the experiment. As discussed
in Scenario c), the actuator can only take the correct commutation angle for
the most overlapping carrier when using the state-of-practice control strategy,
which results in pronounced large position errors (also note the different y-axis
scale in the fourth subplot, compared to Scenario c)). The proposed allocation
scheme is instead capable of adapting to such a situation by altering the current
inputs, resulting in low position errors. This shows the capability of the system
to perform independent motion tasks with high accuracy. During the adjacent
motion (in the time span 2.7-5.8 s), the system behaves similarly to Scenario
c), where the allocation scheme indeed outperforms the state-of-practice control
solution in terms of position accuracy, see the inset in the fourth subplot. Note
that the left and right error peaks in the inset are due to friction.

The experimental results show that the proposed control allocation scheme
(compared to the state-of-practice controller used by the manufacturer) achieves
improved tracking performance, evident from the Root-Mean-Square (RMS) val-
ues of the norm of the error |e|2 for the scenarios a)-d), presented in Table 5.1.
Furthermore, the allocation scheme allows for independent motion of multiple
carriers while influenced by shared actuators (see Scenario d)), minimizes power
consumption, alleviates the requirement on actuator spacing, and provides the
possibility to take actuator limits into account. We will illustrate the potential
benefits of the proposed allocation scheme when actuator limits are taken into
account in the next section, by means of a simulation study.

Table 5.1. RMS values of |e|2 for each scenario in the experimental study.

scenario state-of-practice control allocation

a) 0.0507 0.0111

b) 0.0230 0.0097

c) 0.0681 0.0185

d) 0.2193 0.0291
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5.4.2 Simulation study on constrained control allocation

In this section, we present a simulation study on the industrial IPMLSM-based
transport system presented in Figure 5.6, to illustrate the performance benefits
of the allocation approach when actuator limits are taken into account.

Similar to the experimental case study in Section 5.4.1, the considered system
consists of two carriers and six actuators (cf. Figure 5.6), and is modeled by (5.1)-
(5.3) with n = 2 and m = 6. The carrier masses are M1 = M2 = 10.8 kg.
Moreover, by the physical dimensions of the actuators and carriers, an actuator
may influence at most two carriers. The actuators are spaced at a distance
equal to the carrier length (see Figure 5.3). For the simulations, we assume the
absence of friction and magnet interaction forces between carriers. Therefore
the feedforward term in (5.15) is adapted to

τff,j = 0.9Mj r̈j . (5.16)

The feedback part of the controller is the same as in the experiments and given
by (5.14). We take Q = 5I, W = I (with I the identity matrix of appropriate
dimensions), and set separate current saturation limits for both iαk and iβk (see
Remark 5.3). We study the following two scenarios for both the constrained and
unconstrained allocation approach (the latter for comparative purposes), and
compare the results with the state-of-practice control strategy.

a) a parallel motion of the carriers;

b) a complex motion (similar to scenario d) in the experiments), combining
independent and adjacent carrier motion.

We will now discuss the results for each scenario.

Scenario a)
Consider Figure 5.13, and in particular note the three areas where actuators
influence both carriers. It stands out that the state-of-practice controller results
in a relatively large position error during the acceleration phase. This is caused
by the fact that the shared actuators are only able to take the correct commuta-
tion angle for the most overlapping carrier. The other carrier then experiences
a control force that deviates from the desired control force coming from the mo-
tion controller. In contrast, the unconstrained allocation scheme of Section 5.3.2
is instead able to find a control input such that the trajectory can be followed
well, with only small position errors. Next, we apply the constrained allocation
scheme of Section 5.3.3 to investigate the potential of the controller when less
powerful actuators are used. We set the current saturation limits for both iαk
and iβk to 0.8 A. The results are shown in red-dashed in Figure 5.13, where it
can be observed that the limited attainable control force yields a local, inevitable
increase in position error (see the third and fourth subplot), but significantly less
actuator duty (see the bottom subplots).
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Scenario b)
Consider Figure 5.14. The state-of-practice control solution is now unable to
allow both carriers to follow the reference due to the mismatch in desired and
implemented control force. It stands out that, due to the independent motion of
the carriers, this mismatch is large enough for one carrier to completely deviate
from the setpoint when using the state-of-practice controller. We note that
this effect is less distinct in the corresponding experimental scenario d), due
to e.g., the presence of Coulomb friction. The unconstrained allocation scheme
of Section 5.3.2 suppresses the tracking error of both carriers instead. The
constrained allocation scheme of Section 5.3.3, and challenging maximum values
of 0.4 A for both iα,k and iβ,k), results in decreased tracking performance with
respect to the unconstrained case on the one hand (but still results in significantly
better tracking compared to the state-of-practice controller), and significantly
less actuator duty on the other hand.

The simulation results show, besides the benefits discussed in the experimen-
tal case study in Section 5.4.1, that the constrained control allocation scheme
is capable of handling actuator constraints, while still pursuing the maximal
achievable tracking performance. The constrained allocation scheme may there-
fore be used by the manufacturer to find a trade-off between desired tracking
performance and required actuator power for future system designs: less pow-
erful actuators are often more cost-effective. An advantage of a cost-effective
system design also results from the fact that the allocation scheme allows for a
less strict actuator spacing. Namely, the control allocation algorithm is able to
compensate for fluctuations in the motor gains due to end-effects, by adapting
the input currents. In this way, the correct control force can still be imple-
mented. The economic benefit then comes from the fact that less actuators may
be placed on the tracks while still achieving a specified performance.

5.5 Conclusions

We have presented a control allocation framework for an industrial high-accuracy
transportation and positioning system, which results in enhanced tracking, al-
lows for independent motion of multiple carriers, is able to take actuator limits
into account, results in relaxed hardware design specifications, and minimizes
power consumption. A decentralized allocation procedure is presented that en-
hances computational efficiency, such that the control allocation scheme is suit-
able for online implementation at high sampling rates, and facilitates scalability
to large-scale system configurations. We have illustrated the benefits of the pro-
posed control allocation strategy by means of simulations and an experimental
case study.
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Chapter 6

Modeling and control of a
sheetfed printer paper path

Abstract − In this chapter, we present a model and a control framework for a sheetfed

printer paper path. Models for singe-pinch and double-pinch longitudinal paper transport are

derived, where in the latter case the paper may be buckled, or may experience internal traction

forces. A control architecture is presented that allows the paper to track a prescribed reference

signal, and, at the same time, regulates internal traction forces in the paper sheet when

transported by two pinches, to avoid print defects. Herein, overactuation is effectively exploited

to address both control goals simultaneously in double-pinch transport. The working principle

and effectiveness of the controller is illustrated by a simulation study, and experimentally

demonstrated on a prototype paper path setup.

6.1 Introduction

In this chapter, we present a model and a control framework for a sheetfed
printer paper path. Sheetfed printers are large industrial printers that are used
for high productivity printing of cut sheets, see Figure 6.1. Sheets of paper enter
the system at the paper input module, from which the sheets are transported
through a paper path towards the image transfer station, where the image is
printed. Subsequently, the sheets are dried and either re-enter the paper path
(for the purpose of backside printing), or are transported to the finishing station.
Paper transport within the system is realized by means of pinches. These pinches
consist of two sets of rotating rollers, between which the paper is clamped and
transported accordingly. The pinches are actuated individually or in groups, and
sheets may be transported by either one pinch, or by multiple pinches simulta-
neously, depending on the size of the paper and the distance between subsequent
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pinches in the paper path. This gives rise to an overactuated system.

Accurate transport of paper sheets throughout the system is key for obtaining
a high throughput and high-quality prints, which gives rise to several control
problems. First, the sheets of paper should be at the right place in the paper
path at the right time, which involves accurate reference tracking of the pinches.
Second, in order to avoid print defects, buckling of the sheets or too high traction
forces in the sheets, must be avoided. These effects may occur when the paper
is transported by multiple pinches simultaneously. Buckling is undesired, as
the paper may then touch the base plate of the paper path, possibly damaging
the prints. Too high traction forces are undesired as well, as it risks tearing
the paper, or causing slip between the paper and the rollers. Such a traction
control problem should therefore be taken into account in the design of a control
architecture.

In previous generations of sheetfed printing systems, the pinches are actuated
by DC motors. Numerous closed-loop control strategies for longitudinal position
and velocity sheet control in such systems have been proposed in the literature,
as we discuss below. Generally, these strategies are composed in a hierarchical
structure. First, a high-level sheet control loop measures the position of a sheet
in the paper path at discrete points. Based on the difference between the desired
and measured sheet position, the reference velocities of the motor are adjusted
to correct for the difference. Such a control loop is required in order to deal with,
e.g., slight variances in the pinch radii or in the sheet characteristics. Second,
a low-level motion controller is designed such that the reference velocities are
indeed realized by the pinches.

High-level sheet control in a paper path for photocopiers is addressed
in [47], [48] and [122], where the reference signals for the paper sheets (which
should be tracked by the pinches) are adapted online. As a result, the ar-

1 32 4

Figure 6.1. Industrial sheetfed printing system (Océ Technologies, [111]).
Paper intput module (4), image transfer station (3), dryer (2), and finishing
station (1).
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rival of sheets at the image transfer station is synchronized with the image to
be printed. Model-based feedback control in a printer paper path, considering
closed-loop stability and external disturbances, is presented in [27] and [37]. The
hierarchical control structure is maintained, where the system is modeled as a
piecewise linear system (in the sense that sheets interact with different pinches).
An H∞ controller synthesis is proposed for the low-level tracking control prob-
lem, respecting prescribed stability and performance demands. The controller
is validated in both simulations and experiments, but double-pinch paper trans-
port and the associated traction control problems are, however, not addressed.
Other research focusses on lateral sheet control using steerable pinches [132] or
using multiple individually acutated wheels on each pinch [130], on improved
sheet position measurements [88], and on sheet trajectory planning and control
in parallel printing systems [87].

In this chapter, we focus on the low-level control problem and address both
the reference tracking control problem and the traction control problem. That
is, we assume that sheets are assigned a certain reference trajectory by some
high-level control scheme, that must be realized by the pinches. We consider
the two logical states of a sheet, which reflect the sheet being transported by
either one or two pinches, as schematically depicted in Figure 6.2. The latter
encompasses two cases. Depending on the relative velocity between the two
pinches, a sheet may either be buckled, or may experience internal traction
forces. In order to arrive at a control framework, we first present a model for
one-pinch and two-pinch paper transport, where transitions between buckling
and traction are suitably taken into account. Such a transition gives rise to a
non-smooth dynamical system. Moreover, we take into account that pinches are
actuated by stepper motors in the current generation sheetfed printers. We then
present a control framework that realizes setpoint tracking of the pinches, and, at
the same time, avoids buckling and regulates traction forces to a prescribed (safe)
level, thereby avoiding the risk of print defects. In order to achieve these goals,
manual control allocation is employed. In contrast to the control allocation
technique in Chapter 5 (where the allocation is performed automatically by
solving an optimization problem online), we rely here on engineering intuition
to manually assign control goals to each actuator.

The main contributions of this chapter can be summarized as follows. The
first contribution is the derivation of a non-smooth dynamical model of a paper
path, including transitions between one and two-pinch transport, and transition
between buckling and traction and vice versa. As a second contribution, we
present a hybrid model of these dynamics, which may be useful for future con-
troller designs, closed-loop stability analyses, and simulation studies. The third
contribution is then the design of a control framework that realizes 1) reference
tracking of the pinches, and 2) regulates traction forces in the sheets. The fourth
contribution is a simulation and experimental study on the effectiveness of the
proposed control architecture.
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a) single-pinch transport b) single-pinch to

double-pinch transition

c) double-pinch transport:

buckling

d) double-pinch transport:

traction

d

Figure 6.2. Different logical states of paper transport in a paper path, where
d indicates the paper deflection in the buckling case.

The remainder of this chapter is organized as follows. In Section 6.2, the
paper path model is presented. We formalize the control goals and discuss
the proposed control architecture in Section 6.3. In Section 6.4, the working
principle of the controller is experimentally demonstrated on a prototype paper
path setup, and conclusions are reported in Section 6.5.

6.2 Paper path modeling

In this section, we describe the longitudinal topology of a pinch in a paper
path, and derive a dynamic model for it. We consider the two logical states of
a sheet being transported by either one, or two pinches. As discussed in the
previous section, the latter logical state encompasses two cases. Namely, a sheet
experiences no internal traction (i.e., the sheet is buckled), or does experience
traction forces as a result of the interaction with two pinches. We will now refer
to these logical states as buckling and traction, respectively. We specifically
address the transition between the buckling and traction cases, as it gives rise
to an impulsive dynamical system model. Before deriving models for single-
pinch and double-pinch paper transport separately in the following sections,
we briefly discuss stepper motor control which we use in the model derivation.
Subsequently, we derive a hybrid model that includes the transitions between
single-pinch and double-pinch transport, and the transitions between the cases
buckling and traction.
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6.2.1 Stepper motor control

Each pinch in the paper path is actuated by a two-phase stepper motor, which
requires a slightly different control approach compared to DC-actuated motion
systems. In particular, a stepper motor realizes a step-by-step rotation, where
the motor is sent a separate pulse for each step. Since each pulse causes the
motor to rotate a certain angle, stepper motors can be controlled without any
feedback mechanism (as is indeed the case for the state-of-practice paper path
control architecture, see Section 6.4 below). The smaller the angle (i.e., step
size), the higher the achievable positioning accuracy. It is, however, possible
to use a stepper motor in a feedback loop, thereby improving the achievable
performance, as we will show in Sections 6.3.3 and 6.4.

A stepper motor takes the desired orientation of the magnetic field of the
stator as an input, which is then converted to a series of pulses provided to
the motor electronics. The stator of the stepper motor consists of several coil
windings, which produce magnetic flux and establish north and south poles when
excited with a DC current. The rotor consists of a permanent magnet, and, due
to the attraction and repulsion between the rotor and the stator poles, the rotor
poles eventually align with the magnetic field established in the stator. The step
size is determined by the number of coil windings, and the way the windings are
energized. By partially energizing the windings, the regular step angle of the
motor is subdivided into smaller steps, a technique called microstepping, see,
e.g., [123, Sec. 30.8.6]. For the considered application, the stepper motors have
50 stator pole pairs and the microstepping technique is employed, resulting in
3200 steps per revolution.

For a stepper motor with a single winding (i.e., two steps per revolution),
there exists a sinusoidal relationship between the orientation of the magnetic
field and the torque generated by the motor [50, Eq. 8.4]. Due to the relatively
small step size of the considered motors, we can use an approximation of this
relationship, given by

τ = km(θf − θm), (6.1)

with τ the torque generated by the motor, θf the orientation of the magnetic
field of the stator, θm the rotor angle, and km the mechanical stiffness of the
motor.

6.2.2 Single pinch modeling

Consider Figure 6.3. During transport, a sheet of paper is clamped between
two sets of rollers. The driven roller 1 is connected to a stepper motor 2

via a flexible belt 3 . The driven roller is covered with layer of viscoelastic
material 4 . The pressure roller 5 is connected to the fixed world with a leaf
spring 6 , providing a small force perpendicular to the paper. In this way,
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12 3 4

5 6

Figure 6.3. CAD representation of a paper transport pinch in a sheetfed
printer paper path (Océ Technologies, [111]).

sufficient traction is obtained to transport the sheet without slipping of the
rollers.

Consider Figure 6.4 for a schematic representation of the derived single pinch
model. The rotor of the stepper motor has angular position θm, inertia Jm, and
generates an input torque τ , through the relation in (6.1). The flexible belt con-
necting the rotor with the driven roller is modeled as a parallel (linear) spring
and damper, with coefficients kb and cb, respectively. At both the motor and the
driven roller side, the belt is connected to a pulley with radii rmb and rdb, respec-
tively. The driven roller itself has radius rd, angular position θd, and inertia Jd.
The viscoelastic layer on the driven roller is modeled as a Maxwell spring-damper
model (with spring and damper constants kr and cr, respectively), augmented
with a transmission ratio p, to incorporate the increase in relative tangential
velocity of the rubber layer at the contact point with the pressure roller, as a
result of the rubber deformation. We denote the tangential force in the rubber
layer by F , which plays an important role in characterizing traction forces in the
paper sheets later on. Finally, the pressure roller has radius rp, angular position
θp, and inertia Jp. We assume that there is no slip between the pressure roller
and the transported sheets (which we formalize later on), so that the position of
the leading edge of the sheet is denoted by xs = rpθp (neglecting any deflection
of the sheet).

In order to address a generic pinch in a paper path, we parameterize the
single-pinch model by the index i, where i ∈ {1, · · · , n} denotes the ith pinch in
the paper path, assuming that the pinches are logically numbered 1 to n through-
out the path. Using the set of generalized coordinates qi := [θm,i, θd,i, θp,i]

>, the
governing (linear) equations of motion are then given by

Miq̈i +Hi(qi, q̇i, Fi) = Siτi, (6.2a)

Ḟi = Gi(q̇i)−
kr
cr
Fi, (6.2b)

τi = km(θf,i − θm,i), (6.2c)
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θm

rmb

xs

kb

cb

rdb

rd p
krcr

rp

θp

θd

τ = km(θf − θm)

Figure 6.4. Schematic representation of a pinch. The blue arrow represents
the direction in which the paper sheets are transported.

with the relationship between generated motor torque and magnetic field ori-
entation in (6.2c) as discussed in Section 6.2.1. Note that the magnetic field
orientation θf,i is the input of the system. In (6.2a), the stiffness and damping
contributions are collected in Hi, and Mi is the inertia matrix, i.e.,

Mi =

Jm,i 0 0
0 Jd,i 0
0 0 Jp,i

 ,
Hi =

 −kb(rdbθd,i − rmbθm,i)− cb(rdbθ̇d,i − rmbθ̇m,i)
kb(rdbθd,i − rmbθm,i) + cb(rdbθ̇d,i − rmbθ̇m,i) + prdFi

rpFi

 .
(6.3)

The vector Si =
[
1 0 0

]>
reflects the generalized force direction associated

to the torque τi generated by the stepper motor to the dynamics of the pinch.
The tangential force Fi in the rubber layer is described by the differential equa-
tion (6.2b), with

Gi = krprdθ̇d,i − krrpθ̇p,i, (6.4)

which is obtained by isolating the forces acting on the spring and damper, and
noting that the force in both elements is identical, since they are placed in series.

Let us now pose the following assumptions regarding paper transport.

Assumption 6.1. The transported paper sheets cannot be elongated in longitu-
dinal direction.

Assumption 6.2. All pinches in the paper path are identical, and no slip occurs
between a paper sheet and the pressure roller.

A consequence of Assumption 6.2 is that there exists a unique relationship
between the position of the sheet, and the angular position of the pressure roller.
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6.2.3 Double-pinch transport modeling

With the single-pinch model in place, we extend the model to two-pinch trans-
port in this section. Note that when the paper is transported by two consecutive
pinches, we distinguish the cases buckling and traction. Whereas the former case
yields an unconstrained motion, the latter case induces a unilateral constraint
between the motion of the two pinches. Indeed, a consequence of Assumption 6.1
is that the paper sheets are rigid in traction. Then, by Assumption 6.2, the ve-
locities of the pressure rollers in both pinches are equal, i.e., θ̇p,i = θ̇p,i+1 for
some i ∈ {1, · · · , n − 1}. The unilateral nature of the constraint can be ex-
plained intuitively as follows. A positive relative velocity θ̇p,i+1 − θ̇p,i results
in traction, because the downstream pinch pulls the paper. A negative relative
velocity results in buckling, because the upstream pinch pushes the paper.

The transition from the buckling case to traction case is characterized by
an impact force. As a result of the switching dynamics, a discontinuity in the
velocity of the pressure rollers may occur. Such a buckling-to-traction transi-
tion is bound to occur due to the controller design in Section 6.3, in line with
the control goals discussed in Section 6.1. That is, the controller should avoid
buckling (as it risks print defects), and pursues ending up in the traction case
as soon as the sheet enters the second pinch. In order to capture unconstrained
and constrained motion, as well as the transition between these cases, we derive
subsequently the non-impulsive part and the impulsive part of the equations of
motion, and finally combine these contributions to a single non-smooth model
for two-pinch paper transport.

In order to distinguish between the cases buckling and traction, we introduce
a distance function gN,i ≥ 0, parametrized by i ∈ {1, · · · , n − 1} to indicate
the considered pinch pair. Such a geometrical variable is used to capture the
absolute distance between two bodies, see, e.g., [93, Ch. 5]. The bodies are
separated when gN > 0, and are in contact when gN = 0. In our setting,
gN depends on the angular position of two subsequent pressure rollers θp,i and
θp,i+1, and is designed such that gN > 0 corresponds to buckling, and gN = 0
corresponds to traction. We design the distance function gN as follows:

gN,i := rp(θp,i − θp,i+1) + ci, (6.5)

with ci ∈ R a constant such that gN,i = 0 is realized when traction occurs, at
which point the angular positions of both pressure rollers are not necessarily
equal in absolute sense. Note that, for a closed contact, we have gN,i = 0 which
serves as a constraint equation (see, e.g., [64, Sec. 1.3]) for the traction case.

Remark 6.3. Although the distance function in 6.5 indeed distinguishes buckling
and traction, it is in general not measurable in a practical setting. The size of
the deflection of the paper in the buckling case may vary and cannot be measured,
and, therefore, it is not known at which angular positions of the pressure roller
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a buckling-to-traction transition occurs, , i.e., ci in (6.5) is typically unknown.
y

Non-impulsive dynamics

Consider two neighboring pinches in a paper path, logically numbered 1 and 2
(without loss of generality). Given the vector of generalized coordinates q :=
[θm,1, θd,1, θp,1, θm,2, θd,2, θp,2]>, the equations of motion for the non-impulsive
part of double pinch paper transport are as follows:

M
dq̇

dt
+H(q, q̇, F ) = ST +WN (q)λN , (6.6a)

Ḟ = G(q̇) +KF, (6.6b)

gN ∈ NR≤0
(−λN ), (6.6c)

where we omit the index i for gN for the sake of brevity. The matrices in (6.6)
are given by

M :=

[
M1 0
0 M2

]
, H :=

[
H1

H2

]
, S :=

[
S1 S2

]
,

T :=

[
τ1
τ2

]
, F :=

[
F1

F2

]
, G :=

[
G1

G2

]
, K =

[
−krcr 0

0 −krcr

]
,

(6.6d)

and the torque generated by the stepper motor follows from

τi = km(θf,i − θm,i), i ∈ {1, 2}. (6.6e)

Let us now elaborate on the different ingredients of the equations of motion
in (6.6). The contribution WN (q)λN (where we omit the index i for the sake of
brevity) in (6.6a) denotes the constraint force (i.e., the forces required to satisfy
the constraint gN = 0 in the traction case), with λN the magnitude of the
constraint force, and WN the generalized force direction. The latter is related
to the distance function gN by

WN =

(
∂gN
∂q

)>
=
[
0 0 rp 0 0 −rp

]
. (6.7)

The unilateral constraint force λN can be viewed as a contact force, holding
together two rigid bodies (in our setting, the pressure rollers), and is described
by Signorini’s set-valued force law, see, e.g., [93, Sec. 5.3]. That is, the contact
force can be positive when contact is present (i.e., gN = 0), and must vanish
when the contact is open (i.e., gN > 0). Due to the unilateral nature of the
considered constraint, the contact force λN and distance function gN satisfy the
following complementarity conditions:

gN ≥ 0, λN ≥ 0, gNλN ≥ 0. (6.8)
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These conditions translate to the force law in normal cone formulation in (6.6c),
where NR≤0

is defined as the normal cone of the set of admissible contact forces
{−λN ∈ R | λN ≥ 0} = R≤0, see [93, Sec. 5.3], i.e.,

gN ∈ NR≤0
(−λN ) :=

{
0 if λN > 0,

[0,∞), if λN = 0.
(6.9)

Impulsive dynamics

We will now discuss the impulsive contact forces that appear at a buckling-to-
traction transition and their effect on the dynamics. The impact at a buckling-
to-traction transition, which causes a sudden change in relative velocity, is ac-
companied by a normal contact impulse ΛN > 0. Let us first formalize the
relative velocity between the interacting bodies, i.e.,

γN (q, q̇) = W>N (q)q̇. (6.10)

In order to describe impact, we introduce a Newton-type impact law for contact
impulses, given by

γ+
N = −eNγ−N , gN = 0, 0 ≤ eN ≤ 1, (6.11)

with γ+
N and γ−N the post and pre-impact velocities, respectively, and eN New-

ton’s coefficient of restitution. Without loss of generality, we model the buckling-
to-traction transition as a completely inelastic impact in our setting, so that the
relative post-impact pressure roller velocity is zero, in accordance with Assump-
tion 6.1, i.e., eN = 0. Following [61], we define an auxiliary variable ξN for
the purpose of writing the impact law as an complementarity condition similar
to (6.8):

ξN := γ+
N + eNγ

−
N . (6.12)

Using (6.9) and (6.12), we write the impact law as

ξN ∈ NR≤0
(−ΛN ), gN = 0. (6.13)

Indeed, (6.13) only holds for closed contacts (i.e., gN = 0), since the relative
velocity γN can have any value without any contact force present as long as the
contact is not closed.

Double-pinch model derivation

In order to arrive at a double-pinch model that encompasses bucking, traction,
and the transition, we take several steps. First, we rewrite the force law in (6.6c)
on velocity level, i.e.,

γN (q, q̇) ∈ NR≤0
(−λN ), gN = 0. (6.14)
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Second, we write the force law for the non-impulsive motion on velocity
level (6.14) in the same form as (6.13). To this end, note that q̇+ = q̇− holds for
non-impulsive motion. Moreover, given any y ∈ NR≤0

, for any µ > 0, it holds
that µy ∈ NR≤0

[93, p. 103]. Then, (6.14) implies that (1+eN )γN ∈ NR≤0
(−λN ),

which, in turn, implies for the non-impulsive motion γN + eNγN ∈ NR≤0
(−λN ).

Finally, using (6.12), we construct the force law

ξN ∈ NR≤0
(−λN ), gN = 0. (6.15)

With the force law (6.15) and impact law (6.13) in place, we are ready to merge
the impulsive and non-impulsive contact forces into a single law. To this end,
we define a differential measure of the contact percussions (see [93, Eq. 5.97]) as
follows:

dPN := λNdt+ ΛNdη, (6.16)

with Lebesgue measurable part λNdt and an atomic part ΛNdη, see [93, Sec. 5.4].
The force law and impact law in (6.15) and (6.13), respectively, are then merged
as

ξN ∈ NR≤0
(−dPN ), gN = 0. (6.17)

The presence of impulsive forces dictates us to write the complete equations
of motion for two-pinch transport as a measure differential equation, i.e., an
equation of motion on the level of momenta. To this end, we introduce the
vector of generalized velocities u, which satisfies u = q̇ almost everywhere. We
then rewrite (6.6) and include the impulsive part using the developments above:

Mdu+H(q, u, F )dt = STdt+WN (q)dPN , (6.18a)

dF = G(u)dt+KFdt, (6.18b)

ξN ∈ NR≤0
(−dPN ), gN = 0. (6.18c)

The complete model for double-pinch paper transport is given by (6.18), which
holds for all time instances t, and encompasses buckling, traction, and transi-
tions.

The force law in (6.18c) yields an implicit expression for the post-impact ve-
locities. That is, the post-impact velocities must balance with the contact forces
and can, therefore, only be determined using an iterative numerical method, e.g.,
fixed-point iteration or Newton’s method (see [72]).

Remark 6.4. In contrast to a buckling-to-traction transition, a traction-to-
buckling transition does not yield an impulsive motion, because such a transition
corresponds to breaking contact in the current modeling framework. y

By the developments in this section, a complete model for a paper trans-
port path is given by (6.2) and (6.18). We addressed explicitly the transition
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between the cases buckling and traction in (6.18). The transition between one-
pinch transport and two-pinch transport encompasses a switch between (6.2)
and (6.18). Such a transition is measured in practice by optical sensors, and is,
therefore, not addressed further. Finally, we note that after a transition from
one-pinch to two-pinch transport, the sheet is always buckled. Namely, due to
the finite stiffness of paper and the presence of gravity, the sheet bends when
it exits a pinch. The sheet then bumps into the driven roller of the subsequent
pinch, which results in a folded sheet when it reaches the second pinch’ center
(see Figure 6.2-b,c).

6.2.4 Hybrid systems description

We now present the two-pinch model developed in the previous section in the
hybrid modeling framework of [63]. Such a hybrid model may be beneficial for
future controller designs, closed-loop analyses, and performing computer simula-
tions of the system (e.g., using the Hybrid Systems simulation toolbox [133]). In
particular, the discontinuities in pressure roller velocity as a result of the impacts
are modeled as discrete jumps. In order to correctly model such discontinuities
in the hybrid framework, an explicit expression for the post-impact velocities of
the pressure rollers is required, as we will present first. We also need an explicit
expression for the Lagrange multiplier λN in order to identify the buckling-to-
traction transitions and vice versa. Finally, we construct the hybrid systems
description.

Explicit post-impact velocity map

We employ the explicit post-impact velocity expression in [16, Eq. (5)], which is
applicable in our setting since [16, As. 1] is satisfied for the Newton-type impact
law that we consider (see (6.13)), see also [92]. That is,

q̇+ = Z̄(q̇−) := (1 + eN )proxMT +(q)(q̇
−)− eq̇−, (6.19)

with the proximal point on a set T + in the metric M defined as

proxMT +(y−) := arg min
y+∈T +

(y+ − y−)>M(y+ − y−). (6.20)

Finally, the set T + is defined as

T + := {q̇ ∈ Rn |W>N q̇ ≥ 0}. (6.21)

With these definitions in place, we derive the explicit post-impact velocity
mapping tailored for our setting. Since the pressure rollers are the only bodies
that experience impact, consider the coordinates qp := [θp,1, θp,2]>, and the
pressure roller inertia matrix Mp := diag(Jp, Jp) (both pressure rollers have



6.2 Paper path modeling 169

the same inertia by Assumption 6.2). Using (6.7) and the fact that we take
eN = 0, the post-impact velocity mapping Z̄p (according to (6.19)), tailored for
our setting, is given by

q̇+
p = Z̄p(q̇

−
p ) := prox

Mp

T +(q̇−p ), T + = {q̇p ∈ R2 | θ̇p,1 ≥ θ̇p,2}. (6.22)

The design of the distance function gN in (6.5) dictates θp,1 ≥ θp,2 − c
rp

in the

buckling case. In order to arrive in the traction case (whereby gN = 0), the
velocity of the downstream pinch must be larger than (or equal to) the velocity
of the upstream pinch, i.e., θ̇p,1 ≤ θ̇p,2. Hence, the pre-impact pressure roller
velocities satisfy

q̇−p ∈ T − := {q̇−p ∈ R2 | θ̇−p,1 ≤ θ̇
−
p,2}. (6.23)

The sets T + and T − are depicted in Figure 6.5. From this figure, it is evident
that the proximal point of any q̇−p ∈ T − on the set T + (i.e., characterizing the

shortest distance of q−p to T +) lies on the diagonal θ̇p,1 = θ̇p,2. Hence, the post-
impact velocities of both pressure rollers are equal. Given these observations,
let us construct the map Z̄p by rewriting (6.22) as

q̇+
p = prox

Mp

T +(q̇−p )

= arg min
q̇+p ∈T +

(q̇+
p − q̇−p )>Mp(q̇

+
p − q̇−p )

= arg min
θ̇+p,1,θ̇

+
p,2

Jp(θ̇
+
p,1 − θ̇

−
p,1)2 + Jp(θ̇

+
p,2 − θ̇

−
p,2)2,

(6.24)

which yields the following explicit expression for the post-impact velocities:

θ̇+
p,1 = θ̇+

p,2 =
1

2
(θ̇−p,1 + θ̇−p,2). (6.25)

q̇p,2

q̇p,1

T −

T +

q̇p,1 = q̇p,2

y

proxT +(y)

Figure 6.5. The sets T − and T + for the pre and post-impact pressure roller
velocities, respectively.
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Using (6.25), the post-impact velocity map Z̄p is given by

Z̄p(q̇
−
p ) :=

[
1
2 (θ̇−p,1 + θ̇−p,2)

1
2 (θ̇−p,1 + θ̇−p,2)

]
. (6.26)

For the purpose of the hybrid model below, we finally define

Zp(q̇
−
p ) :=

1

2
(θ̇−p,1 + θ̇−p,2). (6.27)

Explicit Lagrange multiplier

In order to construct the the hybrid model (6.30) below, an explicit expression for
the constraint force λN is required. By the complementarity conditions in (6.8)
we know that λN = 0 when gN > 0. When gN = 0, we obtain an expression for
λN by a forward dynamic analysis. For the traction case, the distance function
gN plays the role of a constraint equation, i.e., gN := rp(θp,1 − θp,2) + c = 0
in traction, which can be written on velocity level (see [64, Sec. 1.3]) as ġN =
WN q̇ = 0, and on acceleration level as

WN q̈ = 0. (6.28)

From (6.6) we have that q̈ = M−1(ST −H(q, q̇, F )+WλN ). Substitution of this
expression for q̈ in (6.28) yields the following explicit expression for λN :

λN = (WNM
−1WN )−1(WNM

−1(H(q, q̇, F )− ST ))

=
1

2
(F2 − F1).

(6.29)

Hence, the constraint force λN only depends on the tangential forces Fi, i ∈
{1, 2}, in the rubber layer of the driven rollers.

Hybrid model

Using the expressions for the post-impact pressure roller velocities, and for the
constraint force, we write the model for two-pinch paper transport as a hybrid
system H. We distinguish the cases of buckling and traction by a state m ∈
{0, 1}, where m = 0 corresponds to the buckling case, and m = 1 corresponds to
the traction case. With state vector x := [q, q̇, F,m]> ∈ R6×R6×R2×{0, 1} =:
Θ, the hybrid system H is given by

H :


ẋ = F(x), x ∈ C,
x+ = J01(x), x ∈ D01,

x+ = J10(x), x ∈ D10,

(6.30a)

(6.30b)

(6.30c)
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where the flow map is

F(x) :=


q̇

−M−1H(q, q̇, F ) +M−1ST +m(M−1WNλN )
G(q̇) +KF

0

 , (6.30d)

with λN given by (6.29). The jump maps are

J01(x) :=
[
q, θ̇m,1, θ̇d,1, Zp(q̇p), θ̇m,2, θ̇d,2, Zp(q̇p), F, 1

]>
, (6.30e)

J10(x) :=
[
q, q̇, F, 0

]>
. (6.30f)

The flow set is given by

C := C0 ∪ C1,
C0 := {x ∈ Θ : gN ≥ 0, λN = 0, m = 0},
C1 := {x ∈ Θ : gN = 0, λN ≥ 0, m = 1},

(6.30g)

and the jump sets are given by

D01 := {x ∈ Θ : gN = 0, ġN ≤ 0, m = 0},
D10 := {x ∈ Θ : gN = 0, λN = 0, m = 1},

(6.30h)

with λN given by the expression in (6.29). Note the presence of ġN ≤ 0 in
D01 in order to capture a buckling-to-traction transition. If ġN ≥ 0 whenever
gN = 0, the contact is indeed closed but traction will not occur. Intuitively
speaking, the velocity of the upstream pressure roller θ̇p,1 is either equal to, or

exceeds the velocity of the downstream pressure roller θ̇p,2, so that we either
have contact without any contact force (ġN = 0), or contact is immediately
annulled (ġN > 0). In any case, traction will not occur, and, hence, a discrete
jump in D01 is not required. Furthermore, although the hybrid model in (6.30)
indeed captures all solutions to (6.18), it also includes additional undesired Zeno
solutions [63, pp. 28–29].

6.3 Controller design

In this section, we present controller designs for single-pinch transport, and for
the buckling and traction cases for double-pinch transport. To this end, we first
formalize the control goals as discussed in Section 6.1. Subsequently, we present
controllers for the aforementioned cases. The working principles of the control
architecture are illustrated by means of a simulation study.
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6.3.1 Control goals

Throughout the paper path, the position of the leading edge of a sheet of paper,
denoted by xs, should track a prescribed setpoint. By Assumption 6.2, and
neglecting any deflection of the sheet, there exists a linear relation between the
angular position of the pressure rollers θp,i and the position of the sheet, i.e.,
xs = rpθp,i, when the sheet is transported by pinch i. A setpoint for xs can
hence be translated to a setpoint of the pressure rollers, as is commonly done in
some high-level control scheme, which we assume to be in place here. We then
focus on the low-level control goals, i.e., that the pinches should indeed realize
the specified setpoint as determined by the high-level control scheme.

With the proposed control scheme specified below, we aim to achieve the
following typical sequence in the paper path (see also the sequence a-d in Fig-
ure 6.2). A sheet is transported by a single pinch on the interval [0, T1). Then, a
transition to two-pinch transport takes place, whereby the sheet is buckled (due
to gravity) on the interval [T1, T2). Finally, we control the system such that the
sheet ends up in traction on the interval [T2, T3), and a transition to one-pinch
transport occurs at t = T3, completing the sequence.

Since we distinguish three different cases of paper transport (i.e., single-pinch
transport, and bucking and traction in two-pinch transport), we formalize the
control goals for each case separately. Intuitively speaking, for single-pinch trans-
port, the pressure roller angular position should track a prescribed setpoint. For
two-pinch transport in the buckling case, we desire to end up in the traction case
as soon as possible in order to minimize the chance of print defects. At the same
time, we require the downstream pressure roller to track a prescribed setpoint,
so that the considered sheet still tracks the right position in the paper path. Fi-
nally, for two-pinch transport in the traction case, we require the traction forces
in the sheet to be controlled to a safe level, so that high traction forces (possible
damaging the sheet or causing print defects) are prevented, while the safe trac-
tion level at the same time prevents the sheet from buckling again in this phase.
At the same time, position setpoint tracking of the downstream pressure roller
should be warranted. We formalize these control goals below, where we indicate
the upstream pinch by i = 1, and the downstream pinch by i = 2 for two-pinch
transport only.

1. one-pinch transport: ei := ri(t) − θp,i = 0, for all t ∈ [0, T1), with ri(t) a
prescribed setpoint for the considered pressure roller position;

2. two-pinch transport, buckling: r2(t) − θp,2 = 0, for all t ∈ [T1, T2), with
r2(t) a prescribed setpoint for the downstream pressure roller position, and
gN (T2) = 0;

3. two-pinch transport, traction: r2(t) − θp,2 = 0, and λN (t) = λr, for all
t ∈ [T2, T3), with λr a specified constant setpoint for the traction force in
the sheet.
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The transition between one-pinch transport and two-pinch transport is de-
tected by optical sensors in the paper path. The transition between buckling
and traction is detected by online evaluation of the traction force λN . The to-
be-controlled traction force λN is, however, not directly measurable. Indeed,
the explicit expression for λN in (6.29) only contains the non-measurable states
F1 and F2. Therefore, in order to be able to control λN , we use the following
predictor, derived from the equations of motion (6.6):

λN =
1

rp

(
Jpθ̈p,1

)
− 1

prd

(
Jdθ̈d,1 + kb(rdbθd,1 − rmbθm,1)

+cb(rdpθ̇d,1 − rmbθ̇m,1)
)
, (6.31)

which holds for the upstream pressure roller. Due to the rigid connection between
the two pinches in the traction case (see Assumption 6.1), λN has the same
magnitude in both pinch models. Therefore, an expression similar to (6.31) can
be derived for the downstream pressure roller as well (the only difference with
respect to (6.31) is a minus sign, by (6.7)). In practice, the predictor may then
be employed on both pinches to obtain improved accuracy on the predicted value
for λN by averaging the two measurements. The predictor in (6.31) depends on
known geometrical parameters, the constants kb and cb, and (time derivatives
of) measurable angles. In practice, the constants kb and cb are obtained via a
system identification procedure. The velocity and acceleration signals may be
obtained by numerical differentiation of the (low-pass-filtered) measured position
signals. Noise reduction in the position signals may be obtained by exploiting
a specific interpolation technique available in the printer electronics (which we
do not discuss further in this chapter, for the sake of brevity). The velocity and
acceleration signals (differentiated from the measured and interpolated position
data) in the predictor (6.31) then contain significantly less noise, so that the
predictor is applicable in a practical setting.

6.3.2 Controller design for one and two-pinch transport

Respecting the different control goals as presented above, we design controllers
for each case separately in the subsections below. Such controllers may consist
of a feedback and a feedforward contribution. A transition between cases then
yields a suitable transition between controllers.

Single-pinch transport control

For single-pinch transport, the closed-loop system is visualized in Figure 6.6,
where the feedback and feedforward controllers, indicated by Cfb,1 and Cff,1,
respectively, are designed using well-known loop-shaping techniques [57]. The
resulting feedback and feedforward signals are indicated by θfb,1 and θff,1, re-
spectively.
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Double-pinch transport buckling control

For two-pinch transport in the buckling case, there is no interaction between
the two pinches, so that we can design controllers for each pinch separately. In
particular, we may keep the same controllers as for the single-pinch transport
case, while specifying the references in such a way that traction is bound to
occur. The control system is schematically depicted in Figure 6.7, where the
inputs to pinch 1 and pinch 2 are, respectively, θf,1 and θf,2. The input of the
pinches are the sum of their respective feedback (θfb,1 and θfb,2) and feedforward
signals (θff,1 and θff,2). Respecting the control goals, we perform a manual
control allocation. In particular, we set the downstream pinch controller to be
responsible for pursuing the goal r2(t) − θp,2 = 0 (so that the leading edge of
the sheet still satisfies the desired tracking properties), whereas the upstream
pinch controller is responsible for achieving gN (T2) = 0. The latter may be
realized in different ways, but we consider here a straightforward approach that
relies on applying a specific setpoint for θp,1, that results in a lower velocity
of the upstream pinch with respect to the downstream pinch. Specifically, the
upstream pinch controller pursues r1(t)− θp,1 = 0, where r1(t) satisfies ṙ1 < ṙ2.
In this way, gN = 0 is bound to occur if the control goals are realized.

Cfb,1 P1
r1 e1 θf,1 θp,1

−

Cff,1
θff,1

θfb,1

Figure 6.6. Block scheme of the closed-loop single-pinch model, with Cfb,1 a
to-be-designed motion controller, and P1 the plant (given by (6.2)).

P2

Cfb,1

Cfb,2

Cff,1

Cff,2

θf,1 P1
r1

r2 θf,2
−

−

θff,1

θff,2

θfb,2

θfb,1 θp,1

θp,2

Figure 6.7. Block scheme of the closed-loop double-pinch model, with Cfb,1
and Cfb,2 to-be-designed motion controllers for the upstream and downstream
pinches, respectively, and P1 the plant (given by (6.2)).
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Cfb,λ

Cfb,θ

Cff,1

Cff,2

Pt

λr

r2
−

−

θff,1

θff,2

vθ

vλ
θp,2Q

θfbv
λNθf

Pdec

θff

Figure 6.8. Block scheme of the closed-loop double-pinch model for the trac-
tion case, with Cfb,λ and Cfb,θ to-be-designed motion controllers for controlling
λN and controlling θp,2, respectively, and Pt the plant (given by (6.18)).

Double-pinch transport traction control

For two-pinch transport in the traction case, there is a strong interaction between
both pinches due to the rigid connection between the two pressure rollers by
the paper sheet. Realizing both control goals, i.e., position setpoint tracking
and traction setpoint tracking, is not straightforward. We therefore employ a
particular input decoupling of the system, so that separate controllers can be
designed for controlling λN and θp,2. More specifically, with the proposed control
decoupling, we require the downstream pinch to be responsible for controlling
θp,2, and the upstream pinch is responsible for controlling λN , which essentially
reflects a manual control allocation procedure.

Remark 6.5. The assignment of control objectives to specific actuators is based
on engineering intuition and understanding of the system. This particular con-
trol allocation procedure is essentially different compared to classical control al-
location, as employed in the previous chapter. With classical control allocation,
the distribution of control forces over the available actuators is performed after
the desired control effort is determined by the motion controller. In the current
setting, the allocation is done before any control effort is determined. y

Consider Figure 6.8, which schematically depicts the control system. Herein,
the vector of inputs to the stepper motors is defined as θf := [θf,1, θf,2]>.
The input vector is the sum of the feedback and feedforward signals, defined as
θfb := [θfb,1, θfb,2]> and θff := [θff,1, θff,2]>, respectively. We now discuss
the input decoupling, which is best explained by considering a transfer function
description of the double-pinch system in the traction case. To this end, consider
the hybrid model (6.30) (with m = 1). The flow dynamics can be written in the
form ẋ = Atx+Btθfb, with output vector y := [λN , θp,2]> =: Ctx, for suitable
At, Bt, and Ct (indeed, Ct can be constructed as λN depends on the system
states F1, F2, see (6.29)). The transfer function from θfb to y (i.e., y = Ptθfb)
of this multi-input-multi-output (MIMO) system is then given by

Pt = Ct(sI −At)−1Bt, (6.32)
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with s ∈ C. The Bode diagram of Pt is depicted in Figure 6.9, illustrating the
interaction between pinches due to the fact that the off-diagonal terms are non-
negligible1. In fact, due to the symmetry in the double-pinch transport system
and the rigid connection between the pinches, both pinches have equal influence
on the control goals θp,2 and λN . The 180 degrees phase difference between the
transfers from θp,1 to λN , and from θp,2 to λN , is due to the opposite sign of λN
by (6.7). Such symmetry motivates to decouple the system statically, using the
following input decoupling matrix

Q :=
1√
2

[
−1 1
1 1

]
, (6.33)

so that the transfer function of the decoupled system yields

Pdec = PtQ. (6.34)

The decoupled plant Pdec takes a virtual input v := [v1, v2]>, related to the
physical input θfb by θfb = Qv, see Figure 6.8. Inspecting the Bode diagram of
the decoupled plant Pdec in Figure 6.10 illustrates that the input-output behavior
of Pdec is indeed decoupled, since the magnitude of the off-diagonal terms are
negligible. We are then able to design separate controllers Cfb,λ and Cfb,θ, for
the upstream and downstream pinches, respectively, the former controlling λN ,
and the latter controlling θp,2, as indicated in Figure 6.8.

6.3.3 Simulation study

We illustrate the working principle of the presented control architecture in a
simulation study. To this end, we use the single-pinch model (6.2) and the
hybrid double-pinch model (6.30) for single-pinch and double-pinch transport,
respectively. We use the hybrid equations simulation toolbox [133] to perform
the simulations. Numerical values for the geometrical and inertial model pa-
rameters are known from the manufacturer [111], other values are obtained by
identification experiments and presented in Table 6.1.

We simulate a sheet of paper of 30 cm length, that is subsequently trans-
ported by one pinch and by two pinches. The upstream pinch is indicated by
i = 1, and the downstream pinch by i = 2. For one-pinch transport, we consider
a reference velocity of the upstream pressure roller of 17 rad/s, corresponding to
a sheet velocity of approximately 0.3 m/s, so that r1(t) = 17t, for all t ∈ [0, T1).
In addition, we apply the same reference to the downstream pressure roller (i.e.,
r2(t) = 17t for all t ∈ [0, T1)) so that we expect a smooth transition from one-
pinch transport to two-pinch transport. We take T1 = 0.6 s, i.e., the time instant
at which a transition from one pinch transport to two pinch transport occurs.

1Numerical values for the model parameters required for construction of the Bode diagram
are discussed in Section 6.3.3
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Figure 6.9. Bode diagram of the MIMO double-pinch model transfer function
Pt for the traction case.
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At such transition, the paper is buckled and we employ the control architecture
as in Section 6.3 to end up in traction, where we keep r2(t) = 17t, but adapt
the reference for the upstream pressure roller to r1(t) = 0.97 · 17t. That is, the
setpoint of the upstream pinch pressure roller results in a lower velocity com-
pared to the downstream pinch, so that a state of traction is bound to occur
at some t = T2. Note that T2 is generally unknown, as it depends on the (un-
measurable) degree of buckling. For the current simulation study, we assume a
paper deflection of d = 5 mm at t = T1 (see Figure 6.2) resulting in a pressure
roller position offset of 0.005 rad, which, in turn, corresponds to c = 8.775 ·10−5

m in the distance function in (6.5). Finally, we set T3 = 1 s. The feedback
controllers Cfb,1, Cfb,2, Cfb,λ, and Cfb,θ are designed using linear loop-shaping
techniques [57], and are given in Appendix 6.A.1. In addition, we employ the
following feedforward controller on both pinches for all t ∈ [0, T ] that brings the
pressure rollers close to the position setpoint:

θff,i = Cff,iri(t), i ∈ {1, 2}, with Cff,i =
rprdb
rmrd

. (6.35)

Since Cff,i are transfer functions from position to position, they merely are a
transmission ratio between the motor and the pressure roller. We choose the
initial velocities for the motor, driven roller axis, and pressure roller axis in such
a way that it matches the setpoint at t = 0, to avoid a large part of possible
initial transients.

Consider Figure 6.11, which depicts the position error of the pressure roller
of both pinches, i.e., ri(t) − θp,i, i ∈ {1, 2}, and the traction force error λr −
λN . Transitions from one-pinch to two-pinch transport, and from buckling to
traction, are indicated by ( ). On the interval [0, T1), with T1 = 0.6 s, we have
single-pinch paper transport (i.e., the sheet is in pinch 1) and, aside from a small
remaining transient, the tracking error for both pressure rollers is effectively
suppressed, see the first and second subplot. Then, at t = 0.6 s, a transition to
two-pinch transport takes place whereby the reference for the upstream pressure

Table 6.1. Parameter values.

parameter value parameter value

rm 8.3 · 10−3 m cb 0.5 Ns/m

rdb 8.3 · 10−3 m cr 104 Ns/m

rd 26.9 · 10−3 m p 0.999

rp 17.55 · 10−3 m kb 600 N/m

Jm 6.8 · 10−6 kg/m2 km 35 N/m

Jd 23.8 · 10−6 kg/m2 kr 105 N/m

Jp 3.1 · 10−6 kg/m2
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plot), and gap function (bottom subplot). Single-pinch transport on [0, 0.6),
double-pinch transport in buckling mode on [0.6, 0.621), indicated by the gray
area, and double-pinch transport in traction mode on [0.621, 1].
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Figure 6.12. Feedback (top) and feedforward (bottom) control inputs for the
upstream pinch ( ) and downstream pinch ( ). Note that the feedforward
control input is identical for both pinches.

roller is altered. As a result of the non-smooth reference at t = T1, a small
transient in the error response of the upstream pressure roller is observed, but
the gap function gN is still controlled to zero at t = T2 = 0.621 s. At this
point, a buckling-to-traction transition occurs and we switch to the decoupled
control scheme of Figure 6.8. The downstream pressure roller error is then
effectively controlled to zero, see the second subplot. The upstream pinch is
responsible for controlling the traction force in the sheet to zero, which is indeed
realized as shown in the lower subplot, indicating that the decoupled controller
structure is effective. Some oscillations are still present in the traction force
error response, which may be due to the interplay between the impact (as a
result of the buckling-to-traction transition) and the relatively high stiffness
of the (relatively simple) rubber layer model. Note that the position tracking
error as in the top subplot deviates immediately from zero after the buckling-
to-traction transition, since the position tracking error is no longer a control
goal in the interval [T2, T3]. Instead, the upstream pressure roller is responsible
for controlling the force error λr − λN to zero. The corresponding feedback
and feedforward control inputs θfb,i and θff,i of both pinches are visualized in
Figure 6.12. Note that the signals θff,i are increasing, as the controller output
is the desired motor position, which is increasing in time.

6.4 Experimental case study

In this section, we show the working principle and the effectiveness of the pro-
posed control architecture on an experimental paper path setup. In particu-
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lar, we show that position accuracy is improved by employing feedback control
(compared to the state-of-practice control solution), and that traction forces are
effectively controlled to a safe level when a sheet is transported by two pinches.

6.4.1 Experimental setup

The experimental setup, depicted in Figure 6.13, coincides with a specific part
of the paper path in an industrial sheetfed printer, indicated by the blue box
in Figure 6.1. The setup consists of seven pinches, where the middle three are
equipped with encoders on axes of the motor, driven roller, and the pressure
roller. Optical sensors are placed throughout the paper path, so that we are
able to measure by which pinch(es) a sheet is currently being transported. A
paper input module is placed in front of the setup, that automatically feeds the
setup with standard A4 sheets, which we consider in the experiments.

6.4.2 Experimental design and results

We consider two pinches in the experimental setup, logically numbered 1 and
2, as indicated in Figure 6.13. The case study involves a single sheet of paper
that is subsequently transported by pinch 1, then by both pinches (double-pinch
transport), and finally by pinch 2. Only pinch 1 and 2 are controlled using
the proposed control architecture. The other pinches are driven in open-loop,
following the state-of-practice control solution. Since the pinch pair 1 and 2
are preceded and followed by other pinches, there is only a small time interval
where the sheet is transported by a single pinch. Nevertheless, we still employ the

pinch 1 pinch 2

stepper motor

paper input module

optical sensor

encoder

Figure 6.13. Experimental paper path setup.
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single-pinch transport control strategy of Figure 6.6 for pinch 1 (resp. pinch 2)
even if the sheet is also transported by its preceding (following) open-loop-driven
pinch.

The sheet reference velocity is 0.6 m/s, which results in position references
ri(t) = 34.19t, i ∈ {1, 2}, for single-pinch transport, or when the pinch is empty
to obtain a smooth transition from one-pinch to two-pinch transport and vice
versa. A transition from single-pinch to double-pinch transport is detected using
optical sensors. At this point, the sheet is buckled and the reference r1 is altered
to r1(t) = 0.97 · 34.19t (but the single-pinch position controller remains active)
while r2 remains the same, so that traction is bound to occur. A buckling-to-
traction transition is then detected when the traction force, obtained by the
predictor (6.31), exceeds a small threshold value. At that point, the controller
switches to the control architecture as in Figure 6.8, where we set λr = 0.5 N. The
feedback controllers Cfb,1 and Cfb,2 are designed using loop-shaping techniques,
based on frequency response measurements of the plant P1 and P2, respectively.
The controllers Cfb,θ and Cfb,λ, however, cannot be (completely) designed based
on measured data. Frequency response measurements of the (decoupled) plant
in the traction case cannot be reliably obtained, since traction only occurs for
very short periods of time. Moreover, λN is not measurable. The controller
Cfb,θ is therefore obtained based on Cfb,1 and model information. The traction
force controller Cfb,λ is designed based on the model presented in Section 6.2
with sufficient robustness margins. All controllers are given in Appendix 6.A.2.
In addition, we use the feedforward controller (6.35).

Consider Figure 6.14, which depicts the position error of the pressure roller
of pinch 1 and 2, and the traction force error for two experiments. The position
and force errors are effectively suppressed by the proposed control architecture,
showing the effectiveness of the approach. Let us now consider the responses in
more detail. At t = 0, both pinches are already running with the single-pinch
controllers applied, which results in near zero position errors. At t = 0.12 s,
the sheet enters pinch 1 and remains in pinch 1 on the interval [0.12, 0.41), see
the top subplot. At approximately t = 0.34 s, we observe an increased position
error, which is explained as follows. On the interval [0.12, 0.34], the sheet is also
transported by the open-loop-controlled pinch preceding pinch 1. A traction
force may then be present in the sheet, which is not controlled during this
interval. At t = 0.34 s, the sheet exits the preceding pinch, whereby the traction
force is suddenly annulled (intuitively, such a phenomenon may be compared to
stretching and releasing a rubber band on one side). Nevertheless, the resulting
error is quickly suppressed by the controller. In the interval [0.41, 0.44), the
sheet is transported by pinch 1 and pinch 2 in the buckling phase. The buckling
control strategy of Figure 6.7 effectively realizes that the sheet quickly ends up in
the traction phase in the interval [0.44, 0.62) s. In this interval, the position error
of pinch 2 and the traction force error are effectively suppressed (see the second
and third subplot, respectively). Finally, the sheet exits pinch 1 at t = 0.62 s
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and is transported by pinch 2 on [0.62, 0.9) where the position error is effectively
suppressed again by the single-pinch control strategy of Figure 6.6.

The traction force, determined by the predictor (6.31), is presented in Fig-
ure 6.15. The traction force is, aside from the transient, controlled towards λr.
We emphasize that the responsible controller Cfb,λ is designed based on the
model. Although the traction force is effectively controlled towards its setpoint,
the transient may be improved if a more tailored controller can be designed
based on identification measurements. Finally, the feedback and feedforward
control signals for both pinches are presented in Figure 6.16. The y-axis of the
feedforward control input plot does not start at zero, since the system is already
running before we start tracing data at t = 0.

6.4.3 Comparison with state-of-practice control

We illustrate the performance benefits of the proposed control architecture,
compared to the state-of-practice solution currently applied by the manufac-
turer. The state-of-practice strategy relies on driving the stepper motors without
any feedback mechanism (open-loop). That is, the references ri(t) are directly
send as an input to the stepper motor, i.e., θf,i =

rprdb
rmrd

ri(t), which coincides

with the feedforward controller (6.35). To prevent buckling during double-
pinch transport in the industrial printer of Figure 6.1, several pinch pairs in
the paper path are assigned a reference that results in a different relative ve-
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locity, whereby the upstream pinch has a lower velocity than the downstream
pinch. In order to illustrate the implications of this strategy in practice, we set
r1(t) = r2(t) = 34.19t during single-pinch paper transport, or when the pinch is
empty. When double-pinch transport is detected by the optical sensors, r1(t) is
altered to r1(t) = 0.97 · 34.19t so that traction is bound to occur. Note that the
reference is the same as in the case study with the proposed control architecture.
Consider Figure 6.17, which depicts the position errors of both pinches, and the
traction force during two-pinch transport in the traction case. First, due to the
absence of a feedback controller, a drift in the position error occurs which cannot
be compensated. Second, during double-pinch transport in the traction case, the
traction force is not controlled and keeps increasing towards undesirable levels.
In contrast, our proposed control architecture is capable of suppressing both the
position and the traction force errors.

We now illustrate that employing merely a position controller for both
pinches is not sufficient to arrive at safe traction force levels during two-pinch
transport. We perform an experiment with the same position reference pro-
file, where the single-pinch control architecture of Figure 6.6 is active at all
times. The position errors of both pinches and the resulting traction force dur-
ing double-pinch transport are depicted in Figure 6.18. Closed-loop position
control improves already the position errors, compared to the state-of-practice
strategy, as it is capable of removing the drift in the error. Moreover, the errors
are suppressed as long as there is no paper in the corresponding pinch, or when
a sheet is in either pinch 1 or pinch 2. When the paper is in both pinches and
under traction, the control objectives interfere due to the rigid coupling between
the pinches, resulting in large position errors. Moreover, the traction force rises
to very large levels, risking slip between the sheet and the pinch, or even tearing
the sheet.

Summarizing, the state-of-practice (open-loop control) strategy results in
drift in the position errors, and uncontrolled traction forces. Employing only
position control results in large errors during double-pinch transport, and un-
desired large traction forces. The proposed control strategy instead results in
suppressing the position errors during single and double pinch transport, and is
capable of controlling the traction force towards a specified reference, avoiding
the risk of print defects.

6.5 Conclusions

We have presented a model and a control framework for a sheetfed printer paper
path. The model addresses both single-pinch and double-pinch paper transport,
where in the latter case the paper sheets may either be buckled, or may ex-
perience traction forces. The model addresses these logical states, as well as
buckling-to-traction (and vice versa) transitions. A hybrid model for double-
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pinch transport is derived that favors future controller designs, closed-loop sta-
bility analyses, and simulation studies. The proposed control framework realizes
reference tracking of the pinches and regulates traction forces in the sheets,
thereby avoiding print defects. Herein, overactuation is effectively exploited
to address both control goals simultaneously in double-pinch transport. The
working principle and effectiveness of the controller is illustrated by means of
simulations, and is validated experimentally on a prototype paper path setup.
The proposed control architecture outperforms the state-of-practice (open-loop)
control solution in terms of position tracking accuracy and reduction of undesired
(large) traction forces in the sheets.
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6.A Controllers

6.A.1 Feedback controllers for simulation

The following controllers are used in the simulation study:

• Cfb,1 and Cfb,2 consists of a proportional action, two integrators, and a
notch filter:

Cfb,1 = Cfb,2

=
0.2s4 + 1.16 · 102s3 + 4.86 · 104s2 + 1.52 · 107s+ 1.80 · 109

s4 + 3.77 · 102s3 + 1.42 · 105s2
, (6.36)

with s ∈ C. The use of two integrators yields a zero steady-state er-
ror (without the need for a feedforward controller). The notch filter is
employed to suppress a significant resonance in order to arrive at a satis-
factory bandwidth;

• Cfb,θ consists of a proportional action, two integrators, and a notch filter
as well:

Cfb,θ =
0.3s4 + 1.73 · 102s3 + 7.30 · 104s2 + 2.29 · 107s+ 2.70 · 109

s4 + 4.52 · 102s3 + 1.42 · 105s2
;

(6.37)

• Cfb,λ consists of a proportional action, two integrators, a notch filter, and
a low-pass filter, given by

Cfb,λ =
789.6s4 + 3.34 · 105s3 + 2.61 · 109s2 + 8.08 · 1011s+ 4.05 · 1013

s6 + 3325s5 + 4.62 · 106s4 + 1.72 · 109s3 + 3.21 · 1011s2
.

(6.38)

6.A.2 Feedback controllers for experiments

The following controllers are used in the experimental case study:

• The controllers for Cfb,1 and Cfb,2 consist of a proportional action, two
integrators, a notch filter, and a first-order low-pass filter:

Cfb,1 = Cfb,2

=
1.3s4 + 148s3 + 1.89 · 105s2 + 7.14 · 106s+ 7.11 · 107

2.65 · 10−3s5 + 5s4 + 1.89 · 103s3 + 1.42 · 105s2
(6.39)

with s ∈ C;
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• Cfb,θ consists of a proportional action, two integrators, and a notch filter:

Cfb,θ =
0.67s4 + 7.54 · 101s3 + 9.68 · 104s2 + 3.58 · 106s1.87 · 107

s4 + 1.01 · 103s3 + 6.32 · 104s2
(6.40)

• Cfb,λ consists of a proportional action, an integrator, and a notch filter:

Cfb,λ =
6.00 · 104s3 + 1.55s2 + 2.04 · 103s+ 4.86 · 1006

s3 + 1.79 · 103s2 + 3.22 · 106s
(6.41)





Chapter 7

Conclusions and
recommendations

7.1 Conclusions

High-tech industries are currently facing numerous challenges. Namely, there is
an ever-increasing performance demand on speed and accuracy of motion sys-
tems, and essential system-level tradeoffs between cost and performance need to
be made. In order to address these challenges, this thesis considers two indus-
trially relevant topics. First, novel (hybrid) control strategies for systems with
friction, and, second, control allocation techniques for over-actuated systems are
developed, addressing the research objectives presented in Section 1.2:

Objective 1. Develop (hybrid and learning) control techniques for motion sys-
tems with friction, that improve stability and performance properties com-
pared to classical linear control solutions, and are applicable to industrial
high-tech systems.

Objective 2. Develop control allocation techniques tailored to specific industrial
over-actuated systems, that outperform the state-of-practice (linear) control
solutions.

Objective 3. Experimental validation of the proposed controllers on industrial
benchmark systems.

The main contributions of this thesis, addressing the objectives above, can be
summarized in terms of contributions to 1) novel controller designs that allow for
cost-aware mechatronic system designs, 2) novel controller designs for frictional
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systems, 3) development of tailored control allocation techniques for industrial
over-actuated systems, and 4) validation on industrial benchmark systems:

1. Novel controller designs that allow for cost-aware mechatronic system
designs: all control architectures presented in this thesis address cost-
awareness. First, the use of cheaper hardware components such as bear-
ings and actuators may induce friction in the motion system, which is
a performance-limiting factor in terms of speed and accuracy. In Chap-
ter 2-4, three (hybrid) controllers are presented that cope with frictional
systems, enabling a high performance despite the apparent friction. Sec-
ond, Chapter 5 presents an allocation framework for an industrial high-
precision transport and positioning system, minimizing power consumption
and allowing for relaxed hardware design specifications. Third, Chapter 6
presents a control framework for a sheetfed printer paper path driven by
stepper motors, reducing hardware costs with respect to a DC motor driven
paper path.

2. Novel (hybrid and learning) controller designs for systems with friction,
applicable to industrial applications: respecting the popularity of the clas-
sical PID controller in practice, the limitations of PID control for frictional
systems are overcome by adding reset enhancements to a loop-shaped
PID controller. In Chapter 2, a reset integral controller is proposed that
achieves robust global asymptotic stability of the setpoint, and significantly
improves settling times for motion systems with unknown Coulomb and
viscous friction. In Chapter 3, a reset integral controller is presented that
achieves global asymptotic stability of the setpoint for systems with un-
known Coulomb and Stribeck friction, which is typically not achieved with
classical PID control. The reset conditions of both controllers are designed
such that a controller reset is correctly triggered despite the presence of
measurement noise. Additionally, Chapter 4 presents a novel time-varying
integrator gain design for motion systems with unknown Coulomb and
Stribeck friction, performing a repetitive motion profile. The time-varying
integrator gain is parametrized by a set of suitable basis functions. The
specific tuning of the time-varying integrator gain is iteratively obtained
by employing a sampled-data extremum-seeking controller, such that high
setpoint accuracy is obtained by data-based learning.

3. Performance-enhancing control allocation techniques tailored for over-
actuated industrial applications: Chapter 5 presents a control allocation
framework for an industrial high-accuracy transportation and positioning
system which outperforms the state-of-practice, linear control solution cur-
rently applied by the manufacturer. In particular, employing the proposed
control allocation framework results in enhanced tracking, allows for inde-
pendent motion of multiple carriers, and results in relaxed hardware design
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specifications. A decentralized allocation procedure is presented that en-
hances computational efficiency, such that the control allocation scheme is
suitable for online implementation at high sampling rates, and facilitates
scalability to large-scale system configurations. Chapter 6 presents a dy-
namic model and a (manual control allocation-based) control framework
for a sheetfed printer paper path. In such a system, sheets are transported
alternately by one or two pinches throughout the paper path, which gives
rise to a hybrid system dynamics, where the double-pinch transport phase
is over-actuated. We proposed a controller, based on a manual control
allocation procedure, that regulates both the motion of the transported
sheets and traction force in the sheets simultaneously. The proposed con-
troller outperforms the state-of-practice control solution in terms of track-
ing accuracy and reduction of undesired (large) traction forces in the paper
sheets.

4. Validation on industrial benchmark systems: all controllers presented in
this thesis are experimentally validated on industrial benchmark systems.
The effectiveness of the (hybrid and learning) PID-based control strate-
gies for systems with friction proposed in Chapters 2-4 are verified on
a high-precision motion stage of an electron microscope, showing supe-
rior performance compared to classical PID control. The control alloca-
tion architecture proposed in Chapter 5 is experimentally demonstrated
on an industrial high-accuracy transport and positioning system, result-
ing in enhanced tracking and lower power consumption, compared to the
state-of-practice control solution currently applied by the manufacturer.
The control framework presented in Chapter 6 is developed for a sheetfed
printer paper path, and is experimentally validated on a prototype paper
path setup. Improved position tracking accuracy and control of traction
forces has been shown, compared to the state-of-practice control solution.

The controller designs presented in this thesis are all developed with indus-
trial acceptance in mind. Such acceptance requires that the controllers should
be relatively easy to understand, to design, and to tune for control engineers
in practice. The reset control architectures presented in Chapter 2 and 3 of
this thesis have been designed based on top of the well-understood PID con-
troller. Choosing the PID controller as a foundation, and enhancing it with
resets, may not be the only design that achieves the control goals of the re-
spective chapters. Doing so, however, enables industrial acceptance since the
conditions for stability are exactly the same as for the base linear system (i.e.,
if friction would be absent, see Assumption 2.2 and 3.3). As a result, control
practitioners may design and tune the base PID controller as usual, and then
add the reset enhancements while closed-loop stability is preserved. Moreover,
the reset controllers are applicable generically, since no information about the
friction characteristic is required. We envision that such a design philosophy
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enables industrial acceptance of these hybrid controllers.
The control allocation architectures presented in Chapter 5 and 6 have been

developed for specific industrial applications. In order to achieve industrial ac-
ceptance of a performance enhancing control technique, it is important that
shifting the control paradigm connects to the experience of control engineers in
practice. Therefore, control allocation techniques have been proposed, which
still exploit well-know motion control solutions, rather than entirely different
control architectures that can deal with over-actuated systems. The main moti-
vation is that, with control allocation, the controller design is strictly separated
from the distribution of the control effort. In this way, control engineers can
design the controllers using well-understood (loop-shaping) design techniques.

7.2 Recommendations

Recommendations for future research directions, related to both parts of this
thesis, are as follows:

Part I: control of motion systems with friction

• Chapter 2: first, the reset integrator presented in Chapter 2 is able to cope
with asymmetric friction, by tuning the parameter α to a sufficiently low
value. However, doing so results in a milder controller reset and, conse-
quently, in a longer settling time. Decreased settling times for the case of
asymmetric friction may be realized by employing a separate integrator for
each direction of movement of the mass, and keeping track of the history
of their states and applying a suitable switching between them. Second,
Section 2.4 presents a stability analysis that proves global asymptotic sta-
bility of the setpoint. When studying the response of the reset controller
in Figure 2.1, we observe that the intervals of stick are of equal length, in
contrast to the classical PID response. This actually suggests exponential
stability, which, from a theoretical point of view, is an interesting result to
pursue. Finally, the Coulomb friction model does not provide any infor-
mation about frictional effects such as creep and stiffness-like effects (see
also Section 1.1.1), which are shown to play a significant role in practice. If
knowledge about the part of the friction responsible for the “stick-to-stick”
jumps (i.e., stiffness-like effects) could be obtained, the system’s response
as a result of the resets may be more predictable. This information may
then be used for improved controller design.

• Chapter 3: first, the reset controller presented in Chapter 3 achieves global
asymptotic stability of the setpoint for systems with Stribeck friction.
Since the developments in the chapter focus on stability, transient per-
formance is not addressed explicitly. An interesting direction for future re-
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search is to investigate to what extent the developments of Chapter 2 may
be used in the reset controller of Chapter 3, in order to improve transient
performance (although the stability analysis may become more involved).
Second, the reset controller employs two distinct resets so that stability of
the setpoint can be proven based on the given Lyapunov function. How-
ever, as the experimental results in Section 3.8 indicate, the use of a less
complex Clegg integrator may result in stability of the setpoint as well,
with an easier-to-implement reset law. Conducting a stability analysis for
the Clegg system is an interesting direction for future research. However,
the Lyapunov function of Chapter 3 is no longer suitable, as it does not
enjoy a nonincrease property when the integrator is reset to zero upon a
zero-crossing of the position error. Third, unmodeled frictional effects as
discussed above may be significant. If knowledge about the stiffness-like
effects could be obtained, the system’s response as a result of the resets
may be more predictable. This information may then be used for improved
controller design, also in this case.

• Chapter 4: first, the experimental case study shows that a high position-
ing accuracy is indeed obtained with the proposed control architecture.
However, depending on, e.g., the choice of the basis functions and the fric-
tion characteristic at hand, there may exist multiple local minima of the
performance cost function (reflecting positioning accuracy). In order for
the extremum-seeking controller to arrive at the global minimum, thereby
achieving optimal tuning of the time-varying integrator gain, global op-
timization methods can be explored instead (e.g., the DIRECT [82] or
Shubert algorithm [137]). Second, although we show that solutions to the
closed-loop system remain bounded, it may be useful to conduct a theo-
retical analysis that provides insight in the achievable accuracy depending
on the friction characteristic and the controller tuning.

On a more general level, although many motion systems can be approximated
well by a single mass model, several applications are better represented by a
higher-order (multi-input-multi-output) motor-load model with a flexible cou-
pling, where the load should be positioned accurately. In such systems, actua-
tion and friction can be collocated, or non-collocated. In the latter case, due to
the interplay between friction and the flexibility of the coupling, limit cycling
may occur even in the absence of a Stribeck effect, when controlled by a classi-
cal PID controller. Understanding of this phenomenon is essential for designing
suitable controllers that, firstly, eliminate limit cycling and achieve stability of
the setpoint, and, secondly, improve transient performance. It is interesting to
investigate to what extent the reset control architectures presented in this thesis
are applicable to such higher-order systems. Additionally, position measure-
ments of the load are not available in some industrial applications, e.g., where
the machine operates (partly) in an isolated environment. For such frictional
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motion systems, controller design for precise positioning of the load, based on
only motor position measurements, is a challenging open problem.

Part II: control of over-actuated motion systems

• Chapter 5: the decentralized control allocation algorithm is computation-
ally efficient, which facilitates scalability to large-scale system configura-
tions. However, for some transportation systems, the number of actuators
that can be driven by a single control module is limited. Communication
between control modules (usually UTP-based) must be taken into account
in the control allocation framework in order for the allocation method to
work properly, which poses additional challenges such as communication
delays and data loss. Addressing these challenges in the control alloca-
tion framework is an interesting direction for future research, so that the
framework is applicable to such modular systems.

• Chapter 6: first, the hybrid pinch model includes additional undesired Zeno
solutions, which may be eliminated by specific controller designs. Second,
the control framework developed in Chapter 6 is shown to perform well in
practice, but a formal proof of stability (where the hybrid modeling frame-
work may be exploited) is still missing, and should be developed. Third, we
now use an “ad-hoc” control architecture for the buckling phase, i.e., the
upstream pinch has a lower angular velocity than the downstream pinch, so
that the traction case is eventually achieved. However, impact forces may
be minimized by designing a more advanced controller for the buckling
phase, that minimizes the velocity difference between the pinches upon a
buckling-to-traction transition. Last, we have only considered control of a
straight part of the paper path, yet there are curved sections as well, see
Figure 6.1. A different control approach needs to be developed in order to
maneuver the paper sheets through such curved sections. In particular, a
certain degree of buckling is then desired so that the sheets are bend to
match the paper path curvature.







Appendix A

Hybrid Dynamical Systems

Following [63], a hybrid system H is represented by

H :

{
ẋ ∈ F (x), when x ∈ C,

x+ = G(x), when x ∈ D.
(A.1)

The state x of hybrid system H can evolve according to a differential inclusion
ẋ ∈ F (x) while in the set C (referred to as the “flow set”), or according to a
difference equation x+ = G(x)1 while in the set D (referred to as the “jump
set”). The notation x+ represents the value of the state of the system after an
instantaneous change, and F and G are the flow and jump maps, respectively.

For hybrid systems, solutions are parameterized by the time t ∈ R≥0 and
the number of discrete steps j ∈ N. However, only certain subsets of R≥0 × N
can correspond to evolutions of hybrid systems, i.e., the so-called hybrid time
domains, which formal definition is as follows.

Definition A.1. [63, Def. 2.3]. A subset E ⊂ R≥0 × N is a compact hybrid

time domain if E =
⋃J−1
j=0 ([tj , tj+1] × {j}) for some finite sequence of times

0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tJ . It is a hybrid time domain if for all (T, J) ∈ E,
E ∩ ([0, T ]× {0, 1, · · · , J}) is a compact hybrid domain.

Let us now define the solutions of a hybrid system, using the concept of
hybrid arcs (or trajectories), as in [63, Sec. 2.2 and 2.3].

Definition A.2. [63, Def. 2.4]. A function ψ : E → Rn is a hybrid arc if E is
a compact hybrid time domain and if for each j ∈ N, the function t 7→ ψ(t, j) is
locally absolutely continuous on the interval Ij := {t : (t, j) ∈ E}.

1An evolution according to a difference inclusion x+ ∈ G(x) is also supported by the
framework of [63], but not required for the developments in this thesis.



200 Appendix A. Hybrid Dynamical Systems

Given a hybrid arc ψ, the notation domψ represents its domain, which is
a hybrid time domain. Then, we state the following definition of solutions to
hybrid systems:

Definition A.3. [63, Def. 2.6]. A hybrid arc ψ is a solution to the hybrid system
H in (A.1) if ψ(0, 0) ∈ C ∪D and the following holds:

• for all j ∈ N such that Ij := {t : (t, j) ∈ domψ} has nonempty interior,
ψ(t, j) ∈ C for all t int Ij, and ψ̇(t, j) ∈ F (ψ(t, j)) for almost all t ∈ Ij;

• for all (t, j) ∈ domψ such that (t, j + 1) ∈ domψ, ψ(t, j) ∈ D, and
ψ(t, j + 1) = G(ψ(t, j)),

with C the closure of the flow set C.

With the above definitions in place, solutions to hybrid systems can be clas-
sified based on their hybrid time domains. A solution is called maximal if
there does not exist another solution ψ̃ to H such that domψ ⊂ dom ψ̃ and
ψ(t, j) = ψ̃(t, j) for all (t, j) ∈ domψ. Solutions ψ to H are complete if domψ
is unbounded, are t-complete (i.e., complete in the ordinary-time direction) if
supt domψ =∞, and are Zeno if they are complete with supt domψ <∞.
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waarbij (zeker omtrent dat laatste) je altijd de tijd nam om de zaken goed uit
leggen. Waar ik de wetenschappelijke vraagstukken altijd met het “boerenver-
stand” probeerde op te lossen, heb je enorm geholpen met de vertaalslag naar
een solide technische analyse. Ook erg bedankt dat ik bij je terecht kon tij-
dens de bekende “dalletjes” die je als PhD’er meemaakt. Dit alles heb ik enorm
gewaardeerd. Henk, ontzettend bedankt voor het vertrouwen in mij als on-
derzoeker, en de mogelijkheid om een promotieproject binnen de Dynamics &
Control groep te mogen doen. Je input en support op zowel wetenschappelijk
als persoonlijk gebied zijn onmisbaar geweest om tot dit proefschrift te komen.
Maurice, bedankt voor je betrokkenheid en hulp bij het onderzoek, met name
bij de pittige wiskundige vraagstukken die tijdens het onderzoek aan bod zijn
gekomen.

Andrea, thanks a lot for the wonderful collaboration in the past years. It
has been an absolute joy working together, and the level of technical depth in
this thesis would not have been possible without you. Luca, thanks for the great
collaboration, and for participating in my defense committee. Also thanks for
hosting me in Toulouse. I very much enjoyed being there and working with you,
and all the nice talks we had (ranging from Lyapunov functions to Simon &
Garfunkel records).



218 Dankwoord

I would like to thank Remco Leine, Bayu Jayawardhana, and Roland Tóth
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