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Introduction

1.1 High-tech systems design
1.2 Control, computation, and

communication

1.3 Networked Control Systems
1.4 Contribution of the thesis
1.5 Structure of the thesis

1.1 High-tech systems design

The complexity of the design of mechatronic systems, such as wafersteppers,
electron microscopes, and copiers, increased rapidly over the past decade. A
major reason for this increase in complexity is the fact that more functionality
and a higher performance is desired compared to preceding products, while
the cost price should be kept as low as possible to have a competitive position
in the market. To design such high-tech systems, different disciplines, such
as mechanical, electrical, and software engineering, need to cooperate closely.
During the design process, many choices have to be made that influence the later
stages of the product design and the final product. If the consequences of these
choices are not assessed correctly, especially the effects for the other disciplines,
problems will occur later in the design process with various drawbacks such
as longer development times, higher product costs, or non-optimal products.
At present, these problems are difficult to prevent as it is hard to oversee the
consequences of such design decisions. Several reasons why this is the case are
described in [33]. Firstly, often there is a lack of a common background and
language between the different engineering disciplines, cooperating in the design
process, to properly make tradeoffs. Secondly, the project evolution is often out-
of phase for the different engineering disciplines. Thirdly, many choices are made
in an implicit way, based on experience or intuition, which often hampers a well
founded decision. Fourthly, dynamic, time depending aspects of a system are
complex to understand, especially the relation with other disciplines. Of course,
there are also many other reasons for making suboptimal design decisions in a
multi-disciplinary design environment.

A way to reduce the number of non-optimal design decisions during high-
tech systems design, is, based on the ‘Boderc philosophy’ [33], the use of models
that capture the system behavior, and a reasoning method that indicates how
and when to use these models. Two approaches can be followed to model sys-
tem behavior. Firstly, multi-disciplinary models can be used, and secondly,
mono-disciplinary models can be used that exploit information from or provide
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knowledge to other mono-disciplinary models. For both approaches examples
are given in [33]. An advantage of the first approach (multi-disciplinary model)
is the combination of aspects from the different disciplines in one model, which
allows for reasoning on the effects of a design decision on the different engineer-
ing disciplines. A disadvantage is the limited amount of information from each
discipline that can be included in the model, to avoid that the model looses
its transparency and therefore complicates the reasoning. An advantage of the
second approach (the mono-disciplinary model) is that standard modeling and
analysis tools from each discipline can be used, allowing for more details (and
thus complexity) in the models. A disadvantage is that shared knowledge be-
tween models should contain information that is useful for the models of the
other engineering disciplines. Due to the lack of a common background between
the disciplines, reasoning on useful shared knowledge that define the relation
between the mono-disciplinary models, can be complicated.

This thesis presents a model (and related analysis and synthesis tools) that
belongs to the second approach. The focus of the model, as well as the analy-
sis, is on the relation between the disciplines control engineering and real-time
software engineering, using a control engineering perspective. This work should
facilitate the decisions made during the project stages where the controllers are
designed and implemented in the software. This thesis is not the only work
in the Boderc project that considers the coupling between real-time software
engineering and control engineering. In [94], where also a control engineer-
ing perspective is used, an event-driven controller is proposed that results in
a reduction of the processor load, therefore reducing the demands from con-
trol engineering on software engineering. In [21], where a software engineering
perspective is used, a new software design method, including controller imple-
mentation, is proposed that has a deterministic and predictable timing behavior
(which is favorable from a control engineering perspective). The next section
will discuss the coupling between software and control engineering in more detail
and discuss some domain specific properties and requirements.

1.2 Control, computation, and communication

The focus of the coupling between control engineering and software engineering
is, in this thesis, on the information flows between the mechatronic system (in
control engineering denoted as plant) and the processor, on which the controller
is implemented. In particular, the timing aspects, related to delays, loss of in-
formation, and the sampling intervals in the control loop are considered. These
effects are also discussed in literature related to control, communication, and
computation, see e.g. [30; 66] and the references therein. Note that in this thesis
the size of the data transmitted, which is related to quantization effects, is not
considered.

Traditionally, the control scheme consists of a plant, that is via a direct,
hard-wired connection, coupled to the controller, see Figure 1.1. In general,
for the controller design, it is assumed that the delays in the control loop are
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Plant

Controller

Figure 1.1: Traditional control scheme

negligible or constant. This assumption is (approximately) correct as long as
the controller is implemented on a dedicated processor, i.e. it is only used for
the control computations. However, in many high-tech systems, to decrease the
cost price, the processor is used both for the control computation and for many
other software tasks, such as interrupt and error handling, resulting in the fact
that the control computation cannot start directly if the sensor data becomes
available, e.g. due to the fact that another software task needs to be finished
first. Even worse, the processor can be shared between different controllers for
different plants or parts of the plant, which makes the use of a communication
network, such as Ethernet or a CAN-bus [85], between the processor and the
different plants necessary, see Figure 1.2. From a software point of view, in
the first situation (without a communication network), latency and jitter, i.e.
the combination of constant and time-varying delays that are caused by the
computation time and the waiting times until the computation can start, occur.
They cannot be avoided, and even worse, cannot be predicted accurately [8; 21;
115]. The size of the latency and jitter is affected by various aspects that
are related to the software and its hardware, such as caches, pipelines, and
the characteristics of the software architecture. In general, the combination
of latency and jitter results in time-variations in the moment of actuation of
the controlled system. In the second situation (with a communication network),
besides the scheduling of the tasks, which induces latency and jitter because not
all controllers can be computed at the same time, the communication network
results in time-delays and also data packet loss may occur. The delays in the
network are caused by the actual time that is needed to transmit data over the
network, the encoding and decoding time of the data, and the waiting times
until the network is empty, because for most networks only one data packet can
be transmitted over the network at the same time [57; 71]. Data packet loss
occurs if data packets collide, if the nodes loose contact with the network, which
occurs for instance in wireless networks, or if wrong destination nodes are given
to the data packet. These effects of the network may lead to time-variations in
the sampling interval as well.

From a control point of view, time-delay, consisting of the combination of
both the latency and jitter and the network delays is an undesired phenomenon
that should be kept as small as possible, as it is well known [22] that these
time-delays can degrade the performance of the controlled system and can even
cause instability. For data packet loss similar observations can be made. In
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Figure 1.2: A typical NCS setup.

latency
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software control

no/constant

delay

no data loss

Figure 1.3: Schematic view of the traditional (absence of the) coupling between
real-time software and control engineering.

practice, in many motion control applications it is assumed that, firstly, the
time-delay is negligible compared to the chosen sampling frequency or it is at
least constant, secondly, loss of data does not occur, and thirdly, the sampling
interval is constant. Clearly, the occurrence of latency and jitter that are time-
varying, and the possibility of data loss make that these general assumptions are
often violated. Schematically, this lack of a common background between the
two disciplines, resulting in the absence of a coupling, is depicted in Figure 1.3.

In this thesis, we describe a first step towards incorporating effects from the
computation and implementation of the controller (which is in general part of
the real-time software) and/or the communication network in the control design
by developing analysis and design techniques that include time-varying delays,
data loss, and time-varying sampling intervals. This is a major step compared
to the traditional control techniques that are based on the general assumptions
that the time-delay is constant or even zero, the sampling interval is constant,
and data loss does not occur. Schematically, this improved situation is depicted
in Figure 1.4. Now, in the coupling between control and real-time software en-
gineering the demands on the maximum time-delay, the amount of data loss,
and the variation in the sampling interval for which stability and a certain per-
formance can be guaranteed, can be compared to the achievable latency, jitter,
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maximum
delay &
data loss
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Figure 1.4: Schematic view of the proposed coupling between real-time software
and control engineering with mutual consideration of requirements.

and the possibility of data loss in the software implementation. As depicted
in Figure 1.4, the opposite direction is possible as well. This viewpoint allows
for explicit tradeoffs by considering the consequences of the design choices in
one domain on the performance or requirements in the other domain. This al-
lows for a more integrated design process, thereby leading to products closer to
optimality.

The presence of, firstly, latency and jitter that cannot be avoided in the soft-
ware implementation of the controller, secondly, communication delays and/or,
thirdly, packet dropouts in the communication network is, from a control en-
gineering perspective, described in the part of literature that is involved with
so-called Networked Control Systems (NCSs). In general, NCSs describe control
systems with time-varying delays, time-varying sampling intervals, and packet
dropouts, or a subset of these three. The next section introduces NCSs and
gives an overview of the modeling approaches, analysis results, and design tools
that are described in the NCS literature.

1.3 Networked Control Systems

Networked Control Systems (NCSs) are systems where the control loop, in gen-
eral consisting of a continuous-time plant and a discrete-time controller, is closed
over a communication channel. A schematic representation of a NCS is depicted
in Figure 1.2. Here, different plants (or parts of plants) with sensors and actu-
ators are connected over a communication network to their controllers that are
all executed on one shared processor or on multiple processors.

Over the past decade, the interest in NCSs has increased rapidly [35; 107;
122; 133]. It is currently even considered to be one of the key research fields
for control engineering, as advocated in [72]. The advantages of the use of a
NCS are its flexible architecture [107], due to the use of distributed elements,
and a reduction of installation and maintenance costs [35]. Typical applications
are mobile sensor networks [54; 86], remote surgery [2; 65], automated highway
systems, and unmanned aerial vehicles [93; 99; 100]. As already discussed
before, the disadvantages of a NCS are caused by the unreliability and shared
use of the network, resulting in time-varying delays, packet dropouts, the use
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of multiple packets to transmit data, and variations in the sampling interval.
The nature of the time-delays (both latency and jitter), the need for multiple
packets, and the possibility of packet dropouts depend on the chosen network
protocol, or more precisely the media access control protocol component, and
the network [57; 71; 85; 113].

The CAN-protocol (e.g. used in DeviceNet) is a protocol that considers
random access with collision arbitration. It ensures that ongoing transmis-
sions are never corrupted and collisions are nondestructive (i.e. the data is not
corrupted). Therefore, packet dropouts are not likely to happen. Moreover,
time-delays are deterministic (meaning that a maximum response time can be
guaranteed), but time-varying, although the variation is limited for the nodes
with high priorities, see [57; 71; 85]. Disadvantages are the small size of data
packets, the limited physical network length, and the slow data rate. The time-
division multiplexing (TDM) protocol uses a round-robin fashion to allocate
which node can send data. The allocation is either master-slave (e.g. used in
Modbus) or token-passing (e.g. used in PROFIBUS and ControlNet). Master-
slave means that data is only sent if the master asks, therefore collisions are
avoided. For token passing, a network node, e.g. a sensor, can send data if
it has the token, otherwise it has to wait until it receives the token. An ad-
vantage of TDM is that the behavior is deterministic, resulting in computable
bounds on the variation of the delay. Moreover, packet dropouts are not likely
to happen, because data collisions are avoided. A disadvantage of TDM, with
token passing, is the inefficiency at low utilizations, due to the overhead of the
token passing. Ethernet is a random access network, also denoted as carrier
sense multiple access (CSMA). Standard Ethernet is not a complete protocol,
it is nondeterministic and collisions are destructive, which means that the data
is corrupted and the message must be retransmitted. To obtain more deter-
ministic behavior, different Ethernet solutions are available, see e.g. [71] and
the references therein. First, Hub-based Ethernet is available that considers a
CSMA/CD protocol, where CD refers to collision detection. After a collision
detection, the data is retransmitted. If this fails sixteen subsequent times, the
data is discarded, resulting in a packet dropout. Based on different schemes
of retransmission an upper bound for the delay of the successfully transmitted
packets can be computed. Note that for control implementation, retransmis-
sion of data is often not useful, especially if newer data is already available. In
that case, the try-once-discard (TOD) protocol can be used, where a packet is
dropped if the transmission fails, see e.g. [113]. Second, Switched Ethernet can
be used that is based on a CSMA/CA protocol, where CA refers to collision
avoidance. Compared to Hub-based Ethernet, intelligence is used in forwarding
packets, avoiding message collisions on the network. However, congestion at
the switches may occur, which may lead to packet dropouts. The bounds on
the variation of the delay can be computed, but the upper bound is, for a low
network load, higher than the bound obtained for Hub-based Ethernet. Finally,
Wireless Ethernet can be used that considers CSMA/CA as well. Here, packet
dropouts are more likely to happen, due to link failures, and moreover, collisions
that can still occur, [71]. The advantage of all Ethernet solutions compared to
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CAN and TDM is the use of much larger data packet sizes and larger physical
networks. In summary, all networks suffer from some variation in the delays,
while packet dropouts mainly occur in Ethernet based networks.

The variation in the sampling interval may have different reasons. Different
possible implementations, leading to time-varying sampling intervals, will be
described shortly. Firstly, the controller requests, via the network, new mea-
surement data from the sensor at certain (equidistantly spaced) time intervals.
Due to the delay in the network, the sampling interval becomes time-varying.
Secondly, the sensor obtains its measurement data at non-equidistantly spaced
sampling intervals, which may happen if a sensor is programmed to wait a fixed
amount of time after the data is sent to the controller, see [106]. Due to a
network that may be occupied, the moment of sending the data is time-varying.
Thirdly, the controller may be designed such that larger sampling intervals are
used if the network load is high and smaller sampling intervals are used if the
network load is low, see e.g. [89]. Fourthly, if event-driven controllers, as dis-
cussed in e.g. [10; 34; 94], are used, sensing and actuation is not performed
at equidistantly spaced time-intervals. Fifthly, the timer that determines the
sampling instants may show some deviation in its timing, leading to variation
in the sampling intervals.

As already mentioned in the beginning of this section, for NCSs many pa-
pers are available in the literature. Below, the relevant literature is discussed,
based on the differences in the modeling approach and the methods for stability
analysis, controller synthesis, and tracking behavior. Finally, we also indicate
what the available results for experimental validation are in the literature.

1.3.1 Modeling

An extensive literature is available on the modeling of NCSs, including the pre-
viously described effects of time-varying delays, time-varying sampling intervals,
and packet dropouts, discussing both discrete-time and continuous-time NCS
models.

One of the first discrete-time NCS models has been proposed in [31; 90].
Herein, a finite-dimensional time-varying discrete-time model for a NCS con-
figuration is proposed with a continuous-time plant, a time-driven sensor and
controller, that have the same sampling time, but a time skew between them
is allowed, and an event-driven actuator. Moreover, the delays can be larger
than the time skew between the sensor and controller, but need to be smaller
than the sampling time of the sensor and controller, resulting in sequential ar-
rivals of the measurements at the controller and the inputs at the actuator. The
most common discrete-time NCS model is explained in e.g. [4; 85; 133]. Herein,
a NCS configuration with a time-driven sensor and an event-driven controller
and actuator is considered, where the time-varying delay is upper-bounded by
the sampling interval. An extension for this standard discrete-time NCS model
that incorporates delays larger than the sampling interval, although the varia-
tion of the delays is limited by the sampling interval, is presented in [55; 123].
A discrete-time model that considers arbitrary time-varying delays is described
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in [124]. However, message rejection, being the effect that more recent control
data becomes available before the older data is implemented resulting in the
older data being discarded, is not considered. All the above mentioned mod-
els have in common that they consider a NCS with a continuous-time plant,
with a constant sampling interval (of the sensor) and a network without packet
dropouts.

In [39; 41; 42] packet dropouts, with a stochastic distribution, are modeled,
while the delays are assumed to be equal to zero. A limitation is that in these
approaches a discrete-time plant is used. A model that considers a discretization
of the continuous-time plant is presented in [133], where deterministic packet
dropouts, instead of dropouts originating from a stochastic distribution and no
delays, are used. The number of papers that combine packet dropouts and time-
varying delays is small. A first step is presented in [126], where packet dropouts
and constant delays in combination with a discrete-time plant are included in
the model. An improvement is presented in [28; 59], where packet dropouts
and delays smaller than the sampling intervals are considered, in combination
with a continuous-time plant. In [28], the packet dropouts are modeled as
an increase of the sampling interval. In [59] time-delays are assumed to take
values in a limited set of equidistantly spaced values smaller than the sampling
interval and packet dropouts are modeled as a multiple of the delays. Note
that this model is limited to delays between the sensor and the controller. A
completely different model that can deal with packet dropouts, is presented
in [36]. Here, instead of a model that is describes the states of the system
at the sampling instants, an event-based model is proposed, where the events
are defined as the sampling and actuation actions. This representation allows
to model, besides packet dropouts, delays that can be both smaller and larger
than the sampling interval and time-varying sampling intervals. Note that, the
modeling of the packet dropouts is implicit, because no actuation event occurs
if a packet is dropped. This event-based model is not the only model that
deals with time-varying sampling intervals; however, it is the only discrete-time
model that combines time-varying sampling intervals, time-varying delays and
packet dropouts. Other models that deal with time-varying sampling interval
are proposed in [92; 95; 97; 98; 131], where in [92; 95] time-varying delays
smaller than the sampling interval are included as well.

A continuous-time NCS modeling approach is given in [114] for a continuous-
time plant and controller. Here, a variation in the transmission times is included,
which refers for sampled-data systems to a variation in the sampling interval.
A similar approach is considered in [69], where stochastic sampling intervals
are allowed. An improvement for NCSs, where a discrete-time controller is
considered, uses delay-differential equations, see [75; 125; 127; 128]. Here, a
NCS with a constant sampling interval, packet dropouts, and delays that may
be larger than the sampling interval is described. A main advantage of this
delay-differential approach is the possibility to incorporate time-delays larger
than the sampling interval without increasing model complexity, as is the case
in the discrete-time modeling approach.

An impulsive differential modeling approach that considers plant dynam-



1.3. Networked Control Systems 9

ics in combination with the network protocol is considered in e.g. [80]. Here
NCSs with time-varying sampling intervals and packet dropouts are considered,
however delays are neglected. An extension to this model is the impulsive delay-
differential approach, as proposed in [73; 74; 76] that describes NCSs with vari-
able sampling intervals, time-varying delays, and packet dropouts. Analogous
to the delay-differential model, the main advantage of this modeling approach
is the possibility to incorporate time-delays larger than the sampling interval
without increasing model complexity.

Summarizing, for discrete-time NCS models, there are hardly any models
that combine the effects of time-varying delays smaller and larger than the
sampling interval, packet dropouts, and variations in the sampling interval.
The development of a model that includes these effects gives the possibility to
use the advantages of the existing analysis and design tools for discrete-time
systems to analyze NCSs including all these effects. Note that recently in [36]
such a model is proposed. However, the possibility of packet dropouts and
message rejection is only included implicitly. Therefore, a discrete-time model
that includes all these effects explicitly is still lacking. Alternative models, that
deal with the effects of time-varying sampling intervals, time-varying delays, and
packet dropouts, are based on (impulsive) delay-differential equations, see e.g.
[76]. The next section will discuss the stability analysis and controller synthesis
results that are available for both discrete-time and continuous-time models.

1.3.2 Stability analysis and controller synthesis

For the discrete-time NCS models, different approaches towards stability anal-
ysis and controller synthesis results are available in the literature. Most of
them, see e.g. [36; 38; 55; 87; 88; 92; 119; 123; 126] consider a Lyapunov-based
approach, although the method that is used to deal with the uncertainty (or
time-variation) in the delays, sampling intervals, or packet dropouts is different.
In [38; 119] a NCS with time-varying delays smaller than the constant sampling
time and no packet dropouts is considered. In [38], the analysis is based on a
Taylor series approximation of the NCS model, which leads to an uncertain sys-
tem with polytopic uncertainties. For this approximated system, linear matrix
inequalities (LMIs) are proposed for both the stability analysis and the con-
troller synthesis problem. The procedure is iterative in the sense that the order
of the Taylor series approximation is increased until -if ever- a feasible controller
is found for the approximated system. An additional LMI test is used to evalu-
ate whether the constructed controller is also stabilizing for the original plant,
i.e. including the approximation error. In [119], another Lyapunov-based con-
troller synthesis approach is proposed, where the time-delays are considered as
time-varying parametric uncertainties. The set of discrete-time system matrices
is overestimated based on the maximum singular value of the continuous-time
system matrix, resulting in a single set of LMIs. Therefore, the iterative pro-
cedure and additional LMI test of [38] are avoided, however, leading to more
conservative results compared to [38].

NCSs with delays larger than the sampling interval are considered in [55; 60;
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87; 88; 123; 124]. A stability analysis and controller synthesis approach based
on discrete-time Lyapunov-Krasovskii functionals for deterministic variations
in the delay are proposed in [55; 87; 88]. The uncertainties in the system, due
to the delays, are written as a multiplication of constant matrices and a time-
varying matrix that is Lebesque measurable. Then, standard robust stability
techniques for uncertain systems are applied. For delays that vary based on a
stochastic distribution, in [123], a stochastic Lyapunov approach is considered
and in [60; 124] an optimal controller is proposed.

Stability analysis and controller synthesis techniques for NCSs with packet
dropouts are discussed in [28; 41; 120; 126]. An approach based on a common
quadratic Lyapunov function and a convex overapproximation of the uncer-
tain discrete-time system matrices, which depend on the variation in the delays
smaller than the sampling interval, is given in [28]. In [126], a common quadratic
Lyapunov function is considered for a NCS with a discrete-time plant, packet
dropouts, and constant delays. In [120], a similar configuration is studied based
on a packet dropout dependent Lyapunov function. An optimal control ap-
proach is presented in [41], based on a stochastic approach. A necessary and
sufficient condition for stability analysis of NCSs with packet dropouts and de-
lays that take values from a finite set of delays is proposed in [59]. In general,
the analysis conditions are difficult, or even impossible, to check, due to the
number of different solutions for the switched system that need to be consid-
ered separately. Only for a small number of different delays or packet dropouts
a solution can be obtained.

For time-varying sampling intervals, the literature is limited. In [92], a com-
mon quadratic Lyapunov approach is considered in combination with a finite
gridding approach, which exists of a previously defined finite set of delays. The
proposed LMI conditions for control design are, in general, not sufficient for
arbitrary (bounded) time-variations in the delay. In [97] an optimal controller
is proposed that deals with a system with two different sampling intervals. In
[36], a Lyapunov approach is considered for an event-based model that includes
time-varying sampling intervals, time-varying delays, and packet dropouts. The
analysis and synthesis conditions are based on a similar Taylor overapproxima-
tion as in [38]. A disadvantage compared to the other Lyapunov approaches for
discrete-time models is that, due to the use of the events, the Lyapunov func-
tion needs to be decreasing at smaller time instants, because the time between
the events, which are determined by the sampling and the actuation instants, is
typically smaller than the time between two sequential sampling instants. This
may induce some conservatism compared to the models that are consider the
sampling instants only.

A completely different stability analysis approach is described in [45], where
frequency-domain stability conditions for single-input-single-output systems,
based on the small gain theorem are proposed. The related analysis is ap-
plicable to systems with both small and large delays, because the discretization
of the continuous-time plant is based on the non-delayed system. A disadvan-
tage of this approach is the fact that it is limited to systems with a strictly
proper and stable plant and a constant sampling interval. This restriction is



1.3. Networked Control Systems 11

avoided in the approach presented in [46].
For the continuous-time NCS models, the analysis and synthesis condi-

tions are mainly based on Lyapunov or Lyapunov-like functions. First, for the
continuous-time NCS model, in [113], a maximum allowable transfer interval
(MATI) is computed, based on a common quadratic Lyapunov function, which
gives the maximum amount of time between two consecutive sensor messages for
which stability can be guaranteed. An improvement is presented in [49], based
on a Lyapunov-Krasovskii functional that is more suitable for systems with
time-delays. Second, for delay-differential models, stability conditions based
on Lyapunov-Razumikhin functionals [127] and based on Lyapunov-Krasovskii
functionals [27; 75; 125; 128] are available. It is shown that, in general, the
Lyapunov-Krasovskii functionals are less conservative. Unfortunately in all
these papers, the use of the candidate Lyapunov-Krasovskii functionals results in
conservative results, because the complete quadratic Lyapunov-Krasovskii func-
tional that gives exact stability bounds is not solvable in practice, see [51; 52].
The stability analysis conditions presented in [27] and [75] consider both the
minimum value and the maximum value of the delays and packet dropouts,
while the other papers consider only the maximum value. Typical for these
approaches is that the uncertain and time-varying delays are included in the
Lyapunov function itself and are not part of the system matrices, as is the
case for the discretized NCS models, see e.g. [38; 87; 119]. Therefore the need
of uncertainty matrices and the corresponding overapproximation is avoided.
Third, for the impulsive differential equations, without delays, input-to-state
(and input-output) stability properties have been studied in [18; 80; 81; 104].
In these works, specific attention is given to the role of the network protocol in
guaranteeing stability. Finally, for the impulsive delay-differential model, suffi-
cient LMI conditions for the exponential stability of NCSs are proposed in [76],
using a Lyapunov-Krasovskii approach.

Summarizing, for stability analysis and controller synthesis, many results
are available for discrete-time NCS models, but most of the results are, due
to the models used, limited to NCSs with, firstly, time-varying delays or, sec-
ondly, packet dropouts and delays smaller than the constant sampling interval,
or, thirdly, time-varying sampling intervals. The combination of time-varying
delays (smaller and larger than the sampling interval), time-varying sampling
intervals, and packet dropouts is only handled in [36] based on an event-driven
model. The amount of literature for continuous-time NCS models is smaller.
For the (impulsive) delay-differential models, see e.g. [76], that include time-
varying sampling intervals, time-varying delays, and packet dropouts, results
are available for stability analysis and controller synthesis. A disadvantage of
these approaches is that in general, for standard and basic Lyapunov-Krasovskii
functionals, the results are rather conservative. To obtain less conservative con-
ditions, Lyapunov-Krasovskii functionals consisting of many different terms are
used to obtain a candidate Lyapunov-Krasovskii functional that describes the
exact Lyapunov-Krasovskii functional as close as possible. However, this results
in rather complex LMI conditions that need to be solved for stability analysis
or controller synthesis.
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1.3.3 Tracking

In the NCS literature, the tracking problem has received very little attention.
Recent works related to the tracking control of systems over networks are [25;
129]. In [25], an H∞-approach towards the tracking control problem of NCSs
with network delays (and constant sampling intervals) is presented. However,
the fact that the feedforward generally experiences delays is not taken into
account. In [129], the optimal tracking control problem is studied with a focus
on the effects of quantization in the feedforward.

In this thesis, the tracking problem is investigated based on input-to-state
stability conditions of the tracking error dynamics with respect to network-
induced perturbations on the ‘ideal’ feedforward. Note that input-to-state con-
ditions are proposed in [18; 80; 81; 104] for a NCS model based on impulsive
differential equations, including packet dropouts and time-varying sampling in-
tervals (no delays), as discussed above.

1.3.4 Experiments

The experimental validation of the obtained stability analysis and controller
synthesis results has received very little attention to this date. A first attempt
towards validation is co-simulation [32; 133] for NCSs, where two computers are
connected over a communication network. Herein, one computer is used as a
controller, while the other is used for simulation of the plant model.

Experimental validation in the field of NCSs is described in [29; 50; 62;
89; 92]. In [89], validation of an optimal controller, designed for the zero-
delay situation, in combination with a sampling-rate adaptation algorithm is
described. It is shown that the system is stabilized for constant delays that
are either zero or equal to one sampling interval. It is worth noting that, in
[89], periodic time-delays are not considered, while this periodicity, according
to the examples in [16; 118], can lead to instability. In [92], experimental
results are presented that consider variations in the sampling interval, with,
however, negligible time-delays. In [50] experiments for a NCS with sporadic
packet dropouts and no delays are performed. Other examples of experimentally
validated networked control approaches deal with model predictive controllers,
see e.g. [29; 62], where a NCS with time-varying delays is considered, and [105],
where besides the delays, packet dropouts are allowed.

Other experimental work deals with measurements of the time-delays of dif-
ferent networks under different network loads, see e.g. [57; 71; 85]. In [89], simi-
lar measurements are performed to determine the occurrence of packet dropouts.

Summarizing, the literature on validation of stability analysis results is lim-
ited to some specific examples. Especially, validation for NCSs with time-
varying delays is lacking, except for the model predictive controller designs.
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1.4 Contribution of the thesis

In this thesis, a discrete-time NCS model, for a system with a continuous-time
plant and a discrete-time controller, is derived. The model includes time-varying
delays larger than the sampling interval, packet dropouts, and time-varying sam-
pling intervals. It is an extension to the existing discrete-time approaches that
are limited to, firstly, delays smaller than the constant sampling interval, with
or without packet dropouts or, secondly, time-varying delays larger than the
constant sampling interval without packet dropouts, or, thirdly, time-varying
sampling intervals with delays that are always smaller than the sampling inter-
val. Compared to [59], where it is assumed that the variation in the delays is
limited to τk ∈ {0, 0.1h, 0.2h, . . . , h}, the model proposed in this thesis assumes
that the delays take values from a bounded set, containing an infinite number
of values (i.e. τk ∈ [τmin, τmax]). Compared to [124], the effect of message re-
jection will be included in the NCS model proposed in this thesis. Message
rejection means that data is dropped if it occurs out of order at its destination.
In practice, this drop of data is desired to avoid implementation of old data
on the system, while more recent data is already available, and it is achieved
by means of time-stamping [85]. The model proposed in this thesis is an al-
ternative to the event-based model in [36]. A difference is that in our model
the time-instants on which a control input is implemented are defined explicitly
and that message rejection and packet dropouts are included explicitly as well.
The model proposed in this thesis is an alternative to the (impulsive) delay-
differential models proposed in [74; 76; 125; 127; 128]. A difference between
the approaches in [74; 76; 125; 127; 128] and the discrete-time NCS model in
this thesis, is that here message rejection is included explicitly, while in the
(impulsive) delay-differential models it is included implicitly, by demanding a
sequential sequence of the samples.

Based on the NCS model, sufficient conditions for stability analysis and con-
troller synthesis of a state feedback controller and an extended state feedback
controller [38] are proposed. These conditions are given in terms of linear ma-
trix inequalities (LMIs) and are derived based on either a common quadratic
Lyapunov approach or a Lyapunov-Krasovskii approach for discrete-time sys-
tems. To deal with the variation in the delays, sampling intervals, and packet
dropouts, the discrete-time NCS model is rewritten using a (real) Jordan form
of the continuous-time system matrices. This leads to a combination of un-
certainty functions that capture the variations in the sampling interval, delays,
and packet dropouts. For analysis purposes, based on these uncertainty func-
tions, an overapproximation of the discrete-time model is used that contains the
bounds of the sampling intervals, delays, and packet dropouts explicitly (which
is not the case in [55; 87; 88]). Compared to [38], the iterative procedure and
the large number of LMIs that are needed for an accurate Taylor approximation
are avoided. Compared to [119], a different approach is used, because the re-
sults are based on the Jordan form and in [119] a singular value decomposition
is used. The singular value decomposition yields comparable or more conser-
vative results than the use of the Jordan form, due to the difference between
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the singular values and the eigenvalues. Compared to the large delay results
of [124], a reduction of the number of uncertain parameters in the stability
analysis and controller synthesis is achieved, which is beneficial for reduction
of conservatism. Additionally, in this thesis, the controller synthesis results are
used to obtain a performance bound on the transient behavior of the NCS.

To this date, the work on NCSs has largely focussed on modeling, stability,
and stabilization problems. Tracking control, however, poses additional chal-
lenges, some of which are specifically due to the communication network. In
tracking control, typical high-performance designs include feedforward control
thereby inducing the desired solution in the controlled system, whereas feedback
assures convergence to the desired solution and favorable robustness and distur-
bance attenuation properties. Due to the delays, packet dropouts, and variation
in sampling intervals, the feedforward control signal generally does not arrive
at the actuator at the intended time, leading to a (network-induced) feedfor-
ward error and reduced tracking performance. Consequently, only approximate
tracking can be achieved. Therefore, the input-to-state stability (ISS) of NCSs
with respect to the feedforward error is investigated. Based on the ISS property,
an asymptotic upper bound for the tracking error depending on the properties
of the plant, the controller, and the network is studied.

Theoretical studies of stability of NCSs with constant and time-varying de-
lays smaller and larger than the sampling interval have received much attention
in the NCS literature. However, the number of studies on experimental valida-
tion is limited to certain specific controllers or measurements on the variation
and the size of the delays and the number of subsequent packet dropouts. In
this thesis, we present experimental results for a continuous-time plant and a
discrete-time controller, with time-delays in the control loop. These delays are
either constant or time-varying. For constant delays, the existing NCS stability
results provide a stability region in the controller space (i.e. the region describ-
ing all stabilizing controllers for given constant delays, see e.g. [133]). However,
validation of such a region is lacking. Therefore, such a stability region is vali-
dated on a typical motion-control set-up, i.e. a single inertia system. Moreover,
the effect of periodic delays is experimentally studied on the same set-up. The
obtained stabilizing controllers, based on the proposed stability analysis condi-
tions for arbitrary time-varying delays, are validated on this single inertia system
and also on a motor-load system, which is another, slightly more complicated,
motion control example. These experimental results illustrate the value of the
theoretical results in practice.

1.5 Structure of the thesis

The outline of the thesis is as follows. Chapter 2 gives some basic preliminar-
ies on stability and input-to-state stability of continuous-time and (switched)
discrete-time systems that will be used in Chapters 4, 5 and 6.

Chapter 3 discusses the modeling of NCSs. For the sake of simplicity, first,
the NCS model for time-varying delays smaller than the constant sampling in-
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terval, without packet dropouts, as available in the NCS literature, is given.
Both a continuous-time model and a discrete-time model, based on an exact
discretization of the continuous-time model, are discussed. Next, the exten-
sions needed for time-varying delays larger than the sampling interval, packet
dropouts, and time-varying sampling intervals are presented. Additionally, a
discussion on the differences and the commonalities between the presented NCS
models is given.

In Chapter 4, the stability analysis techniques for the NCS models derived in
Chapter 3 are discussed. Stability analysis conditions for the discrete-time NCS
model are proposed, based on two different controllers, i.e. a state feedback and
an extended state feedback controller that includes, next to the state variable,
also part of the control input history. The conditions depend on two different
candidate Lyapunov functions, i.e. a common quadratic Lyapunov function and
a Lyapunov-Krasovskii functional. Based on the obtained stability conditions
for the discrete-time NCS model, the stability of the continuous-time plant of
the NCS is analyzed. Illustrative examples are presented that give a comparison
between the different stability conditions in terms of the candidate Lyapunov
functions and the control law.

In Chapter 5, constructive LMI conditions for the controller synthesis for
the NCS models are proposed based on the different control laws and candidate
Lyapunov functions. Moreover, a performance measure in terms of the transient
decay rate is derived in each case. Illustrative examples are given that show
the differences between the three Lyapunov-based approaches and the different
control laws.

In Chapter 6, a solution to the approximate tracking problem for NCSs
is proposed. The effects of the time-varying delays, sampling intervals, and
packet dropouts on the feedforward signal are investigated in detail, resulting
in a definition of the feedforward error, which can be seen as a perturbation on
the tracking error dynamics. Sufficient conditions for input-to-state stability of
the tracking error dynamics with respect to the feedforward error are proposed,
resulting in bounds on the steady-state tracking error. An illustrative example
is given that shows the applicability of the presented approach, compared to the
results that are obtained with a delay impulsive differential model (see [74; 111]).

In Chapter 7, experimental results performed on two typical motion control
set-ups are presented. A single inertia set-up, which is a second-order system,
and a motor-load set-up, which is a fourth-order system, are considered. The
measurements on both set-ups are used to validate the stability conditions for
NCSs with constant, periodic, and arbitrary, though bounded, time-varying
delays smaller and larger than the sampling interval. Compared to Chapter 4,
the stability conditions are adapted such that an output-feedback controller in
combination with a velocity-estimator is considered, instead of a state-feedback
controller.

Chapter 8 states the conclusions and recommendations for future research.
The appendices give the proofs of the proposed theorems and lemmas, which

are not included in the main text for readability, and an explanation of the use
of the Jordan form for Networked Control Systems.
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1.5.1 Reading suggestions

For the readers less familiar with NCSs, we suggest to focus on the modeling and
control aspects of NCSs with constant sampling intervals, time-delays smaller
than this sampling interval, and no packet dropouts. In this way, the reader
will encounter the basic modeling formalism used and the strategies towards
stability analysis and control design, while avoiding the additional complexity
involved when studying large delays, packet dropouts, and time-varying sam-
pling intervals.

Therefore, we suggest to focus on the following sections at first reading. The
NCS model for small delays is presented in Section 3.1. Then, Section 4.1 mo-
tivates the importance of the investigation of systems with time-varying delays
smaller than the sampling interval and Section 4.2 explains the use of the Jordan
form to rewrite the NCS model in a form that is applicable for stability analysis.
Section 4.3 presents the stability analysis conditions. Illustrative examples are
given in Section 4.5 (note that in this section also examples involving delays
larger than the sampling interval, packet dropouts, and time-varying sampling
intervals are treated). The controller synthesis conditions for a NCS with de-
lays smaller than the sampling interval are discussed in Section 5.1. Illustrative
examples are presented in Section 5.3, however again partly merged with ex-
amples on the case with delays larger than the sampling interval. The tracking
control problem is discussed in Sections 6.1 and 6.3. An illustrative example
is presented in Section 6.4. Finally, Chapter 7 can be read to get an idea on
the applicability of the proposed stability analysis conditions. However, if one is
only interested in the measurement results, Sections 7.1 and 7.2 can be skipped,
especially because these sections discuss the generic model, including large de-
lays. Note that Chapter 2 gives a general overview on stability properties that
are exploited in Chapters 4, 5, and 6.
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Preliminaries

2.1 General mathematical notions
2.2 Stability notions for

continuous-time systems

2.3 Stability of discrete-time
systems

2.4 Notation

This thesis deals with networked control systems that consist of a continuous-
time linear plant and a discrete-time controller. Due to the connection of the
plant and controller over a network, time-varying delays, time-varying sampling
intervals, and packet dropouts occur that need to be considered in the model.
To determine whether or not the complete controlled system behaves properly,
continuous-time notions of Lyapunov stability are needed. Section 2.2 presents
these basic stability notions, including the notion of input-to-state stability,
which is a valuable stability notion for systems with inputs and will be exploited
in Chapter 6 in the scope of the tracking problem. As the NCS model, proposed
in Chapter 3, is based on a discretization of the continuous-time plant also
discrete-time notions of Lyapunov stability and input-to-state stability are of
importance. These concepts will be introduced in Section 2.3. The discrete-
time NCS model that we will use in this thesis belongs, due to the variation
of the delays, to the class of switched discrete-time systems. Therefore, the
stability of switched discrete-time systems is discussed in Section 2.3.2. Before
the different stability notions are presented for the different model structures,
Section 2.1 provides basic definitions that are needed in the sequel.

2.1 General mathematical notions

Before the stability and input-to-state stability (ISS) conditions are presented,
some typical function classes are introduced.

Definition 2.1.1 [48] A continuous function α : [0, a) → [0,+∞) is said to
belong to class K if it is strictly increasing and α(0) = 0. It is said to belong to
class K∞ if a = +∞ and a(r) → +∞ as r → +∞.

Definition 2.1.2 [48] A continuous function β : [0, a) × [0,+∞) → [0,+∞) is
said to belong to class KL if, for each fixed s, the mapping β(r, s) belongs to
class K with respect to r and, for each fixed r, the mapping β(r, s) is decreasing
with respect to s and β(r, s) → 0 as s→ +∞.
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In this thesis, the set of all non-negative integers is given by N and the set
of all non-negative real values is given by R+.

2.2 Stability notions for continuous-time sys-

tems

This section discusses the stability of continuous-time dynamic systems. Con-
sider the non-autonomous continuous-time system

ẋ = f(x, t), (2.1)

with x ∈ R
n the state, t ∈ R and f(x, t) is locally Lipschitz in x and piecewise

continuous in t. Suppose that x = 0 is an equilibrium point of (2.1), i.e.
f(0, t) = 0 for all t ∈ R.

Definition 2.2.1 [48] The equilibrium point x = 0 of (2.1) is

• stable if, for each ε > 0 and all t0 ∈ R+, there is a δ = δ(ε, t0) > 0 such
that

|x(t0)| < δ ⇒ |x(t)| < ε, ∀t ≥ t0. (2.2)

• uniformly stable if, for each ε > 0, there is δ = δ(ε) > 0 independent of
t0, such that for all t0 ∈ R+ (2.2) is satisfied.

• unstable if it is not stable.

• asymptotically stable if it is stable, for all t0 ∈ R+ and there is a positive
constant c = c(t0) such that x(t) → 0 as t→ ∞, for all |x(t0)| < c.

• uniformly asymptotically stable if it is uniformly stable and there is a
positive constant c, independent of t0, such that for all t0 ∈ R+ and for
all |x(t0)| < c, x(t) → 0 as t→ ∞, uniformly in t0; that is, for each η > 0,
there is a T = T (η) > 0 such that for all t0 ∈ R+

|x(t)| < η, ∀t ≥ t0 + T (η), ∀|x(t0)| < c.

• globally uniformly asymptotically stable if it is uniformly stable, δ(ε) can
be chosen to satisfy limε→∞ δ(ε) = ∞, and, for each pair of positive
numbers η and c, there is a T = T (η, c) > 0 such that

|x(t)| < η, ∀t ≥ t0 + T (η, c), ∀|x(t0)| < c.

Note that these definitions describe stability in the sense of Lyapunov. The
following lemma give some equivalent definitions, based on comparison functions
(class K and class KL functions).
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Lemma 2.2.2 [48] The equilibrium point x = 0 of (2.1) is

• uniformly stable if and only if there exist a class K function α and a
positive constant c, independent of t0, such that for all x(t0), with |x(t0)| <
c and for all t0 ∈ R+

|x(t)| ≤ α(|x(t0)|), ∀t ≥ t0.

• uniformly asymptotically stable if and only if there exist a class KL func-
tion β and a positive constant c independent of t0, such that for all x(t0),
with |x(t0)| < c and for all t0 ∈ R+

|x(t)| ≤ β(|x(t0)|, t− t0), ∀t ≥ t0, ∀|x(t0)| < c. (2.3)

• globally uniformly asymptotically stable if and only if (2.3) is satisfied for
any initial state x(t0).

Definition 2.2.3 The equilibrium point x = 0 of (2.1) is exponentially stable if
there exist positive constants c, d, and λ such that for all x(t0), with |x(t0)| < c

|x(t)| ≤ d|x(t0)|e−λ(t−t0), (2.4)

and globally exponentially stable if (2.4) is satisfied for any initial state x(t0).

2.2.1 Input-to-state stability

Consider the system
ẋ = f(x, t, u), (2.5)

where f : R
n × [0,∞) × R

m → R
n is piecewise continuous in t and locally

Lipschitz in x and u. The input u(t) is a piecewise continuous, bounded function
of t for all t ≥ 0.

The definitions for ISS are obtained from [48] and the work presented in
[103].

Definition 2.2.4 [48] The system (2.5) is said to be input-to-state stable if
there exist a class KL function β and a class K functions γ such that for any
initial state x(t0) and any bounded input u(t), the solution x(t) exists for all
t ≥ t0 and satisfies:

|x(t)| ≤ β(|x(t0)|, t− t0) + γ

(

sup
t0≤s≤t

|u(s)|
)

. (2.6)

This guarantees that for bounded inputs u(t) the state x(t) is bounded. The
following Lyapunov-like theorem gives a sufficient condition for ISS.
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Definition 2.2.5 [48] Let V : R
n×[0,∞) → R

n be a continuously differentiable
function such that

α1(|x|) ≤ V (x, t) ≤ α2(|x|), (2.7)

∂V

∂t
+
∂V

∂x
f(x, t, u) ≤ −W3(x), ∀ |x| ≥ ρ(|u|) > 0, (2.8)

for all (x, t, u) ∈ R
n × [0,∞) × R

m, where α1, α2 are class K∞ functions, ρ
is a class K function, and W3 is a continuous positive definite function on R

n.
Then, the system (2.5) is input-to-state stable with γ = α−1 ◦ α2 ◦ ρ.

2.3 Stability of discrete-time systems

Consider the nonlinear discrete-time system

xk+1 = f(xk, k), (2.9)

with xk ∈ R
n the state, k ∈ N the sampling instant and f : R

n × N → R
n a

possibly discontinuous function. Suppose that x = 0 is a fixed point of (2.9),
i.e. f(0, k) = 0, ∀k ∈ N. Analogous to the continuous-time case, stability in the
sense of Lyapunov can be considered. The definitions are based on [23; 44] and
[70].

Definition 2.3.1 The fixed point x = 0 of (2.9) is

• stable if, for each ε > 0 and all k0 ∈ N, there is a δ = δ(ε, k0) > 0 such
that

|xk0 | < δ ⇒ |xk| < ε, ∀k ≥ k0. (2.10)

• uniformly stable if, for any ε > 0, there is a δ = δ(ε) > 0, independent of
k0, such that for all k0 ∈ N (2.10) is satisfied.

• unstable if it is not stable.

• asymptotically stable if it is stable for all k0 ∈ N and there is a positive
constant c = c(k0) such that xk → 0 as k → ∞, for all |xk0 | < c(k0).

• uniformly asymptotically stable if it is uniformly stable and there is a
positive constant c, independent of k0, such that for each η > 0, there is
a T = T (η) > 0 such that for all k0 ∈ N

|xk| < η, ∀k ≥ k0 + T (η), ∀|xk0 | < c. (2.11)

• globally uniformly asymptotically stable if it is uniformly stable, δ(ε) can
be chosen to satisfy limε→∞ δ(ε) = ∞, and, for each pair of positive
numbers η and c, there is a T = T (η, c) > 0 such that

|xk| < η, ∀k ≥ k0 + T (η, c), ∀|xk0 | < c.
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Definition 2.3.2 The fixed point x = 0 of (2.9) is exponentially stable if there
exist positive constants θ > 0, m ∈ [0, 1), and c > 0, such that for all x(k0) with
|x(k0)| < c

|xk| ≤ θ|x(k0)|mk−k0 , ∀k ≥ k0, k0 ∈ N, (2.12)

and globally exponentially stable if (2.12) holds for any x(k0) and k0 ∈ N.

To prove stability in the sense of Lyapunov of a fixed point of (2.9), a
difference function based on the Lyapunov function V is used, defined as:

∆V (x, k) = V (xk+1, k + 1) − V (xk, k).

The following stability conditions, based on Lyapunov functions are derived
from [23; 44]. Let us start with some definitions on the function V (x, k) and its
forward difference ∆V (x, k).

Definition 2.3.3 If there exists a function V : R
n × N → [0,∞) that is con-

tinuous and satisfies V (0, k) = 0 for all k and

(i) there exists a scalar function w1 ∈ K, such that for all k and all x 6= 0:
V (x, k) ≥ w1(|x|);

(ii) the forward difference ∆V (x, k) satisfies for all k ∈ N and all x 6= 0
∆V (x, k) = V (f(x, k), k + 1) − V (xk, k) ≤ 0;

(iii) there exists a scalar function w3 ∈ K, such that the forward difference
∆V (x, k) satisfies for all k ∈ N and for all x 6= 0
∆V (x, k) = V (f(x, k), k + 1) − V (xk, k) ≤ −w3(|x|) < 0;

(iv) there exists a function w2 ∈ K, such that for all k ∈ N and all x 6= 0,
V (x, k) ≤ w2(|x|);

(v) w1(|x) → ∞ when |x| → ∞, i.e. the function w1(|x|) in (i) is of class K∞,
instead of w1(|x|) ∈ K.

Based on these definitions, the following stability conditions hold [44]. The
origin of system (2.9) is

1. stable, if (i) and (ii) are satisfied;

2. uniformly stable, if (i), (ii), and (iv) are satisfied;

3. asymptotically stable, if (i) and (iii) are satisfied;

4. asymptotically stable, if (i) and (iii) are satisfied;

5. uniformly asymptotically stable, if (i), (iii), and (iv) are satisfied;

6. globally asymptotically stable, if (i), (iii), and (v) are satisfied;

7. globally uniformly asymptotically stable, if (i), (iii), (iv), and (v) are
satisfied.



22 Preliminaries

For global exponential stability of the origin of system (2.9), consider V (0, k) =
0, condition (i), (iv), and (v) in Definition 2.3.3, and

∆V (xk, k) = V (xk+1, k + 1) − V (xk, k) < −γV (xk, k), (2.13)

with 0 < γ < 1. In [53] and [70] it is proven that this relation for ∆V provides
global exponential stability. To obtain the ‘exponential’ decay rate, analogous
to mk−k0 in Definition 2.3.2, (2.13) can be rewritten as:

V (xk+1, k) ≤ (1 − γ)V (xk, k) ⇒ V (xk, k) ≤ (1 − γ)k−k0V (x0, k). (2.14)

In [70], based on (2.14), it is shown that an exponential decay rate of the form
de−λ(k−k0)|x(k0)|, analogous to the continuous-time case in Definition 2.2.3,
can be retrieved if the Lyapunov condition (2.13) is satisfied. In this thesis,
we consider the decay rate (1 − γ)k−k0 from (2.14), if (2.13) is satisfied, as a
measure of the rate of convergence of the exponential stability.

2.3.1 Input-to-state stability

To derive the discrete-time equivalent for input-to-state stability, consider the
discrete-time autonomous system:

x(k + 1) = f(xk, k, uk), (2.15)

with the state xk ∈ R
n and the input uk ∈ R

m, and for each time instant k ∈ N.
The function f : R

n × R
m × N → R

n is assumed to be continuous and satisfies
f(0, k0, 0) = 0. For the sake of brevity, in what follows it is assumed that
k0 = 0. Moreover, the inputs u are functions u : N → R

m. The set of all these
functions with the supremum norm satisfying ‖u‖ = sup{|u(k)| : k ∈ N} < ∞
is denoted by lm∞, where | · | denotes the Euclidean norm. For each x0 ∈ R

n and
each input u, the trajectory of the system (2.15) is denoted by x(x0, k, u), with
x0 the initial state and u the input. Clearly, this trajectory is uniquely defined
on N, and for each input u and k ∈ N, xk(x0, u, k) = x(x0, u, k) continuously
depends on x0.

Definition 2.3.4 [43] System (2.15) is input-to-state stable (ISS) if there exists
a class KL-function β : [0,∞) × [0,+∞) → [0,+∞) and a class K-function γ
such that, for each input u ∈ lm∞ and each x0 ∈ R

n, it holds that for each
k ≥ k0 := 0:

|x(x0, k, u)| ≤ β(|x0|, k) + γ(‖u[k−1]‖), (2.16)

where k ≥ 1 and, for each l ≥ 0, u[l] denotes the truncation of u at l; i.e.
u[l](j) = u(j) if j ≤ l, and u[l](j) = 0 if j > l.

Definition 2.3.5 [43] A continuous function V : R
n × N → R

n is called an
ISS-Lyapunov function for system (2.15) if for all x ∈ R

n

γ1(|x|) ≤ V (x) ≤ γ2(|x|), (2.17)
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holds for some γ1, γ2 ∈ K∞, and for all x ∈ R
n and for all u ∈ R

m

V (f(x, k, u)) − V (x) ≤ −γ3(|x|) + σ(|u|), (2.18)

for some γ3 ∈ K∞, and σ ∈ K.

The extension for non-autonomous discrete-time systems does not change the
proof for ISS of discrete-time systems that was used in [43].

Proposition 2.3.6 [43] If system (2.15) admits an ISS-Lyapunov function,
then it is ISS.

2.3.2 Stability of switched linear systems

As obtained in the previous paragraph, stability can be proven based on Lya-
punov functions. Conditions that guarantee global asymptotic stability based
on common quadratic Lyapunov functions will be discussed below. Consider
the linear time-invariant discrete-time system:

xk+1 = Axk. (2.19)

Stability can be proven based on the candidate Lyapunov function V = xT
k Pxk.

If there exists a matrix P that satisfies the following LMI conditions:

P = PT > 0, ATPA− P < 0,

then (2.19) is globally asymptotically stable, see e.g. [6]. Note that ∆V (xk) =
xT

k+1Pxk+1 − xT
k Pxk = xT

k (ATPA − P )xk < 0 is a necessary and sufficient
condition for asymptotic stability for (2.19). Moreover, due to the fact that
(2.19) is time-invariant, uniform stability is obviously guaranteed. Due to the
linearity of the system, global stability is also guaranteed automatically.

To study the stability of time-varying discrete-time systems, we first present
results for one of the simplest examples. Consider the following system that
consists of a finite set of linear time-invariant systems:

xk+1 = Aixk. (2.20)

with Ai ∈ R
n×n and i ∈ {1, 2, . . . , q}. Note that there exists a finite number

of matrices Ai between which system (2.20) switches, resulting in a switched
linear discrete-time system. A sufficient condition for asymptotic stability of
x = 0, based on a common quadratic Lyapunov function candidate V = xT

k Pxk

is given by:

P = PT > 0,

AT
i PAi − P < 0, i ∈ {1, 2, . . . , q},

(2.21)

see [20; 47; 82]. Once this system is asymptotically stable, it is also globally
asymptotically stable.
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In this thesis, we are also interested in systems of the form:

xk+1 = Ai(k)xk, x ∈ R
n, (2.22)

in which for all k ∈ N Ai(k) ∈ A, which is some infinite set of matrices. In
particular, we are interested in the case where A is the convex hull of a finite
number of matrices A1, . . . , Aq:

A := co {A1, . . . , Aq} =

{

q
∑

i=1

αiAi : αi ≥ 0,

q
∑

i=1

αi = 1

}

,

with A1, . . . , Aq known and constant matrices. The system (2.22) is globally
asymptotically stable if the conditions in (2.21) are satisfied for each matrix
A1, . . . , Aq, see e.g. [47; 82].

2.4 Notation

As mentioned above, the set N contains all non-negative integers and the set R

all real values. The function ⌊f⌋ denotes the floor function of f , i.e. the largest
integer smaller than or equal to f . The function ⌈f⌉ denotes the ceil function
of f , i.e. the smallest integer larger than or equal to f . dim (A) denotes the

dimension of the matrix A and diag(1, 2) denotes the diagonal matrix

(

1 0
0 2

)

.

⋆ is used to denote the symmetric part of a matrix, i.e.

(

A B
BT C

)

=

(

A B
⋆ C

)

.

Unless denoted else, ‖B‖ denotes the induced matrix norm of the matrix B and
|x| denotes the norm of the vector x.
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Modeling of Networked Control

Systems1

3.1 Small delays
3.2 Large delays
3.3 Large delays and packet

dropouts

3.4 Time-varying sampling
intervals

3.5 Discussion

This chapter introduces a discrete-time model for Networked Control Sys-
tems, based on an exact discretization of the underlying continuous-time model
of the controlled plant. The communication network can induce effects such as
network delays, time-varying sampling intervals, and information loss (packet
dropout). Different modeling cases, considering delays smaller or larger than
the sampling interval, time-varying sampling intervals, and packet dropouts are
distinguished. The time-variation in the delays is due to the network effects,
such as waiting time until the network is empty, transmission time, which is the
time that the network needs to transmit the data, and pre- and postprocessing
times, which are the times that are needed to encode and decode the data, see
e.g. [57; 71]. Packet dropouts can occur due to different reasons, see e.g. [35; 71].
Firstly, failures in the network links may occur, which is more likely to happen
in wireless networks than in wired networks. Secondly, buffer overflows due to
congestion happen for switched Ethernet, resulting in loss of data. Thirdly, if
for a packet too many retransmissions are needed, because of packet collisions
during the transmission, the packet may be discarded. This might happen for
standard Ethernet-based networks if the network load is high. In CAN-based
networks, packet dropouts are not likely to happen. Time-variation in the sam-
pling interval occurs if, e.g. instead of a clock on the measurement system, the
controller requests for sensor information at several previously determined, fixed
moments in time. This request is sent over the network to the sensor, which
measures the data at the moment that the request is received.

This chapter describes a NCS model that incorporates all these network
effects, including variation in the sampling interval. This model will be built up
in steps. To develop this model, it is assumed that the NCS contains a single
sensor and a single actuator. First, in Section 3.1, a constant sampling interval
is assumed to describe a standard discrete-time NCS model, as used in e.g. [133],
that includes time-varying delays smaller than this constant sampling interval.

1This chapter is partially based on [14] and [110].
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clock

sensor

controller

plantZOH

τscτca

uk u∗(t) yk

rk

Figure 3.1: Schematic overview of the networked control system.

This restricted case is considered to explain the effects of time-varying delays
and the use of a continuous-time plant and a discrete-time controller. Second,
in Section 3.2, the discrete-time model for small delays is extended such that
it includes time-varying delays that can be larger than the constant sampling
interval. In this model it is assumed that always the most recent data is used in
the control computation and that the most recent data is used for actuation of
the system. This assumption is preferable and useful for most systems, because
implementing older data results in a decreased performance in general. Based
on this assumption, message rejection is included in the model, which means
that if data does not arrive in the correct order, the older data is rejected. Third,
in Section 3.3, the model is extended such that packet dropouts, resulting in
loss of data are included. Finally, the discrete-time NCS model is extended
in Section 3.4 to incorporate the case of time-varying sampling intervals. This
chapter ends with a discussion on the similarities between the presented models
in Section 3.5.

3.1 Small delays

In this section, the discrete-time description of a NCS, as presented in [85] and
[133], is adopted. The NCS is schematically depicted in Figure 3.1. It consists
of a continuous-time plant (modeled according to ẋ(t) = Ax(t) +Bu(t)) and a
discrete-time controller that are connected over a communication network that
induces network delays (τsc and τca). The output measurements (y(t)) are
sampled with a constant sampling interval h > 0, based on a clock, resulting in
the sampling time instants sk+1 := sk + h, for all k ∈ N and s0 = 0. The zero-
order-hold (ZOH) function is applied to transform the discrete-time control
input uk := u(sk) to a continuous-time control input u∗(t) that reflects the
actuation of the plant. The reference signal rk := r(sk) is known and obtained
based on the same time instant sk as the measurement data yk := y(sk), by
means of time-stamping of the measurement data. For stability analysis, it is
assumed that the reference signal rk is equal to zero.

In the model, both the computation time (τc), needed to evaluate the con-
troller, and the network-induced delays, i.e. the sensor-to-controller delay (τsc)
and the controller-to-actuator delay (τca), are taken into account. Under the
assumption that the sensor acts in a time-driven fashion (i.e. sampling occurs
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sk−1 sk sk+1 sk+2

sensor

controller

actuator

τsc
k

τc
k
τca
k

τk

Figure 3.2: Timing diagram of a NCS with a time-driven sensor and an event-
driven controller and actuator and τk ∈ [0, h).

at the times sk = kh), that the controller and actuator act in an event-driven
fashion (i.e. responding instantaneously to newly arrived data), and that the
controller is static and time-invariant, all three delays can be captured by a
single delay τk := τsc

k + τc
k + τca

k , see [85], [133]. A timing diagram of a NCS
with time-delays τk smaller than the constant sampling interval, satisfying these
assumptions, is given in Figure 3.2. Based on these assumptions, the continuous-
time model of the plant of the NCS is given by:

ẋ(t) = Ax(t) +Bu∗(t),
y(t) = Cx(t)
u∗(t) = uk, for t ∈ [sk + τk, sk+1 + τk+1)

(3.1)

with A ∈ R
n×n, B ∈ R

n×m, and C ∈ R
r×n, the system matrices, u∗(t) ∈ R

m the
continuous-time control input, x(t) ∈ R

n the state at time t ∈ R, y(t) ∈ R
r the

output, sk the sampling instants with sk := kh, k ∈ N, uk := u(sk) ∈ R
m the

discrete-time control input based on the measurement data at (sensor) sampling
instant sk, and τk the time-varying delay. For the initial time t0 = 0, the initial
condition of (3.1) is given by x0 = x(0), u∗(t) for t ∈ [0, τ0), and possibly
additional initial states used in the discrete-time controller. The use of such
additional states will become clear in Chapters 4 and 5.

To model the variation in the delay two approaches can be considered.
Firstly, a stochastic approach, as e.g. used in [85; 124; 130], and secondly, an
approach based on bounded delays, as e.g. used in [38; 76; 87] can be considered.
Based on measurements that are performed on several communication networks,
such as Ethernet, CAN, and ProfiBus as presented in [57; 71] and [85] both de-
lay modeling approaches are relevant. Based on the chosen network, its network
protocol (e.g. CAN or Ethernet), and the network load, different stochastic dis-
tributions of the delay are possible, which can be determined (approximately)
by performing suitable measurements. Alternatively, based on these measure-
ments it is often possible to determine a minimum and maximum bound on the
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delays, which can be used to model time-varying delays, but without consider-
ing a specific distribution of the variations in the delay. Here, we consider the
latter approach and assume bounded time-varying delays τk ∈ [τmin, τmax]. In
this section, we limit ourselves to 0 ≤ τmin ≤ τmax < h, representing the small
delay case. In the following sections, the upper bound τmax can be larger than
h to study delays larger than the sampling interval.

The NCS model (3.1) including the assumptions on the sampling interval
and the delays can be captured in a discrete-time NCS representation, based on
an exact discretization of (3.1) at the sampling instant sk [4]:

xk+1 = eAhxk +
∫ h−τk

0 eAsdsBuk +
∫ h

h−τk
eAsdsBuk−1

yk = Cxk,
(3.2)

with xk := x(sk) the discrete-time state at the kth sampling instant. The
corresponding discrete-time state-space notation of the NCS model (3.2) for
small delays is given by:

ξk+1 = Ã(τk)ξk + B̃(τk)uk

yk = C̃ξk,
(3.3)

with Ã(τk) =

(

eAh
∫ h

h−τk
eAsdsB

0m,n 0m,m

)

, B̃(τk) =

(
∫ h−τk

0
eAsdsB
Im

)

,

C̃ =
(

C 0r×m

)

, ξk =
(

xT
k uT

k−1

)T
, and τk ∈ [τmin, τmax] ∀k ∈ N, with τmax <

h. Note that 0i,j denotes a matrix with zeros of dimension i× j and Im is the
identity matrix of dimension m×m.

3.2 Large delays

In this section, the NCS model for small delays (3.3) will be extended to in-
corporate the case of large delays, i.e. delays larger than the sampling interval.
To be relevant in practical situations, this model must include the effects of,
firstly, a varying number of active control inputs during one sampling inter-
val and, secondly, message rejection, as will be shown in this section. As a
first step, we consider the exact discretization of (3.1) for a time-varying delay
τk ∈ [τmin, τmax] ∀k, with [τmin, τmax] ⊆ [(d− 1)h, dh), for some constant integer
d that is obtained from

⌈

τmax

h

⌉

, i.e. the smallest integer larger than or equal
to τmax

h
. Note that, for delays larger than the sampling interval, τmin > h and

d > 1 hold. This results in the following discrete-time NCS model [55; 123]:

xk+1 = eAhxk +
∫ h−τ∗

k−d+1

0 eAsdsBuk−d+1 +
∫ h

h−τ∗

k−d+1

eAsdsBuk−d

yk = Cxk,
(3.4)

with τ∗
k−d+1

= τk + (1 − d)h. Note that (3.2) and (3.4) result in the same NCS

model for τk < h ∀k. If τk = τ ∀k is used, (3.4) corresponds to the NCS model



3.2. Large delays 29

sk−3 sk−2 sk−1 sk sk+1 sk+2 sk+3 sk+4
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Message rejected

Figure 3.3: Influence of time-delays that can be smaller and larger than the
sampling interval (with sk+1 := (k + 1)h and τk ∈ [0, 2h], k ∈ N).

for constant time-delays, as is presented in e.g. [4; 133]. The presented case,
with variations of τk within an interval of at most length h, in particular as τk ∈
[τmin, τmax] ⊆ [(d − 1)h, dh), is rather simple as in each interval [sk, sk+1) two
control values are active (analogous to the small delay case described in (3.2))
and phenomena such as message rejection cannot occur. If the variation in the
delay becomes larger than one sampling interval, i.e. τk ∈ [(d−1)h, dh) does not
hold, the discrete-time model becomes more complex. This will be illustrated for
the case τk ∈ [0, 2h], as depicted in Figure 3.3. Here, the vertical arrows denote
the control input that belongs to the sampling instant, the horizontal arrows
denote the corresponding time-delays, and the solid line denotes the control
input u(t) that is obtained by the zero-order hold function in combination with
the discrete-time control inputs. This figure shows that message rejection, i.e.
the effect that more recent control data becomes available before the older data
is implemented and therefore the older data is neglected, occurs in the interval
[sk+2, sk+3) causing uk+1 to be never implemented. In general, from Figure 3.3
it can be concluded that the number of active control inputs in one sampling
interval is variable and dependent on the previous and current time-delays. All
described effects are not included in (3.4).

To derive the NCS model for time-delays larger than the sampling interval,
first, consider τk ∈ [0, 2h], ∀k, as in Figure 3.3. The corresponding model
consists of the following subsystems:

xk+1 =


















































eAhxk +
∫ h−τk

0 eAsdsBuk +
∫ h

h−τk
eAsdsBuk−1, if τk ≤ h ∧ τk−1 ≤ h

eAhxk +
∫ h−τ∗

k−1

0
eAsdsBuk−1 +

∫ h

h−τ∗

k−1
eAsdsBuk−2,

if h ≤ τk ≤ 2h ∧ h ≤ τk−1 ≤ 2h

eAhxk +
∫ h

0 e
AsdsBuk−1, if h ≤ τk ≤ 2h ∧ τk−1 ≤ h

eAhxk +
∫ h−τk

0
eAsdsBuk +

∫ h−τ∗

k−1

h−τk
eAsdsBuk−1 +

∫ h

h−τ∗

k−1
eAsdsBuk−2,

if τk ≤ h ∧ h ≤ τk−1 ≤ 2h ∧ τk−1 − h < τk

eAhxk +
∫ h−τk

0
eAsdsBuk +

∫ h

h−τk
eAsdsBuk−2, if τk−1 − h ≥ τk,

(3.5)
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with τ∗k−1 = τk−1 − h and ∧ the logical ‘and’ symbol. The last subsystem
describes the case where message rejection occurs, which results in omission of
some control data (uk−1 in this case). The second subsystem corresponds to
(3.4) (with d = 2) and the first subsystem corresponds to the model for the
small delay case, see (3.2).

Now, we will consider the general case, with 0 ≤ τmin ≤ τmax ≤ dh, with
d ∈ N. A NCS modeling approach that considers the different subsystems
(see e.g. (3.5)) that can occur, except message rejection, is described in [124].
Note that this is not the first paper that includes the possibility of a different
number of control inputs during one sampling interval. In [31; 61; 90], for a
NCS model with a sensor and a controller that behave in a time-driven fashion
and a time-varying time skew between the sensor and the controller, the effect
of different control inputs during one sampling interval was already taken into
account. However in [31; 61; 90], it is assumed that the control inputs arrive at
the actuator in a sequential order, thereby excluding the possibility of message
rejection for variations in the delay larger than the sampling interval. The model
of [124], as well as the identical model of [101] describe an adaptation on the
model in [31; 61; 90], such that a NCS with a controller that operates in an event-
driven fashion is described. In this thesis, we will use the model description of
[124], which is based on (3.4), to develop a NCS model, including message
rejection, which is an essential feature for NCS modeling with large delays,
because it ensures the implementation of the most recent available actuation
data on the plant. This requires a modification of the continuous-time model
in (3.1). Therefore, define k∗(t) := max{k ∈ N|sk + τk ≤ t}, which denotes the
index of the most recent control input that is available at time t. Using this
definition, the NCS of (3.1) becomes:

ẋ(t) = Ax(t) +Bu∗(t)
y(t) = Cx(t)
u∗(t) = uk∗(t),

(3.6)

where u∗(t) remains to be a piecewise constant signal. This is a description
of the ZOH-based control signal in the NCS. Due to the definition of k∗(t),
the possibility of message rejection is included explicitly, while it was only in-
cluded implicitly in [76], via the assumption that the values of k form a strictly
increasing sequence.

In Lemma 3.2.1, the general description of the control input u∗(t) in (3.6)
is reformulated to indicate explicitly which control inputs are active in the
sampling interval [sk, sk+1). Such a formulation is needed to derive the discrete-
time NCS model for large delays (incorporating all possibilities as done in (3.5)
for τk ∈ [0, 2h]), which will ultimately be employed in the stability analysis and
controller synthesis results in Chapters 4 and 5. Moreover, the time interval in
which the control input is active will be determined explicitly.

Lemma 3.2.1 Consider the continuous-time NCS as defined in (3.6). Define
d := ⌊ τmin

h
⌋, the largest integer smaller than or equal to τmin

h
and d :=

⌈

τmax

h

⌉

,
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the smallest integer larger than or equal to τmax

h
. Then, the control action u∗(t)

in the sampling interval [sk, sk+1) is completely described by

u∗(t) = uj for t ∈ [sk + tkj , sk + tkj+1),

where tkj is defined as:

tkj = min
{

max{0, τj − (k − j)h},max{0, τj+1 − (k − j − 1)h}, . . . ,
max{0, τk−d − dh}, h

}

,

(3.7)
with tkj ≤ tkj+1 and j ∈ [k − d, k − d + 1, . . . , k − d]. Moreover, 0 =: tk

k−d
≤

tk
k−d+1

≤ . . . ≤ tkk−d ≤ tkk−d+1 := h.

Proof The proof is given in Appendix A.1. �

Based on this lemma, we can define the NCS model for large delays as:

xk+1 = eAhxk +

k−d
∑

j=k−d

∫ h−tk
j

h−tk
j+1

eAsdsBuj

yk = Cxk,

(3.8)

with tkk−d+1 := h and tkj as defined in (3.7). According to Lemma 3.2.1, this
model contains all possible control inputs that can be active during the sampling
interval [sk, sk+1). Note that tkj = tkj+1 corresponds to the situation that the
integral related to uj in (3.8) is zero and results in an inactive control input uj

during the sampling interval [sk, sk+1). Therefore, this equality allows to include
message rejection. Moreover, as guaranteed by the lemma, (3.8) captures all
the different situations that are given in (3.5) for τk ∈ [0, 2h], because each
subsystem can be obtained by the proper selection of tkj , as defined in (3.7).

In the lemma, no distinction is made between the position in the network
where message rejection occurs (i.e. from sensor to controller or from controller
to actuator), because in both cases one control input is not implemented, caused
by rejection of either the control input or the measurement data. To allow
this simplification, some assumptions on the controller or its computation are
needed. The simplest assumption is that it should hold that the control input
does not depend on the past control inputs. Otherwise, problems in the control
computation may arise if the measurement data is not received sequentially.
However, if the control input depends on past control inputs, still the difference
between the positions of message rejection may be neglected, if the control com-
putation only starts if all previous measurement data are available. Obviously,
this adaptation in the control implementation leads to larger computational
delays than for the case where all measurements arrive in a sequential order.
In Chapter 4, we will discuss the relation between the controller and message
rejection in more detail.
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Remark 3.2.2 Equation (3.8) was also stated in [124]. However, the explicit
definition of tkj as we presented here in Lemma 3.2.1 was not mentioned. More-
over, in [124] it is implicitly assumed that message rejection does not occur, as
tkj < tkj+1 is supposed to hold for all k − d ≤ j ≤ k − d. Finally, the model
proposed here exhibits less uncertain parameters than the model in [124], be-
cause we consider only tkj as uncertain, time-varying parameters, while in [124]
additional boolean parameters are introduced that describe whether a control
input is active or inactive in the sampling interval [sk, sk+1).

To make the model of (3.8) suitable for the stability analysis and controller
synthesis, we rewrite it in a discrete-time state-space notation, using the aug-

mented state vector ξk =
(

xT
k uT

k−1 uT
k−2 . . . uT

k−d

)T

. Then, the state-

space representation of the discrete-time NCS model is given by:

ξk+1 = Ã(tk)ξk + B̃(tk)uk

yk = C̃ξk,
(3.9)

with Ã(tk) =















eAh M̃1 M̃2 . . . M̃d

0 0 0 . . . 0
0 I 0 . . . 0
...

. . . . . .
0 . . . 0 I 0















, B̃(tk) =















M̃0

I
0
...
0















,

C̃ =
(

C 0 . . . 0
)

, and

M̃ρ =











∫ h−tk
k−ρ

h−tk
k−ρ+1

eAsdsB if ρ ≥ d,

0 if ρ < d,

(3.10)

for ρ ∈ {0, 1, . . . , d} and tkk−ρ defined in (3.7), with j = k − ρ. Finally,

tk denotes the combination of the time-varying parameters used, i.e. tk =
(tk

k−d+1
, . . . , tkk−d).

For the initial time t0 = 0, the initial condition of (3.6) and its discrete-time
equivalent (3.9) is given by x0 = x(0) and the past control inputs u−1, . . . , u−d.

3.3 Large delays and packet dropouts

In this section, we consider a NCS, where the controller and plant are connected
through a network, in which packets may be dropped, as depicted in Figure 3.4
by the parameter mk. This parameter denotes whether or not a packet is
dropped:

mk =

{

0, if yk and uk are received
1, if yk and/or uk is lost.

(3.11)

In (3.11), we make no distinction between packet dropouts that occur in the
sensor-to-controller connection in the network and packet dropouts that occur
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Figure 3.4: Schematic overview of the NCS with packet dropouts and network
delays.

in the controller-to-actuator connection. This can be justified by evaluating
the effect of the packet dropouts on the control updates implemented on the
plant. For packet dropouts between the sensor and the controller no new control
update is computed and thus no new control input is sent to the actuator. For
packet dropouts between the controller and the actuator no new control update
is received by the actuator. These observations indicate that the effect in both
cases is the same, being that no new control update uk is implemented on
the plant, which confirms that the differences in packet dropout locations can
be neglected. However, in this reasoning it is assumed that the control input
depends on the current state only. If the new control value depends on past
control values, this new value cannot be updated in case these old inputs are
not computed. Hence, in this case, there is a difference between the situation
of a dropout between the sensor and controller and a dropout between the
controller and actuator. In the latter case the control value is still computed
and available, while this is not true in the former case, which may lead to a halt
in the controller updates. We return to this issue in Chapter 4.

Similar to message rejection not all data is used in the case of packet
dropouts, but the reason of not implementing that data is now also depen-
dent on the parameter mk. Therefore the continuous-time model of (3.6) needs
to be adapted, such that packet dropout is included as well. Let us redefine the
parameter k∗(t) that denotes the index of the most recent control input that
is available at time t as k+(t) := max{k ∈ N|sk + τk ≤ t ∧ mk = 0}. The
continuous-time model of the plant of the NCS is then given by:

ẋ(t) = Ax(t) +Bu∗(t)
y(t) = Cx(t)
u∗(t) = uk+(t).

(3.12)

Here, we assume that the most recent control input remains active in the plant
if a packet is dropped.

To derive the discrete-time NCS model for this situation, we assume that at
maximum δ ∈ N subsequent packet dropouts occur. Also for packet dropouts,
two approaches can be distinguished in the literature, i.e. deterministic packet
dropouts, where the number of subsequent packet dropouts is bounded and
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known beforehand, see e.g. [75; 127; 128], or stochastic dropouts, where e.g.
a Bernoulli process or Markov chain is used for the probability of the packet
dropout see e.g. [39; 99]. Here, we consider deterministic packet dropouts. The
bound on the number of subsequent packet dropouts is modeled by:

k
∑

v=k−δ

mv ≤ δ, (3.13)

where δ is thus the maximum number of successive dropouts. This guarantees
that from the control inputs uk−δ, uk−δ+1, . . . , uk at least one control input
is implemented. Let us now introduce the class M of admissible sequences
{(τk,mk)}k∈N as follows:

M :=







{(τk,mk)}k∈N : τmin ≤ τk ≤ τmax,
k
∑

v=k−δ

mv ≤ δ, ∀k ∈ N







, (3.14)

that allows for both the occurrence of large delays and packet dropout. For the
sake of brevity, we will use the notation µ := {(τk,mk)}k∈N ∈ M.

Similar to Lemma 3.2.1, in Lemma 3.3.1 (see below) the control input u∗(t)
of (3.12) is reformulated to describe explicitly which control inputs are active
in the sampling interval [sk, sk+1). Such a formulation is needed to derive the
discrete-time NCS model for large delays (incorporating message rejection) and
packet dropouts that will be used for stability analysis and controller synthesis.
Moreover, the duration of the control input will be defined explicitly.

Lemma 3.3.1 Consider the continuous-time NCS as defined in (3.12) and the
admissible sequences of delays and packet dropouts in M. Define d := ⌊ τmin

h
⌋,

the largest integer smaller than or equal to τmin

h
and d :=

⌈

τmax

h

⌉

, the smallest
integer larger than or equal to τk

h
. Then, the control action u∗(t) in the sampling

interval [sk, sk+1) is described by

u∗(t) = uj for t ∈ [sk + tkj , sk + tkj+1),

with tkj defined as:

tkj = min
{

max{0, τj − (k − j)h} +mjh,

max{0, τj+1 − (k − j − 1)h} +mj+1h, . . . ,

max{0, τk−d − dh} +mk−dh, h
}

,

(3.15)

with tkj ≤ tkj+1 and j ∈ [k − d − δ, k − d − δ + 1, . . . , k − d]. Moreover, 0 =

tk
k−d−δ

≤ tk
k−d−δ+1

≤ . . . ≤ tkk−d ≤ tkk−d+1 := h.

Proof The proof is given in Appendix A.2. �
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For µ ∈ M, we can exploit Lemma 3.3.1 to define the discrete-time NCS model
as follows:

xk+1 = eAhxk +

k−d
∑

j=k−d−δ

∫ h−tk
j

h−tk
j+1

eAsdsBuj

yk = Cxk,

(3.16)

with tkj as defined in (3.15). According to Lemma 3.3.1, this model contains all
possible control inputs that can be active during the sampling interval [sk, sk+1).
Note that tkj = tkj+1 corresponds to the situation that the integral related to uj

in (3.16) is zero, which corresponds to an inactive control input uj during the
sampling interval [sk, sk+1).

To make the model (3.16) suitable for the stability analysis and controller
synthesis, the state-space notation of (3.9) holds, if the augmented state vector
is redefined by

ξk =
(

xT
k uT

k−1 uT
k−2 . . . uT

k−d−δ

)T

, (3.17)

and the matrices are redefined as

Ã(tk) =















eAh M̃1 M̃2 . . . M̃d+δ

0 0 0 . . . 0
0 I 0 . . . 0
...

. . . . . .
0 . . . 0 I 0















, B̃(tk) =















M̃0

I
0
...
0















, (3.18)

C̃ =
(

C 0 . . . 0
)

, and M̃ρ defined in (3.10) for ρ ∈ {0, 1, . . . , d + δ}, tkk−ρ

defined in (3.15), with j = k − ρ. Finally, tk denotes the combination of the
time-varying parameters used, i.e. tk = (tk

k−d−δ+1
, . . . , tkk−d).

For the initial time t0 = 0, the initial condition of (3.6) and its discrete-
time equivalent (3.9), (3.18) is given by x0 = x(0), and the past control inputs
u−1, . . . , u−d−δ.

3.4 Time-varying sampling intervals

The previous NCS models did not allow for varying sampling intervals. To
include this effect, we consider a NCS as depicted in Figure 3.5. The variable
hk describes the variation in the sampling intervals, which is related to the
sampling instants through hk = sk+1 − sk. Similar to the previous sections,
the sensor is assumed to behave in a time-driven fashion, although variable in
time, and the controller and actuator are assumed to behave in an event-driven
fashion. The sensor data (yk) is obtained only at the sampling instants:

sk =
k−1
∑

i=0

hi ∀k ≥ 1, s0 = 0, (3.19)
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Figure 3.5: Schematic overview of the NCS with variable sampling intervals,
network delays and packet dropouts

which are non-equidistantly spaced in time, due to the time-varying values hk.
Note that the sequence of sampling instants s0, s1, s2, . . . is strictly increasing
in the sense that sk+1 > sk, for all k ∈ N. Any sequence of sampling instants
is assumed to be either bounded or in case it is infinite, it is unbounded (i.e.
limk→∞ sk = ∞).

Similar to Section 3.3, we include packet dropouts and time-delays larger
than the sampling interval in the NCS model. The continuous-time model
including packet dropouts and large delays (3.12) is also valid for the case with
time-varying sampling intervals if sk is derived according to (3.19). The class M
in (3.14) needs to be redefined, such that the variation in the sampling interval
is included as well. Therefore, we introduce the class S:

S :=

{

{(sk, τk,mk)}k∈N : hmin ≤ sk+1 − sk ≤ hmax, τmin ≤ τk ≤ τmax,

k
∑

v=k−δ

mv ≤ δ, ∀k ∈ N

}

,

(3.20)
which describes variable sampling intervals, large delays, and packet dropouts.
For the sake of brevity, we will sometimes use σ := {(sk, τk,mk)}k∈N ∈ S.
Here, a minimum and maximum sampling interval are assumed, given by hmin

and hmax, respectively. This is indeed natural, because a sampling interval
(nearly) equal to zero is not realistic in practical applications and a sampling
interval of infinite size results in hardly any control feedback and is avoided as
well. Moreover, it describes a typical situation in practice, where a nominal
sampling interval, with some variations around it, occurs. Other literature
assumes similar bounds on the sampling interval, see e.g. [76] (where only an
upper bound on the sampling interval is considered and the lower bound is
assumed to be equal to zero) and [92], where a finite gridding of possible sizes
of the sampling interval is considered. Note that S is equal to M if in S it is
used that the sampling interval is constant, i.e. hmin = hmax = h.

Lemma 3.3.1 has to be adapted to include the variation of the sampling
intervals. This results in the following lemma that describes the active control
inputs in the sampling interval [sk, sk+1) and the duration of these control
inputs.
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Lemma 3.4.1 Consider the continuous-time NCS as defined in (3.12) and the
admissible sequences of sampling instants, delays, and packet dropouts as de-
fined in S. Define d := ⌊ τmin

hmax
⌋, the largest integer smaller than or equal to τmin

hmax

and d := ⌈ τmax

hmin
⌉, the smallest integer larger than or equal to τmax

hmin
. Then, the

control action u∗(t) in the sampling interval [sk, sk+1) is described by:

u∗(t) = uj for t ∈ [sk + tkj , sk + tkj+1), (3.21)

where tkj is defined as:

tkj = min
{

max{0, τj −
k−1
∑

l=j

hl} +mjhmax,

max{0, τj+1 −
k−1
∑

l=j+1

hl} +mj+1hmax, . . . ,

max{0, τk−d −
k−1
∑

l=k−d

hl} +mk−dhmax, hk

}

,

(3.22)

with tkj ≤ tkj+1 and j ∈ [k − d − δ, k − d − δ + 1, . . . , k − d]. Moreover, 0 =

tk
k−d−δ

≤ tk
k−d−δ+1

≤ . . . ≤ tkk−d ≤ tkk−d+1 := hk.

Proof The proof is given in Appendix A.3. �

Based on Lemma 3.4.1 and σ ∈ S, we can rewrite the discrete-time NCS model
as:

xk+1 = eAhkxk +

k−d
∑

j=k−d−δ

∫ hk−tk
j

hk−tk
j+1

eAsdsBuj

yk = Cxk,

(3.23)

with tkj as defined in Lemma 3.4.1. Similar to (3.8) and (3.16) and according to
Lemma 3.4.1, this model contains all possible control inputs that can be active
during the sampling interval [sk, sk+1).

To render the model (3.23) suitable for the stability analysis and controller
synthesis later, we rewrite it in a discrete-time state-space notation:

ξk+1 = Ã(tk, hk)ξk + B̃(tk, hk)uk

yk = C̃ξk,
(3.24)

with Ã(tk, hk) =















eAhk M̃1 M̃2 . . . M̃d+δ

0 0 0 . . . 0
0 I 0 . . . 0
...

. . .
...

0 . . . 0 I 0















, B̃(tk, hk) =















M̃0

I
0
...
0















, C̃ =
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(

C 0 . . . 0
)

, ξk defined in (3.17), d and δ defined in Lemma 3.4.1, and

M̃ρ(t
k, hk) =











∫ hk−tk
k−ρ

hk−tk
k−ρ+1

eAsdsB if ρ ≥ d,

0 if ρ < d,

(3.25)

for ρ ∈ {0, 1, . . . , d + δ} and tkk−ρ defined in (3.22), with j = k − ρ. Fi-

nally, tk denotes the combination of all time-varying parameters, i.e. tk =
(tk

k−d−δ+1
, . . . , tkk−d).

For the initial time t0 = 0, the initial condition of (3.6) and its discrete-time
equivalent (3.24) is given by x0 = x(0) and the past control inputs u−1, . . . , u−d−δ.

3.5 Discussion

In this chapter several discrete-time NCS models have been derived, based on an
exact discretization of the continuous-time NCS model at the sampling instants.
It is assumed that the sensor behaves in a time-driven fashion with constant
or uncertain, time-varying sampling intervals, and that the controller and ac-
tuator behave in an event-driven fashion. Different cases have been considered,
namely a distinction was made between small delays, large delays, and large
delays including packet dropouts and a distinction was made between constant
and time-varying sampling intervals. The number of time-varying parameters
is different for each case. For the small delay case, only the delay τk is uncer-
tain. For the large delay case, the uncertain parameters are given by the delays
τk−d, τk−d−1, . . . , τk−d+1, with d dependent on τmin and h, and d dependent on
τmax and h. Similarly, for the case with large delays and packet dropouts the
uncertain parameters are given by the delays τk−d, τk−d−1, . . . τk−d−δ+1, with

δ the maximum number of subsequent packet dropouts. For the case with
time-varying sampling intervals, including time-varying delays larger than the
sampling interval and packet dropouts, the uncertain parameters are the delays
τk−d, τk−d−1, . . . τk−d−δ+1 and the sampling interval hk, with d dependent on

τmin and hmax and d dependent on τmax and hmin. Note that each of the pre-
sented models can be obtained from the NCS model that includes time-varying
delays larger than the sampling interval, packet dropouts, and time-varying
sampling intervals, by adapting the assumptions on the sampling interval hk

and the time-delay τk.
In the models with packet dropouts it is assumed that the controller depends

on the current state and not on past control inputs. This assumption allows
to neglect the distinction between packet dropouts between the sensor and the
controller and packet dropouts between the controller and the actuator.

In the next chapters, the obtained NCS models will be used for stability
analysis (Chapter 4), controller synthesis for both stabilization and performance
(Chapter 5), and tracking (Chapter 6).



4

Stability analysis1

4.1 Motivating examples
4.2 NCS model formulation

using the Jordan form
4.3 Small delays

4.4 Variable sampling
intervals, large delays, and
packet dropouts

4.5 Illustrative examples
4.6 Discussion

This chapter deals with the stability analysis of the NCS model described
in Chapter 3. Before the stability conditions are presented, two examples il-
lustrating that network effects can lead to instability of the NCS are given in
Section 4.1. The first example considers periodic delays and will demonstrate
the destabilizing effect of time-varying delays, even if the delays are smaller than
the sampling interval and the system is stable for any corresponding constant
delay. Second, an example of the destabilizing effect of time-varying sampling
intervals is given, based on [132].

After these motivating examples, sufficient conditions for the global asymp-
totic stability of a NCS for bounded time-varying delays, a bounded number of
subsequent packet dropouts, and bounded variations in the sampling interval
are presented. These conditions will be obtained using a Lyapunov approach,
and will be written in the form of Linear Matrix Inequalities (LMIs). To derive
the stability conditions, the NCS models, obtained in Chapter 3, are rewritten
based on the Jordan form representation of the continuous-time system matrix
A. The conditions are derived, firstly, for the simplest situation, being the small
delay case (delays smaller than the sampling interval) with a constant sampling
interval (Section 4.3). These conditions are derived for different types of con-
trollers and are based on different types of Lyapunov functions. Additionally,
conditions that guarantee the stability of the intersample behavior are provided,
as the stability of the discretized NCS model does not directly guarantee stabil-
ity of the original continuous-time NCS model. After tackling the small delay
case, the stability conditions are extended such that they can be applied to
time-varying sampling intervals, time-varying delays larger than the sampling
interval, and packet dropouts in Section 4.4. The proposed stability conditions
are applied to a motion control example in Section 4.5. Finally, in Section 4.6,
a discussion on the obtained stability criteria is given.

1This chapter is partially based on [14], [15], and [16].
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Figure 4.1: Schematic overview of the motor-roller example.

4.1 Motivating examples

To motivate the study of the stability of NCSs with time-varying delays and
time-varying sampling intervals, we present examples that illustrate the destabi-
lizing effects that these network-induced uncertainties can have on systems that
are globally asymptotically stable without uncertainties being present. Firstly,
we consider an example with time-varying delays and a constant sampling inter-
val and, secondly, an example without delays, but with variation in the sampling
intervals.

The example for time-varying delays is based on a dynamic model obtained
from the document printing domain [7]. In general, a paper path, consisting of
rollers, driven by motors, is used to move a sheet of paper through the printer.
Here, all the motor controllers share the CPU-time of one processor, which is
connected to the motors and sensors via a network that causes unpredictable
time-varying delays in the control loop.

We limit ourselves to one single motor driving one roller, as depicted in
Figure 4.1. Still, the controller is connected to the motor via the shared network.
In the motor-roller model, the motor is assumed to behave ideally and slip
between the paper and the roller is neglected, which gives rise to the following
equation of motion:

ẍs(t) =
nrR

JM + n2JR

u∗(t), (4.1)

with JM = 1.95 · 10−5kgm2 the inertia of the motor, JR = 6.5 · 10−5kgm2

the inertia of the roller, rR = 14mm the radius of the roller, n = 0.2 the
transmission ratio between motor and roller, xs [m] the position of the sheet
of paper, and u [Nm] the motor torque. Recall, from (3.1), that it holds that
u∗(t) = uk, for t ∈ [sk + τk, sk+1 + τk+1), with τ the time-delay smaller than the
sampling interval. For the sake of simplicity, the reference signal in the control
computation is assumed to be equal to zero. This allows for stability analysis,
as is studied in this chapter. However, in practice, a reference signal unequal
to zero is used, to allow for transportation of the sheet of paper in the printer.
The use of a reference signal, unequal to zero, is studied in Chapter 6, where
the tracking problem of NCSs is investigated.

If we assume that the delays τk are time-varying, but at all times smaller
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than the sampling interval h, the continuous-time state-space representation
of (4.1), where the delays are accounted for in the discrete-time input uk is

given by (3.1), with A =

(

0 1
0 0

)

, B =

(

0
nrR

JM+n2JR

)

, C =

(

1 0
0 1

)

, and x(t) =

(

xs
T (t) ẋT

s (t)
)T

. Adopting a state-feedback controller of the form uk = −Kyk,

with yk = xk and K =
(

Ka Kb

)

, allows to rewrite (3.3) as:

ξk+1 = Ã(τk)ξk, (4.2)

with Ã(τk) =





1 − 1
2 α̂

2Kab h− 1
2 α̂

2Kbb −τkβ̂b
−α̂Kab 1 − α̂Kbb τkb
−Ka −Kb 0



, b = nrR

JM+n2JR
, α̂ = h−τk,

and β̂ = 1
2τk − h.

If the delay is constant (τk = τ, ∀k), the stability of (4.2) can be determined
by checking that the eigenvalues of Ã(τ) are within the unit circle for all relevant
constant τ . This system is assumed to have a constant sample-time h = 1ms,
and two possible constant delays, τa = 0.2ms if the network load is low, and
τb = 0.6ms if the network load is high. A linear feedback gain K =

(

50 11.8
)

,
results in an asymptotically stable system (4.2) for any constant delay τ in the
interval [0, τmax], with τmax = 0.66h, as is illustrated for τ = τa and τ = τb

and the initial condition ξ0 =
(

0 1 0
)T

in the upper plot of Figure 4.2. The

eigenvalues of the matrix Ã(τa) are λ1 = 0.996, λ2,3 = −0.097 ± 0.539i. The

eigenvalues of Ã(τb) are λ1 = 0.996, λ2,3 = 0.203 ± 0.927i. The fact that both
matrices are Schur confirms stability. However, the system becomes unstable, if
the delays occur in an alternating sequence (τa, τb, τa, τb, . . .), as is shown in the

lower plot in Figure 4.2 for the initial condition ξ0 =
(

0 1 0
)T

. The instability
of this periodic system can be shown by computing the eigenvalues of the matrix
Ã(τb)Ã(τa) [31], which are λ1 = 0.992, λ2 = −1.012, and λ3 = −0.267, and
observing that one eigenvalue is outside the unit disk.

In many practical situations this periodic stability test is intractable (as
there are infinitely many periodic sequences possible) and still it will not cover
all possible sequences. Namely, the use of the network results in variations
in the time-delay, which are in general not periodic (see e.g. [85]) and these
would not be included in such a test. Therefore, an alternative route has to be
considered. This thesis will do so by proposing stability conditions for uncertain
time-varying, though bounded, delays.

An example of the destabilizing effect of variations in the sampling interval
is presented in [132]. Briefly, we recall this example in which it is assumed that

time-delays are zero. Consider system (3.1), where A =

(

1 3
2 1

)

, B =

(

1
0.6

)

,

and the control law uk = −Kxk, with K =
(

1 6
)

. The discrete-time NCS
representation, including the control law, is, according to (3.2), given by:

xk+1 = A(hk)xk, (4.3)

with A(hk) = eAhk −
∫ hk

0 eAsdsBK. Two sampling intervals hk are considered:
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Figure 4.2: Time behavior of system (4.2) for constant τa = 0.2ms and constant
τb = 0.6ms (upper figure), and the alternating sequence τa, τb, τa, τb, . . ., with
h = 1ms (lower figure).

ha = 0.18 and hb = 0.54 time units. For both constant sampling intervals,
the NCS model is asymptotically stable, because the eigenvalues of A(ha) are
λ1,2 = 0.718 ± 0.294i and of A(hb) are λ1,2 = −0.49 ± 0.512i. Note that
the system is even stable for constant sampling intervals h taken from the set
[0.01, 0.59]. The stable time-responses for ha and hb of x1 (i.e. the first state of
the vector x) are given in the upper plot of Figure 4.3. For periodic sampling
intervals, e.g. ha, hb, ha, hb, . . ., the NCS is unstable, because the eigenvalues
of A(hb)A(ha) are λ1 = 0.3007 and λ2 = 1.0049. The corresponding unstable
time-response is given in the lower plot of Figure 4.3. Similar to the periodic
delay example, this shows the need for stability conditions for NCSs with time-
varying sampling intervals. Clearly, checking the eigenvalues for the minimum
and maximum sampling interval only does not suffice. In this thesis, we will
present stability conditions that can deal with bounded time-variations in the
sampling interval.

4.2 NCS model formulation using the Jordan
form

For the purpose of stability analysis (and controller synthesis), we will exploit
the Jordan form of the continuous-time system matrix of the NCS model to
rewrite the integrals in the matrices Ã(τk) and B̃(τk) in (3.3) for the small
delay case, (or equivalently Ã(tk) and B̃(tk) in (3.24) for time-varying sam-
pling intervals, large delays, and packet dropouts). The Jordan form of the
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Figure 4.3: Time response of system (4.3) for: (upper figure) constant ha =
0.18s, hb = 0.54s, and (lower figure) the alternating sequence ha, hb.

continuous-time system matrix A is given by A = QJQ−1 [67], [108] and is
applied to find generic solutions for the integrals and the exponential matrices.
Details on the use of the Jordan form, both for real and complex eigenvalues,
are given in Appendix B. The generic solutions of the integrals and matrix
exponentials are used to rewrite the NCS model of (3.3) that is valid for small
delays (or equivalently (3.24) for time-varying sampling intervals, large delays,
and packet dropouts) in terms of constant matrices and time-varying parame-
ters that depend on τk (or on tk and hk for the case with time-varying sampling
intervals, large delays, and packet dropouts). Before we introduce this generic
notation, we study the matrix A and its Jordan form in more detail. Recall that
a Jordan block belonging to the ĩth distinct eigenvalue may exist of different
Jordan blocks Jĩ,1, Jĩ,2, . . . , Jĩ,gĩ

, with gĩ the geometric multiplicity of the ĩth

distinct real eigenvalue or of the ĩth distinct complex eigenvalue with a positive
imaginary part. Firstly, we define the parameter qĩ that denotes the maximum
size of the Jordan blocks that represent the ĩth distinct real eigenvalue or the
ĩth distinct pair of complex eigenvalues:

qĩ = max
j̃∈{1,2,...,gĩ}

(dim Jĩ,j̃),

where dimJ denotes the dimension of the matrix J . Note that for a pair of
complex eigenvalues λ = a ± bj, based on the real Jordan form it holds that

J =

(

a −b
b a

)

. Secondly, we define the number of different uncertain time-

varying parameters that occur if the integral
∫ s2

s1
eAsds is solved, with either s1
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or s2 an uncertain and time-varying scalar parameter, as ν

ν =

p
∑

ĩ=1

qĩ, (4.4)

with p the number of distinct eigenvalues of A that are either real or pairs of
complex eigenvalues. Note that ν is always smaller than or equal to n. Then,
the NCS description for the small delay case, which is valid for all possible
combinations of eigenvalues, is given by:

ξk+1 =

(

F0 +

ν
∑

i=1

αi(τk)Fi

)

ξk +

(

G0 +

ν
∑

i=1

αi(τk)Gi

)

uk, (4.5)

with αi(τk) functions dependent on the time-varying delay τk, the constant
sampling interval h, and one of the (known and constant) eigenvalues of A. The
constant matrices F0, G0, Fi, and Gi, for i = 1, 2, . . . , ν, and the time-varying
parameters αi, i = 1, 2, . . . , ν, are derived in Appendix B.2. For the large delay
case with or without packet dropouts, the NCS description is given by

ξk+1 =

(

F0 +

β
∑

i=1

αi(t
k
j )Fi

)

ξk +

(

G0 +

β
∑

i=1

αi(t
k
j )Gi

)

uk, (4.6)

with β = (d+ δ − d)ν and tkj defined in (3.7) or (3.15) for the cases without or
with packet dropouts, respectively. The constant matrices F0, G0, Fi, and Gi

in (4.6), for i = 1, 2, . . . , β, and the time-varying parameters αi, i = 1, 2, . . . , β,
are given in Appendix B.3. For the case with time-varying sampling intervals,
including time-varying delays and packet dropouts, the NCS description is given
by

ξk+1 =

(

F0 +

ζ
∑

i=1

αi(t
k
j , hk)Fi

)

ξk +

(

G0 +

ζ
∑

i=1

αi(t
k
j , hk)Gi

)

uk, (4.7)

with ζ = (d+δ−d+1)ν, tkj defined in (3.22), and hk the time-varying sampling
interval. The constant matrices F0, G0, Fi, and Gi in (4.7), for i = 1, 2, . . . , ζ,
and the time-varying parameters αi, i = 1, 2, . . . , ζ, are given in Appendix B.3.
For each of these general model descriptions, the stability conditions are derived
in the next sections.

4.3 Small delays

First, we consider the stability analysis for time-delays that are upper bounded
by the sampling interval. For the purpose of stability analysis as well as con-
troller synthesis (see Chapter 5) we consider two types of controllers. First,
we consider a controller that depends on the state xk and the previous control
input uk−1, similar to the one proposed in [38]

uk = −Kξk = −Kxk −K1uk−1, (4.8)
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with K =
(

K K1

)

∈ R
m×(m+n). Second, we consider a state-feedback con-

troller that depends only on the state xk

uk = −Kxk, (4.9)

withK ∈ R
m×n. This control law is a special case of (4.8) withK =

(

K 0m,m

)

.
Therefore, in this section, if we consider (4.8), the same derivations hold for (4.9)
as well. The reason to apply these two types of controllers is to compare their
advantages and disadvantages. A main advantage to apply a controller of form
of (4.8) will be explained in detail in Section 5.1.1, where it is shown that for
such a controller the standard controller synthesis problem is easier to solve
than for (4.9). The reason is that for (4.8) the structured control synthesis
problem is avoided, which is not the case for (4.9).

Based on a given control law (4.8), the NCS model of (4.5) can be subjected
to stability analysis. Different candidate Lyapunov functions can be considered,
to determine whether a given controller gain K in (4.8) stabilizes (4.5). Here,
we consider two different candidate Lyapunov functions. A common quadratic
Lyapunov function approach and an approach based on a specific Lyapunov-
Krasovskii (L-K) functional. A common quadratic Lyapunov approach gives
LMI conditions, which are rather easy to verify, but is known to be somewhat
more conservative in general. For L-K functionals, a general expectation is
that they are less conservative than a common quadratic Lyapunov function
approach (see, for instance, [63] for an approach for switched systems that
studies this difference in conservatism). This expectation is, firstly, based on the
results that are obtained for continuous-time systems with time-delays [24] for
which the applicability of L-K functionals is known to be advantageous, because
L-K functionals can deal with the infinite dimension of the delayed system and,
secondly, it is based on the wealth of research performed on L-K functionals
for stability analysis of discrete-time delayed systems (see e.g. [12; 26; 40; 68;
127]). However, it is not certain whether the L-K functional gives indeed less
conservative stability conditions than the common quadratic Lyapunov function
for discrete-time NCS models. For example, in [37] it is shown that a delay
dependent L-K functional is equivalent to a switched Lyapunov function that is
based on the augmented state vector χk =

(

xT
k xT

k−1

)

, resulting in the same
amount of conservatism for both approaches. To get insight in the possible
advantages of the use of L-K functionals, a candidate L-K functional is compared
to the common quadratic candidate Lyapunov function in terms of conservatism
and complexity.

4.3.1 A common quadratic Lyapunov function based on
the extended state vector ξk

Here, we consider a common quadratic candidate Lyapunov function that de-
pends on the extended state vector ξk, defined in (3.3). System (4.5) contains
the uncertain time-varying parameters αi, which typically depend nonlinearly
on τk. These parameters, together with the constant matrices F0, G0, Fi, and
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Gi, i = {1, 2, . . . , ν}, as defined in Appendix B.2, lead to the uncertain lin-
ear system ξk+1 = (F (τk) − G(τk)K)ξk, with F (τ) := F0 +

∑ν
i=1 αi(τ)Fi and

G(τ) := G0 +
∑ν

i=1 αi(τ)Gi. This gives rise to the set of matrices

FG =

{(

F (τ), G(τ)

)

∈
(

R
(n+m)×(n+m) × R

(n+m)×m

)

: τ ∈ [τmin, τmax]

}

,

(4.10)
that contains all uncertainties. The set FG shows that the matrices F (τ)
and G(τ) always depend on the same value of τ and also on the same value
of αi(τ). This property will be exploited in the derivation of the stability
properties. To guarantee the stability of the fixed point ξ = 0 of the closed
loop system (4.5), (4.8), it is sufficient to prove that there exists a common
quadratic Lyapunov function V (ξk) = ξT

k Pξk for the uncertain linear system
ξk+1 = (F (τk) − G(τk)K)ξk, for all

(

F (τ), G(τ)
)

∈ FG, as defined in (4.10).
Note in this respect that ξk+1 = (F (τk) − G(τk)K)ξk represents a switching,
linear discrete-time system. Therefore, stability is guaranteed if the following
LMIs [6] are feasible

P = PT > 0

(F (τk) −G(τk)K)T P (F (τk) −G(τk)K) − P < −γP, ∀τ ∈ [τmin, τmax],
(4.11)

with 0 ≤ γ < 1. Due to the definition of F (τk) and G(τk), (4.11) consists of
an infinite number of LMIs. In Theorem 4.3.1, we propose a stability condition
for τk ∈ [τmin, τmax], ∀k, with τmax ∈ [0, h), based on a finite number of LMIs
guaranteeing the satisfaction of (4.11).

Theorem 4.3.1 Consider the discrete-time representation of the networked
control system given in (3.3), (4.8) for a given control gain matrix K. Moreover,
consider the equivalent Jordan form based representation (4.5) of (3.3). Let the
sampling interval h > 0 and a minimum and maximum time-delay 0 ≤ τmin ≤
τmax < h be given. Define the set of matrices HFG

2

HFG =

{(

(F̄0 +

ν
∑

i=1

δiF̄i), (Ḡ0 +

ν
∑

i=1

δiḠi)

)

: δi ∈ {0, 1}, i = 1, 2, . . . , ν

}

,

(4.12)
with F̄0 = F0 +

∑ν
i=1 αiFi, F̄i = (αi − αi)Fi, Ḡ0 = G0 +

∑ν
i=1 αiGi, Ḡi =

(αi−αi)Gi, αi = maxτ∈[τmin,τmax] αi(τ), αi = minτ∈[τmin,τmax] αi(τ), and F0, G0,
Fi, Gi defined for i = 1, 2, . . . , ν in Appendix B.2. If there exist a matrix P ∈
R

(n+m)×(n+m) and a scalar 0 ≤ γ < 1 such that the following LMI conditions
are satisfied

P = PT > 0
(HF,j −HG,jK)TP (HF,j −HG,jK) − P < −γP, (4.13)

for all (HF,j , HG,j) ∈ HFG, with j = 1, 2, . . . , 2ν , then (3.3), (4.8) is globally
exponentially stable (GES).

2This set consists of a finite number of matrices and contains the generators of a set that
describes a convex overapproximation of the infinite set of matrices FG (see (4.10)).
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To refer to the controller and Lyapunov combination used in this theorem we
will use one of the following acronyms, SF-CQLF or ESF-CQLF (state-feedback
controller or extended state-feedback controller, with a common quadratic Lya-
punov function).

Proof 3 The proof of Theorem 4.3.1 consists of two parts. First, we exploit a
convex overapproximation of the set FG, defined in (4.10). Second, we prove the
stability of the discrete-time closed-loop NCS model (4.5), (4.8), and its equiv-
alent (3.3), (4.8), based on a common quadratic candidate Lyapunov function
for the discrete-time dynamics.

With αi and αi, as defined in the theorem, we can write any αi ∈ [αi, αi]
as αi = αi + δi(αi − αi), for some δi ∈ [0, 1] and i = 1, 2, . . . , ν. Hence, the set
FG, defined as

FG =

{

(

(F̄0 +

ν
∑

i=1

δiF̄i), (Ḡ0 +

ν
∑

i=1

δiḠi)

)

: δi ∈ [0, 1], i = 1, 2, . . . , ν

}

,

with F̄0, Ḡ0, F̄i, and Ḡi as defined in the theorem, is an overapproximation of the
set FG in the sense that FG ⊆ FG. Due to the fact that the new uncertainty
parameters δi can take values in the set [0, 1], the set FG is still an infinite
set of matrices. However, each matrix in this set can be written as a convex
combination of the generators of the corresponding set. The set of generators
of FG is given by HFG in (4.12). Note that HFG consist of 2ν combinations of
matrices, which we denote individually by HF,j , HG,j, j = 1, 2, . . . , 2ν . Based
on these generators, FG can be written as the convex hull of its generators:

FG = co(HFG) :=
{( 2ν

∑

j=1

(φjHF,j),

2ν

∑

j=1

(φjHG,j)

)

:

2ν

∑

j=1

φj = 1, φj ∈ [0, 1], j = 1, 2, . . . , 2ν

}

,

in the sense that
FG ⊆ FG = co(HFG). (4.14)

Next, we show that indeed (4.13) is sufficient to guarantee the satisfaction
of (4.11). Since (4.13) holds for all (HF,j , HG,j) ∈ HFG, with j = 1, 2, . . . , 2ν,
we have that, by using the Schur complement

(

(1 − γ)P (HF,j −HG,jK)TP
P (HF,j −HG,jK) P

)

> 0, (4.15)

with 0 ≤ γ < 1. Since φj ≥ 0 ∀j ∈ {1, 2, . . . , 2ν} and
∑2ν

j=1 φj = 1, (4.15)
implies

0 <
∑2ν

j=1 φj

(

(1 − γ)P (HF,j −HG,jK)TP
P (HF,j −HG,jK) P

)

=

(

(1 − γ)P
∑2ν

j=1 φj(HF,j −HG,jK)TP
∑2ν

j=1 φjP (HF,j −HG,jK) P

)

.

3This proof is presented here to give insight in the reasoning behind Theorem 4.3.1.
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Consequently, it holds that
(

(1 − γ)P (HF −HGK)TP

P (HF −HGK) P

)

> 0, ∀(HF , HG) ∈ co(HFG). (4.16)

Based on (4.14), we have that (4.16) implies that
(

(1 − γ)P (F (τk) −G(τk)K)T P
P (F (τk) −G(τk)K) P

)

> 0, ∀τk ∈ [τmin, τmax].

Applying the Schur complement again gives (4.11), which shows that V (ξk) =
ξT
k Pξk is a common quadratic Lyapunov function for (4.5), (4.8) which proves

the global exponential stability of the origin ξ = 0 of (3.3), (4.8). �

4.3.2 A Lyapunov-Krasovskii functional

To overcome the possible conservatism of the common quadratic Lyapunov func-
tion as considered in Theorem 4.3.1, a Lyapunov-Krasovskii (L-K) functional
that indicates the difference between the current and the previous state (i.e.
xk − xk−1) is considered. The proposed candidate L-K functional is given by

V (xk, xk−1) = xT
k P̃ xk + xT

k−1Rxk−1 + (xk − xk−1)
T T (xk − xk−1) . (4.17)

To use this candidate L-K functional, the NCS model of (3.3), with the state

ξk =
(

xT
k uT

k−1

)T
is rewritten based on a state χk =

(

xT
k xT

k−1

)T
. The disad-

vantage of this approach is that the number of states increases, which results in
larger LMIs. An advantage of this reformulation is that the system is written in
a form that allows for the application of other candidate L-K functionals, that
are discussed in the literature, see e.g. [55; 87]. For the small delay case, the
applicability of other L-K functionals does not lead to an extension of the so-
lution space, due to the fact that they can be reformulated as (4.17). However,
for the large delays case including packet dropouts, differences between (4.17)
and the available L-K functionals in the literature can be distinguished, see also
[37].

To redefine the state-space NCS model of (3.3), including the controller
(4.9), system (3.2) is rewritten as

xk+1 = eAhxk −
∫ h−τk

0 eAsdsBKxk −
∫ h

h−τk
eAsdsBKxk−1

yk = Cxk,
(4.18)

such that uk−1 is ‘replaced’ by xk−1. For the sake of brevity, only the state-
feedback controller (4.9) is considered. Note that the extended state-feedback
controller (4.8) can be considered as well if the state vector is adapted to χk

instead of ξk and the controller gain K1 is adapted accordingly, but it will result
in more complicated LMI conditions. The state-space representation of (4.18)
is given by

χk+1 =

(

eAhxk −
∫ h−τk

0 eAsdsBK −
∫ h

h−τk
eAsdsBK

I 0

)

χk, (4.19)
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where
χk =

(

xT
k xT

k−1

)T
. (4.20)

To derive LMI conditions for stability analysis, based on the L-K function

V (χk) = χT
k

(

P̃ + T −T
−T R+ T

)

χk, the Jordan form representation is consid-

ered, similar to the use of (4.5) instead of (3.3) in Section 4.3.1. To obtain the
Jordan form representation for (4.19), the matrices F0, G0, Fi, Gi, i = 1, 2, . . . , ν
as used in (4.5), are partioned. Then, we write, based on the definitions in Ap-
pendix B.2,

eAh = QΘ0Q
−1 =: Θ̂0,

∫ h

h−τk

eAsdsB = Q

(

Θ1 +

ν
∑

i=1

αi(τk)Γ1,i

)

Q−1B,

∫ h−τk

0

eAsdsB = Q

(

Ξ0 +

ν
∑

i=1

αi(τk)Ξi

)

Q−1B,

with Θ0, Θ1, Ξ0, Γ1,i, and Ξi, i = 1, 2 . . . , ν, defined in Appendix B.2, and Q a
matrix with generalized eigenvectors that occurs due to the use of the Jordan
form of A. For the sake of brevity, we define

F x
0 = QΘ1Q

−1B, Gx
0 = QΞ0Q

−1B,

F x
i = QΓ1,iQ

−1B,Gx
i = QΞiQ

−1B, ∀i ∈ {1, 2, . . . , ν}.
Similar to the set FG in (4.10), the set FGx describes all possible system ma-
trices that depend on the time-varying delay τk:

FGx =

{(

F x(τ), Gx(τ)

)

: τ ∈ [τmin, τmax]

}

, (4.21)

with F x(τ) = F x
0 +

∑ν
i=1 αi(τ)F

x
i , Gx(τ) = Gx

0 +
∑ν

i=1 αi(τ)G
x
i for 0 ≤ τmin ≤

τmax < h. Then, system (3.3) or its equivalent (4.5) that is based on the Jordan
form, is written as

χk+1 =

(

Θ̂0 −Gx(τk)K −F x(τk)K
I 0

)

χk, (4.22)

for all (F x, Gx) ∈ FGx. Stability conditions of this system with a known con-
troller (4.9) and for τk ∈ [τmin, τmax], with 0 ≤ τmin ≤ τmax < h, can be derived
analogously to the proof of Theorem 4.3.1.

Theorem 4.3.2 (SF-LK4) Consider the discrete-time representation of the
NCS, denoted by (4.19) that considers the control law (4.9), with time-varying
delays τk, k ∈ N taken from a bounded set [τmin, τmax], with 0 ≤ τmin ≤ τmax <

4To refer to the combination of the controller and the Lyapunov functional used in this the-
orem we will use the acronym SF-LK (state-feedback controller, with a Lyapunov-Krasovskii
functional).



50 Stability analysis

h. Moreover, consider the equivalent discrete-time representation (4.22) that is
based on the Jordan form of A. Consider the set of matrices Hx

FG

Hx
FG =

{

(

F̄ x
0 +

ν
∑

i=1

δiF̄
x
i , Ḡ

x
0 +

ν
∑

i=1

δiḠ
x
i

)

: δi ∈ {0, 1}, i = 1, 2, . . . , ν

}

,

(4.23)
with F̄ x

0 = F x
0 +

∑ν
i=1 αiF

x
i , F̄ x

i = (αi − αi)F
x
i , Ḡx

0 = Gx
0 +

∑ν
i=1 αiG

x
i ,

Ḡx
i = (αi − αi)G

x
i , i = 1, 2, . . . , ν, αi = maxτ∈[τmin,τmax] αi(τ), and αi =

minτ∈[τmin,τmax] αi(τ).

If there exist matrices P̃ ∈ R
n×n, R ∈ R

n×n, T ∈ R
n×n, and a scalar

0 ≤ γ < 1 that satisfy

P̃ = P̃T > 0
R = RT > 0
T = T T > 0

(

H1,j +R− (1 − γ)(P̃ + T ) H2,j + (1 − γ)T
⋆ H3,j − (1 − γ)(R+ T )

)

< 0,

(4.24)

with

H1,j =
(

Θ̂0 −Hx
G,jK

)T

P̃
(

Θ̂0 −Hx
G,jK

)

+
(

Θ̂0 −Hx
G,jK − I

)T

T
(

Θ̂0 −Hx
G,jK − I

)

,

H2,j = −
(

(Θ̂0 −Hx
G,jK)T P̃ + (Θ̂0 −Hx

G,jK − I)TT
)

Hx
F,jK,

H3,j =(Hx
F,jK)T (P̃ + T )Hx

F,jK,

for all
(

Hx
F,j , H

x
G,j

)

∈ Hx
FG and j = 1, 2, . . . , 2ν, then (4.19), (4.9) is GES for

any time-varying delay τk satisfying τk ∈ [τmin, τmax] ∀k ∈ N.

Proof The proof is given in Appendix A.4. �

4.3.3 Comparison between the common quadratic Lya-
punov approach and the Lyapunov-Krasovskii ap-
proach

The use of the L-K functional results in more complex LMI conditions than the
use of a common quadratic Lyapunov function (compare e.g. (4.24) with (4.13)).
Moreover, it is interesting to compare the conservatism of both approaches. To
do so, we observe that a similar characterization of the stability as that presented
in Theorem 4.3.1 can be formulated based on a common quadratic Lyapunov
function in terms of the extended state χk. Such a characterization guarantees
stability for the NCS described by (4.19) and is presented in Corollary 4.3.3.

Corollary 4.3.3 (SF-CQLF) Consider the discrete-time representation of the
NCS given in (4.19) and its equivalent Jordan form based representation (4.22).
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Let the sampling interval h > 0 and a minimum and maximum time-delay
0 ≤ τmin ≤ τmax < h be given. Moreover, consider the set of matrices HGx

FG,
as defined in (4.23). If there exist a matrix P ∈ R

2n×2n and a scalar 0 ≤ γ < 1
such that the following LMI conditions are satisfied







(1 − γ)P

(

Θ̂0 −Hx
G,jK −Hx

F,jK

I 0

)T

P

⋆ P






> 0, ∀(Hx

F,j , H
x
G,j) ∈ Hx

FG,

(4.25)
with j = 1, 2, . . . , 2ν , then (4.19) is GES.

Based on this observation, in Lemma 4.3.4 the difference in conservatism
between the use of a common quadratic Lyapunov function and the use of a
L-K functional to prove stability is discussed.

Lemma 4.3.4 If there exists a L-K functional (VLK) of the form (4.17), such
that ∆VLK(χk) ≤ γVLK(χk), with 0 ≤ γ < 1, then there exists a common
quadratic Lyapunov function of the form χT

k Pχk that satisfies the LMIs (4.25)
in Corollary 4.3.3.

Proof The proof is given in Appendix A.5 �

This lemma states the the characterization of the stability of the closed-loop
NCS model (3.1), (4.9) based on the L-K functional as presented in (4.24) is
never less conservative than the characterization based on the common quadratic
Lyapunov function, as given in (4.25).

For other L-K functionals a similar reasoning holds, because they consist,
especially for the small delay case, of combinations of current and past states
or of combinations of current states and past control inputs, see e.g. [55; 87].
For both groups of L-K functionals, it is possible to rewrite the L-K functional
dependent on either χk or ξk, showing that the L-K functional can be rewritten
as a common quadratic Lyapunov function.

In Section 4.5, the differences in conservatism between the different proposed
theorems will be studied numerically for the motor-roller example.

4.3.4 Intersample behavior

In Theorems 4.3.1 and 4.3.2, sufficient conditions for the asymptotic stability of
the discrete-time NCS model (describing the behavior at the sampling instants
sk, k ∈ N) are provided. However, the behavior of the continuous-time sys-
tem (3.1) between the sampling instants remains unknown. In this section, it
will be shown that the intersample behavior is asymptotically stable as well un-
der the conditions of these theorems. As an example, we study the intersample
behavior under the conditions of Theorem 4.3.1.

Consider the continuous-time system (3.1). To study the intersample be-
havior an additional variable t̃ = t− sk, t ∈ [sk, sk+1), is introduced for which
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it holds that t̃ ∈ [0, h). To determine the time-evolution of the state of the
continuous-time system for t ∈ [sk, sk+1), the well-known convolution integral
has to be solved. Two different cases can be distinguished, due to the uncer-
tainty of the value of the delay τk ∈ [0, h), namely τk > t̃ and τk ≤ t̃. It holds
that

x(sk + t̃) = eAt̃xk +

∫ t̃

0

eAsdsBuk−1, for t̃ < τk, (4.26)

and

x(sk + t̃) = eAt̃xk +

∫ t̃−τk

0

eAsdsBuk +

∫ t̃

t̃−τk

eAsdsBuk−1, for t̃ ≥ τk. (4.27)

Recall that it holds that uk = u(sk), uk−1 = u(sk−1), and xk = x(sk). For both
cases, (4.26) and (4.27), an upper bound for |x(sk + t̃)| can be derived, as is
stated in the following lemma.

Lemma 4.3.5 Consider the continuous-time system (3.1) and the continuous-
time state evolutions (4.26) and (4.27), and the discrete-time system (3.3).
Then, the state evolution of the continuous-time system (3.1) can be upper
bounded as follows

|x(sk + t̃)| ≤ c0|xk| + c1|uk| + c2|uk−1|, (4.28)

for the positive constants c0, c1, and c2, defined in (A.24), (A.22), (A.21),
(A.18), (A.17), and (A.16) in Appendix A.6, and for all t̃ ∈ [0, h).

Proof The proof of this lemma is given in Appendix A.6. �

Next, Theorem 4.3.6 shows that the conditions in Theorem 4.3.1 or 4.3.2 un-
der which the discrete-time system is globally asymptotically stable also imply
global asymptotic stability of the intersample behavior.

Theorem 4.3.6 If system (3.3) satisfies the LMI conditions in either (4.13) or
(4.24), then the continuous-time system (3.1) is asymptotically stable as well.

Proof The proof is given in Appendix A.7. �

4.4 Variable sampling intervals, large delays,

and packet dropouts

With the case of small delays as a stepping stone, we consider the case with vari-
able sampling intervals, variable delays that may be larger than the sampling
interval, and a bounded number of subsequent packet dropouts. Recall that
the continuous-time NCS representation is given by (3.12), the discrete-time
NCS representation is given by (3.24), or equivalently, by (4.7) which describes
the discrete-time NCS model based on the Jordan form of the continuous-time
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system matrix A. The situations with constant sampling intervals with or with-
out packet dropouts can be derived easily from the stability conditions that are
presented in this section. We consider the same controllers as in Section 4.3.
However, for the extended state-feedback controller we propose an adaptation
to include past control input information based on ξk:

uk = −Kξk = −Kxk −K1uk−1 −K2uk−2 . . .−Kd+δuk−d−δ, (4.29)

with K ∈ R
m×(d+δ)m+n. The standard state-feedback controller is given by

(4.9). Still, (4.9) is a special case of (4.29) ifK =
(

K 0m,(d+δ)m

)

is considered.

In contrast to the previous section, there are some limitations on the use of
(4.29) in combination with the proposed model (3.24), which is only valid for a
static and time-invariant controller. In the case of a packet dropout related to
uk, i.e. mk = 1, two situations are possible:

1. yk = xk does not arrive at the controller and thus uk cannot be computed,

2. yk = xk arrives at the controller, and uk is computed, but uk does not
arrive at the actuator.

In the second case, in principle, uk is available in the implementation of the
controller and the update uk+1, using (4.29), can be made. In the first case,
however, the controller (4.29) cannot be updated anymore, due to the unknown
uk and a deadlock in the controller will occur for uk+1. A remedy might be to use
uk := uk−1 if mk = 1, but this results in a controller that depends explicitly on
the time-varying parametermk. Consequently, we obtain a switching controller,
where the switching depends on time. This contradicts the assumption that the
controller has to be time-invariant in NCS model of Chapter 3. The occurrence
of a deadlock means that controller (4.29), as proposed in [38] for the delays
smaller than the sampling interval, does not function properly in the case of
packet dropouts between the sensor and the controller (first case). The state-
feedback controller (4.9) does not suffer from this problem as it only depends
on the state xk (and not on the previous control inputs). A similar reasoning
holds for message rejection between the sensor and the controller. For the
computation of uk, based on (4.29), both yk = xk and the previous control
inputs uk−1, . . . , uk−d−δ need to be known. In the case of message rejection of
e.g. yk−1 (because yk is available in the controller before yk−1 is received at the
controller), the control input uk−1 is not known to the controller, which makes
it impossible to compute uk. Clearly, similar to the case with packet dropouts,
a deadlock occurs. A remedy might be to wait with the computation of uk

until yk−1 is available. Then, first uk−1 can be computed and then uk can be
computed. A disadvantage of this proposal is the increase of the computation
time, due to the waiting time until the past measurement data arrives, and
therefore an increase of the delay in the control input uk. Moreover, the control
implementation needs to include a check whether all past control inputs are
available; consequently, an additional increase in the computation time can be
expected. In the remaining part of the thesis, we limit ourselves to the less
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complicated controller implementation, in which the waiting on previous data
is not possible. Therefore, in the case of controller (4.29), we adopt the following
assumption:

Assumption 4.4.1 There is no packet dropout between the sensor and the
controller and yk always arrives at the controller after the moment that uk−1 is
sent to the actuator, i.e. sk + τsc

k > sk−1 + τsc
k−1 + τc

k−1, therefore it should hold
that τsc

min > τsc
max − hmin + τc

max.

Note that in this assumption τc
max is considered, to avoid that a computation of

a control action is stopped, when new measurement data arrives at the controller
during a computation. Without this assumption, the worst case scenario would
result in sending no control action at all to the actuator.

4.4.1 A common quadratic Lyapunov function based on
the extended state vector ξk

Theorem 4.3.1 can be extended to the NCS model with time-varying sam-
pling intervals, large delays, and packet dropout. Recall that in Theorem 4.3.1
an overapproximation based on the minimum and maximum values of αi(τk),
i = 1, 2, . . . , ν, was exploited. Because for the large delay case (including vari-
able sampling intervals) αi, i = 1, 2, . . . , ζ, depends on tkj and hk instead of
only on τk, the corresponding minimum and maximum values of the functions
αi(t

k
j , hk) have to be redefined. To determine the minimum and maximum val-

ues of the uncertain parameters αi(t
k
j , hk) in (4.7) (or equivalently (4.6) for

constant sampling intervals), the minimum and maximum values of tkj and hk,
that depend on the size of the time-delays, the number of subsequent packet
dropouts, and the size of the sampling interval, need to be defined. Recall that
it holds that hk ∈ [hmin, hmax]. In Lemma 4.4.2, the minimum and maximum
values of tkj , j ∈ {k − d− δ, . . . , k − d+ 1}, are described.

Lemma 4.4.2 Consider the time instants tkj as defined in (3.22), where sj (with
hj = sj+1 − sj), τj , and mj are taken from the class S defined in (3.20). The
minimum value of tkj , j ∈ {k − d− δ + 1, . . . , k − d}, is given by

tkj,min =

{

min{τmin − dhmax, hmin} if j = k − d
0 if j < k − d,

(4.30)

and the maximum value of tkj , j ∈ {k − d− δ + 1, . . . , k − d}, is given by

tkj,max =







min{τmax − (k − j − δ)hmin, hmax}
if j ∈ {k − d− δ + 1, . . . , k − δ − d},

hmax if j ∈ {k − δ − d+ 1, . . . , k − d}.
(4.31)

Note that tk
k−d−δ

:= 0 and tk−d+1 := hk, which gives for the minimum and

maximum bound tk−d+1 ∈ [hmin, hmax]. Moreover, τmax − (d − 1)hmin is by
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definition smaller than (or equal to) hmax, which guarantees that at least one
value of tkj depends on the maximum delay τmax.

Proof The proof is given in Appendix A.8. �

Remark 4.4.3 If the sampling interval is constant (i.e. hmin = hmax = h), the
minimum and maximum values of tkj are slightly simpler. The minimum bound,
defined in (4.30) can be replaced by

tkj,min =

{

τmin − dh if j = k − d
0 if j < k − d,

(4.32)

for j ∈ {k− d− δ+ 1, . . . , k− d}, as τmin − dh ≤ h, due to the definition of d in
Lemma 3.3.1. This proves the correctness of (4.32). The maximum value of tkj
for j ∈ {k − d− δ + 1, k − d− δ + 2, . . . , k − d} for constant sampling intervals
h is obtained from (4.33):

tkj,max =

{

h if j > k − d− δ + 1

τmax − (d− 1)h if j = k − d− δ + 1.
(4.33)

To explain these bounds, note that based on the definition of d in Lemma 3.3.1,
it holds for j = k − d − δ + 1 that τmax − (k − j − δ)h = τmax − (d − 1)h ≤ h.
For larger values of j, it holds that τmax − (k− j− δ)h > h, which simplifies the
computation of the upper bound of tkj . Finally, recall from Lemma 3.3.1 that

tk
k−d−δ

:= 0 and tkk−d+1 := h, which shows that both parameters are constant

and do not need to be included in (4.32) and (4.33).

To derive the stability conditions, similar to Theorem 4.3.1, the set of ma-
trices FG is redefined, such that the variation of the sampling interval, the
variation of the delay, and packet dropouts are included:

FG =

{(

F (tk, hk), G(tk, hk)

)

: tk = (tk
k−d−δ+1

, . . . , tkk−d),

tkj ∈ [tkj,min, t
k
j,max], k − d− δ < j ≤ k − d, hk ∈ [hmin, hmax]

}

,

(4.34)

with F (tk, hk) = F0 +
∑ζ

i=1 αi(t
k
j , hk)Fi, G(tk, hk) = G0 +

∑ζ
i=1 αi(t

k
j , hk)Gi,

αi(t
k
j , hk), i = 1, 2, . . . , ζ, defined in Appendix B.3 by (B.38), (B.39), (B.40),

and (B.41). The constant matrices F0, G0, Fi, and Gi, i = 1, 2, . . . , ζ, are also
defined in Appendix B.3. Note that in (4.34) the parameter j takes values from
j ∈ {k−d−δ+1, k−d−δ+2, . . . , k−d+1}, because tk

k−d−δ
:= 0 and tkk−d+1 := hk,

as defined in Lemma 3.4.1. Moreover, αi(t
k
j , hk) depends either on only one

uncertain time-varying parameter tkj , j ∈ {k−d−δ+1, k−d−δ+2, . . . , k−d+1}
in combination with hk or only on hk. Based on Lemma 3.4.1, this definition of
j gives all possible time-varying terms in (3.24). For the case with a constant
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sampling interval the number of uncertain parameters is reduced from ζ to
β = ζ − ν, with ν as in (4.4). Moreover, the definitions of the matrices F0,
G0, Fi, and Gi are then slightly adapted, as is described in Appendix B.3.
To prove stability of the discrete-time representation of the NCS (3.24), which
includes time-varying sampling intervals, packet dropouts, and time-varying
delays, Theorem 4.3.1 is adapted. Additionally, the stability of the continuous-
time NCS (3.12) can be evaluated based on the study of the intersample behavior
as proposed in Theorem 4.3.6 for the small delay case. Therefore, Theorem 4.4.4
proposes conditions that guarantee the stability of the continuous-time and
discrete-time NCS model. Note that these conditions are also valid for the
large delay case with constant sampling intervals and without packet dropouts,
if the assumptions on the parameter hk and δ are adapted, correspondingly.

Theorem 4.4.4 ((E)SF-CQLF) Consider the continuous-time NCS model
(3.12), (3.21), (3.22) with sequences of sampling instants, time-delays, and
packet dropouts σ = {(sk, τk,mk)}k∈N ∈ S, with S defined in (3.20) and con-
sider the corresponding discrete-time representation (3.24), (3.25) and its equiv-
alent representation (4.7) that is based on the Jordan form of the continuous-
time system matrix A of (3.12). Moreover, consider a known extended state-
feedback controller (4.29), with d defined in Lemma 3.4.1, including Assump-
tion 4.4.1, or consider the known state-feedback controller (4.9) which is of the

form of (4.29), with K =
(

K 0m,(d+δ)m

)

. Define the set of matrices HFG:

HFG =

{

(

(F̄0 +

ζ
∑

i=1

δiF̄i), (Ḡ0 +

ζ
∑

i=1

δiḠi)

)

: δi ∈ {0, 1}, i = 1, 2, . . . , ζ

}

,

(4.35)

with F̄0 = F0 +
∑ζ

i=1 αiFi, F̄i = (αi − αi)Fi, Ḡ0 = G0 +
∑ζ

i=1 αiGi, Ḡi =
(αi − αi)Gi, and

αi = max
tk
j ∈[tk

j,min,tk
j,max], hk∈[hmin,hmax]

αi(t
k
j , hk),

αi = min
tk
j ∈[tk

j,min,tk
j,max], hk∈[hmin,hmax]

αi(t
k
j , hk),

(4.36)

the maximum and minimum value of αi(t
k
j , hk), respectively, with tkj,min and

tkj,max defined in (4.30) and (4.31), respectively.

If there exist a matrix P ∈ R
(n+(d+δ)m)×(n+(d+δ)m) and a scalar 0 ≤ γ < 1,

such that the following LMI conditions are satisfied:
(

(1 − γ)P (HF,j −HG,jK)TP
P (HF,j −HG,jK) P

)

> 0, (4.37)

for all
(

HF,j , HG,j

)

∈ HFG, with j = 1, 2, . . . , 2ζ, then (3.12), (3.21), (3.22),
with the controller defined in (4.29) or (4.9), is globally asymptotically stable
(GAS) for any sequence of sampling instants, time-varying delays, and packet
dropouts σ ∈ S.
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Proof The proof is completely analogous to the proof of Theorem 4.3.1 and
Theorem 4.3.6. �

Remark 4.4.5 Note that for time-varying delays and packet dropouts with a
constant sampling interval, the set S in Theorem 4.4.4 can be replaced by the
set M in (3.14) that defines the sequences of delays and packet dropouts. Then,
the parameter ζ is replaced by β, as defined in Lemma 3.3.1. Moreover, it holds
that

FG =

{(

F (tk), G(tk)

)

: tk = (tk
k−d−δ+1

, . . . , tkk−d), tkj ∈ [tkj,min, t
k
j,max],

k − d− δ < j ≤ k − d

}

,

with F (tk) = F0 +
∑β

i=1 αi(t
k
j )Fi, G(tk) = G0 +

∑β
i=1 αi(t

k
j )Gi, αi defined in

Appendix B.3 for i ∈ {1, 2, . . . , β}, and F0, G0, Fi, and Gi, i = 1, 2, . . . , β,
defined in the same appendix, based on the remarks that hold for the case with
constant sampling intervals.

Remark 4.4.6 The use of Theorem 4.4.4 removes the clear difference between
packet dropouts and time-varying delays, due to the overapproximation of αi,
i = 1, 2, . . . , ζ, and therefore of tkj . Studying this difference shows that the
maximum number of subsequent packet dropouts and the maximum time-delay
are interchangeable (at least on the level of the derived stability conditions).
For constant sampling intervals, the minimum and maximum values of tkj are

defined in (4.32) and (4.33), respectively. Then, the values of τmax and δ are
interchangeable as long as their summation remains constant. For time-varying
sampling intervals, the value of τmax + δ remains constant if d + δ remains
constant as well (i.e. hmin should keep the same value).

The validity of this remark can be shown by considering the minimum and
maximum values of tkj in (4.30), (4.31), (4.32), and (4.33). Clearly, for different

values of τmax + δ = constant (and all other parameters unchanged) the min-
imum and maximum values of tkj do not change. This effect is caused by the
chosen analysis approach. To explain that the observed similarity is not true for
a real NCS, consider the following example for constant sampling intervals. The
difference between the situation with small delays and without packet dropouts,
i.e. τmax = h, τmin = 0, δ = 0 is compared to the situation without delays and
with maximally one subsequent packet dropout: τmax = τmin = 0, δ = 1. The
discrete-time NCS model for τk ∈ [0, h] is given by (3.2):

xk+1 = eAhxk +

∫ h−τk

0

eAsdsBuk +

∫ h

h−τk

eAsdsBuk−1. (4.38)

The discrete-time NCS model for the case without delays and with δ = 1 is
given by:

xk+1 =

{

eAhxk +
∫ h

0 e
AsdsBuk if mk = 0

eAhxk +
∫ h

0
eAsdsBuk−1 if mk = 1.

(4.39)
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Clearly, the obtained NCS models differ. If the NCS model is derived according
to (3.16) and Lemma 3.3.1 the following model is obtained (d = 0, d+ δ = 1):

xk+1 = eAhxk +
∫ h−tk

k

h−tk
k+1

eAsdsBuk +
∫ h−tk

k−1

h−tk
k

eAsdsBuk−1

= eAhxk +
∫ h−tk

k

0
eAsdsBuk +

∫ h

h−tk
k

eAsdsBuk−1.

Implementing tkk gives indeed (4.38) if τk ∈ [0, h) and mk = 0 for the small
delay case and (4.39) if τ = 0 and mk ∈ {0, 1}. For analysis, as shown in
Theorem 4.4.4, tkk is replaced by its upper and lower bound. For both cases,
the lower bound is equal to zero (from (4.32)) and the upper bound is equal to
h (from (4.33)), resulting in the same LMIs for stability analysis. Therefore, in
the stability analysis the difference between packet dropouts and time-varying
delays is partly lost.

The next section describes the adaptation of the stability analysis condi-
tions, based on the L-K functional, presented in Theorem 4.3.2, such that it is
applicable for the large delay case including packet dropouts and time-varying
sampling intervals. Note that Remark 4.4.6 holds for the next section as well.

4.4.2 A Lyapunov-Krasovskii functional

To apply the stability analysis approach based on the Lyapunov-Krasovskii (L-
K) functional, the extended state vector, consisting of the current and past

states, is given by χk =
(

xT
k xT

k−1 . . . xT

k−d−δ

)T

. The proposed candidate

L-K functional is given by:

V (χk) = xT
k Pxk +

d+δ
∑

î=1

xT
k−î

Rîxk−î +

d+δ
∑

î=1

(

xk−î+1 − xk−î

)T
Tî

(

xk−î+1 − xk−î

)

.

(4.40)
Note that for the sake of simplicity, (4.40) considers only the difference be-
tween the sequential states, instead of the differences between all states in
the extended state vector. Therefore, additional difference equations, such as
∑d+δ

î=2

(

xk−î+2 − xk−î

)T
Tî

(

xk−î+2 − xk−î

)

can be considered as well, but result
in more complex, however less conservative, stability conditions.

Here, we only consider the state-feedback controller (4.9), because no addi-
tional assumptions (as given in Assumption 4.4.1) on the size of the delays are
needed and the complexity of the LMIs remains acceptable. Before the stability
conditions are derived, we first define the NCS model, based on the state vector
χk, as

χk+1 =















eAhk − M̃0K −M̃1K . . . −M̃d+δ−1K −M̃d+δK
I 0 . . . 0 0
0 I 0 0
...

. . .
...

0 . . . 0 I 0















χk, (4.41)
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with M̃ρ(t
k
k−ρ+1, t

k
k−ρ, h

k) =











∫ hk−tk
k−ρ

hk−tk
k−ρ+1

eAsdsB if ρ ≥ d,

0 if ρ < d,

for ρ ∈ {0, 1, . . . , d+ δ} and tkk−ρ defined in (3.22), with j = k − ρ.
To determine the stability conditions, the matrices in (4.41) need to be

rewritten, based on the Jordan form of the continuous-time system matrix A.
Therefore, we adopt the following notation

eAhk = Q

(

Θ0 +

ζ
∑

i=1

αi(t
k
j , hk)Γ0,i

)

Q−1,

M̃0 = Q

(

Ξ0 +

ζ
∑

i=1

αi(t
k
j , hk)Ξi

)

Q−1B,

M̃1 = Q

(

Θ1 +

ζ
∑

i=1

αi(t
k
j , hk)Γ1,i

)

Q−1B,

...

M̃d+δ = Q

(

Θd+δ +

ζ
∑

i=1

αi(t
k
j , hk)Γd+δ,i

)

Q−1B,

with Q a matrix with generalized eigenvectors that appears due to the use of the
Jordan form of A and the matrices Θ0, Ξ0, Γ0,i, Ξi, Θî, Γî,i, î = 1, 2, . . . , d+ δ,

and the parameters αi(t
k
j , hk), i = 1, 2, . . . , ζ, defined in Appendix B.3. For

brevity of the notation, we define

F x
0,0 = QΘ0Q

−1, F x
0,i = QΓ0,iQ

−1,

Gx
0 = QΞ0Q

−1B, Gx
i = QΞiQ

−1B,
F x

î,0
= QΘîQ

−1B, F x
î,i

= QΓî,iQ
−1B,

with î = 1, 2, . . . , d + δ an index that denotes the position in the matrix Ã,
similar to the matrices M̃î and i = 0, 1, . . . , ζ, the index that corresponds to the
time-varying parameter αi. Then, define the sets of matrices:

FGx =

{(

F x
0 (tk, hk), F x

1 (tk, hk), . . . , F x
d+δ

(tk, hk), Gx(tk, hk)

)

:

tk = (tk
k−d−δ+1

, . . . , tkk−d), t
k
j ∈ [tkj,min, t

k
j,max], hk ∈ [hmin, hmax],

k − d− δ < j ≤ k − d

}

,

(4.42)

with F x
0 (tk, hk) := F x

0,0 +
∑ζ

i=1 αi(t
k
j , hk)F x

0,i,

Gx(tk, hk) := Gx
0 +

∑ζ
i=1 αi(t

k
j , hk)Gx

i , F
x
î
(tk, hk) := F x

î,0
+
∑ζ

i=1 αi(t
k
j , hk)F x

î,i
,
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for î = 1, 2, . . . , d + δ. Then, the discrete-time NCS description, based on the
state-vector χk and the Jordan form representation of the continuous-time sys-
tem matrix A, is given by:

χk+1 =















F −F x
1 (tk, hk)K −F x

2 (tk, hk)K . . . −F x
d+δ

(tk, hk)K

I 0 0 . . . 0
0 I 0 . . . 0
...

...
. . .

. . .
...

0 . . . 0 I 0















χk,

(4.43)

with F = F x
0 (tk, hk) − Gx(tk, hk)K, for all

(

F x
0 (tk, hk), F x

1 (tk, hk), . . . ,

F x
d+δ

(tk, hk), Gx(tk, hk)

)

∈ FGx. The stability conditions for the case with

time-varying sampling intervals, packet dropouts, and delays larger than the
sampling interval are given in Theorem 4.4.7.

Theorem 4.4.7 (SF-LK) Consider the continuous-time NCS model (3.12),
(3.21), (3.22), with sequences of sampling instants, time-delays, and packet
dropouts σ ∈ S, and the state-feedback controller (4.9). Moreover, consider the
discrete-time representation (4.41) and its equivalent, based on the Jordan form
of the continuous-time system matrix A, (4.43) and the set of matrices Hx

FG

Hx
FG =

{(

F̄ x
0,0 +

ζ
∑

i=1

δiF̄
x
0,i, F̄

x
1,0 +

ζ
∑

i=1

δiF̄
x
1,i, . . . , F̄

x

d+δ,0
+

ζ
∑

i=1

δiF̄
x

d+δ,i
,

Ḡx
0 +

ζ
∑

i=1

δiḠ
x
i

)

: δi ∈ {0, 1}, i = 1, 2, . . . , ζ

}

,

(4.44)

with F̄ x
0,0 = F x

0,0 +
∑ζ

i=1 αiF
x
0,i, F̄

x
0,i = (αi − αi)F

x
0,i, F̄

x
î,0

= F x
î,0

+
∑ζ

i=1 αiF
x
î,i

,

F̄ x
î,i

= (αi−αi)F
x
î,i

, Ḡx
0 = Gx

0 +
∑ζ

i=1 αiG
x
i , Ḡx

i = (αi−αi)G
x
i , for i = 1, 2, . . . , ζ,

î = 1, 2, . . . , d+ δ, and

αi = max
tk
j ∈[tk

j,min,tk
j,max], hk∈[hmin,hmax]

αi(t
k
j , hk),

αi = min
tk
j ∈[tk

j,min,tk
j,max], hk∈[hmin,hmax]

αi(t
k
j , hk),

If there exist matrices P̃ ∈ R
n×n, Rî ∈ R

n×n, Tî ∈ R
n×n, and a scalar

0 ≤ γ < 1 that satisfy
P̃ = P̃T > 0
Rî = RT

î
> 0

Tî = T T
î

> 0
(4.45)
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for î = 1, 2, . . . , d+ δ, and satisfy



















M0,j L0,j −(GT
0,j P̃ + H

T
0,jT1)F2,j −(GT

0,j P̃ + H
T
0,jT1)F3,j

⋆ M1,j L1,j FT
1,j(P̃ + T1)F3,j

⋆ ⋆ M2,j L2,j

⋆ ⋆ ⋆ M3,j

⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆

. . . −(GT
0,j P̃ + H

T
0,jT1)Fd+δ−1,j

−(GT
0,j P̃ + H

T
0,jT1)F

d+δ,j

. . . F
T
1 (P̃ + T1)Fd+δ−1,j F

T
1,j(P̃ + T1)Fd+δ,j

. . . FT
2

(P̃ + T1)F
d+δ−1,j

FT
2,j(P̃ + T1)F

d+δ,j

. . . FT
3

(P̃ + T1)F
d+δ−1,j

FT
3,j(P̃ + T1)F

d+δ,j

.

.

.

M
d+δ−2,j

L
d+δ−2,j

FT

d+δ−2,j
(P̃ + T1)F

d+δ,j

⋆ M
d+δ−1,j

L
d+δ−1,j

⋆ ⋆ M
d+δ,j

























< 0,

(4.46)
with

M0,j =G
T
0,j P̃G0,j + H

T
0,jT1H0,j + R1 − (1 − γ)P̃ + T2 − (1 − γ)T1,

M1,j =F
T
1,j(P̃ + T1)F1,j + R2 − (1 − γ)R1 + γT2 − (1 − γ)T1 + T3,

M2,j =F
T
2,j(P̃ + T1)F2,j + R3 − (1 − γ)R2 + γT3 − (1 − γ)T2 + T4,

M3,j =F
T
3,j(P̃ + T1)F3,j + R4 − (1 − γ)R3 + γT4 − (1 − γ)T3 + T5,

M
d+δ−2,j

=F
T

d+δ−2,j
(P̃ + T1)Fd+δ−2,j

+ R
d+δ−1

− (1 − γ)(R
d+δ−2

+ T
d+δ−2

)

+ γT
d+δ−1

+ T
d+δ

,

M
d+δ−1,j

=F
T

d+δ−1,j
(P̃ + T1)Fd+δ−1,j

+ R
d+δ

− (1 − γ)(R
d+δ−1

+ T
d+δ−1

) + γT
d+δ

,

Md+δ,j =F
T

d+δ,j
(P̃ + T1)Fd+δ,j − (1 − γ)(Rd+δ + Td+δ),

L0,j = − G
T
0,j P̃F1,j − H

T
0 T1F1,j + (1 − γ)T1 − T2,

L1,j =F
T
1,j(P̃ + T1)F2,j + (1 − γ)T2 − T3,

L2,j =F
T
2,j(P̃ + T1)F3,j + (1 − γ)T3 − T4,

L
d+δ−2

=F
T

d+δ−2,j
(P̃ + T1)Fd+δ−1,j

+ (1 − γ)T
d+δ−1

− T
d+δ

,

L
d+δ−1

=F
T

d+δ−1,j
(P̃ + T1)Fd+δ,j

+ (1 − γ)T
d+δ

,

G0,j = Hx
F,0,j − Hx

G,jK, H0,j = Hx
F,0,j − Hx

G,jK − I, Fî,j = −Hx
F,̂i,j

K, for

all (Hx
F,0,j , H

x
F,1,j, . . . , H

x
F,d+δ,j

, Hx
G,j

)

∈ Hx
FG and for j = 1, 2, . . . , 2ζ , then the

continuous-time NCS (3.12), (3.21), (3.22), with the controller (4.9) is GAS for
any σ ∈ S.

Proof The proof is given in Appendix A.9 �

Remark 4.4.8 For constant sampling intervals σ ∈ S is replaced by µ ∈ M
and the parameter ζ is replaced by β. Moreover, the matrix F x

0 (tk, hk) is a
constant matrix and given by QΘ0Q

−1 defined in Appendix B.3 and Γ0,i is
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equal to zero. The matrices Γî,0, Γî,i, Ξ0, Ξi are defined according to the
remarks in Appendix B.3. Then, for Theorem 4.4.7, it holds that

G0 = Θ0 −Hx
G,jK, H0 = Θ0 −Hx

G,jK − I, Fî = −Hx
F,̂i,j

K,

for all (Hx
F,1,j, . . . , H

x

F,d+δ,j
, Hx

G,j) ∈ Hx
FG and j = 1, 2, . . . , 2β.

Remark 4.4.9 Note that adaptations based on other L-K functionals can be
derived in a straightforward manner, by replacing the L-K functional used for
Theorem 4.4.7. In the literature, many other L-K functionals are available, see
e.g. [24], [87], and [127].

Clearly, the use of the candidate L-K functional results in more complex
LMIs than the use of the candidate common quadratic Lyapunov function.
Moreover, analogous to Lemma 4.3.4, it holds that the L-K functional is not
less conservative than the common quadratic Lyapunov approach. To explain
this, we use, analogously to Corollary 4.3.3, an equivalent of Theorem 4.4.4
that is based on the state vector χk. The LMI conditions of (4.37), however

with P ∈ R
(d+δ+1)n×(d+δ+1)n need to be considered and HF,j , HG,j , and K

need to be adapted such that the states xk−1, xk−2, . . . are included instead of
uk−1, uk−2, . . .

HF,j =











Hx
F,0,j −Hx

F,1,jK . . . −Hx

F,d+δ,j
K

I 0 . . . 0
. . .

...
0 I 0











, HG,j =











Hx
G,j

0
...
0











,

K =
(

K 0m×(d+δ)n

)

.

(4.47)

Note that (4.37), based on this adapted version of the common quadratic Lya-
punov function, will give similar results or less conservative results than the sta-
bility conditions based on the common quadratic Lyapunov function ξT

k Pξk. For
the comparison of the stability results based on this adapted common quadratic
Lyapunov function and based on the L-K functional, as an example the case

d+ δ = 2 is considered. The state-vector is given by χk =
(

xT
k xT

k−1 xT
k−2

)T
.

Then, V = χT
k Pχk, with P ∈ R

(d+δ+1)n×(d+δ+1)n can be compared with

V = χT
k





P̃ + T1 −T1 0
−T1 R1 + T1 + T2 −T2

0 −T2 R2 + T2



χk. This shows that the L-K func-

tional is a subset of the common quadratic Lyapunov function for χk, and there-
fore the results of the L-K functional will be more conservative than the results
obtained with the common quadratic Lyapunov function based on χk. In Sec-
tion 4.5, the conservatism of the different theorems will be studied based on an
illustrative motion control example.
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4.5 Illustrative examples

In this section, we will apply the proposed stability results to several examples,
by using LMITOOL in Matlab. First, we consider the second-order motion
control system, as used in Section 4.1. The effects of delays smaller and larger
than the sampling interval and packet dropouts on the closed-loop stability are
analyzed. Stability regions, that describe the combination of controllers that
stabilize the system for a bounded variation in the delays (with or without
packet dropouts) are determined. Such a region is useful to determine the max-
imum allowable delay variation that is allowed in the network (or in the network
in combination with a processor if the processor is used for other computations
as well) for which the system is still stabilized. Moreover, the effect of different
constant sampling intervals on the maximum allowable delays for which a pre-
viously defined controller can still stabilize the system is investigated. Such a
study is useful in choosing the sampling interval in such a way that the system
can still be stabilized on one hand, and the amount of data that needs to be
sent over the communication network is limited on the other hand. A reduction
of the data that needs to be transmitted may be desirable if the network load
is relatively high. More details on the effect of the sampling interval on the
occupancy of the network and, therefore, the size of the communication delays
can be found in [56; 71; 85]. Second, we consider the example of Section 4.1 that
showed the destabilizing effect that time-varying sampling intervals can have.
For this example, Theorem 4.4.4 is applied to determine a stabilizing controller
in combination with a bound on the variation in the sampling interval. We
would like to stress that the stability conditions proposed in the previous sec-
tions only provide sufficient conditions. Consequently, the infeasibility of the
stability LMIs does necessarily not imply instability.

4.5.1 Time-varying delays

To show the applicability of the presented stability conditions, the stability for
the motor-roller example, as presented in Section 4.1 is studied, for the case
of a constant sampling interval and known bounds for the time-varying delays.
We assume that the sampling interval is given by h = 1ms and that the state-
feedback controller (4.9) is given by K =

(

Ka Kb

)

with a constant position
controller gain Ka = 50N. In first instance, we focus on the applicability of
Theorem 4.3.1 (SF-CQLF) and 4.4.4 (SF-CQLF), without packet dropouts and
for constant sampling intervals; i.e. we will consider both the case of small and
large delays. All controller gains Kb that stabilize the system with time-varying
delays τk ∈ [0, τmax], with τmax ≤ 2h, according to Theorem 4.4.4, with δ = 0,
γ = 0, and hmax = hmin = h are determined. Recall that, for τmax ∈ [0, h),
Theorem 4.4.4 provides the same results as Theorem 4.3.1. The maximum and
minimum controller gains Kb that stabilize system (4.1) for a given variation in
the delay τk ∈ [0, τmax] are given by the solid lines in Figure 4.45. The region be-
tween these two lines is denoted as the stability region, which characterizes the

5In this figure the x- and y-axis are chosen similar as in e.g. [90] and [133].
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stabilizing controllers for (4.1), with τ ∈ [0, τmax]. For comparison, the stability
region for constant time-delays equal to τmax is depicted by the dash-dotted
line in Figure 4.4. As expected, the upper bound for time-varying delays is
smaller than the upper bound for constant time-delays. For time-delays equal
to zero, the upper bounds for Kb are equal, which shows that for these de-
lays the stability conditions are not conservative. For larger delays, the upper
bound for time-varying delays cannot become larger, because τk = 0, ∀k is a
possible delay sequence (since we used τmin = 0). Therefore, the conservatism
for the small delay case remains limited. For the large delay case, the distance
between the bounds for constant and time-varying delays remains similar to
the small delay case. The dashed line in Figure 4.4 gives the values of two
delays, i.e. τa = 0.2ms and τb = 0.6ms (for K =

(

50 11.8
)

), for which the
example (4.2) is stable for either the constant delay τa or the constant delay
τb. Moreover, the NCS is stable for all constant delays taken from the interval
[τa, τb]. If these delays occur in an alternating sequence (τa, τb, τa, τb, . . .) the
system becomes unstable, as was shown in Section 4.1. As expected, for fixed
Kb, this delay combination is outside the obtained stabilizing region of The-
orem 4.3.1 (SF-CQLF). This observation, in combination with the comparison
between the stability regions for time-varying and constant delays, reveals the
fact that the stability bound is hardly conservative both for the small and large-
delay case. Additionally, the dotted line in Figure 4.4 gives the stability region
of our earlier stability conditions as presented in [16]. These stability conditions
used an overapproximation of the matrix entries that depend on the uncertain
time-varying delays, considering the use of interval matrices, instead of an over-
approximation that is based on the Jordan form of the continuous-time system
matrix A as proposed in this chapter. Clearly, the results obtained by Theorem
4.4.4 (SF-CQLF) (and for τ ∈ [0, h) also the results obtained by Theorem 4.3.1)
are less conservative than the results obtained in [16]. This difference is caused
by a much tighter overapproximation of the discrete-time NCS model by using
the Jordan form. Moreover, the number of LMIs is decreased for the small delay
case from 2n×(n+m) in [16] to 2ν , with ν defined in (B.29), where it holds that
ν ≤ n.

To obtain an improved understanding of the differences in conservatism be-
tween the stability analysis results using the candidate Lyapunov function and
the candidate Lyapunov-Krasovskii (L-K) functional, the stability regions for
the motor-roller system (4.1), obtained from Corollary 4.3.3 (SF-CQLF) and
Theorem 4.3.2 (SF-LK) for the small delay case and from Theorems 4.4.4 (SF-
CQLF) (with χT

k Pχk and (4.47)) and 4.4.7 (SF-LK) for the large delay case
(with δ = 0, hmin = hmax = h), are depicted in Figure 4.5. We note that
there is no difference between the results obtained using Theorem 4.3.1 or
Corollary 4.3.3 for the small delay case. The same observation holds for the
equivalent conditions for the large delay case. This means that, for this ex-
ample, no difference is found between the use of V (ξk)TPξk or V (χk)TPχk.
Figure 4.5 shows that Theorem 4.4.7 (SF-LK) gives comparable results as The-
orem 4.4.4 (SF-CQLF), except for delays τmax ∈ [0, 0.5]ms and τmax > h = 1ms,
where a small difference between both approaches is observed. This comparison
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Figure 4.4: Minimum and maximum allowable controller gains Kb for sys-
tem (4.1), (3.21), (3.22), (4.9), with h = 1ms, K = (Ka Kb), Ka = 50N and
time-varying delays in the interval [0, τmax] for Theorem 4.3.1, Theorem 4.4.4,
and based on [16], as well as for constant time-delays equal to τmax.

shows that using L-K functionals (as in Theorem 4.4.7) for discrete-time NCSs
does not necessarily result in less conservative results, compared to a standard
common quadratic Lyapunov function.

The previously obtained results consider a constant sampling interval h =
1ms. To determine the dependence of the stability region on the magnitude of
the constant sampling interval h, the stability conditions of Theorem 4.3.1 (SF-
CQLF) and 4.4.4 (SF-CQLF) are analyzed for different values of h. The ob-
tained stability conditions are depicted in Figure 4.6 by the black lines, including
the corresponding stability regions for constant delays that are depicted by the
gray lines. For increasing sampling intervals, both the stability region for con-
stant and for time-varying delays decrease. The fact that the distance between
the lines for the time-varying delays and the corresponding constant delays does
not change dramatically for increasing values of the sampling interval h shows
that Theorem 4.3.1 and 4.4.4 are not overly conservative (at least for this ex-
ample), as was already concluded for the case with h = 1ms from Figure 4.4.
The maximum stabilizing value of the controller gain Kb decreases slightly, if
the same maximum delay (τmax = 2ms) is compared for different values of the
sampling interval h (based on the delay fractions τmax/h = 2 for h = 1ms,
τmax/h = 1 for h = 2ms, and τmax/h = 0.2 for h = 5ms). The maximum
stabilizing values of Kb are 4.3N, 3.45N, and 3.09N, respectively, which shows
that the stability region becomes smaller for larger sampling intervals. Another
way to determine the effect of the sampling interval on the stability region is
to compare the largest maximum delay for which a stabilizing controller can be
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Figure 4.5: Stability region for (4.1), (3.21), (3.22), (4.9) with h = 1ms, K =
(50 Kb), τ ∈ [0, τmax], and δ = 0, based on Theorems 4.4.4 and 4.4.7.

found. Based on Figure 4.7, it is concluded that the largest allowable maximum
delay decreases slightly for increasing sampling intervals. For h = 4ms, it holds
that τmax = 6.56ms is the largest delay for which a stabilizing controller gain Kb

can be found, while for h = 5ms, τmax = 6ms is the largest delay. The decrease
of the maximum allowable delay and the decrease of the maximum allowable
controller gain for increasing sampling intervals do not mean that the smallest
sampling interval is the best possible choice, because smaller sampling intervals
result in more data that needs to be transmitted over the network, resulting in
a larger network load (and possible larger delays). Therefore, dependent on the
network load, it may be advantageous to choose a larger sampling interval, such
that less data needs to be transmitted, possibly resulting in a lower network
load and therefore smaller time-delays. More details on the relation between
the sampling interval, the network load, and the size of the delays can be found
in [56; 71; 85] that deal with a communication network and in [112], where a
comparison between different modeling tools for the software that include the
(net)work load to predict the delays in terms of latency and jitter is made.

In the analysis presented in this section, the performance of the NCS, e.g.
in terms of settling time is not considered, while in practice the performance is
influenced both by the time-delay and by the chosen sampling interval.

4.5.2 Packet dropouts

To determine the effect of packet dropouts on the stability region, the stability
analysis results of Theorem 4.4.4 (SF-CQLF) are used for a different number
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of subsequent packet dropouts, in combination with a time-varying delay that
is upper bounded by the sampling interval (h = 1 ms, τmin = 0, τmax ≤ h).
Similar to the previous paragraph, a state-feedback controller as in (4.9), with
K =

(

50 Kb

)

is used. Based on the LMIs of Theorem 4.4.4, the stability

region, given by an upper and lower bound for Kb, for δ = 0, i.e. no packet
dropouts, δ = 1 and δ = 2, in combination with τ ∈ [0, τmax] is depicted in Fig-
ure 4.8. Clearly, packet dropouts decrease the allowable controller gains that
stabilize the NCS. Note that the allowable controller gain Kb for a time-varying
delay upper bounded by the sampling interval without packet dropouts is the
same as the allowable controller gain Kb for one subsequent packet dropout,
without delays (as denoted by the arrow in the figure). The same holds for one
packet dropout in combination with a time-varying delay upper-bounded by
the sampling interval and two packet dropouts without time-varying delays, as
already discussed in Remark 4.4.6. This similarity is evident from the analysis
as presented in Theorem 4.4.4 (SF-CQLF), as well as for the analysis presented
in Theorem 4.4.7 (SF-LK). Note that this is a consequence of the analysis tech-
niques, while it might not reflect the real stability bounds, as was explained in
Section 4.4.

4.5.3 Time-varying sampling intervals

For time-varying sampling intervals, system (4.3), obtained from [132], is con-
sidered. Here, we consider the case without time-delays and packet dropouts.
Based on Theorem 4.4.4 (SF-CQLF), variations in the sampling interval are
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determined, for which a given controller can still stabilize the system (4.3).
Investigating these bounds provides insight in when the destabilizing effect as
shown in Section 4.1 can occur. For the purpose of stability analysis, we con-
sider the state-feedback controller uk = −Kxk. Here, the controllers obtained
from (4.9) and (4.8) are exactly equal, due to the absence of delays (therefore
only the current state is used in the discrete-time NCS model). Based on the
LMIs in Theorem 4.4.4 (SF-CQLF), the controller K =

(

1 6
)

stabilizes (4.3)
for h ∈ [0.46, 0.54] or h ∈ [0.5, 0.56]. For the presented destabilizing variation
in the sampling interval h ∈ [0.18, 0.54] (see Section 4.1), indeed, the LMIs of
Theorem 4.4.4 are not feasible. These examples show that Theorem 4.4.4 can
be used to derive bounds on the variation of the sampling interval, guaranteeing
closed-loop stability.

The fact that Theorem 4.4.4 can be used to prove stability for bounded
variations in the sampling interval shows an advantage of the proposed method.
Other criteria, such as [75; 76; 132] use hmin := 0 and are not able to find
a stabilizing controller for system (4.3), while Theorem 4.4.4 gives a minimum
and maximum value of the variation in the sampling interval, i.e. hmin and hmax

respectively. This allows for less conservative results compared to the criteria
that consider hmin := 0.

The derivation of upper and lower bounds for the sampling interval is in-
teresting for a NCS that has to deal with variable sampling intervals. This is
the case if the controller requests for new sensor data on previously determined
(equidistantly spaced) time-instants, which results in variations in the sampling
interval, because the request is transmitted over the communication network.
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Another reason to apply this kind of analysis is to design a system with a varia-
tion in the sampling interval, such that the network load (or processor load) can
be decreased, e.g. resulting in a decrease of packet dropouts in wireless networks
as discussed in [89] or a decrease of the time-delays as discussed in the previous
paragraph. Another example to apply variation in the sampling interval deals
with different performance demands in time. In an industrial printer, the mo-
tors are running on an average velocity if no sheet of paper has to be transported
by the motor, but speed up if a sheet of paper needs to be transported by the
motor. In the first case, the performance measure, in terms of accuracy of the
velocity is less strict than in the second case, where the position of the sheet
of paper needs to be controlled. This difference on the performance demands
allows for a larger sampling interval in the first case than in the second case.
For both cases, as well as in the switching situation between different sampling
intervals, the system needs to be stable, and therefore analysis in terms of the
variation in the sampling interval may be useful, because the switching between
the slow and fast sampling intervals is included in the analysis LMIs presented
in Section 4.4.

4.6 Discussion

In this chapter, different stability conditions for discrete-time models of NCSs
with time-varying delays, packet dropouts, and time-varying sampling intervals
are proposed. These stability conditions differ in terms of the type of candidate
Lyapunov function (a common quadratic Lyapunov function or a Lyapunov-
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Krasovskii functional) and the control laws (state-feedback or extended state-
feedback) that are considered. The extended state-feedback controller, which
contains a state-feedback term and terms related to past control input informa-
tion, is only applicable if all previous control inputs are known to the controller.
Therefore, if delays larger than the sampling interval and packet dropouts may
occur, additional assumptions are necessary to be able to apply such a con-
troller. For the standard state-feedback controller these assumptions are not
needed, because it does not depend on the control history.

For a specific example, it is shown that the use of the common quadratic
Lyapunov function based on the extended state did not result in overly con-
servative stability results, as was concluded based on the comparison with the
periodic destabilizing delay sequence and the difference between the case with
constant and time-varying delays. Both in general and based on the example, it
is shown that the common quadratic Lyapunov function gives less conservative
stability results than the Lyapunov-Krasovskii (L-K) functional, if the state-
feedback controller is considered. This difference in conservatism is caused by
the fact that the L-K functional can be rewritten, such that it is a subset of
the common quadratic Lyapunov function (based on the same state vector).
Besides the larger conservatism, the use of the L-K functional results in more
complex LMI conditions, due to the larger number of matrices that need to be
solved for. However, the number of LMIs that are used to describe the time-
varying behavior of the NCS is equal for the Lyapunov approach and the L-K
approach, because it depends on the number of time-varying parameters in the
NCS model.

In studying the stability of a NCS with packet dropouts and time-varying
delays a similarity is found in terms of the effect of packet dropouts and delays
on the stability. Namely, the stability region remains the same if τmax + δ = c,
with c ∈ R

+ an arbitrary constant value larger than or equal to zero. This
might not be the case for the actual stability boundaries.

Finally, an advantage of the presented stability conditions is that the anal-
ysis depends explicitly on the bounds on the sampling interval hmin, hmax and
the bounds on the delay τmin and τmax. Therefore, bounds on the sampling
interval and the time-variation of the delays can be found for which the system
can be stabilized. The use of a lower bound on the sampling interval hmin is ad-
vantageous for systems that are destabilized if large variations in the sampling
interval occur. Our approach gives a bound for which stability is guaranteed,
while other approaches are not able to find a stabilizing controller, due to the
fact that hmin is always taken equal to zero, (see e.g. [74–76; 132]). The use of
the lower bound on the delay τmin is advantageous if the lower bound on the
delay is known and the system is unstable for the case without time-delays, but
can be stabilized by adding some time-delay or has a smaller stability region
for delays equal to zero.
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5.3 Illustrative examples
5.4 Discussion

This chapter deals with extending the stability results for NCSs of Chapter 4
such that they are applicable for controller synthesis. The synthesis conditions
that will be proposed in the current chapter provide constructive conditions to
design a controller that ensures stability. Similar to the stability conditions, the
controller synthesis conditions are given in terms of LMIs, as these are efficient
to solve. Note that the conditions in Chapter 4 are currently not in a LMI
form if they are solved for both the Lyapunov function (or L-K functional) and
the controller. Again, the different situations based on the size of the time-
varying delays, packet dropouts, and time-variations in the sampling interval
are considered. Similar to Chapter 4, for the sake of brevity only two cases,
i.e. time-varying delays smaller than the constant sampling interval and time-
varying sampling intervals, with delays that may be larger than this sampling
interval and packet dropouts are considered. The case with time-delays smaller
than the sampling interval is described to explain the conditions for controller
synthesis, without all the complexity that arises in the case with time-varying
sampling intervals, packet dropouts, and large delays. Similar to Chapter 4, the
different controllers and the different Lyapunov-based approaches are considered
and for each of them controller synthesis conditions are derived. Based on the
obtained LMIs, conditions that guarantee a lower bound on the transient decay
rate are described. This results in a performance measure in terms of the
transient response of the system, which is a performance criterium that is of
interest for many practical control problems.

This chapter is organized as follows. Section 5.1 describes the controller
synthesis conditions and a performance bound in terms of the transient decay
rate for the small delay case. Section 5.2 considers the case with time-varying
sampling intervals, large delays, and packet dropouts. Note that this case in-
cludes the scenarios with time-varying delays larger than the constant sampling
interval with and without packet dropouts as defined in Chapter 3, as well.
Illustrative examples for the controller synthesis conditions and the transient
performance bound are presented in Section 5.3. A discussion on the obtained
controller synthesis conditions for the different controllers and the different Lya-
punov functions is given in Section 5.4.
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5.1 Small delays

In this section, the stability conditions for NCSs with delays smaller than the
sampling interval presented in Chapter 4 will be extended towards controller
synthesis conditions in terms of LMIs. Both the extended state-feedback con-
troller, defined in (4.8) as

uk = −Kξk = −Kxk −K1uk−1, (5.1)

with K =
(

K K1

)

∈ R
m×(m+n), and the state-feedback controller, defined in

(4.9) as
uk = −Kxk, (5.2)

with K ∈ R
m×n, will be considered. Recall that the NCS for delays smaller

than the sampling interval is described by (3.1):

ẋ(t) = Ax(t) +Bu∗(t),
y(t) = Cx(t)
u∗(t) = uk, for t ∈ [sk + τk, sk+1 + τk+1).

(5.3)

5.1.1 A common quadratic Lyapunov function based on
the extended state vector ξk

Analogous to the stability analysis conditions presented in Chapter 4, the
discrete-time representation of (5.3) is considered to derive controller synthesis
conditions. Recall, from Chapter 3 that this discrete-time model is given by
(3.3):

ξk+1 = Ã(τk)ξk + B̃(τk)uk

yk = C̃ξk,
(5.4)

with ξk =
(

xT
k uT

k−1

)T
and τk ∈ [τmin, τmax] ∀k ∈ N, with τmax < h. In

this section, we present controller synthesis results using a common quadratic
Lyapunov function. In first instance, we focus on synthesis conditions for the
extended state-feedback controller (5.1) and not on synthesis conditions for the
state-feedback controller (5.2). The reasoning behind this choice becomes clear
after presenting the synthesis conditions. Based on the same overapproximation
procedure as exploited in Theorem 4.3.1 (ESF-CQLF), sufficient conditions for
the existence of controllers globally asymptotically stabilizing system (5.3), (5.1)
for τ ∈ [τmin, τmax], 0 ≤ τmin ≤ τmax < h are given in Theorem 5.1.1.

Theorem 5.1.1 (ESF-CQLF) Consider the NCS model (5.3), (5.1) and its
discrete-time NCS description (5.4), (5.1), both parameterized by the time-
varying delays τk ∈ [τmin, τmax], with 0 ≤ τmin ≤ τmax < h. Moreover, consider
the equivalent representation of (5.4) that is based on the Jordan form of the
continuous-time system matrix A, given by (4.5). Consider the set of matrices
HFG as defined in (4.12).
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If there exist a symmetric matrix Y ∈ R
(n+m)×(n+m), a matrix

Z ∈ R
m×(n+m), and a scalar 0 ≤ γ < 1 such that the following LMIs are

satisfied:
(

(1 − γ)Y Y HT
F,j − ZTHT

G,j

HF,jY −HG,jZ Y

)

> 0, ∀(HF,j , HG,j) ∈ HFG, (5.5)

and j = 1, 2, . . . , 2ν , then K = ZY −1 gives a control gain that renders system
(5.3), (5.1) GAS and V (ξk) = ξT

k Pξk, with P = Y −1 is a Lyapunov function
for (5.4).

Proof The proof is given in Appendix A.10. �

Note that the use of the extended state-feedback controller, including past
control inputs avoids the so-called structured control synthesis problem, because
all entries in K can be freely assigned [102]. This structured control synthesis
problem, which is in general known to be notoriously difficult [6; 102], is found
if the state-feedback controller uk = −Kxk, as in (5.2), is considered. This can
be explained by rewriting uk = −Kxk as uk = −Kξk, with K =

(

K 0m×m

)

.
Then, both Z and Y in (5.5) need to be structured to guarantee a controller
of the form

(

K 0m×m

)

. A possible choice is to use Z =
(

Z 0m×m

)

and

Y =

(

Y 1 0
0 Y 2

)

, then K is obtained from K = ZY −1 or K from K = Z Y
−1

1 .

The use of these structured matrices Y and Z, in combination with a similar
partioning as in Section 4.3.2, leading to the system description

ξk+1 =

(

Θ̂0 F x(τk)
0 0

)

ξk +

(

Gx(τk)
I

)

uk, (5.6)

for all (F x, Gx) ∈ FGx, with FGx defined in (4.21), results in the following
corollary:

Corollary 5.1.2 (SF-CQLF) Consider the NCS model (5.3), (5.2) and its
discrete-time representation (5.4), (5.2), both parameterized by τk ∈ [τmin, τmax],
0 ≤ τmin ≤ τmax < h. Moreover, consider the equivalent representation that is
based on the Jordan form of the continuous-time system matrix A (5.6), (5.2)
and the set of matrices Hx

FG as defined in (4.23). If there exist symmetric ma-
trices Ȳ1 ∈ R

n×n, Ȳ2 ∈ R
m×m, a matrix Z ∈ R

m×n, and a scalar 0 ≤ γ < 1
that satisfy









(1 − γ)Ȳ1 0 Ȳ1Θ
T
1 − ZT (Hx

G,j)
T ZT

0 (1 − γ)Ȳ2 Ȳ2(H
x
F,j)

T 0

Θ1Ȳ1 −Hx
G,jZ Hx

F,jȲ2 Ȳ1 0

Z 0 0 Ȳ2









> 0, (5.7)

for all (Hx
F,j , H

x
G,j) ∈ Hx

FG, j = 1, 2, . . . , 2ν, then the controller K = ZỸ −1

renders system (5.3), (5.2) GAS. Moreover, ξT
k

(

P1 0
0 P2

)

ξk, with P1 = Ȳ −1
1

and P2 = Ȳ −1
2 , is a Lyapunov function for (5.4).
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The use of this state-feedback controller results in a rather conservative
approach, due to the imposed structure in Y and Z. This will be illustrated
in the examples discussed in Section 5.3. However, in [17; 19], an approach is
presented that avoids the use of the structure in the matrix Y (or equivalently
P ). The obtained synthesis conditions, that consider the results presented in
[17; 19], are given in the following theorem.

Theorem 5.1.3 (SF-CQLF*) Consider the NCS model (5.3), (5.2) and its
discrete-time NCS description (5.4), (5.2), both parameterized by the time-
varying delays τk ∈ [τmin, τmax], with 0 ≤ τmin ≤ τmax < h. Moreover, consider
the equivalent representation of (5.4) that is based on the Jordan form of the
continuous-time system matrix A, given by (4.5). Consider the set of matrices
HFG as defined in (4.12).

If there exist a symmetric matrix Y ∈ R
(n+m)×(n+m), a matrix Z ∈ R

m×n,

a matrix X =

(

X1 0
X2 X3

)

with X1 ∈ R
n×n, X2 ∈ R

m×n, X3 ∈ R
m×m and a

scalar 0 ≤ γ < 1 such that the following LMIs are satisfied:

(

(1 − γ)Y HF,jX −HG,j

(

Z 0
)

⋆ X +XT − Y

)

> 0, ∀(HF,j , HG,j) ∈ HFG, (5.8)

j = 1, 2, . . . , 2ν, and ⋆ defined such that the obtained LMI is symmetric, then
K = ZX−1

1 gives a control gain that renders system (5.3), (5.2) GAS and
V (ξk) = ξT

k Pξk, with P = Y −1 is a Lyapunov function for (5.4), (5.2).

Proof The proof is analogous to the proof of Theorem 5.1.1, in combination
with a state-feedback controller instead of an extended state-feedback controller,
and the proof of Theorem 3 in [19]. There, it is used that the following two
conditions are equivalent to prove global asymptotic stability of a system, e.g.
(5.4), (5.1) (for a known controller):

(i) There exists a symmetric matrix P such that

(

P (HF,j −HG,jK)TP
P (HF,j −HG,jK) P

)

> 0, ∀
(

HF,j , HG,j

)

∈ HFG,

and j = 1, 2, . . . , 2ν .

(ii) There exists a symmetric matrix P and a matrix X such that

(

P (HF,j −HG,jK)TXT

X(HF,j −HG,jK) X +XT − P

)

> 0, ∀
(

HF,j, HG,j

)

∈ HFG,

and j = 1, 2, . . . , 2ν .

In both cases, the Lyapunov function that is exploited to prove GAS of (5.4),
(5.1) (or equivalently for (5.2), with K =

(

K 0m,m

)

) is given by V (ξk) =

ξT
k Pξk.
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Based on a similar reasoning it is proven in [17; 19] that for GAS of (5.4),
(5.2), it is sufficient if there exists a symmetric matrix P and a matrix X such

that

(

P HF,jX −HG,jZ
XTHT

F,j − ZTHT
G,j X +XT − P

)

> 0, ∀
(

HF,j, HG,j

)

∈ HFG, and

j = 1, 2, . . . , 2ν . Here, the controller is obtained from K = ZX−1 and the
Lyapunov function is given by V (ξk) = ξT

k Pξk. Note that for Theorem 5.1.3,

it is used that Z =
(

Z 0
)

and X =

(

X1 0
X2 X3

)

, such that K = ZX−1 gives

indeed the state-feedback controller. Note that to determine K there is no
difference between using K = ZX−1

1 and K =
(

K 0
)

=
(

Z 0
)

X−1, due to
the specific shape of X . �

To determine whether the use of a Lyapunov-Krasovskii (L-K) functional can
result in less conservative controller synthesis conditions for the state-feedback
controller (5.2) than Theorem 5.1.3, the candidate L-K functional of Chapter 4
will be considered in the next section. However, it is not expected that the
L-K functional results in less conservative results, because Theorem 5.1.3 has a
similar conservatism as the stability conditions based on the common quadratic
Lyapunov function in Theorem 4.3.1 that was slightly less conservative than the
approach based on the L-K functional, as presented in Theorem 4.3.2.

Before exploiting the synthesis conditions based on the L-K functional, the
transient performance of the system including the controller designs as can be
derived with the previous theorems will be discussed.

Transient performance To obtain a performance measure of the derived
controller in terms of the transient behavior of the closed-loop system, the
convergence bound based on the obtained matrix P = Y −1 and the corre-
sponding value γ can be obtained1. Recall that, if the conditions of Theo-
rems 5.1.1 or 5.1.3 are satisfied, then (4.11) holds; i.e. it holds that ∆V (ξk) :=
V (ξk+1) − V (ξk) < −γV (ξk). We adopt the notation |ξk|2P = |ξT

k Pξk|. Using

the fact that λmin(P )|ξk|2 ≤ |ξk|2P ≤ λmax(P )|ξk|2 and |xk|2 ≤ ‖CxP
− 1

2 ‖2|ξk|2P ,
with Cx obtained from xk = Cxξk, we can derive a lower bound for the transient
decay rate of the discrete-time state xk as:

|xk|2 ≤ (1 − γ)k‖CxP
− 1

2 ‖2|ξ0|2P ≤ (1 − γ)k‖CxP
− 1

2 ‖2λmax(P )|ξ0|2. (5.9)

It is obvious that the lower bound on the decay rate depends both on P and
γ. An optimization algorithm that derives a control gain K (or K according
to (5.5) ((5.7), or (5.8)), with the optimum decay rate (i.e. the largest possible
value of γ) as defined in (5.9), results in a control design tool that combines
stability and transient performance (settling-time) in the face of time-varying
delays τk ∈ [τmin, τmax].

1Note that P =

(

Ȳ −1

1
0

0 Ȳ −1

2

)

needs to be applied if Corollary 5.1.2 is applied to derive

a state-feedback controller.
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5.1.2 A Lyapunov-Krasovskii functional

To derive a controller synthesis approach for the state-feedback controller, us-
ing the candidate Lyapunov-Krasovskii (L-K) functional defined in (4.17) as

V (χk) = xT
k P̃ xk +xT

k−1Rxk−1 +(xk − xk−1)
T
T (xk − xk−1), a slightly different

approach is followed. In Chapter 4, this candidate Lyapunov function was used
to determine stability of (5.3), (5.2). Recall that in this candidate Lyapunov
function the matrices P̃ , R, and T are chosen to be positive definite, similar to
Theorem 4.3.2. Moreover, the discrete-time NCS description of (5.3) is given
by (4.19):

χk+1 =

(

eAhxk −
∫ h−τk

0
eAsdsBK −

∫ h

h−τk
eAsdsBK

I 0

)

χk, (5.10)

with χk =
(

xT
k xT

k−1

)T
. Let us now introduce an additional equation that is

used to derive the controller synthesis conditions. This function is used as a
relaxation function and is needed to obtain LMIs instead of nonlinear matrix
inequalities, as will be shown in the proof of Theorem 5.1.4 in Appendix A.11.

Ψ1(xk, xk−1) = 2
(

xT
kN1 + xT

k−1N2

)

((xk − xk−1) − (xk − xk−1)) = 0. (5.11)

In Theorem 5.1.4 sufficient conditions are proposed that characterize a sta-
bilizing state-feedback controller for (5.3), (5.2), based on the candidate L-K
functional (4.17) in combination with the additional function Ψ1.

Theorem 5.1.4 (SF-LK) Consider the NCS of (5.3), (5.2) and its discrete-
time representation (5.10), (5.2), both parameterized by τk ∈ [τmin, τmax], 0 ≤
τmin ≤ τmax < h. Moreover, consider the equivalent representation based on
the Jordan form of the continuous-time system matrix A, defined in (4.22), and
the set of matrices Hx

FG as defined in (4.23). If there exist symmetric positive

definite matrices Ỹ ∈ R
n×n, R̂ ∈ R

n×n, N̂1 ∈ R
n×n, N̂2 ∈ R

n×n, a matrix
Z ∈ R

m×n, and scalars 0 ≤ γ < 1, θ1 > 0 that satisfy:















(1 − γ)Ỹ − R̂− N̂1 − N̂T
1 ⋆ ⋆ ⋆ ⋆

N̂T
1 − N̂2 (1 − γ)R̂+ N̂2 + N̂T

2 ⋆ ⋆ ⋆

Θ1Ỹ −Hx
G,jZ −Hx

F,jZ Ỹ ⋆ ⋆

Θ1Ỹ −Hx
G,jZ − Ỹ −Hx

F,jZ 0 θ1Ỹ ⋆
1√
1−γ

θ1N̂
T
1

1√
1−γ

θ1N̂
T
2 0 0 θ1Ỹ















> 0,

(5.12)
for all (Hx

F,j , H
x
G,j) ∈ Hx

FG, j = 1, 2, . . . , 2ν , then the controller (5.2), with the

controller gain matrix K = ZỸ −1 renders system (5.3) GAS. Moreover, (4.17)
is a Lyapunov function for (5.10), (5.2), with parameters that can be retrieved
from Ỹ := P̃−1, R̂ := P̃−1RP̃−1, N̂1 := P̃−1N1P̃

−1, N̂2 := P̃−1N2P̃
−1, K =

ZỸ −1, and T−1 := θ1P̃
−1.

Proof The proof of Theorem 5.1.4 is given in Appendix A.11. �
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It should be noted that once θ1 and γ are chosen, (5.12) is a LMI. Moreover,
compared to the stability analysis conditions in Theorem 4.3.2, a relation be-
tween the matrices T and P̃ (T := 1

θ1
P̃ ) is introduced to obtain LMI conditions.

This will result in additional conservatism compared to Theorem 4.3.2. More-
over, due to this imposed structure, Theorem 5.1.4 will be more conservative
than Theorem 5.1.3 (SF-CQLF*), especially if the same state vector (χk) is
considered.

Transient performance The performance in terms of the transient decay
rate can be obtained analogous to (5.9), if ξ0 is replaced by χ0 and if P is

replaced by PRT =

(

P̃ + T −T
−T R+ T

)

to account for the used candidate L-K

functional. Then, it holds that

|xk|2 ≤ (1 − γ)k‖CxPRT
− 1

2 ‖2|χ0|2PRT
, (5.13)

with |χ0|2PRT
= χT

0 PRTχ0. Note that, compared to (5.9), the matrix Cx has to

be adapted, such that it corresponds to the dimension of χk, i.e. xk = Cxχk,
with Cx ∈ R

n×2n.

5.2 Variable sampling intervals, large delays,

and packet dropouts

In this section, the previously derived controller synthesis approaches are ex-
tended, such that they are applicable for systems with variations in the sam-
pling interval, time-varying delays larger than the sampling interval, and packet
dropouts. Recall that in the case of time-varying sampling intervals, the sam-
pling instants sk are defined according to (3.19):

sk =

k−1
∑

i=0

hi ∀k ≥ 1, s0 = 0.

The possible sequences of sampling instants, delays, and packet dropouts are
denoted by σ ∈ S, with S defined in (3.20) as:

S :=

{

{(sk, τk,mk)}k∈N : hmin ≤ sk+1 − sk ≤ hmax, τmin ≤ τk ≤ τmax,

k
∑

v=k−δ

mv ≤ δ, ∀k ∈ N

}

,

(5.14)
and δ the maximum number of subsequent packet dropouts. Recall, from Chap-
ter 3, that the continuous-time NCS model for delays larger than the sampling
interval, packet dropouts, and time-varying sampling intervals is described by
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(3.12):
ẋ(t) = Ax(t) +Bu∗(t)
y(t) = Cx(t),

(5.15)

where the controller is defined according to (3.21):

u∗(t) = uj for t ∈ [sk + tkj , sk + tkj+1), (5.16)

with tkj defined in (3.22) as:

tkj = min
{

max{0, τj −
k−1
∑

l=j

hl} +mjhmax,

max{0, τj+1 −
k−1
∑

l=j+1

hl} +mj+1hmax, . . . ,

max{0, τk−d −
k−1
∑

l=k−d

hl} +mk−dhmax, hk

}

,

(5.17)

and tkj ≤ tkj+1, j ∈ [k − d− δ, k − d− δ + 1, . . . , k − d].

5.2.1 A common quadratic Lyapunov function based on
the extended state vector ξk

In this section, constructive conditions are presented for state-feedback con-
trollers (5.2) and for extended state-feedback controllers of the form (4.29):

uk = −Kξk = −Kxk −K1uk−1 −K2uk−2 . . .−Kd+δuk−d−δ, (5.18)

with K ∈ R
m×(d+δ)m+n, d = ⌈ τmax

hmin
⌉, and δ the maximum number of subsequent

packet dropouts, analogous to Lemma 3.4.1. Similar to Theorem 5.1.1, in first
instance, the focus is on the use of the extended state-feedback controller. Then,
the structured control synthesis problem that occurs for the state-feedback con-
troller (5.2) is avoided. Recall that the control law (5.1), and therefore also
(5.18), is only applicable if Assumption 4.4.1 holds, which states that packet
dropouts and message rejection between the sensor and the controller do not
occur.

Analogous to the previous section, the discrete-time representation of (5.15)
is used to derive constructive conditions. Recall that this discrete-time model
is given by (3.24):

ξk+1 = Ã(tk, hk)ξk + B̃(tk, hk)uk

yk = C̃ξk,
(5.19)

where tk denotes the combination of all time-varying parameters, i.e. tk =
(tk

k−d−δ+1
, . . ., tkk−d). Based on the same overapproximation procedure as ex-

ploited in Theorem 4.4.4, constructive LMI conditions for the design of a con-
troller that ensures the GAS of system (5.15), (5.16), (5.17), (5.18) are given in
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Theorem 5.2.1. Herein, a stability characterization using a common quadratic
Lyapunov function based on the extended state ξk is used.

Theorem 5.2.1 (ESF-CQLF) Consider the NCS model (5.15), (5.16), (5.17),
(5.18), and its discrete-time representation (5.19), for sequences of sampling
instants, delays, and packet dropouts σ ∈ S, with S as in (5.14). Consider the
equivalent representation (4.7) based on the Jordan form of A and the set of
matrices HFG defined in (4.35).

If there exist a symmetric matrix Y ∈ R
(n+(d+δ)m)×(n+(d+δ)m), a matrix

Z ∈ R
m×(n+(d+δ)m), and a scalar 0 ≤ γ < 1 that satisfy

(

(1 − γ)Y Y HT
F,j − ZTHT

G,j

HF,jY −HG,jZ Y

)

> 0, ∀(HF,j , HG,j) ∈ HFG, (5.20)

and j = 1, 2, . . . , 2ζ , then x = 0 is a GAS equilibrium point of the closed-loop
NCS (5.15), (5.16), (5.17), (5.18) with K = ZY −1. Moreover, the function
V (ξk) = ξT

k Pξk, with P = Y −1, is a Lyapunov function for the discrete-time
NCS (5.19), (5.18).

Proof The proof is similar to the proof of Theorem 5.1.1 �

For the state-feedback controller, similar to the small delay case, struc-
ture in the matrix Y and Z is needed. A possible structure is to use Y =
diag(Ȳ0, . . . , Ȳd+δ) and Z =

(

Z̄ 0(d+δ)m,(d+δ)m

)

instead of Y and Z as defined
in Theorem 5.2.1. Note that the Lyapunov function is in this case given by
V (ξk) = ξT

k Pξk, with P = diag(Ȳ −1
0 , . . . , Ȳ −1

d+δ
).

Analogous to the small delay case, the use of the approach in [17; 19], avoids
requiring a particular structure in the matrix Y (or P ) as it is transferred into
a slack variable. The equivalent of Theorem 5.1.3 (SF-CQLF*) for time-varying
sampling intervals, large delays, and packet dropouts is given in the following
theorem.

Theorem 5.2.2 (SF-CQLF*) Consider the NCS model (5.15), (5.16), (5.17),
(5.2), and its discrete-time representation (5.19), (5.2) for sequences of sampling
instants, delays, and packet dropouts σ ∈ S, with S as in (5.14). Consider the
equivalent representation (4.7) based on the Jordan form of A and the set of
matrices HFG defined in (4.35).

If there exist a symmetric matrix Y ∈ R
(n+(d+δ)m)×(n+(d+δ)m), a matrix

Z ∈ R
m×n, a matrix X =

(

X1 0
X2 X3

)

, with X1 ∈ R
n×n, X2 ∈ R

(d+δ)m×n,

X3 ∈ R
(d+δ)m×(d+δ)m, and a scalar 0 ≤ γ < 1 that satisfy

(

(1 − γ)Y HF,jX −HG,j

(

Z 0
)

⋆ X +XT − Y

)

> 0, ∀(HF,j , HG,j) ∈ HFG, (5.21)

and j = 1, 2, . . . , 2ζ , then x = 0 is a GAS equilibrium point of the closed-loop
NCS (5.15), (5.16), (5.17), (5.2) with K = ZX−1

1 . Moreover, the function
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V (ξk) = ξT
k Pξk, with P = Y −1, is a Lyapunov function for the discrete-time

NCS (5.19), (5.2), (5.2).

Proof The proof can be derived analogously to the proof of Theorem 5.1.3,
which is based on the proof of Theorem 3 in [19]. �

The synthesis conditions based on the L-K functional can be derived analo-
gously to the small delay case in Theorem 5.1.4 (SF-LK). However, the results
are not discussed here, because, based on the restrictions on the structure, as
used in Theorem 5.1.4 and based on Lemma 4.3.4 it is to be expected that the re-
sults will be more conservative than the results of Theorem 5.2.2 (SF-CQLF*).
The illustrative examples, in Section 5.3, will reveal this observation on the
conservatism. For the sake of completeness, the LMI conditions for the L-K
functional for time-varying delays, time-varying sampling intervals and packet
dropouts are given in Appendix C.

Transient performance The performance measure in terms of the transient
decay rate, as described in (5.9), holds if the matrix Cx is adapted to the

new definition of ξk, with ξk =
(

xT
k uT

k−1 . . . uT

k−d−δ

)T

and d defined in

Lemma 3.4.1.

5.3 Illustrative examples

To illustrate the applicability of the proposed controller synthesis conditions
and to make a comparison between the different approaches, the obtained con-
troller synthesis conditions are applied to the motor-roller example, as has been
considered in Chapter 4. In this example, a motor drives a roller that is used
to transport a sheet of paper through the paper path of an industrial printer
(see also the schematic overview of the motor and roller in Figure 4.1). For
the sake of simplicity, the system does not follow a prescribed trajectory, but
has to move towards zero, i.e. the reference trajectory is assumed to be equal
to zero. Such a simplification allows to study the stability of the controllers
that are obtained from the different presented controller synthesis conditions in
this chapter. Note that in Chapter 6, the tracking problem of this motor-roller
system, where the reference signal may be unequal to zero, is studied.

Moreover, a fourth-order motion control example is considered to show the
usefulness of the control design approach for more complex systems. This system
consists of two rotating discs that are coupled via a spring and a damper. Only
one disc is actuated, while, for both discs, the position and the velocity are
measured.

In both the second-order and the fourth-order example, the performance in
terms of the predicted transient decay rate is compared to the transient decay
rate obtained with simulations.
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Table 5.1: Obtained controllers for Theorem 5.1.1 (ESF-CQLF) and 5.1.2 (SF-
CQLF) for different values of γ and τmax for h = 1ms.

γ τmax K (Theorem 5.1.1) K (Corollary 5.1.2)

0 0.4h
(

0.041 0.264 −0.030
) (

0.034 0.191
)

0 0.6h
(

0.039 0.255 −0.029
) (

0.0003 0.004
)

0 h
(

0.041 0.263 −0.036
)

-
0.01 0.4h

(

3.715 0.578 −0.005
) (

13.716 1.681
)

0.01 0.49h
(

3.724 0.573 −0.004
) (

80.989 11.321
)

0.01 h
(

4.716 0.617 0.008
)

-
0.1 0.4h

(

197.892 2.829 0.267
) (

403.624 6.845
)

0.1 0.44h
(

197.175 2.825 0.273
) (

619.878 11.604
)

0.1 h
(

165.030 2.52 0.306
)

-

5.3.1 Motor-roller example

For the sake of comparison, the different proposed controller synthesis methods
are used to construct stabilizing controllers, using LMITOOL. First, the small
delay case is considered. The results for several maximum delays τmax, with
τmin = 0 and τmax < h and several values of γ for Theorem 5.1.1 (ESF-CQLF)
and Corollary 5.1.2 (SF-CQLF) are given in Table 5.1. Here, the maximum de-
lay for which Corollary 5.1.2 gives a stabilizing controller is given for different
values of γ. For Theorem 5.1.1, stabilizing controllers are derived for all delays
up to the sampling interval, as is given in Table 5.1. Then, from the number
of cases for which a stabilizing controller is derived, it can be concluded that
the results of Theorem 5.1.1 (ESF-CQLF) are less conservative than those of
Theorem 5.1.2 (SF-CQLF), which was expected, due to the structure used in
the Lyapunov function in the latter case. In Table 5.2 some stabilizing con-
trollers obtained from Theorem 5.1.3 (SF-CQLF*) are given. It is obvious, by
comparing Tables 5.1 and 5.2 that the avoidance of the demands on the struc-
ture of the P -matrix, as proposed in Theorem 5.1.3, results in less conservative
results than Corollary 5.1.2, where the structure on the P -matrix was needed.
The difference between the use of Theorems 5.1.1 (ESF-CQLF) and 5.1.3 (SF-
CQLF*) cannot be determined based on the presented results. Moreover, in
Table 5.2, some stabilizing controllers obtained from Theorem 5.1.4 (SF-LK),
including the value of the parameter θ1, are given. Here, the maximum value of
τmax, in combination with γ, for which a stabilizing controller can be obtained
is included (e.g. for γ = 0, only for τmax ≤ 0.99h and for γ = 0.1 only for
τmax ≤ 0.81h a stabilizing controller can be obtained). Based on these results,
it can be seen that the use of the L-K functional results in more conservative
results than the use of the common quadratic Lyapunov function without de-
mands on the structure of the P -matrix, because for increasing demands on the
transient response (an increase of the parameter γ) Theorem 5.1.4 (SF-LK) is
not able to find a stabilizing controller, while Theorem 5.1.3 (SF-CQLF*) still
finds one. Some difference in conservatism between Theorems 5.1.3 and 5.1.4
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Table 5.2: Obtained controllers for Theorems 5.1.3 (SF-CQLF*) and 5.1.4 (SF-
LK) for different values of γ and τmax for h = 1ms.

γ τmax K (Theorem 5.1.3) K (Theorem 5.1.4) θ1
0 0.4h

(

0.045 0.280
) (

0.891 4.307
)

1
0 0.4h

(

0.045 0.280
) (

2.812 6.985
)

10
0 0.4h

(

0.045 0.280
) (

4.711 7.878
)

20
0 0.99h

(

0.041 0.252
) (

0.939 2.931
)

1
0 h

(

0.412 0.252
)

- 1
0.01 0.4h

(

3.419 0.577
) (

42.466 5.927
)

1
0.01 0.98h

(

3.200 0.525
) (

28.522 5.002
)

1
0.01 h

(

3.221 0.527
)

- 1
0.1 0.4h

(

196.366 2.598
) (

329.252 5.252
)

1
0.1 0.81h

(

171.015 2.338
) (

286.395 5.328
)

1
0.1 h

(

156.703 2.188
)

- 1

is indeed expected, because in the latter theorem, the matrix T cannot be cho-
sen independently of P̃ , due to the assumption that T−1 = θ1P̃

−1 (which was
needed to obtain LMI conditions). Note that the results of Theorem 5.1.4 (SF-
LK) are slightly better than those obtained with Corollary 5.1.2 (SF-CQLF),
where a specific structure on the P -matrix is needed. Finally, from the last two
columns of Table 5.2 it is concluded that for θ1 many possible values exist (in
Theorem 5.1.4). Here, the choice of θ1 is made based on trial and error. It
can be seen that the choice of θ1 has an influence on the obtained controller,
although it is hard to provide a systematic procedure for how to select θ1. This
is another disadvantage of Theorem 5.1.4 (SF-LK).

The applicability of Theorems 5.2.1 (ESF-CQLF) and 5.2.2 (SF-CQLF*) for
systems with time-delays larger than the sampling interval is studied using the
results depicted in Table 5.3. Note that the equivalent of Theorem 5.1.4 (SF-
LK) for large delays, as given in Appendix C, does not give feasible solutions,
as was expected, because for τ = h in Table 5.2 no feasible solution was found.
In Table 5.3, it is assumed that there are no packet dropouts, i.e. δ = 0, and
that the sampling interval is constant (h = 1ms). Note that, due to the sim-
ilarity between packet dropouts and delays, it holds that e.g τmax = 1.2h and
δ = 0 can be replaced by τmax = 0.2h and δ = 1. Clearly, Theorems 5.2.1
and 5.2.2 are applicable for delays larger than the sampling interval. However,
Theorem 5.2.2 (SF-CQLF*) gives less freedom in the controller design which
results in the fact that for τmax = 2h and γ = 0.1 no stabilizing controller is
found, while using Theorem 5.2.1 (ESF-CQLF) we still find a stabilizing con-
troller. Note that for this specific example a large value of γ was considered.
For smaller values of γ both theorems obtain stabilizing controllers. Although
Theorem 5.2.1 (ESF-CQLF) is applicable for a slightly larger range of delays,
one limitation has to be considered, because it is only applicable if Assump-
tion 4.4.1 holds. This limits the applicability for NCSs with, firstly, large delays
if message rejection between the sensor and controller needs to be taken into
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Table 5.3: Obtained controllers for Theorems 5.2.1 (ESF-CQLF) and 5.2.2 (SF-
CQLF*) for different values of γ and τmax for h = 1ms.

γ τmax K (Theorem 5.2.1) K (Theorem 5.2.2)

0 1.2h
(

0.014 0.181 −0.007 0.001
) (

0.011 0.147
)

0 1.4h
(

0.014 0.188 −0.009 0.005
) (

0.011 0.152
)

0 2h
(

0.012 0.229 −0.028 0.023
) (

0.010 0.184
)

0.01 1.2h
(

15.499 1.672 0.393 0.270
) (

9.446 1.013
)

0.01 1.4h
(

15.147 1.641 0.397 0.297
) (

9.687 1.037
)

0.01 2h
(

15.802 1.699 0.387 0.242
) (

8.658 0.937
)

0.1 1.2h
(

146.322 2.519 0.395 0.143
) (

96.050 1.641
)

0.1 1.4h
(

158.951 2.724 0.436 0.193
) (

86.867 1.541
)

0.1 2h
(

159.036 2.836 0.460 0.313
)

-
0.05 2.8h

(

42.231 1.446 0.209 0.224 0.142
) (

19.432 0.741
)

account, and secondly, packet dropouts, because in general, it is expected that
the occurrence of packet dropouts in the network between the controller and ac-
tuator and between the sensor and controller is similar (hence, packet dropouts
between the sensor and controller may occur). Note that this assumption is not
necessary for the state-feedback controller for which Theorem 5.1.3 (SF-CQLF*)
holds, which is applicable for packet dropouts and message rejection occurring
anywhere in the network.

In the previous examples, it was assumed that the sampling interval was
constant. Next, some examples with a time-varying sampling interval will be
described. First, consider system (4.1) without delays. Then, the extended
state vector ξk does not contain past control inputs, i.e. ξk = xk, because the
only control input that can be active in the sampling interval [sk, sk+1) is given
by uk. Therefore, the structured control synthesis problem does not occur if
Theorem 5.2.1 is used to design a state-feedback controller. However, Theo-
rems 5.2.1 (ESF-CQLF) and 5.2.2 (SF-CQLF*) will not give the same results,
because only one feasible controller is obtained when solving the controller syn-
thesis LMIs, while many stabilizing controllers exist. For the sake of brevity,
the L-K functionals are not used here, because the past control inputs (or past
states) are not part of the system description itself, which makes the use of
L-K functionals unnecessary (and leads to too complex LMIs). For different
values of hmin, hmax, and γ, the stabilizing controllers obtained from both com-
mon quadratic Lyapunov based theorems are given in Table 5.4. Note that for
increasing values of γ, the controller gains increase rapidly.

If variation in the delay is added, the state vector ξk contains past control
inputs. Therefore, Theorem 5.2.1 (ESF-CQLF) is used to design an extended
state-feedback controller and Theorems 5.2.2 (SF-CQLF*) and C.0.1 (SF-LK)
are used to design a state-feedback controller. Some results are given in Ta-
ble 5.5 for h ∈ [0.8, 1.2]ms and τ ∈ [0.08, 0.72]ms. For γ = 0.05, Theo-
rem C.0.1 (SF-LK) does not give a feasible solution, while Theorems 5.2.1 (ESF-
CQLF) and 5.2.2 (SF-CQLF*) still give a stabilizing controller. This shows that,
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Table 5.4: Obtained controllers for Theorems 5.2.1 (ESF-CQLF) and 5.2.2 (SF-
CQLF*) for different values of γ, variable sampling intervals, and no delays.

γ hmin [ms] hmax [ms] K (Theorem 5.2.1) K (Theorem 5.2.2)

0.02 1.0 10.0
(

22.75 0.89
) (

19.57 0.88
)

0.02 0.8 1.2
(

89.46 6.36
) (

101.20 7.57
)

0.08 0.8 1.2
(

767.06 10.8
) (

573.72 8.07
)

0.2 0.8 1.2
(

2090.00 11.52
) (

1427.26 8.50
)

Table 5.5: Obtained controllers for Theorems 5.2.1 (ESF-CQLF), 5.2.2 (SF-
CQLF*), and C.0.1 (SF-LK) for different values of γ, with h ∈ [0.8, 1.2]ms
and τ ∈ [0.08, 0.72]ms.

γ K (Theorem 5.2.1) K (Theorem 5.2.2) K (Theorem C.0.1) θ1
0.01

(

10.66 1.13 0.12
) (

7.76 0.89
) (

40.47 5.42
)

2
0.02

(

17.07 1.07 0.07
) (

11.21 0.79
) (

72.36 4.94
)

2
0.03

(

21.34 1.01 0.05
) (

15.81 0.81
)

- 2
0.03

(

21.34 1.01 0.05
) (

15.81 0.81
) (

150.89 6.76
)

5
0.05

(

33.56 1.07 0.04
) (

28.33 0.91
)

- -

analogous to the case with constant sampling intervals, Theorems 5.2.1 (ESF-
CQLF) and 5.2.2 (SF-CQLF*) are less conservative and therefore applicable for
a larger range of delays than Theorem C.0.1 (SF-LK). Moreover, analogous to
the small delay case with constant sampling intervals, the choice of the param-
eter θ1 has an influence on the stabilizing controller and a suboptimal choice
may even result in the fact that no stabilizing controller is found, while for other
values of θ1 a stabilizing controller is obtained, see γ = 0.03 in Table 5.5. We
note that, for time-varying delays and sampling intervals, Theorem C.0.1 (SF-
LK) gives a feasible solution if the following configuration is used: τmin = 0,
τmax = 0.98hmin, hmin = 0.8ms, hmax = 1.2ms and γ = 0. The obtained con-
troller is given by K =

(

1.53 3.46
)

. This means that adding variation in the
sampling interval leads to a slightly smaller value of τmax for which a stabilizing
state-feedback controller can be designed, compared to the constant sampling
interval case, see the results in Table 5.2. Therefore, the additional variables,
which are introduced to describe the variation in the sampling interval, do not
result in more conservatism, compared to the constant sampling interval case.

It is clear that for increasing values of the parameter γ, it is more diffi-
cult to design a stabilizing controller. Moreover, a larger value of γ results in
larger controller gains. The next paragraph will give examples to determine the
usefulness of the parameter γ to predict the transient decay rate of the NCS.

Transient performance analysis In this paragraph, the prediction of the
transient decay rate for the different controller synthesis conditions is used,
based on a comparison with the obtained value of γ based on Theorems 5.1.1
(ESF-CQLF) and 5.1.4 (SF-LK) for the small delay case and Theorem 5.2.1
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(ESF-CQLF) for the large delay case. Corollary 5.1.2 is not considered here, be-
cause its applicability is rather limited as concluded in the previous paragraph.
For the sake of brevity, Theorem 5.1.3 (SF-CQLF*) and 5.2.2 (SF-CQLF*) are
not considered. However, their results will be comparable to the results pre-
sented in the remaining of this paragraph.

First, the transient decay rate obtained from Theorems 5.1.1 (ESF-CQLF)
and 5.2.1 (ESF-CQLF) and (5.9) is investigated. To show the applicability for
delays larger than the sampling interval and packet dropouts, controllers are
designed that guarantee stability for τmin = 0, τmax = 0.8h, and δ = 2, for the
constant sampling intervals h = 0.01s and h = 0.001s. For the sampling interval
h = 0.01s and γ = 0.1, the controllerK =

(

2.137 0.326 0.067 0.180 0.159
)

is obtained using the LMI conditions (5.5) and Theorem 5.2.1. The corre-
sponding time-response of the position signal is depicted in the upper plot of

Figure 5.1 for the initial condition ξ0 =
(

1 0 0 0 0
)T

. To obtain this
response, a randomly time-varying delay is chosen (see the second plot in Fig-
ure 5.1) and the moment of packet dropout is determined in a random fashion,
but it is guaranteed that at maximum δ subsequent packet dropouts occur.
The occurrence of the packet dropouts is depicted by means of mk, see (3.11),
in the lower plot of Figure 5.1. For h = 0.001s and γ = 0.05, the controller
K =

(

42.231 1.446 0.209 0.224 0.142
)

is obtained, using the LMI con-
ditions in Theorem 5.2.1. Note that this controller is equal to the last con-
troller in Table 5.3, due to the fact that the same controller can be applied as
long as τmax + δ = constant, as was concluded in Remark 4.4.6 in Chapter 4.
The corresponding time-response, the delays, and the values of mk, denoting
whether a packet is lost or not, are depicted in Figure 5.2 for the initial con-

dition ξ0 =
(

1 0 0 0 0
)T

. The analytical transient decay rate of both
controllers, based on (1 − γ) according to (5.9), is given by the dashed lines in
the figures. Note that for a fast transient decay rate, the value of 1−γ, which we
will denote as the optimum transient decay rate, should be small. Figures 5.1
and 5.2 show that the analytical transient decay rate is not an overly conserva-
tive estimate of the transient decay rate of the time-response itself. To obtain
an improved understanding of the accuracy of the prediction of the analytical
transient decay rate, the optimum decay rate, i.e. the smallest value of 1 − γ,
for which Theorem 5.1.1 (ESF-CQLF) gives a feasible solution, i.e. a controller
design, and the transient decay rate based on simulations of (4.1), (5.18), in
combination with the designed controller are compared in Figure 5.3 for time-
delays smaller than the constant sampling interval and no packet dropouts. This
shows that the analytical transient decay rate (1−γ) has a slightly larger value,
i.e. a slightly slower time-response, than the transient decay rate based on sim-
ulations of the time-response of (4.1), (5.18), but the prediction is sufficiently
accurate to use it for controller design. Indeed, (5.9) gives a lower bound on
the transient decay rate of the system, which means that the transient response
of the system is at least equally fast or faster than the analytically obtained
bound on the response.

For Theorem 5.1.4 (SF-LK) the transient decay rate is obtained in a similar
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Figure 5.1: Time-response (solid line) of (4.1) and lower bound for transient
decay rate (dashed line) obtained from (5.20) (ESF-CQLF) and (5.9), with time-
delays and packet dropouts, for h = 0.01s, γ = 0.1, τmin = 0, τmax = 0.8h, and
δ = 2.

fashion. An example that shows a comparison between the analytical transient
decay rate based on (5.13) and the transient response obtained from simula-
tions of (4.1), (5.2) is given in Figure 5.4. The solid line in the upper plot of
Figure 5.4 depicts the time-response of (4.1), (5.2) for τk ∈ [0, 0.6h], with the
controller K =

(

293.121 3.598
)

obtained with Theorem 5.1.4 and the initial

condition χ0 =
(

0.1 0 0.1 0
)T

. Here, γ = 0.15 is used in combination with
θ1 = 5. The dashed line depicts the analytical transient decay rate based on
(5.13). The lower plot gives the time-delay during the simulations. Figure 5.4
shows that the bound on the transient response based on (5.13) is not overly
conservative compared to the time-response of system (4.1), (5.2). Similar to
Figure 5.3, Figure 5.5 depicts a comparison between the optimum decay rate,
i.e. the smallest value of 1−γ, for which Theorem 5.1.4 gives a feasible solution
and the transient decay rate obtained from the time-response of (4.1), (5.2). For
Theorem 5.1.4 (SF-LK) the parameter θ1 = 5 is considered. Figure 5.5 shows
that the predicted analytical transient decay rate 1− γ is a useful estimation of
the practical transient decay rate that is based on the simulations. Again, the
transient decay rate, based on the simulations, is slightly smaller, i.e. the tran-
sient response is slightly faster, than the analytical transient decay rate 1 − γ,
with γ obtained from Theorem C.0.1 (SF-LK) in Appendix C.

Summarizing, relations (5.9) and (5.13) are useful to predict the transient de-
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Figure 5.2: Time-response of (4.1) (solid line) and lower bound for transient
decay rate (dashed line) obtained from (5.20) (ESF-CQLF) and (5.9), with time-
delays and packet dropouts, for h = 0.001s, γ = 0.05, τmin = 0, τmax = 0.8h,
and δ = 2.
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Figure 5.3: Comparison of the transient decay rate of controllers obtained with
Theorem 5.1.1 (ESF-CQLF), (5.9) and based on simulations of (4.1), (5.18)
(with h = 1ms).
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Figure 5.5: Comparison of the transient decay rate of controllers obtained with
Theorem 5.1.4 (SF-LK) and based on simulations of (4.1) (with h = 1ms).

cay rate of the NCS. Moreover, solving Theorems 5.1.1 (ESF-CQLF), 5.1.2 (SF-
CQLF), 5.1.3 (SF-CQLF*), or 5.1.4 (SF-LK) for the small delay case, or Theo-
rems 5.2.1 (ESF-CQLF), 5.2.2 (SF-CQLF*), or C.0.1 (SF-LK) for the case with
time-varying delays, packet dropouts and/or time-varying sampling intervals,
for a maximum value of γ is useful to design a controller that, firstly, guaran-
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Figure 5.6: Schematic overview of the spring-damper model [22].

tees stability for time-varying delays and packet dropouts and, secondly, has
an optimal time-response in terms of the transient decay rate. Note that, in
general, the maximum value of γ will result in infinite controller gains, there-
fore an extension to optimal control (see e.g. [60; 64; 84; 85; 97; 121], and the
overview papers [35; 77; 96]), where the control input is accounted for as well,
is recommended.

5.3.2 Fourth-order motion control system

To show the applicability of the presented results to more complex systems,
the controller synthesis approach of Theorems 5.1.1 (ESF-CQLF, small delays),
5.2.1 (ESF-CQLF, large delays) and 5.2.2 (SF-CQLF*, large delays) are applied
to a fourth-order model, obtained from [22] describing two rotating discs that are
coupled via a spring and a damper. A schematic overview is given in Figure 5.6.
The state-space model is given by:

ẋ = Ax+Bu =









0 1 0 0
− k

J2
− b

J2

k
J2

b
J2

0 0 0 1
k
J1

b
J1

− k
J1

− b
J1









x+









0
0
0
1
J1









u, (5.22)

with ẋ =
(

θ2 θ̇2 θ1 θ̇1
)T

, the state vector, u the control input, that is equal

to the control torque Tc, J1 = 1kgm2, J2 = 0.1kgm2, the inertias of the discs
around their respective centers, k = 0.091N/m the torsional spring stiffness,
and b = 0.0036Ns/m the torsional damping coefficient. The output data of
the system is obtained based on a constant sampling interval. Moreover, it is
assumed that packet dropouts do not occur. The eigenvalues of the matrix A
in (5.22) are λ1,2 = 0 and λ3,4 = −0.0198±1.0003i. Therefore, the Real Jordan
form, as described in Appendix B, is applied to rewrite the NCS in the form of
(4.5) or (4.6).

For a constant sampling interval of h = 2ms, γ = 0.01, and τk ∈ [0, h], we
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Figure 5.7: Time-responses of (5.22), (5.18), (5.23) for τmin = 0, τmax = h,
δ = 0, and h = 2ms.

obtain the stabilizing controller (5.1), with

K =
(

118.279 113.887 31.348 5.141 −0.706
)

, (5.23)

based on Theorem 5.1.1. The corresponding time-response is depicted in the

upper plot of Figure 5.7 for the initial condition x0 =
(

0.5 0.5 0.1 0
)T

and
u−1 = 0. This shows that the system is indeed stable. The variation in the
delays is depicted in the lower plot of this figure.

For the large delay case, with τk ∈ [0, 1.4h] and h = 2ms, the value γ has
to be decreased to 0.001 to obtain a feasible solution based on Theorem 5.2.1,
with hk := h and δ := 0. The extended state-feedback controller (5.18), with
d = 2 and

K =
(

−1.346 0.768 2.784 2.792 0.299 0.133
)

, (5.24)

stabilizes system (5.22) for delays τk ∈ [0, 1.4h]. The corresponding time-
response is depicted in the upper plot of Figure 5.8 for the initial condition

x0 =
(

0.5 0.5 0.1 0
)T

, u−1 = 0, and u−2 = 0. The corresponding variation
in the delays is depicted in the lower plot. Here, for the sake of simplicity,
the delay is only implemented between the controller and the actuator, thereby
avoiding the possibility of message rejection between the sensor and the con-
troller. The system is stable, but the transient decay rate is smaller than in the
upper plot of Figure 5.7, which corresponds to the decrease of the parameter γ
from 0.01 for the small delay case to 0.001 for this large delay case.

Analogously, for the state-feedback controller with τk ∈ [0, 1.4h], h = 2ms
and γ = 0.001 a feasible solution based on Theorem 5.2.2, with hk := h and
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Figure 5.8: Time-responses of (5.22), (5.18), (5.24) for τmin = 0, τmax = 1.4h,
δ = 0, and h = 2ms.

δ := 0, is obtained. The state-feedback controller (5.2), with d = 2 and

K =
(

−1.008 0.678 2.139 2.042
)

, (5.25)

stabilizes system (5.22) for delays τk ∈ [0, 1.4h].

5.4 Discussion

To solve the controller synthesis problem, we have proposed different types
of control laws: an extended state-feedback controller that considers both the
state and past control inputs as feedback variable and a state-feedback con-
troller. Different candidate Lyapunov functions are used to study the stability
of the resulting closed-loop systems. For the extended state-feedback controller
a candidate common quadratic Lyapunov function that is parameterized by a
single unknown matrix P with its dimension equal to the extended state vector
ξk can be used. For the presented motion control examples feasible solutions
and thus stabilizing controllers are obtained, both for the small delay case and
the large delay case with and without packet dropouts. Note that for the state-
feedback controller, the same approach, with a common quadratic Lyapunov
function with a single unknown matrix P , results in a structured control syn-
thesis problem. However, an improvement, based on the results of [17; 19] is
presented that avoids this structured control synthesis problem. The conser-
vatism of the obtained results is comparable to the conservatism in the case of
the extended state-feedback controller. The second approach to avoid the struc-
tured control synthesis problem for the state-feedback controller is the use of
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the candidate Lyapunov-Krasovskii (L-K) functional. However, here, additional
conservatism is introduced to obtain LMIs instead of BMIs, which are generally
more complicated to solve. Due to this additional conservatism, only feasible
solutions for the small delay case are obtained. Therefore, the conservatism of
the L-K approach is worse than the conservatism in the case of, firstly, the com-
mon quadratic Lyapunov function, based on the approach presented in [17; 19],
with the same state-feedback controller, or secondly, the common quadratic
Lyapunov function in combination with the extended state-feedback controller.
Note that the L-K functional gives in less conservative results than the use of
the common quadratic Lyapunov function that contains the structured control
synthesis problem.

In general, looking back at the different approaches for the state-feedback
controller, it is concluded that, analogous to Chapter 4, the L-K functional can
be rewritten as a common quadratic Lyapunov function, which can be used
in Sections 5.1.1 and 5.2.1. Compared to Corollary 5.1.2, that includes the
structured control synthesis problem, the L-K functional reduces the conser-
vatism. However, it is shown that this structured control synthesis problem can
be entirely avoided by exploiting the approach presented in [17; 19], as used
in Theorems 5.1.3 and 5.2.2, resulting in less conservative conditions for the
common quadratic Lyapunov function based on the extended state vector than
for the L-K functional.

The advantage of the extended state-feedback controller that contains the
control input history is the fact that the structured control synthesis problem
is avoided. This gives the possibility to use a common quadratic Lyapunov ap-
proach to solve the control synthesis problem, without adding additional terms
to the LMIs, as is the case in e.g. Theorem 5.1.3 (SF-CQLF*). Recall, from
Chapter 4, that this extended state-feedback controller is only applicable if
Assumption 4.4.1 (which states that message rejection and packet dropouts be-
tween the sensor and controller do not occur) is valid, which is a disadvantage
compared to the state-feedback controller that is always valid.

The lower bound on the transient decay rate, as provided by e.g. (5.9) or
(5.13), is a useful tool to predict the transient performance of the controlled
system. For the motor-roller example it is shown that this theoretical decay
rate, both for the extended state-feedback controller and the state-feedback
controller, is not extremely conservative. This is concluded based on a compar-
ison of the theoretical decay rate and the transient decay rate of the system, as
obtained from simulations. Optimization the LMI conditions with respect to γ
in the different controller synthesis conditions gives a controller that guarantees
stability in combination with the fastest transient decay rate. Note that, for
the stability conditions in Chapter 4, the use of the parameter γ, results in the
same transient decay rate conditions. A disadvantage of optimizing γ in the
stability or controller synthesis conditions is that the controller gains become
large. The use of optimal control strategies that consider both the transient
response as well as the control input, based on weighting functions, would be
useful to avoid unrealistically high control inputs.
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Tracking control1

6.1 Small delays
6.2 Variable sampling

intervals, large delays, and
packet dropouts

6.3 Tracking control performance
6.4 Illustrative examples
6.5 Discussion

The previous chapters discussed the stability and stabilization of equilibria
for NCSs. In practical applications, it is often desired that the dynamical system
tracks a prescribed time-varying reference signal. Within the context of NCSs,
we study these tracking problems in this chapter, where we allow for the most
general case including time-varying delays, time-varying sampling intervals, and
packet dropouts. A typical tracking controller consists of a feedforward part,
which induces the desired solution, and a feedback part, which should induce
asymptotic stability of the desired solution. The uncertain, time-varying sam-
pling intervals, time-varying delays, and packet dropouts cause inexact feed-
forward, which induces a perturbation on the tracking error dynamics. As a
consequence, exact reference tracking can never be obtained. Therefore, we
consider an approximate tracking problem in terms of input-to-state stability
(ISS) of the tracking error dynamics with respect to this perturbation. We will
present sufficient conditions for ISS, which provide bounds on the steady-state
tracking error as a function of the plant properties, the control design, and the
network properties.

To study the tracking behavior of NCSs, a distinction is made between
the small delay case and the case with time-varying sampling intervals, packet
dropouts, and delays larger than the sampling interval. To present the sufficient
conditions for ISS for both cases, we illustrate the results by a mechanical
motion control example showing the effectiveness of the proposed strategy and
providing insight in the differences and commonalities between the modeling
approach considered in this thesis and the modeling approach based on delay
impulsive differential equations in [74], [111], where the tracking problem was
also considered.

The outline of the chapter is as follows. In Section 6.1 the tracking problem
for a NCS with time-varying delays smaller than the constant sampling interval

1This chapter is based on [110] and [111] that consider time-varying sampling intervals
in combination with delays smaller than the sampling interval. In these papers, besides ISS
conditions based on the discrete-time NCS model as proposed in this thesis, ISS conditions
based on a model in terms of delay impulsive differential equations for NCSs are proposed in
relation to the tracking problem of NCSs.
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is described. In Section 6.2 the tracking problem for a NCS with time-varying
delays larger than the uncertain and time-varying sampling intervals and packet
dropouts is described. In Section 6.3, the tracking control performance, in
terms of an ultimate bound on the tracking error is described. In Section 6.4,
illustrative examples are presented and in Section 6.5 the obtained results are
summarized.

6.1 Small delays

In this section, the tracking problem for a NCS with time-varying delays smaller
than the constant sampling interval is studied. Recall that the NCS is described
by:

ẋ(t) = Ax(t) +Bu∗(t),
y(t) = Cx(t)
u∗(t) = uk, for t ∈ [sk + τk, sk+1 + τk+1)

(6.1)

with A ∈ R
n×n, B ∈ R

n×m, and C ∈ R
r×n, the system matrices, u∗(t) ∈ R

m the
continuous-time control input, x(t) ∈ R

n the state at time t ∈ R, y(t) ∈ R
r the

output, sk the sampling instants with sk := kh, k ∈ N, uk := u(sk) ∈ R
m the

discrete-time control input based on the measurement data at (sensor) sampling
instant sk, and τk the time-varying delay. The feedback part of the controller
is based on (4.9), which is a state feedback controller uk = −Kxk. Of course,
(4.9) will be adapted to include the reference signal in the feedback law. The
extended state-feedback controller (4.8) (uk = −Kξk) is not considered in this
chapter to avoid the limitations of Assumption 4.4.1 (i.e. no message rejection
and packet dropouts between the sensor and controller). To study the tracking
problem for the small delay case, firstly, the tracking problem and the tracking
controller are discussed in Section 6.1.1 and, secondly, certain ISS properties of
the tracking error dynamics are discussed in Section 6.1.2.

6.1.1 Tracking problem

To study the tracking problem of NCSs with delays smaller than the constant
sampling interval, the tracking control design, closed-loop system, and tracking
error dynamics are discussed, subsequently.

Tracking control design We want the system to asymptotically track a
desired trajectory xd(t). The proposed control law consists of a feedforward
part and a feedback part. To determine the feedforward signal, and the error
that is caused by the difference between the zero-order-hold implementation
of the feedforward signal and the ideal feedforward signal, the control signal
construction is studied in more detail. Here, we assume that there exists a
feedforward uff

e (t) that induces the desired trajectory xd(t); in other words for
a given xd(t), there exists a feedforward uff

e (t) that satisfies

ẋd(t) = Axd(t) +Buff
e (t). (6.2)
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Additionally, we assume that xd(t) is at least C2, guaranteeing that uff
e (t) is at

least C1, which we will need in Section 6.3.1. We propose the following tracking
control law for (6.1):

uk(xk, x
d(sk), uff

e (sk)) = uff
e (sk) −K

(

xk − xd(sk)
)

, (6.3)

which consists of the superposition of a sampled feedforward component uff
e (sk)

with a linear tracking error feedback component with feedback gain matrix
K ∈ R

m×n. Due to the constant and known sampling interval, the controller
can compute the control law (6.3) at time sk + τsc

k . An alternative control law,
although not considered in this chapter, could be:

uk = uff
e (sk + τsc

k ) −K
(

xk − xd(sk)
)

, (6.4)

if the delay τsc
k is known to the controller due to the use of time stamping of

the measurement data.
Clearly, the implemented continuous-time feedforward uff (t) in (6.1), (6.3)

is given by
uff (t) = uff

e (sk) for t ∈ [sk + τk, sk+1 + τk+1), (6.5)

and differs from the exact feedforward uff
e (t) due to the zero-order-hold and

the delays. Therefore, the implemented feedforward is decomposed in an exact
feedforward part uff

e (t) and a feedforward error ∆uff (t):

uff (t) = uff
e (t) + ∆uff (t), (6.6)

where the feedforward error is simply defined by

∆uff (t) = uff
e (sk) − uff

e (t) for t ∈ [sk + τk, sk+1 + τk+1). (6.7)

Closed-loop system Applying the control law (6.3) to system (6.1) yields
the following closed-loop NCS dynamics:

ẋ(t)=Ax(t)+B1

(

xk − xd(sk)
)

+B2u
ff
e (t)+B2∆u

ff (t), (6.8)

for t ∈ [sk + τk, sk+1 + τk+1), and with B1 := −BK and B2 := B. The initial

condition x̄(0) :=
(

xT (0) xT (s−1)
)T

for this system consists of both the initial
state at time s0 = 0, i.e. x(0) = x0, and the hold state x(s−1) at time s−1 < 0
due to the fact that in the time interval t ∈ [0, τ0], the feedback part of the
control action is given by u−1 = −K(x(s−1)−xd(s−1)). So, the network delays
cause the initial state to involve a past state.

Tracking error dynamics The tracking error e is defined by e = x−xd. By
combining (6.2) and (6.8), the continuous-time tracking error dynamics can be
formulated as follows:

ė(t) = Ae(t) +B1e(sk) +B2∆u
ff (t), for t ∈ [sk + τk, sk+1 + τk+1), (6.9)
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with initial condition ē(0) :=
(

eT (0) eT (s−1)
)T

.
As the exact tracking limt→∞ e(t) = 0 is almost impossible to obtain, due

to the presence of a nonzero ∆uff (t), we consider the approximate tracking
problem. In approximate tracking, the aim is to ensure ultimate boundedness
of the tracking error, i.e. limt→∞ |e(t)| ≤ ε, with |e(t)| = |x(t) − xd(t)| and
some small ε > 0. Some tracking error is to be expected in the NCS setting,
as the implemented feedforward signal uff (t) in (6.5) will never equal the exact
feedforward uff

e (t). The reasons for non-exact feedforward are, firstly, the fact
that the control signal (and therefore also the feedforward signal) will be passed
through a zero-order hold and, secondly, the fact that the network delays (in
particular the controller-to-actuator delay τca

k ) in general cause the feedforward

to be implemented too late. Thereby, a feedforward error ∆uff (t) is introduced.
However, as we will show in the next sections, for h → 0 and τ → 0, the
feedforward error tends to zero, and therefore, the tracking error tends to zero
(i.e. ε → 0). In the next section, sufficient conditions for the input-to-state
stability (ISS) of the continuous-time tracking error dynamics (6.9) with respect
to the input ∆uff (t) are proposed. The ISS property of the tracking error
dynamics will be used to guarantee that the controller solves an approximate
tracking problem.

Moreover, since such ISS properties of linear sampled-data systems with
time-varying delays are of interest in a wider context, we consider systems of
the form

ż(t) = Az(t) +B1z(sk) +B2w(t) for t ∈ [sk + τk, sk+1 + τk+1), (6.10)

with initial condition z̄(0) :=
(

zT (0) zT (s−1)
)T

. Herein, the time-varying
input w(t) may be the feedforward error (as above). Alternatively, in the scope
of the disturbance rejection problem one may consider it to represent external
perturbations or, in the scope of the design of observer-based output-feedback
schemes, it may represent the observer error perturbing the closed-loop system
(where the ISS-property is shown to be instrumental in providing a separation
principle) [91] .

6.1.2 Input-to-state stability

In this section, sufficient conditions for the ISS of the continuous-time dynamics
of the form (6.10) with respect to the input w(t) (including the continuous-time
tracking error dynamics (6.9)) are proposed. The approach followed in this
chapter is based on an analysis using a discrete-time NCS model. Another
approach, where the dynamics are analyzed using delay impulsive differential
equations is described in [110; 111], and [74].

Analogous to Definition 2.2.4, we will call system (6.10) uniformly ISS if its
solutions satisfy

|z(t)| ≤ β(|z̄(0)|, t) + γ( sup
0≤s≤t

|w(s)|), (6.11)

with functions β ∈ KL and γ ∈ K that are independent of the choice of the

delay τk and z̄(0) :=
(

zT (0) zT (s−1)
)T

, the initial condition of (6.10). Note
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that the term uniformly refers to the fact that ISS holds for the same functions
β and γ independent of the delay. We would like to have the ISS property for
any sequence of delays such that τmin ≤ τk ≤ τmax < h, ∀k ∈ N.

Under the assumption that τk < h, ∀k, the discretization of (6.10) at the
sampling instants sk gives the discrete-time system:

zk+1 = eAhzk +

∫ h−τk

0

eAsdsB1zk +

∫ h

h−τk

eAsdsB1zk−1 + w̄k, (6.12)

where w̄k :=
∫ h

0
eAsB2w(h + sk − s)ds. Since τk < h, ∀k, the extended state

for the system (6.12) is defined by ψk :=
(

zT
k zT

k−1

)T
, similar to χk in (4.20).

The discrete-time state-space model is then given by:

ψk+1 = Ã(h, τk)ψk + B̃w̄k, for τk ∈ [τmin, τmax], τmax < h, (6.13)

with ψk ∈ R
2n,

Ã(τk) =

(

eAh +
∫ h−τk

0 eAsdsB1

∫ h

h−τk
eAsdsB1

I 0

)

, B̃ =

(

I
0

)

. (6.14)

Later, we will use that zk = Czψk, with Cz =
(

I 0
)

being an n × 2n-matrix.
Similar to Chapters 4 and 5, the Jordan form of the continuous-time system
matrix A is considered in the analysis. The equivalent representation of (6.13),
(6.14) that is based on the Jordan form of the continuous-time system matrix
A is given by:

ψk+1 = F (τk)ψk + B̃w̄k, for τk ∈ [τmin, τmax], τmax < h, (6.15)

with F (τk) = F0 +
∑ν

i=1 αi(τk)Fi and the matrices F0, Fi, i = 1, 2, . . . , ν, given
by:

F0 =

(

QΘ0Q
−1 +QΞ0Q

−1B1 QΘ1Q
−1B1

I 0

)

,

Fi =

(

QΞiQ
−1B1 QΓ1,iQ

−1B1

0 0

)

,

(6.16)

with Θ0, Ξ0, Θ1, Ξi, Γ1,i, i = 1, 2, . . . , ν, defined in Appendix B.2 with B1

replaced by −BK. Note that, compared to Appendix B.2 and Theorem 4.3.1,
the matrices G0 and Gi, i = 1, 2, . . . , ν, as used in (B.35) are equal to zero,
because their values are already included in F0 and Fi, i = 1, 2, . . . , ν. The
matrices F (τk) in (6.15) form the set of matrices F

F = {F (τk) : τk ∈ [τmin, τmax]} , (6.17)

analogously to (4.10).
Before the conditions for the ISS of system (6.10) are formulated, recall that

global asymptotic stability of the fixed point ψ = 0 of the discrete-time system
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(6.13), or equivalently (6.15), for the case that w̄k = 0, ∀k can be guaranteed
based on the stability results obtained in Theorems 4.3.1, and 4.3.2. Note that
for the applicability of Theorems 4.3.1 for (6.13), we need that P ∈ R

2n×2n

instead of P ∈ R
(n+m)×(n+m) and that the matrices HF,j , j ∈ {1, 2, . . . , 2ν},

are based on the matrices F0 and Fi, i = 1, 2, . . . , ν, defined in (6.16) and that
the matrices HG,j are empty. Theorem 4.3.2 can be applied if the matrices
Hx

F,j , j ∈ {1, 2, . . . , 2ν}, are based on a partioning of the matrices F0 and Fi,
i = 1, 2, . . . , ν, defined in (6.16) and that the matrices Hx

G,j are empty. For
the sake of brevity, we consider in this chapter only the common quadratic
Lyapunov approach of Theorem 4.3.1, because it gives good results for the
stability conditions of the state-feedback controller on which we will focus here.
Based on the stability results of Theorem 4.3.1, we will show (see Lemma 6.1.1
and Theorem 6.1.2) that the ISS of (6.10) is guaranteed if the following (infinite)
set of matrix inequalities is feasible:

P = PT > 0
(

F (τk)TPF (τk) − (1 − γ)P F (τk)T (τk)PB̃

B̃TPF (τk) B̃TPB̃ − κI

)

< 0, ∀τk ∈ [τmin, τmax],
(6.18)

with τmax < h and F (τk) = F0 +
∑ν

i=1 αi(τk)Fi, for some 0 < γ < 1 and κ > 0.
The following lemma formulates sufficient LMI conditions for the feasibility
of (6.18) and shows that these LMI conditions guarantee ISS of the discrete-
time NCS model (6.13), (6.14).

Lemma 6.1.1 Consider the discrete-time NCS model (6.13), (6.14) and its
equivalent model (6.15), (6.16) that is based on the Jordan form of A, both
with delays τk ∈ [τmin, τmax], with τmax < h. Define the set of matrices HF :

HF =

{

F̄0 +

ν
∑

i=1

δiF̄i : δi ∈ {0, 1}, i = 1, 2, . . . , ν

}

, (6.19)

with F̄0 = F0 +
∑ν

i=1 αiFi, F̄i = (αi − αi)Fi, αi = maxτ∈[τmin,τmax] αi(τ),
αi = minτ∈[τmin,τmax] αi(τ), and F0, Fi, for i = 1, 2, . . . , ν, defined in (6.16).

If there exist a symmetric matrix P ∈ R
2n×2n and scalars 0 < γ < 1 and

κ > 0 that satisfy:

P = PT > 0
(

HT
F,jPHF,j − (1 − γ)P HT

F,jPB̃

B̃TPHF,j B̃TPB̃ − κI

)

< 0, ∀HF,j ∈ HF , j ∈ {1, 2, . . . , 2ν},

(6.20)

then the matrix inequalities (6.18) are feasible. Moreover, V (ψk) = ψT
k Pψk

is an ISS-Lyapunov function for system (6.13), (6.14) and, consequently, this
system is input-to-state stable for bounded inputs w̄k.

Proof The proof is given in Appendix A.12. �



6.1. Small delays 99

Let us now present the result on the ISS of the continuous-time dynam-
ics (6.10).

Theorem 6.1.2 Consider the sampled-data system (6.10), with uncertain time-
varying delays τk ∈ [τmin, τmax], with τmax < h. Suppose there exist a matrix
P and scalars 0 < γ < 1 and κ > 0 for which (6.18) is satisfied. Then, the
system (6.10) is uniformly input-to-state stable (ISS) for τk ∈ [τmin, τmax], with
τmax < h with respect to the time-varying input w(t). The functions β and γ
in (6.11) can be obtained from:

β(|z̄(0)|, t) = |z̄(0)|
{

max{g1,0, g1,1, g1,2} for t ∈ [0, s2)
g1,k for k ≥ 2, t ∈ [sk, sk+1)

γ( sup
0≤s≤t

|w(s)|) = g2 sup
0≤s≤t

|w(s)|,

(6.21)

with

g1,0 = c1 + c2,

g1,1 = c1‖CzP
− 1

2 ‖
√

γ̄λmax(P ) + c2,

g1,k = ‖CzP
− 1

2 ‖
(

c1

√

γ̄kλmax(P ) + c2

√

γ̄k−1λmax(P )

)

, k ≥ 2,

g2 = cw

(

1 + (c1 + c2)‖CzP
− 1

2 ‖
√

κ

γ

)

,

(6.22)

c1, c2, and cw are defined in (A.77), (A.78), (A.80) in Appendix A.13, and
γ̄ = 1 − γ.

Proof For the proof, see Appendix A.13. �

Note that β(s, t) satisfies all the conditions of a class-KL function except that
for fixed s it is only non-increasing and not continuous everywhere, because for
s0 ≤ t < s2 and sk ≤ t < sk+1, ∀k ≥ 2 the function β(s, t) is constant and it
decreases only at t = sk, ∀k ≥ 3, as depicted by the solid line in Figure 6.1.
However, it is easy to construct a β̄(s, t) ∈ KL from β(s, t), as depicted by the
dashed line in Figure 6.1. The function γ(sup0≤s≤t |w(s)|) is a class K-function,
therefore inequality (6.11) is satisfied.

Clearly, this result implies that the state z of the sampled-data system is
globally uniformly ultimately bounded and the asymptotic bound is given by
lim supt→∞ |z(t)| ≤ g2 supt≥0 |w(t)|, with g2 as in (6.22). Note that all parame-
ters in (6.22), (A.77), (A.78), and (A.80) are known and depend on the system
dynamics (matrices A, B1, and B2), the constant sampling interval, the maxi-
mum and minimum delays τmax and τmin, respectively, and the parameters γ,
κ, and matrix P obtained from (6.20).

Remark 6.1.3 An asymptotic bound for the state at the sampling instants can
directly be derived from (A.74) in Appendix A.13 and the fact that limk→∞Dk =
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s0 s1 s2 s3 s4 s5 s6

β(s, t)

β̄(s, t)

Figure 6.1: Example of the function β(s, t) and β̄(s, t)

limk→∞
∑k

i=1 γ̄
i−1 = 1/γ, yielding

lim sup
k→∞

|zk| ≤ ‖CzP
− 1

2 ‖
√

κ

γ
sup
k≥1

|w̄k| ≤ cw‖CzP
− 1

2 ‖
√

κ

γ
sup
t≥0

|w(t)|

:= ḡ2 sup
t≥0

|w(t)|.
(6.23)

This bound can in many practical cases (e.g. for sufficiently small sampling
intervals) be sufficient and it is typically much less conservative than the bound
based on the intersample behavior, since ḡ2 < g2. The difference between g2
and ḡ2 originates from the need to upper bound the intersample behavior of
z(t), thereby introducing additional conservatism.

6.2 Variable sampling intervals, large delays,

and packet dropouts

The tracking problem and ISS conditions, derived in the previous section for
the small delay case, are adapted, such that they are applicable for NCSs with
time-varying sampling intervals, delays larger than the sampling interval, and
packet dropouts. Recall that the NCS model for this case is given by (3.12)

ẋ(t) = Ax(t) +Bu∗(t)
y(t) = Cx(t)
u∗(t) = uj for t ∈ [sk + tkj , sk + tkj+1),

(6.24)

where sk is defined as sk =
∑k−1

i=0 hi, ∀k ≥ 1, with s0 = 0, and tkj is defined in
(3.22) as:

tkj = min
{

max{0, τj −
k−1
∑

l=j

hl} +mjhmax,

max{0, τj+1 −
k−1
∑

l=j+1

hl} +mj+1hmax, . . . ,

max{0, τk−d −
k−1
∑

l=k−d

hl} +mk−dhmax, hk

}

,

(6.25)
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with tkj ≤ tkj+1 and j ∈ [k − d − δ, k − d − δ + 1, . . . , k − d]. Moreover, 0 =

tk
k−d−δ

≤ tk
k−d−δ+1

≤ . . . ≤ tkk−d ≤ tkk−d+1 := hk.

6.2.1 Tracking problem

Similar to the small delay case, the control signal construction, closed-loop
system, and tracking error dynamics are described.

Control signal Both message rejection and packet dropouts may result in
the fact that the control signal, including the feedforward signal is never used
to actuate the plant. This requires some adaptation in the control signal con-
struction compared to the small delay case. It is obvious that the desired
continuous-time dynamics, as described by (6.2) and the tracking control law
(6.3) are not affected by variations in the sampling time, packet dropouts, and
message rejection. The implemented feedforward of (6.5) has to be adapted, to
allow for message rejection and packet dropouts:

uff (t) = uff
e (sj) for t ∈ [sk + tkj , sk + tkj+1), (6.26)

for tkj defined in Lemma 3.4.1. Note that this is not the only possible description

for the feedforward signal. In [74], the following notation is used: uff (t) =
uff

e (sk) for t ∈ [tk, tk+1), with tk the actuator update times and k a sequential
number that is not changed if a packet is dropped (or rejected). Based on (6.26)
and (6.6), the feedforward error is defined as:

∆uff (t) = uff
e (sj) − uff

e (t) for t ∈ [sk + tkj , sk + tkj+1). (6.27)

Closed-loop system Due to the possibility of delays larger than the sampling
interval and the use of packet dropouts, the closed-loop NCS dynamics of (6.8)
needs to be modified as well. Applying the control law (6.3) to system (6.24)
yields the following closed-loop NCS dynamics:

ẋ(t)=Ax(t)+B1

(

xj − xd(sj)
)

+B2u
ff
e (t)+B2∆u

ff (t), (6.28)

for t ∈ [sk + tkj , sk + tkj+1), j ∈ {k− d− δ, . . . , k− d} and with B1 := −BK and

B2 := B. The initial condition is given by x̄(0) :=
(

xT (0) xT (s−1) x
T (s−2) . . .

xT (s−d−δ)
)T

, with x(s−1), x(s−2), . . . , x(s−d−δ) the hold states at the times
s−d−δ < . . . < s−1 < 0.

Tracking error dynamics Due to the new definition of the feedforward sig-
nal and the closed-loop system, the tracking error dynamics (with the tracking
error e = x − xd) needs to be redefined. By combining (6.2) and (6.28), the
continuous-time tracking error dynamics can be formulated as follows:

ė(t) = Ae(t) +B1e(sj) +B2∆u
ff (t), (6.29)
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for t ∈ [sk + tkj , sk + tkj+1), j ∈ {k − d− δ, . . . , k − d} and with initial condition

ē(0) :=
(

eT (0) eT (s−1) eT (s−2) . . . eT (s−d−δ)
)T

.
Analogously, the generic form (6.10) for sampled-data systems is, for this

extended case, given by

ż(t) = Az(t) +B1z(sj) +B2w(t) for t ∈ [sk + tkj , sk + tkj+1), (6.30)

with tkj defined in Lemma 3.4.1 for j ∈ {k−d−δ, . . . , k−d} and initial condition

z̄(0) :=
(

zT (0) zT (s−1) zT (s−2) . . . zT (s−d−δ)
)T

.

6.2.2 Input-to-state stability

To prove ISS of system (6.30), (6.25) over all admissible sequences of sampling
instants, delays, and packet dropouts σ ∈ S, the relation (6.11) should hold for
functions β and γ that are independent of the choice of the sequence σ ∈ S.
Recall that it holds that σ := {(sk, τk,mk)}k∈N ∈ S, with S defined in (3.20) as

S :=

{

{(sk, τk,mk)}k∈N : hmin ≤ sk+1 − sk ≤ hmax, τmin ≤ τk ≤ τmax,

k
∑

v=k−δ

mv ≤ δ, ∀k ∈ N

}

.

(6.31)
Similar to the previous section, ISS conditions of (6.30), (6.25) will be proven

based on a preliminary analysis of the discretized NCS model. The exact dis-
cretization of (6.30), (6.25) for sequences of sampling instants, time-delays, and
packet dropouts σ ∈ S at the sampling instants sk can be derived similar to
the discrete-time NCS model (3.23), which results in the following discrete-time
system:

zk+1 = eAhkzk +

k−d
∑

j=k−d−δ

∫ hk−tk
j

hk−tk
j+1

eAsdsB1zj + w̄k, (6.32)

where w̄k :=
∫ hk

0
eAsB2w(hk + sk − s)ds. Note that the extended state for the

system (6.32) is defined by ψk :=
(

zT
k zT

k−1 . . . zT
k−d−δ

)T

, similar to the

definition in χk in (4.43). The discrete-time state-space model in terms of this
extended state is given by:

ψk+1 = Ã(tk, hk)ψk + B̃w̄k, (6.33)

where ψk ∈ R
(1+d+δ)n, tk = (tk

k−d−δ+1
, . . . , tkk−d), t

k
j ∈ [tkj,min, t

k
j,max] for k−d−

δ + 1 ≤ j ≤ k − d, hk ∈ [hmin, hmax],

Ã(tk, hk) =















eAhk + Ñ0 Ñ1 Ñ2 . . . Ñd+δ

I 0 0 . . . 0
0 I 0 . . . 0
...

...
. . .

...
0 0 I 0















, B̃ =

(

I
0

)

, (6.34)
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Ñρ =











∫ hk−tk
k−ρ

hk−tk
k−ρ+1

eAsdsB1 if ρ ≥ d

0 if ρ < d,

(6.35)

for ρ ∈ {0, 1, . . . , d+ δ} and tkk−ρ defined in (6.25) with j = k− ρ. The relation
between zk and ψk that we will need later is given by zk = Czψk, with Cz =
(

I 0 . . . 0
)

being an n× (d+ δ + 1)n-matrix.
The representation of (6.34) based on the Jordan form of the continuous-time

system matrix A is given by:

ψk+1 =F (tk, hk)ψk + B̃w̄k, with tk = (tk
k−d−δ+1

, . . . , tkk−d),

tkj ∈ [tkj,min, t
k
j,max], k − d− δ + 1 ≤ j ≤ k − d, hk ∈ [hmin, hmax],

(6.36)

F (tk, hk) = F0 +
∑ζ

i=1 αi(t
k
j , hk)Fi and the matrices F0, Fi, i = 1, 2, . . . , ζ,

given by:

F0 =















Θ̂ QΘ1Q
−1B1 . . . QΘd+δ−1Q

−1B1 QΘd+δQ
−1B1

I 0 . . . 0 0
0 I 0 0
...

...
. . .

...
0 0 I 0















,

Fi =











Γ̂ QΓ1,iQ
−1B1 QΓ2,iQ

−1B1 . . . QΓd+δ,iQ
−1B1

0 0 0 . . . 0
...

...
...

...
0 0 0 . . . 0











,

(6.37)

with Θ̂ = QΘ0Q
−1+QΞ0Q

−1B1 and Γ̂ = QΓ0,iQ
−1+QΞiQ

−1B1. The matrices

Θ0, Ξ0, Θî, î = 1, 2, . . . , d+δ, Γ0,i, Γî,i, î = 1, 2, . . . , d+δ, and Ξi, i = 1, 2, . . . , ζ,
are equal to their definitions in Appendix B.3. The matrices F0 and Fi in
(6.37) are a combination of the matrices F0, Fi, G0, and Gi, i = 1, 2, . . . , ζ, in
Appendix B.3. Moreover, the matrices F (tkj , hk) in (6.36) form an infinite set
of matrices F , analogous to (4.34):

F =

{

F (tk, hk) : tk = (tk
k−d−δ+1

, . . . , tkk−d), t
k
j ∈ [tkj,min, t

k
j,max],

k − d− δ + 1 ≤ j ≤ k − d, hk ∈ [hmin, hmax]

}

.

Stability of this system can be guaranteed based on Theorem 4.4.4 if the matrix

P ∈ R
(n+(d+δ)m)×(n+(d+δ)m) is replaced by P ∈ R

(d+δ+1)n×(d+δ+1)n Moreover,
the matrices HF,j, j ∈ {1, 2, . . . , 2ζ}, are based on the matrices F0 and Fi,
i = 1, 2, . . . , ζ, defined in (6.37) and the matrices HG,j, j ∈ {1, 2, . . . , 2ζ}, are
equal to zero. Similar reasonings hold for Theorem 4.4.7.
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The following lemma formulates sufficient LMI conditions for the ISS of
(6.36), (6.37) (and equivalently for (6.33), (6.34), (6.35)).

Lemma 6.2.1 Consider the discrete-time NCS model (6.33), (6.34), (6.35) and
its equivalent (6.36), (6.37) that is based on the Jordan form of A, both with
sequences of sampling instants, delays, and packet dropouts σ ∈ S, as defined
in (6.31). Define the set of matrices HF :

HF =

{

F̄0 +

ζ
∑

i=1

δiF̄i : δi ∈ {0, 1}, i = 1, 2, . . . , ζ

}

, (6.38)

with F̄0 = F0 +
∑ζ

i=1 αiFi, F̄i = (αi − αi)Fi,

αi = max
tk
j ∈[tk

j,min,tk
j,max],hk∈[hmin,hmax]

αi(t
k
j , hk),

αi = min
tk
j ∈[tk

j,min,tk
j,max],hk∈[hmin,hmax]

αi(t
k
j , hk),

and F0, Fi, for i = 1, 2, . . . , ζ, defined in (6.37).

If there exist a symmetric matrix P ∈ R
(d+δ+1)n×(d+δ+1)n and scalars 0 <

γ < 1 and κ > 0 such that the following matrix inequalities are satisfied:

P = PT > 0
(

HT
F,jPHF,j − (1 − γ)P HT

F,jPB̃

B̃TPHF,j B̃TPB̃ − κI

)

< 0, ∀HF,j ∈ HF , j ∈ {1, 2, . . . , 2ζ},

(6.39)

then the discrete-time NCS model (6.33), (6.34), (6.35) is ISS with respect to
the input w̄k.

Proof The proof can be derived analogously to the proof of Lemma 6.1.1 in
Appendix A.12. �

Before the ISS of the continuous-time system (6.30), (6.25) is derived, we
present a lemma that gives the upper bound on the intersample behavior of
(6.30), (6.25).

Lemma 6.2.2 The upper bound on the intersample behavior of (6.30), (6.25)
denoted by z(sk + t̃) with t̃ ∈ [0, hk), is given by:

|z(sk + t̃)| ≤c0|zk| + c1|zk−1| + c2|zk−2| + . . .+ cd+δ|zk−d−δ|
+ cw sup

sk≤s<sk+1

|w(s)|, for t̃ ∈ [0, hk), (6.40)

with

c0 =

{

max(c̄0, c̃0 + ĉ0) if d = 0
max(eλmaxhmax , 1) if d > 0

(6.41)
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c̄0 =

{

max(eλmaxτmax , 1) if δ = 0 and τmax < hmax

max(eλmaxhmax , 1) if
(

δ = 0 and τmax ≥ hmax

)

or
(

δ > 0
)

c̃0 =

{

max(eλmaxhmax , eλmaxτmin) if λmax 6= 0
1 if λmax = 0

ĉ0 = ‖B1‖
{

eλmax(hmax−τmin)−1
λmax

if λmax 6= 0

(hmax − τmin) if λmax = 0

(6.42)

cρ, for ρ ∈ {1, 2, . . . , d+ δ − 1}:

cρ = ‖B1‖



















































eλmax(hmax−(τmin−dhmax))−1
λmax

if λmax 6= 0 and ρ = d and d > 0
eλmaxhmax−1

λmax
if λmax 6= 0 and ρ > d

min (τ∗max, hmax) if λmax = 0 and

ρ ∈ {δ + d+ 1, . . . , d+ δ − 1}
(hmax − (τmin − dhmax)) if λmax = 0 and ρ = d and d > 0
hmax if λmax = 0 and

ρ ∈ {d+ 1, . . . , δ + d}
0 if ρ < d,

(6.43)
with τ∗max = τmax − (ρ− δ − 1)hmin and

cd+δ = ‖B1‖
{

eλmaxhmax−1
λmax

if λmax 6= 0
(

τmax − (d− 1)hmin

)

if λmax = 0,
(6.44)

cw = ‖B2‖
{

eλmaxhmax−1
λmax

if λmax 6= 0

hmax if λmax = 0.
(6.45)

Proof The proof is given in Appendix A.14. �

Let us now present the result on the input-to-state stability of the continuous-
time dynamics (6.30), (6.25).

Theorem 6.2.3 Consider the sampled-data system (6.30), (6.25), with se-
quences of sampling instants, delays, and packet dropouts σ ∈ S. Suppose
there exist a matrix P and scalars 0 < γ < 1 and κ > 0 for which (6.39) is sat-
isfied. Then, the system (6.30), (6.25) is uniformly input-to-state stable (ISS)
for σ ∈ S with respect to the time-varying input w(t). The functions β and γ
in (6.11) can be obtained from

β̄(|z̄(0)|, t) =

|z̄(0)|
{

max{g1,0, g1,1, g1,2, . . . , g1,d+δ+1} for t ∈ [0, sd+δ+1),

g1,k for t ∈ [sk, sk+1), k ≥ d+ δ + 1,

γ( sup
0≤s≤t

|w(s)|) = g2 sup
0≤s≤t

|w(s)|,
(6.46)
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with

g1,0 = c0 + c1 + c2 + . . .+ cd+δ,

g1,1 = c0‖CzP
− 1

2 ‖
√

γ̄λmax(P ) + c1 + . . .+ cd+δ,

...

g1,d+δ = ‖CzP
− 1

2 ‖
(

c0

√

γ̄kλmax(P ) + c1

√

γ̄k−1λmax(P ) + . . .

+ cd+δ−1

√

γ̄λmax(P )

)

+ cd+δ,

g1,k = ‖CzP
− 1

2 ‖
(

c0

√

γ̄kλmax(P ) + c1

√

γ̄k−1λmax(P ) + . . .

+ cd+δ

√

γ̄k−d−δλmax(P )

)

, k ≥ d+ δ + 1,

g2 = cw

(

1 + (c0 + c1 + . . .+ cd+δ)‖CzP
− 1

2 ‖
√

κ

γ

)

,

(6.47)

c0, c1, . . . , cd+δ defined in (6.41), (6.42), (6.43), (6.44), cw defined in (6.45), and
γ̄ = 1 − γ.

Proof For the proof, see Appendix A.15. �

Note that β̄(s, t) satisfies all the conditions of a class-KL function except that
for fixed s it is only non-increasing and not continuous everywhere, because for
s0 ≤ t < sd+δ+1 and sk ≤ t < sk+1, ∀k ≥ d + δ + 1 the function β̄(s, t) is flat

and it decreases at t = sk, ∀k ≥ d + δ + 2. However, it is easy to construct a
β(s, t) ∈ KL from β̄(s, t). The function γ(sup0≤s≤t |w(s)|) belongs to the class
K, thus inequality (6.11) is satisfied.

Theorem 6.2.3 implies that the state z of the sampled-data system is glob-
ally uniformly ultimately bounded and that the asymptotic bound is given by
lim supt→∞ |z(t)| ≤ g2 supt≥0 |w(t)|, with g2 as in (6.47).

Remark 6.2.4 Analogous to the small delay case, an asymptotic bound for
the state at the sampling instants can directly be derived from (A.108) and the
fact that limk→∞Dk = 1/γ. This results in exactly the same relation as for the
small delay case, given in (6.23).

The ISS-conditions obtained in this section depend explicitly on the values of
hmin and τmin. The ISS-conditions proposed in [74], [111] for the model based on
delay impulsive differential equations do not explicitly depend on the values of
hmin and τmin. Consequently, the latter approach towards modeling NCSs may
result in more conservative conditions in comparison to those obtained using
the discrete-time approach as proposed in this thesis, when 0 ≪ hmin ≃ hmax

or 0 ≪ τmin ≃ τmax. A comparison between the approach described in [74] and
the approach of Theorems 6.1.2 and 6.2.3 will be given in Section 6.4, based on
the motor-roller example.
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6.3 Tracking control performance

The results in Theorem 6.1.2 and Theorem 6.2.3 on the ISS property of NCSs
(or equivalently sampled-data systems) can directly be used in the scope of
the tracking problem of NCSs as stated in Sections 6.1.1 and 6.2.1. Namely,
when applied to the tracking error dynamics (6.9) for the small delay case and
(6.29) for the case with time-varying sampling intervals, large delays, and packet
dropouts, the satisfaction of the conditions of Theorems 6.1.2 and 6.2.3 guar-
antees that the approximate tracking problem is solved and an ultimate bound
on the tracking error can be provided. In Section 6.3.1, a bound on |∆uff (t)|,
i.e. supt∈R |∆uff (t)|, based on the properties of the exact feedforward ∆uff

e (t),
τmin, τmax, hmin, hmax, and δ is provided. Using this knowledge, the results of
the previous section are used to solve the approximate tracking problem and to
explicitly construct the bound on the tracking error in Section 6.3.2.

6.3.1 Feedforward error

In Section 6.1.2, it is shown that the ultimate bound on the tracking error
depends linearly on the bound on the feedforward error. Let us therefore study
how the feedforward error depends on the properties of the exact feedforward,
the network delays, the packet dropouts, and the sampling intervals.

For the sake of simplicity, we start with the small delay case. Each scalar
component of the exact feedforward uff

e (t) is denoted by uff
e,i(t), i = 1, . . . ,m.

In the time interval t ∈ [sk + τk, sk+1 + τk+1), the delayed zero-order hold
feedforward signal is given by uff (t) = uff

e (sk). Consequently, each component

of the feedforward error ∆uff
i (t) in this time interval satisfies:

∆uff
i (t) = uff

e,i(sk) − uff
e,i(t) ∀ t ∈ [sk + τk, sk+1 + τk+1), (6.48)

i = 1, . . . ,m, analogous to (6.7). Using the mean value theorem, we can write

∆uff
i (t) = uff

e,i(sk) − uff
e,i(t) =

∂uff
e,i

∂t

∣

∣

∣

∣

t∗
(sk − t),

⇒ |∆uff
i (t)| ≤ ϑ1,i|sk − t|, ∀ t ∈ [sk + τk, sk+1 + τk+1),

(6.49)

with t∗ ∈ [sk, t], since t ≥ sk and

ϑ1,i = sup
t∈R

∣

∣

∣

∣

duff
e,i(t)

dt

∣

∣

∣

∣

, i = 1, . . . ,m. (6.50)

Note that such ϑ1,i, i = 1, . . . ,m, are well-defined due to the assumption that
ẋd(t) is at least C2, guaranteeing that uff

e (t) is at least C1. Moreover, ϑ1,i,
i = 1, . . . ,m is a bounded value.
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Based on (6.49), we can provide the following bound for each component of
the feedforward error on R:

|∆uff
i (t)| ≤ ϑ1,i max(| τk + h |), i ∈ {1, . . . ,m}, ∀t ∈ R,

⇒ |∆uff
i (t)| ≤ ϑ1,i(τmax + h) =: R0,i, i ∈ {1, . . . ,m}, ∀t ∈ R.

⇒ |∆uff (t)| ≤

√

√

√

√

m
∑

i=1

R2
0,i =: R0, ∀t ∈ R.

(6.51)

For the case with time-varying sampling intervals, large delays, and packet
dropouts the definition of the feedforward error can be derived analogously. The
duration of the feedforward signal uff (t) = uff

e (sk) is more complicated to de-
rive than in the small delay case, because it is possible that uff

e (sk) or the next
feedforward signal uff

e (sk+1) is not implemented due to packet dropout or mes-
sage rejection. Because we are interested in an upper bound of the feedforward
signal, we will consider the worst case scenario. Then, the longest duration
of the feedforward signal uff

e (sk) needs to be considered, because this results
in the largest feedforward error. Note that if uff

e (sk) is not implemented, an
older feedforward signal, e.g. uff

e (sk−1) is active until the next input is imple-
mented, resulting in the fact that ∆uff

e (sk−1) needs to be considered instead of
∆uff

e (sk). The longest period during which uff (t) = uff
e (sk) may hold, is given

by t ∈ [sk+τk, sk+δ+1+τk+δ+1), which includes the maximum number of packet
dropouts after t = sk. Note that in the case of message rejection it is possible
that sk+δ+1 + τk+δ+1 > sk+δ+2 + τk+δ+2, but then still sk+δ+1 + τk+δ+1 needs
to be considered to derive the upper bound on the feedforward error, because
it represents the worst case situation. Based on this worst case duration of the
control signal, the feedforward error ∆uff (t) will be derived.

Analogously to the small delay case, each component of the feedforward
error ∆uff

i (t) satisfies:

∆uff
i (t) = uff

e,i(sk) − uff
e,i(t) ∀ t ∈ [sk + τk, sk+δ+1 + τk+δ+1), (6.52)

i = 1, . . . ,m, analogous to (6.48) and (6.7). Using the mean value theorem, we
can derive

|∆uff
i (t)| ≤ ϑ1,i|sk − t|, ∀ t ∈ [sk + τk, sk+δ+1 + τk+δ+1), (6.53)

with t∗ ∈ [sk, t], since t ≥ sk, and

ϑ1,i = sup
t∈R

∣

∣

∣

∣

∂uff
e,i(t)

∂t

∣

∣

∣

∣

, i = 1, . . . ,m, (6.54)

where ϑ1,i, i = 1, 2, . . . ,m, is bounded. Analogous to (6.51) and based on (6.53),
the bound for each component of the feedforward error on R, dependent on the
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network properties, such as delays, time-varying sampling interval, and packet
dropouts, is given by:

|∆uff
i (t)| ≤ ϑ1,i max(τk + (δ + 1)hk), i ∈ {1, . . . ,m}, ∀t ∈ R,

⇒ |∆uff
i (t)| ≤ ϑ1,i(τmax + (δ + 1)hmax) =: R̄0,i, i ∈ {1, . . . ,m}, ∀t ∈ R.

⇒ |∆uff (t)| ≤

√

√

√

√

m
∑

i=1

R̄2
0,i =: R̄0, ∀t ∈ R.

(6.55)

Note that (6.51) can be retrieved from (6.55) by considering δ = 0 and hmax = h.

6.3.2 Solution to the approximate tracking problem

Let us now state the following corollary, based on Theorem 6.2.3 and the bound
on the feedforward error defined in the previous section, on the steady-state
tracking performance achieved by applying the tracking controller (6.4), and
uff

e (t) satisfying (6.2), to the NCS (6.24), for time-varying sampling intervals,
packet dropouts, and delays that may be larger than the sampling interval.

Corollary 6.3.1 (Tracking error) Consider the NCS (6.24), with sequences
of sampling instants, delays, and packet dropouts σ ∈ S and S defined by (6.31).
Moreover, consider the controller (6.4) and uff

e (t) satisfying (6.2). If the LMIs
(6.39) are feasible, with B1 = −BK and B2 = B, then the tracking error
dynamics (6.29) is uniformly input-to-state stable (ISS) with respect to the
feedforward error ∆uff (t) over the class S of sampling-delay-packet dropouts
sequences (6.31). Moreover, the tracking error is globally uniformly ultimately
bounded with the asymptotic bound computed from lim supt≥0 |e(t)| ≤ g2R̄0,
with g2 given in (6.47) and R̄0 given in (6.55).

Note that this corollary is also valid for the small delay case, where the
LMI conditions in (6.39) are replaced by the LMI conditions (6.20). Then, the
parameters R̄0 and g2 in Corollary 6.3.1 need to be replaced by their definitions
in (6.51) and (6.22), respectively.

6.4 Illustrative examples

The motor-roller example, as considered in (4.1) in Chapter 4, is used to il-
lustrate the usefulness of the ISS conditions. In this example, a motor drives
a roller that is used to transport a sheet of paper through the paper path of
an industrial printer. In this section, we apply the proposed results on ISS to
upper bound the steady-state tracking error. This information can be used to
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Figure 6.2: Tracking error bounds for a constant sampling interval h = 5×10−3s
and time-varying and uncertain delays in the set [0, τmax].

derive requirements on e.g. the maximum sampling interval or the maximum
delay allowed to guarantee a certain steady-state tracking performance.

Consider the motor-roller system, described by

ẍs(t) =
nrR

JM + n2JR

u∗(t),

u∗(t) = uj , for t ∈ [sk + tkj , sk + tkj+1),
(6.56)

with tkj defined in (6.25), for j ∈ {k−d−δ, . . . , k−d}, JM = 1.95 ·10−5kgm2 the

inertia of the motor, JR = 6.5 · 10−5kgm2 the inertia of the roller, rR = 14mm
the radius of the roller, n = 0.2 the transmission ratio between motor and
roller, xs [m] the position of the sheet of paper, and u [Nm] the motor torque.
Moreover, consider the control law (6.4), with K =

(

50 1.18
)

and a harmonic

desired trajectory: xd(t) =
(

Ad sin(ωt) Adω cos(ωt)
)T

, with Ad = 0.01 and

ω = 2π. The exact feedforward is given by uff
e (t) = −Adω2

b
sin(ωt), with

b = nrR

JM+n2JR
.

Consider first the case of a constant sampling interval, but with time-varying
and uncertain delays in the set [0, τmax]. Figure 6.2 depicts the error bounds
as provided in Corollary 6.3.1 for τmax ≤ h and the error bound obtained
with the delay impulsive differential model in [74; 111]. Note that for the
discrete-time modeling approach also the bound for the tracking error at the
sampling times sk (ḡ2R0) is included by means of the dotted line. Figure 6.2
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shows that by using the discrete-time approach, ISS can be guaranteed up
to τmax = 0.94 h, but using the delay impulsive approach ISS can only be
guaranteed up to τmax = 0.33 h. So, the discrete-time approach allows to prove
ISS for a larger range of delays. However, the delay impulsive modeling/analysis
approach provides much tighter (ISS) bounds on the tracking error (note that
the scale of the vertical axis is logarithmic). Note that the overestimation
of the bound on the tracking error for the discrete-time modeling approach is
significantly worsened due to upperbounding the intersample behavior (compare
the solid and dotted lines in Figure 6.2).

Next, the case in which the sampling interval is variable, i.e. h ∈ [hmin, hmax],
and the delay is zero is considered. Figure 6.3 depicts the error bounds as pro-
vided in Corollary 6.3.1 and the error bound obtained with the delay impulsive
differential model in [74; 111]. Note that, in this example, hmin = hmax/1.5, so
hmin 6= 0 is used. Using the discrete-time modeling approach, ISS almost up to
hmax = 1.34 × 10−2s, which is the sampling interval for which the system with
a constant sampling interval (and no delay) becomes unstable (see the dashed
vertical line in Figure 6.3) can be assured. This fact shows that the proposed ISS
conditions are not conservative from a stability perspective. Using the delay im-
pulsive modeling approach, ISS can only be guaranteed up to hmax = 9×10−3s.
However, the delay impulsive approach clearly provides significantly less con-
servative bounds on the tracking error. Moreover, Figure 6.3 shows that the
bounds on the tracking error increases progressively for increasing hmax (and
hmin). This increase is due to, firstly, the fact that the ISS gain g2 increases for
increasing hmax and, secondly, the fact that the bound on the feedforward error
R̄0 in (6.55) increases for increasing hmax. This type of plot is instrumental
in determining an upper bound on the maximum sampling interval needed to
guarantee a minimum level of steady-state tracking performance.

Comparing the two modeling approaches and related ISS results in this
example, it is concluded that the discrete-time modeling approach seems to
allow to prove ISS for larger ranges of sampling intervals and delays, whereas the
delay impulsive modeling approach clearly provides much tighter (ISS) bounds
on the tracking error.

6.5 Discussion

In this chapter, a solution to the approximate tracking problem of NCSs (or,
more general, sampled-data systems) with uncertain, time-varying sampling
intervals, packet dropouts, and delays that are allowed to be larger than the
sampling interval is presented. The uncertain, time-varying sampling intervals,
network delays, and zero-order hold cause an inexact feedforward, which induces
a perturbation on the tracking error dynamics. Sufficient conditions in terms of
LMIs for the input-to-state stability (ISS) of the tracking error dynamics with
respect to this perturbation are given. Note that the LMIs are an adaptation of
the stability analysis LMIs as derived in Chapter 4. These ISS results provide
bounds on the steady-state tracking error as a function of the plant properties,
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Figure 6.3: Tracking error bounds for variable sampling intervals h ∈
[hmin, hmax] and no delays, where hmax = 1.5hmin.

the control design, and the network properties. Such error bounds can readily
be used to formulate design rules regarding the maximum sampling interval,
the maximum delay, or the maximum number of packet dropouts allowed to
guarantee a certain steady-state tracking performance.

The results are illustrated on a mechanical motion control example showing
the effectiveness of the proposed strategy and providing insight in the differ-
ences and commonalities between the discrete-time modeling approach and a
modeling approach that is based on delay impulsive differential equations, as
described in [74; 111]. More specifically, in the presented motion control ex-
ample, our discrete-time modeling approach allows to prove ISS (and thus a
bounded tracking error) for larger ranges of sampling intervals and delays. On
the other hand, the delay impulsive modeling approach provides much tighter
(ISS) bounds (and therewith tighter bounds on the tracking error).
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Experimental validation of the stability

of NCSs with delays1

7.1 NCS model
7.2 Stability
7.3 The experimental set-up

7.4 Experimental results
7.5 Discussion

This chapter presents a comparison between theoretical and experimental
results on the stability and transient performance of NCSs with time-delays
that are either constant or time-varying. These delays are allowed to be larger
than the constant sampling interval, and packet dropouts are not considered.
The experimental study is performed on two typical motion control examples: a
single inertia system and a motor-load system. Firstly, the single inertia system
is used for validation of the stability region for constant delays. This region,
e.g. presented in [133], describes the stabilizing controller gains for different
constant delays. Secondly, an experimental example, for the single inertia sys-
tem, is presented showing that the time-varying nature of network delays (even
below the sampling time) can induce closed-loop instability (as was previously
indicated in theoretical studies in e.g. [118] and in the motivating example in
Section 4.1). Thirdly, for both set-ups, validation of the results on the stabil-
ity and transient performance of NCSs with uncertain, time-varying delays, as
derived in Chapters 4 and 5 is performed.

The outline of this chapter is as follows. In Section 7.1, the discrete-time
NCS representation of Chapter 3 is adapted for the output-feedback case, since
in both setups the entire state cannot be measured. In Section 7.2, the stability
conditions of Chapter 4 are adapted such that they are applicable for the output-
feedback case. Moreover, stability conditions for both constant and periodic
delays are discussed. The two experimental set-ups are introduced in Section 7.3
and measurements for the validation of both stability and transient performance
results are presented in Section 7.4. Finally, in Section 7.5 a discussion on the
obtained results is given.

7.1 NCS model

The NCS model, for the static output-feedback case can be obtained from the
state-feedback case. Recall that the continuous-time NCS model for any control

1This chapter is based on [13].
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input and for time-varying delays larger than the constant sampling interval and
no packet dropouts is given by (3.6):

ẋ(t) = Ax(t) +Bu∗(t)
y(t) = Cx(t)
u∗(t) = uj for t ∈ [sk + tkj , sk + tkj+1),

(7.1)

where tkj is defined, as in (3.7), by

tkj = min
{

max{0, τj − (k − j)h},max{0, τj+1 − (k − j − 1)h}, . . . ,
max{0, τk−d − dh}, h

}

,

(7.2)
with tkj ≤ tkj+1 and j ∈ [k − d, k − d + 1, . . . , k − d]. Moreover, 0 =: tk

k−d
≤

tk
k−d+1

≤ . . . ≤ tkk−d ≤ tkk−d+1 := h. The corresponding discrete-time NCS

model is given by (3.8), i.e.

xk+1 = eAhxk +

k−d
∑

j=k−d

∫ h−tk
j

h−tk
j+1

eAsdsBuj

yk = Cxk,

(7.3)

with tkj as defined in (7.2). To make the model of (7.3), in combination with a
static output-feedback controller, suitable for the stability analysis, it is rewrit-
ten in the following state-space notation that includes the output yk:

ηk+1 = Ā(tk)ηk + B̄(tk)uk, (7.4)

with

ηk =
(

ξT
k yT

k−1

)T
=
(

xT
k uT

k−1 uT
k−2 . . . uT

k−d
yT

k−1

)T

, (7.5)

Ā(tk) =

(

Ã(tk) 0

C̃ 0

)

, B̄(tk) =

(

B̃(tk)
0

)

, (7.6)

where Ã(tk), B̃(tk), and C̃ are equal to their definitions in (3.9), which are

Ã(tk) =















eAh M̃1 M̃2 . . . M̃d

0 0 0 . . . 0
0 I 0 . . . 0
...

. . . . . .
0 . . . 0 I 0















, B̃(tk) =















M̃0

I
0
...
0















, (7.7)

C̃ =
(

C 0 . . . 0
)

, and

M̃ρ =











∫ h−tk
k−ρ

h−tk
k−ρ+1

eAsdsB if ρ ≥ d,

0 if ρ < d,

(7.8)



7.2. Stability 115

for ρ ∈ {0, 1, . . . , d} and tkk−ρ defined in (7.2), with j = k−ρ. Finally, tk denotes

the combination of the time-varying parameters, i.e. tk = (tk
k−d+1

, . . . , tkk−d).

Remark 7.1.1 Note that for constant delays τ , Ā and B̄ are constant matrices
and depend on the parameter τ∗ := τ − (d − 1)h, with d = ⌈ τ

h
⌉. The matrices

M̃ρ in Ā(tk) and B̄(tk) are then given by:

M̃ρ =























∫ h−τ∗

0

eAsdsB if ρ = d− 1,
∫ h

h−τ∗

eAsdsB if ρ = d,

0 if ρ < d− 1,

(7.9)

for d ≥ 1. These adaptations result in exactly the same constant delay model
that is presented in e.g. [4; 133].

7.2 Stability

In this section, the stability results for constant, periodic, and arbitrary varying
time-delays for a NCS with output-feedback are derived. Consider the control
law:

uk = −Kηk = K1yk −K2yk−1, (7.10)

with K =
(

−K1C 0 . . . 0 −K2

)

. For constant time-delays, the stability
of the NCS can be derived based on the eigenvalues of the controlled system
ηk+1 = Âηk, with

Â = Ā− B̄K, (7.11)

and Ā, B̄ defined in (7.6), (7.7), (7.9).
For periodic delays with a known sequence, the stability can be obtained

based on the eigenvalues of the system matrices of the periodic system (i.e. the
product of the matrices corresponding to the periodic repetition of the delays),
see [31] for more details. Note that in Section 4.1 an example for the periodic
delay sequence τ1, τ2, τ1, τ2, . . . is given.

For time-varying delays, Theorem 4.4.4 can be used if the system matrices
are adapted such that system (7.4) is evaluated. Below, the adapted version of
this theorem will be described. First, the discrete-time NCS representation (7.4)
is rewritten based on the Jordan form of the continuous-time system matrix A.
It holds that

ξk+1 =

(

F0 +

β
∑

i=1

αi(t
k
j )Fi

)

ηk +

(

G0 +

β
∑

i=1

αi(t
k
j )Gi

)

uk, (7.12)

with αi(t
k
j ), i = 1, 2, . . . , β, defined in Appendix B.4 by (B.38), (B.39), (B.40),

and (B.41) if only β uncertain parameters are considered and hk is replaced
by h. The constant matrices F0, G0, Fi, and Gi, i = 1, 2, . . . , β, are also
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defined in Appendix B.4. Note that in (7.12) the parameter j takes values from
j ∈ {k − d + 1, k − d + 2, . . . , k − d}, because tk

k−d
:= 0 and tkk−d+1 := h, as

defined in Lemma 3.2.1.
To derive the stability conditions, similar to Theorems 4.3.1 and 4.4.4, where

a common quadratic candidate Lyapunov function is used, the set of matrices
FG is redefined, such that the output dependent part C̃ is included and the
sampling interval is constant, as is the case in the experiments:

FG =

{(

F (tk), G(tk)

)

: tk = (tk
k−d+1

, . . . , tkk−d), t
k
j ∈ [tkj,min, t

k
j,max],

k − d < j ≤ k − d

}

,

with F (tkj ) = F0 +
∑β

i=1 αi(t
k
j )Fi, G(tkj ) = G0 +

∑β
i=1 αi(t

k
j )Gi, Then, analo-

gous to Theorem 4.4.4, Theorem 7.2.1 proposes conditions that guarantee the
stability of the continuous-time and discrete-time closed-loop NCS model.

Theorem 7.2.1 Consider the continuous-time NCS model (7.1), (7.2) with
delays τk ∈ [τmin, τmax] and consider the corresponding discrete-time represen-
tation (7.4), (7.6), (7.7), (7.2), and its equivalent representation (7.12) that is
based on the Jordan form of the continuous-time system matrix A of (7.1).
Moreover, consider a known controller (7.10). Define the set of matrices HFG:

HFG =

{

(

F̄0 +

β
∑

i=1

δiF̄i, Ḡ0 +

β
∑

i=1

δiḠi

)

: δi ∈ {0, 1}, i = 1, 2, . . . , β

}

,

with F̄0 = F0 +
∑β

i=1 αiFi, F̄i = (αi − αi)Fi, Ḡ0 = G0 +
∑β

i=1 αiGi, Ḡi =
(αi − αi)Gi, and αi = maxtk

j ∈[tk
j,min,tk

j,max] αi(t
k
j ), αi = mintk

j ∈[tk
j,min,tk

j,max] αi(t
k
j ),

the maximum and minimum value of αi(t
k
j ), respectively, with tkj,min and tkj,max

defined in (4.32) and (4.33), respectively.

If there exist a matrix P ∈ R
(n+dm+r)×(n+dm+r) and a scalar 0 ≤ γ < 1,

such that the following LMI conditions are satisfied:
(

(1 − γ)P (HF,j −HG,jK)TP
P (HF,j −HG,jK) P

)

> 0, (7.13)

for all (HF,j , HG,j) ∈ HFG, with j = 1, 2, . . . , 2β, then (7.1), (7.2), with the
controller defined in (7.10), is GAS for τk ∈ [τmin, τmax].

Proof The proof is analogous to the proof of Theorem 4.3.1 and Theorem 4.3.6.
�

Transient performance The lower bound on the transient decay rate can
be derived analogously to (5.9), with ξk replaced by ηk. This gives:

|xk|2 ≤ (1 − γ)k‖CxP
− 1

2 ‖2|η0|2P , (7.14)

with |η0|2P = ηT
0 Pη0 and Cx defined such that it holds that xk = Cxηk.
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Figure 7.1: Overview of the experimental motion control set-up.

7.3 The experimental set-up

Two representative experimental motion control systems, with, respectively,
second-order and fourth-order continuous-time dynamics are considered. The
experimental set-up, depicted in Figure 7.1, exists of two identical servomotors,
with the same inertia mounted on each drive shaft. A rubber belt connects
both inertias. The first study is performed on the system with the rubber belt
removed (i.e. a single actuated inertia remains, as is encountered in many motion
control systems, e.g. the motor-roller example as considered in the previous
chapters). The second study is performed with the belt mounted, yielding
a typical motor-load motion control setting with a flexible coupling (the belt).
Herein, the left motor is used for actuation and the position of the right motor is
measured through an incremental encoder with a resolution of 2000 increments
per revolution. In both set-ups the angular velocity is estimated by numerical
differentiation with a backward difference method. This estimation is explicitly
included in the control law, which results in the use of an output-feedback
controller. A constant velocity is used as a reference signal.

The time-delays are artificially induced in the control system in order to be
able to perform tests with well-defined sequences of delays, needed to validate
the output-feedback control designs. This results in an academic experimen-
tal setting, where we have known and guaranteed bounds on the variation of
the time-delays. To achieve both predictable time-varying and constant de-
lays in the set-up, a high-performance measuring device is used: TUeDACS
[109], [1]. The controller is implemented with the Real-Time toolbox of Mat-
lab/Simulink. The time-delays are implemented within Simulink, being frac-
tions of the sampling interval. Hereto, two different sampling rates are used.
Firstly, the Simulink block, including the controller, is executed at 5 kHz, which
allows for time delays of 1

5000 s. Secondly, the plant is effectively sampled at 500
Hz by removing nine out of ten data packets obtained at the 5 kHz rate. This
combination of sampling rates allows for time-delays of 10, 20, . . . , 90, 100% of
the sampling interval of the plant (h = 2ms). To ensure correct implementation
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θ
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J

Figure 7.2: Schematic overview of the single inertia set-up.

of the delays, the actuation is performed at 5 kHz again. For constant and
periodic time-delays, the constant minimum time-delay that is always present
in the set-up is equal to 0.04ms (i.e. 2% of the sampling time). For time-varying
delays, this minimum time-delay is equal to 0.28ms (i.e. 14% of the sampling
time). Note that this minimum time-delay includes both the controller compu-
tation and the transmission of the signals and is derived if no additional possibly
time-varying delays are implemented in the Simulink block. The time-variation
in the delays is obtained at random, with a discrete uniform distribution, with
τ ∈ {0, 0.1h, . . . , 2h} or obtained based on a previously defined sequence of these
delays. The additionally implemented time-delay is introduced after the con-
trol computation, thus it represents the controller-to-actuator delay. Because
all delays are combined into one single delay in the NCS model, see Chapter 3,
this implementation is suitable to validate the stability results. Note that the
total delay, as used in the stability analysis conditions, is thus the combination
of both the minimum delay and the bounds on the variation of the delay.

Next, the dynamics of both set-ups will be presented. The single inertia

set-up is depicted in Figure 7.2 and it is modeled by (7.1), with x =
(

θ θ̇
)T

,

A =

(

0 1
0 0

)

, B =

(

0
km

J

)

, C =
(

1 0
)

, km

J
= 2.15 · 103 rad/Vs2, km the motor

constant, and J the inertia (see [83]).
The motor-load configuration is depicted in Figure 7.3 and it is modeled by

(7.1), with the state vector defined as x =
(

θ1 θ̇1 θ2 θ̇2
)T

, and the system
matrices defined by

A =









0 1 0 0

− 2kr2

J
− 2br2

J
2kr2

J
2br2

J

0 0 0 1
2kr2

J
2br2

J
− 2kr2

J
− 2br2

J









, B =









0
km

J

0
0









, C =
(

0 0 1 0
)

,

with km the motor constant, J the inertia of the first and second motor (i.e.
both motors have the same inertia), k the spring stiffness of the belt, b the
viscous damping coefficient modeling the dissipation in the belt, and r the
radius of the inertias, which are connected via the belt. A frequency domain
parameter identification procedure gives the following parameter values: km

J
=

2.04 · 103rad/Vs2, b
k

= 5.1 · 10−3s, and kr2 = 0.42Nm, see [5].
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Figure 7.3: Schematic overview of the motor-load set-up.

7.4 Experimental results

For both experimental set-ups, the following output-feedback controller is used:

uk = −
(

K1 K2

)

(

Cxk
Cxk−yk−1

h

)

= −
(

(K1 + K2

h
)C 01×d −K2

h

)

ηk, (7.15)

withK1 andK2 the controller gains. Let us now discuss the experimental results
for the cases of constant delays, periodic delays, and random time-varying delays
in the following sections.

7.4.1 Constant delays

For the validation of the results for constant delays the focus is, for the sake
of simplicity, on the set-up with a single inertia. For a fixed controller gain
K1 = 17V/rad, measurements are performed to determine all stabilizing con-
troller gains K2 that stabilize the NCS of (7.1), (7.15) for constant time-delays.
The experimentally obtained minimum and maximum stabilizing controller
gains, denoted by K2 and K2, respectively, are depicted in Figure 7.4 by the
star and plus-signs, respectively. For comparison, the border of the analytical
stability region obtained by analysis of the eigenvalues of the controlled system
is depicted by the solid line, which shows that the analytic model provides an
accurate prediction of the stability region in practice.

7.4.2 Periodic Delays

The experimental time responses of the position error (e = θref − θ, with θref

the reference position) for the constant time-delays τ1 = 0.02h and τ2 = 0.42h,
with K =

(

17 0.23
)

, are depicted in the upper and lower plot of Figure 7.5.
Both responses are clearly stable. Note that, on a model level, the eigen-
values of the discrete-time system matrices are given by {λi} = {0.301 ±
0.715i,−0.0004, 0.854} for Â(τ1), and {λi} = {−0.105, 0.529± 0.832i, 0.855}
for Â(τ2), with Â(τ) defined in (7.11). Clearly all eigenvalues are within the unit
circle which confirms the experimentally observed stability properties. In Fig-
ure 7.6, the time-response for the periodic delay sequence τ1, τ2, τ2, τ1, τ2, τ2, . . .



120 Experimental validation of the stability of NCSs with delays

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
/
h

[-
]

K2 [Vs/rad]

K2 [Vs/rad]
K2 [Vs/rad]

Figure 7.4: Analytical and experimental stability region for the single inertia
system with constant time-delays, h = 2ms, and K1 = 17V/rad.

is depicted. According to the eigenvalues of the periodic system matrix
Â(τ2)Â(τ2)Â(τ1), with Â(·) defined in (7.11), this system is unstable (the eigen-
values are {λi} = {−1.006,−0.566, 0, 0.624}). From Figure 7.6, it is observed
that the time-response does not converge to zero and remains bounded. How-
ever, in the time-interval [1.1, 1.3]s a divergent error signal is observed, indi-
cating an unstable behavior of the system. For t > 1.3s, the amplitude of the
error remains bounded, which is caused by the saturation of the control input
(i.e. the control input is limited to [−2.5, 2.5]V, as depicted in the lower plot
of Figure 7.6). This saturation avoids that the error escapes to infinity. More-
over, the system becomes nonlinear, due to the saturation of the control input,
which is not considered in the analysis of Theorem 7.2.1. The divergence of the
error for control inputs smaller than the saturation level shows that the original
system, without saturation, is indeed unstable.

This example of the destabilizing effect of periodic delays, both analytically
and experimentally, motivates the controller design for time-varying delays.

7.4.3 Randomly Time-Varying Delays

Figure 7.7 depicts the stability region of the controlled single inertia system for
randomly time-varying delays (dashed line), obtained with Theorem 7.2.1, and
for constant delays (solid line), with K1 = 1V/rad and h = 2ms. The controller
gain K1 is reduced to K1 = 1V/rad, such that stabilizing controllers can be
found for delays larger than the sampling interval. Note that the previously used
controller gainK1 = 17V/rad, does not allow for delays larger than the sampling
interval, because the region for constant delays is already limited to delays
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Figure 7.5: Time-response of the single inertia system for τ1 = 0.02h (upper
plot) and τ2 = 0.42h (lower plot), with K = (17 0.23) and h = 2ms.
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Figure 7.6: Time-response of the single inertia system, for the periodic delay
sequence τ1, τ2, τ2, with τ1 = 0.02h, τ2 = 0.42h, K = (17 0.23), and h = 2ms.

smaller than the sampling interval, as can be seen in Figure 7.4. Figure 7.7
shows that the conservatism of the stability conditions in Theorem 7.2.1 is
limited (compare hereto the solid and dashed lines). The gray lines depict
the measurements that are performed to validate the stability region. Both
random delay sequences with a uniform distribution between τmin and τmax
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Figure 7.7: Stability region for the single inertia system for constant delays
(solid line) and time-varying delays according to Theorem 7.2.1, with K1 =
1V/rad, τmin = 0.28ms, h = 2ms.

(denoted by ⋆), and a periodic sequence τmin, τmax, τmin, τmax, . . . are used for
validation purposes. These measurements show a stable configuration, which
is in agreement with Theorem 7.2.1. Two examples of such time-responses for
random variations in the delay are depicted by the solid line in the upper plot of
Figure 7.8 and 7.9 in terms of the error. Additionally, the middle plot gives the
control input and the lower plot gives, for a smaller time-scale, the delays that
are used in the experiments. Note that in Figure 7.9, the control input does not
converge to a constant value. This is caused by the measurement error of the
encoder in combination with a relatively high value of the controller gain K2.
In Figure 7.8 this effect is much smaller, due to the choice of the controller that
is less close to the largest stabilizing controller gain K2 that can be found for
this delay combination. However, the control input does not converge to zero,
due to the presence of Coulomb friction in the motor.

Additionally, several measurements for time-varying delays are performed
to evaluate the possible conservatism of the transient decay rate in (7.14). Two
time-response measurements are depicted in Figures 7.8 and 7.9. In the upper
plots the measured time-response is depicted by the solid line and the estimated
decay rate according to (7.14) is depicted by the dashed line. To obtain a
better understanding of the relation between the analytical transient decay rate
(1− γ) obtained with (7.13), (7.14) and the experimental decay rate, a range of
measurements are compared in Figure 7.10 for varying controller gains K2. The
plot depicts the analytical and experimental decay rate 1−γ. The experimental
decay rate is estimated based on the time-response and the relation |ek|2 ≤ (1−
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Figure 7.8: Experimental time response of the single inertia system for τk ∈
[0.28, 1.08]ms, K1 = 1V/rad, K2 = 0.01Vs/rad, γ = 0.034, h = 2ms and the
corresponding lower bound of the decay rate as in (7.14).

γ)k|e0|2. Except for values near the stability boundary, there is a clear match
between the experimental results and the model results. Based on this fact, we
can claim that the parameter γ represents a useful measure in terms of transient
performance, which can be used in the controller design with Theorem 7.2.1.

To show the applicability of Theorem 7.2.1 for more complex systems, the
stability region for the motor-load set-up is validated. The analytical stabil-
ity regions for constant and time-varying delays are depicted in Figure 7.11
for K1 = 0.05V/rad. Similar to the single inertia system, measurements for
different uniform and periodic delay configurations are performed (depicted by
the gray lines with τmin = 0.14h and τmax = 0.94h denoted by ⋆). Again,
it is concluded that no unstable measurements occur inside the stability re-
gion for time-varying delays. During the measurements, it is noticed that for
K2 = 0.021Vs/rad the system became unstable, which indicates that the upper
bound of K2 obtained from the conditions in Theorem 7.2.1 is not overly con-
servative. In the experiments, for lower values of K2 (K2 < 0.021Vs/rad), no
instability was found for either constant or time-varying delays. This indicates
that the obtained analytical upper bound on K2 for constant and time-varying
delays show a small difference with their experimental equivalents. This differ-
ence is partly caused by an inaccuracy of the estimated parameters, resulting
in a difference between the model and the experiments.

As an example, the error signal (e = θ2,ref − θ2, with θ2,ref the reference
signal and θ2 the measured angle of the right motor), the control input, and
the delay are depicted in Figure 7.12 for K1 = 0.05V/rad, K2 = 0.01, γ = 0.01,
τ ∈ [0.28, 3.88]ms, and h = 2ms. This shows that the system is indeed stable.



124 Experimental validation of the stability of NCSs with delays

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

0

2

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

0

1

2

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

0.5

1

t [s]

e
[r

a
d
]

u
[V

]
τ

[m
s]

Measurements
Overestimation

Figure 7.9: Experimental time response of the single inertia system for τk ∈
[0.28, 1.08]ms, K1 = 1V/rad, K2 = 0.2Vs/rad, γ = 0.019, h = 2ms, the corre-
sponding lower bound of the decay rate as in (7.14).
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Figure 7.10: Comparison of the analytical and experimental decay rate (K1 =
1V/rad, τk ∈ [0.28, 1.08]ms, h = 2ms) of the single inertia system.

Moreover, the analytical transient decay rate, obtained with (7.14), is depicted
by the dashed line. This shows that for this configuration, the analytical decay
rate is a useful estimate of the transient performance of the system in practice.
Analogous to the single inertia system, the convergence ratio based on the
analytical results and based on the measurements are compared in Figure 7.13
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Figure 7.12: Experimental time response of the single inertia system for τk ∈
[0.28, 3.88]ms, K1 = 0.05V/rad, K2 = 0.01Vs/rad, γ = 0.01, h = 2ms, the
corresponding lower bound of the decay rate as in (7.14).

for different values of K2 (K1 = 0.05V/rad, τk ∈ [0.28, 3.88]ms, and h = 2ms).
This shows that for small values of K2 the analytical transient decay rate is an
accurate estimate of the practical transient performance. For larger values of
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Figure 7.13: Comparison of the analytical and experimental decay rate (K1 =
0.05V/rad, τk ∈ [0.28, 3.88]ms, h = 2ms) of the motor-load system.

K2, i.e. K2 > 7Vs/rad, the difference between the estimated decay rate and the
time-response during the experiments is slightly larger, although still acceptable.
The main difference between the analytical and experimental results is found
for the values of K2 for which the smallest value of 1 − γ, i.e. the optimum
transient decay rate resulting in the smallest settling time, occurs. For the
experiments, a larger value of K2 is obtained than based on the analysis tools.
This is caused by the inaccuracy between the model and the experimental set-
up, as was already noticed in the validation of the stability region, where the
region for constant and time-varying delays is smaller than the stability region
in the practical situation. Still, due to the small difference, the analytical decay
rate is useful for controller design.

7.5 Discussion

In this chapter, the stability of NCSs is experimentally investigated for constant
and time-varying delays. To the author’s knowledge, this is the first time that
the theoretical stability region for constant delays is validated. It is shown that
there is a clear match between the measurements and the analytical stability
region for constant delays. For time-varying delays, first, the destabilizing effect
of time-variations in the delay is validated on the single inertia system for peri-
odic time-delays. This observation shows, in combination with the theoretical
example in Section 4.1, the value of the research on the stability of NCSs with
time-varying delays, as presented in this thesis. Second, for time-varying delays,
the stability conditions of Chapter 4 are adapted for the output-feedback case
and validated on two representative motion control examples, i.e. a single inertia
and a motor-load set-up. In both cases, the controllers that guarantee stability
for time-varying delays are validated on the set-up. Moreover, the performance
measure in terms of transient decay rate, as described in Chapter 5, is validated
and shown to be predictive if the plant model is an accurate description of the
experimental set-up.
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Conclusions and recommendations

8.1 Conclusions 8.2 Recommendations

In this chapter the main conclusions, regarding the work in this thesis will
be presented (Section 8.1) and recommendations for future work will be given
(Section 8.2).

8.1 Conclusions

The conclusions are divided in two parts. Firstly, in Section 8.1.1, conclusions
regarding Networked Control Systems (NCSs) are presented. Here, the model,
stability, controller synthesis, and tracking conditions are discussed, as well as
the experimental results. Secondly, in Section 8.1.2, conclusions regarding the
design of high-tech systems are presented, based on the obtained results for
NCSs.

8.1.1 Networked Control Systems

In this thesis, NCSs consisting of a linear continuous-time plant and a discrete-
time controller are considered. Due to the use of the communication network
and a possibly shared processor, the NCS has to deal with time-varying delays,
which can be smaller and larger than the sampling interval, time-varying sam-
pling intervals, and packet dropouts. The basis of the thesis is a discrete-time
NCS model that includes the combination of these effects. The starting point
of the proposed model is the standard discrete-time NCS model that describes
a NCS with time-varying delays smaller than the constant sampling interval
and no packet dropouts (see e.g. [85; 133]). In the literature, an extension for
time-varying delays larger than the sampling interval exists, where it is assumed
that all data (both from the sensor and the controller) arrives in a sequential
order (see [101; 124]). Note that if the variation of the delays is larger than
one sampling interval, the sequential order cannot be guaranteed. Therefore,
an improved model that includes message rejection, i.e. the rejection of data if
newer data is already available, is presented in this thesis. Moreover, an ex-
tension is presented such that the effects of packet dropouts and variations in
the sampling interval are included in the NCS model. Due to the assumption
that the variation in the delay and sampling interval is bounded and that the
number of subsequent packet dropouts is bounded, a time-varying discrete-time
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NCS model with a state of finite dimension is obtained. The dimension of the
(extended) state of the discrete-time NCS model depends on both the ratio be-
tween the maximum time-delay and the minimum sampling interval, and the
maximum number of subsequent packet dropouts.

Based on this model, stability conditions are presented. Two different con-
trollers are used, i.e. a state-feedback controller that depends on the state of the
continuous-time plant at the sampling instants and an extended state-feedback
controller that depends on the extended state vector that contains, besides the
current state, a number of past control inputs related to the maximum time-
delay and the maximum number of subsequent packet dropouts. A disadvantage
of the extended state-feedback controller is, however, that packet dropouts and
message rejection between the sensor and the controller are not allowed, to
guarantee the existence of all control inputs in the extended state-feedback con-
troller. For the state-feedback controller this restricting assumption is not nec-
essary, due to the dependence of the control law on the most recent state of the
continuous-time system only. For both controllers, based on different candidate
Lyapunov functions, conditions in terms of linear matrix inequalities (LMIs)
are presented that guarantee global asymptotic stability of the NCS. First, a
common quadratic candidate Lyapunov function that depends on the extended
state vector is considered. This method is applicable for both controllers. Sec-
ond, a candidate Lyapunov-Krasovskii (L-K) functional is considered to obtain
stability conditions for the state-feedback controller. A disadvantage of the L-
K approach is the increased conservatism compared to the common quadratic
Lyapunov approach, if the same extended state vector is considered. Moreover,
the LMIs become more complex; however, the number of LMIs that deal with
the uncertain time-variations in the NCS remains the same. The difference in
conservatism is explained, based on the structure of the Lyapunov functions. It
is shown that the L-K functional can be rewritten as a common quadratic Lya-
punov function, if the same state vector is considered. An illustrative example,
where a comparison of the two candidate Lyapunov functions, with respect to
the state-feedback controller is given, confirms this observation.

The obtained stability conditions are adapted, such that controller synthe-
sis conditions are obtained. The advantages and disadvantages of the differ-
ent control laws and both Lyapunov-based approaches are studied. First, the
common quadratic candidate Lyapunov function that depends on the extended
state vector is considered to derive synthesis conditions for both controllers.
For the extended state-feedback controller, constructive LMI conditions are ob-
tained, where the conservatism is comparable to the stability analysis results.
Illustrative examples show that both for small delays, large delays and packet
dropouts stabilizing controllers are obtained. For the state-feedback controller,
analogous to the extended state-feedback controller, stabilizing conditions are
derived, however, the results are extremely conservative due to the demands on
the structure of the Lyapunov matrix in the Lyapunov function. This structure
is needed to guarantee that a state-feedback controller is obtained. The illus-
trative example confirms this fact, because only for a limited number of small
delays stabilizing controllers can be derived. An improvement that avoids the
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structure in the Lyapunov matrix, but still allows to derive a state-feedback
controller is presented based on the results of [19]. The conservatism is in
this case comparable to the conservatism for the stability analysis results for
the state-feedback controller. The illustrative example confirms this fact, be-
cause stabilizing controllers for small delays, large delays, and packet dropouts
are obtained. Second, the Lyapunov-Krasovskii functional is also considered
to characterize stabilizing controllers. Again, the structured control synthesis
problem is avoided. However, additional assumptions are needed to obtain syn-
thesis LMIs instead of nonlinear matrix inequalities. Therefore, compared to
the stability analysis results for the L-K approach, the conservatism is increased.
The illustrative examples show that only for the small delay case stabilizing con-
trollers are obtained. Comparing the different approaches for the state-feedback
controller shows that the L-K approach is less conservative than the standard
synthesis conditions, based on the common quadratic Lyapunov function, but
more conservative than the synthesis conditions, where the structure in the Lya-
punov matrix is avoided by applying the results presented in [19]. Therefore,
the use of the L-K functional to derive stabilizing controllers is not advisable,
even more because the conditions are more complex than the approaches based
on a common quadratic Lyapunov function.

The approximate tracking control problem is solved for NCSs with time-
varying delays, time-varying sampling intervals, and packet dropouts. These
effects cause an error in the feedforward signal, which perturbs the tracking error
dynamics. Sufficient conditions in terms of LMIs for input-to-state stability
(ISS) of the tracking error dynamics with respect to this feedforward error are
given. Based on these LMI conditions, we formulated an ultimate bound for
the tracking error that depends on, firstly, the plant properties, secondly, the
controller, thirdly, the desired trajectory and, fourthly, the network properties,
such as delays, dropouts, and the sampling interval. Such conditions can be
used as a design tool during the multi-disciplinary design of high-tech systems,
because it gives a bound on the tracking error depending on several factors that
can be influenced by the design, such as bounds on the delays, sampling interval,
and the occurrence of packet dropouts, or for a given desired tracking error, it
gives the demands on the variation in the delays and sampling interval and
the bounds on the occurrence of packet dropouts. Using illustrative examples,
a comparison between the proposed discrete-time model and a model based
on impulsive differential equations, as described in [74; 111], is given. It is
shown that, for a typical motion control example, the discrete-time modeling
approach allows to prove a bounded tracking error for larger ranges of sampling
intervals and delays than the impulsive differential equations. On the other
hand, the delay impulsive modeling approach provides much tighter bounds on
the tracking error.

Experiments are performed on a single motor set-up and on a motor-load
set-up. For the first time, an example is shown where a periodic variation in
the delays destabilizes the system, while the system is stable for the constant
upper and lower bound of these delays. This example motivates the necessity to
include variations in the delays during the controller design. Moreover, the sta-
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bility analysis results, as proposed in this thesis, are validated on both set-ups
for time-varying delays, constant sampling intervals, and no packet dropouts.
Note that in the literature, hardly any experimental validation of stability anal-
ysis and controller synthesis results is available. The performed experiments
show that the stability results, as proposed in this thesis, are useful in practical
applications to design stabilizing controllers that can deal with variations in
the delay. Additionally, it is shown that the transient decay rate, that can be
obtained based on the LMI conditions is a useful prediction of the transient
decay rate in practice.

8.1.2 High-tech systems design

The previous conclusions are related to Networked Control Systems. As men-
tioned in the introduction, the analysis and design conditions are also useful
in the broader scope of the design of high-tech systems, such as wafersteppers,
electron microscopes, and copiers in which control systems operating over com-
munication networks play an important role. The bounds on the variation of
the sampling interval, the variation of the time-delays, and the number of sub-
sequent packet dropouts can be obtained from measurements on the network,
but also from measurements on the software implementation in the high-tech
system or from models of the software implementation, see e.g. [21; 112]. Recall
that the processor that is used for the control computation under considera-
tion, may be used for other software tasks leading to variations in the starting
moment of the control computation and therefore to delays in the control loop.
Moreover, the processor may be shared between multiple controllers, resulting
in the use of a communication network between the processor and the plants.
This may lead to above mentioned variations in the delay and sampling interval
or packet dropouts. During the design process of high-tech systems that include
these aspects, the bounds on the time-variation in the delays and sampling in-
terval (or bounds on the latency and jitter in software engineering terms) can
be used to decide if the controller should be adapted such that it can handle
these variations or that adaptations in the software (and its architecture) are
needed to decrease these variations. For the software related adaptations, one
can think of using multiple processors instead of one shared processor (i.e. a
change in the architecture) or using a faster processor. A comparison between
different architectures is discussed for instance in [112]. An adaptation in the
controller may, based on control engineering knowledge, lead to a decrease of
the performance (e.g. a larger tracking error or a slower transient response),
while a change in the software architecture is often related to the cost-price,
especially if the number of processors is changed. The approach presented in
this thesis is helpful to make these tradeoffs more explicitly.
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8.2 Recommendations

First, recommendations concerning the stability analysis and controller synthe-
sis results, as presented in this thesis will be discussed. We will discuss the
number of LMI conditions that are needed, possible solutions to decrease the
conservatism of the stability and synthesis conditions, and ideas to avoid the
assumptions on delays and packet dropouts between the sensor and controller
that are needed for the extended state-feedback controller.

• Although the number of LMIs that need to be solved for stability anal-
ysis and controller synthesis is reduced compared to previous results in
[16], still many LMIs need to be solved, especially when packet dropouts
and delay variations larger than two times the minimum sampling inter-
val occur (because the number of LMIs increase exponentially with ν that
depends on the dimension of the continuous-time system matrix A). A
reduction of the number of LMIs would be favorable in terms of numerical
tractability with reasonable computation time. Moreover, a further reduc-
tion of the conservatism is still advantageous. In [28], a reduction of the
number of LMIs is proposed, based on a geometric study that contains a
comparison between the region where the system may be active due to the
variations in the delays and the region enclosed by the generators. This
leads to a removal of the generators that describe the region where the
system can never be active for the given variations. Due to the analogy
with the model proposed in this thesis, such a reduction may be possible
for the analysis and synthesis results proposed in this thesis. This will,
due to the removal of part of the generators, result in less LMIs that need
to be solved for and a reduction of the computation time. Moreover, the
conservatism will be decreased, or, if none of the removed generators was
limiting for conservatism, remain the same.

• In this thesis, all results are based on the use of a common quadratic Lya-
punov function, or Lyapunov-Krasovskii functionals that can be rewritten
as a common quadratic Lyapunov function. A delay-dependent quadratic
Lyapunov approach, where a different quadratic Lyapunov function is
used for each generator, leads, in general, to less conservative results.
However, the number of LMIs increases rapidly, because, for each genera-
tor all possible combinations of subsequent Lyapunov functions need to be
considered. This may lead to numerical problems in the LMI solver, due
to the large number of equations that need to be solved for. Especially
for delays larger than the sampling interval and a number of subsequent
packet dropouts, this problem may arise, due to the number of generators
that are needed to describe these uncertainties. Due to the increase of the
number of LMIs it is unclear, if for this kind of systems, delay-dependent
quadratic Lyapunov functions give indeed results that are computation-
ally feasible. Here, we focussed on a common quadratic approach exactly
for this latter reason.
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• A solution to overcome the assumption for the extended state-feedback
controller, which states that, firstly, all data is received by the controller
in a sequential order (i.e. no message rejection) or that you have to wait
until all xl, l ≤ k have arrived, and secondly, that no packet dropouts
occur between the sensor and controller, can be the use of a model based
predictor that determines the unavailable states if a packet is dropped (or
rejected) between the sensor and the controller. Then, the extended state-
feedback controller can always be computed and the assumption on the
validity of this controller can be avoided. If such a model based predictor is
used, one should decide if the predictor behaves in an event-driven fashion
or in a time-driven fashion (possibly with a time-skew between the sensor
and the processor, where this predictor and the controller are evaluated).
If the predictor acts in an event-driven fashion, besides the computation
of possibly lost (or rejected) data, it can be used to estimate the current
state of the system, based on the received measurement data and their
known delay (which can be achieved by means of time-stamping). This
may improve the accuracy of the control input if the delays are large,
compared to the response-time of the system. However, the performance
of the predictor needs to be considered as well. If the predictor acts
in a time-driven fashion, its prediction of the states can be used by the
controller to derive a new control input if a certain time (e.g. the average
delay) has passed, without receiving new measurement data (due to large
delays or packet dropouts). This may result in a better performance. Note
that in both cases the stability of the system, including the predictor,
needs to be studied as well.

Additionally, recommendations concerning the use of NCSs in general can be
given. These recommendations deal with possible extensions in the model, and
therefore also in the analysis and synthesis results, that are needed to apply
NCSs in practice. Moreover, possible improvements to the experiments are
mentioned briefly.

• In this thesis, the focus is on the network effects, however, the effect
of quantization is not included. Analogous to the deteriorating effect of
delays, it is well known that a controller that is globally asymptotically
stabilizing for a system without quantization, may fail if a quantization
with a finite number of quantization levels is used, see e.g. [58] and the
references therein. The combination of the network effects, as considered
in this thesis, and quantization are needed to get a complete overview
of the different aspects that occur in NCSs and guarantee stability in
practical applications. Note that in [79] quantization and protocol design
are combined, however without delays.

• In this thesis, the bounds on the variation of the delay and the sampling
interval and the maximum number of subsequent packet dropouts are as-
sumed to be known. These bounds need to be obtained based on measure-
ments or models of the software and communication network. If protocol
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design is included in the control design, it will be possible to find a sta-
bilizing controller, in combination with a protocol, that guarantees that
data is transmitted within some bounds on the delay, sampling interval,
and the number of subsequent packet dropouts, such that the overall sys-
tem is stable. Note that the approaches discussed in e.g. [18; 80; 81; 104]
consider already this combination, however, without delays.

• The approach presented in this thesis is limited to a system that has one
actuator and all sensor data is obtained at the same sampling instant and
sent in one packet. In practice, multiple actuators and sensors can be
present. Then, data from different sending sources needs to be combined
to derive the control inputs. The effect that the data is obtained at differ-
ent time-instances, or that only part of the data is available, need to be
accounted for. In this case the use of an observer that derives the state
of the system at one time-instant, based on the part of the data that is
available, would be of interest. In the literature such effects are studied
in e.g. [76; 80].

• The experiments in this thesis are limited to a NCS with network delays.
Experimental validation of the stability and tracking results for NCSs with
network delays, packet dropouts, and variations in the sampling interval
is advisable. A next step could be to apply to proposed results to a real
NCS, instead of the set-ups that are considered in the Chapter 7, where the
delays are added artificially. Then, before validation, measurements need
to be performed to derive the upper and lower bounds on the variation
of the sampling interval and the delays and the maximum number of
subsequent packet dropouts, as these are needed in the stability analysis
and controller design.

The above presented recommendations focussed on the field of NCSs. How-
ever, the presented results may be applicable for sensor-based event-driven con-
trol, as studied in e.g. [94]. For this kind of controllers, the sampling interval
is in general not equidistantly spaced. Consider for instance a controller that
is evaluated at every encoder pulse. Then, the sampling instants are velocity
dependent, which results in an uncertain, and time-varying sampling interval.
The analysis of the achievable tracking error, as proposed in this thesis, based
on the variations in the sampling interval, may be useful during the design
of such a sensor-based event-driven controller. For event-driven controllers, in
general, the sampling interval is one of the design parameters. Applying the
analysis and synthesis conditions proposed in this thesis is possible, however,
the results will be rather conservative, because no additional demands on the
tracking error can be taken into account. An example of such a demand is that
no new control input is computed if the tracking error is inside a specified error
bound (see e.g. [3]), which may result in large sampling intervals.

Finally, for high-tech systems design, one can think of combining the pro-
posed discrete-time model with a software model that predicts the latency and
jitter. However, this may be complicated, because then all the software, includ-
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ing non-control related tasks, that are executed on the same processor, need
to be modeled, or accounted for otherwise. Probably, an approach as consid-
ered in TrueTime [9] can be helpful to achieve this. Such a combination would
show much correspondence with combining the proposed NCS model and anal-
ysis techniques with protocol design, because the protocol design is part of the
software implementation.

The list of recommendations indicates that there are still many issues to be
resolved before all the advantages, such as ease of maintenance and flexibility
of wired and wireless networked control systems can be harvested. Part of the
solution will lie in the improvement of the employed communication networks
and protocols, resulting in increased reliability and reduction of the end-to-end
latencies and packet dropouts. However, the solution cannot be obtained in a
(cost-effective) manner by only improving the communication infrastructure. It
is important to take a systems perspective on reliability and to develop control
algorithms that are robust to communications imperfections. This requires de-
veloping models of network characteristics which are compatible with controller
analysis and synthesis methods, which lead to controllers that can deal with
unreliable communication. This latter aspect is recognized widely in academia,
which makes the networked control a lively research area at present. The re-
sults presented in this thesis form a significant contribution to this exciting and
challenging research field, which will expand over the years to come, both in
theory as in applications.
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A.1 Proof of Lemma 3.2.1

From the definition of d in the lemma, we have that the control input uk−d is
always available before or exactly at t = sk := kh as sk−d+τk−d ≤ sk−d+τmax ≤
sk. Moreover, uk−d is the oldest control input that can be active in the sampling
interval [sk, sk+1). To prove this, consider any previous input uj for some
j < k − d. From the definition of d, we have that dh ≥ τmax and thus:

(j + 1)h+ τj+1 ≤ (j + 1)h+ τmax ≤ sk−d + τmax ≤ sk.

This implies that the control input uj+1 arrives before time sk and thus uj will
not be active in the sampling interval [sk, sk+1). To prove that newer inputs
uj , j > k − d are not necessarily available before sk, we determine the latest
time at which uk−d+1 might be implemented, which is equal to sk−d+1 + τmax.

Based on the definition of d it holds that dh−τmax ∈ [0, h), i.e. τmax > (d−1)h.
Using this fact and that fact that sk−d+1 = sk − (d− 1)h gives:

sk−d+1 + τmax > sk.

This proves that uk−d+1 might be implemented after sk, implying that the older
input uk−d might indeed be active in [sk, sk+1).

From the definition of d in the lemma, it follows that the input uk−d repre-
sents the most recent control input that might be implemented during the sam-
pling interval [sk, sk+1). Indeed, as dh ≤ τmin, we have that sk−d +τmin < sk+1,
which implies that the input uk−d might be available for implementation before
time sk+1. To show that there is no more recent control input that might be
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active in the interval [sk, sk+1), consider the control input uj , for some j > k−d.
From the definition of d, we have that:

sj + τj ≥ sj + τmin ≥ sk+1 ∀j > k − d.

Therefore, the control input uj , j > k − d, cannot be implemented in the
sampling interval [sk, sk+1). Hence, the control inputs uk−d, . . . uk−d are the
only control inputs that can be active in the sampling interval [sk, sk+1).

The times tkj with j ∈ [k−d, . . . , k−d] will be constructed in such a manner

that sk + tkj is the time at which the control input uj becomes active in the

sampling interval [sk, sk+1). Hence, tkk−d is given by:

tkk−d = min
[

h, τk−d − dh
]

. (A.1)

Note that, by definition, τk−d − dh ≥ 0, ∀k. In principle, if τk−d − dh ∈ [0, h]
then sk−d + τk−d is the time at which uk−d is implemented. If τk−d − dh > h,
then uk−d might be active after sk+1. Since, we are only interested in the
interval [sk, sk+1) we take the minimum of this value and h in (A.1). Next, as
uk−d−1 can only be active before uk−d is available (otherwise message rejection
will occur), tkk−d−1 is given by:

tkk−d−1 = min
[

tkk−d,max{0, τk−d−1 − (d+ 1)h}
]

. (A.2)

Similarly to tkk−d, if τk−d−1 − (d+ 1)h ∈ [0, tkk−d] then sk − (d+ 1)h+ τk−d−1 is

the time at which uk−d−1 is implemented. In case τk−d−1 − (d+ 1)h < 0, then
uk−d−1 might be active before sk. Since, we are only interested, here, in the
interval [sk, sk+1), we take the maximum of this value and 0 in (A.2). For the
other values of tkj , the recursion can be derived similarly, yielding:

tkj = min
[

tkj+1,max{0, τj − (k − j)h}
]

, for k − d ≤ j ≤ k − d,

with tkk−d+1 := h. Recursive substitution of these relations yields the charac-

terization of (3.7).

A.2 Proof of Lemma 3.3.1

To prove that uk−d−δ is the oldest input that can be active during the sampling
interval [sk, sk+1) we consider, firstly, the case without packet dropouts and,
secondly, the case with the maximum number of subsequent dropped packets.
From the definition of d in Lemma 3.3.1, we have that the control input uk−d

is always available before or exactly at t = sk := kh, provided uk−d is not
dropped (i.e. mk−d = 0), as sk−d + τk−d ≤ sk−d + τmax ≤ sk. Hence, in the

case that uk−d is not dropped, no control inputs uj with j < k − d will be
active in [sk, sk+1), as also stated in Lemma 3.2.1. To prove that newer inputs
uj , j > k − d are not necessarily available before sk, the same reasoning as in
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the proof of Lemma 3.2.1 in Appendix A.1 can be used. This implies that the
older input uk−d might indeed be active in [sk, sk+1). Next, we consider the
case with packet dropouts and we will show that uk−d−δ is the oldest input that
can possibly be active in [sk, sk+1). Note hereto that, from (3.13), it follows
that at least one of the control inputs uk−d−δ, uk−d−δ+1, . . . , uk−d is not lost. If
uk−d+1 is indeed implemented after sk (which is possible as just shown), then at
least one of the inputs uk−d−δ, uk−d−δ+1, . . . , uk−d will be active in the sampling
interval [sk, sk+1). The fact that the maximum number of subsequent packet
dropouts equals δ implies that uk−d−δ is the oldest control input that might be
implemented in the sampling interval [sk, sk+1).

The proof that uk−d represents the most recent control input that might
be implemented during the sampling interval [sk, sk+1) is equal to the corre-
sponding part of the proof of Lemma 3.2.1 in Appendix A.1. Hence, the control
inputs uk−d−δ, . . . , uk−d are the only control inputs that can be active in the
sampling interval [sk, sk+1).

The times tkj with j ∈ [k − d − δ, . . . , k − d] will be constructed in such a

manner that sk + tkj is the time at which the control input uj becomes active

in the sampling interval [sk, sk+1). Hence, tkk−d is given by:

tkk−d = min
[

h, τk−d − dh+mk−dh
]

. (A.3)

Indeed, as in the proof of Lemma 3.2.1, if mk−d = 0, then sk + τk−d − dh is
the time at which uk−d is available at the plant. If τk−d − dh > h, then uk−d

might be active after sk+1, but not in [sk, sk+1). Since, we are only interested in
the interval [sk, sk+1) we take the minimum of this value and h in (A.3). Note
that, by definition, τk−d − dh ≥ 0. Finally, if uk−d is lost, i.e. mk−d = 1, then
the expression for tkk−d in (A.3) becomes h, which means that the input is not

used in [sk, sk+1). Next, as uk−d−1 can only be active before uk−d is available,
tkk−d−1 is given by:

tkk−d−1 = min
[

tkk−d,max{0, τk−d−1 − (d+ 1)h} +mk−d−1h
]

. (A.4)

Similarly to tkk−d, if max{0, τk−d−1− (d+1)h}+mk−d−1h ∈ [0, tkk−d) (note that

if the packet belonging to sk−d−1 is dropped, the value of max{0, τk−d−1 − (d+
1)h} +mk−d−1h becomes h ≥ tkk−d) then sk + τk−d−1 − (d+ 1)h is the time at

which uk−d−1 is available at the actuator. In case τk−d−1 − (d+ 1)h < 0, then
uk−d−1 might already be active before sk. Since, we are only interested, here,
in the interval [sk, sk+1), we take the maximum of this value and zero in (A.4).
For the other values of tkj , the recursion can be derived similarly, yielding:

tkj = min
[

tkj+1,max{0, τj − (k − j)h} +mjh
]

,

for k − d − δ ≤ j ≤ k − d, mj satisfying (3.13) and with tkk−d+1 := h. The

elaboration of this recursive relation yields the characterization of (3.15).
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A.3 Proof of Lemma 3.4.1

This proof follows the same reasoning as the proof of Lemma 3.3.1 in Appendix
A.2. To prove that uk−d−δ is the oldest control input that might be active during
the sampling interval [sk, sk+1), we consider, firstly, the case without packet
dropouts, and secondly, the case with packet dropouts. From the definition of d
in Lemma 3.4.1, we have that the control input uk−d is always available before
or exactly at sk, if uk−d is not dropped. To prove this, we use the relation

sk := sk−d +
∑k−1

l=k−d
hl, which provides the upper and lower bounds on sk,

given by sk−d + dhmin ≤ sk ≤ sk−d + dhmax. Combining the lower bound
on sk and sk−d + τk−d ≤ sk−d + τmax gives: sk−d + τk−d ≤ sk−d + τmax ≤
sk − dhmin + τmax ≤ sk, due to the definition of d = ⌈ τmax

hmin
⌉. Hence, in the case

that the control input uk−d is not dropped (i.e. mk−d = 0), it might be active

before sk and no older control inputs uj , with j < k − d will be active in the
sampling interval [sk, sk+1). To show that uk−d can be active in the sampling
interval [sk, sk+1), we need to show that uk−d+1 can become active after sk if
no packets are dropped.

To do so, note that the upper and lower bounds of sk in terms of sk−d+1 are

given by sk−d+1 +(d− 1)hmin ≤ sk ≤ sk−d+1 +(d− 1)hmax and both the upper
and lower bound can be achieved. The largest time at which uk−d+1 can be
implemented is equal to sk−d+1 + τmax. Combining the largest implementation
time of uk−d+1 and the smallest value of sk gives sk−d+1 + τmax ≥ sk−d+1 +

(d− 1)hmin. Based on the definition of d, it holds that d− 1 < τmax

hmin
≤ d, which

gives that uk−d+1 might be implemented after sk. This proves that in the case
without packet dropouts uk−d can indeed be active in the sampling interval
[sk, sk+1). To prove that uk−d−δ is the oldest control input that can possibly be
active in [sk, sk+1), the case with packet dropouts needs to be considered. This
proof follows the same reasoning as the proof of Lemma 3.3.1 in Appendix A.2.

From the definition of d in Lemma 3.4.1, it follows that the input uk−d

represents the most recent control input that might be implemented during
the sampling interval [sk, sk+1). To prove this, consider the smallest time at
which uk−d might be implemented, which is given by sk−d + τmin. Based on
the definition of d, which gives that τmin < (d + 1)hmax, we can conclude that
sk−d + τmin < sk−d + (d + 1)hmax. Combining this with the tight bounds on
sk+1, given by:

sk−d + (d+ 1)hmin ≤ sk+1 ≤ sk−d + (d+ 1)hmax

yields that it might hold that sk−d + τmin ≤ sk+1. Consequently, uk−d might be
implemented before sk+1. More recent control inputs always arrive after sk+1,
as we will show next. Consider j > k − d. Then, we have that sj + τmin is the
earliest time at which uj might be implemented. To determine if this moment
may occur before sk+1, consider the upper bound on sk+1, in terms of sj , given
by sk+1 ≤ sj + (k − j + 1)hmax. Combining these results gives that

sj + τmin < sj + (k − j + 1)hmax (A.5)
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should hold if uj, j > k−d, is implemented in the interval [sk, sk+1). Due to the
definition of d = ⌊ τmin

hmax
⌋, (A.5) is never correct for j > k − d. This proves that

uk−d is indeed the most recent control input that can be active in the sampling
interval [sk, sk+1).

The times tkj with j ∈ {k−d− δ, . . . , k−d} are constructed in the same way

as in Appendix A.2. The time tkk−d is given by

tkk−d = min



hk, τk−d −
k−1
∑

l=k−d

hl +mk−dhmax



 . (A.6)

Indeed, if mk−d = 0, then sk + τk−d −∑k−1
l=k−d hl is the time at which uk−d is

available at the plant. If τk−d −∑k−1
l=k−d hl > hk, then uk−d might be active

after sk+1, but not in [sk, sk+1). Since, we are only interested in the interval
[sk, sk+1) we take the minimum of this value and hk in (A.6). Note that, by

the definition of d, τk−d −
∑k−1

l=k−d hl ≥ 0. Finally, if uk−d is lost, i.e. mk−d = 1,

then the expression in (A.6) gives hk, which means that the input is not used in
[sk, sk+1). Next, as uk−d−1 can only be active before uk−d is available, tkk−d−1

is given by

tkk−d−1 = min



tkk−d,max







0, τk−d−1 −
k−1
∑

l=k−d−1

hl







+mk−d−1hmax



 . (A.7)

Similarly to tkk−d, if max{0, τk−d−1 −
∑k−1

l=k−d−1 hl} +mk−d−1hmax ∈ [0, tkk−d),

then sk + τk−d−1 −∑k−1
l=k−d−1 hl is the time at which uk−d−1 is available at

the actuator. In case τk−d−1 −∑k−1
l=k−d hl < 0, then uk−d−1 might be active

before sk. Since, we are only interested, here, in the interval [sk, sk+1), we take
the maximum of this value and zero in (A.7). For the other values of tkj , the
recursion can be derived similarly, which leads to

tkj = min



tkj+1,max







0, τj −
k−1
∑

l=j

hl







+mjhmax



 ,

for k − d − δ ≤ j ≤ k − d, mj satisfying (3.13), and with tkk−d+1 := hk. The

elaboration of this recursive relation yields the characterization of (3.22).

A.4 Proof of Theorem 4.3.2

The proof of Theorem 4.3.2 consists of two parts. First the convex overestima-
tion of the set FGx, defined in (4.21), is explained, and, second, the stability
of the discrete-time NCS model (4.5), (4.9) is proven. Similar to the proof of
Theorem 4.3.1 an overapproximation of the set FGx can be made. Therefore,
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define the set FGx

FGx
=

{

(

F
x

0 +
ν
∑

i=1

δiF
x

i , G
x

0 +
ν
∑

i=1

δiG
x

i

)

: δi ∈ [0, 1], i = 1, 2, . . . , ν

}

,

(A.8)
with F

x

0 = F x
0 +
∑ν

i=1 αiF
x
i , F

x

i = (αi−αi)F
x
i , G

x

0 = Gx
0+
∑ν

i=1 αiG
x
i , andG

x

i =
(αi − αi)G

x
i , with αi = maxτ∈[τmin,τmax] αi(τ) and αi = minτ∈[τmin,τmax] αi(τ).

Similar to the proof of Theorem 4.3.1, the set FG is still an infinite set of
matrices. However, each matrix in this set can be written as a convex com-
bination of the generators of the corresponding set, which are defined as the
set Hx

FG in (4.23). The separate matrices in Hx
FG are denoted individually

by (Hx
F,j , HG,x,j), j = 1, 2, . . . , 2ν . Moreover, Hx

F,j and Hx
G,j occur always in

combination, because they depend on the same values of αi. Based on these
generators, FGx

can be written as:

co(Hx
FG) =







( 2ν

∑

j=1

(φjH
x
F,j),

2ν

∑

j=1

(φjH
x
G,j)

)

:

2ν

∑

j=1

φj = 1, φj ∈ [0, 1], j = 1, 2, . . . , 2ν







.

(A.9)

Then, the following relation between the different defined sets holds

FGx ⊆ FGx
= co(Hx

FG). (A.10)

Based on the system model (4.22), with χk =
(

xT
k xT

k−1

)T
and the candi-

date Lyapunov function V (χk) = χT
k

(

P̃ + T −T
−T R+ T

)

χk, the satisfaction of

the LMIs:

(

P̃ + T −T
−T R+ T

)

=

(

P̃ + T −T
−T R+ T

)T

> 0

C̃T (τk)

(

P̃ + T −T
−T R+ T

)

C̃(τk) − (1 − γ)

(

P̃ + T −T
−T R + T

)

< 0,

(A.11)

with C̃(τk) =

(

Θ̂0 −Gx(τk)K −F x(τk)K
I 0

)

for all possible values of αi, i =

1, 2, . . . , ν, is sufficient for the GES of the fixed point x = 0 of (4.22). Since
(4.24) holds for all (Hx

F,j , H
x
G,j) ∈ Hx

FG with j = 1, 2, . . . , 2ν, we have that, by
using the Schur complement:









−R+ (1 − γ)(P̃ + T ) ⋆ ⋆ ⋆
−(1 − γ)T (1 − γ)(R + T ) ⋆ ⋆

P̃ (Θ̂0 −Hx
G,jK) −P̃ (Hx

F,jK) P̃ ⋆

T (Θ̂0 −Hx
G,jK − I) −T (Hx

F,jK) 0 T









> 0,
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for all (Hx
F,j , H

x
G,j) ∈ Hx

FG and with 0 ≤ γ < 1. Note that ⋆ denotes matrices
that render the overall matrix symmetric. Since φj ≥ 0 for all j ∈ {1, 2, . . . , 2ν}
and

∑2ν

j=1 φj = 1, it holds that

0 <

2ν

∑

j=1

φj









−R+ (1 − γ)(P̃ + T ) ⋆ ⋆ ⋆
−(1 − γ)T (1 − γ)(R+ T ) ⋆ ⋆

P̃ (Θ̂0 −Hx
G,jK) −P̃ (Hx

F,jK) P̃ ⋆

T (Θ̂0 −Hx
G,jK − I) −T (Hx

F,jK) 0 T









=











−R+ (1 − γ)(P̃ + T ) ⋆ ⋆ ⋆
−(1 − γ)T (1 − γ)(R+ T ) ⋆ ⋆

P̃ (Θ̂0 −
∑2ν

j=1 φjH
x
G,jK) −P̃∑2ν

j=1 φjH
x
F,jK P̃ ⋆

T (Θ̂0 −
∑2ν

j=1 φjH
x
G,jK − I) −T∑2ν

j=1 φjH
x
F,jK 0 T











.

Consequently, it holds that









−R+ (1 − γ)(P̃ + T ) ⋆ ⋆ ⋆
−(1 − γ)T (1 − γ)(R+ T ) ⋆ ⋆

P̃ (Θ̂0 −H
x

GK) −P̃ (H
x

FK) P̃ ⋆

T (Θ̂0 −H
x

GK − I) −T (H
x

FK) 0 T









> 0, (A.12)

for all (H
x

F , H
x

G) ∈ co(Hx
FG). Based on the fact that (A.10) holds, we have that

(A.12) implies that:













−R+ (1 − γ)(P̃ + T ) ⋆ ⋆ ⋆
−(1 − γ)T (1 − γ)(R+ T ) ⋆ ⋆

P̃
(

Θ̂0 −Gx(τk)K
)

−P̃
(

F x(τk)K
)

P̃ ⋆

T
(

Θ̂0 −Gx(τk)K − I
)

−T
(

F x(τk)K
)

0 T













> 0,

for all τk ∈ [τmin, τmax]. Applying the Schur complement again gives (A.11),

which shows that V (χk) = χT
k

(

P̃ + T −T
−T R+ T

)

χk is a common quadratic

Lyapunov function for (4.19), (4.9) which proves that the origin χ = 0 of
(4.19), (and equivalently of (3.3), (4.9)) is GES. However, to apply the Schur
complement it is needed that both P̃ and T are positive definite instead of
(

P̃ + T −T
−T R+ T

)

> 0. (Note that this demand is indeed included in the theo-

rem.)

A.5 Proof of Lemma 4.3.4

To compare the stability characterization of the adapted common quadratic
Lyapunov approach in Corollary 4.3.3 and the L-K approach in Theorem 4.3.2,
we exploit that the candidate L-K functional (4.17) can be rewritten as V (χk) =
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χT
k

(

P̃ + T −T
−T R+ T

)

χk. This shows that every L-K functional of this form

actually is a common quadratic Lyapunov function of the form V (χk) = χT
k Pχk,

with P =

(

P̃ + T −T
−T R+ T

)

. Due to the fact that in the L-K approach it is

demanded that P̃ = P̃T > 0, R = RT > 0, and T = T T > 0, while in
the common quadratic Lyapunov approach we would then demand only that
(

P̃ + T −T
−T R+ T

)

> 0, slightly more conservative results may be obtained,

using the L-K approach.

A.6 Proof of Lemma 4.3.5

To prove the bounds on the intersample behavior, both the case with t̃ < τk
and the case with t̃ ≥ τk will be considered. First the case t̃ ≥ τk is described.
Note that, (4.27) implies:

|x(sk + t̃)| ≤ |eAt̃xk| + |
∫ t̃−τk

0

eAsdsBuk| + |
∫ t̃

t̃−τk

eAsdsBuk−1|. (A.13)

Using Wazewski’s inequalities, see [116], and [117]:

|eAt̃x| ≤ |x|eλmax t̃, (A.14)

with λmax = 1
2 max

(

eig(A+AT )
)

, the terms in the above inequality can be
upper bounded to obtain an inequality of the form:

|x(sk + t̃)| ≤ ĉ0|xk| + ĉ1|uk| + ĉ2|uk−1|. (A.15)

For τk ∈ [τmin, τmax] and τk < t̃ ≤ h, the first term in (A.13) can be rewritten
as:

|eAt̃xk| ≤ ĉ0|xk|, with ĉ0 :=

{

max
{

eλmaxh, eλmaxτmin
}

for λmax 6= 0
1 for λmax = 0.

(A.16)
To rewrite the second term in the right-hand side of (A.13), the integrals are
rewritten as follows:

|
∫ t̃−τk

0

eAsBukds| ≤ ‖B‖|uk|
∫ t̃−τk

0

eλmaxsds.

The integral in the right-hand side of this inequality can be solved exactly,
because λmax is a real number, yielding:

|
∫ t̃−τk

0

eAsBukds| ≤ ĉ1|uk|,

with ĉ1 :=

{

‖B‖ 1
λmax

(

eλmax(h−τmin) − 1
)

if λmax 6= 0

‖B‖ (h− τmin) if λmax = 0.

(A.17)



A.7. Proof of Theorem 4.3.6 143

The upper bound of the last term of (A.13) can be derived in a similar fashion:

|
∫ t̃

t̃−τk

eAsdsBuk−1| ≤ ĉ2|uk−1|,

with ĉ2 :=

{ ‖B‖ 1
λmax

(

eλmaxh − 1
)

if λmax 6= 0

‖B‖ τmax if λmax = 0.

(A.18)

Next the second case (t̃ < τk) has to be studied. The norm of |x(sk + t̃)| in
(4.26) can be upper bounded as follows:

|x(sk + t̃)| ≤ |eAt̃xk| + |
∫ t̃

0

(

eAs
)

Buk−1ds|. (A.19)

Based on Wazewski’s inequalities (A.14), we obtain an inequality of the form:

|x(sk + t̃)| ≤ c̄0|xk| + c̄2|uk−1|. (A.20)

The first term in the right-hand side of (A.19) is given by:

|eAt̃xk| ≤ c̄0|xk|, with c̄0 := max{1, eλmaxτmax}. (A.21)

The upper bound of the second term in the right-hand side of (A.19) can be
derived analogously to (A.17):

|
∫ t̃

0

eAsBuk−1ds| ≤ c̄2|uk−1|, with c̄2 :=

{

‖B‖ eλmaxτmax−1
λmax

if λmax 6= 0

‖B‖ τmax if λmax = 0.

(A.22)
Consequently, the inequality in (A.13), (A.19) can be replaced by:

|x(sk + t̃)| ≤ c0|xk| + c1|uk| + c2|uk−1|, ∀ t̃ ∈ [0, h), (A.23)

with
c0 = max{ĉ0, c̄0}, c1 = ĉ1, c2 = max{ĉ2, c̄2} = ĉ2. (A.24)

A.7 Proof of Theorem 4.3.6

In this proof, we combine the results of Theorem 4.3.1 (or Theorem 4.3.2) and
Lemma 4.3.5. First, the proof is given for Theorem 4.3.1 in combination with
the extended state feedback controller (4.8). Second, the proof for the state
feedback controller (4.9) in combination with Theorems 4.3.1 and 4.3.2 is given.

Extended state feedback controller and the common quadratic Lya-
punov approach Based on Lemma 4.3.5, in combination with the bounded-
ness of the control input from (4.8), i.e. |uk| ≤ ‖K‖ |ξk|, it holds that:

|x(sk + t̃)| ≤ c0|xk| + c1‖K‖ |ξk| + c2 |uk−1|, (A.25)
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with c0, c1, and c2 defined in (A.24), (A.22), (A.21), (A.18), (A.17), and (A.16).
Note that the initial condition of (3.1), (4.8), applicable for (A.25) is given by

ξ̄0 =
(

xT
0 uT

−1

)T
such that it includes both the current state x0 and the past

control input u−1. To prove asymptotic stability of the intersample behavior,
it needs to be proven that the second condition in Lemma 2.2.2 holds. If The-
orem 4.3.1 is satisfied, then based on |ξk|2P = ξT

k Pξk and (4.13) it holds that:

|ξk+1|2P < (1 − γ)|ξk|2P ⇒ |ξk|2P < (1 − γ)k|ξ0|2P , (A.26)

with 0 < γ < 1. To rewrite (A.25) in terms of the initial condition ξ̄0, the
following relation between xk and ξk is used: xk = Cxξk, with Cx =

(

I 0
)

.
Moreover, the following relation between uk−1 and ξk is needed: uk−1 = Cuξk,
with Cu =

(

0 I
)

. Using the fact that λmin(P )|ξk|2 ≤ |ξk|2P ≤ λmax(P )|ξk|2,
the fact that |xk|2 ≤ ‖CxP

− 1
2 ‖2|ξk|2P , |uk−1|2 ≤ ‖CuP

− 1
2 ‖2|ξk|2P , and rela-

tion (A.26), the bound on the intersample behavior, described by (A.25), can
be rewritten as follows:

• for k = 0:
|x(sk + t̃)| ≤ (c0 + c1‖K‖ + c2) |ξ̄0|, (A.27)

• for k ≥ 1:

|x(sk + t̃)| ≤
(

‖CxP
− 1

2 ‖c0 +

√

1

λmin(P )
c1‖K‖

)

√

λmax(P )(1 − γ)k|ξ̄0|

+ c2‖CuP
− 1

2 ‖
√

λmax(P )(1 − γ)k|ξ̄0|,
(A.28)

for 0 ≤ t̃ ≤ h. Since γ ∈ (0, 1), (A.28) decreases for increasing values of
k, ∀k ≥ 1. Then, the following upper bound for x(t) can be found:

|x(t)| ≤ β̄(t)|ξ̄0|, (A.29)

with β̄(t) a non-increasing function of t according to

β̄(t) =

{

max{β0, β1} for t ∈ [0, s1),
βk for k ≥ 1 and t ∈ [sk, sk+1),

(A.30)

with

β0 =c0 + c1‖K‖ + c2,

βk =

(

‖CxP
− 1

2 ‖c0 +

√

1

λmin(P )
c1‖K‖

)

√

λmax(P )(1 − γ)k

+ c2‖CuP
− 1

2 ‖
√

λmax(P )(1 − γ)k for k ≥ 1.

(A.31)

Note that β̄(t) is a non-increasing function, because it decreases at the sampling
instants sk, ∀k ≥ 1. It is not difficult to find a function β(t) ∈ KL, such that
β(t) ≥ β̄(t). Therefore, it is concluded that, based on Lemma 2.2.2, the NCS
denoted by (3.1), (4.8) is GAS if the conditions of Theorem 4.3.1 are satisfied.
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State-feedback controller and the common quadratic Lyapunov ap-
proach If the state feedback controller is considered, a slightly different bound
for the control input is used: |uk| ≤ ‖K‖|xk|. Then, (A.25) is rewritten as:

|x(sk + t̃)| ≤ c0|xk| + c1‖K‖ |xk| + c2 |uk−1|. (A.32)

Analogous to the previous paragraph, it can be proven that (A.29) holds,
with β̄(t) defined in (A.30) and (A.31), where ‖K‖ is replaced by ‖K‖. Then, a
function β(t) ≥ β̄(t), with β(t) ∈ KL can be derived. According to Lemma 2.2.2,
the continuous-time NCS (3.1), (4.9) is GAS.

State-feedback controller and the L-K functional For the Lyapunov-
Krasovskii based functional in Theorem 4.3.2, another state vector is considered,

i.e. χk =
(

xT
k xT

k−1

)T
. Therefore, the derivation of the class KL-function β(t)

is slightly different. Based on |uk| ≤ ‖K‖ |xk|, it holds for the intersample
behavior, defined in (4.28), that:

|x(sk + t̃)| ≤ c0|xk| + c1‖K‖ |xk| + c2‖K‖ |xk−1|, (A.33)

with c0, c1, and c2 defined in (A.24), (A.22), (A.21), (A.18), (A.17), and (A.16).
Note that the initial condition of (3.1), (4.8), applicable for (A.25) is given by

χ̄0 =
(

xT
0 xT

−1

)T
such that it includes both the current state x0 and the past

state x−1. To prove global asymptotic stability of (A.25), it needs to be proven
that the third condition in Lemma 2.2.2 holds. If Theorem 4.3.2 is satisfied,
then for the extended state χk it holds that:

|χk+1|2PRT
< (1 − γ)|χk|2PRT

⇒ |χk|2PRT
< (1 − γ)k|χ0|2PRT

, (A.34)

with 0 < γ < 1 and PRT =

(

P̃ + T −T
−T R + T

)

. To prove that xk converges

to zero, the following relation between xk and χk is used: xk = Cxχk, with
Cx =

(

I 0
)

. Using the fact that λmin(PRT )|χk|2 ≤ |χk|2PRT
≤ λmax(PRT )|χk|2

and relation (A.34), the bound on the intersample behavior, described by (A.33),
can be rewritten:

• for k = 0:
|x(sk + t̃)| ≤

(

c0 + (c1 + c2)‖K‖
)

|χ̄0|, (A.35)

• for k ≥ 1:

|x(sk + t̃)| ≤‖CxPRT
− 1

2 ‖
(

c0 + c1‖K‖
)

√

λmax(PRT )(1 − γ)k|χ̄0|

+ c2‖K‖‖CxPRT
− 1

2 ‖
√

λmax(PRT )(1 − γ)k−1|χ̄0|,
(A.36)

for 0 ≤ t̃ ≤ h. Since γ ∈ (0, 1), (A.36) decreases for increasing values of
k, ∀k ≥ 1. Then, the following upper-bound for x(t) can be found:

|x(t)| ≤ β̄(t)|χ̄0|, (A.37)
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with β̄(t) a decreasing function of t according to

β̄(t) =

{

max{β0, β1} for t ∈ [0, s1),
β1 for k ≥ 1 and t ∈ [sk, sk+1),

(A.38)

with

β0 =c0 + (c1 + c2)‖K‖,

βk =(c0 + c1‖K‖) ‖CxPRT
− 1

2 ‖
√

λmax(PRT )(1 − γ)k

+ c2‖K‖‖CxPRT
− 1

2 ‖
√

λmax(PRT )(1 − γ)k for k ≥ 1.

Note that β̄(t) is a decreasing function, but not of class KL, because it decreases
only at the sampling instants sk, ∀k ≥ 1. However, it is not difficult to find
a function β(t) ∈ KL, such that β(t) ≥ β̄(t). Therefore, it is concluded that,
based on the conditions in Lemma 2.2.2, the NCS denoted by (3.1), (4.9) is
GAS if the conditions of Theorem 4.3.2 are satisfied.

A.8 Proof of Lemma 4.4.2

To determine the minimum and maximum values of the parameter tkj , the defi-

nition of tkj in (3.22) is considered. First, the lower bound of tkj will be derived.
Based on (3.22), it holds for j = k − d that:

tkk−d = min







max







0, τk−d −
k−1
∑

l=k−d

hl







+mk−dhmax, hk







. (A.39)

To obtain the smallest value, mk−d = 0 needs to be considered. In general, the
minimum value of tkk−d is given by:

tkk−d,min = min {τmin − dhmax, hmin} , (A.40)

where it is used that τk−d−dhmax ≥ 0, due to the definition of d. Next, consider
j < k−d. To determine the minimum value of tkj , as defined in (3.22), it is used

that: min(τj −
∑k−1

l=j hl) = τmin− (k− j)hmax, j ∈ {k−d− δ+1, . . . , k−d−1}.
Moreover, to obtain the smallest value of tkj , mj = 0 needs to be considered for

the corresponding value of j with j ∈ {k−d−δ+1, . . . , k−d−1}. Then, (3.22)
reduces to

tkj,min =min
{

max{0, τmin − (k − j)hmax},max{0, τmin − (k − j + 1)hmax},

. . . , τmin − dhmax, hmin

}

,

(A.41)

for j ∈ {k − d − δ, . . . , k − d − 1}. Based on the definition of d, it holds that
τmin − (k− j)hmax ≤ 0, for j ∈ {k− d− δ, . . . , k− d− 1}. Then, (A.41) reduces
to tkj,min = 0 for j < k − d, because hmin ≥ 0 and τmin − dhmax ≥ 0.
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Second, consider the upper bound of tkj , j ∈ {k − d − δ + 1, . . . , k − d}.
Note that, by definition, it holds that tk

k−d−δ
= 0. Before a generic solution

is derived, first two specific cases of tkj are considered, i.e. tkk−d and tkk−d−1 to
show the differences between a situation with and without packet dropouts. The
upper bound of tkk−d can be obtained from (A.39). Two cases are distinguished,
i.e. the case with and without packet dropouts.

• If packet dropouts occur, mk−d = 1 is allowed. The maximum value of

tkk−d is then given by hmax, because τk−d −∑k−1
l=k−d hmin + mk−dhmax is

always larger than (or equal to) hmax.

• In the case without packet dropouts, thus mk−d := 0 the maximum value
can be obtained from: tkk−d,max = min{τmax − dhmin, hmax}.

For j = k − d− 1, the upper bound of tkj can be determined, based on:

tkk−d−1,max = min
{

max{0, τmax − (d+ 1)hmin} +mk−d−1hmax,

τmax − dhmin +mk−dhmax, hmax

}

.
(A.42)

The cases with and without packet dropouts are considered separately to de-
termine the upper bound:

• In the case of packet dropouts, the largest value of tkk−d−1 occurs for

mk−d−1 = 1. Then, the maximum value of tkk−d−1 is given by:

min
{

τmax − dhmin +mk−dhmax, hmax

}

,

because max{0, τmax − (d + 1)hmin} + hmax ≥ hmax. The two following
cases can be distinguished:

– if also mk−d = 1 (which is allowed if δ > 1), the maximum value is
tkk−d−1,max = hmax,

– if mk−d = 0, which is necessary if δ = 1, then the maximum is given
by:

tkk−d−1,max =

{

min(τmax − dhmin, hmax) if d > d

0 if d = d.
(A.43)

For d > d, it is used that τmax − dhmin ≥ 0, due to the definition of
d.

• For the case without packet dropouts i.e. mk−d−1 = 0 and mk−d = 0, the
maximum of tkk−d−1 is given by:

tkk−d−1,max =

{

min(τmax − (d+ 1)hmin, hmax) if d > d+ 1

0 if d = d+ 1.
(A.44)

Due to the definition of d and d, it holds that τmax−(d+1)hmin ∈ (0, hmin].
Note that if d = d and δ = 0, i.e. no packet dropouts and no delays, tkk−d−1

does not exists, due to the definition of j in (3.22).
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These examples show that a distinction between the case with and without
packet dropouts needs to be made. Moreover, the maximum number of sub-
sequent packet dropouts δ needs to be considered in the computation of the
upper bound of tkj for j ∈ {k − d − δ + 1, . . . , k − d}. The value of tk

k−d−δ
is

not included, because it is by definition, see (3.22), equal to zero. To derive
a generic solution for the upper bound, consider the definition of tkj in (3.22).

To obtain the maximum value of tkj , (3.22) can be replaced by the following
relation:

max(tkj ) = min
{

max{0, τmax − (k − j)hmin} +mjhmax,

max{0, τmax − (k − j − 1)hmin} +mj+1hmax, . . . ,

max{0, τmax − dhmin} +mk−dhmax, hmax

}

,

(A.45)
for j ∈ {k − d − δ + 1, . . . , k − d}. Analogous to the two described examples,
the cases with and without packet dropouts are considered.

• If packet dropouts occur, i.e. δ > 0, at maximum δ subsequent times
mj = 1 occurs. Thus, according to (A.45), as long as j > k − δ − d, all
values from mj until mk−d can be equal to one. Then tkj,max is equal to
hmax.

For j = k−δ−d it holds that at least one of the values ofmk−δ−d, . . . ,mk−d

has to be equal to zero. It is easy to see that the largest value of tk
k−δ−d

is obtained if mk−d = 0 and all other values of mj , j ∈ {k− δ− d, . . . , k−
d− 1}, are equal to one. Then for tk

k−δ−d,max
is given by

tk
k−δ−d,max

= min{τmax − dhmin, hmax}.

Due to the definition of d it is indeed possible that τmax − dhmin > hmax.
Then, tk

k−δ−d,max
is given by hmax, because tkj is derived in the interval

[sk, sk+1), with sk+1 − sk ≤ hmax. Moreover, note that it holds that
τmax − dhmin > 0, due to the definition of d.

For smaller values of j, i.e. j ∈ {k− d− δ+ 1, . . . , k− δ− d− 1}, a similar
reasoning holds, where the largest value of tkj is obtained if mj+δ = 0,

i.e. δ subsequent packets are dropped, denoted by mj = 1, mj+1 = 1, . . .,
mj+δ−1 = 1, if j ∈ {k−d−δ+1, . . . , k−δ−d−1} is considered. Note that

it holds that τmax−(k−j−δ)hmin > 0, for j ∈ {k−d−δ+1, . . . , k−δ−d}.
To prove this, consider the smallest value of j, i.e. j = k−d− δ+1, which
results in the largest value of (k − j − δ)hmin:

τmax − (d− 1)hmin = τmax −
(⌈

τmax

hmin

⌉

− 1

)

hmin

⇒ τmax − (d− 1)hmin ∈ (0, hmin].

(A.46)

Then, analogous to j = k − δ − d, it holds that

tkj,max = min{τmax − (k − j − δ)hmin, hmax},
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for j ∈ {k − d − δ + 1, . . . , k − δ − d − 1}. Note that τmax − (k − j −
δ)hmin > hmax may occur, except for j = k − d − δ + 1. To prove this,
first consider j = k − d − δ + 1, for which (A.46) proves that the upper
bound of tk

k−d−δ+1
is given by hmin. Second, for larger values of j, i.e.

j ∈ {k−d−δ+2, . . . , k−δ−d−1} it holds, based on a similar reasoning as
in (A.46), that tkj > hmin, which allows for tkj > hmax, with hmax ≥ hmin.

Summarizing, tkj,max is given by:

tkj,max =







min{τmax − (k − j − δ)hmin, hmax}
if j ∈ {k − d− δ + 1, . . . , k − δ − d}

hmax if j ∈ {k − δ − d+ 1, . . . , k − d}.
(A.47)

Note that j = k − d− δ gives by definition, see (3.22), tk
k−d−δ

= 0.

• If no packet dropouts occur, tkj,max is given by:

tkj,max = min{τmax − (k − j)hmin, hmax}, for j ∈ {k − d+ 1, . . . , k − d}.
(A.48)

Note that for j = k − d it is indeed possible that τmax − dhmin < hmax.
Moreover, it holds that τmax−(k−j)hmin > 0 for j ∈ {k−d+1, . . . , k−d}.
To prove this consider the smallest value of j, which gives τmax−(d−1)hmin

that was considered in (A.46).

Concluding, there is no difference between the case with and without packet
dropouts, because (A.48) can be obtained from (A.47) for δ = 0. Note that the
previous presented examples are indeed described by (A.47).

A.9 Proof of Theorem 4.4.7

To prove Theorem 4.4.7, let us repeat the system description based on the
Jordan form of the continuous-time system matrix A in (4.43):

χk+1 =















F −F x
1 (tk, hk)K −F x

2 (tk, hk)K . . . −F x
d+δ

(tk, hk)K

I 0 0 . . . 0
0 I 0 . . . 0
...

...
. . .

. . .
...

0 . . . 0 I 0















χk,

(A.49)
with F = F x

0 (tk, hk) − Gx(tk, hk)K, for all (F x
0 (tk, hk), F x

1 (tk, hk), . . . ,
F x

d+δ
(tk, hk), Gx(tk, hk)) ∈ FGx, and FGx defined in (4.42). Recall that the

candidate Lyapunov-Krasovskii functional is given by (4.40):

V (χk) = xT
k P̃ xk +

d+δ
∑

î=1

xT
k−î

Rîxk−î +
d+δ
∑

î=1

(

xk−î+1 − xk−î

)T
Tî

(

xk−î+1 − xk−î

)

.

(A.50)
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To prove global asymptotic stability, it needs to be shown that

∆V (χk) := V (χk+1) − V (χk) < −γV (χk),

for all χk 6= 0 and with γ ∈ [0, 1). Based on (A.49) and (A.50), in combination
with the control law (4.9) (uk = −Kxk), we can write

V (χk+1) − (1 − γ)V (χk) =

xT
k+1P̃ xk+1 − (1 − γ)xT

k P̃ xk +

d+δ
∑

î=1

xT
k−î+1

Rîxk−î+1

− (1 − γ)
d+δ
∑

î=1

xT
k−î

Rîxk−î +
d+δ
∑

î=1

(

xk−î+2 − xk−î+1

)T
Tî

(

xk−î+2 − xk−î+1

)

− (1 − γ)

d+δ
∑

î=1

(

xk−î+1 − xk−î

)T
Tî

(

xk−î+1 − xk−î

)

< 0

(A.51)

for χk 6= 0. For the sake of transparency, this equation is divided in three parts
that depend on the matrices P̃ , Rî, or Tî, î ∈ {1, 2, . . . , d+δ}. First, consider the

part that depends on the matrix P̃ . Rewriting this part in a matrix notation,
after implementation of the dynamics of (A.49), gives:

xT
k+1P̃ xk+1 − (1 − γ)xT

k P̃ xk =

χT
k



















FT P̃F − (1 − γ)P̃ −FT P̃F x
1 K −FT P̃F x

2 K

⋆ (F x
1 K)T P̃F x

1 K (F x
1 K)T P̃F x

2 K

⋆ ⋆ (F x
2 K)T P̃F x

2 K
...

...
⋆ ⋆ ⋆
⋆ ⋆ ⋆

. . . −FT P̃F x
d+δ−1

K −FT P̃F x
d+δ

K

. . . (F x
1 K)T P̃F x

d+δ−1
K (F x

1 K)T P̃F x
d+δ

K

. . . (F x
2 K)T P̃F x

d+δ−1
K (F x

2 K)T P̃F x
d+δ

K

. . .
...

⋆ (F x
d+δ−1

K)T P̃F x
d+δ−1

K (F x
d+δ−1

K)T P̃F x
d+δ

K

⋆ ⋆ (F x

d+δ
K)T P̃F x

d+δ
K























χk,

(A.52)

with F = F x
0 (tk, hk)−Gx(tk, hk)K. Note that for the sake of brevity F x

î
is used

instead of F x
î
(tk, hk), î = 1, 2, . . . , d+δ, and tk = (tk

k−d−δ+1
, . . . , tkk−d). Second,

consider the part of (A.51) that depends on the matrices Rî, î ∈ {1, 2, . . . , d+δ}.
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Rewriting this part in a matrix notation gives:

d+δ
∑

î=1

xT
k−î+1

Rîxk−î+1 − (1 − γ)

d+δ
∑

î=1

xT
k−î

Rîxk−î =

χT
k















R1 0 0 . . . 0
0 R2 − (1 − γ)R1 0 . . . 0
...

. . .
...

0 0 Rd+δ − (1 − γ)Rd+δ−1 0
0 0 . . . 0 −(1 − γ)Rd+δ















χk.

(A.53)

Third, consider the part of (A.51) depending on the matrices Tî, î ∈ {1, 2, . . . ,
d+δ}. Implementing the dynamics of (A.49) and rewriting in a matrix notation
gives:

d+δ
∑

î=1

(

x
k−î+2

− x
k−î+1

)T
T

î

(

x
k−î+2

− x
k−î+1

)

− (1 − γ)

d+δ
∑

î=1

(

xk−î+1
− xk−î

)T
T

î

(

xk−î+1
− xk−î

)

=

(xk+1 − xk)T T1 (xk+1 − xk)+

d+δ−1
∑

î=1

(

xk−î+1
− xk−î

)T
(

T
î+1

− (1 − γ)T
î

)

(

xk−î+1
− xk−î

)

−

(1 − γ)
(

x
k−d−δ+1

− x
k−d−δ

)T
T

d+δ

(

x
k−d−δ+1

− x
k−d−δ

)

=

χT
k























AT
0 T1A0 −AT

0 T1A1 −AT
0 T1A2 . . . −AT T1Ad+δ−1

−AT T1Ad+δ

⋆ AT
1 T1A1 AT

1 T1A2 . . . AT
1 P̃A

d+δ−1
AT

1 P̃A
d+δ

⋆ ⋆ AT
2 T1A2 AT

2 T1Ad+δ−1
AT

2 T1Ad+δ

...
...

...
⋆ ⋆ ⋆ ⋆ AT

d+δ−1
T1Ad+δ−1

AT

d+δ−1
T1Ad+δ

⋆ ⋆ ⋆ ⋆ ⋆ AT

d+δ
T1Ad+δ























χk+

χT
k



















−(1 − γ)T1 + T2 +(1 − γ)T1 − T2 0 . . .
⋆ −(1 − γ)T1 + γT2 + T3 −T3 + (1 − γ)T2 0
⋆ ⋆ −(1 − γ)T2 + γT3 + T4 0
..
.

..

.
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆

0 0 0
0 0 0
0 0 0

...
⋆ B (1 − γ)T

d+δ−1
− T

d+δ
0

⋆ ⋆ −(1 − γ)T
d+δ−1

+ γT
d+δ

(1 − γ)T
d+δ

⋆ ⋆ ⋆ −(1 − γ)T
d+δ

























χk,

(A.54)
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with

A0 =F x
0 (tk, hk) −Gx(tk, hk)K − I,

A1 =F x
1 (tk, hk)K,

A2 =F x
2 (tk, hk)K,

...

Ad+δ =F x

d+δ
(tk, hk)K,

B = − (1 − γ)Td+δ−2 + γTd+δ−1 + Td+δ.

Note that analogous to (A.9) in the proof of Theorem 4.3.2 in Appendix A.4,
the following overapproximations can be considered:

FGx ⊂ co{Hx
FG},

with FGx defined in (4.42) and Hx
FG defined in (4.44). Combining (A.52),

(A.53), and (A.54) into one equation and applying the same overapproximation
procedure as in the proof of Theorem 4.3.2 in Appendix A.4, proves the LMI
conditions (4.45), (4.46) in Theorem 4.4.7.

A.10 Proof of Theorem 5.1.1

Pre- and post-multiplying of the LMI (5.5) with diag(Y −1, Y −1) gives (4.15),
after the linearizing change of variables Y −1 = P and ZY −1 = K. Then, the
proof of Theorem 4.3.1 can be exploited to prove that (5.5) guarantees GES
of (4.5), (5.1). The proof for the fact that (5.3), (5.1) is GAS as well, follows
from the same reasoning as used in the proof of Theorem 4.3.6, which shows
that satisfaction of (5.5) is sufficient to guarantee GAS of (5.3) for the obtained
controller K in (5.1).

A.11 Proof of Theorem 5.1.4

The same overapproximation procedure as in the proof for the stability analysis
in Appendix A.4 is considered. Therefore, this proof deals with rewriting the
stability analysis results such that they are applicable for controller synthesis.
Consider the candidate Lyapunov function

V (χk) = xT
k P̃ xk + xT

k−1Rxk−1 + (xk − xk−1)
T
T (xk − xk−1) .

The following inequality is sufficient for the global exponential stability of the
discrete-time NCS model (5.10):

∆V (χk) = V (χk+1) − V (χk) < −γV (χk), for χk 6= 0,

which is equivalent to:

∆V (χk) + γV (χk) + Ψ1 < 0, for χk 6= 0 (A.55)
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due to the fact that Ψ1 = 0, as defined in (5.11). Next, we will consider the
different parts in (A.55). It holds that

∆V (χk) + γV (χk) =

xT
k+1P̃ xk+1 − (1 − γ)xT

k P̃ xk + xT
kRxk − (1 − γ)xT

k−1Rxk−1+

(xk+1 − xk)
T
T (xk+1 − xk) − (1 − γ) (xk − xk−1)

T
T (xk − xk−1) .

(A.56)

Combining (A.56), with the dynamics of (4.22) (which represent equivalent
dynamics to (4.19) or (5.10)) based on the Jordan form of the continuous-time
system matrix A, gives

∆V (χk) + γV (χk) =
(

G0xk − F x(τk)Kxk−1

)T
P̃
(

G0xk − F x(τk)Kxk−1

)

−(1 − γ)xT
k P̃xk + xT

kRxk − (1 − γ)xT
k−1Rxk−1

+
(

H0xk − F x(τk)Kxk−1

)T
T
(

H0xk − F x(τk)Kxk−1

)

−(1 − γ)(xk − xk−1)
TT (xk − xk−1),

(A.57)
with G0 = Θ̂0 −Gx(τk)K, H0 = Θ̂0 −Gx(τk)K − I.

Next, the third term in (A.55), i.e. Ψ1, that should lead to a relaxation of
the LMI conditions, is rewritten. Using the fact that for any two vectors x and
y and a positive definite matrix G it holds that:

2xT y ≤ xTGx + yTG−1y, (A.58)

and that χT
k =

(

xT
k xT

k−1

)T
, the following upper bound on the quadratic func-

tion Ψ1, as defined in (5.11), can be derived:

Ψ1 = 2χT
kN(xk − xk−1 − (xk − xk−1))

≤ 2χT
kN(xk − xk−1) + 1

1−γ
χT

kNT
−1NTχk

+(1 − γ)(xk − xk−1)
TT (xk − xk−1),

(A.59)

with N =

(

N1

N2

)

, N1, N2 ∈ R
n×n positive definite symmetric matrices. More-

over, it holds that

2χT
kN(xk − xk−1) = χT

k

(

N1 +NT
1 −N1 +NT

2

N2 −NT
1 −N2 −NT

2

)

χk.

Combining (A.55), (A.57) and (A.59), gives:

∆V (χk) + γV (χk) + Ψ1 ≤
(

G0xk − F x(τk)Kxk−1

)T
P̃
(

G0xk − F x(τk)Kxk−1

)

− (1 − γ)xT
k P̃ xk + xT

kRxk − (1 − γ)xT
k−1Rxk−1

+
(

H0xk − F x(τk)Kxk−1

)T
T
(

H0xk − F x(τk)Kxk−1

)

+ 2χT
kN(xk − xk−1) +

1

1 − γ
χT

kNT
−1NTχk < 0,

(A.60)
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for all χk 6= 0. Rewriting (A.60) in a matrix notation with χk =
(

xT
k xT

k−1

)T
,

gives:

χT
k

(

S0 S1

⋆ S2

)

χk < 0,

with

S0 =GT
0 P̃G0 − (1 − γ)P̃ +R+ HT

0 TH0 +N1 +NT
1 +

1

1 − γ
N1T

−1NT
1 ,

S1 = − (GT
0 P̃ + HT

0 T )F x(τk)K +NT
2 −N1 +

1

1 − γ
N1T

−1NT
2 ,

S2 = − (1 − γ)R+ (F x(τk)K)T (P̃ + T )F x(τk)K −N2 −NT
2 +

1

1 − γ
N2T

−1NT
2 .

Based on the same overapproximation procedure as in the proof of Theorem 4.3.2
in Appendix A.4, it is sufficient if it holds that:

χT
k

(

S̄0 S̄1

⋆ S̄2

)

χk < 0,

with

S̄0 =Ḡ
T

0,jP̃ Ḡ0,j − (1 − γ)P̃ +R+ H̄
T

0,jT H̄0,j +N1 +NT
1 +

1

1 − γ
N1T

−1NT
1 ,

S̄1 = − (Ḡ
T

0,jP̃ + H̄
T

0,jT )Hx
F,jK +NT

2 −N1 +
1

1 − γ
N1T

−1NT
2 ,

S̄2 = − (1 − γ)R+ (Hx
F,jK)T (P̃ + T )Hx

F,jK −N2 −NT
2 +

1

1 − γ
N2T

−1NT
2 ,

and Ḡ0,j = Θ̂0 −Hx
G,jK, H̄0,j = Θ̂0 −Hx

G,jK − I. Applying the Schur comple-

ment for the inequality −
(

S̄0 S̄1

⋆ S̄2

)

> 0, gives:











T0 N1 −NT
2 − 1

1−γ
N1T

−1NT
2 Ḡ

T

0,j H̄
T

0,j

⋆ T1 −(Hx
F,jK)T −(Hx

F,jK)T

⋆ ⋆ P̃−1 0
⋆ ⋆ ⋆ T−1











> 0,

with T0 = (1 − γ)P̃ −R−N1 −NT
1 − 1

1−γ
N1TN

T
1 and T1 = (1 − γ)R+N2 +

NT
2 − 1

1−γ
N2T

−1NT
2 . Applying the Schur complement on T a second time to

remove the multiplications of N1 with T , and N2 with T , gives:















U0 N1 −NT
2 Ḡ

T

0,j HT
0,j

1√
1−γ

N1T
−1

⋆ (1 − γ)R+N2 +NT
2 −(Hx

F,jK)T −(Hx
F,jK)T 1√

1−γ
N2T

−1

⋆ ⋆ P̃−1 0 0
⋆ ⋆ ⋆ T−1 0
⋆ ⋆ ⋆ ⋆ T−1















> 0,
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with U0 = (1 − γ)P̃ − R − N1 − NT
1 . Pre- and postmultiplication with

diag(P̃−1, P̃−1, I, I, I), with I the identity matrix of size n×n, in combination
with the following linearizing change of variables: Ỹ := P̃−1, R̂ := P̃−1RP̃−1,
N̂1 := P̃−1N1P̃

−1, N̂2 := P̃−1N2P̃
−1, Z := KP̃−1, and T−1 := θ1P̃

−1 gives
the expression (5.12) in Theorem 5.1.4.

A.12 Proof of Lemma 6.1.1

The proof of Lemma 6.1.1 follows partly the same reasoning as the proof of The-
orem 4.3.1. Firstly, the relations between the different defined sets of matrices
are explained. Secondly, based on these relations, it is proven that the condi-
tions of (6.20) are sufficient for (6.18). Thirdly, it is proven that the conditions
of (6.18) are sufficient to prove input-to-state stability of (6.13).

First, let us consider the time-varying parameters αi(τk), i = 1, 2, . . . , ν,
that result in the fact that the number of LMIs in (6.18) are infinite (namely
τk ∈ [τmin, τmax]). With αi and αi, as defined in the lemma (as well as in
Theorem 4.3.1), we can write any αi ∈ [αi, αi] as αi = αi +δi(αi−αi), for some
δi ∈ [0, 1] and i = 1, 2, . . . , ν. Hence, the set F̄ , defined as

F̄ =

{

F̄0 +

ν
∑

i=1

δiF̄i : δi ∈ [0, 1], i = 1, 2, . . . , ν

}

, (A.61)

with F̄0 = F0 +
∑ν

i=1 αiFi, F̄i = (αi − αi)Fi is an overapproximation of the
set F , as in (6.17), in the sense that F ⊆ F̄ . Due to the definition of the
new uncertainty parameters δi, the set F̄ is still infinite. However, each matrix
in this set can be written as a convex combination of the generators of the
corresponding set, which are defined by the set of generators HF in (6.19). Note
that HF consists of 2ν matrices, which we denote individually by HF,j , j =
1, 2, . . . , 2ν. Based on these generators, a convex overapproximation of F̄ is
given by:

co(HF ) =







2ν

∑

j=1

(φjHF,j) :
2ν

∑

j=1

φj = 1, φj ∈ [0, 1], j = 1, 2, . . . , 2ν







, (A.62)

in the sense that
F ⊆ F̄ = co(HF ). (A.63)

Next, we show that indeed (6.20) is sufficient to guarantee the satisfaction
of (6.18). Since (6.20) holds for all HF,j ∈ HF with j = 1, 2, . . . , 2ν, we have
that, by using the Schur complement:





(1 − γ)P 0 HT
F,j

0 κI B̃T

HF,j B̃ P−1



 > 0, (A.64)
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with 0 < γ < 1. Since φj ≥ 0 ∀j ∈ {1, 2, . . . , 2ν} and
∑2ν

j=1 φj = 1, (A.64)
implies

0 <
∑2ν

j=1 φj





(1 − γ)P 0 HT
F,j

0 κI B̃T

HF,j B̃ P−1





=







(1 − γ)P 0
∑2ν

j=1 φjH
T
F,j

0 κI B̃T

∑2ν

j=1 φjHF,j B̃ P−1






,

(A.65)

with φj ∈ [0, 1], j = 1, 2, . . . , 2ν . Consequently, it holds that:







(1 − γ)P 0 HF
T

0 κI B̃T

HF B̃ P−1






> 0, ∀HF ∈ co(HF ). (A.66)

Based on (A.63), we have that (A.66) implies:





(1 − γ)P 0 F (τk)T

0 κI B̃T

F (τk) B̃ P−1



 > 0, ∀τk ∈ [τmin, τmax] (A.67)

with F (τk) = F0 +
∑ν

i=1 αi(τk)Fi and F0, Fi, i ∈ {1, 2, . . . , ν}, defined in (6.16).
Applying the Schur complement again gives (6.18).

Finally, we prove that the LMIs of (6.18) are sufficient to prove input-to-
state stability of (6.13). Therefore, we consider the discrete-time system (6.15)
(which is equivalent to (6.13), due to the use of the Jordan form) and the
candidate ISS Lyapunov function V (ψk) = ψT

k Pψk, with P = PT > 0. The
increment of V (ψk) along solutions of (6.15), (6.16) satisfies

∆V (ψk) = V (ψk+1) − V (ψk) = ψT
k+1Pψk+1 − ψT

k Pψk

= ψT
k (FT (τk)PF (τk) − P )ψk + 2ψT

k F
T (τk)PB̃w̄k + w̄T

k B̃
TPB̃w̄k.

(A.68)

Rewriting of this equation, gives:

∆V (ψk) = ψ
T

k

(

FT (τk)PF (τk) − P FT (τk)PB̃

B̃TPF (τk) B̃TPB̃

)

ψk, (A.69)

with ψk =
(

ψT
k w̄T

k

)T
. To prove ISS, we require that ∆V (ψk) < −γV (ψk) +

κw̄T
k w̄k. Then, based on (A.69) it holds that:

∆V (ψk) + γV (ψk) − κw̄T
k w̄k =

ψ
T

k

(

FT (τk)PF (τk) − (1 − γ)P F (τk)PB̃

B̃TPF (τk) B̃TPB̃ − κI

)

ψk < 0,
(A.70)

which gives exactly the LMI conditions that are presented in (6.18). Thus,
if the LMIs in (6.18) are feasible (which is the case if the LMIs in (6.20) are
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satisfied), then it holds that ∆V (ψk) < −γV (ψk) + κw̄T
k w̄k, which proves that

Condition (2.18) in Definition 2.3.5 holds. Note that the first condition (2.17)
in Definition 2.3.5 is satisfied due to the fact that P = PT > 0 holds in (6.18)
and (6.20), which proves that V (ψk) = ψT

k Pψk > 0. Consequently, V is an
ISS Lyapunov function and the application of Proposition 2.3.6 guarantees that
(6.13) is ISS with respect to the input w̄k. This completes the proof that (6.13)
(due to the equivalence with (6.15)) is ISS if the LMI conditions in (6.20) are
feasible.

A.13 Proof of Theorem 6.1.2

From Lemma 6.1.1 it follows that the discrete-time NCS model (6.13) is ISS and
that V (ψk) = ψT

k Pψk is a quadratic ISS Lyapunov function for this system. By
denoting |ψk|2P = ψT

k Pψk, we can rewrite ∆V (ψk) < −γψT
k Pψk + κw̄T

k w̄k as

|ψk+1|2P − |ψk|2P < −γ|ψk|2P + κ sup
1≤l≤k

|w̄l|2. (A.71)

This implies that

|ψk+1|2P < γ̄|ψk|2P + κ sup
1≤l≤k

|w̄l|2 ⇒ |ψk|2P < γ̄k|ψ0|2P + κDk sup
1≤l≤k

|w̄l|2, k ≥ 1,

(A.72)

with 0 < γ̄ = 1 − γ < 1 and Dk =
∑k

i=1 γ̄
i−1. Using (A.72), the fact that

λmin(P )|ψk|2 ≤ |ψk|2P ≤ λmax(P )|ψk|2 and |zk|2 ≤ ‖CzP
− 1

2 ‖2|ψk|2P , the follow-
ing inequality on regarding the norms of the tracking error zk at the sampling
instants can be established:

|zk|2
‖CzP− 1

2 ‖2
≤ |ψk|2P

< γ̄k|ψ0|2P + κDk sup
1≤l≤k

|w̄l|2

≤ γ̄kλmax(P )|ψ0|2 + κDk sup
1≤l≤k

|w̄l|2, k ≥ 1.

(A.73)

Now, using the fact that |ψ0|2 = |z0|2 + |z−1|2 in (A.73), gives

|zk|2
‖CzP− 1

2 ‖2
< γ̄kλmax(P )

(

|z0|2 + |z−1|2
)

+ κDk sup
1≤l≤k

|w̄l|2.

⇒ |zk| < ‖CzP
− 1

2 ‖
(

√

γ̄kλmax(P )
√

|z0|2 + |z−1|2 +
√

κDk sup
1≤l≤k

|w̄l|
)

, k ≥ 1.

(A.74)

Let us now revert to the continuous-time sampled-data system (6.10) and study
its evolution for t ∈ [sk, sk+1):

z(sk + t̃) = eAt̃zk +

t̃
∫

0

eAsdsB1zk−1 +

t̃
∫

0

eAsB2w(sk + t̃− s)ds, for 0 ≤ t̃ < τk,
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z(sk + t̃) = eAt̃zk +

t̃
∫

t̃+τk

eAsdsB1zk−1 +

t̃−τk
∫

0

eAsdsB1zk

+

t̃
∫

0

eAsB2w(sk + t̃− s)ds, for τk ≤ t̃ < h.

Consequently, the following bounds on the tracking error in this time interval
can be established:

|z(sk + t̃)| ≤ |eAt̃zk| + |
t̃
∫

0

eAsdsB1zk−1|

+ |
t̃
∫

0

eAsdsB2| sup
sk≤s≤tk

|w(s)|, for 0 ≤ t̃ < τk,

|z(sk + t̃)| ≤ |eAt̃zk| + |
t̃
∫

t̃−τk

eAsdsB1zk−1| + |
t̃−τk
∫

0

eAsdsB1zk|

+ |
t̃
∫

0

eAsdsB2| sup
sk≤s<sk+1

|w(s)|, for τk ≤ t̃ < h.

(A.75)

Using Wazewski’s inequalities, see (A.14) (i.e. |eAt̃z| ≤ |z|eλmaxt̃, with λmax =
1
2 max

(

eig(A+AT )
)

), the terms in the above inequality can be upperbounded
to obtain:

|z(sk + t̃)| ≤c̄1|zk| + c̄2|zk−1| + c̄w sup
sk≤s≤tk

|w(s)|, for 0 ≤ t̃ < τk,

|z(sk + t̃)| ≤(ĉ1 + ĉ2)|zk| + c̃2|zk−1| + ĉw sup
sk≤s<sk+1

|w(s)|, for τk ≤ t̃ < h.

(A.76)

with

c̄1 = max(1, eλmaxτmax)

c̄2 = ‖B1‖
{

eλmaxτmax−1
λmax

if λmax 6= 0

τmax if λmax = 0

c̄w = ‖B2‖
{

eλmaxτmax−1
λmax

if λmax 6= 0

τmax if λmax = 0

(A.77)
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ĉ1 =

{

max (eλmaxh, eλmaxτmin) if λmax 6= 0
1 if λmax = 0

ĉ2 = ‖B1‖
{

eλmax(h−τmin)−1
λmax

if λmax 6= 0

h− τmin if λmax = 0

c̃2 = ‖B1‖
{

eλmaxh−1
λmax

if λmax 6= 0

τmax if λmax = 0

ĉw = ‖B2‖
{

eλmaxh−1
λmax

if λmax 6= 0

h if λmax = 0
.

(A.78)

Consequently, the inequality in (A.75) can be replaced by

|z(sk + t̃)| ≤c1|zk| + c2|zk−1| + cw sup
sk≤s≤sk+1

|w(s)|, for 0 ≤ t̃ < h, ∀k (A.79)

with c1, c2, and cw defined by

c1 = max(c̄1, ĉ1 + ĉ2),

c2 = max(c̄2, c̃2),

cw = max(c̄w, ĉw) = ĉw.

(A.80)

The next step is to exploit (A.74) in (A.79); however in order to do so, first the
following upper bound on sup1≤l≤k |w̄l| needs to be formulated:

sup
1≤l≤k

|w̄l| = sup
1≤l≤k

|
∫ h

0

eAsB2w(h+ sl − s)ds|

≤ sup
1≤l≤k

∫ h

0

‖eAs‖‖B2‖|w(h+ sl − s)|ds

≤ ‖B2‖ sup
0≤s≤t

|w(s)|
{

eλmaxh−1
λmax

if λmax 6= 0

h if λmax = 0

= cw sup
0≤s<sk+1

|w(s)|, for k ≥ 1,

(A.81)

with cw defined in (A.77), (A.78), (A.80). Now, using (A.74), (A.81), and the
fact that

√

|z0|2 + |z−1|2 = |z̄(0)| in (A.79) yields

|z(sk + t̃)| ≤‖CzP
− 1

2 ‖
(

c1

√

γ̄kλmax(P ) + c2

√

γ̄k−1λmax(P )

)

|z̄(0)|

+ cw

(

1 +
(

c1
√

κDk + c2
√

κDk−1

)

‖CzP
− 1

2 ‖
)

sup
0≤s≤sk+1

|w(s)|,

(A.82)

for 0 ≤ t̃ < h, k ≥ 2. If k < 2, different relations are needed. Analogously,
from (A.79) it can be derived that

|z(s0 + t̃)| ≤c1|z0| + c2|z−1| + cw sup
s0≤s≤s1

|w(s)|,

≤(c1 + c2)|z̄(0)| + cw sup
s0≤s≤s1

|w(s)|,
(A.83)
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and

|z(s1 + t̃)| ≤c1|z1| + c2|z0| + cw sup
s0≤s≤s2

|w(s)|,

≤(c1‖CzP
− 1

2 ‖
√

γ̄λmax(P ) + c2)|z̄(0)|
+ cw(1 +

√
κ‖CzP

− 1
2 ‖) sup

s0≤s≤s2

|w(s)|.
(A.84)

Now, note that Dk is a strictly increasing (since 0 < γ̄ < 1) geometric series
which exhibits a limit for k → ∞: limk→∞Dk = limk→∞

∑∞
i=1 γ̄

i−1 = 1/(1 −
γ̄) = 1/γ. Concluding, it can be shown that the continuous-time tracking error
dynamics is ISS with respect to the time-varying input w(t), since

|z(t)| ≤ g1(t)|z̄(0)| + g2 sup
0≤s≤t

|w(s)|, for t ≥ 0, (A.85)

with g1(t) a decreasing function of t according to

g1(t) =

{

max{g1,0, g1,1, g1,2} for t ∈ [0, s2)
g1,k for k ≥ 2, t ∈ [sk, sk+1)

(A.86)

with

g1,0 = c1 + c2,

g1,1 = c1‖CzP
− 1

2 ‖
√

γ̄λmax(P ) + c2,

g1,k = ‖CzP
− 1

2 ‖
(

c1

√

γ̄kλmax(P ) + c2

√

γ̄k−1λmax(P )

)

, k ≥ 2.

(A.87)

Note that g1(t) is a decreasing function, with limt→∞ g1(t) = 0, because g1,k,
k ≥ 2, is a strictly decreasing sequence, with limk→∞ g1,k = 0. Moreover, g2
in (A.85) is given by

g2 = cw

(

1 + (c1 + c2)‖CzP
− 1

2 ‖
√

κ

γ

)

. (A.88)

Note that (A.88) is larger than cw that was obtained for |z(s0 + t̃)| and cw(1 +√
κD1) = cw(1 +

√
κ) that was obtained for |z(s1 + t̃)|, which proves that g2

holds for all k.

A.14 Proof of Lemma 6.2.2

To obtain an upper bound on the intersample behavior of (6.30), its state evolu-
tion for t ∈ [sk, sk+1), denoted by z(sk + t̃), with t̃ ∈ [0, hk), is studied in detail.
The evolution of z(sk + t̃) depends on the number of different states z(sj) that
are active in the time-interval t ∈ [sk, t̃). To determine the control inputs that
are active, we define the parameter f :

f := max

{

j ∈ {k − d− δ, k − d− δ + 1, . . . , k − d} | tkj ≤ t̃

}

, (A.89)
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with tkj defined in Lemma 3.4.1. The intersample behavior for t ∈ [sk, sk + t̃) is
given by:

z(sk+t̃) = eAt̃zk+

f
∑

j=k−d−δ

∫ t̃−t̄k
j

t̃−t̄k
j+1

eAsdsB1zj+

∫ t̃

0

eAsB2w(sk+t̃−s)ds, (A.90)

for t̃ ∈ [0, hk). Herein, we slightly adapted tkj in (5.17) to t̄kj to account for
f < k − d. It holds that

t̄kj = tkj , for j ≤ f, (A.91)

with f defined in (A.89), t̄kf+1 := t̃ if t̄kf < t̃ and, based on (A.91), t̄k
k−d−δ

:=

0, which corresponds to the definition of tk
k−d−δ

. The upper bound on the

intersample behavior (A.90), can now be given by:

|z(sk + t̃)| ≤|eAt̃zk| + |
f
∑

j=k−d−δ

∫ t̃−t̄k
j

t̃−t̄k
j+1

eAsdsB1zj|

+ |
∫ t̃

0

eAsB2w(sk + t̃− s)ds|, for t̃ ∈ [0, hk).

(A.92)

The upper bound will be determined by upperbounding each term
∫ t̃−t̄k

j

t̃−t̄k
j+1

eAsdsB1zj, j ∈ {k− d− δ, . . . , f}, individually. For the maximum value

of f , i.e. max(f) = k − d, which corresponds to the largest number of different
control inputs that can be active in the interval [sk, sk + t̃), this results in

|z(sk + t̃)| ≤c0|zk| + c1|zk−1| + c2|zk−2| + . . .+ cd+δ|zk−d−δ|
+ cw sup

sk≤s<sk+1

|w(s)|, for t̃ ∈ [0, hk), (A.93)

which corresponds to the bound as given in (6.40) in Lemma 6.2.2. Next,
the different parameters c0, . . . , cd+δ, and cw will be determined, based on the

largest contribution of the corresponding term related to |zj |, j ∈ {k − d −
δ, . . . , k − d}, in the interval [sk, sk + t̃).

Remark A.14.1 The easiest way to find the largest contribution of each |zj |-
related term in (A.92) is to use

(

max
t̃

(t̄kj+1) − min
t̃

(t̄kj )
)

max
s∈[t̃−t̄k

j+1,t̃−t̄k
j ]
|eAsB1zj |,

for 0 ≤ t̃ < hk ≤ hmax and therefore for j ∈ {k − d − δ, . . . , k − d}. However,
this result will be rather conservative.

To obtain a less conservative result than proposed in the remark, Wazewski’s
inequalities, see (A.14), with λmax = 1

2 max(eig(A + AT )), are used to find an
upper bound for the integrals in (A.92), based on the matrix exponential of
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A. This strategy is analogous to that used in the proof of Lemma 4.3.5 in
Appendix A.6, where the intersample behavior for NCSs with delays smaller
than the constant sampling interval and no packet dropouts is studied. Still,
the upper and lower bounds of t̄kj and t̄kj+1, for j ∈ {k − d − δ, . . . , f}, with
f ≤ k − d, are needed. For the different values of f these bounds need to be
determined. This derivation of the bounds on t̄kj will be combined with the

derivation of the parameters cρ, ρ ∈ {0, 1, . . . , d+ δ} as needed in (A.93).

A.14.1 Determination of c0

To determine the parameter c0, besides the possible contribution of the integral
∫ t̃−t̄k

k

t̃−t̄k
k+1

eAsdsB1zk, the contribution of |eAt̃zk| needs to be taken into account.

For c0, three cases can be distinguished that depend on the value of d and the
size of t̃ compared to tkk−d. In each of these cases, the possibility of packet
dropouts will be included.

• d = 0 and t̃ < tkk−d = tkk:

In this case, the relation
∫ t̃−t̄k

k

t̃−t̄k
k+1

eAsdsB1zk does not have to be considered,

because f < k − d = k. Note that

tkk ∈
{
[

min(hmin, τmin),min(τmax, hmax)
]

, if δ = 0,
[

min(hmin, τmin), hmax

]

, if δ > 0,
(A.94)

as can be obtained from Lemma 4.4.2. Hence, the maximum value for t̃
for which t̃ < tkk is given by:

t̃ <min(τmax, hmax), if δ = 0,

t̃ <hmax, if δ > 0.

In this relation a distinction is made, between the situation with and
without packet dropouts, analogous to Lemma 4.4.2. Based on these
upper bounds on t̃, the maximum contribution of |zk| (which is only related

to the term |eAt̃zk|) on the intersample behavior for this specific case is
given by:

|eAt̃zk| ≤ |zk|















eλmaxτmax if λmax > 0 and (τmax < hmax and δ = 0)

eλmaxhmax if λmax > 0 and
(

τmax ≥ hmax and δ = 0
)

or
(

δ > 0
)

1 if λmax ≤ 0,

which can be simplified to:

|eAt̃zk| ≤ c̄0|zk|,with

c̄0 :=

{

max(eλmaxτmax , 1) if δ = 0 and τmax < hmax

max(eλmaxhmax , 1) if
(

δ = 0 and τmax ≥ hmax

)

or
(

δ > 0
)

.

(A.95)
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• d = 0 and t̃ ≥ tkk−d = tkk:

Here, the parameter f is given by f = k − d = k, if tkk < hk, because, it
holds that t̃ ∈ [0, hk), analogous to (A.90). If tkk = hk, then the parameter
f is given by f = k − d − 1 = k − 1. In the first case, the relation
∫ t̃−t̄k

k

t̃−t̄k
k+1

eAsdsB1zk =
∫ t̃−tk

k

0 eAsdsB1zk has to be considered to derive the

value of c0. Note that in the second case, this relation does not have to be
considered, see (A.90). In order to account for this integral, we first study
the minimum and maximum value of t̃, based on the parameters tkk and t̄kk.
For tkk,min, the definition is given in Lemma 4.4.2. Analogous to (A.91), it

holds that t̄kk,min = tkk,min for j = k ≤ f . However, due to the dependence
on the value of f , this relation cannot be applied straightforwardly to
compute the value of c0, as we will show now. According to Lemma 4.4.2,
it holds that tkk,min = min(τmin, hmin) (using d = 0). If it holds that

tkk ∈ [hmin, τmin), which is possible if hmin < τmin, then tkk is, due to
its definition in Lemma 3.4.1(tkk = min(τk, hk)), equal to hk. It is easy
to see that t̄kk = t̃ for any value of t̃ ∈ [tkk−1, hk). Then, as mentioned

above, the integral
∫ t̃−t̄k

k

t̃−t̄k
k+1

eAsdsBzk, does not need to be considered. If

tkk ≥ τmin, it holds that t̄kk = tkk if tkk ≤ t̃. Then, for t̃ > tkk, the integral
∫ t̃−t̄k

k

t̃−t̄k
k+1

eAsdsBzj , needs to be considered, with t̄kk+1 = t̃. Then, to obtain

the upper bound on the contribution of the integral related to |zk| on the
intersample behavior, we can limit ourselves to the values of t̃ ≥ τmin.
Note that the upper bound of t̃ is given by hmax. Based on this lower and
upper bound of t̃, the minimum and maximum value of t̄kk, for which the
contribution of the integral related to zk is larger than zero, is given by:

t̄kk ∈
{
[

τmin,min(τmax, hmax)
]

, if δ = 0,
[

τmin, hmax

]

, if δ > 0,
(A.96)

where it is used that t̃ > τmin. In the above reasoning, the occurrence
of packet dropouts was not included explicitly. Packet dropouts result in

the fact that the integral
∫ t̃−t̄k

k

0 eAsdsB1zk does not have to be considered
in the contribution of zk on the intersample behavior. In the case of a
packet dropout, it holds, according to Lemma 3.4.1, that tkk = hk. Then,

the integral
∫ hk−tk

k

hk−tk
k+1

eAsdsB1zk =
∫ hk−tk

k

0
eAsdsB1zk = 0. Moreover, it

holds that f < k, resulting in t̄kk := t̃ and t̄kk+1 not defined. Therefore, it

holds that
∫ t̃−t̄k

k

t̃−t̄k
k+1

eAsdsB1zk is not defined. This proves that, in the case

of packet dropouts, this integral does not have to be taken into account.
Then, the largest contribution of the integral related to zk on the bound
on the intersample behavior is, for t̃ ≥ tkk, obtained if mk = 0 (no packet
dropout) is used. Clearly, the bounds on t̄k as defined in (A.96), and
t̃ ∈ [τmin, hmax) still hold.
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Based on these observations, it holds that:

|eAt̃zk| ≤ c̃0|zk|,

with c̃0 :=







eλmaxhmax if λmax > 0
eλmaxτmin if λmax < 0
1 if λmax = 0,

(A.97)

and

|
∫ t̃−t̄k

k−d

t̃−t̄k
k−d+1

eAsdsB1zk| = |
∫ t̃−t̄k

k

0

eAsdsB1zk|

≤











|zk|‖B1‖
eλmax(t̃−tk

k) − 1

λmax
if λmax 6= 0

|zk|‖B1‖(t̃− tkk) if λmax = 0

≤ ĉ0|zk|,

with ĉ0 :=

{

|zk|‖B1‖ eλmax(hmax−τmin)−1
λmax

if λmax 6= 0

|zk|‖B1‖(hmax − τmin) if λmax = 0.

(A.98)

• d > 0:
In this case it holds, by the definition of d, that τmin > hmax. The upper
bound on |z(sk + t̃)|, as far as it relates to terms concerning |zk|, then

only depends on |eAt̃zk|, with:

|eAt̃zk| ≤ c̆0|zk|, with c̆0 :=

{

eλmaxhmax if λmax > 0
1 if λmax ≤ 0.

(A.99)

Summarizing, it holds that

c0 =

{

max(c̄0, c̃0 + ĉ0) if d = 0
c̆0 if d > 0,

(A.100)

with c̄0, c̃0, ĉ0, and c̆0 defined in (A.95), (A.97), (A.98), and (A.99), respectively.

A.14.2 Determination of cρ

To obtain the parameters cρ, ρ ∈ {1, 2, . . . , d+δ} in (A.93), the maximum value

of |
∫ t̃−t̄k

j

t̃−t̄k
j+1

eAsdsB1zj| needs to be considered for each j. The values of j in this

relation are given by j ∈ {k − d − δ, . . . , k − d − 1} for d = 0 and given by
j ∈ {k− d− δ, . . . , k− d} for d > 0. Note that the value of t̃ is chosen such that
for each j the input zj is indeed implemented in the interval [sk, sk + t̃). To
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derive the maximum value of each cρ, with ρ ∈ {d+ 1, d+ 2, . . . , d+ δ} if d = 0
and with ρ ∈ {d, d+ 1, . . . , d + δ} if d > 0, the following general bound on the

integral
∫ t̃−t̄k

j

t̃−t̄k
j+1

eAsdsB1zj , which is based on Wazewski’s inequalities (A.14), is

instrumental:

|
∫ t̃−t̄k

j

t̃−t̄k
j+1

eAsdsB1zj | ≤ |zj|
{

‖B1‖ e
λmax(t̃−t̄k

j )−e
λmax(t̃−t̄k

j+1)

λmax
if λmax 6= 0

‖B1‖(t̄kj+1 − t̄kj ) if λmax = 0,

(A.101)
if t̃ > tkj (such that t̄kj exists) and with tkj defined in (3.22). To determine
an upper bound for the right-hand side of this inequality, the minimum and
maximum values of t̄kj , t̄kj+1 in combination with t̃ need to be considered. Recall

that the lower bound and upper bound of tkj are given by tkj,min and tkj,max,
respectively, as derived in Lemma 4.4.2. Based on this knowledge, the upper
and lower bounds of t̄kj can be derived. For t̄kj,min it holds, based on (A.91), that

t̄kj,min = tkj,min, for j ≤ f, with tkj,min defined in (4.30). Analogous to the case

d = 0 and t̃ ≥ tkk, the dependence of t̄kj,min on f needs to be accounted for. Based

on the same reasoning, it can be proven that for t̃ > tkj , j ∈ {k−d−δ, . . . , k−d},
that:

t̄kj,min =

{

τmin − dhmax if j = k − d
0 if j < k − d.

(A.102)

Again, it is used that t̃ ≥ τmin (see d = 0 and t̃ ≥ tkk−d = tkk in the determination

of c0. For t̃ < tkj , the parameter t̄kj = t̃. Then, the integral related to zj is not

considered in the computation of z(sk + t̃) and does not contribute to the upper
bound on z(sk + t̃). To derive t̄kj,max it holds, based on (A.91) and analogous to
(A.45), that:

t̄kj,max = min
{

max{0, τmax − (k − j)hmin} +mjhmax,

max{0, τmax − (k − j − 1)hmin} +mj+1hmax, . . . ,

max{0, τmax − (k − f)hmin} +mfhmax, t̃max

}

,

(A.103)
for j ∈ {k − d− δ + 1, . . . , f}. Because t̃max := suphk

t̃ = hmax (due to the fact

that t̃ ∈ [0, hk)), it holds that (A.103) can be replaced by (A.45) (for t̃ → hmax).
Then, the upper bound t̄kj,max, corresponds to tkj,max, defined in (4.31), if t̃ ≥ tkj ,

j ∈ {k − d− δ, . . . , k − d}:

t̄kj,max =







min{τmax − (k − j − δ)hmin, hmax}
if j ∈ {k − d− δ + 1, . . . , k − δ − d},

hmax if j ∈ {k − δ − d+ 1, . . . , k − d}.
(A.104)

Based on the obtained upper and lower bounds of t̄kj , the parameters cρ, ρ ∈
{1, 2, . . . , d+ δ}, in (A.93) can be derived. The upper bound of the first expres-
sion in the right-hand side of (A.101) is, for t̃ ≥ tkj , obtained if t̃− t̄kj is maximal,

while t̃− t̄kj+1 is minimal. This results in eλmax(hmax−t̄k
j,min) and eλmax(t̃−t̄k

j+1) = 1,
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because t̃ can be chosen such that t̃ = t̄kj+1. In combination with (A.102), this
leads to the following bounds:

‖B1‖
eλmax(t̃−t̄k

j ) − eλmax(t̃−t̄k
j+1)

λmax
≤























‖B1‖
eλmaxhmax − 1

λmax
if j < k − d

‖B1‖
eλmax(hmax−(τmin−dhmax)) − 1

λmax
if j = k − d.

(A.105)

The upper bound of the second equation of (A.101) is obtained if t̄kj+1 is maxi-

mal, while t̄kj is minimal. This results, based on (A.102) and (A.104) in:

‖B1‖(t̄kj+1 − t̄kj ) ≤

‖B1‖















min(τmax − (k − j − 1 − δ)hmin, hmax)

if j ∈ {k − δ − d, . . . , k − δ − d− 1}
hmax if j ∈ {k − δ − d, . . . , k − d− 1}
hmax − (τmin − dhmax) if j = k − d.

(A.106)

Note that t̃ < tkj , j ∈ {k − d − δ, . . . , k − d}, leads to the situation that zj is

not active in the interval [sk, sk + t̃), resulting in cρ = 0, ρ ∈ {d, . . . , d + δ}.
Then, from (A.105) and (A.106) in combination with ρ = k−j, the parameter cρ
ρ ∈ {1, 2, . . . , d+δ−1} can be obtained. Note that cρ := 0 if ρ ∈ {1, 2, . . . , d−1}.
This gives the following relation for cρ

cρ = ‖B1‖



















































eλmax(hmax−(τmin−dhmax))−1
λmax

if λmax 6= 0 and ρ = d and d > 0
eλmaxhmax−1

λmax
if λmax 6= 0 and ρ > d

min (τ∗max, hmax) if λmax = 0 and

ρ ∈ {δ + d+ 1, . . . , d+ δ − 1}
(hmax − (τmin − dhmax)) if λmax = 0 and ρ = d and d > 0
hmax if λmax = 0 and

ρ ∈ {d+ 1, . . . , δ + d}
0 if ρ < d,

with τ∗max = τmax − (ρ− δ − 1)hmin. This proves (6.43).
The value for cd+δ can be obtained based on (A.101), (A.102), and (A.104).

It holds that t̄k
k−d−δ

:= 0 and t̄k
k−d−δ+1,max

:= τmax − (d − 1)hmin, because
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τmax − (d− 1)hmin ≤ hmax, due to the definition of d := ⌈ τmax

hmin
⌉. This gives

cd+δ =

{

‖B1‖ eλmaxhmax−1
λmax

if λmax 6= 0

‖B1‖
(

τmax − (d− 1)hmin

)

if λmax = 0,

which proves (6.44).
Finally, the value for cw can be proven by:

|
∫ t̃

0

eAsB2w(sk+t̃−s)ds| ≤ ‖B2‖ sup
sk≤s<sk+1

|w(s)|
{

eλmaxhmax−1
λmax

if λmax 6= 0

hmax if λmax = 0.

A.15 Proof of Theorem 6.2.3

To prove input-to-state stability of the continuous-time NCS (6.30), (3.22) first
the bound on the discrete-time state zk is determined, based on the relations
considered in Lemma 6.2.1. Second, the bound on the intersample behavior as
discussed in Lemma 6.2.2 is combined with the bound on zk.

In Lemma 6.2.1, it is proven that ∆V (ψk) < −γψT
k PψK + κw̄T

k w̄k holds
for the discrete-time NCS model (6.33). Similar to the small delay case (see
relations (A.71) and (A.72)) it holds for |ψk|2P = ψT

k Pψk that:

|ψk+1|2P < γ̄|ψk|2P + κ sup
1≤l≤k

|w̄l|2 ⇒ |ψk|2P < γ̄k|ψ0|2P + κDk sup
1≤l≤k

|w̄l|2, k ≥ 1,

with 0 < γ̄ = 1 − γ < 1, Dk =
∑k

i=1 γ̄
i−1, and P satisfying the conditions in

(6.39). Analogous to the small delay case, (A.73) holds:

|zk|2
‖CzP− 1

2 ‖2
≤ γ̄kλmax(P )|ψ0|2 + κDk sup

1≤l≤k

|w̄l|2, k ≥ 1. (A.107)

Now, we use the fact that |ψ0|2 = |z0|2 + |z−1|2 + . . .+ |z−d−δ|2 in (A.107) to
obtain

|zk|2
‖CzP− 1

2 ‖2
<γ̄kλmax(P )

(

|z0|2 + |z−1|2 + . . .+ |z−d−δ|2
)

+ κDk sup
1≤l≤k

|w̄l|2.

⇒ |zk| <‖CzP
− 1

2 ‖
(

√

γ̄kλmax(P )
√

|z0|2 + |z−1|2 + . . .+ |z−d−δ|2

+
√

κDk sup
1≤l≤k

|w̄l|
)

, ∀k ≥ 1.

(A.108)

As a second step, we consider the continuous-time system (6.30) and its evo-
lution for t ∈ [sk, sk+1) as described in Lemma 6.2.2. Combining (6.40) and
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(A.108) gives:

|z(sk + t̃)| ≤

c0‖CzP
− 1

2 ‖
√

γ̄kλmax(P )
√

|z0|2 + |z−1|2 + . . .+ |z−d−δ|

+ c1‖CzP
− 1

2 ‖
√

γ̄k−1λmax(P )
√

|z0|2 + |z−1|2 + . . .+ |z−d−δ|
+ . . .

+ cd+δ‖CzP
− 1

2 ‖
√

γ̄k−d−δλmax(P )
√

|z0|2 + |z−1|2 + . . .+ |z−d−δ|

+ ‖CzP
− 1

2 ‖
(

c0
√

κDk + c1
√

κDk−1 + . . .+ cd+δ

√

κDk−d−δ

)

sup
1≤l≤k

|w̄l|

+ cw sup
sk≤s<sk+1

|w(s)|,

(A.109)

for 0 ≤ t̃ < hk, k ≥ d + δ + 1. Recall that the upper bound of sup1≤l≤k |w̄l|
can be derived analogously to (A.81) with h replaced by hmax. Then, using

(A.81) and the fact that
√

|z0|2 + |z−1|2 + . . .+ |z−d−δ| = |z̄(0)|, (A.109) can

be rewritten as:

|z(sk + t̃)| ≤

‖CzP
− 1

2 ‖
(

c0

√

γ̄kλmax(P ) + c1

√

γ̄k−1λmax(P ) + . . .

+ cd+δ

√

γ̄k−d−δλmax(P )

)

|z̄(0)|

+ cw

(

1 +

(

c0
√

κDk + c1
√

κDk−1 + . . .

+ cd+δ

√

κDk−d−δ

)

‖CzP
− 1

2 ‖
)

sup
sk≤s<sk+1

|w(s)|,

(A.110)

for 0 ≤ t̃ < hk, k ≥ d+ δ+ 1. For k < d+ δ+ 1, the upper bound of |z(sk + t̃)|
can be derived analogously. For k = 0, i.e. s0 := 0 it holds that:

|z(s0 + t̃)| ≤c0|z0| + c1|z−1| + c2|z−2| + . . .+ cd+δ|z−d−δ|

+ cw sup
s0≤s<s1

|w(s)|, for t̃ ∈ [0, h0)

≤(c0 + c1 + c2 + . . .+ cd+δ)|z̄0| + cw sup
s0≤s<s1

|w(s)|, for t̃ ∈ [0, h0).
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For k = 1 it holds that:

|z(s1 + t̃)| ≤c0|z1| + c1|z0| + c2|z−1| + . . .+ cd+δ|z−d−δ+1|
+ cw sup

s0≤s<s1

|w(s)|, for t̃ ∈ [0, h1)

≤
(

c0‖CzP
− 1

2 ‖
√

γ̄λmax(P ) + c1 + c2 + . . .+ cd+δ

)

|z̄0|
+ cw(1 + c0

√
κ‖CzP

− 1
2 ‖) sup

s0≤s<s1

|w(s)|, for t̃ ∈ [0, h1).

For k = 2 it holds that:

|z(s2 + t̃)|
≤ c0|z2| + c1|z1| + c2|z0| + . . .+ cd+δ|z−d−δ+2| + cw sup

s0≤s<s1

|w(s)|,

for t̃ ∈ [0, h2)

≤
(

‖CzP
− 1

2 ‖
(

c0
√

γ̄2λmax(P ) + c1
√

γ̄λmax(P )
)

+ c2 + . . .+ cd+δ

)

|z̄0|

+ cw

(

1 +
(

c0
√

κD2 + c1
√
κ
)

‖CzP
− 1

2 ‖
)

sup
s1≤s<s2

|w(s)|, for t̃ ∈ [0, h2).

Similar relations can be derived for larger values of k < d + δ + 1. The last
value of k for which (A.110) does not hold is k = d+ δ. Then, the intersample
behavior in the sampling interval [sd+δ, sd+δ+1) denoted by |z(sd+δ + t̃)| is given
by:

|z(sd+δ + t̃)| ≤c0|zd+δ| + c1|zd+δ−1| + c2|zd+δ−2| + . . .+ cd+δ|z0|
+ cw sup

sd+δ≤s<sd+δ+1

|w(s)|, for t̃ ∈ [0, hd+δ)

≤
(

‖CzP
− 1

2 ‖
(

c0

√

γ̄d+δλmax(P ) + c1

√

γ̄d+δ−1λmax(P ) + . . .

+ cd+δ−1

√

γ̄λmax(P )
)

+ cd+δ

)

|z̄0|

+ cw

(

1 + ‖CzP
− 1

2 ‖
(

c0
√

κDd+δ + c1
√

κDd+δ−1 + . . .

+ cd+δ−1

√
κ
)

)

sup
sd+δ≤s<sd+δ+1

|w(s)| for t̃ ∈ [0, hd+δ).

Similar to the small delay case, Dk is a strictly increasing (since 0 <
γ̄ < 1) geometric series which exhibits a limit for k → ∞: limk→∞Dk =
limk→∞

∑∞
i=1 γ̄

i−1 = 1/(1 − γ̄) = 1/γ. Concluding, we can show that the
continuous-time tracking error dynamics is ISS with respect to the time-varying
input w(t), since

|z(t)| ≤ g1(t)|z̄(0)| + g2 sup
0≤s≤t

|w(s)|, for t ≥ 0, (A.111)



170 Proofs of theorems and lemmas

with g1(t) a decreasing function of t according to

g1(t) =

{

max(g1,0 . . . , g1,d+δ, g1,d+δ+1), for t ∈ [0, sd+δ+1)

g1,k for t ∈ [sk, sk+1), k ≥ d+ δ + 1,
(A.112)

with

g1,0 =c0 + c1 + c2 + . . .+ cd+δ,

g1,1 =c0‖CzP
− 1

2 ‖
√

γ̄λmax(P ) + c1 + . . .+ cd+δ,

g1,2 =‖CzP
− 1

2 ‖
(

c0
√

γ̄2λmax(P ) + c1
√

γ̄λmax(P )
)

+ c2 + . . .+ cd+δ,

...

g1,d+δ =‖CzP
− 1

2 ‖
(

c0

√

γ̄d+δλmax(P ) + c1

√

γ̄d+δ−1λmax(P ) + . . .

+ cd+δ−1

√

γ̄λmax(P )
)

+ cd+δ

g1,k =‖CzP
− 1

2 ‖
(

c0

√

γ̄kλmax(P ) + c1

√

γ̄k−1λmax(P ) + . . .

+ cd+δ

√

γ̄k−d−δλmax(P )

)

, for k ≥ d+ δ + 1.

(A.113)

Note that g1(t) is a decreasing function, with limt→∞ g1(t) = 0, because g1,k,
k ≥ d+δ+1, is a strictly decreasing sequence, with limk→∞ g1,k = 0. Moreover,
g2 in (A.111) is given by

g2 = cw

(

1 + (c0 + c1 + . . .+ cd+δ)‖CzP
− 1

2 ‖
√

κ

γ

)

. (A.114)

Note that (A.114) is larger than cw that was obtained for |z(s0 + t̃)|, |z(s1 + t̃)|,
. . . , |z(sd+δ+t̃)|, which proves that g2 holds for all k.
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Jordan form

B.1 Jordan Canonical form
and Real Jordan form

B.2 Jordan forms of the NCS model

B.3 Time-varying sampling
intervals

B.4 Output-feedback

This appendix describes the use of the Jordan form to reformulate the
discrete-time Networked Control System models. The advantage of the use
of the Jordan form is that a generic solution can be derived for the integrals
that are used in the discrete-time NCS model, see e.g. (3.2) and (3.23). This so-
lution allows to rewrite the right-hand side of the discrete-time NCS model as a
combination of time-varying parameters in combination with constant matrices,
such that stability analysis conditions can be derived. The use of time-varying
parameters instead of time-varying matrices simplifies the derivation of the sta-
bility analysis conditions.

In Section B.1 the Jordan form is introduced. In Section B.2 the Jordan form
of the continuous-time system matrix A is applied to rewrite the discrete-time
NCS model for small delays of Section 3.1. In Section B.3, the model including
time-varying sampling intervals, packet dropouts, and delays larger than the
sampling interval is rewritten based on the Jordan form of the continuous-time
system matrix A. Note that the models for the large delay case with or without
packet dropouts and for constant sampling intervals can be derived from the
model that includes time-varying sampling intervals. Finally, Section B.4 gives
the formulation of the NCS model, based on the Jordan form, for the output-
feedback case as considered in the experiments of Chapter 7.

B.1 Jordan Canonical form and Real Jordan

form

For every square matrix A ∈ R
n×n, there exists a Jordan form J ∈ R

n×n, given
by [108], [67]:

J = Q−1AQ, (B.1)

with Q ∈ R
n×n a matrix that contains the generalized eigenvectors of A and

J = diag(J1, . . . , Jp), (B.2)

where Jĩ, ĩ = 1, 2, . . . , p, is called a Jordan block, which has a block diagonal
form and p denotes the number of distinct eigenvalues. Dependent on the
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eigenvalues, two different cases are distinguished: the Jordan Canonical form
that is applied for real eigenvalues and the Real Jordan form that is applied for
complex eigenvalues. First, we consider the Jordan Canonical form, which we
denote by JR (real eigenvalues). The Jordan block JR,̃i, which is the Jordan

block for the ĩth distinct eigenvalue (λĩ) of the matrix A is represented by one
of the following matrices:

λĩ,

(

λĩ 1
0 λĩ

)

,





λĩ 1 0
0 λĩ 1
0 0 λĩ



 ,















λĩ 1 0 . . . 0
0 λĩ 1 . . . 0
...

. . .
...

0 0 . . . λĩ 1
0 0 . . . 0 λĩ















. (B.3)

Note that (B.2) is still valid, which gives for real eigenvalues: JR =
diag(JR,1, . . . , JR,p). If the geometric multiplicity gĩ ∈ Z

+ of the eigenvalue λĩ

of A is equal to one, then the dimension of the ĩth Jordan block JR,̃i is equal

to the algebraic multiplicity mĩ of the eigenvalue λĩ, with ĩ = 1, 2, . . . , p. If
the geometric multiplicity is unequal to one, then gĩ Jordan blocks describe the
Jordan block associated with λĩ: JR,̃i = diag(JR,̃i,1, . . . , JR,̃i,gĩ

). The dimension
of these combined gĩ Jordan blocks is equal to the algebraic multiplicity mĩ of
the ĩth distinct eigenvalue (̃i = 1, 2, . . . , p). Note that the geometric multiplicity
can never exceed the algebraic multiplicity of λĩ, so gĩ ≤ mĩ, see [11], and [78].

In the discrete-time NCS models, e.g. (3.2), (3.16), (3.23), the exponential
functions of the continuous-time system matrix A, such as eAh or eAhk and eAs,
are considered. For the exponential of A it holds that:

eAs = Qdiag(eJR,1s, . . . , eJR,ps)Q−1. (B.4)

The exponential functions eJR,̃is are, based on the Jordan blocks given in (B.3),
given by:

eλĩs, eλĩs

(

1 s
0 1

)

, eλĩs





1 s s2

2!
0 1 s
0 0 1



 , eλĩs

















1 s s2

2! . . . s(k−1)

(k−1)!

0 1 s . . . s(k−2)

(k−2)!

...
. . .

...
0 0 1 s
0 0 0 1

















, (B.5)

for the ĩth distinct real eigenvalue λĩ. The parameter k in (B.5) denotes the
size of the Jordan block JR,̃i,j̃, with j̃ ∈ {1, 2, . . . , gĩ}. The number of different
parameters in the Jordan block JR,̃i, where the parameters are denoted by e.g.

eλĩs, seλĩs, s2

2 e
λĩs is equal to the algebraic multiplicity mĩ if gĩ = 1. If the

Jordan block JR,̃i consists of different Jordan blocks i.e. gĩ > 1, the number of
different parameters that depend on λĩ depends on the largest Jordan block,
because the parameters of the other blocks are a subset of the parameters of
this largest Jordan block (each block has the form of (B.5)). The number of
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different time-varying parameters that is related to the ĩth distinct eigenvalue
is given by:

qĩ = max
j̃=1,2,...,gĩ

dimJR,̃i,j̃ , (B.6)

with JR,̃i,j̃ the j̃th Jordan block of the ĩth distinct real eigenvalue λĩ. Second,
if the matrix exhibits complex eigenvalues λĩ = aĩ ± bĩj, the Real Jordan form
is more useful, because it avoids the occurrence of complex matrices J and Q
in (B.1). A Jordan block Jĩ(aĩ + bĩj) with complex eigenvalues can be replaced
by a real Jordan block JC,̃i(aĩ, bĩ) (complex eigenvalues), of the form:

D,

(

D I
0 D

)

,





D I 0
0 D I
0 0 D



 ,















D I 0 . . . 0
0 D I . . . 0
...

. . .
...

0 0 . . . D I
0 0 . . . 0 D















, (B.7)

with the matrix D(aĩ, bĩ), defined as

D =

(

aĩ −bĩ
bĩ aĩ

)

= aĩI + bĩLr, (B.8)

with I the identity matrix, Lr =

(

0 −1
1 0

)

and L2
r = −I. Analogous to the

Jordan Canonical form, it holds that each Jordan block JC,̃i(aĩ, bĩ) exists of

different Jordan blocks if the geometric multiplicity gĩ of the ĩth distinct complex
eigenvalue with positive imaginary part λĩ = aĩ + bĩj is larger than one. The
number of Jordan blocks for the ĩth distinct pair of complex eigenvalues aĩ ± bĩj
is equal to gĩ, the geometric multiplicity of the eigenvalue with the positive
imaginary part of the ĩth pair of complex eigenvalues. Therefore it holds that:

JC,̃i = diag(JC,̃i,1, JC,̃i,2, . . . , JC,̃i,gĩ
),

with JC,̃i,1, . . . , JC,̃i,gĩ
, gĩ Jordan blocks for the ĩth distinct pair of complex

eigenvalues λĩ. Similar to (B.5), the exponential function of the Real Jordan
block JC , ĩ, described by on of the forms in (B.7), is given by:

eDs,

(

eDs seDs

0 eDs

)

, eDs





eDs seDs s2

2! e
Ds

0 eDs seDs

0 0 eDs



 ,

eDs

















I seDs s2

2! e
Ds . . . sk−1

(k−1)!e
Ds

0 eDs seDs . . . sk−2

(k−2)!e
Ds

...
. . .

...
0 0 . . . eDs seDs

0 0 . . . 0 eDs

















,

(B.9)
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with

eDs = eaĩs

(

cos bĩs − sin bĩs
sin bĩs cos bĩs

)

. (B.10)

Analogous to the Jordan Canonical form, qC,̃i denotes the number of different

parameters that are related to the ĩth distinct pair of complex eigenvalues

qC,̃i = max
j̃=1,2,...,gĩ

dimJC,̃i,j̃ , (B.11)

where gĩ denotes the geometric multiplicity of the ĩth distinct complex eigenvalue
with a positive imaginary part. Obviously, if both real and complex eigenvalues
occur, combinations of the exponential of the Real Jordan blocks (B.7) and
Jordan blocks (B.3) are used: J := diag(JR, JC). Note that for real eigenvalues
the Real Jordan form is equal to the Jordan Canonical form.

B.2 Jordan forms of the NCS model

In this section, the general NCS description for small delays (4.5), used for the
stability analysis and control synthesis, will be derived. Note that in Section B.3
the general NCS description for time-varying sampling intervals, delays larger
than this sampling interval, and packet dropouts is discussed. As a starting
point, consider the NCS model for small delays, as derived in Chapter 3, see
(3.3):

ξk+1 =

(

eAh
∫ h

h−τk
eAsdsB

0 0

)

ξk +

(
∫ h−τk

0
eAsdsB
I

)

uk, ∀τk ∈ [τmin, τmax].

A general solution of the integrals in this equation in terms of the time-varying
parameter h− τk will be derived. To solve these integrals, we adopt the Jordan
form of the continuous-time state matrix A, according to A = QJQ−1, with J
the Jordan Canonical form, Real Jordan form, or a combination. This gives:

ξk+1 =

(

QeJhQ−1
∫ h

h−τk
QeJsdsQ−1B

0 0

)

ξk +

(
∫ h−τk

0 QeJsdsQ−1B
I

)

uk,

(B.12)
for all τk ∈ [τmin, τmax].

Real eigenvalues

If A has only real eigenvalues that can be multiplicative (i.e. there may be
eigenvalues λĩ with mĩ > 1), the exponential of A can be rewritten as:

eAs = QeJsQ−1 = Q





p
∑

ĩ=1

qĩ−1
∑

ĵ=0

sĵ

ĵ!
eλĩsSĩ,ĵ



Q−1, (B.13)
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with Sĩ,ĵ a matrix with a one at the positions that correspond to the position

in J at which the value sĵ

ĵ!
eλĩs appears (see e.g. (B.5)) and a zero at all other

matrix positions and qĩ defined in (B.6). To explain Sĩ,ĵ , we give two examples.

Firstly, if J =





λ1 1 0
0 λ1 1
0 0 λ1



, it holds that p = 1, q1 = 3, which gives:

eJs = eλ1sS1,0 + seλ1sS1,1 +
s2

2
eλ1sS1,2,

with

S1,0 =





1 0 0
0 1 0
0 0 1



 , S1,1 =





0 1 0
0 0 1
0 0 0



 , and S1,2 =





0 0 1
0 0 0
0 0 0



 .

Secondly, if J =





λ1 0 0
0 λ2 1
0 0 λ2



, it holds that p = 2, q1 = 1, and q2 = 2, which

gives:
eJs = eλ1sS1,0 + eλ2sS2,0 + seλ2sS2,1,

with

S1,0 =





1 0 0
0 0 0
0 0 0



 , S2,0 =





0 0 0
0 1 0
0 0 1



 , and S2,1 =





0 0 0
0 0 1
0 0 0



 .

From these examples, it is clear that Sĩ,ĵ depends on the combination of the
Jordan blocks.

To rewrite the NCS model of (B.12), the integral
∫

eAsds needs to be solved.
If none of the eigenvalues is equal to zero, then J = JNZ is invertible and a
general solution for the integral can be obtained:

∫

eAsds =

∫

QeJsQ−1ds = QJ−1
NZ





pNZ
∑

ĩ=1

qĩ−1
∑

ĵ=0

sĵ

ĵ!
eλĩsSĩ,ĵ



Q−1, (B.14)

with pNZ the number of distinct real, non-zero eigenvalues. The NCS model
(B.12) can be written as:

ξk+1 =

(

QeJNZhQ−1 QJ−1
NZ(eJNZh − eJNZ(h−τk))Q−1B

0 0

)

ξk+

(

QJ−1
NZ(eJNZ(h−τk) − I)Q−1B

I

)

uk, ∀τk ∈ [τmin, τmax],

with eJNZ(h−τk) =
∑pNZ

ĩ=1

∑qĩ−1

ĵ=0

(h−τk)ĵ

ĵ!
eλĩ(h−τk)Sĩ,ĵ .



176 Jordan form

If eigenvalues equal to zero occur, the inverse of the Jordan matrix J = JZ

does not exist and the description as in (B.14) cannot be used. The equivalent
for (B.14) for the case of eigenvalues equal to zero is given by:

∫

eAsds =

∫

QeJZsQ−1ds = Q





pZ
∑

ĩ=1

qĩ
∑

ĵ=1

sĵ

ĵ!
eλĩsSĩ,ĵ−1



Q−1, (B.15)

with pZ := 1 the number of distinct eigenvalues equal to zero. Note that it
holds for real eigenvalues that p = pNZ + pZ , with p the number of distinct real
eigenvalues. The corresponding NCS model is written as:

ξk+1 =





QeJZhQ−1
∑qZ

ĵ=1

(

hĵ

ĵ!
− (h−τk)ĵ

ĵ!

)

QS1,ĵ−1Q
−1B

0 0



 ξk+

(

∑qZ

ĵ=1

(h−τk)ĵ

ĵ!
QS1,ĵ−1Q

−1B

I

)

uk, ∀τk ∈ [τmin, τmax],

(B.16)

with qZ the size of the maximum Jordan block for the eigenvalues equal to
zero as defined in (B.6), S1,ĵ defined according to (B.13), with ĩ := 1, because
pZ := 1.

Complex eigenvalues

If A has only complex eigenvalues, the Real Jordan form (denoted by JC) is
applied to avoid the occurrence of complex values of the matrix entries in the
system matrices. A general solution for the matrix exponential eAs, similar to
(B.13), is given by:

eAs = QeJCsQ−1

= Q
(

∑pC

ĩ=1

∑qC,̃i−1

ĵ=0
sĵ

ĵ!
eaĩs(cos(bĩs)Sĩ,ĵ,1 + sin(bĩs))Sĩ,ĵ,2

)

Q−1,

(B.17)
with pC the number of distinct complex pairs of eigenvalues. A general expres-
sion for Sĩ,ĵ,1 and Sĩ,ĵ,2 is complicated to derive; therefore we give two examples.
The first example deals with one complex pair of eigenvalues and the second ex-
ample deals with a complex pair of eigenvalues that occurs twice. If we assume

that JC =

(

a −b
b a

)

, which corresponds to one complex pair of eigenvalues (i.e.

pC = 1 and qC,1 = 2), the exponential of the Real Jordan matrix eJCs is given

by: eJCs = eas

(

cos(bs) − sin(bs)
sin(bs) cos(bs)

)

. Then it holds that

S1,0,1 =

(

1 0
0 1

)

, S1,0,2 =

(

0 −1
1 0

)

. (B.18)

To solve the integrals in (B.12), the following relations are used:
∫

eas cos(bs)ds =
eas

a2 + b2
(a cos(bs) + b sin(bs)) , (B.19)
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and
∫

eas sin(bs)ds =
eas

a2 + b2
(a sin(bs) − b cos(bs)) . (B.20)

Then, system (B.12) can be rewritten as ξk+1 =

(

Φ̄0 Φ̄1

0 0

)

ξk +

(

Γ̄
I

)

uk, with

Φ̄0 = eahQ

(

cos(bh) − sin(bh)
sin(bh) cos(bh)

)

Q−1,

Φ̄1 =
eah

a2 + b2
Q

(

a cos(bh) + b sin(bh) −a sin(bh) + b cos(bh)
a sin(bh) − b cos(bh) a cos(bh) + b sin(bh)

)

Q−1B

− ea(h−τk)Q (cos(b(h− τk))S1,0,1 + sin(b(h− τk))S1,0,2)Q
−1B,

Γ̄ = −Q
1

a2 + b2

(

a b
−b a

)

Q−1B

+ ea(h−τk)Q (cos(b(h− τk))S1,0,1 + sin(b(h− τk))S1,0,2)Q
−1B,

and

S1,0,1 =
1

a2 + b2

(

a b
−b a

)

, S1,0,2 =
1

a2 + b2

(

b −a
a b

)

. (B.21)

If a pair of complex eigenvalues occurs twice, another Real Jordan matrix

needs to be used: JC =









a −b 1 0
b a 0 1
0 0 a −b
0 0 b a









. It holds that in (B.17):

S1,0,1 =

(

I 0
0 I

)

, S1,1,1 =

(

0 I
0 0

)

, S1,0,2 =

(

Ψ 0
0 Ψ

)

S1,1,2 =

(

0 Ψ
0 0

)

,

(B.22)

with I a 2 × 2 identity matrix and Ψ =

(

0 −1
1 0

)

. In this case, besides the

integral in (B.19) and (B.20), two additional integrals need to be solved to find
a general solution for (B.12):

∫

seas cos(bs)ds =
seas

a2 + b2
(a cos(bs) + b sin(bs))+

eas

(a2 + b2)2
(

(b2 − a2) cos(bs) − 2ab sin(bs)
)

,

(B.23)

and
∫

seas sin(bs)ds =
seas

a2 + b2
(a sin(bs) − b cos(bs)) +

eas

(a2 + b2)2
(

(b2 − a2) sin(bs) + 2ab cos(bs)
)

.

(B.24)
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System (B.12) can now be formulated as: ξk+1 =

(

Φ̄0 Φ̄1

0 0

)

ξk +

(

Γ̄
I

)

uk, with

Φ̄0 = Qeah









cos bh − sin bh h cos bh −h sin bh
sin bh cos bh h sin bh h cos bh

0 0 cos bh − sin bh
0 0 sin bh cos bh









Q−1,

Φ̄1 =
eah

a2 + b2
QLQ−1B

− ea(h−τk)Q (cos(b(h− τk))S1,0,1 + sin(b(h− τk))S1,0,2)Q
−1B

− (h− τk)
ea(h−τk)

a2 + b2
Q (cos(b(h− τk))S1,1,1 + sin(b(h− τk))S1,1,2)Q

−1B,

Γ̄ = −Q
1

a2 + b2









a b b2−a2

a2+b2
− 2ab

a2+b2

−b a 2ab
a2+b2

b2−a2

a2+b2

0 0 a b
0 0 −b a









Q−1B

+ ea(h−τk)Q (cos(b(h− τk))S1,0,1 + sin(b(h− τk))S1,0,2)Q
−1B

+ (h− τk)ea(h−τk)Q (cos(b(h− τk))S1,1,1 + sin(b(h− τk))S1,1,2)Q
−1B,

L =









l1 l2 l3 l4
−l2 l1 −l4 l3
0 0 l1 l2
0 0 −l2 l1









, (B.25)

l1 =a cos bh+ b sin bh, l2 = −a sin bh+ b cos bh,

l3 =h (a cos bh+ b sin bh) +
1

a2 + b2
(

(b2 − a2) cos bh− 2ab sin bh
)

,

l4 =h (−a sin bh+ b cos bh) − 1

a2 + b2
(

2ab cos bh+ (b2 − a2) sin bh
)

,

and

S1,0,1 =
1

a2 + b2









a b b2−a2

a2+b2
−2ab
a2+b2

−b a 2ab
a2+b2

b2−a2

a2+b2

0 0 a b
0 0 −b a









,

S1,0,2 =
1

a2 + b2









b −a −2ab
a2+b2

a2−b2

a2+b2

a b b2−a2

a2+b2
−2ab
a2+b2

0 0 b −a
0 0 a b









,

S1,1,1 =
1

a2 + b2









0 0 a b
0 0 −b a
0 0 0 0
0 0 0 0









, S1,1,2 =
1

a2 + b2









0 0 b −a
0 0 a b
0 0 0 0
0 0 0 0









.

(B.26)
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Both complex and real eigenvalues

If the system matrix A consists of both complex and real eigenvalues, a com-
bination of the previously obtained results should be used. The Jordan matrix
can then be written as:

J = diag(JNZ , JZ , JC), (B.27)

where JNZ represents the Jordan block with all real, non-zero eigenvalues, JZ

the Jordan block for all real, zero eigenvalues and JC the real Jordan block with
all complex eigenvalues.

For the purpose of stability analysis and control synthesis, the time-varying
matrices in the NCS model (B.12) that is applicable for a NCS with time-
delays smaller than the constant sampling interval, are divided in time-varying
parameters and constant matrices:

ξk+1 =

(

F0 +

ν
∑

i=1

αi(τk)Fi

)

ξk +

(

G0 +

ν
∑

i=1

αi(τk)Gi

)

uk, (B.28)

with αi(τk) functions depending on the time-varying delay τ , and ν the number
of distinct functions of τ , given by:

ν = νNZ + νZ + νC , (B.29)

with

νNZ =

pNZ
∑

ĩ=1

qĩ,

νZ = qZ ,

νC =

pC
∑

ĩ=1

qC,̃i,

(B.30)

qĩ and qZ defined in (B.6), and qC,̃i defined in (B.11). The time-varying param-
eter αi(τk) is given by:

αi(τk) =











αNZ,i(τk) if i ∈ {1, 2, . . . , νNZ}
αZ,i(τk) if i ∈ {νNZ + 1, νNZ + 2, . . . , νNZ + νZ}
αC,i(τk) if i ∈ {νNZ + νZ + 1, νNZ + νZ + 2, . . . , ν},

(B.31)

where αNZ,i(τk) denotes the functions related to the eigenvalues which are real
and unequal to zero, αZ,i(τk) the functions related to the eigenvalues which are
equal to zero, and αC,i(τk) the functions related to the complex eigenvalues.
Note that if no real eigenvalues, unequal to zero occur then νNZ = 0, if no zero
eigenvalues occur then νZ = 0, and if no complex eigenvalues occur then νC = 0.
Next, the parameters αi(τk), i ∈ {1, 2 . . . , ν}, will be derived for, firstly, real
eigenvalues that are unequal to zero, secondly, real eigenvalues that are equal
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to zero, and thirdly, complex eigenvalues. First, if the continuous-time system
matrix A has one or more real, non-zero eigenvalues, then αNZ,i(τk) is given
by:

αNZ,i(τk) =
(h− τk)ĵ

ĵ!
eλl(h−τk),

for ĵ = 0, 1, . . . , ql − 1 and i =

l
∑

ĩ=1

qĩ + 1 − ql, . . . ,

l
∑

ĩ=1

qĩ,

(B.32)

with qĩ defined in (B.6) and l ∈ {1, 2, . . . , pNZ}. Second, if the continuous-
time system matrix A has one or more eigenvalues that are equal to zero, then
αZ,i(τk), i ∈ {νNZ + 1, νNZ + 2, . . . , νNZ + νZ}, is given by:

αZ,i =
(h− τk)ĵ

ĵ!
, for ĵ = i−νNZ , i = νNZ +1, νNZ +2, . . . , νNZ +νZ . (B.33)

Third, if the continuous-time system matrix A has one or more complex eigen-
values, then the time-varying parameters αC,i(τk), i ∈ {νNZ + νZ + 1, νNZ +
νZ + 2, . . . , ν}, are given by:

αC,i(τk) =


























(h−τk)ĵ

ĵ!
eal(h−τk) cos(bl(h− τk)), for ĵ = 0, 1, . . . ,

qC,l

2 − 1, and

i = νNZ + νZ +
∑l

ĩ=1 qC,̃i − qC,l + 1, . . . , νNZ + νZ +
∑l

ĩ=1 qC,̃i −
qC,l

2 ,
(h−τk)ĵ

ĵ!
eal(h−τk) sin(bl(h− τk)), for ĵ = 0, 1, . . . ,

qC,l

2 − 1, and

i = νNZ + νZ +
∑l

ĩ=1 qC,̃i −
qC,l

2 + 1, . . . , νNZ + νZ +
∑l

ĩ=1 qC,̃i,

(B.34)

where al and bl represent the real and complex part of the complex eigenvalue
λl, according to λl = al ± blj for l = 1, 2, . . . , qC . Similar to the derivation
of the time-varying parameter αi(τk), the constant matrices Fi and Gi, i ∈
{1, 2, . . . , ν}, in (B.28) are given by:

F0 =

(

QΘ0Q
−1 QΘ1Q

−1B
0 0

)

, G0 =

(

QΞ0Q
−1B

Im,m

)

,

Fi =

(

0 QΓ1,iQ
−1B

0 0

)

, andGi =

(

QΞiQ
−1B

0

)

.

(B.35)

For Θ0 it holds that: Θ0 = diag(eJNZh, eJZh, eJCh), and for Ξ0 it holds that:
Ξ0 = −diag(J−1

NZ , OZ ,Λ0), with OZ a matrix with zeros of the same dimension
as JZ and Λ0 a matrix dependent on the Jordan form for complex eigenvalues
defined as:

Λ0 = Q
1

a2 + b2

(

a b
−b a

)

Q−1B, (B.36)
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for the case with only one pair of complex eigenvalues or

Λ0 = Q
1

a2 + b2









a b b2−a2

a2+b2
− 2ab

a2+b2

−b a 2ab
a2+b2

b2−a2

a2+b2

0 0 a b
0 0 −b a









Q−1B, (B.37)

for the case with two identical pairs of complex eigenvalues. For the sake of
brevity, it holds that a := aĩ, b := bĩ. The other parameters Θ1, Γ1,i, and
Ξi, i ∈ {1, 2, . . . , ν}, are more complicated to derive, therefore we consider the
different cases again. Note that it holds that

Θ1 = diag(ΘNZ
1 ,ΘZ

1 ,Θ
C
1 ),

Γ1,i = diag(ΓNZ
1,i ,Γ

Z
1,i,Γ

C
1,i), ∀i ∈ {1, 2, . . . , ν},

Ξi = diag(ΞNZ
i ,ΞZ

i ,Ξ
C
i ), ∀i ∈ {1, 2, . . . , ν}.

• For real eigenvalues unequal to zero it holds that:

ΘNZ
1 = J−1

NZe
JNZh,

ΓNZ
1,i =

{

−J−1
NZT

NZ
i if i ∈ {1, 2, . . . , νNZ}

0 if i 6∈ {1, 2, . . . , νNZ},
ΞNZ

i = −ΓNZ
1,i .

The matrices TNZ
i , i ∈ {1, 2, . . . , ν}, are given by:

TNZ
i =







Sl,ĵ with ĵ = 0, 1, . . . , ql − 1,

for i ∈ {∑ql

ĩ=1
+1 − ql, . . . ,

∑ql

ĩ=1
}

0 for i 6∈ {∑ql

ĩ=1
+1 − ql, . . . ,

∑ql

ĩ=1
},

with l ∈ {1, 2, . . . , pNZ}.

• For eigenvalues equal to zero it holds that:

ΘZ
1 =

qZ
∑

ĵ=1

hĵ

ĵ!
SpNZ+1,ĵ−1,

ΓZ
1,i =







−SpNZ+1,ĵ−1 for ĵ = i− νNZ and

i ∈ {νNZ + 1, νNZ + 2, . . . , νNZ + νZ}
0 if i 6∈ {νNZ + 1, νNZ + 2, . . . , νNZ + νZ},

ΞZ
i = −ΓZ

1,i.

Note that in ΓZ
1,i, the matrix SpNZ+1,ĵ−1 is used instead of S1,ĵ−1 in (B.16),

such that real eigenvalues that are unequal to zero can be included.
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• Finally, for complex eigenvalues it holds that:

ΘC
1 = eah

a2+b2

(

a cos(bh) + b sin(bh) −a sin(bh) + b cos(bh)
a sin(bh) − b cos(bh) a cos(bh) + b sin(bh)

)

for one com-

plex pair of eigenvalues or ΘC
1 = eah

a2+b2
L if the same pair of eigenvalues

occurs twice, with L defined in (B.25). Moreover, it holds that:

ΓC
1,i =

{

−TC
i if i ∈ {νNZ + νZ + 1, νNZ + νZ + 2, . . . , ν}

0 if i 6∈ {νNZ + νZ + 1, νNZ + νZ + 2, . . . , ν},

and analogously to the previous cases:

ΞC
i = −ΓC

1,i.

The matrices TC
i , with i ∈ {1, 2, . . . , ν}, are defined as:

TC
i =


































Sl,ĵ,1 for ĵ = 0, 1, . . . ,
qC,l

2 − 1 and

i ∈ {νNZ + νZ +
∑l

ĩ=1 qC,̃i − qC,l + 1, . . . ,

νNZ + νZ +
∑l

ĩ=1 qC,̃i −
qC,l

2 }
Sl,ĵ,2 for ĵ = 0, 1, . . . ,

qC,l

2 − 1 and

i ∈ {νNZ + νZ +
∑l

ĩ=1 qC,̃i −
qC,l

2 + 1, . . . , νNZ + νZ +
∑l

ĩ=1 qC,̃i}
0 if i 6∈ {νNZ + νZ + 1, . . . , νNZ + νZ + νC},

with l ∈ {1, 2, . . . , pC}. The matrices Sĩ,ĵ,1 and Sĩ,ĵ,2 are defined in (B.21)

for ĵ = 0 if only one pair of complex eigenvalues occurs and in (B.26) for
ĵ = 0, 1 if the same pair of complex eigenvalues occurs twice.

B.3 Time-varying sampling intervals

For time-varying delays and time-varying sampling intervals, the general NCS
model, in terms of the Jordan form of the continuous-time system matrix A is
given by (4.7):

ξk+1 =

(

F0 +

ζ
∑

i=1

αi(t
k
j , hk)Fi

)

ξk +

(

G0 +

ζ
∑

i=1

αi(t
k
j , hk)Gi

)

uk.

The NCS models for time-varying delays, with or without packet dropouts,
see (4.6), are included in this model. An important difference between the
case with and without variation in the sampling interval is the change in the
function αi. It depends either on hk − tkj or on hk for the case with time-

varying sampling intervals, and on h − tkj for the case with constant sampling
intervals. Additionally, the number of time-varying functions αi differs. For the
case with time-varying sampling intervals, the number of time-varying functions
αi(t

k
j , hk) is given by ζ := ζNZ + ζZ + ζC , with ζNZ = (δ + d − d + 1)νNZ ,

νNZ =
∑pNZ

ĩ=1
qĩ, and qĩ defined in (B.6), ζZ = (δ + d − d + 1)qZ , and qZ
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defined analogously to (B.6), because (B.6) holds for all real eigenvalues, and
ζC = (δ + d − d + 1)νC , νC =

∑pC

ĩ=1
qC,̃i, and qC,̃i defined in (B.11). For the

case with constant sampling intervals, the number of time-varying functions
αi(t

k
j ) is defined as β := βNZ + βZ + βC , with βNZ = (δ + d − d)νNZ , and

νNZ =
∑pNZ

ĩ=1
qĩ, with qĩ defined in (B.6), βZ = (δ + d− d)qZ , with qZ defined

analogously to (B.6), and βC = (δ+d−d)νC , νC =
∑pC

ĩ=1
qC,̃i, with qC,̃i defined

in (B.11). In this section, we describe the case with time-varying sampling
intervals; if differences exist for the case with constant sampling intervals, they
will be denoted separately. The time-varying parameters αi(t

k
j , hk) are obtained

by solving the integrals in M̃ρ in (3.25), ρ = 0, 1, 2, . . . , d+ δ.

αi(t
k
j , hk) =











αNZ,i(t
k
j , hk) if i ∈ {1, 2, . . . , ζNZ}

αZ,i(t
k
j , hk) if i ∈ {ζNZ + 1, ζNZ + 2, . . . , ζNZ + ζZ}

αC,i(t
k
j , hk) if i ∈ {ζNZ + ζZ + 1, ζNZ + ζZ + 2, . . . , ζ}.

(B.38)
The function αNZ,i(t

k
j , hk) i ∈ {1, 2, . . . , ζNZ}, is given by:

αNZ,i(t
k
j , hk) =































































































(hk − tkj )ĵ

ĵ!
eλl(hk−tk

j ) for ĵ = 0, 1, . . . , ql − 1,

i =
(

j − (k − d)
)

l
∑

ĩ=1

qĩ − ql + 1, . . . ,
(

j − (k − d)
)

l
∑

ĩ=1

qĩ,

and j = k − d+ 1, k − d+ 2, . . . , k − d

(hk)ĵ

ĵ!
eλlhk for ĵ = 0, 1, . . . , ql − 1, and

i = βNZ +
l
∑

ĩ=1

qĩ − ql + 1, . . . , βNZ +
l
∑

ĩ=1

qĩ

0 if i 6∈ {1, 2, . . . , ζNZ}.
(B.39)

Here, l denotes the number of the distinct real, non-zero eigenvalue, with
l ∈ {1, 2, . . . , pNZ}. For constant sampling intervals, the second possibility
(hk)ĵ

ĵ!
eλlhk can be omitted, because it results in a constant parameter for each

j ∈ {k − d + 1, . . . , k − d}. Then, only βNZ time-varying functions αi(t
k
j ) are

obtained based on (B.39). Additionally, αNZ,i(t
k
j ) = 0 if i 6∈ {1, 2, . . . , βNZ}.

Observe that the uncertain term
(hk−tk

j )ĵ

ĵ!
eλl(hk−tk

j ) corresponds to (B.32), if tkj

is replaced by τk. This uncertain term is repeated d+ δ− d times, which is the
number of different values of j and therefore of tkj . Note that the range of j is

defined in Lemma 3.15 as k − d− δ ≤ j ≤ k − d and that tk−d−δ := 0. The
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function αZ,i(t
k
j , hk) is given by:

αZ,i(t
k
j , hk) =











































(hk − tkj )ĵ

ĵ!
for ĵ = i−

(

ζNZ +
(

j − (k − d)
)

qZ − qZ
)

,

i = ζNZ +
(

j − (k − d)
)

qZ − qZ + 1, . . . , ζNZ +
(

j − (k − d)
)

qZ ,

and j = k − d+ 1, k − d+ 2, . . . , k − d

(hk)ĵ

ĵ!
for ĵ = i− ζNZ − βNZ , and i ∈ {ζNZ + βNZ + 1, . . . , ζNZ + ζNZ}

0 if i 6∈ {ζNZ + 1, ζNZ + 2, . . . , ζNZ + ζZ}.
(B.40)

For constant sampling intervals, the functions αi(hk) = (hk)ĵ

ĵ!
need to be re-

moved, because they are constant. This results in βZ time-varying functions,
instead of ζZ . Therefore, the parameters ζZ , as well as ζNZ need to be replaced
by βZ and βNZ , respectively. Next, consider the continuous-time system matrix
A with one or more complex eigenvalues. The function αC,i(t

k
j , hk) is given by:

αC,i(t
k
j , hk) =























































































































(hk−tk
j )ĵ

ĵ!
eal(hk−tk

j ) cos(bl(hk − tkj )) for ĵ = 0, 1, . . . ,
qC,l

2 − 1,

i = ζNZ + ζZ + (j − (k − d))
∑l

ĩ=1 qC,̃i − qC,l + 1, . . . ,

ζNZ + ζZ + (j − (k − d))
∑l

ĩ=1 qC,̃i −
qC,l

2 ,

and j = k − d+ 1, k − d+ 2, . . . , k − d
(hk−tk

j )ĵ

ĵ!
eal(hk−tk

j ) sin(bl(hk − tkj )) for ĵ = 0, 1, . . . ,
qC,l

2 − 1,

i = ζNZ + ζZ +
∑l

ĩ=1 qC,̃i −
qC,l

2 + 1, . . . , ζNZ + ζZ +
∑l

ĩ=1 qC,̃i,

and j = k − d+ 1, k − d+ 2, . . . , k − d
h

ĵ
k

ĵ!
ealhk cos(blhk) for ĵ = 0, 1, . . . ,

qC,l

2 − 1,

i ∈ {ζ − ζC + 1, ζ − ζC + 2, . . . , ζ − ζC

2 },
and j = k − d+ 1, k − d+ 2, . . . , k − d

h
ĵ

k

ĵ!
ealhk sin(blhk) for ĵ = 0, 1, . . . ,

qC,l

2 − 1,

i ∈ {ζ − ζC

2 + 1, ζ − ζC

2 + 2, . . . , ζ}
and j = k − d+ 1, k − d+ 2, . . . , k − d

0 if i 6∈ {ζNZ + ζZ + 1, ζNZ + ζZ + 2, . . . , ζ}.
(B.41)

Here, l denotes the number of distinct pairs of complex eigenvalues, with l ∈
{1, 2, . . . , pC}. For constant sampling intervals, the functions αi depending on
h

ĵ
k

ĵ!
ealhk cos(blhk) and

h
ĵ
k

ĵ!
ealhk sin(blhk) are constant (hk := h, ∀k) and can be

omitted. Moreover, the parameters ζNZ , ζZ , and ζ need to be replaced by βNZ ,
βZ , and β, respectively.
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The constant matrices F0, Fi, G0, and Gi, i ∈ {1, 2, . . . , ζ} in (4.7) are,
for time-varying sampling intervals, delays, and packet dropouts (as well as for
constant sampling intervals) given by:

F0 =















QΘ0Q
−1 QΘ1Q

−1B QΘ2Q
−1B . . . QΘd+δQ

−1B
0 0 0 . . . 0
0 1 0 . . . 0
...

. . .
...

0 . . . 0 1 0















,

Fi =















QΓ0,iQ
−1 QΓ1,iQ

−1B QΓ2,iQ
−1B . . . QΓd+δ,iQ

−1B

0 0 0 . . . 0
0 0 0 . . . 0
...

...
. . .

...
0 0 . . . 0 0















,

G0 =





QΞ0Q
−1B

Im,m

0(d+δ−1)m,m



 , and Gi =

(

QΞiQ
−1B

0(d+δ)m,m

)

,

for i ∈ {1, 2 . . . , ζ}. The parameters Θ0, Ξ0, Θî, î ∈ {1, 2, . . . , d + δ}, Γ0,i,
Γ1,i, . . . ,Γd+δ,i, and Ξi, i ∈ {1, 2, . . . , ζ} will be derived for the separate cases

of eigenvalues. Note that, it holds that: Θî = diag(ΘNZ
î

,ΘZ
î
,ΘC

î
), for each

î ∈ {0, 1, . . . , d + δ}, Ξ0 := diag(ΞNZ
0 ,ΞZ

0 ,Ξ
C
0 ), Γî,i = diag(ΓNZ

î,i
,ΓZ

î,i
,ΓC

î,i
), for

all i ∈ {1, 2, . . . , ζ}, for all î ∈ {0, 1, . . . , d + δ}, and Ξi = diag(ΞNZ
i ,ΞZ

i ,Ξ
C
i ),

for all i ∈ {1, 2, . . . , ζ}.

• For real eigenvalues unequal to zero it holds that:

ΘNZ
0 = 0,

ΘNZ
î

=

{

−J−1
NZ if î = d

0 if î 6= d,

for î ∈ {1, 2, . . . , d+ δ},

Ξ0 =

{

−J−1
NZ if d = 0

0 if d > 0.

For the case with constant sampling intervals, it holds that

ΘNZ
î

=







J−1
NZe

JNZh if î = d+ δ

0 if î 6= d+ δ

−J−1
NZ if î = d,

for î ∈ {1, 2, . . . d+ δ}, and ΘNZ
0 = eJNZh. Recall that it holds that d ≤ d,

where the case with d = d represents the case with constant time-delays
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and constant sampling intervals. For time-varying sampling intervals, the
matrix ΓNZ

0,i is given by:

ΓNZ
0,i =

{

Ti if i ∈ {βNZ + 1, βNZ + 2, . . . , ζNZ}
0 if i 6∈ {βNZ + 1, βNZ + 2, . . . , ζNZ},

and for constant sampling intervals it is given by: ΓNZ
0,i = 0, i ∈ {1, 2, . . . , β}.

The other matrices Γî,i, î ∈ {1, 2, . . . , d+δ} are, for time-varying sampling
intervals, given by:

ΓNZ
1,i =







































−J−1
NZT

NZ
i if d = 0 and i ∈ {βNZ − νNZ + 1, . . . , βNZ}

J−1
NZT

NZ
i if d ∈ {0, 1} and i ∈ {βNZ − (2 − d)νNZ + 1, . . . ,

βNZ − (1 − d)νNZ}
0 if

(

d = 0 and i 6∈ {βNZ − νNZ + 1, . . . , βNZ}
)

or
(

d = 1 and i 6∈ {βNZ − (2 − d)νNZ + 1, . . . ,
βNZ − (1 − d)νNZ}

)

or
(

d > 2
)

,

ΓNZ
2,i =























































































−J−1
NZT

NZ
i if

(

d ∈ {0, 1}
and i ∈ {βNZ − (2 − d)νNZ + 1, . . . ,
βNZ − (1 − d)νNZ}

)

J−1
NZT

NZ
i if

(

d ∈ {0, 1, 2}
and i ∈ {βNZ − (3 − d)νNZ + 1, . . . ,
βNZ − (2 − d)νNZ}

)

0 if
(

d ∈ {0, 1}
and i 6∈ {βNZ − (2 − d)νNZ + 1, . . . ,
βNZ − (1 − d)νNZ}

)

or
(

d ∈ {0, 1, 2}
and i 6∈ {βNZ − (3 − d)νNZ + 1, . . . ,
βNZ − (2 − d)νNZ}

)

or
(

d > 2
)

.

Analogously, ΓNZ
3,i , . . . ,Γ

NZ

d+δ−1,i
can be derived.

ΓNZ
d+δ,i

=























−J−1
NZT

NZ
i if

(

d ∈ {0, 1, . . . , d+ δ − 1}
and i ∈ {1, 2, . . . , νNZ}

)

J−1
NZT

NZ
i if i ∈ {βNZ + 1, βNZ + 2, . . . , ζNZ}

0 if
(

d ∈ {0, 1, . . . , d+ δ − 1}, i 6∈ {1, 2, . . . , νNZ}
and i 6∈ {βNZ + 1, βNZ + 2, . . . , ζNZ}

)

.

For the case with constant sampling intervals all these matrices hold,
except ΓNZ

d+δ,i
that needs to be replaced by:

ΓNZ

d+δ,i
=























−J−1
NZT

NZ
i if

(

d ∈ [0, 1, . . . , d+ δ − 1]
and i ∈ {1, 2, . . . , νNZ}

)

0 if
(

d ∈ [0, 1, . . . , d+ δ − 1]
and i 6∈ {1, 2, . . . , νNZ}

)

,

or
(

d = d+ δ
)

.



B.3. Time-varying sampling intervals 187

Note that d = d+ δ represents the case with constant sampling intervals
and constant delays. The matrix ΞNZ

i , i = 1, 2, . . . , ζ, is for both constant
and time-varying sampling intervals given by:

ΞNZ
i =







J−1
NZT

NZ
i if d = 0 and i ∈ {βNZ − νNZ + 1, . . . , βNZ}

0 if
(

d = 0 and i 6∈ {βNZ − νNZ + 1, . . . , βNZ}
)

or
(

d > 0
)

.

To define TNZ
i , i = 1, 2, . . . , ζNZ , define:

TNZ
i =















Sl,ĵ for ĵ = 0, 1, . . . , ql − 1,

i = (j − (k − d))
∑l

ĩ=1 qĩ − ql + 1, . . . , (j − (k − d))
∑l

ĩ=1 qĩ,

and j = k − d+ 1, k − d+ 2, . . . , k − d+ 1
0 if i 6∈ {1, 2, . . . , ζNZ}.

Here, the largest value of j is given by k − d + 1 instead of j = k − d
to include the values of i = βNZ + 1, βNZ + 2, . . . , ζNZ that denote the
functions αi that depend on the parameter hk only. For constant sampling
intervals, TNZ

i , i ∈ {1, 2, . . . , βNZ}, is given by:

TNZ
i =















Sl,ĵ for ĵ = 0, 1, . . . , ql − 1,

i = (j − (k − d))
∑l

ĩ=1 qĩ − ql + 1, . . . , (j − (k − d))
∑l

ĩ=1 qĩ
and j = k − d+ 1, k − d+ 2, . . . , k − d

0 if i 6∈ {1, 2, . . . , βNZ},

where, compared to the case with time-varying sampling intervals, only
the parameter j is changed, such that the functions αi(hk) are not con-
sidered.

• For eigenvalues equal to zero it holds for time-varying sampling intervals
that:

ΘZ
0 = SpNZ+1,0,

ΘZ
î

= 0 ∀î ∈ {1, 2, . . . , d+ δ},
while for constant sampling intervals, it holds that: ΘZ

0 = eJZh and

ΘZ
î

=

{

∑qZ

ĵ=1
hĵ

ĵ!
SpNZ+1,ĵ−1 if î = d+ δ

0 if î 6= d+ δ,

for î ∈ {1, 2, . . . d + δ}. Both for constant and time-varying sampling
intervals, SpNZ

is obtained from (B.13) where ĩ = pNZ+1 denotes the
eigenvalues that are equal to zero. For time-varying sampling intervals, it
holds that:

ΞZ
0 := 0,

ΓZ
0,i =







SpNZ+1,ĵ for ĵ = 1, 2, . . . , qZ − 1

and i ∈ {ζNZ + βZ + 1, ζZ + βZ + 2, . . . , ζNZ + ζZ − 1}
0 if i 6∈ {ζNZ + βZ + 1, ζZ + βZ + 2, . . . , ζNZ + ζZ − 1},
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ΓZ
1,i =






























−TZ
i if

(

d = 0 and i ∈ {ζNZ + βZ − νZ + 1, . . . , ζNZ + βZ}
)

TZ
i if

(

d ∈ {0, 1} and i ∈ {ζNZ + βZ − (2 − d)νZ + 1, . . . ,
ζNZ + βZ − (1 − d)νZ}

)

0 if
(

d = 0 and i 6∈ {ζNZ + βZ − 2νZ + 1, . . . , ζNZ + βZ}
)

,
or
(

d = 1 and i 6∈ {ζNZ + βZ − νZ + 1, . . . , ζNZ + βZ}
)

,
or
(

d > 1
)

,

ΓZ
2,i =






















































−TZ
i if

(

d ∈ {0, 1} and i ∈ {ζNZ + βZ − (2 − d)νZ + 1, . . . ,
ζNZ + βZ − (1 − d)νZ}

)

TZ
i if

(

d ∈ {0, 1, 2} and i ∈ {ζNZ + βZ − (3 − d)νZ + 1, . . . ,
ζNZ + βZ − (2 − d)νZ}

)

0 if
(

d ∈ {0, 1} and i 6∈ {ζNZ + βZ − (2 − d)νZ + 1, . . . ,
ζNZ + βZ − (1 − d)νZ}

)

,
or
(

d ∈ {0, 1, 2} and i 6∈ {ζNZ + βZ − (3 − d)νZ + 1, . . . ,
ζNZ + βZ − (2 − d)νZ}

)

,
or
(

d > 2
)

,

ΓZ

d+δ,i
=























−TZ
i if

(

d ∈ {0, 1, . . . , d+ δ − 1}
and i ∈ {ζNZ + 1, . . . , ζNZ + νZ}

)

TZ
i if i ∈ {ζNZ + βZ + 1, ζNZ + βZ + 2, . . . , ζNZ + ζZ}

0 if
(

d ∈ {0, 1, . . . , d+ δ − 1}, i 6∈ {ζNZ + 1, . . . , ζNZ + νZ}
and i 6∈ {ζNZ + βZ + 1, ζNZ + βZ + 2, . . . , ζNZ + ζZ}

)

.

For constant time-delays only ΓZ

d+δ,i
needs to be adapted. It holds that:

ΓZ
d+δ,i

=























−TZ
i if

(

d ∈ {0, 1, . . . , d+ δ − 1}
and i ∈ {βNZ + 1, . . . , βNZ + νZ}

)

0 if
(

d ∈ {0, 1, . . . , d+ δ − 1}
and i 6∈ {βNZ + 1, . . . , βNZ + νZ}

)

,

or
(

d = d+ δ
)

.

Finally, ΞZ
i is for time-varying sampling intervals given by:

ΞZ
i =







TZ
i if

(

d = 0 and i ∈ {ζNZ + βZ − νZ + 1, . . . , ζNZ + βZ}
)

0 if
(

d = 0 and i 6∈ {ζNZ + βZ − νZ + 1, . . . , ζNZ + βZ}
)

,
or
(

d > 0
)

.

Note that for constant sampling intervals, the parameter ζNZ needs to be
replaced by the parameter βNZ . The matrix TZ

i , i ∈ {1, 2, . . . , ζ}, is for
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time-varying delays given by:

TZ
i =














SpNZ+1,ĵ−1 if ĵ = i− (ζNZ + (j − (k − d))qZ − qZ)

i = ζNZ + (j − (k − d))qZ − qZ + 1, . . . , ζNZ + (j − (k − d))qZ ,

and j = k − d+ 1, k − d+ 2, . . . , k − d+ 1
0 if i 6∈ {ζNZ + 1, ζNZ + 2, . . . , ζNZ + ζZ}.

For constant sampling intervals, it holds that

TZ
i =














SpNZ+1,ĵ−1 if ĵ = i− (βNZ + (j − (k − d))qZ − qZ),

i = βNZ + (j − (k − d))qZ − qZ + 1, . . . , βNZ + (j − (k − d))qZ ,

and j = k − d+ 1, k − d+ 2, . . . , k − d
0 if i 6∈ {βNZ + 1, βNZ + 2, . . . , βNZ + 1βZ}.

• Finally, for complex eigenvalues it holds that:

ΘC
0 = 0,

ΘC
î

=

{

0 if î 6= d

−Λ0 if î = d,

for î ∈ {1, 2, . . . , d+ δ}, and Λ0 defined in (B.36) for one pair of complex
eigenvalues or in (B.37) for a pair of complex eigenvalues that occurs twice.
For constant sampling intervals, the following relations need to be used:

ΘC
î

=







H̆ if î = d+ δ

0 if î 6= d+ δ or î 6= d

−Λ0 if î = d,

for î ∈ {1, 2, . . . , d+ δ}, and

ΞC
0 =

{

−Λ0 if d = 0
0 if d 6= 0,

with H̆ = eah

a2+b2
Q

(

a cos(bh) + b sin(bh) −a sin(bh) + b cos(bh)
a sin(bh) − b cos(bh) a cos(bh) + b sin(bh)

)

Q−1B

for one complex pair of eigenvalues or H̆ = eah

a2+b2
QLQ−1B for two equal

complex pairs, with L defined in (B.25), and Λ0 defined as described for
the case with time-varying sampling intervals.

For time-varying sampling intervals, it holds that:

ΞC
0 =

{

−Λ0 if d = 0
0 if d 6= 0,
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ΓC
0,i =

{

TC
i if i ∈ {ζNZ + ζZ + βC + 1, ζNZ + ζZ + βC + 2, . . . , ζ}

0 if i 6∈ {ζNZ + ζZ + βC + 1, ζNZ + ζZ + βC + 2, . . . , ζ},

ΓC
1,i =































































−Ti if
(

d = 0 and i ∈ {ζNZ + ζZ + βC − νC + 1, . . . ,
ζNZ + ζZ + βC}

)

Ti if
(

d ∈ {0, 1}
and i ∈ {ζNZ + ζZ + βC − (2 − d)νC + 1, . . . ,

ζNZ + ζZ + βC − (1 − d)νC}
)

0 if
(

d = 0 and i 6∈ {ζNZ + ζZ + βC − 2νC + 1, . . . ,
ζNZ + ζZ + βC}

)

or
(

d = 1 and i 6∈ {ζNZ + ζZ + βC − νC + 1, . . . ,
ζNZ + ζZ + βC}

)

or
(

d > 1
)

,

ΓC
2,i =










































































−TC
i if

(

d ∈ {0, 1} and i ∈ {ζNZ + ζZ + βC − (2 − d)νC + 1, . . . ,

ζNZ + ζZ + βC − (1 − d)νC}
)

TC
i if

(

d ∈ {0, 1, 2} and i ∈ {ζNZ + ζZ + βC − (3 − d)νC + 1, . . . ,

ζNZ + ζZ + βC − (2 − d)νC}
)

0 if
(

d ∈ {0, 1} and i 6∈ {ζNZ + ζZ + βC − (2 − d)νC + 1, . . . ,

ζNZ + ζZ + βC − (1 − d)νC}
)

or
(

d ∈ {0, 1, 2} and i 6∈ {ζNZ + ζZ + βC − (3 − d)νC + 1, . . . ,

ζNZ + ζZ + βC − (2 − d)νC}
)

or
(

d > 2
)

,

ΓC

d+δ,i
=































−TC
i if

(

d ∈ {0, 1, . . . , d+ δ − 1}
and i ∈ {ζNZ + ζZ + 1, . . . , ζNZ + ζZ + νC}

)

TC
i if

(

i ∈ {ζNZ + ζZ + βC + 1, ζNZ + ζZ + βC + 2, . . . , ζ}
)

0 if
(

d ∈ {0, 1, . . . , d+ δ − 1}
and i 6∈ {ζNZ + ζZ + 1, . . . , ζNZ + ζZ + νC}
and i 6∈ {ζNZ + ζZ + βC + 1, ζNZ + ζZ + βC + 2, . . . , ζ}

)

.

For constant sampling intervals, similar to both cases with real eigenval-
ues, some small adaptations are needed. Firstly, the second possibility,
with TC

i , has to be removed in ΓC
d+δ,i

and, secondly, ΓC
d+δ,i

= 0 if d+δ = d

should hold. The latter relation is somewhat superfluous, because it con-
siders the case with constant delays, constant sampling intervals, and no
packet dropouts, which means that there are no time-varying parameters.
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Moreover, the parameters ζNZ , ζZ , and ζ need to be replaced by βNZ ,
βZ , and β, respectively. This holds for ΓC

1,i and ΓC
2,i as well. Note that

for constant sampling intervals, ΓC
0,i = 0 for all i ∈ {1, 2, . . . , β}. The ma-

trices ΞC
i , i ∈ {1, 2, . . . , ζ} is, for time-varying sampling intervals, given

by:

ΞC
i =















TC
i if

(

d = 0
and i ∈ {ζNZ + ζZ + βZ − νZ + 1, . . . , ζNZ + ζZ + βC}

)

0 if
(

d > 0
)

or
(

d = 0
and i 6∈ {ζNZ + ζZ + βC − νC + 1, . . . , ζNZ + ζZ + βC}

)

.

Again, for constant sampling intervals, the parameters ζNZ , ζZ , and ζ
need to be replaced by βNZ , βZ , and β, respectively. Finally, TC

i , i ∈
{1, 2, . . . , ζC}, is, for time-varying sampling intervals, defined as:

TC
i =



































































Sl,ĵ,1 for ĵ = 0, 1, . . . , ql − 1,

i = ζNZ + ζZ + (j − (k − d))
∑l

ĩ=1 qĩ − ql + 1, . . . ,

ζNZ + ζZ + (j − (k − d))
∑l

ĩ=1 qĩ − ql

2 , and

j ∈ {k − d+ 1, k − d+ 2, . . . , k − d+ 1}

Sl,ĵ,2 for ĵ = 0, 1, . . . , ql − 1,

i = ζNZ + ζZ + (j − (k − d))
∑l

ĩ=1 qĩ − ql

2 + 1, . . . ,

ζNZ + ζZ + (j − (k − d))
∑l

ĩ=1 qĩ, and

j ∈ {k − d+ 1, k − d+ 2, . . . , k − d+ 1},
0 if i ∈ {1, 2, . . . , ζNZ + ζZ},

with Sĩ,ĵ,1 and Sĩ,ĵ,2 defined in (B.21) for one pair of complex eigenvalues
and in (B.26) for one pair of complex eigenvalues that occurs twice. For
constant sampling intervals, it holds for j that j ∈ {k − d + 1, k − d +
2, . . . , k− d} and that ζNZ , ζZ are replaced by βNZ and βZ , respectively.

B.4 Output-feedback

For the output-feedback case, as is considered during the measurements in
Chapter 7, the NCS description is slightly changed. Note that during the mea-
surements a constant sampling interval and no packet dropouts are assumed.
Compared to the state-feedback case, as described in the previous paragraph,
the definition of the parameter αi(t

k
j ) is not changed. Therefore, αi(t

k
j ) can

be obtained from (B.38), (B.39), (B.40), and (B.41), in combination with the
comments for the constant sampling interval, i.e. ζ, the number of time-varying
functions αi, is replaced by β and hk := h, ∀k ∈ N.

Due to the change of the state-vector from ξk =
(

xT
k uT

k−1 . . . uT

k−d

)T

for the state-feedback case to ηk =
(

xT
k uT

k−1 . . . uT

k−d
yT

k−1

)T

for the

output feedback case, the NCS description based on the Jordan form of the
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continuous-time system matrix A, see (4.6) for the state-feedback case, changes
to

ηk+1 =

(

F0 +

β
∑

i=1

αi(t
k
j )Fi

)

ηk +

(

G0 +

β
∑

i=1

αi(t
k
j )Gi

)

uk,

with F0, G0, Fi, and Gi, i = 1, 2, . . . , β, given by:

F0 =



















QΘ0Q
−1 QΘ1Q

−1B QΘ2Q
−1B . . . QΘdQ

−1B 0
0 0 0 . . . 0 0
0 1 0 . . . 0 0
...

. . .
. . .

...
...

0 . . . 0 1 0 0
C 0 . . . 0 0 0



















,

Fi =



















0 QΓ1,iQ
−1B QΓ2,iQ

−1B . . . QΓd,iQ
−1B 0

0 0 0 . . . 0 0
0 0 0 . . . 0 0
...

. . .
. . .

...
...

0 0 . . . 0 0 0
0 0 . . . 0 0 0



















,

G0 =





QΞ0Q
−1B

Im,m

0(d−1)m+r,m



, and Gi =

(

QΞiQ
−1B

0dm+r,m

)

. The definitions of Θρ and Γρ,i,

ρ = 0, 1, . . . , d, i = 1, 2, . . . , β, Ξ0, and Ξi, i = 1, 2, . . . , β, are equal to the
definitions in the previous section with δ = 0 and hk = h ∀k.



C

Controller synthesis based on the

Lyapunov-Krasovskii functional

In this appendix the controller synthesis conditions of system (5.15), (5.16),
(5.17) with the state-feedback controller (5.2), based on the candidate Lyapunov-
Krasovskii (L-K) functional

V (χk) = xT
k P̃ xk +

d+δ
∑

î=1

xT
k−î

Rîxk−î +

d+δ
∑

î=1

(

xk−î+1 − xk−î

)T
Tî

(

xk−î+1 − xk−î

)

,

as defined in (4.40) are derived. The counterpart of Theorem 5.1.4 for time-
varying sampling intervals, large delays, and packet dropouts is defined as fol-
lows:

Theorem C.0.1 Consider the NCS model (5.15), (5.16), (5.17), (5.2), and its
discrete-time representation in terms of the Jordan form of the continuous-
time system matrix A (4.43) for sequences of sampling instants, delays, and
packet dropouts σ ∈ S, as defined in (5.14). Consider the set of matrices Hx

FG,
defined in (4.44). If there exist symmetric positive definite matrices Ỹ ∈ R

n×n,
R̂î ∈ R

n×n, L̂î ∈ R
n×n, and M̂î ∈ R

n×n, î = 1, 2, . . . , d+δ, a matrix Z ∈ R
m×n,

and scalars 0 ≤ γ < 1, θî > 0, î = 1, 2, . . . , d+δ, that satisfy the following matrix
inequality:

(

A B

BT C

)

> 0, (C.1)

with

A =



















Q0 S0 0 0 0 . . . 0
⋆ Q1 S1 0 0 . . . 0
⋆ ⋆ Q2 S2 0 . . . 0
.
.
.

.

.

.
.
.
.

.
.
.

.
.
.

.

.

.

⋆ ⋆ ⋆ ⋆ Q
d+δ−2

S
d+δ−2

0

⋆ ⋆ ⋆ ⋆ ⋆ Q
d+δ−1

S
d+δ−1

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ Q
d+δ



















,

B =



















U0 V0 L1 0 0 0 . . . 0
U1 U1 M1 L2 0 0 . . . 0
U2 U2 0 M2 L3 0 . . . 0

.

.

.

.

.

.
.
.
.

.
.
.

.
.
.

.

.

.

Ud+δ−2
Ud+δ−2

0 . . . 0 Md+δ−2
Ld+δ−1

0

Ud+δ−1
Ud+δ−1

0 . . . 0 Md+δ−1
Ld+δ

Ud+δ Ud+δ 0 0 0 . . . 0 Md+δ



















,
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C =























Ỹ 0 0 0 . . . 0 0 0

0 θ1Ỹ 0 0 . . . 0 0 0

0 0 θ1Ỹ 0 . . . 0 0 0

0 0 0 θ2Ỹ 0 0 0
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

0 0 0 . . . 0 θ
d+δ−2

Ỹ 0 0

0 0 0 . . . 0 0 θ
d+δ−1

Ỹ 0

0 0 0 . . . 0 0 0 θ
d+δ

Ỹ























,

Q0 =(1 − γ)Ỹ − R̂1 − 1

θ2

Ỹ − L̂1 − L̂T
1 ,

Q1 =(1 − γ)R̂1 − R̂2 −
1

θ2

Ỹ −
1

θ3

Ỹ + M̂1 + M̂T
1 − L̂2 − L̂T

2 ,

Q2 =(1 − γ)R̂2 − R̂3 − 1

θ3

Ỹ − 1

θ4

Ỹ + M̂2 + M̂T
2 − L̂3 − L̂T

3 ,

Q
d+δ−2

=(1 − γ)R̂
d+δ−2

− R̂
d+δ−1

− 1

θ
d+δ−1

Ỹ − 1

θ
d+δ

Ỹ + M̂
d+δ−2

+ M̂T

d+δ−2

− L̂d+δ−1
− L̂T

d+δ−1
,

Q
d+δ−1

=(1 − γ)R̂
d+δ−1

− R̂
d+δ

− 1

θd+δ

Ỹ + M̂
d+δ−1

+ M̂T

d+δ−1
− L̂

d+δ
− L̂T

d+δ
,

Qd+δ =(1 − γ)R̂d+δ + M̂d+δ + M̂T

d+δ
,

S0 =
1

θ2

Ỹ − M̂T
1 + L̂1, S1 =

1

θ3

Ỹ − M̂T
2 + L̂2, S2 =

1

θ4

Ỹ − M̂T
3 + L̂3,

S
d+δ−2

=
1

θ
d+δ

Ỹ − M̂T

d+δ−1
+ L̂

d+δ−1
, S

d+δ−1
= −M̂T

d+δ
+ L̂

d+δ
,

U0 =Ỹ (Hx
F,0,j)

T − ZT (Hx
G,j)

T ,

U
î
= − ZT (Hx

F,̂i,j
)T , î = 1, 2, . . . , d + δ,

V0 =Ỹ (Hx
F,0,j)

T − Ỹ − ZT (Hx
G,j)

T ,

L
î
=

θ
î√

1 − γ
L̂

î
, M

î
=

θ
î√

1 − γ
M̂

î
for all î = 1, 2, . . . , d + δ,

for all
(

Hx
F,0,j , H

x
F,1,j, . . . , H

x

F,d+δ,j
, Hx

G,j

)

∈ Hx
FG, j = 1, 2, . . . , 2ζ, then x = 0 is

a GAS equilibrium point of the closed-loop NCS (5.15), (5.16), (5.17), (5.2) with
K = ZỸ −1. Moreover, (4.40) is a Lyapunov function for (4.43), (5.2) and can
be retrieved from the LMIs if the following relations are considered: Ỹ = P̃−1,
R̂î = P̃−1RîP̃

−1, L̂î = P̃−1LîP̃
−1, M̂î = P̃−1MîP̃

−1, and θîỸ = T−1

î
for

î = 1, 2, . . . , d+ δ.

Proof The same overapproximation procedure as in the proof of the stability
analysis conditions in Theorem 4.3.2 in Appendix A.4 is considered. Therefore,
this proof focusses on rewriting the stability analysis results such that they
are applicable for controller synthesis. The following Lyapunov inequality is
sufficient to provide a condition for the GES of the origin on (4.43), (5.2)

∆V (χk) = V (χk+1) − V (χk) < −γV (χk). (C.2)

Analogous to the small delay case, in Appendix A.11, the functions Ψî, î =
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1, 2, . . . , d+ δ defined as

Ψ1 = 2
(

xT
k L1 + xT

k−1M1

)

((xk − xk−1) − (xk − xk−1)) := 0,
Ψ2 = 2

(

xT
k−1L2 + xT

k−2M2

)

((xk−1 − xk−2) − (xk−1 − xk−2)) := 0,
...

Ψd+δ = 2
(

xT

k−d−δ+1
Ld+δ + xT

k−d−δ
Md+δ

)

(

(xk−d−δ+1 − xk−d−δ) − (xk−d−δ+1 − xk−d−δ)
)

:= 0,
(C.3)

can be added to this inequality. Then, a sufficient condition for GES of (4.43),
(5.2) is given by:

V (χk+1) − (1 − γ)V (χk) +
d+δ
∑

î=1

Ψî < 0. (C.4)

The Lyapunov-Krasovskii dependent terms in (C.4) can be rewritten as:

∆V (χk) + γV (χk) =xT
k+1P̃ xk+1 − (1 − γ)xT

k P̃xk

+

d+δ
∑

î=1

xT
k−î+1

Rîxk−î+1 − (1 − γ)

d+δ
∑

î=1

xT
k−î

Rîxk−î

+

d+δ
∑

î=1

(xT
k−î+2

− xT
k−î+1

)Tî(x
T
k−î+2

− xT
k−î+1

)

− (1 − γ)
d+δ
∑

î=1

(xT
k−î+1

− xT
k−î

)Tî(x
T
k−î+1

− xT
k−î

).

(C.5)

The other terms in (C.4) that depend on Ψî, î = 1, 2, . . . . , d + δ, as defined in

(C.3), can be rewritten based on relation (A.58) if Lî and Mî, î ∈ {1, 2, . . . , d+
δ}, are symmetric positive definite matrices. This gives the following inequality:

d+δ
∑

î=1

Ψî ≤
d+δ
∑

î=1

2χT
kNî(xk−î+1 − xk−î) +

d+δ
∑

î=1

1

1 − γ
χT

kNîT
−1

î
NT

î
χk

+ (1 − γ)

d+δ
∑

î=1

(xk−î+1 − xk−î)
TTî(xk−î+1 − xk−î),

(C.6)

with χk =
(

xT
k xT

k−1 . . . xT

k−d−δ

)T

and

Nî =
(

0T
(̂i−1)n,n

LT
î

MT
î

0T
d+δ−î,n

)T

, î ∈ {1, 2, . . . , d + δ}. Here, it holds

that 0(̂i−1)n,n ∈ R
(̂i−1)n×n and 0(d+δ−î)n,n ∈ R

(d+δ−î)n×n are matrices that

contain only zeros. If î−1 ≤ 0, then we define 0(̂i−1)n,n := ∅ and if d+δ− î ≤ 0,
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then we define 0(d+δ−î)n,n := ∅ for î = 1, 2, . . . , d + δ. The implementation of

(C.5) and (C.6) in (C.4) gives:

∆V (χk) + γV (χk) +
∑d+δ

î=1
Ψî ≤

xT
k+1P̃xk+1 − (1 − γ)xT

k P̃ xk +
∑d+δ

î=1
xT

k−î+1
Rîxk−î+1

−(1 − γ)
∑d+δ

î=1
xT

k−î
Rîxk−î +

∑d+δ

î=1
(xT

k−î+2
− xT

k−î+1
)Tî(x

T
k−î+2

− xT
k−î+1

)

+
∑d+δ

î=1
2χT

kNî(xk−î+1 − xk−î) +
∑d+δ

î=1
1

1−γ
χT

kNîT
−1

î
NT

î
χk < 0.

Rewriting this inequality, in combination with the dynamics of the NCS as
defined in (4.43), results in the inequality χT

k Xχk < 0, which is satisfied if the
following matrix inequality holds

X < 0, (C.7)

with

X =



















X0,0 X0,1 X0,2 X0,3 . . . X
0,d+δ−2

X
0,d+δ−1

X
0,d+δ

⋆ X1,1 X1,2 0 . . . 0 0 0
⋆ ⋆ X2,2 X2,3 0 0 0
...

...
. . .

...
...

⋆ ⋆ ⋆ ⋆ ⋆ X
d+δ−2,d+δ−2

X
d+δ−2,d+δ−1

0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ X
d+δ−1,d+δ−1

X
d+δ−1,d+δ

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ Xd+δ,d+δ



















,

X0,0 = GT
0 P̃G0 − (1 − γ)P̃ + HT

0 T1H0 + R1 + T2 + L1 + LT
1 + L1T−1

1
LT

1 ,

X0,1 = −GT
0 P̃F1 − HT

0 T1F1 − T2 − L1 + MT
1 + L1T−1

1
MT

1 , X0,2 = −GT
0 P̃F2 − HT

0 T1F2,

X0,3 = −GT
0 P̃F3 − HT

0 T1F3, X
0,d+δ−2

= −GT
0 P̃F

d+δ−2
− HT

0 T1Fd+δ−2
,

X
0,d+δ−1

= −GT
0 P̃Fd+δ−1

− HT
0 T1Fd+δ−1

, X
0,d+δ = −GT

0 P̃Fd+δ − HT
0 T1Fd+δ,

X1,1 = FT
1 (P̃ + T1)F1 − (1 − γ)R1 + R2 + T2 + T3 − M1 − MT

1 + L2 + LT
2 + L2T−1

2
LT

2

+ M1T−1

1
MT

1 ,

X1,2 = −T3 + MT
2 − L2 + L2T−1

2
MT

2 ,

X2,2 = FT
2 (P̃ + T1)F2 − (1 − γ)R2 + R3 + T3 + T4 − M2 − MT

2 + L3 + LT
3

+ L3T−1

3
LT

3 + M2T−1

2
MT

2 ,

X2,3 = −T4 + MT
3 − L3 + L3T−1

3
MT

3 ,

X
d+δ−2,d+δ−2

= FT

d+δ−2
(P̃ + T1)Fd+δ−2

− (1 − γ)R
d+δ−2

+ R
d+δ−1

+ T
d+δ−1

+ T
d+δ

− M
d+δ−2

− MT

d+δ−2
+ L

d+δ−1
+ LT

d+δ−1
+ L

d+δ−1
T−1

d+δ−1
LT

d+δ−1

+ M
d+δ−2

T−1

d+δ−2
MT

d+δ−2
,

X
d+δ−2,d+δ−1

= −T
d+δ

+ MT

d+δ−1
− L

d+δ−1
+ L

d+δ−1
T−1

d+δ−1
MT

d+δ−1
,

X
d+δ−1,d+δ−1

= FT

d+δ−1
(P̃ + T1)Fd+δ−1

− (1 − γ)R
d+δ−1

+ R
d+δ

+ T
d+δ

− M
d+δ−1

− MT

d+δ−1
+ Ld+δ + LT

d+δ
+ Ld+δT−1

d+δ
LT

d+δ
+ Md+δ−1

T−1

d+δ−1
MT

d+δ−1
,

X
d+δ−1,d+δ

= MT

d+δ
− L

d+δ
+ L

d+δ
T−1

d+δ
MT

d+δ
,

X
d+δ,d+δ

= FT

d+δ
(P̃ + T1)Fd+δ

− (1 − γ)R
d+δ

− M
d+δ

− MT

d+δ
+ M

d+δ
T−1

d+δ
MT

d+δ
,
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G0 = F x
0 (tk, hk) − Gx(tk, hk)K, H0 = F x

0 (tk, hk) − Gx(tk, hk)K − I, Fî =
−F x

î
(tk, hk)K. Note that analogous to (A.10) in the proof of Theorem 4.3.2 in

Appendix A.4, the following overapproximations can be considered:

FGx ⊆ co{Hx
FG}

with FGx defined in (4.42) and Hx
FG defined in (4.44). Applying the same

overapproximation procedure as in the proof of Theorem 4.3.2 in Appendix A.4,
to (C.7) in combination with the Schur complement on P̃ , R1, and Rî, î =
1, 2, . . . , d+ δ, gives:

(

A B

B
T

C

)

> 0,

A =



















Q0 S0 0 0 0 . . . 0

⋆ Q1 S1 0 0 . . . 0

⋆ ⋆ Q2 S2 0 . . . 0
.
..

.

..
. . .

. . .
. . .

.

..

⋆ ⋆ ⋆ ⋆ Q
d+δ−2

S
d+δ−2

0

⋆ ⋆ ⋆ ⋆ ⋆ Q
d+δ−1

S
d+δ−1

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ Q
d+δ



















,

B =



















U0 V0 L1 0 0 0 . . . 0

U1 U1 M1 L2 0 0 . . . 0

U2 U2 0 M2 L3 0 . . . 0
.
..

.

..
. . .

. . .
. . .

.

..

U
d+δ−2

U
d+δ−2

0 . . . 0 M
d+δ−2

L
d+δ−1

0

U
d+δ−1

U
d+δ−1

0 . . . 0 M
d+δ−1

L
d+δ

Ud+δ Ud+δ 0 0 0 . . . 0 Md+δ



















,

C =

























P̃−1 0 0 0 . . . 0 0 0

0 R−1

1
0 0 . . . 0 0 0

0 0 R−1

1
0 . . . 0 0 0

0 0 0 R−1

2
0 0 0

...
...

...
. . .

. . .
...

...

0 0 0 . . . 0 R−1

d+δ−2
0 0

0 0 0 . . . 0 0 R−1

d+δ−1
0

0 0 0 . . . 0 0 0 R−1

d+δ

























,

Q0 = (1 − γ)P̃ − R1 − T2 − L1 − LT
1

,

Q1 = (1 − γ)R1 − R2 − T2 − T3 + M1 + MT
1 − L2 − LT

2 ,

Q2 = (1 − γ)R2 − R3 − T3 − T4 + M2 + MT
2 − L3 − LT

3 ,

Q
d+δ−2

= (1 − γ)R
d+δ−2

− R
d+δ−1

− T
d+δ−1

− Tθ
d+δ

+ M
d+δ−2

+ MT

d+δ−2

−Ld+δ−1
− LT

d+δ−1
,

Q
d+δ−1

= (1 − γ)R
d+δ−1

− R
d+δ

− T
d+δ

+ M
d+δ−1

+ MT

d+δ−1
− L

d+δ
− LT

d+δ
,

Q
d+δ

= (1 − γ)R
d+δ

+ M
d+δ

+ MT

d+δ
,

S0 = T2 − MT
1 + L1, S1 = T3 − MT

2 + L2, S2 = T4 − MT
3 + L3,

S
d+δ−2

= T
d+δ

− MT

d+δ−1
+ L

d+δ−1
, S

d+δ−1
= −MT

d+δ
+ L

d+δ
,

U0 = (Hx
F,0,j − Hx

G,jK)T , U
î
= −(Hx

F,̂i,j
K)T , î = 1, 2, . . . , d + δ,

V0 = (Hx
F,0,j − Hx

G,jK − I)T ,

L
î
= 1√

1−γ
L

î
R

î
, M

î
= 1√

1−γ
M

î
R

î
for î = 1, 2, . . . , d + δ,
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for all
(

Hx
F,0,j, H

x
F,1,j, . . . , H

x
F,d+δ,j

, Hx
G,j

)

∈ Hx
FG, with j = 1, 2, . . . , 2ζ.

Pre- and postmultiplication by diag(P̃−1, P̃−1, . . . P̃−1, I, I, . . . , I), where
P̃−1 occurs d + δ + 1 times, such that the dimension of the first part of this
diagonal matrix, i.e. diag(P̃−1, P̃−1, . . . , P̃−1), is the same as the dimensions of
the matrix A. The matrix I ∈ R

n×n denotes the identity matrix and occurs
d+δ+2 times, such that the dimension of the second part of the diagonal matrix,
i.e. diag(I, I, . . . , I), is equal to the dimension of C. Rewriting P̃−1 := Ỹ ,
P̃−1RîP̃

−1 := R̂î, P̃
−1LîP̃

−1: = L̂î, P̃−1MîP̃
−1 := M̂î, KP̃

−1 := Z, and

T−1

î
:= θîP̃

−1 = θîỸ for î = 1, 2, . . . , d + δ, gives the LMI conditions of (C.1).
�

Remark C.0.2 For fixed θî, î = 1, 2, . . . , d+ δ, and γ, the conditions (C.1) in
the above theorem are LMIs. Note that, compared to Theorem 4.4.7, a relation
between Tî, î = 1, 2, . . . , d+ δ, and P̃ is introduced (Tî := 1

θî
P̃ ), which will lead

to more conservatism in the above presented synthesis conditions than in the
analysis conditions of Theorem 4.4.7.

Remark C.0.3 The presented approach, based on the relaxation obtained with
the functionals Ψ1(xk, xk−1),Ψ2(xk−1, xk−2), . . . ,Ψd+δ(xk−d−δ+1, xk−d−δ), is
not the only possible solution to solve the controller synthesis problem based
on a L-K functional. Other L-K functionals for discrete-time systems, possibly
with different relaxation functions are proposed in the literature, see e.g. [24;
26; 68; 87; 127]. In [24; 87; 127], a descriptor based approach is considered,
which is retrieved from the descriptor approach for continuous-time systems
with time-delays (see [24] and the references therein for more details). In [26]
an algorithm is introduced that considers different steps that need to be solved
iteratively, such that LMIs can be solved instead of bilinear matrix inequalities
(BMIs). Compared to our approach, where the parameters θî, î = 1, 2, . . . , d+δ,
need to be chosen beforehand, in [26], separate positive definite matrices need
to be determined based on LMIs, before the LMIs that guarantee stability can
be solved. The iterative procedure in [26] is therefore more complicated than
the choice of the parameters θî, î = 1, 2, . . . , d+δ in our approach. In [68] a L-K
functional with a switched discrete-time controller is considered for a discrete-
time system with state delays. For this specific case, the controller synthesis
problem is solved. Note that, due to the assumptions in Chapter 3 that the
controller is static and time-invariant, this switched controller approach is in
contradiction with the assumptions considered in the presented NCS model of
Chapter 3.
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[41] O. C. Imer, S. Yüksel, and T. Başar, “Optimal control of LTI systems over
unreliable communication links,” Automatica, vol. 42, no. 9, pp. 1429–1439,
2006.

[42] H. Ishii, “Stabilization under shared communication with message losses and its
limitations,” in Proc. of the 45th IEEE Conference on Decision and Control,
San Diego, CA, USA, December 2006, pp. 4974–4979.



202 BIBLIOGRAPHY

[43] Z.-P. Jiang and Y. Wang, “Input-to-state stability for discrete-time nonlinear
systems,” Automatica, vol. 37, no. 6, pp. 857–869, 2001.

[44] R. E. Kalman and J. E. Bertram, “Control system analysis and design via the
’second method’ of Lyapunov, part I & II,” Transactions ASME Journal of Basic
Engineering, vol. 32, no. 2, pp. 371–400, 1960.

[45] C.-Y. Kao and B. Lincoln, “Simple stability criteria for systems with time-
varying delays,” Automatica, vol. 40, no. 8, pp. 1429–1434, 2004.

[46] C.-Y. Kao and A. Rantzer, “Stability analysis of systems with uncertain time-
varying delays,” Automatica, vol. 43, no. 6, pp. 959–970, 2007.

[47] S.-W. Kau, Y.-S. Liu, L. Hong, C.-H. Lee, C.-H. Fang, and L. Lee, “A new LMI

condition for robust stability of discrete-time uncertain systems,” Systems &
Control Letters, vol. 54, no. 12, pp. 1195–1203, 2005.

[48] H. K. Khalil, Nonlinear Systems, 2nd ed. Upper Saddle River: Prentice Hall,
1996.

[49] D.-S. Kim, Y. S. Lee, W. H. Kwon, and H. S. Park, “Maximum allowable delay
bounds of networked control systems,” Control Engineering Practice, vol. 11,
no. 11, pp. 1301–1313, 2003.

[50] W.-J. Kim, K. Ji, and A. Srivastava, “Network-based control with real-time
prediction of delayed/lost sensor data,” IEEE Transactions on Control Systems
Technology, vol. 14, no. 1, pp. 182–185, 2006.

[51] V. B. Kolmanovskii and V. R. Nosov, “Stability of functional differential equa-
tions,” Mathematics in Science and Engineering, vol. 180, 1986.

[52] N. N. Krasovskii, Stability of motion. Stanford, California: Stanford university
press, 1963.

[53] M. Lazar, Model Predictive Control of Hybrid Systems: Stability and Robust-
ness. Eindhoven, the Netherlands: PhD thesis, Technische Universiteit Eind-
hoven, 2006.

[54] N. E. Leonard, D. A. Paley, F. Lekien, R. Sepulchre, D. M. Fratantoni, and
R. E. Davis, “Collective motion, sensor networks, and ocean sampling,” Proc.
of the IEEE, vol. 95, no. 1, pp. 48–74, 2007.

[55] S. Li, Z. Wang, and Y. Sun, “Observer-based compensator design for networked
control systems with long time delays,” in Proc. of the IEEE Industrial Elec-
tronics Society, Busan, Korea, November 2004, pp. 678–683.

[56] F.-L. Lian, J. Moyne, and D. Tilbury, “Network design consideration for dis-
tributed control systems,” IEEE Transactions on Control Systems Technology,
vol. 10, no. 2, pp. 297–307, 2002.

[57] F.-L. Lian, J. R. Moyne, and D. M. Tilbury, “Performance evaluation of control
networks,” IEEE Control Systems Magazine, vol. 21, no. 1, pp. 66–83, 2001.

[58] D. Liberzon, “Quantization, time delays, and nonlinear stabilization,” IEEE
Transactions on Automatic Control, vol. 51, no. 7, pp. 1190–1195, 2006.



BIBLIOGRAPHY 203

[59] H. Lin and P. J. Antsaklis, “Stability and persistent disturbance attenuation
properties for a class of networked control systems: switched system approach,”
International Journal of Control, vol. 78, no. 18, pp. 1447–1458, 2005.

[60] B. Lincoln and B. Bernhardsson, “Optimal control over networks with long
random delays,” in Proc. of the 14th International Symposium on Mathematical
Theory of Networks and Systems, January 2000.

[61] L.-W. Liou and A. Ray, “A stochastic regulator for integrated communication
and control systems: part I- formulation of control law,” Journal of Dynamic
Systems, Measurement, and Control, vol. 113, no. 4, pp. 604–611, 1991.

[62] G. P. Liu, J. X. Mu, D. Rees, and S. C. Chai, “Design and stability analysis
of networked control systems with random communication time delay using the
modified MPC,” International Journal of Control, vol. 79, no. 4, pp. 288–297,
2006.

[63] M. S. Mahmoud, “Linear parameter-varying discrete time-delay systems: sta-
bility and l2-gain controllers,” International Journal of Control, vol. 73, no. 6,
pp. 481–494, 2000.

[64] A. S. Matveev and A. V. Savkin, “Optimal design of networked control sys-
tems: computer control via asynchronous communication channels,” Interna-
tional Journal of Control, vol. 77, no. 16, pp. 1426–1437, 2004.

[65] C. Meng, T. Wang, W. Chou, S. Luan, Y. Zhang, and Z. Tian, “Remote surgery
case: robot-assisted teleneurosurgery,” in IEEE International Conference on
Robotics and Automation, New Orleans, LA, USA, April 2004, pp. 819–823.

[66] S. K. Mitter, “System science: The convergence of communication, computation
and control,” in Proc. of the 2002 Conference on Control Applications, Glasgow,
Scotland, UK, September 2002, pp. 1ii–1ix.

[67] C. Moler and C. van Loan, “Nineteen dubious ways to compute the exponential
of a matrix,” SIAM review, vol. 20, no. 4, pp. 801–836, 1978.

[68] V. F. Montagner, V. J. S. Leite, S. Tarbouriech, and P. L. D. Peres, “Stability
and stabilizability of discrete-time switched linear systems with state delay,” in
Proc. of the American Control Conference, Portland, OR, USA, June 2005, pp.
3806–3811.

[69] L. A. Montestruque and P. Antsaklis, “Stability of model-based networked con-
trol systems with time-varying transmission times,” IEEE Transactions on Au-
tomatic Control, vol. 49, no. 9, pp. 1562–1572, 2004.

[70] M. M. Mousa, R. K. Miller, and A. N. Michel, “Stability analysis of hybrid
composite dynamical systems: Descriptions involving operators and difference
equations,” IEEE Transactions on Automatic Control, vol. AC-31, no. 7, pp.
603–615, 1986.

[71] J. R. Moyne and D. M. Tilbury, “The emergence of industrial control networks
for manufacturing control, diagnostics, and safety data,” Proc. of the IEEE,
vol. 95, no. 1, pp. 29–47, 2007.



204 BIBLIOGRAPHY
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Summary

Control over communication networks: modeling, analysis, and synthesis

The focus of this work is on dynamical systems that are controlled over a
communication network, also denoted as Networked Control Systems (NCSs).
Such systems consist of a continuous-time plant and a discrete-time controller
that are connected via a communication network, such as e.g. controller area
network (CAN), wireless networks, or internet. Advantages of the use of such
a network are a reduction of installation and maintenance costs and a flexi-
ble architecture. The reduction of the costs is achieved by using one (shared)
processor to control multiple plants, instead of using dedicated processors for
each plant. Adding or removing plants or controllers to the network is easy,
which explains the benefit in terms of a flexible architecture of the control sys-
tem. Moreover, the use of wireless networks obviously allows to separate the
controller and plant physically. Typical applications of NCSs are mobile sen-
sor networks, remote surgery, automated highway systems, and the cooperative
control of unmanned aerial vehicles. Disadvantages of the use of such networks
are the occurrence of time-varying delays, time-varying sampling intervals, and
packet dropouts, i.e. loss of data. Moreover, time-varying sampling intervals
and delays may also result from other sources than the communication net-
work. Namely, in many high-tech embedded systems, the processor is used for
both the control computation and other software tasks, such as interrupt and
error handling. This leads to variation in the computation time or variation in
the moment of asking for new sensor data, resulting in variable sampling inter-
vals. The amount of variation depends on the chosen software implementation,
the chosen architecture, and the processor load. A control design that can deal
with the variation in the time-delays, sampling intervals, and the occurrence
of packet dropout is important for the multidisciplinary design of high-tech
systems. Namely, such robustness properties of the control design represent a
relaxation on the demands from control engineering on the software and com-
munication network design.

In this thesis, a discrete-time model for linear NCSs is derived that consid-
ers time-varying delays, time-varying sampling intervals, and packet dropouts.
Based on this model, examples of the destabilizing effect of variations in the
delay and variations in the sampling intervals are given to show the necessity of
stability conditions that consider the effects of time-varying delays, time-varying
sampling intervals, and packet dropouts. To derive such stability conditions, up-
per and lower bounds of time-varying delays and sampling intervals are assumed,
as well as a maximum number for the subsequent packet dropouts. Based on
these assumptions, sufficient conditions in terms of linear matrix inequalities
(LMIs) are derived that guarantee global asymptotic stability of the NCS. Two
different control strategies, i.e. state feedback control and state-feedback con-
trol including past control input information are considered. For both control
approaches, conditions in terms of LMIs are given for the controller synthesis
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problem and a comparison of the applicability of both control approaches is
made. Besides the stability analysis and controller synthesis conditions, the
intersample behavior is investigated to ensure stability of the continuous-time
system between the sampling instants. An extension to the stability analysis
conditions is given that can be used to solve the approximate tracking problem
for NCSs with time-varying delays and sampling intervals and packet dropouts.
Only approximate tracking can be achieved because the time-varying delays,
sampling intervals, packet dropouts, and the use of a zero-order hold between
the controller and actuator cause an inexact feedforward, which induces a per-
turbation on the tracking error dynamics. Sufficient conditions for the input-to-
state stability of the tracking error dynamics are provided and an upper bound
for the tracking error is given as a function of the plant properties, the control
design, and the bounds on the delays, the sampling interval and the number of
subsequent packet dropouts.

To validate the obtained stability and controller synthesis conditions experi-
ments are performed on a typical motion control example. First, measurements
are performed to validate the stability region, i.e. all stabilizing controllers, for
constant time-delays. Second, the destabilizing effect of time-variation of the
delays is shown in experiments. Third, the obtained stabilizing controllers for
time-varying delays, with constant sampling intervals are validated. A compar-
ison between the stability regions for constant delays and time-varying delays
shows that the stability conditions developed in this thesis are not overly con-
servative. The delay combinations that result in instability in the measurements
confirm this observation.



Samenvatting

Control over communication networks: modeling, analysis, and synthesis

Dit proefschrift bestudeerd de studie van dynamische systemen die geregeld
worden over een datacommunicatienetwerk, welke in de literatuur ook beschre-
ven worden als Networked Control Systems. Dergelijke systemen bestaan uit
een continue-tijd te regelen systeem en een discrete-tijd regelaar, die met el-
kaar verbonden zijn via een datacommunicatienetwerk, zoals bijvoorbeeld CAN
(controller area network) en (draadloos) internet. Voordelen van het gebruik
van een dergelijk netwerk zijn een reductie van de installatie- en onderhouds-
kosten en een flexibele systeemarchitectuur. De reductie van de kosten wordt
bereikt door het gebruik van een (gedeelde) processor om meerdere systemen
te regelen, in plaats van het gebruik van een eigen processor voor ieder sys-
teem. Het toevoegen of verwijderen van systemen of regelaars aan het netwerk
is eenvoudig, hetgeen resulteert in de genoemde flexibele systeemarchitectuur
van het geregelde systeem. Het is duidelijk dat het gebruik van een draadloos
netwerk leidt tot het fysiek scheiden van de regelaar en het te regelen systeem.
Typische toepassingen van over netwerken geregelde systemen zijn het gebruik
van mobiele sensor netwerken, medische operaties op afstand, geautomatiseerde
voertuigen voor op de snelweg en het aansturen van groepen van onbemande
radarvoertuigen. Nadelen van het gebruik van netwerken zijn tijdsvariërende
vertragingen, variaties in de bemonstertijd en het verlies van data pakketten.
De variatie in de bemonstertijd en de tijdsvertraging wordt echter niet alleen
veroorzaakt door het netwerk. In veel technisch hoogwaardige systemen wordt
de processor namelijk niet alleen gebruikt voor de berekening van de regelaar ac-
ties, maar ook voor andere software taken, zoals het afhandelen van ‘interrupts’
en fout detectie. Dit leidt tot een variatie in de rekentijd of tot een variatie in
het moment van het opvragen van nieuwe meetdata, resulterend in variatie in de
bemonstertijd. De grootte van de variatie hangt af van de gekozen software im-
plementatie, de gebruikte software architectuur en de processorbelasting. Een
regelaar ontwerp dat rekening houdt met de variaties in de tijdsvertraging, de
bemonstertijd en de mogelijkheid tot het verlies van data is van belang voor het
multidisciplinaire ontwerp van technisch hoogwaardige systemen, omdat derge-
lijke robuustheidseigenschappen van het regelaarontwerp kunnen leiden tot een
relaxatie van de eisen vanuit de regeltechniek naar de ontwerpen van de software
en de keuze van het datacommunicatienetwerk.

In dit proefschrift wordt een discrete-tijd model voor over datacommuni-
catienetwerk geregelde lineaire systemen met tijdsvariërende vertragingen, be-
monstertijden en het verlies van data afgeleid. Gebaseerd op dit model worden
er voorbeelden gegeven van het destabiliserende effect van de variatie in de tijds-
vertraging en van de variatie in de bemonstertijd. Hieruit blijkt de noodzaak
voor stabiliteitscondities die rekening houden met de effecten van de variatie in
de tijdsvertraging, de variatie in de bemonstertijd en de mogelijkheid van data
verlies. Voor de stabiliteitscondities is er gewerkt met boven- en ondergrenzen
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voor de tijdsvariërende tijdsvertraging en de bemonstertijd, in combinatie met
een maximum aantal opeenvolgende data pakketten die verloren kunnen gaan.
Gebaseerd op deze grenzen, zijn er voldoende voorwaarden afgeleid en uitge-
drukt in lineaire matrix ongelijkheden, die de globale asymptotische stabiliteit
van het over een netwerk geregelde systeem garanderen. Twee verschillende
regelwetten, namelijk een toestand-terugkoppeling en een uitgebreide toestand-
terugkoppeling, die afhangt van de toestand en de vorige regelingangen, zijn
gebruikt. Voor beide regelwetten zijn er stabiliteit en regelaarsynthese condi-
ties (geschreven als lineaire matrix ongelijkheden) afgeleid. Daarnaast is er een
vergelijking met betrekking tot de toepasbaarheid van beide regelwetten gege-
ven. Verder wordt het zogenaamde intersample gedrag bestudeerd om ook de
stabiliteit van het continue-tijd systeem tussen de bemonstermomenten in te
kunnen garanderen. Een uitbreiding op de condities voor stabiliteit is gegeven,
die bruikbaar is voor het benaderde volgprobleem voor over datacommunicatie-
netwerken geregelde systemen met tijdsvariërende vertragingen, bemonstertij-
den en mogelijk data verlies. Enkel benaderd volggedrag kan worden bereikt,
omdat de tijdsvariërende vertragingen en bemonstertijden, het data verlies en
het gebruik van een nulde-orde-doorlaat (zero-order-hold) functie tussen de re-
gelaar en de actuator leiden tot een niet exacte voorwaartse koppeling, hetgeen
leidt tot verstoringen in de volgfout dynamica. Voldoende voorwaarden voor de
ingang-naar-toestands stabiliteit van de volgfout dynamica zijn gegeven evenals
een bovengrens voor de volgfout als functie van de systeem eigenschappen, het
regelaarontwerp en de grenzen op de tijdsvertragingen, de bemonstertijd en het
aantal opeenvolgende verloren data pakketten.

Om de verkregen condities voor stabiliteit en regelaar synthese te valideren,
zijn er metingen uitgevoerd op een typisch voorbeeld van een positioneringssys-
teem. Ten eerste zijn er metingen gedaan om het stabiliteitsgebied (alle sta-
biliserende regelaars voor constante tijdsvertragingen) te bepalen. Ten tweede
is het destabiliserende effect van tijdsvariatie in de tijdsvertragingen op de op-
stelling aangetoond. Ten derde, zijn de verkregen stabiliserende regelaars voor
tijdsvariërende tijdsvertragingen en constante bemonstertijden gevalideerd. Een
vergelijking tussen de stabiliteitsgebieden voor constante en tijdsvariërende ver-
tragingen laat zien dat de in dit proefschrift ontwikkelde stabiliteitscondities niet
te conservatief zijn. De variaties in de tijdsvertraging die leiden tot instabiliteit
bevestigen deze observatie.
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