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Introduction

1.1 Motivation

1.2 Disturbance attenuation

for continuous PWA systems

1.3 Stabilization of systems

with non-collocated

friction and actuation

1.4 Contribution of the thesis

1.5 Structure of the thesis

1.1 Motivation

In the last decade, the modelling of non-smooth engineering systems has re-
ceived wide attention. With the scope of mechanical systems, unilateral (flex-
ible) constraints, friction and impact phenomena typically induce such non-
smoothness. Depending on the degree of non-smoothness related models can
be divided in three classes: 1) models described by differential equations with a
continuous though non-smooth vectorfield; 2) models described by differential
equations with a discontinuous right-hand side and 3) models with (discontin-
uous) jumps in the state variables. Many mathematical formalisms have been
developed to describe these classes of systems such as piecewise affine (PWA)
and switched systems [23; 40; 67; 82; 109; 119; 126; 131], differential inclusions
[10; 19; 42; 116], complementarity systems [18; 49; 56; 89; 91; 105], measured
differential inclusions [20; 48; 50; 90; 128] and hybrid systems [27; 68; 83; 117;
130]. The PWA and switched systems and DI are models of class 1 and 2,
while measured differential inclusions and hybrid systems fit typically all three
classes.

Examples of engineering systems that can be modelled by continuous, non-
smooth differential equations are mechanical systems with one-sided supports.
In this context, one can think of tower cranes, suspension bridges [33], snubbers
on solar panels on satellites [127], floating platforms for oil exploration [124],
safety stops in car suspensions, etc. In many cases, the one-sided support has
affine or linear restoring characteristics and, consequently, these systems can be
effectively described by piecewise smooth systems such as PWA or piecewise
linear (PWL) systems. The second class of models consisting of differential
equations with discontinuous right-hand sides can describe mechanical systems
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with dry friction. More specifically, one can think of industrial robots, drilling
rigs (see [78] and [129]), turbine blade dampers [107], curve squealing of railway
vehicles [28], simple earthquake models, accurate mirror positioning systems on
satellites and many more. The third class of models encompasses mechanical
systems with unilateral constraints and impacts, [18; 48; 80; 89; 91; 106].

Non-smooth models within engineering are becoming more and more im-
portant. The reason is that these models have attractive properties as they
can model many complex engineering systems accurately with fairly simple
models. Recent work on the validation of non-smooth models show that rel-
atively simple models for contact and friction result in accurate predictions
of the system’s behavior e.g. [88]. However, a consequence of adopting non-
smooth modelling is the fact that also dedicated analysis and control synthesis
techniques that can deal with the non-smoothness of the system, should be
developed [18; 42; 80; 82; 130].

The analysis and control techniques to be developed for non-smooth me-
chanical systems have to be able to deal with disturbances as these are com-
monly present. In this context, one can think of road excitations of vehi-
cle suspensions, wind exciting bridges, earthquakes exciting civil structures,
mass-unbalance in rotor dynamics systems, acoustic noise perturbing sensitive
measurement systems etc. These disturbances, are responsible for unwanted
vibrations by exciting the systems resonances. It is well known, that resonating
elements may exhibit responses with very high amplitudes. Such a resonance
phenomenon often causes damage to the mechanical structure and is, therefore,
unwanted. Another classical problem of mechanical systems is the material
fatigue due to repetitive periodic excitations. Such periodic disturbances can
cause significant damage, despite their relatively small amplitudes and frequen-
cies far from the resonance frequencies of the system. Besides causing system
damage or failure, vibrations are detrimental to the positioning performance
in mechanical motion systems.

Besides external perturbations, also self-exciting mechanisms may cause
unwanted vibrations. Well-known examples of causes for self-excited vibrations
are the regenerative effect in milling [3], [125] or the presence of friction in
motion systems [2; 60; 96; 128]. Indeed, the presence of friction in the moving
elements of a mechanical system may lead to vibrations and other undesirable
phenomena such as excessive wear of machine components, surface damage and
kinetic energy dissipation into heat and noise.

Clearly, the attenuation of such vibrations, either caused by external or
internal factors is of high interest to guarantee the safety of operation, posi-
tioning performance and high life cycle of a wide variety of mechanical systems.
In general, one can attack vibrations by either passive means (e.g. dampers)
and/or by active means (control). For instance, a classical way to attenuate the
vibrations of a resonating element on a specific frequency range is by mounting
an additional element on it such that the resonance is shifted out of this range,
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see e.g. [14; 61]. An active approach to deal with vibrations in mechanical
systems is the application of a control action in the system, see for instance
[34; 62].

In the present thesis, the focus is on developing techniques for vibration
attenuation in non-smooth mechanical systems by means of control. Firstly,
we address the disturbance attenuation problem for PWL and PWA systems.
Here, the application area of interest is perturbed flexible mechanical systems
with PWL (one-sided) restoring characteristics. Secondly, the stabilization
problem for systems with discontinuous vectorfields is examined. In the latter
context, the focus is on applications of mechanical systems with set-valued
friction characteristics, where the friction is non-collocated with the actuation.

1.2 Disturbance attenuation for continuous

PWA systems

Disturbance attenuation for continuous PWA and PWL (mechanical) systems
is an important control problem to be solved to ensure satisfactory performance
of these systems and to avoid damage to the structures. Consider, for example,
a suspension bridge as depicted in Figure 1.1(a). As mentioned before, such
a bridge is a typical example of a mechanical system with PWL restoring
characteristics and exogenous inputs. More specifically, the bridge in Figure
1.1(a) consists of a roadbed, three towers and a number of suspension cables
that support the construction [22]. Commonly, the behavior of the suspension
cables is assumed to be piecewise linear (see Figure 1.1(b)) and, consequently,
the dynamics of the bridge can be described by a combination of linear regimes
(PWL dynamics) that are mainly characterized by the stiffness of the roadbed
and the cables under tension. Common excitations acting on the bridge are
strong winds [110], earthquakes [21] and moving vehicles. Such excitations
may lead to high amplitude vertical vibrations that can damage the bridge
structure. Therefore, such vibrations should be attenuated.

In the recent literature related to PWA systems, many results are avail-
able for stability analysis and control synthesis. More specifically, in [67], a
framework is developed, based on piecewise quadratic Lyapunov functions, to
analyse the stability of piecewise affine (PWA) systems. In [109], this frame-
work is extended for performance analysis and optimal control. In [54], a study
related to the stability analysis and controller design for PWL systems is pre-
sented. This study uses common quadratic and piecewise quadratic Lyapunov
functions for stability analysis purposes. In the case of a common quadratic
Lyapunov function, both the stability analysis and the state-feedback synthesis
can be expressed as a convex optimization problem based on constraints in lin-
ear matrix inequality (LMI) form. However, it has been pointed out that this is
difficult in the case of a piecewise quadratic Lyapunov function. A solution for
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Figure 1.1: (a) Scheme of a suspension bridge. [35] (b) Suspension cable force
vs roadbed displacement.

this problem has been given in [39] and [112]. In [39], a H∞ controller synthesis
method based on a piecewise quadratic Lyapunov function that can be cast in
the form of solving a set of LMIs using standard LMI solvers is presented. In
[112], a method used to design state- and output-feedback controllers with con-
straints on the smoothness and continuity of the piecewise quadratic Lyapunov
function is shown. However, the controller design of [112] is restricted, as it
is mentioned in [112], by two fundamental assumptions: 1) there are no slid-
ing modes at the hyperplane boundaries between regions with different affine
dynamics, 2) the examined PWL system and the controller are always in the
same region. In [113], the case in which the assumptions in [112] are violated
is examined and a general stability analysis of the closed-loop system for that
case is presented.

A common characteristic of the papers [54; 67; 109; 112; 113] is that they
study stability of the equilibrium of a PWL system for zero inputs. Work on the
stability properties of the steady-state solutions of PWL/PWA systems with
time-varying inputs (e.g disturbances) can be found in the literature based on
the convergence property, see [100; 102; 103]. The concept of convergence was
first introduced in [32] (see also [98]) for nonlinear systems with inputs. A
system with the convergence property has a unique, bounded, globally asymp-
totically steady-state solution which is determined only by the system input
and does not depend on the initial conditions. In [102], the notion of conver-
gent systems is extended to the notion of (uniformly, exponentially) convergent
systems and input-to-state convergent systems. Based on the extensions made
in [102], the design of a controller that renders a non-convergent system con-
vergent, is pursued as well.

So far, results related to the control design for PWL and PWA systems aim-
ing at disturbance attenuation were given, among others, in [39; 54; 109]. The
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performance results of these papers, which are based on a common quadratic
or piecewise quadratic Lyapunov functions, provide an upper bound for the
system output by bounding the L2 gain from the disturbance input to the
system output. Nevertheless, these results lack generality in the sense that
they have been derived under the assumption of zero initial conditions. A
method to incorporate non-zero initial conditions in the L2 gain analysis is
proposed in [47] for a class of nonlinear systems. This paper is based on the
notion of incremental stability that is described in [4; 44]. All the aforemen-
tioned bounds can be used to evaluate the disturbance attenuation properties
of different controllers to a certain extent. More specifically, for a class of
disturbances satisfying a bound, a common bound on the (signal/norm) out-
put can be given. However, as we will advocate in this thesis, this approach
is rather conservative when one is interested in periodic disturbances. Note in
this context, that many disturbances can be modeled as being periodic (such as
e.g. mass-unbalance excitations, engine vibrations, etc). In this thesis, we will
propose to explore the concept of convergence (guaranteeing unique bounded
steady-state responses) to investigate the disturbance attenuation properties of
controllers for PWA systems excited by periodic disturbances. In this manner,
more specific and less conservative performance indications will be obtained for
periodic disturbances.

Most of the aforementioned results have been successfully applied on simple
simulation examples. However, often the experimental implementation and
possible drawbacks remain to be explored. Therefore, the current work will
also focus on the experimental implementation and validation of the developed
control strategies.

1.3 Stabilization of systems with non-collocated

friction and actuation

As already mentioned, a second commonly encountered cause for vibrations
in mechanical motion systems is friction. In this thesis, we will address the
stabilization problem of systems with friction in order to avoid such unwanted
friction-induced vibrations.

In general, the stabilization of systems with friction is a complex control
problem which needs to be solved to avoid damage to the system’s structure and
to ensure high positioning performance. The complexity of this control problem
is due to the fact that friction is a very sensitive phenomenon. More specifically,
changes in conditions such as humidity, contamination, temperature, etc., can
cause significant changes to the friction characteristics. Therefore, to stabi-
lize a system with friction by means of control, the controlled system should
exhibits certain robustness properties with respect to changes in the friction
characteristics.
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Figure 1.2: A rotary drilling system.

Control techniques focusing on mechanical systems with discontinuities due
to friction and collocated actuation aim commonly at compensating the friction.
Friction compensation techniques are, commonly, divided in two categories:
non-model-based friction compensation and model-based friction compensa-
tion. Classical examples of non-model-based friction compensation are Dither
and impulsive control, see [12] and [7], respectively. In [8; 26; 97], model-
based-friction compensation techniques with adaptation mechanisms for the
friction model parameters are presented. In [26], the proposed results are ap-
plicable for velocities around zero and are validated experimentally on a robot
manipulator. An approach with friction compensation for a two-body system
with, possibly discontinuous, load friction and joint flexibility and damping
is discussed in [123]. A model reference adaptive control scheme is presented
by using a controller that adapts the friction compensation based on friction
changes. Some model-based friction compensation techniques based on Dahl
and LuGre dynamic friction models are proposed in [75; 134] and in [25], re-
spectively. Moreover, model-based-friction compensation techniques that do
not require accurate velocity measurements as the aforementioned techniques



1.3. Stabilization of systems with non-collocated friction and actuation 11

are given in [43; 121]. Finally, an observer-based friction compensation tech-
nique is proposed in [84; 108]. In [84], such technique is applied to a controlled
one-link robot. It is shown that friction overcompensation leads the system
to limit cycling and friction under-compensation leads the system to residual
steady-state errors (an equilibrium set).

To stabilize a system with non-collocated friction and actuation around a
chosen setpoint is an even more complex and difficult control problem. The
additional complexity of this problem is due to the fact that the friction and
actuation are non-collocated. As a consequence, direct cancellation (through
friction compensation) of the friction is not possible. The stabilization of such
systems can be particularly challenging because, on the one hand, we have to
deal with a phenomenon such as friction and, on the other hand, in most of
the cases there are dynamics (due to limited stiffness) between the actuated
element and the element subject to friction. Classical examples of this type of
systems are rotary drilling systems, printing systems and many more.

Consider, for example, the rotary drilling system which is schematically de-
picted in Figure 1.2. This system consists of a tower, a motor mounted to a
rotary table, a drill-string structure and the bottom-hole assembly (including
the drill-bit), see [65], [66], [78], [92]. The motor enforces a constant rotational
speed to the rotary table that is used as a unit to store kinetic energy. The
rotary table is, in turn, connected to the drill-string structure which is con-
nected to the bottom-hole-assembly. The drill-string consists of pipes that can
be as long as 11km. Due to the large length of the pipes, the drill-string is a
low stiffness connection between the upper and lower part of the system. The
bottom-hole-assembly consists of a drill-bit that creates the borehole. Due to
the interaction of the drill-bit with the borehole the first is subject to contact
forces with possibly discontinuous characteristics (for example friction and cut-
ting forces). This interaction is responsible for complex and undesirable non-
linear dynamical phenomena, such as so-called stick-slip vibrations, whirl-type
vibrations, bit bouncing and many more, see for example [66; 78; 88; 92].

There are several active and passive methods aiming at suppressing stick-
slip vibrations in rotary drilling systems. In [104; 115], it is shown that by
manipulating the different drilling parameters such as changing the rotational
speed of the rotary table and the weight-on-bit, or by introducing an additional
friction, the stick-slip motion can be suppressed. Similar alternatives for stick-
slip vibration suppression are proposed in [1; 31; 52; 66; 93]. More specifically,
in [1; 93; 104], the design of a PID controller for controlling the rotational speed
is presented. In [52; 66; 115], the use of a vibration absorber at the top of the
drill-string is proposed. Finally, in [31; 93], it is shown that the weight on the
bit can significantly suppress the undesirable stick-slip behavior on a drilling
system.

Another example of the considered type of systems is a printing system as
depicted in Figure 1.3. This system consists of a motor, two wheels, a belt,
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a printhead and a guidance for the printhead (see also [85]). The motor is
connected to one of the wheels that drives the flexible belt. The two wheels
are connected with each other by the belt. The printhead is mounted on the
belt. The printhead guidance constrains the motion of the printhead in one
dimension. Due to the presence of friction in the bearings of the wheels and
between the printhead and the printhead guidance both the printhead speed
and positioning accuracy are rather limited. Hence, a control design able to
cope with the non-collocated friction (between the printhead and the print-
head guidance) and actuation (applied by the motor in one of the wheels) and
guarantee high accuracy in printhead positioning is desirable.

An approach to deal with the modeling of friction in general is the use
of set-valued frictional force laws [48]. In literature, it has been shown that
simple discontinuous, set-valued friction models have proven to capture the
dynamics of many systems accurately, see for example [79; 84; 87; 88]. In this
thesis we will also adopt a discontinuous (set-valued) modelling approach for
friction, since, such an approach is able to describe real sticking behavior, it
has proven to be predictive and it provides relatively simple models, which
are favorable from analysis and control synthesis perspective. Note that the
focus in our approach is in both low and high velocities while, for example,
in [26] is only at low velocities. The choice for such set-valued frictional force
laws in dynamics commonly leads to models in terms of differential inclusions,
see [17; 80; 91; 106; 128]. In [42], [16], [10] and [111], an extensive analysis
treatment of results for differential inclusions is presented. Stability theory for
differential inclusions has received a lot of attention in [19; 42; 128]. Relevant
results for control purposes are presented in [19; 51].

Due to the fact that direct friction compensation is not possible in the ex-
amined system, one may opt to exploit well-known control strategies for smooth
nonlinear systems to tackle the system at hand. For systems with smooth non-
linear dynamics a vast amount of literature exists that covers the subject of
the stability and stabilization of such systems. Some of the well known works
in this field are [63; 72; 95; 116]. More specifically, a technique for stabilization
of a class of nonlinear systems is so-called feedback linearization, see [72; 95].
By applying input-output linearization to a nonlinear system we can render its
input-output behavior linear. Moreover, by using full-state linearization we can
render the entire system linear after a suitable feedback and coordinate trans-
formations. Then, standard linear control theory can be applied to stabilize
the linearized system. However, both linearization methods are only applica-
ble to smooth nonlinear systems (systems without discontinuities, e.g. due to
friction). Another method for nonlinear system stabilization is back-stepping
[72]. This method requires the existence of the derivatives of the system’s
nonlinearities with respect to the states and it is only applicable to smooth
nonlinear systems. An extension to non-smooth systems is given in [122]. In
[122], the proposed integrator back-stepping procedure is based on Lyapunov
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Figure 1.3: A printhead driven via a belt.

stability analysis for non-smooth systems. The drawback of this method is that
it may lead to a complex control law that is difficult to implement in practice.
An adapted back-stepping method suitable for systems with non-differentiable,
bounded, uncertain nonlinearities is given in [76]. This method is called the
multi-state back-stepping approach and it yields the design of a variable struc-
ture control in each step of the procedure. This control strategy consists of a
sliding mode control and reaching control and it is applicable to a restricted
class of systems with friction; namely, single-input-single-output systems where
the friction forces are relatively small. Given the fact that in the systems we
consider the friction will actually be one of the dominant forces this design
procedure is not applicable. In [5; 6], stabilization techniques for locally Lips-
chitzian systems with slope-restricted nonlinearities are discussed. Due to the
fact that the models for systems under study require large discontinuities to
accurately describe the friction, these systems do not belong to the class of
locally Lipschitzian systems. Hence we cannot apply the proposed designs.

1.4 Contribution of the thesis

This thesis presents observer-based output-feedback control designs for classes
of non-smooth systems with (disturbance) inputs. We mainly focus on the
disturbance rejection for continuous-time PWA systems and the stabilization
problem for systems with discontinuous right-hand sides (in particular we study
mechanical motion systems with non-collocated friction and actuation). More-
over, we implement the proposed control designs on experimental setups to
show the strengths and weaknesses of the proposed output-feedback controllers
beyond their theoretical importance and demonstrate the value of non-smooth
modeling and observer-based controllers for engineering systems in practice.

For the experimental validation of the theoretical results for PWL systems,
we have used an experimental setup as in Figure 1.4. This setup consists of a
flexible steel beam, which is clamped on two sides and is supported at a location
by a one-sided linear spring. Due to the one-sided spring, the beam exhibits
complex steady-state dynamics, such as the co-existence of steady-state solu-
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Figure 1.4: Schematic representation of the experimental PWL beam system.

tions (both harmonic and sub-harmonic) with high amplitude and bifurcations
points, see e.g. [58]. The configuration of the examined setup can be recognized,
for example, in mechanical systems in which the presence of one-sided restoring
characteristics (such as one-sided supports, end-stops, snubbers, etc) renders
the system dynamics highly nonlinear and non-smooth see Figure 1.1. More
specifically, this system captures the basic dynamics of the aforementioned
mechanical systems and reveals the fundamental practical problems that one
faces when designing observers and controllers for such systems. Therefore, the
examined system can be considered as benchmark for this type of systems.

The main contribution of this thesis in the field of PWA systems can be
summarized as follows:

• An observer-based output-feedback control design that aims at distur-
bance attenuation for periodically excited PWA systems has been de-
veloped. This design includes a controller that renders the closed-loop
system convergent. Since the convergence property guarantees unique
globally asymptotically stable steady-state solutions, we can construct
so-called generalized frequency response functions for nonlinear conver-
gent systems [100]. Using such generalized frequency response functions,
we can uniquely define the steady-state performance of the closed-loop
PWA system in terms of disturbance attenuation for periodic distur-
bances. Moreover, based on the information contained in these gener-
alized frequency response functions, we propose performance measures
quantifying the disturbance attenuation properties. These performance
measures can be used to evaluate the disturbance attenuation properties
of different controllers and to design the ‘best’ controller.

• The proposed observer-based output-feedback control design has been
implemented experimentally on the setup with PWL restoring charac-
teristics. Based on the performed experiments, it is shown that the
proposed observer-based output-feedback controller can render the setup
convergent and attenuates the vibrations induced by the rotating mass-
unbalance.

For the second class of systems addressed in this thesis, there are many
analysis results available in the literature, as discussed in Section 1.3. However,
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Figure 1.5: Schematic representation of the experimental rotor dynamic sys-
tem.

only a limited number of works deals with the control synthesis for this type
of systems and even less number deal with the actual implementation of these
controllers in practice. Therefore, in this thesis the goal is not only to develop
theoretical tools for control design for systems with discontinuous right-hand
sides but the aim is also on the experimental validation of these designs for
which a second experimental system is used, see Figure 1.5.

This system consists of two discs, connected through a low-stiffness string.
The upper disc is driven by a motor. At the lower disc a brake is implemented
to exert a friction torque on the disc. The presence of friction in the system
gives rise to complex dynamical phenomena, such as co-existence of steady-state
solutions, stick-slip limit cycling and discontinuous bifurcation points, see [129].
These vibrational phenomena are present in many mechanical motion systems
with flexibilities and friction. In such engineering systems, limit cycling is an
undesirable phenomenon because it causes kinetic energy dissipation, noise,
excessive wear of machine parts and inferior positioning properties. Due to
the fact that the examined system reproduces this kind of behavior, it can be
considered as benchmark for this type of systems.

The main contribution of the thesis in the field of systems with non-collocated
friction and actuation can be described as follows:

• An observer-based output-feedback control design for the stabilization of
Lur’e type systems with set-valued nonlinearities in the feedback loop is
proposed. We apply these results to solve the stabilization problem for
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mechanical motion systems with non-collocated friction and actuation. It
is shown that the control design is robust for uncertainties in the friction
characteristics, which is an important characteristic in practice.

• The proposed observer-based output-feedback control design has been
implemented on the experimental system. Based on the experimental re-
sults, the proposed controller is able to eliminated stick-slip limit cycling
to a great extent and it is able to stabilize the system around an equi-
librium point (constant velocity solution) for a large number of constant
inputs applied by the motor.

1.5 Structure of the thesis

After the introductory Chapter 1, Chapter 2 gives basic theoretical preliminar-
ies that we use throughout the thesis. In Section 2.1, the notions of Lyapunov
stability and convergence are introduced. The latter concept will be used ex-
tensively in Chapters 3 and 4. In Section 2.2, the notions of passivity and
positive realness are given. Finally, in Section 2.3, we recall the concept of ab-
solute stability. In Chapters 5 and 6 controllers based on the absolute stability
property will be proposed.

Chapter 3 is related to the design of an observer-based output-feedback
controller for a class of PWA systems. In Section 3.2, a state-feedback control
design strategy that is suitable for disturbance attenuation of PWA systems is
described and, in Section 3.3, observer design strategies suitable for the consid-
ered PWA systems are given. In the same section, an output-feedback control
design that consists of a state-feedback controller and an observer is introduced.
Moreover, it is shown that the interconnection of the state-feedback controller
with the observer and the plant is convergent. In Section 3.4, sufficient con-
ditions for a bound for the control action are introduced and, in Section 3.5,
a bound for the system output for bounded disturbance inputs is provided.
In this section, also performance measures based on computed steady-state
responses for periodic disturbances are proposed and a systematic approach
towards high-performance control design for the attenuation of such distur-
bances is given. Finally, a discussion of the results presented in this chapter
and directions for future work are given in Section 3.6.

Chapter 4 presents the implementation of the aforementioned output-feedback
controller on an experimental setup involving a flexible beam with PWL restor-
ing characteristics. In Section 4.2, a detailed description of the experimental
setup is given and a model describing this setup is presented. In Section 4.3,
we discuss an observer that will be used to estimate the state of the experimen-
tal system since we consider the case where the full state of the system is not
available for feedback. In Section 4.4, output-feedback controllers are designed
and implemented on this setup to validate the effectiveness of the proposed
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approach in attenuating periodic disturbances. The disturbance attenuation
properties of these output-feedback controllers are evaluated in Section 4.5 by
using the theoretical tools developed in Chapter 3. This chapter is ended with
a summary in Section 4.6.

Chapter 5 proposes two observer-based output-feedback control design strate-
gies for a class of Lur’e-type systems with set-valued nonlinearities. Each of
the resulting output-feedback controllers consist of a model-based observer and
a state-feedback controller. In Section 5.2, the state-feedback controllers are
discussed. These controllers are based on an extension of Popov’s criterion
for maximal monotone set-valued maps and guarantee absolute stability of the
plant. The observers and the proposed output-feedback controllers are pre-
sented in Section 5.3. In that section, it is shown that the interconnection of
the state-feedback controller with the observer and the plant are also abso-
lutely stable. Finally, a discussion of the results presented in this chapter and
directions for future work are given in Section 5.4.

In Chapter 6, one of the control design strategies presented in Chapter 5 is
applied to the experimental setup of the dynamic rotor system to illustrate its
practical use. This setup and a corresponding model are presented in Section
6.2. In Section 6.3, an output-feedback controller is designed for this system to
stabilize its equilibria for different friction situations and, hence, to eliminate
undesirable stick-slip limit-cycling. Finally, the obtained results are discussed
in Section 6.4.

In Chapter 7, the conclusions of this thesis are given and recommendations
for future work are discussed.
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Preliminaries

2.1 Lyapunov stability

concepts and convergent

systems

2.2 Passivity and positive realness

2.3 Absolute stability

In this chapter, we will present basic theoretical notions that are going to
be used throughout the thesis. In Section 2.1, we provide the definitions of
basic stability concepts, invariant sets and asymptotically ultimately bounded
systems. Moreover, in this section we also introduce the notions of convergence,
uniform convergence and input-to-state convergence. In Section 2.2, we recall
the definitions of passivity and positive realness and, in Section 2.3, the notion
of absolute stability is given. Theoretical results related to the absolute stability
property, such as the circle criterion and the Popov criterion are also presented
in this section. Both the notion of convergence and absolute stability will
play an important role in the design of controllers for non-smooth systems, as
presented in this thesis.

2.1 Lyapunov stability concepts and conver-

gent systems

This sections starts with definitions related to Lyapunov stability concepts for
non-autonomous systems. Consider the system

ẋ = f(x, t), (2.1)

where state x ∈ Rn, t ∈ R and f(x, t) is locally Lipschitz in x and piecewise
continuous in t.

Definition 2.1.1 [102] A solution x̄(t) of system (2.1), which is defined for
t ∈ (t∗,+∞), is said to be

• stable if for any t0 ∈ (t∗,+∞) and ε > 0 there exists δ = δ(ε, t0) > 0
such that |x(t0)− x̄(t0)| < δ implies |x(t)− x̄(t)| < ε for all t ≥ t0.

• uniformly stable if it is stable and the number δ in the definition of
stability is independent of t0.
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• asymptotically stable if it is stable and for any t0 > 0 there exists δ =
δ(t0) > 0 such that |x(t0)− x̄(t0)| < δ implies limt→+∞ |x(t)− x̄(t)| = 0.

• uniformly asymptotically stable if it is uniformly stable and there exists
δ > 0 (independent of t0) such that for any ε > 0 there exists T = T (ε) >
0 such that |x(t0)− x̄(t0)| < δ for t0 ∈ (t∗,+∞) implies |x(t)− x̄(t)| < ε
for all t ≥ t0 + T .

• exponentially stable if there exist δ > 0, C > 0 and β > 0 such that
|x(t0)− x̄(t0)| < δ for t0 ∈ (t∗,+∞) implies

|x(t)− x̄(t)| ≤ Ce−β(t−t0)|x(t0)− x̄(t0)|, ∀t ≥ t0. (2.2)

It is known that in case the solution x̄(t) is asymptotically stable this implies
that x̄(t) attracts all the solutions that are near x̄(t). If one is interested
in attractivity of the solution x̄(t) for all initial conditions x(t0) ∈ Rn, the
following definitions are required.

Definition 2.1.2 [72] A solution x̄(t) of system (2.1), which is defined for
t ∈ (t∗,+∞), is said to be

• globally asymptotically stable if it is asymptotically stable and any so-
lution of the system (2.1) starting in x(t0) ∈ Rn, t0 ∈ (t∗,+∞) satisfies
|x(t)− x̄(t)| → 0 as t→ +∞.

• globally uniformly asymptotically stable if it is uniformly asymptotically
stable and it attracts solutions of system (2.1) starting in x(t0) ∈ Rn,
t0 ∈ R uniformly over t0, i.e. for any compact set K ⊂ Rn and any ε > 0
there exists T (ε,K) > 0 such that if x(t0) ∈ K, t0 ∈ (t∗,+∞), then
|x(t)− x̄(t)| < ε for all t ≥ t0 + T (ε,K).

• globally exponentially stable if it is exponentially stable and there exist
constant C > 0 and β > 0 such that any solution starting in x(t0) ∈ Rn,
t0 ∈ R satisfies

|x(t)− x̄(t)| ≤ Ce−β(t−t0)|x(t0)− x̄(t0)|. (2.3)

Next, we will define positively invariant (PI) sets and asymptotically ulti-
mate boundedness of a system.

Definition 2.1.3 A set Ω is called positively invariant (PI) with respect to
system (2.1), if for all initial times t0 ∈ R and all initial states x0 ∈ Ω the
corresponding solution to (2.1) satisfies x(t) ∈ Ω for all t ≥ t0.
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Definition 2.1.4 System (2.1) is called asymptotically ultimately bounded to
a set Ω ⊆ Rn, if for all initial times t0 ∈ R and all initial states x0 ∈ Rn,
the corresponding solution trajectory x(t) satisfies limt→∞ dΩ(x(t)) = 0, where
dΩ(x) := infz∈Ω ‖z − x‖ is the distance of the point x to the set Ω and z an
element in Ω .

As we consider in Chapter 3 PWA systems with periodic exogenous inputs,
it is useful to define the notion of convergence.

Definition 2.1.5 [102] System (2.1) is said to be

1. convergent if there exists a solution x̄(t) satisfying the following condi-
tions:

(a) x̄(t) is defined and bounded for all t ∈ R,

(b) x̄(t) is globally asymptotically stable for all t ∈ R.

2. uniformly convergent if it is convergent and x̄(t) is globally uniformly
asymptotically stable.

3. exponentially convergent if it is convergent and x̄(t) is globally exponen-
tially stable.

The solution x̄(t) is called a steady-state solution. As follows from the
definition of convergence, any solution of a convergent system ‘forgets’ its
initial condition and converges to some steady-state solution. In general, the
steady-state solution x̄(t) may be non-unique. But for any two steady-state
solutions x̄1(t) and x̄2(t) it holds that |x̄1(t) − x̄2(t)| → 0 as t → +∞. At
the same time, for uniformly convergent systems the steady-state solution is
unique, as formulated below.

Property 2.1.6 [102] If system (2.1) is uniformly convergent, then the steady-
state solution x̄(t) is the only solution defined and bounded for all t ∈ R.

In our problem setting, the time-dependency of (2.1) is due to some time-
dependent exogenous input w(t). As such, we will consider convergence prop-
erties for systems with inputs. So, instead of systems of the form (2.1), we
consider systems of the form

ẋ = f(x,w(t)), (2.4)

with state x ∈ Rn and input w ∈ Rd, where f(x,w) is locally Lipschitz in x
and continuous in w. In the sequel, we will consider the class P̄Cd of piecewise
continuous inputs w(t) : R → Rd which are bounded on R. Below we define
the convergence property for suchsystems with inputs.
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Definition 2.1.7 [102] System (2.4) is said to be uniformly (exponentially)
convergent if it is uniformly (exponentially) convergent for every input w(t) ∈
P̄Cd. In order to emphasize the dependency on the input w(t), the steady-state
solution is denoted by x̄w(t).

The uniform convergence property can now be extended to the input-to-
state stability framework. Hereto, we need to define class K and class KL
functions.

Definition 2.1.8 [72] A function α : [0,∞) → [0,+∞) is said to belong to
class K if it is continuous, strictly increasing and α(0) = 0. It is said to belong
to class K∞ if it belongs to class K and α(r)→ +∞ as r → +∞.

Definition 2.1.9 [72] A function β : [0, a) × [0,+∞) → [0,+∞) is said to
belong to class KL if it is continuous and, for each fixed s, the mapping r 7→
β(r, s) belongs to class K and, for each fixed r, the mapping s 7→ β(r, s) is
decreasing and β(r, s)→ 0 as s→ +∞.

With these definitions the uniform convergence property can be extended
to the input-to-state stability framework [120] as follows.

Definition 2.1.10 [102] System (2.4) is said to be input-to-state convergent
if it is globally uniformly convergent and for every input w(t) ∈ P̄Cd system
(2.4) is input-to-state (ISS) stable [120] along the steady-state solution x̄w(t),
i.e. there exist a KL-function β(r, s) and a class K-function γ(r) such that
any solution of this system corresponding to some input w̃(t) := w(t) + ∆w(t)
satisfies

|x(t)− x̄w(t)| ≤ β(|x(t0)− x̄w(t0)|, t− t0) + γ(supt0≤τ≤t |∆w(τ)|). (2.5)

In general, the functions β(r, s) and γ(r) may depend on the particular input
w(t).

For more information on ISS, see [120].

2.2 Passivity and positive realness

In this section, we will begin with a definition of passivity for nonlinear systems
[72]. Consider the dynamical system

ẋ = f(x,w)
z = h(x,w),

(2.6)

with x ∈ Rn the state of the system and w ∈ Rd the input of the system, z ∈ Rp

the output of the system. The system is assumed to have the same number of
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inputs and outputs (d = p). Moreover, we assume that an equilibrium point
of the system (2.6) for z = 0 is x = 0 with zero output z (i.e. f(0, 0) = 0 and
h(0, 0) = 0).

Definition 2.2.1 [72] The system (2.6) is said to be passive if there exists a
continuous differentiable positive semidefinite function V (x) (called the storage
function) such that

wT z ≥ V̇ =
∂V

∂x
f(x,w), ∀(x,w) ∈ Rn × Rd. (2.7)

Moreover, the system (2.6) is said to be strictly passive if

wT z > V̇ , ∀(x,w) 6= (0, 0). (2.8)

In Chapter 5, we will use the notion of passivity together with the notion of
absolute stability (we will introduce this notion in the following section) to
synthesize controllers for a class of Lur’e type of systems. For this purpose, we
will introduce now some theoretical tools, strongly related to passivity, that are
useful for the control design for this class of systems. More specifically, we will
provide definitions of a positive real transfer function and a strictly positive
real transfer function. Moreover, we will recall two lemmas for a class of linear
systems that give algebraic characterizations of (strictly) positive real transfer
functions. Finally, we will relate a (strictly) positive real transfer function with
a (strictly) passive system by using an additional lemma.

Definition 2.2.2 [72] A p×p proper rational transfer function matrix G(s) is
called positive real if

• the poles of G(s) are in Re[s] ≤ 0,

• for all real ω for which jω is not a pole of G(s), the matrix G(jω) +
GT (−jω) is positive semidefinite, and

• any pure imaginary pole jω of G(s) is a simple pole and the residue
matrix lims→jω(s− jω)G(s) is positive semidefinite Hermitian.

Definition 2.2.3 [72] Let G(s) be a p × p proper rational transfer function
matrix, and suppose det[G(s) + GT (−s)] is not identically zero. Then, G(s) is
strictly positive real if and only if

• G(s) is Hurwitz; that is, poles of all elements of G(s) have negative real
parts,

• G(jω) + GT (−jω) is positive definite for all ω ∈ R, and
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• either G(∞) + GT (∞) is positive definite or it is semi-definite and
limω→∞ ω2MT [G(jω)+GT (−jω)]M is positive definite for any p×(p−q)
full rank matrix M such that MT [G(∞) + GT (∞)]M = 0, where q =
rank[G(∞) + GT (∞)].

At this point, we will recall the so-called Positive real Lemma and the Kalman-
Yakubovich-Popov Lemma. Consider linear time-invariant systems of the form

ẋ = Ax + Bw
z = Cx + Dw,

(2.9)

where the equilibrium point of the system (2.9) for w = 0 is x = 0 and

G(s) = C(sI −A)−1B + D (2.10)

is the proper rational transfer function matrix from input w to output z of
system (2.9). Now, the Positive real Lemma and the Kalman-Yakubovich-
Popov, respectively, reads as follows:

Definition 2.2.4 [72] The p × p transfer function matrix G(s), where (A,B)
is controllable and (A,C) is observable, is positive real if and only if there exist
matrices P = PT > 0, L and W such that

PA + AT P = −LT L
PB = CT − LT W
WT W = D + DT .

(2.11)

Definition 2.2.5 [72] The p × p transfer function matrix G(s), where (A,B)
is controllable and (A,C) is observable, is strictly positive real if and only if
there exist matrices P = PT > 0, L, W and a positive constant ε such that

PA + AT P = −LT L− εP
PB = CT − LT W
WT W = D + DT .

(2.12)

Finally, we introduce a lemma that shows the fact that a (strictly) positive
real transfer function G(s), as in (2.10), represents a (strictly) passive system
(2.9).

Definition 2.2.6 [72] The linear time-invariant system (2.9) with G(s) given
in (2.10), (A,B) controllable and (A,C) observable, is

• passive if G(s) is positive real;

• strictly passive if G(s) is strictly positive real.
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2.3 Absolute stability

Consider the following feedback interconnection of a linear dynamical system
and a nonlinear element given by

ẋ = Ax + Bw
z = Cx + Dw,
w = −ϕ(t, z),

(2.13)

where x ∈ Rn, w, z ∈ Rp, ϕ locally Lipschitz in x, (A,B) is controllable, (A,C)
is observable. We assume that the feedback connection has a well-defined state
model, which is the case when

w = −ϕ(t, Cx + Dw) (2.14)

has a unique solution u for every (t, x) in the domain of interest. The nonlinear-
ity ϕ is required to satisfy a sector condition1. For all nonlinearities satisfying
a sector condition, the origin x = 0 is an equilibrium point of the system (2.13).
Then, the system (2.13) is said to be absolutely stable for sector [Kα, Kβ ] if
the origin is globally uniformly asymptotically stable for any nonlinearity ϕ
satisfying the sector condition [Kα, Kβ ] [72]. In the thesis, we will consider
extensions to the case of set-valued nonlinearities. Moreover, to prove absolute
stability for system (2.13) we use a particular case of the so-called circle crite-
rion. In this particular case, the circle criterion guarantees absolute stability
if the transfer function of the linear part of system (2.13) is strictly positive
real and the nonlinearity in the feedback loop is passive. The circle criterion
will be used in Chapter 5 for observer and control design purposes. The circle
criterion is given as follows

Theorem 2.3.1 [72] Consider system (2.13) with (A,B) controllable and (A,C)
observable. Then the following statements hold:

• System (2.13) is absolutely stable for sector [K1, ∞], with K1 a positive
semi-definite matrix, if ϕ ∈ [K1, ∞] and G(s)[I + K1G(s)]−1 is strictly
positive real (strictly passive).

• System (2.13) is absolutely stable for sector [K1, K2], with K = K2 −
K1 = KT positive definite, if ϕ ∈ [K1, K2] and [I + K2G(s)][I +
K1G(s)]−1 is strictly positive real.

1A memoryless function w = ϕ(t, z) : R × R
p → R

p belongs to the sector [Kα, Kβ ]

for the matrices Kα, Kβ ∈ R
p×p and Kα,β = Kα − Kβ = KT

α,β
positive definite matrix,

if [ϕ(t, z) − Kαz]T
�
ϕ(t, z) − Kβz

�
≤ 0, ∀(t, z), with Kα = diag(kα,1, . . . , kα,p) and Kβ =

diag(kβ,1, . . . , kβ,p).
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By using an additional theorem, the so-called Popov criterion, we can relax
the condition of strict positive realness for the transfer function of the linear
part of system (2.13) by a loop transformation with a dynamic multiplier. In
Chapter 5, the Popov criterion is also used for control design purposes.

Consider a linear system with a nonlinearity in the feedback loop,

ẋ = Ax + Bw
z = Cx
wi = −ϕi(zi), 1 ≤ i ≤ p

(2.15)

where x ∈ Rn, w, z ∈ Rp, (A,B) is controllable, (A,C) is observable and
ϕi : R → R is a locally Lipschitz memoryless nonlinearity that belongs to the
sector [0, ki], with 0 < ki <∞. In this specific case, the transfer function G(s)
in (2.10) is strictly proper and ϕ is time-invariant and decoupled meaning that
ϕi(y) = ϕi(yi). The Popov criterion is stated as follows:

Theorem 2.3.2 [72] The system (2.13) is absolutely stable if, for 1 ≤ i ≤ p,
ϕi ∈ [0, ki], 0 < ki ≤ ∞ and there exists a constant γi ≥ 0, with (1 + λγi) 6= 0
for every eigenvalue λ of A, such that M +(I +sΓ)G(s) is strictly positive real,
where Γ =diag(γ1, ..., γp) and M =diag(1/k1, ..., 1/kp).
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3.1 Introduction

In this chapter, we propose a control design strategy for a class of PWA systems
based on the notion of convergence [32], uniform convergence and input-to-state
convergence [102] (see Chapter 2 for the definition of these concepts). Next to
analyzing and synthesizing controllers for PWA systems, we also aim at show-
ing the potential of the control design strategy in practice by implementing
the controllers on an experimental mechanical system with PWA characteris-
tics. A successful implementation requires that the controller design strategy
has to guarantee stability, disturbance attenuation and limited control effort.
Therefore, to be useful for practical implementation, the proposed controller
design strategy has also to include theoretical tools to analyze input bounds,
output bounds and performance measures in terms of disturbance attenuation
to evaluate different controllers. Moreover, since the entire state of the system
will not be available for feedback, an output-feedback design is needed.

The uniform convergence and input-to-state convergence properties are ben-
eficial in the scope of stability and performance analysis of PWA systems.
Firstly, they ensure that these systems exhibit unique steady-state solutions
for any bounded disturbance and, secondly, they ensure the asymptotic ul-
timate boundedness of the state, which can be related to input and output
bounds.
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Convergence-based controller design for disturbance attenuation in PWA
systems

In order to support the practical applicability of the proposed control design
strategy, we propose a control design procedure that guarantees a bound on
the control input of the system. This bound guarantees that the control action
required to render a system convergent within a given class of disturbances,
stays below a predefined value for a given set of initial conditions of interest.
This is very important for applications, because there are always limitations
on the control action that an actuation mechanism can provide. The basic
idea that we will use to guarantee an upper bound on the control input of
a system was first introduced in [15] for linear systems and extended in [74]
for discrete-time uncertain linear systems. In [94], similar developments are
given for discrete-time PWA systems. The main idea consists of constructing
a positively invariant set and showing that on this set the control bound holds.
These conditions will be expressed in terms of linear matrix inequalities (LMIs).
In this work, we will extend these ideas to continuous-time PWA systems and
give an explicit constructive form of the positively invariant set. Moreover, we
show for the class of convergent PWA systems how a positively invariant set
can be obtained in a computational manner.

Due to the fact that we will employ so-called quadratic convergence, i.e.
convergence based on a quadratic Lyapunov function, we can readily provide
an upper bound for the system state (in steady-state) given a class of bounded
piecewise continuous inputs and initial conditions. This bound is more general
than that presented in [39], [54] and [109], since these bounds only hold for zero
initial condition. The bound presented here is similar to the bound presented
in [47] with the only difference that the bound considered here is based on
the notion of convergence, while the bound in [47] is based on the notion of
incremental stability [4], [44].

The fact that uniformly convergent systems have unique steady-state re-
sponses allows for a more accurate evaluation of the performance (in terms of
disturbance attenuation) based on computed responses. Actually, one can pro-
vide Bode-like plots for nonlinear systems, using uniform convergence, although
these plots do not have the favorable properties that ‘linear’ Bode plots have
(due to the absence of the super-position principle). In particular, this leads
to the introduction of performance evaluation techniques based on computed
steady-state responses applicable to convergent systems with bounded periodic
disturbances. The motivation for this choice lies in the fact that in engineering
practice many disturbances can be approximated by harmonic signals. One can
think of periodic vibrations in vehicles [53], unbalance phenomena in optical
storage drives [57] and many more. Next to the Bode-like plots, we provide
performance measures on specific characteristics of the system responses, e.g.
the maximum ‘amplitude’ or the total energy of a response, over a frequency
range of the periodic disturbances. This allows to design high performance
controllers for applications in which periodic disturbances are dominant and
this also allows to account for frequency weighting. In [57], a similar approach
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towards performance assessment is proposed for a class of Lur’e systems with
slope restricted nonlinearities. Here, a different perspective is taken in the sense
that we consider general PWA systems.

Using such performance evaluation techniques, we can promote controllers
for a PWA system that are favorable in terms of disturbance attenuation. Based
on these techniques, we evaluate the class of controllers that render the sys-
tem convergent and result in a control input that satisfies the saturation bound.
Within this class of controllers, the performance assessment is used as a discrim-
inating tool to steer the design towards controllers with ‘optimal’ disturbance
attenuation properties.

Another practical problem of concern is that, generally, the entire state of a
PWA system will not be available for feedback. Therefore, an additional goal is
to construct an output-based feedback controller that renders the PWA system
under study convergent. The output-feedback controller is a combination of a
model-based observer and a state-feedback controller. Based on a result on the
input-to-state convergence of a feedback interconnection of an input-to-state
convergence system and a uniformly stable system [102], we guarantee that this
combination will yield a convergent closed-loop system. Hence, the ‘certainty
equivalence’ or ‘separation principle’ is valid within this context. The observers
that are used for this design are based on [99] for continuous PWA systems and
based on [35] and [70] for bi-modal piecewise linear (PWL) systems.

In this chapter, we first describe a state-feedback control design strategy
that is suitable for disturbance attenuation of PWA systems in Section 3.2. Fur-
thermore, in Section 3.3, we present observer design strategies that are suitable
for the considered PWA and bi-modal PWL systems. Moreover, we introduce
the output-feedback control design and we prove that the interconnection of the
state-feedback controller with the observer and the plant is uniformly conver-
gent. In Section 3.4, we analyze the bound for the control action and in Section
3.5 we derive a bound for the system output for bounded piecewise continu-
ous disturbances. Moreover, we also provide performance measures based on
computed steady-state responses for periodic disturbances and a systematic ap-
proach towards high-performance control design (within the class of controllers
that render the closed-loop system convergent). Finally, a discussion of the
results presented in this chapter and directions for future work are given in
Section 3.6.



30

Convergence-based controller design for disturbance attenuation in PWA
systems

3.2 Convergence-based state-feedback control
design

We consider the class of PWA systems:

ẋ = Aix + bi + Bw(t) + B1u for x ∈ Λi, i = 1, ..., l (3.1a)

y = Cx, (3.1b)

where x ∈ Rn, w ∈ Rm, u ∈ Rk and y ∈ Rp are the state, the exogenous input,
the control input and the output of the system, respectively, depending on time
t ∈ R. The matrices Ai, bi, i = 1, ..., l, B, B1 and C are constant matrices
of appropriate dimensions. The sets Λi are polyhedral and form a partitioning
of the state-space Rn in the sense that the sets Λi have disjoint interiors and
⋃

i Λi = Rn. The cells Λi are divided by hyperplanes given by equations of the
form HT

j x + hj = 0, for some Hj ∈ Rn and hj ∈ R, j = 1, ..., k1. Hence, the

hyperplanes HT
j x + hj = 0, j = 1, ..., k1, are the switching surfaces. The time

varying input w(t) acts as a disturbance on the system and it is considered to be
bounded. In the sequel, we will deal with PWA systems that have continuous
right-hand sides. This continuity requirement on the right-hand side of system
(3.1a) can be characterized by a simple algebraic condition as in [102]. Due to
the continuity on the right-hand side, the right-hand side is globally Lipschitz
continuous with linear growth bounds and thus global existence and uniqueness
of solution trajectories is guaranteed for any bounded piecewise continuous w
and u.

In the control design, we start with a static state-feedback as the input for
the system (3.1a):

u = −Kx, (3.2)

where K ∈ Rk×n is the controller gain. Consequently, the dynamics of the
closed-loop system (3.1) and (3.2) can be written as:

ẋ = (Ai −B1K)x + bi + Bw(t) for x ∈ Λi, i = 1, ..., l (3.3a)

y = Cx. (3.3b)

Note that the closed-loop system described by (3.3a) is also a continuous PWA
system due to the continuity of the feedback law (3.2). The control goal can
be formally stated as:

Determine, if possible, the controller gain K in (3.2) such that the
closed-loop system (3.3a) is uniformly convergent for piecewise con-
tinuous inputs w : R −→ Rm.

This problem can be solved by using a result in [100], which states conditions
under which a linear static state-feedback law as in (3.2) renders a PWA system
as in (3.1a) input-to-state convergent and thus uniformly convergent for all
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piecewise continuous disturbances w. The conditions, that are formalized in
the following theorem, are only sufficient (not necessary) for input-to-state
convergence.

Theorem 3.2.1 [100] Consider the continuous PWA system (3.1a). Suppose
that the right-hand side of (3.1a) is continuous in x and there exist matrices
Pc ∈ Rn×n and Ps ∈ Rk×n satisfying the linear matrix inequalities

Pc = PT
c > 0 (3.4a)

PcA
T
i + AiPc −B1Ps − PT

s BT
1 < 0, i = 1, ..., l. (3.4b)

Then, system (3.1a) in closed-loop with the controller (3.2) where K := PsP
−1
c

and w as external input is input-to-state convergent.

The conditions provided in [100] are in linear matrix inequality (LMI) form
and these LMIs can be solved easily by the use of standard LMI solvers (such
as LMITOOL for MATLAB [38]). It should be noted that Theorem 3.2.1 is
based on a quadratic Lyapunov function and that input-to-state convergence
implies uniform convergence. Furthermore, we should also note that the LMIs
in (3.4b) originate from the bi-linear matrix inequalities (BMI):

P (Ai −B1K) + (Ai −B1K)T P < 0, i = 1, ..., l, (3.5)

where P = P−1
c . We can derive (3.4b) if we pre- and post- multiply (3.5) by

P−1.
An important observation is that the proposed design has robustness prop-

erties against unmodelled inaccuracies. Namely, if the conditions of Theorem
3.2.1 hold, then the BMIs (3.5) will be satisfied, which due to strictness imply
that the BMIs

P (Ai+∆Ai−(B1+∆B1)K)+(Ai+∆Ai−(B1+∆B1)K)T P < 0, for i = 1, ..., l,
(3.6)

will still be satisfied for sufficiently small model uncertainties ∆Ai, i = 1, ..., l,
and ∆B1 (provided that the uncertainties do not destroy the continuity of the
system) and hence, input-to-state convergence is maintained.

3.3 Output-feedback convergence-based control

design

In the control law proposed in Section 3.2, all the state variables are used for
feedback. In practice, the entire state of system (3.1) is in general not measured
and thus not available for feedback. Indeed, in some cases, physical constraints
do not allow the measurement of certain state variables and, in other cases,
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the high costs of sensors prohibit such measurements. Therefore, the goal of
this section is to construct an output-based feedback controller that solves this
problem and renders the PWA system (3.1) input-to-state convergent using
output measurements only. This output-feedback controller consists of a state-
feedback controller as in (3.2) and a model-based observer. The observer will
reconstruct the full state of the system based on only the measurement of the
output (and input).

3.3.1 Strategies for observer design

In this subsection, we will discuss two observer design strategies that are suit-
able for the state estimation of continuous PWA systems of the form (3.1).
One of the strategies is based on the notion of convergence and is applicable
to continuous PWA systems and the other strategy focuses on a class of PWL
systems, but allows for possible extension to discontinuous PWL systems.

Convergence-based observer design strategy for PWA systems

Consider the following model-based observer for the continuous PWA system
(3.1):

˙̂x = Aix̂ + bi + Bw(t) + B1u + L(y(t)− ŷ) for x̂ ∈ Λi, i = 1, ..., l, (3.7a)

ŷ = Cx̂, (3.7b)

with L ∈ Rn×p and x̂ ∈ Rn the observer gain and the observed state, respec-
tively.

The following theorem, proved in [100], formalizes conditions under which
the observer (3.7) asymptotically recovers the state of system (3.1).

Theorem 3.3.1 [100] Consider system (3.1). Suppose that the right-hand side
of (3.1) is continuous in x and there exist matrices Po ∈ Rn×n and X ∈ Rn×p

solving the LMI

Po = PT
o > 0, (3.8a)

PoAi + AT
i Po −XC − CT XT < 0, i = 1, ..., l, (3.8b)

is feasible. Then, system (3.7) with L := P−1
o X is an observer for system

(3.1) with globally exponentially stable error dynamics. The observer error
∆x := x− x̂ satisfies the dynamics

∆̇x = g(x, u, w)− g(x + ∆x, u, w), (3.9)

where g(x, u, w) = Aix+bi +Bw+B1u+LCx for x ∈ Λi, i = 1, ..., l. Moreover,
for any bounded x(t) and w(t) and any feedback u = u(∆x, x, t) all solutions
of system (3.9) satisfy

|∆x(t)| ≤ ce−a(t−t0)|∆x(t0)|, (3.10)
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where the numbers c > 0 and a > 0 are independent of x(t), w(t) and u.

Note that the LMIs in (3.8b) originate from the bi-linear matrix inequalities
(BMI)

Po(Ai − LC) + (Ai − LC)T Po < 0, i = 1, ..., l. (3.11)

From (3.11), we can derive (3.8b) by straightforward substitution.
The basic reasoning behind this convergence-based observer design is that

the satisfaction of the LMIs in (3.8b) or the BMIs in (3.11) guarantees that the
observer (3.7) is an exponentially convergent system with inputs u,w, y ∈ PC.
Moreover, x(t) is a solution of (3.1) and it is easy to see that it is also a
solution to (3.7). Due to exponential convergence of (3.7), x̂(t) = x(t) is a
GES solution of (3.7). In general, (quadratic) convergence of observers implies
that all solutions of a convergence-based observer converge to each other for
t → ∞. Note that quadratic convergence implies also quadratic incremental
stability see [4; 44].

Observer design strategy for bi-modal PWL systems

Consider a bi-modal PWL system that can be described by (3.1) with l = 2
and bi = 0, i = 1, 2. In this system, Λ1 is defined by HT x ≥ 0 and Λ2 by
HT x ≤ 0, with HT ∈ Rn. Since the vector-field of (3.1) is continuous, it holds
that A1x = A2x on the switching boundary HT x = 0. Consider the following
switching model-based observer

˙̂x =

{

A1x̂ + Bw(t) + B1u + L1(y(t)− ŷ) for x̂ ∈ Λ1

A2x̂ + Bw(t) + B1u + L2(y(t)− ŷ) for x̂ ∈ Λ2,
(3.12a)

ŷ = C x̂, (3.12b)

where x̂(t) is the observer state and L1, L2 ∈ Rn×p are observer gain matrices.
Consequently, the dynamics of the observer error ∆x = x− x̂ is described by

∆ẋ =















(A1 − L1C)∆x, x ∈ Λ1, x̂ ∈ Λ1

(A2 − L2C)∆x + ∆Ax, x ∈ Λ1, x̂ ∈ Λ2

(A1 − L1C)∆x−∆Ax, x ∈ Λ2, x̂ ∈ Λ1

(A2 − L2C)∆x, x ∈ Λ2, x̂ ∈ Λ2,

(3.13)

where ∆A = A1 − A2, x satisfies (3.1) (for l = 2 and bi = 0) and x̂ satisfies
(3.12a). By substituting x̂ = x−∆x in (3.13), we see that the right-hand side
of the observer error dynamics is piecewise linear in [∆xT xT ]T .

The following theorem guarantees that the observer (3.12) exponentially
reconstructs the state of system (3.1) (for l = 2 and bi = 0, i = 1, 2).

Theorem 3.3.2 [35; 70] The observer error dynamics (3.13) is globally expo-
nentially stable (in the sense of Lyapunov), for all x : R+ −→ Rn satisfying
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(3.1) (for l = 2 and bi = 0, i = 1, 2) for an arbitrary locally integrable input
function w : R+ −→ Rm, if there exist matrices P = PT > 0, L1, L2 and
constants λ1, λ2 ≥ 0, α > 0 such that the following set of matrix inequalities is
satisfied:




(A2 − L2C)T P + P (A2 − L2C) + αP P∆A + λ1
1
2HHT

∆AT P + λ1
1
2HHT −λ1HHT



 ≤ 0

(3.14a)




(A1 − L1C)T P + P (A1 − L1C) + αP −P∆A + λ2
1
2HHT

−∆AT P + λ2
1
2HHT −λ2HHT



 ≤ 0.

(3.14b)
Moreover, the observer error is upper bounded by

‖∆x(t)‖ ≤ 1/
√

λmin(P ) ‖∆x(t0)‖P e−
α(t−t0)

2 , (3.15)

with ∆x(t0) the initial estimation error at time t0.

The inequalities (3.14a)-(3.14b) are nonlinear matrix inequalities in {P,L1, L2,
λ1, λ2, α}. By choosing α a priori, these can formulated as LMIs in {P,LT

1 P,
LT

2 P, λ1, λ2} and thus can be efficiently solved using LMI solvers (such as LMI-
TOOL for MATLAB [38]).

Both observers in (3.7) and (3.12) do not require information on which linear
dynamics of the system is currently active. Furthermore, in case we consider
bi-modal PWL systems, we note that the observer (3.12) is more general than
(3.7) in the sense that it provides different gains L1 and L2 for each mode of the
system in contrast to (3.7) that only allows a common gain L for both system
modes. Moreover, if L1 = L2 = L, the LMIs (3.8) and (3.14) are equivalent to
each other.

3.3.2 Observer/controller combination

The choice of the observer/controller combination that renders the intercon-
nected system uniformly convergent and input-to-state convergent is based on
the following results presented in [100].

Property 3.3.3 [100] Consider the system

{

ż = F (z, y, w), z ∈ Rd

ẏ = G(z, y, w), y ∈ Rq.
(3.16)

Suppose that the z-subsystem is input-to-state convergent with respect to y
and w. Assume that there exists a class KL function βy(r, s) such that for any
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w
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z
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Figure 3.1: Schematic representation of the interconnected system (3.16).

piecewise continuous input (w, z), any solution of the y-subsystem satisfies

|y(t)| ≤ βy(|y(t0)|, t− t0). (3.17)

Then, the interconnected system (3.16) is input-to-state convergent.

A schematic representation of the interconnected system (3.16) is depicted in
Figure 3.1.

The following theorem combines Theorem 3.2.1, Theorem 3.3.1, Theorem
3.3.2 and Property 3.3.3 and shows how to design an output-feedback con-
troller that renders a continuous PWA system input-to-state convergent. The
output-feedback controller consists of an observer with exponentially stable
observer error dynamics and a state-feedback controller that renders the con-
sidered PWA system input-to-state convergent with respect to the observer
error dynamics and an exogenous input. This theorem represents an adapted
version of Theorem 2 in [100].

Theorem 3.3.4 Consider the continuous PWA system (3.1). Suppose that
the LMIs (3.4) and either (3.8) or (3.14) are feasible. Denote K = PsP

−1
c

and let L = P−1
o X be the observer gain L for observer (3.7) or L1, L2 for

observer (3.12). Then, system (3.1) in closed-loop with the dynamic controller
u = −Kx̂, where x̂ is generated by either observer (3.7) or (3.12) is input-to-
state convergent, with respect to the input w(t).

Proof Denoting the observer error ∆x := x− x̂, we can write the system (3.1)
in closed loop with the observer-based controller (3.7) (or (3.12)) and u = −Kx̂
as

ẋ = (Ai −B1K)x + bi −B1K∆x + Bw(t) for x ∈ Λi, (3.18a)

∆ẋ = g(x, u, w)− g(x + ∆x, u, w), (3.18b)

u = −K(x + ∆x), (3.18c)

where (3.18b) reflects either the observer error dynamics (3.9) or (3.13). Since
the LMIs (3.4) are feasible, system (3.18a) with (∆x,w) as inputs is input-
to-state convergent by Theorem 3.2.1. Due to the fact that the LMIs (3.8)
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or the matrix inequalities (3.14) are feasible, the corresponding observer error
dynamics are globally exponentially stable and ∆x satisfies

|∆x(t)| ≤ ce−β(t−t0)|∆x(t0)|, (3.19)

where the numbers c > 0 and β > 0 are independent of x(t), w(t). Applying
Property 3.3.3 we obtain that the interconnected system (3.18) is input-to-state
convergent with respect to the input w(t). �

3.4 Bound on the control input

In this section, the previous design procedure is adapted to guarantee that the
control action required to render a system convergent stays below a predefined
value, given a class of bounded disturbances and a compact set of initial condi-
tions. To bound the control action one needs, first, a restricted set in which the
system state resides irrespective of the effect of disturbance (i.e. a positively
invariant (PI) set for the system state). Secondly, one should relate this PI set
to a bound on the control input. These conditions should preferably have an
LMI form in order to facilitate the computationally efficient combination with
the previous LMIs.

We will provide such a computational characterization of a PI set and an
LMI formalism for the control input bound. We will do this following three
important technical lemmas, that will be proven next, and will be used to
obtain the main result (Theorem 3.4.5) of this section. This theorem provides
conditions under which there exists a PI set for the state of system (3.1)-(3.2)
and a saturation bound for the control input u while the system is input-to-
state convergent. The proof of the existence of the PI set for the system state
is based on a quadratic Lyapunov function V . The first lemma provides an
analytical (lower) bound on the rate of decay of V along solutions of system
(3.1)-(3.2) (towards their steady-state solution). The second lemma provides
conditions under which the control action of a system remains bounded given
the fact that the state lives in a bounded set at all times. The third lemma
shows how such a PI set can be obtained based on the quadratic Lyapunov
function V .

Lemma 3.4.1 Consider system (3.1a) and the linear static state-feedback law
(3.2). If there exists a feedback gain matrix K and a matrix P = PT > 0 that
satisfy (3.5), then there exists a constant α > 0 such that

P (Ai −B1K) + (Ai −B1K)T P ≤ −2αP, for i = 1, ..., l, (3.20)

where
α = min

i
{αi} > 0 (3.21)
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and

αi = −1

2
λmax(P

1
2 (Ai−B1K)P− 1

2 +P− 1
2 (Ai−B1K)T P

1
2 ) > 0, for i = 1, ..., l,

(3.22)
where λmax(·) represents the maximum eigenvalue of a symmetric matrix.

Proof Since the matrices K and P satisfy (3.5), it holds that

P (Ai −B1K) + (Ai −B1K)T P < 0, for i = 1, ..., l. (3.23)

By pre- and post-multiplying (3.23) by P− 1
2 we derive the following inequality

P
1
2 (Ai −B1K)P− 1

2 + P− 1
2 (Ai −B1K)T P

1
2 < 0, for i = 1, ..., l. (3.24)

Hence, it holds that

P
1
2 (Ai −B1K)P− 1

2 + P− 1
2 (Ai −B1K)T P

1
2 ≤

λmax(P
1
2 (Ai −B1K)P− 1

2 + P− 1
2 (Ai −B1K)T P

1
2 )I,

(3.25)

for i = 1, ..., l where I is a unity matrix of appropriate dimensions. Note
that λmax(P

1
2 (Ai − B1K)P− 1

2 + P− 1
2 (Ai − B1K)T P

1
2 ) < 0 since P

1
2 (Ai −

B1K)P− 1
2 + P− 1

2 (Ai − B1K)T P
1
2 is negative definite for any i ∈ {1, ..., l}.

Hence, by pre- and post-multiply (3.25) by P
1
2 , we obtain

P (Ai −B1K) + (Ai −B1K)T P ≤ −2αiP, for i = 1, ..., l, (3.26)

where αi as in (3.22). By choosing α = mini{αi} inequality (3.20) holds. This
completes the proof. �

Lemma 3.4.2 Consider x ∈ Rn, umax > 0, ρ > 0, the matrix P ∈ Rn×n with
P = PT > 0 and the matrix Ps ∈ Rk×n such that

[

u2
max/ρI Ps

PT
s P−1

]

≥ 0, (3.27)

with K := PsP . Then x ∈ Θρ := {ξ|ξT Pξ ≤ ρ} implies that ‖Kx‖ ≤ umax.

Proof We need to show that for all x ∈ Rn it holds that

xT Px ≤ ρ⇒ ‖Kx‖ ≤ umax. (3.28)

The right-hand side of (3.28), ‖Kx‖ ≤ umax, is equivalent to

xT KT Kx = xT PPT
s PsPx ≤ u2

max. (3.29)

Thus, we need to show that

xT Px ≤ ρ⇒ xT PPT
s PsPx ≤ u2

max. (3.30)
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Substituting the coordinate transformation x = P−1v in (3.30), shows that
(3.30) is equivalent to

vT P−1v ≤ ρ⇒ vT PT
s Psv ≤ u2

max. (3.31)

Clearly, the implication in (3.31) holds if

PT
s Ps

u2
max

≤ P−1

ρ
. (3.32)

Using Schur complements (see [15]) on (3.32), we obtain the requirement in
(3.27), which completes the proof. �

Remark 3.4.3 Note that the variables of (3.27) are P−1, Ps, which are the
same as in the LMIs (3.4) that guarantee convergence of the considered PWA
system. Moreover, in (3.27) we can choose ρ = 1 without loss of generality,
because the LMIs scale with ρ, i.e. if P−1, Ps is a solution to (3.27) for P

ρ , ρPs

is a solution to (3.27) for ρ = 1 (resulting in the same K).

Note that Θρ is a subset of the safe set S := {x ∈ Rn|‖Kx‖ ≤ umax‖
largest set for which ‖Kx‖ ≤ umax. However, in general, S is not a PI set
for the closed-loop (3.1a)-(3.2). As such, one often searches for the maximal
positively invariant set inside S for the closed-loop system (3.1a)-(3.2). As this
maximal PI set might be hard to construct, we will use Θρ instead, because we
have an approach to guarantee PI for this set.

This approach will be shown in the next lemma, where we use the norm
‖x‖P =

√
xT Px for a positive definite matrix P .

Lemma 3.4.4 Consider system (3.1) and the linear static state-feedback law
(3.2). Suppose there exist matrices P ∈ Rn×n with P = PT > 0 and Ps ∈ Rk×n

that satisfy the matrix inequalities

−P−1AT
i + PT

s BT
1 −AiP

−1 + B1Ps > 0, i = 1, ..., l, (3.33)

and define K := PsP . Then the following statements hold:

• Let an external input w(t) : R→ R be given. The set

Θγ = {x ∈ Rn|‖x‖2P ≤ γ}, (3.34)

with

γ =
1

α2
(max

i
{‖bi‖P }+ ‖B‖P sup

t∈R

‖w(t)‖P )2 (3.35)

and α as in (3.22), is a PI set for system (3.1)-(3.2) with disturbance
w(t). Moreover, Θγ characterizes an asymptotic ultimate upper bound
for the state of system (3.1)-(3.2) with disturbances w(t);
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• Any set
Θρ = {ξ|‖ξ‖2P ≤ ρ}, (3.36)

with Θγ ⊆ Θρ (i.e. γ ≤ ρ) is a positively invariant set for system (3.1)-
(3.2) with external input w(t).

Proof We will show that the ellipsoid Θγ is a PI set for the input-dependent
closed-loop system (3.1), (3.2) if the LMI (3.33) is feasible. Consider hereto the
closed-loop system (3.1), (3.2), as described in (3.3a), the quadratic Lyapunov
function V (x) = xT Px and the time-derivative of V that satisfies for x ∈ Λi

V̇ (x, t) = 2xT P ẋ = 2xT P (Ai −BK)x + 2xT P (Bw(t) + bi). (3.37)

The matrix inequality (3.33) implies that the matrix inequality (3.20) is satis-
fied for α as is Lemma 3.4.1.

Substitution of (3.20) in (3.37) yields

V̇ (x, t) ≤ −2αxT Px + 2xT P (bi + Bw(t))

= −2α‖x‖2P + 2(P
1
2 x)T [P

1
2 (bi + Bw(t))]

≤ −2α‖x‖2P + 2‖P 1
2 x‖‖P 1

2 (bi + Bw(t))‖,
(3.38)

for x ∈ Λi. Note that ‖P 1
2 x‖ =

√

(P
1
2 x)T P

1
2 x =

√
xT Px = ‖x‖P . Therefore,

(3.38) can be dominated as

V̇ (x, t) ≤ −2α‖x‖2P + 2‖x‖P ‖bi + Bw(t)‖P
≤ −2α‖x‖2P + 2‖x‖P supt∈R

‖bi + Bw(t)‖P
= −2‖x‖P {α‖x‖P − supt∈R

‖bi + Bw(t)‖P }.
(3.39)

Since it holds that

supt∈R
‖bi + Bw(t)‖P ≤ maxi{‖bi‖P }+ supt∈R

‖Bw(t)‖P
≤ maxi{‖bi‖P }+ ‖B‖P supt∈R

‖w(t)‖P ,
(3.40)

we obtain that V̇ (x, t) ≤ 0 as long as

‖x‖P ≥ α−1(max
i
{‖bi‖P }+ ‖B‖P sup

t∈R

‖w(t)‖P )

or
‖x‖2P ≥ α−2(max

i
{‖bi‖P }+ ‖B‖P sup

t∈R

‖w(t)‖P )2.

Consequently, the ellipsoid Θγ as defined in (3.21), (3.22), (3.34), (3.35) is
a PI set and characterizes an asymptotic ultimate bound to which all solutions
converge.

To prove the second statement, note that Θρ is a level set of V and Θγ ⊆
Θρ by the hypothesis. If x(t0) ∈ Θρ and x(t0) /∈ Θγ , then V̇ (x(t)) < 0 for
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t0 < t < t1, with t1 := inf{t ≥ t0|x(t) ∈ Θγ} (possibly t1 = ∞). Hence, for
all t ∈ [t0, t1] x(t) ∈ Θρ. If x(t1) ∈ Θγ (possibly for t1 = t0) then x(t) ∈ Θγ ,
∀t ≥ t1 since Θγ is a positively invariant set. Consequently, x(t) can not leave
Θρ for t ≥ t0, which proves the second statement. �

Now, we combine Lemmas 3.4.1, 3.4.2 and 3.4.4 to prove a result that pro-
vides conditions under which 1) the closed loop system (3.1a), (3.2) is rendered
uniformly convergent; 2) the controlled input is guaranteed to satisfy the bound
‖u‖ ≤ umax for a given bound on the disturbances and a bounded set of initial
conditions.

Theorem 3.4.5 Consider system (3.1). Suppose there exist Ps ∈ Rk×n and a
matrix P ∈ Rn×n with P = PT > 0 that satisfy the matrix inequalities (3.33)
and (3.27) for a given umax > 0 and ρ > 0 and define K := PsP . Then,

• the closed-loop system (3.1), (3.2) is uniformly convergent and input-to-
state convergent with respect to the input w(t);

• x(t) is asymptotically ultimately bounded to the set Θγ for specific bounded
disturbances, with Θγ and γ as in (3.34) and (3.35), respectively, and x(t)
denotes the solution of (3.1) with initial state x0 = x(t0) ∈ Θρ;

• Suppose Θρ given in (3.36) satisfies Θγ ⊆ Θρ, then for any x(t) ∈ Θρ,
it holds that ‖u(t)‖ ≤ ‖Kx(t)‖ ≤ umax for all t ≥ t0 and bounded
disturbance w(t).

Proof The LMI (3.33) guarantees uniform convergence and input-to-state con-
vergence of the considered closed-loop system based on Theorem 3.2.1.

Based on Lemma 3.4.4, it is obvious that for the input-dependent closed-
loop system (3.1)-(3.2) the ellipsoid Θγ as defined in (3.34)-(3.35), (3.22) is PI
if the LMI (3.33) is feasible. Based on Lemma 3.4.4, if Θγ ⊆ Θρ then Θρ is PI.
Thus, if x(t0) ∈ Θρ then x(t) ∈ Θρ ∀t ≥ t0. Moreover, based on Lemma 3.4.2
and the feasibility of the LMI (3.27) we conclude that ‖u(t)‖ = ‖Kx(t)‖ ≤ umax

as x(t) ∈ Θρ for all t ≥ t0. Hence, the proof is complete. �

Under the hypothesis x(t) ∈ Θρ for all t ≥ t0 of Theorem 3.4.5 the saturated
closed-loop system is still convergent in the compact set Θρ (see [101] for an
exact definition on convergent systems in compact sets) with the same steady-
state solution as the unsaturated system.

At this point, we will provide the procedure one has to follow to compute
the control gain K for the state-feedback law (3.2). As a first step, we choose
umax, an upper bound (Rmax := supt∈R

‖w(t)‖) for the disturbances w and we
set ρ = 1. As a second step, we compute P−1 and Ps by solving the LMIs
(3.27) and (3.33). Next, we compute K = PsP , γ and α (for γ and α we use
(3.35) and (3.21), (3.22), respectively). Finally, we check whether γ ≤ 1 (in
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other words Θγ ⊆ Θρ). If this is the case, then we know from Lemma 3.4.4 that
Θρ is PI and from Lemma 3.4.2 that the control input u is bounded by umax

for initial state in Θρ and all disturbances with ‖w(t)‖ ≤ Rmax. In case γ > 1,
then we cannot conclude whether Θρ is PI or not. Moreover, in that case we
cannot conclude that the system can be rendered (quadratic) convergent for
the given disturbances and initial states and satisfying the control bound umax.
Note that γ in (3.35) scales the bound Rmax on the disturbances. Therefore,
in case γ > 1 the satisfaction of the conditions of Theorem 3.4.5 can still be
satisfied for some smaller bound R̄max < Rmax on disturbances.

We studied here only the case of state-feedback. We postpone the discussion
on the applicability of the proposed bound for the output-feedback controller
to the end of Section 3.5.1.

3.5 Output bounds and performance measures

Using Theorem 3.4.5 and the fact that the input w is bounded, we will intro-
duce an asymptotic ultimate bound for the output of the considered class of
PWA systems in the following section. Such an asymptotic ultimate bound
for the system output can readily be used to asses the closed-loop attenuation
performance of PWA systems for a wide class of piecewise continuous distur-
bances.

3.5.1 Asymptotic ultimate boundedness of the output

The asymptotic ultimate bound on the system output that we introduce here
is valid for general piecewise continuous disturbances and applies to continuous
PWA systems.

Consider the 2-norm of the output y as defined in (3.1b):

‖y‖ = ‖Cx‖ ≤ ‖C‖‖x‖. (3.41)

Since P = PT > 0, it holds that

λmin(P )xT x ≤ xT Px
⇔ λmin(P )‖x‖2 ≤ ‖x‖2P
⇔ ‖x‖2 ≤ λ−1

min(P )‖x‖2P
⇔ ‖x‖ ≤ 1√

λmin(P )
‖x‖P .

(3.42)

Due to (3.41), (3.42) we have that

‖y‖ ≤ 1√
λmin(P )

‖C‖‖x‖P . (3.43)

In Theorem 3.4.5, we have shown that if the LMI (3.33) is feasible and w(t) is
bounded for all t ∈ R (Rmax := supt∈R

‖w(t)‖), then the following inequality
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provides an asymptotic ultimate bound on the state:

‖x‖P ≤
1

α
(max

i
{‖bi‖P }+ ‖B‖P sup

t∈R

‖w(t)‖P ). (3.44)

Using (3.43) yields an asymptotic ultimate bound on the system output:

‖y‖ ≤ 1

α
√

λmin(P )
‖C‖(maxi{‖bi‖P }+ ‖B‖P ‖P

1
2 ‖Rmax)

≤ ‖C‖maxi{‖bi‖P }

α
√

λmin(P )
+ ‖C‖‖B‖P ‖P

1
2 ‖

α
√

λmin(P )
Rmax =: Yb,

(3.45)

It is obvious that (3.45) provides an ultimate asymptotic bound for output y
for any disturbance w(t) that satisfies ‖w(t)‖ ≤ Rmax for all t. This bound
can be used, for example, to evaluate the performance of different controllers
in terms of disturbance attenuation. However, it can be conservative since it
is based on a quadratic Lyapunov function and it is applicable to the wide
class of piecewise continuous bounded disturbances. Therefore, for particular
disturbances of interest, it can be important to find more specific and tighter
bounds.

So far, we have developed bounds for the PWA system (3.1) in closed-loop
with the state-feedback law u = −Kx. In order to use the control input bound
as proposed in Section 3.4 and the ultimate bound on the output as proposed
in Section 3.5.1 in the output-feedback case, one can activate first the observer
and then, after ∆x has converged to zero, switch on the controller. In such a
situation, we can still apply the control input bounds and the outputs in the
output-feedback case.

As harmonic disturbances are very common in engineering practice, we
focus in the next section on this class of periodic disturbances.

3.5.2 Performance measures for periodic disturbances

Periodic (or in particular harmonic) disturbances arise in many mechanical
systems. For instance, in the specific application of the PWL beam they are
caused by mass unbalance excitation. In many of these systems the attenuation
of the response to this specific class of disturbances is of great concern for the
performance of these systems. Indeed, the presence of periodic disturbances
in mechanical systems is inevitable and disturbance amplification, especially
when the disturbance frequencies are close to the resonance frequencies of one or
more system’s elements, is undesirable. Indeed, it is well known that resonating
elements exhibit responses with very high amplitudes. This phenomenon very
often causes violent damages in the structure of a mechanical system and as
such is unwanted.

A bound on the system state or output, as introduced in the previous sec-
tion, provides a non-discriminating view on the disturbance attenuation for
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harmonic disturbances (and all other specific classes of disturbances satisfying
the amplitude bound), because this bound is uniform over all disturbances.
Accounting for the specific responses to these harmonic disturbances, which
may vary significantly over the disturbance frequency range, allows for a dedi-
cated performance assessment in terms of disturbance attenuation for this type
of disturbances (Bode-like plot for convergent systems). Obviously, such exact
response evaluation only makes sense if the steady-state solution is asymp-
totically unique (otherwise the performance could not be uniquely defined in
terms of these steady-state responses). It is exactly the uniform convergence
property, which we induce in the closed-loop system by means of feedback,
that ensures the existence, uniqueness and global asymptotic stability of the
steady-state solution for every given bounded disturbance. Moreover, conver-
gent systems exhibit the favorable property that the steady-state response to
periodic disturbances is also periodic with the same period time, see Chapter
2. This allows the introduction of so-called frequency-response functions (the
Bode-like plots we mentioned earlier) for nonlinear but convergent systems, see
[101], [102].

Now, let us illustrate the reasoning above by means of an example. Con-
sider system (3.1) and the control law (3.2) for the case that we have scalar
output y ∈ R. For a class of bounded disturbances w(t) (in this case har-
monic with constant amplitude) we compute the steady-state solution for the
open- and closed-loop system. For the open-loop system we consider the ‘worst’
stable steady-state solution (‘worst’ in the sense of largest maximum value of
supt∈R

‖y(t)‖). For the closed-loop system we use two different linear con-
trollers (u = −Kax, u = −Kbx) characterized by two feedback gains Ka, Kb

that render the closed-loop convergent.
For this example, let us define the disturbance attenuation performance as

the attenuation of the output response in steady-state ȳw to harmonic distur-
bances w with frequency ω and fixed amplitude R in a given frequency interval
[ωmin ωmax], with 0 < ωmin < ωmax, (see also Figure 3.2). For sake of simplic-
ity, we assume that the open-loop system is also uniformly convergent. Next,
we evaluate the performance of the closed-loop system, with controllers with
gains Ka and Kb. As a performance measure, we first use the ultimate bound
Yb in (3.45) or one of the bounds introduced in the papers [39], [47], [54], [109]
which predict the output bound for a general class of piecewise continuous dis-
turbances. Note that these bounds might very well be (almost) equal for both
control gains Ka and Kb, i.e. Yb(Ka) = Yb(Kb) = Yb. In Figure 3.2, we depict
this bound (thick solid line). Moreover, we plot the maximum absolute value of
the steady-state open-loop periodic output responses maxt∈[0, T ] ‖ȳw

ol(t)‖ over

one period T = 2π
ω (solid curve) and a similar measure for closed-loop periodic

output response maxt∈[0, T ] ‖ȳw
cl(t)‖ (dashed and dashed-dotted curves). The

dashed curve corresponds to the controller with gain Ka and the dashed-dotted
curve to the controller with gain Kb. Consequently, based on the asymptotic
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maxt∈[0, T ] ‖ȳcl,Ka
(t)‖

maxt∈[0, T ] ‖ȳcl,Kb
(t)‖

maxt∈[0, T ] ‖ȳol(t)‖

Figure 3.2: Asymptotic ultimate bound based on (3.45) (thick solid line), open-
loop periodic response maxt∈[0, T ] ‖ȳol(t)‖ (solid curve), closed-loop periodic
response maxt∈[0, T ] ‖ȳcl(t)‖ (dashed and dashed-dotted curves).

ultimate bound Yb(Ka) = Yb(Kb), the controllers perform equally well. Nev-
ertheless, based on Figure 3.2, it is obvious that the controller with gain Kb

performs better than the controller with gain Ka for disturbances in the fre-
quency range ω ∈ [ωmin, ωmax]. The comparison of Ka and Kb based on the
ultimate bound Yb cannot reveal such differences. Therefore, in the following
we propose performance measures based on computed steady-state solutions
for harmonic disturbances.

In general, responses with large amplitudes and high energy content result
in premature material fatigue of a mechanical system. Therefore, it is very
interesting to study control designs for mechanical systems that result in sys-
tems with small amplitudes and low energy content responses given periodic
disturbances. The foregoing motivates the need for performance measures that
reflect either or both the magnitude or energy of such periodic responses. These
performance measures can subsequently be used to evaluate and compare the
‘disturbance attenuation’ performance of different control designs. As already
mentioned, for uniformly convergent systems the steady-state response to a
given harmonic disturbance exists, is unique and has the same period as the
disturbance.

Using these unique steady-state responses, we propose a performance mea-
sure that is based on the maximum value of the Lp-norm (signal norm) of
these steady-state responses ȳω,R(t) for system (3.1)-(3.2) and disturbances
w(t) = R sinωt over a range of frequencies ω ∈ [ωmin, ωmax] and amplitudes
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R ∈ [Rmin, Rmax]. This ‘worst case’ performance measure is denoted by Πp
1,

p ∈ N including p =∞, and it is defined according to

Πp
1 =

πp
1

πp
1,ref

, 1 ≤ p ≤ ∞, (3.46)

with

πp
1 = max

R∈[Rmin Rmax]
{ max

ω∈[ωmin ωmax]
{‖ȳω,R‖Lp

}} for 1 ≤ p ≤ ∞, (3.47)

and

πp
1,ref = max

R∈[Rmin Rmax]
{ max

ω∈[ωmin ωmax]
{‖ȳω,R

ref ‖Lp
}} for 1 ≤ p ≤ ∞. (3.48)

The steady-state output response of system (3.1)-(3.2) for a certain reference

controller is denoted as ȳω,R
ref in (3.48). Note that the denominator in (3.46) is

used to provide a means of scaling. The Lp-norm of ȳ is defined as

‖ȳ‖Lp
=

{

1
T

∫ T

0
‖ȳ(t)‖pdt)1/p for 1 ≤ p <∞

maxt∈[0, T ] ‖ȳ(t)‖ for p =∞
(3.49)

because ȳ(t) is periodic with period T . Note that a value of Πp
1 less than 1 indi-

cates that the current controller performs better than the reference controller.
Note that, Π∞

1 is a hint of ‘worst case’ output ‘amplitude’ or peak value and
that Π2

1 is a performance measure accounts for the ‘worst case’ output energy.
Besides a ‘worst case’ performance measure such as Πp

1, we also propose a
measure that uses a more averaged summed quantity. We denote this measure
by Πp

2 and define it as

Πp
2 =

∫ wmax

wmin

∫ ωmax

ωmin
‖ȳω,R‖Lp

dωdR
∫ wmax

wmin

∫ ωmax

ωmin
‖ȳω,R

ref ‖Lp
dωdR

for 1 ≤ p ≤ ∞. (3.50)

In (3.50), ωmin and ωmax denote the lower and upper bound of the excitation
frequency interval of interest and, similarly, Rmin and Rmax denote the lower
and upper bound of the excitation amplitude interval of interest. As Πp

1, Πp
2 ∈

R+ is also a relative measure with respect to a reference controller.
These performance measures together with the frequency response functions

form a systematic way to study the performance of control designs that aim at
attenuating the amplitude of the steady-state system responses.

3.5.3 Performance-based control design for disturbance
attenuation of periodic disturbances

In this section, we consider the convergence-based controllers proposed in Sec-
tion 3.2 and 3.3 and the performance measures proposed in Section 3.5.2, in
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k1

k2

←− Non− convergent systems

control gains satisfying (3.33)
=> Convergence

control gains satisfying (3.33) and
(3.27) => Convergence + input bound

control gains do not satisfying (3.33),
but the system is still convergent.

Figure 3.3: Convergent and non-convergent systems.

order to develop a systematic approach for disturbance attenuation of PWA
systems in the face of harmonic disturbances.

By solving the LMIs (3.27) and (3.33) we guarantee, firstly, that the system
(3.1) in closed-loop with the resulting linear static state-feedback law (3.2) is
uniformly convergent. Secondly, we guarantee that the control input u(t) is
bounded using Theorem 3.4.5, i.e. ‖u(t)‖ ≤ umax for t ≥ t0 and for all dis-
turbances w(t) with ‖w(t)‖ ≤ Rmax, t ∈ R and initial states x(t0) in the set
Θρ = {x|‖x‖2P ≤ ρ} at time t0. Last but not least, we desire to design a
controller, satisfying the above two properties, that attenuates periodic distur-
bances acting on a PWA system adequately. In the present work, we follow a
brute force approach that just generates many controllers satisfying (3.27) and
(3.33) and evaluate their performance using the measures in Section 3.5.2. We
aim at finding the controller that has the best performance (among the con-
sidered controllers) for the given disturbance attenuation problem. Of course,
a more structured approach would be to make the proposed performance mea-
sures objective functions in an optimization problem in which the LMIs (3.27)
and (3.33) are constraints. Since Πp

1 and Πp
2 are not analytically available, this

is not a straightforward task. However, it is of interest and certainly a topic
for future research.

To make our approach a bit more specific, consider a PWA system (3.1) with
x ∈ R2 and with control gain K = [k1, k2]. By solving the LMIs (3.27) and
(3.33) we guarantee that this system is uniformly convergent and that ‖u(t)‖ ≤
umax for t ≥ t0, for all w(t) with ‖w(t)‖ ≤ Rmax, t ∈ R and x(t0) ∈ Θρ as
outlined in Lemma 3.4.4. The control gain elements k1 and k2 satisfying these
conditions are depicted in Figure 3.3 by the set with dark grey color. Note that
in this figure the axes are related to the elements k1 and k2 of the controller gain
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Figure 3.4: Performance measure illustration.

K. The set with the light grey color in Figure 3.3 includes the control gains
that satisfy only the LMI (3.33). As we have already mentioned in Section 3.2,
the LMI (3.33) is only a sufficient condition for quadratic convergence. These
control gains assure that the closed-loop system is uniformly convergent by
using a control action that may be larger than umax. The set within the dashed
curve includes control gains that render the closed-loop system convergent, but
do not satisfy LMI (3.33). Finally, the set outside the dashed curve includes
control gains that do not render the closed-loop system convergent. We do not
have a full characterization of the set of controllers indicated by the dashed
curve.

The dark grey region is actually the region of interest. Moreover, to select
the ‘best’ controller in terms of disturbance attenuation in this region we will
use the performance measure introduced in (3.46). A graphical representation
of this evaluation is given in Figure 3.4. In this figure, we depict the perfor-
mance measure Π∞

1 . Based on the measure in Figure 3.4, we would promote
the control gain Ka = [k1a, k2a] because it gives the minimum value for Π∞

1 .
This approach will be adopted in Chapter 4 in order to evaluate the disturbance
attenuation properties of different controllers for an experimental application
with PWL characteristics.

3.6 Discussion

We have proposed a convergence-based control design strategy for perturbed
PWA systems in order to achieve disturbance attenuation. The uniform con-
vergence property was exploited for various reasons. More specifically, the
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uniform convergence property guarantees stabilization, it was used to develop
bounds for the system’s input and output and several performance measures.
Moreover, it was also used for observer-based output-feedback control design.
In particular, the fact that a nonlinear system has a unique globally asymptot-
ically stable steady-state solution when it is uniformly convergent for bounded
disturbance signals was core to our design.

First, we used state-feedback controllers to render the closed-loop of a PWA
system convergent and to attain disturbance attenuation. However, as often
in practice the whole state is not available for feedback, we have also devel-
oped output-based controllers. These output-based controllers consist of an
interconnection of model-based observers and a state-feedback that uses the
estimated state of the observers as its input. We also showed that the ‘sep-
aration principle’ holds in this case in the sense that we are able to obtain
input-to-state convergent closed-loop systems. In this way, we are able to sep-
arate the observer design from the controller design.

Moreover, we provided additional conditions under which the control action
induced by these controllers can be bounded for a given bound on the distur-
bances and for a compact set of initial conditions. Such a guaranteed bound
on the control action is very important for the implementation of the proposed
control design strategy on real mechanical systems as we always have to deal
with actuation limitations in practice.

To compare the disturbance attenuation properties of different control laws,
we have proposed performance measures. These performance measures consist
of 1) asymptotic ultimate bounds on the output for all disturbance signals
that have the same upper bound. This measure does not discriminate between
particular shapes or classes of disturbances, such as harmonic functions, 2)
frequency response functions that provide Bode-like plots for the class of har-
monic disturbances, 3) certain quantitative characterizations (Πp

1 and Πp
2) that

capture ‘worst case’ or ‘averaged’ information of the steady-state responses in
one number.

An interesting extension of this work is the formulation of the presented
performance-based control design strategy in terms of an optimization problem.
In such a problem setting, the proposed performance measures (Πp

1 or Πp
2) can

be used as objective functions and the convergence property together with the
control input saturation as LMI-based constraints for the optimization problem.
Such an approach may be more efficient in constructing a high performance
controller, although at the moment it is open how to tackle such complex
optimization problem.
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4.6 Summary

4.1 Introduction

In this chapter, the controller design strategy presented in Chapter 3 is imple-
mented on an experimental setup of a mechanical beam system with piecewise
linear restoring characteristics. This experimental setup consists of two flexible
steel beams. One of them behaves as a one-sided spring and the other is period-
ically excited by a rotating mass unbalance mechanism. A typical system model
can be cast in the form of a PWA system with exogenous perturbations, see
Section 4.2. The presence of periodic excitations and the one-sided spring cre-
ates complex dynamical phenomena [58] such as the coexistence of steady-state
solutions and bifurcations. These nonlinear dynamic phenomena are present
in many mechanical motion systems with one-sided flexibilities when they are
excited by periodic disturbances. In such engineering systems, the coexistence
of steady-state solutions in combination with high amplitude responses, due
to ‘nonlinear’ resonances, is an undesirable phenomenon because it limits the
system’s performance and leads to early material failure of machine parts. Due
to the fact that the examined setup produces this kind of behavior, it can be
considered as a benchmark for this type of systems. In this chapter, we aim to
eliminate the coexistence of multiple steady-state solutions in order to be able
to uniquely assess the ‘magnitude’ of the closed-loop vibrations. Moreover, we
aim to attenuate the effect of the periodic disturbances (induced by the mass
unbalance) on the vibrations of the beam system. Thereby, we illustrate the
applicability of the control synthesis results developed in Chapter 3.
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In Section 4.2, the experimental setup is given and a model describing this
setup is presented. The accuracy of the model with respect to the real system
is studied based on simulations and experiments. Due to the fact that the
full state of the system is not available for feedback, in Section 4.3, we briefly
discuss the observer that will be used to estimate the system state. A more
extensive discussion of the observer design and its performance in both simula-
tions and experiments is presented in Appendix B. In Section 4.4, a number of
output-feedback controllers are designed for and implemented on this system to
attenuate periodic disturbances (using the results of Chapter 3). The structure
of these output-feedback controllers, as proposed in Section 3.3, consists of an
observer and a state-feedback controller. We use a state-feedback that is based
on the notion of input-to-state convergence. More specifically, in Section 4.4.1,
it is studied whether the examined state-feedback controllers render the PWL
system convergent and in Section 4.4.2, it is studied whether these controllers
render the PWL system convergent given a saturation constraint, introduced
in Section 3.4, in the control input. The ability of the controllers to achieve
disturbance attenuation is studied in Sections 4.5.1 and 4.5.2 based on bounds
and performance measures for the system’s output, as proposed in Sections
3.5.1 and 3.5.2, respectively. Finally, in Section 4.5.3 the controller with the
‘best’ disturbance attenuation properties is applied to the real experimental
system. Its performance is evaluated based on extensive experimental tests.

4.2 Experimental setup

In order to evaluate experimentally the controller design strategy proposed in
Chapter 3, we will use an experimental setup that is available in the Dynamics
and Control Technology Laboratory at Eindhoven University of Technology. In
the remainder of this thesis we will call this setup the PWL beam system.

4.2.1 Description of the PWL beam system

The experimental setup (see Figures 4.1 and 4.2) consists of a steel beam sup-
ported at both ends by two leaf springs. A second beam, that is clamped at
both ends, is located parallel to the first one and acts as a one-sided spring.
This one-sided spring represents a non-smooth nonlinearity in the dynamics
of the beam system (beam and one-sided spring). The beam is excited by a
force generated by a rotating mass-unbalance, that is mounted at the middle of
the beam. A tacho-controlled motor, that enables a constant rotational speed,
drives the mass-unbalance. An actuator is mounted on the beam in order to
control the beam dynamics. In the experimental setup two positions can be
measured by using linear voltage displacement transducers and the acceleration
of the middle of the beam by using an accelerometer. For further information
on the experimental setup the reader is referred to [58] and [132].
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Figure 4.1: Photo of the experimental setup.
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Figure 4.2: (a) Schematic representation of the experimental PWL beam setup
(b) characteristic lengths and variables of the experimental PWL beam system.

When the beam moves from its rest point towards the one-sided spring, the
spring is active. Therefore, the system has different dynamics on this side than
on the opposite side. In the first case, the system dynamics is determined by
the stiffness of the beam and the spring and, in the second case, only by the
beam stiffness. The switching boundary between the two dynamic regimes is
present at zero displacement of the middle of the beam. In case the one-sided
spring has linear restoring characteristics, the beam system can be described
as a PWL system.

4.2.2 Model of the PWL beam system

In order to describe the behavior of the PWL beam system accurately, a finite
element model (FEM) has been developed, see [14]. Due to the large number of
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the model DOFs, the simulation of the nonlinear responses is computationally
expensive. In order to decrease the computation time we develop a reduced
model, which is based on FEM, by using a dynamic component mode synthesis
reduction method, the so-called Rubin method [30]. The full order model has
111 degree-of-freedom (DOF), and the reduced model will have four degrees
of freedom (see later). The relation between the DOF of the FEM and the
reduced model is given by

p = Tq, (4.1)

where p ∈ R111 denotes the DOFs of the FEM model and q ∈ R4 the DOFs of
the reduced model. The transformation matrix T ∈ R111×4 obtained from the
model reduction procedure has the following structure:

T = [τ1 | τ2 | · · · | τ111]
T , (4.2)

where τi ∈ R4. For further details of the reduction method the reader is referred
to [14]. The dynamics of the system described by the 4DOF model is given by

Mr q̈ + Br q̇ + Krq + fnl(q) = h1 w(t) + h2 u, (4.3)

where h1 = [1 0 0 0]T , h2 = [0 1 0 0]T and
q = [qmid qact qξ,1 qξ,3]

T . Herein, qmid is the displacement of the middle
of the beam and qact is the displacement of the point where the actuator is
mounted at the beam, see Figure 4.2(b). Note that the actuator does not
act in the middle of the beam. Moreover, qξ,1, qξ,2 reflect the contribution
of the first and third eigenmode of the beam that occur at 21Hz and 55Hz,
respectively. The contribution of the second eigenmode occurs at 23Hz and
is neglected because it hardly contributes to the transversal system dynamics,
see [14]. Mr, Br and Kr are the mass, damping and stiffness matrices of the
reduced model, respectively. We apply a periodic excitation force

w(t) = R(ω) sin ωt, (4.4)

which is generated by the rotating mass-unbalance at the middle of the beam.
Herein, ω is the excitation frequency and R(ω) the amplitude of the excitation
force. The amplitude R(ω) has the form

R(ω) = maω2, (4.5)

where ma = mere, with me and re the mass unbalance and the distance of
me with respect to the center of mass of the mass-unbalance mechanism, re-
spectively. The frequency dependency of R(ω) is due to the rotating mass-
unbalance. More specifically, the higher the rotational velocity of the mass un-
balance is, the higher the centrifugal forces due to the mass unbalance, hence
the excitation amplitude R(ω). The numerical values of ma, me and re are:
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1.014 · 10−3 kg
m2 , 0.078 kg, 0.013 m, respectively. The range of excitations is 10-

60 Hz. Below 10 Hz the model accuracy is rather limited, while the frequency
of 60 Hz is the maximum excitation frequency that the motor can provide to
the system. Moreover, in (4.3) fnl is the restoring force of the one-sided spring:

fnl(q) = knl h1 min(0, hT
1 q) = knl h1 min(0, qmid), (4.6)

where knl = 1.6 · 105 N
m is the stiffness of the one-sided spring.

In state space form, the model (4.3), (4.4), (4.6) can be written as in (3.1)
for l = 2 and bi = 0 (bi-modal PWL system):

ẋ =

{

A1x + Bw + B1u for HT x ≤ 0

A2x + Bw + B1u for HT x > 0
(4.7a)

u = Kx, (4.7b)

with A1x = A2x on HT x = 0, x = [qT q̇T ]T ∈ R, H = [hT
1 0T

4×1],

A1 =

[

04×4 I4×4

−M−1
r (Kr + knl h1 hT

1 ) −M−1
r Br

]

,

A2 =

[

04×4 I4×4

−M−1
r Kr −M−1

r Br

]

,

B =

[

04×1

M−1
r h1

]

, B1 =

[

04×1

M−1
r h2

]

.

The numerical values of the matrices Mr [kg], Kr [N/m] and Br [Ns/m] are:

Mr =









3.38062 1.2961 2.0957 −0.4958
1.2961 38.6548 16.3153 −14.6109
2.0957 16.3153 8.6864 −6.2413
−0.4958 −14.6109 −6.2413 6.5893









,

Kr = 106









2.4151 0.0521 1.1445 −0.0199
0.0521 6.3914 2.6420 −2.4342
1.1445 2.6420 1.6270 −1.0107
−0.0199 −2.4342 −1.0107 1.0542









,

Bext =









109.3370 25.8569 61.4792 −9.8913
25.8569 294.2009 128.7864 −108.5757
61.4792 128.7864 85.1265 −49.2662
−9.8913 −108.5757 −49.2662 55.5620









.

The output of the model (4.3), (4.4), (4.6) will be the transversal displace-
ment of a point on the beam. This displacement is one of the 111 DOFs of the
model. The state-space form of this output is

y = pi = τiq = [ τT
i 0T ]x = Cx, (4.8)
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where pi is the ith DOF of the 111DOF model, τi
T is the ith row of the trans-

formation matrix T and C = [τi
T 0T ] is the output matrix for the system

(4.7a).

4.2.3 Evaluation of the model for the PWL beam system

In this section, we will use, following earlier work presented in [14], simulation
and experimental results to show that the model of the PWL beam system
captures with accuracy the dynamics of the real system. In addition to that,
we will numerically show that the considered system is not convergent since
it exhibits multiple coexisting steady-state solutions. For this purpose, we
present periodic responses of the open-loop PWL beam system ((4.7a) with
u = 0) for harmonic disturbances, as in (4.4). These responses correspond to
the transversal displacements yA and qmid of two points on the beam (point A
and middle of the beam, see Figure 4.2(b)) and they are based on numerical
computations and measurements. For the numerical computation of these re-
sponses the collocation method [9] is used. Note that qmid is the first element
of the system state x and yA is a system output. In general, the state elements
and the output of system (4.7a) depend on both the excitation frequency ω
and the excitation amplitude R. Therefore, x and y can be expressed as xω,R

and yω,R, respectively. As we have mentioned in the previous section, the ex-
citation amplitude is a function of ω, see (4.5). Therefore, xω,R and yω,R can
be written as xω and yω, respectively.

In Figures 4.3(a), 4.3(b), the plots of

max
t∈[0 T ]

|q̄ω
mid(t)|/R(ω) and max

t∈[0 T ]
|ȳω

A(t)|/R(ω)

for the open-loop system are depicted for the excitation frequency range [10, 60]
Hz, where q̄ω

mid(t) and ȳω
A(t) are the displacements qmid and yA in steady-state

for an excitation frequency ω and an excitation amplitude R(ω). Note that
these plots denote every value of

max
t∈[0 T ]

|q̄ω
mid(t)|/R(ω) and max

t∈[0 T ]
|ȳω

A(t)|/R(ω)

for each ω
2π ∈ [10, 60]Hz. Moreover, for the PWL beam system the state

solutions x̄ω(t) scale with R(ω), i.e. x̄ω(t)|/R(ω) is independent of R(ω), as
shown in [58] and [41]. By comparing the curves that correspond to mea-
surements (thick solid curves) with those that correspond to numerical com-
putations (thin solid and dashed curves), we can conclude that the model of
the open-loop PWL beam system describes the steady-state dynamics of the
real system accurately. Note that a time domain validation in the form of a
comparsion between these measurements and the numerical computations is
available in Appendix B. Based on both measurements and numerical com-
putations, we showed that qmid and yA exhibit stable harmonic steady-state
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Figure 4.3: (a) maxt∈[0 T ] |qω
mid(t)|/R(ω); (b) maxt∈[0 T ] |yω

A(t)|/R(ω), based on
the open-loop model of the PWL beam system (thin solid and dashed curves)
and measurements of the real system (thick solid curve).

responses in the frequency range of [10, 36]Hz and stable 1/2-subharmonic
steady-state responses in [36, 54]Hz. Based on numerical computations, we
also notice that in the excitation frequency range [36, 54]Hz there also ex-
ist unstable harmonic steady-state responses (dashed curve in Figures 4.3(a),
4.3(b)). It is obvious that these responses cannot be measured in practice.
Note that for ω

2π ∈ [34, 47]Hz the experimental results are slightly shifted to
the lower frequencies. The differences in the simulated and measured results in
the latter frequency range are caused by model inaccuracies and noise in the
measurements. Furthermore, for frequencies around 55Hz one can notice, in
both simulations and measurements, the contribution of the third eigenmode in
the system. From the aforementioned analysis, it is clear that the PWL beam
system is not convergent since it exhibits multiple coexisting steady-state so-
lutions given certain harmonic excitation signals.

4.3 Observer design implementations on the
PWL beam system

We will use the switching observer (3.12) presented in Section 3.3.1 to esti-
mate the state of the PWL beam system as we consider the situation where
we can only measure the transversal displacement of one point on the beam
(this implies that the full state is not available for feedback). In Appendix B,
we design an observer based on the results of Theorem 3.3.1 and an observer
based on the results of Theorem 3.3.2. Both observers are implemented on
the PWL beam system. It is shown that these observers are able to estimate
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the system state adequately and that the observer error dynamics is globally
exponentially stable for both observers. Note that the observer error is defined
as the difference between the real state of the system and the estimated state
of the system. Moreover, the performance of these observers is investigated for
different observer gain settings in both simulations and experiments. Herein,
both the transients convergence speed and the steady-state sensitivity of the
observer error to modelling errors and measurement noise are taken into ac-
count to support a choice for a particular gain setting. The observer gain with
the best performance is the switching observer (3.12) with observer gains:

L1 = [98.475 88.090 − 284.05 − 5.254 386.35 4626.0 − 18411.0 766.50] ,

L2 = [98.781 88.212 − 284.35 − 5.2469 1910.2 5031.8 − 19635.0 627.17] .

In the following section, we will use the switching observer (3.12) for the
PWL beam system in an output-feedback control design and we will show
that the interconnection of the observer with a state-feedback controller and
the PWL system is stable. This is essential, due to the fact that a successful
design of an observer and a state feedback controller does not necessarily imply
a successful output-feedback design.

4.4 Output-feedback controller design for the

PWL beam system

In the first part of this section, we will show that output-feedback controllers,
with the structure proposed in Section 3.3, can attenuate periodic disturbances
acting on the PWL beam system. More specifically, we will show that the pro-
posed output-feedback controllers are stable, are able to render the PWL beam
system convergent and are suitable for disturbance attenuation for periodic dis-
turbances within a given frequency range. These output-feedback controllers
consist of a state-feedback controller that uses the state estimates (derived from
the switching observer (3.12)) of the PWL beam system. In the second part
of this section, we will account for a bound for the control input, as proposed
in Section 3.4, in the aforementioned output-feedback controllers and we will
study the controller performance for disturbance attenuation in the face of this
bound.

4.4.1 Output-feedback controller: Ideal case

To render the model of the PWL beam system globally uniformly convergent
we use, firstly, a high gain controller, secondly, a controller based on experience
and engineering insight for the PWL beam system and, finally, two controllers
with a bound on the control action, based on Theorem 3.4.5.
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Consider the system (4.7a), and the control law

u = Kx̂ (4.9)

with x̂ the state estimate based on the observer (3.12). The observer gains
are computed based on the LMIs in (3.14) and they are equal to those used in
Appendix B.

High gain controller

The control gain K (denoted as KHG) of a controller that guarantees con-
vergence for the system (4.7) is computed by solving LMI (3.33) using the
LMITOOL for MATLAB [38]. The numerical values of KHG are

KHG = 107 · [6.4257 0.1538 − 1.8210 0.0576 0.0042 − 0.0002 0.0002 0.0001].

As we will show below these values are significantly larger than the values we
obtain for the other control gains and they also lead to high control action (as
will be shown in Figure 4.8). For the numerical values of the corresponding P
matrix (PHG), see Appendix A.

Controller based on engineering insight

Clearly, a whole range of control gains K satisfy condition (3.33). Based on
engineering insight, we choose a control gain K (denoted as KEI for this case)
that adds damping to the nonlinear resonances of the system. Using the LMI
condition (3.33) we check whether the resulting closed-loop system is conver-
gent. Based on trial and error, we notice that by adding damping in qmid,
we render the system convergent and reduce the contributions of the first two
resonances to all elements of the system state. Hereto, we choose KEI of the
form

KEI = [0 0 0 0 kEI 0 0 0], with kEI > 0;

i.e we add damping at the middle of the beam. The value of KEI that is
selected is

KEI = 103 · [0 0 0 0 32.0 0 0 0].

For the corresponding numerical values of P (from now on denoted as PEI),
see Appendix A.

Controllers based on constructive LMI conditions for an input satu-
ration bound

A more constructive way to choose control gains K that do not lead to high
control values is by using the LMI condition (3.33) together with the LMI
condition (3.27) that ensures bounds on the control action u (we will provide
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further information on these controllers in Section 4.4.2). For the present case,
we compute two control gains denoted as KIS,1 and KIS,2 based on these
LMIs. In order to compute these gains we add a component of the form µI,
with µ > 0 and I a unity matrix of proper dimension, to the right-hand side of
(3.33). Subsequently, we choose different values for µ and solve the resulting
LMI together with the LMI (3.27). The control gains derived in this way also
satisfy the LMI (3.33). The obtained numerical values of KIS,1, KIS,2 and µ
are

KIS,1 = [−7524.4 4831.3 − 16196.0 499.03 26.791 54.566 − 236.63 − 0.2323],

µIS,1 = 1.5

and

KIS,2 = [−36723.0 1389.0 − 38083.0 1068.5 15.589 3.7828 − 276.22 − 1.1345],

µIS,1 = 10.

The numerical values of the P matrices corresponding to KIS,1 and KIS,2

(denoted by PIS,1 and PIS,2, respectively) are given in Appendix A.
By using numerical analysis, we compute the steady-state responses of sys-

tem (4.7) (with K being either KHG, KEI , KIS,1 or KIS,2). Based on this
analysis, there is only one steady-state solution of (4.7) for every exogenous
input R(ω) sin ωt. This fact implies that indeed system (4.7) is uniformly con-
vergent, as guaranteed by the theory. In Figures 4.4(a), 4.4(b) and 4.5, we plot
maxt∈[0 T ] |q̄ω

mid(t)|/R(ω), maxt∈[0 T ] |q̄ω
act(t)|/R(ω) and maxt∈[0 T ] |ȳω

A(t)|/R(ω)

for the open- and closed-loop system, with T = 2π
ω . The symbol ·̄ in

maxt∈[0 T ] |q̄ω
mid(t)|/R(ω), maxt∈[0 T ] |q̄ω

act(t)|/R(ω) and
maxt∈[0 T ] |ȳω

A(t)|/R(ω) denotes the fact that we consider a steady-state solu-
tion. In these figures, the thin solid line and the dotted lines correspond to
open-loop responses, while the thin dashed, the thin dash-dotted, the thick
dash-dotted and the thick solid curves correspond to closed-loop responses.
The frequency range of interest is ω

2π ∈ [10, 60]Hz.
For a better understanding of these results also time responses of qmid and
yA are shown in Figures 4.6 and 4.7 for the control gain KIS,1. In these
figures, qmid(t) and yA(t) are depicted for three different initial conditions
x0,i, i = 1, 2, 3:

x0,1 = 10−4[−8.529 − 328.4 24.70 56.72 − 226.0 234.8 234.4 − 7.413],

x0,2 = 10−4[−11.51 − 44.33 3.335 7.658 − 30.51 31.70 31.65 − 1.000],

x0,3 = 2 · 10−3[−11.51 − 44.33 3.335 7.658 − 30.51 31.70 31.65 − 1.000].

The excitation frequencies and the force amplitudes for the examined cases are
ω
2π = 20Hz, A = 18N and ω

2π = 43Hz and A = 50N, respectively.
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act(t)|/R(ω), based
on the open-loop (thin solid and thick dashed lines) and the closed-loop system
(4.7) (dashed, thin dash-dotted, thick dash-dotted and thick solid lines).

Based on Figures 4.4, 4.5 and 4.6-4.7, we can conclude that the closed-loop
PWL beam system exhibits a unique steady-state solutions for all four control
gains KHG, KEI , KIS,1, KIS,2. This fact indicates that the controlled system
is indeed uniformly convergent and allows for a unique performance assessment
in terms of disturbance attenuation.

Figures 4.4, 4.5 also provide a lot of insight in the disturbance attenua-
tion properties of the controllers. Note that here under the term disturbance
attenuation we define the suppression of the vibrations in the generalized co-
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ordinates qmid, qact and in the output yA. More specifically, in these figures we
show that the control gain KHG significantly suppresses the first two resonance
peaks while it amplifies the third one (especially visible in Figures 4.4(b) and
4.5). The fact that the amplitudes of qmid, qact and yA are increased in the third
resonance frequency is remarkable because it shows that the ‘fixation’ (due to
high gain control KHG) of the beam in an additional position (the actuator
location) is not enough for overal disturbance attenuation. More specifically,
the beam fixation in an additional position only decreases the amplitude of the
transversal displacements of the points that are near the additional fixation and
does not achieve attenuation of the amplitude of the transversal displacement
of every point on the beam. On the contrary, it may even give rise to new
resonances that deteriorate the system performance in terms of disturbance
attenuation. Furthermore, the application of the high-gain controller KHG in
the experimental PWL beam system is not favorable from a practical point
of view, because, firstly, it leads to measurement noise amplification which is
undesirable for the system performance and, secondly, it leads to control input
saturation. In addition to that, a high control gain implies large control efforts
for the suppression of the system resonance peaks. This is also illustrated in
Figure 4.8. In this figure, we notice that the control force uHG(t) that corre-
sponds to the control gain KHG is significantly larger than that for the other
control gains (we will provide detailed information about this figure in Section
4.4.2). A more sophisticated way to overcome such high gain control design is
the control design based on engineering insight of the experimental PWL beam
system. Nevertheless, based on Figures 4.4, 4.5, we see that the control gain
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Figure 4.6: qmid(t) and yA(t) for different initial conditions and ω
2π =20Hz and

R=18N and control gain KIS,1.
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R=50N and control gain KIS,1.



62

Convergence-based controller design implementation on a PWL beam
system

10 15 20 25 30 35 40 45 50 55 60
10

0

10
1

10
2

10
3

10
4

10
5

10
6

 

 

umax

maxt≥t0 |uHG(t)|

maxt≥t0 |uEI(t)|

maxt≥t0 |uIS,1(t)|
maxt≥t0 |uIS,2(t)|

Figure 4.8: Control constraint umax (thick dash line) and maxt≥t0 |u(t)| for
all frequencies ω

2π ∈ [10 60]Hz for KHG (thin solid curve), KEI (dash-dotted
curve), KIS,1 (thick solid curve) and KIS,2 (thin dash curve).

KEI leads to similar system behavior as in the case of KHG (suppression of
the responses in the first two resonance frequencies, though significant ampli-
fication of the responses in the third resonance frequency). Finally, based on
Figures 4.4, 4.5 and 4.8, we notice that the control gains KIS,1, KIS,2 lead to
a good performance of the closed-loop system in terms of disturbance attenua-
tion since the responses of qmid, qact and yA are significantly suppressed in the
first two dominant resonances. Moreover, the responses in the third resonance
(although they are larger than in open-loop) they are smaller than those related
to the control gains KHG and KEI . Furthermore, the control action related
to the control gains KIS,1, KIS,2 is much smaller than for the gains KHG and
KEI . Finally, as we have already mentioned before, by adding damping in
qmid we reduce the contributions of the first two resonances to all elements of
the system state. This is also shown in the Figures 4.4, 4.5. More specifically,
in these figures we show that indeed the closed-loop responses related to the
control gains KHG, KEI (with damping in qmid equal to 42000 and 32000, re-
spectively) are significant smaller than those related to the control gains KIS,1,
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KIS,2 (with damping in qmid equal to 26.791 and 15.589, respectively).
The aforementioned analysis based on the Figures 4.4, 4.5 can only give a

qualitative feeling on the controller’s performance, although it provides a lot of
insight in the disturbance attenuation properties of the controllers. Therefore,
in Section 4.5 we will quantify the disturbance attenuation properties of the
controllers by using the quantitative performance measures presented in Section
3.5.3. More specifically, we will relate the disturbance attenuation definition
with the performance measures given in Section 3.5.2 and we will evaluate
the disturbance attenuation properties of the controllers by using these perfor-
mance measures (Πp

1,Π
p
2), the ultimate asymptotic bounds and the saturation

bounds presented in Chapter 3.
In the following section, we evaluate the controllers that render the PWL

beam system convergent while respecting the input saturation bound. This
bound is specified by the maximum control effort that the actuator, used in
the examined system, can provide to the system (see Section 4.4.2).

4.4.2 Output-feedback controller: Input saturation

In the experimental setup, we have to deal with a maximum control effort of
75N and also with fixed amplitudes of the harmonic disturbances (due to avail-
able fixed mass-unbalance and the excitation frequency range under study).
So, given the fixed setup specifications, we would have to enforce 75N as a
control input bound. Although it will turn out later (see Appendix C and Sec-
tion 4.5.3) that some of the developed controllers will perform well using this
bound, theoretically (using the synthesis techniques based on the control input
constraints LMIs for a specified set of initial conditions) we cannot guarantee
the satisfaction of the control bound. Therefore, we will start by assuming a
maximum control effort of umax = 650N for which the LMIs are feasible and
analyze the resulting controllers later when umax = 75N is used. Note that the
situation of umax = 650N is still realistic and practical. Namely, if we would
implement a different actuator that can provide the 650N (or we could lower
the amplitude of the disturbances, i.e. consider the case of a smaller mass un-
balance), the theoretical developments would result directly in well functioning
controllers without saturation. This indicates the practical value of the devel-
oped machinery. We return to these issues later.

The controllers that render the PWL beam system convergent by using con-
trol action u(t), with |u(t)| ≤ umax, are considered to be suitable for practical
implementation. Other controllers are rejected. As such, we will compute the
maximum value maxt≥t0 |u(t)| of the control input u for all ω

2π ∈ [10 60]Hz
for the aforementioned controllers, with t0 the moment that the controller is
engaged. The control inputs that correspond to KHG, KEI , KIS,1 and KIS,2

are denoted by uHG, uEI , uIS,1 and uIS,2, respectively. For a given excitation
frequency ω and control gain K, the maximum absolute value of the controller
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action maxt≥t0 |u(t)| can be assessed by performing closed-loop simulations for
a set X0 of initial conditions. The set X0 is selected such that it contains all
initial conditions for which we desire to converge to the unique (closed-loop)
steady state solution without saturating the actuator. Such simulation-based
assessment, although computationally expensive, can be carried out for all four
controllers KHG, KEI , KIS,1 and KIS,2.

Before we provide the control inputs for the controllers with gains KHG,
KEI , KIS,1 and KIS,2 (using simulations), it will be shown that Theorem 3.4.5
can be used in the examined system to bound the control action u for the gains
KIS,1 and KIS,2 (|uIS,1(t)|, |uIS,2(t)| ≤ umax). Based on that theorem, it is
known that if the LMIs (3.27), (3.33) are feasible and, given a bound Rmax

on the disturbances, there exist sets Θρ and Θγ , as defined in the theorem,
with Θγ ⊆ Θρ, then |u(t)| ≤ umax ∀ t ≥ t0, as long as x0 ∈ Θρ. Therefore,
the main concern here is, firstly, to find a feasible solution for the LMIs (3.27),
(3.33) and, secondly, to examine whether the designed set of initial conditions
X0 is a subset of Θρ. To find a feasible solution for the LMIs (3.27), (3.33),
we choose, first, umax, Rmax and set ρ = 1 (see also the procedure described
in Chapter 3). Next, we solve the LMIs (3.27), (3.33), we compute Ps, P−1,
K and, then, we compute γ from (3.35). In case γ ≤ ρ = 1 (i.e. Θγ ⊆ Θρ is
satisfied) the results of Theorem 3.4.5 can be applied to the given system for
the chosen values of the parameters umax, Rmax, ρ and for any set of initial
conditions X0 satisfying X0 ⊆ Θρ. When γ > 1, we can scale the variables
umax and ρ in the upper left entry of LMI (3.33) such that for the new values
of these variables (unew

max and ρnew) the results of Theorem 3.4.5 are applicable
(i.e Θγ ⊆ Θρnew

) as long as X0 ⊆ Θρnew
. This is the case when we consider

larger unew
max. Alternatively, in case umax is fixed and γ > ρ = 1, we can also opt

to reduce the set of considered disturbance inputs leading to a smaller γnew.
Indeed, if we would set γnew = 1, then this leads to (using (3.35)):

sup
t∈R

‖w(t)‖P =
α−maxi{‖bi‖P }

‖B‖P
, (4.10)

which is a bound for the disturbances for which we can guarantee the avoidance
of actuator saturation for the given control gain matrix. Let us now provide a
concise form of the aforementioned procedure for applying Theorem 3.4.5:

• Choose values for umax, Rmax and set ρ = 1;

• Solve the LMIs (3.27), (3.33), and compute Ps, P−1, K and γ;

• check the value of γ,

1. if γ ≤ 1 apply the results of Theorem 3.4.5 for X0 ⊆ Θρ,

2. if γ > 1
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Figure 4.9: Graphical illustration of the situation where ρ < γ for the PWL
beam system for umax = 75N and Rmax = 144N.

I. (Changing control bound) either, compute ρnew and unew
max from

(unew
max)2

ρnew
=

u2
max

1
, (4.11)

such that ρnew ≥ γ and then apply the results of Theorem 3.4.5
for X0 ⊆ Θρnew

;

II. (Changing the magnitude of the disturbances) or set γnew = 1
and compute supt∈R

‖w(t)‖P for the given umax from (4.10) and
then apply the results of Theorem 3.4.5 for X0 ⊆ Θρ with ρ = 1.

In the considered study, we choose as Rmax the maximum amplitude of the
disturbances acting on the PWL beam system. Namely,
Rmax = maxω∈[20π, 120π]{maω2} (see also (4.5)). The numerical value of Rmax

is equal to 144N. Moreover, the available control action for the PWL beam
system is umax = 75N. The values of γ related to the control gains KIS,1 and
KIS,2 are γIS,1 = 53.48 and γIS,2 = 61.30, respectively. Due to the fact that
γIS,1, γIS,2 > 1, the results of Theorem 3.4.5 cannot be applied for the given
system for a control action that is limited to 75N and for ρ = 1. In other words,
for umax = 75N, we cannot guarantee that actuator saturation is avoided.

Let us now illustrate this situation by means of a graphical example depicted
in Figure 4.9. Consider initial conditions satisfying x0 ∈ X0. In Figure 4.9,
X0 is depicted by a polyhedral (light grey color) and Θ1 is denoted by an
ellipsoid (white color). The fact that γ > 1 = ρ implies that the ellipsoid
Θγ lies outside Θ1 (Θγ * Θ1). Therefore, in Figure 4.9, we depict Θγ by an
ellipsoid (thick solid line) that includes Θ1. Note that Θγ is PI (for the closed-
loop system without actuator bounds). The set S, as defined in Section 3.4
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and reflecting the set of states for which |u| ≤ umax, with u = Kx is depicted
by the polyhedral with the dark grey color. In this particular case, Θ1 ⊆ S
(guaranteed by LMI) but Θγ * S. Since Θρ is not shown to be PI, there might
be initial states x0 ∈ Θ1 for which the trajectory leaves Θ1 (but remains in
Θγ) and also leaves S. Hence, saturation of the control bound can occur.

In the sequel, we will 1) choose a ‘desirable set’ of initial conditions X0, 2)
compute a set Θρnew

such that it includes the sets Θγ and X0, 3) compute the
new bound on the control action unew

max using (4.11). This procedure guarantees
that Θγ ⊆ Θρnew

and X0 ⊆ Θρnew
and saturation can be avoided for initial

conditions x0 ∈ X0.
A ‘realistic set’ of initial conditions should include the state values that

the system can have at the moment we activate the controller. This set can
be chosen as follows. It is assumed either that the controller is switched on
when the observer error dynamics has converged to zero and the open-loop
PWL beam system is in steady-state (this can be easily achieved in practice by
operating the system with the observer switched on for few seconds before we
switch on the controller) or that the closed-loop system starts at rest (i.e the
controller is on when the disturbance starts acting). This assumption implies
either that x0 is on a steady-state solution of the open-loop system (x̄ol) or
that x0 = 0. We define X0 as X0 = {x̄ω

ol(t)| ω
2π ∈ [10, 60]Hz, t ∈ [0, 2π

ω ]}∪{0}.
This set is a subset of a set Θµmax

that has the form of Θγ and Θρ and is
defined as follows:

Θµmax
= {x0|xT

0 Px0 ≤ µmax},
with

µmax = { max
ω∈[20π, 120π]

{ max
t∈[0, 2π/ω]

‖x̄ω
ol(t)‖P }}. (4.12)

The values of µmax for PIS,1 and PIS,2 are µIS,1
max = 72.26 and µIS,2

max, = 73.95,

respectively. Note that µIS,i
max, for i = 1, 2, are computed by using extensive

open-loop simulations (simulations as used to compute the open-loop part of
Figure 4.8). Now, we would like to guarantee that if we activate the controller,
while the system resides in one of its open-loop steady-state periodic solutions
or while the system is at rest (i.e. x0 ∈ X0 ⊆ Θµmax

), then the control input
constraints is satisfied.

Let us now compute a set that can be chosen to represent Θρnew
. In order to

apply Theorem 3.4.5 for the given system, Θρnew
should include Θγ and Θµmax

.

Any Θρnew
with ρnew ≥ max{γ, µmax} is suitable. Let us choose ρ

KIS,1
new = 72.5

and ρ
KIS,2
new = 74.

The numerical values of unew
max related to the control gains KIS,1 and KIS,2

can now be computed using (4.11) and are given by unew
max,IS,1 = 637.5N and

unew
max,IS,2 = 645N, respectively. Based on Theorem 3.4.5 we can now guarantee

that in the examined system the control action u is bounded by uIS,1
max and
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Figure 4.10: Graphical illustration of the results presented in Theorem 3.4.5
for the PWL beam system for umax = 650N and Rmax = 144N.

uIS,2
max as long as we use the control gains KIS,1 and KIS,2, respectively, and

take initial conditions in X0.
Let us now illustrate the aforementioned situation by means of a graphical

example depicted in Figure 4.10 (for the case of umax = 650N). Consider initial
conditions satisfying x0 ∈ X0. In Figure 4.10, X0 is denoted by a polyhedral
(light grey color). The fact that Θγ ⊆ Θρnew

, Θµmax
⊆ Θρnew

and X0 ⊆ Θµmax

implies that the ellipsoid depicts Θρnew
(grey color) includes the ellipsoids that

depict Θγ (white color), Θµmax
(light grey color) and the polyhedral that de-

picts X0 (light grey color), respectively. We also depict the set S (largest
polyhedral in Figure 4.10) which includes both Θρnew

and Θγ . Moreover, the
fact that Θγ ⊆ Θρnew

also implies that Θρnew
is PI. Due to the fact that Θρnew

is PI and x0 ∈ X0, the solution x(t) will stay in Θρnew
at all times. Since

Θρnew
⊆ S, the control action u will not saturate when starting in X0. In ad-

dition to that, x(t) will converge to the set Xcl that includes the steady-state
solution of the closed-loop system. By definition, Xcl (depicted by the smallest
set in Figure 4.10) is a subset of Θγ .

Next, we will present simulation results for the PWL beam system for
umax = 650N and for a large number of initial conditions taken from the set X0.
In Figure 4.8, maxt≥t0 |u(t)| for all ω

2π ∈ [10 60]Hz for KHG, KEI , KIS,1 and
KIS,2 are depicted together with the bound umax. In this figure, it is shown that
the curves related to maxt≥t0 |uIS,1(t)| (thin dashed curve), maxt≥t0 |uIS,2(t)|
(thick solid curve) are below the line that represents umax (thick dashed line).
Note that the curves related to maxt≥t0 |uIS,1(t)| and maxt≥t0 |uIS,2(t)| almost
coincide with each other. Moreover, the curves representing maxt≥t0 |uHG(t)|
(thin solid curve) and maxt≥t0 |uES(t)| (dash-dotted curve) are above the line
corresponding to umax for almost all ω. Consequently, the control gains KIS,1

and KIS,2 are suitable for practical implementation (given umax = 650N), while
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KHG, KEI are not.

4.5 Performance evaluation

In this section, we will study the performance of the controllers with control
gains KIS,1 and KIS,2 in terms of disturbance attenuation for periodic ex-
citations for two different cases. In the first case, we use an upper bound
umax = 650N for the control input and the controllers guarantee the satis-
faction of the control input constraints. In the second case, we use an upper
bound umax = 75N for the control input and the controllers do not guarantee
the satisfaction of the control input constraints (this is the case in the exper-
imental PWL beam system). Firstly, we will more precisely define what we
mean with the term disturbance attenuation. Next, we will use the asymptotic
ultimate upper bound for the system output, as is presented in 3.5.1 and the
performance measures presented in Section 3.5.2 for the case of umax = 650N
to quantitatively asses disturbance attenuation properties of the controllers.
Based on this output bound and these performance measures we will promote
the controller with the ‘best’ disturbance attenuation properties. Finally, we
will apply the ‘best’ controller on the experimental PWL beam system and we
will study its disturbance attenuation properties based on experimental results
and the proposed performance measures (in the fase of actuator constraints).

4.5.1 Controller evaluation based on an asymptotic ul-
timate upper bound for the system output

As motivated in Section 4.4.1, we consider as output for system (4.7) the first
two elements of x (x1 = qmid, x2 = qact) and the system output yA.

y1 = Cx1
x = x1, y2 = Cx2

x = x2, y3 = CAx = yA. (4.13)

The numerical values of the output matrices are given by

Cx1
= [1 0 0 0 0 0 0 0],

Cx2
= [0 1 0 0 0 0 0 0],

CA = [−0.317 − 0.334 − 0.667 − 0.3069 0 0 0 0].

According to Theorem 3.4.5, in order to apply the ultimate bound (3.45) for
each element yi, i = 1, 3 of the output, the following constraints have to be
satisfied:

• Boundedness of the disturbances w;

• Feasibility of the LMIs (3.33) for the numerical parameter values of the
system;
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Figure 4.11: (a) maxt∈[0 T ] |q̄ω
mid(t)|/R(ω); (b) maxt∈[0 T ] |q̄ω

act(t)|/R(ω); (c)
maxt∈[0 T ] |ȳω

A(t)|/R(ω) of the closed-loop system (4.7) for KIS,1 (solid curve)
and KIS,2 (dashed curve).
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• Satisfaction of the condition Θγ ⊆ Θρ (γ ≤ ρ).

It is easy to show that w is bounded by a constant Rmax = maxω{R(ω)}, where
R(ω) is given in (4.5). As it was shown in the previous section, the closed-loop
system for the control gains KIS,1 and KIS,2 is uniformly convergent since the
LMIs (3.33) are feasible. Moreover, the condition Θγ ⊆ Θρnew

is satisfied for
the ρnew and γ values given in Section 4.4.2 (for the case that umax = 650N).

The asymptotic ultimate bound (3.45) for y1 = qmid, y2 = qact and y3 = yA

has the form

Y qmid

b = ‖Cx1
‖Gb, Y qact

b = ‖Cx2
‖Gb Y yA

b = ‖CA‖Gb (4.14)

with

Gb =
‖B‖P ‖P

1
2 ‖

α
√

λmin(P )
Rmax, (4.15)

since b1, b2 = 0. In other words,

lim
t→∞

‖y1,2,3(t)‖ ≤ ‖Cx1,x2,yA
‖Gb. (4.16)

Here, we denote Y qmid

b,(IS,1), Y qact

b,(IS,1), Y yA

b,(IS,1) and Y qmid

b,(IS,2), Y qact

b,(IS,2), Y yA

b,(IS,2) to

be the Y qmid

b , Y qact

b and Y yA

b bounds, as in (4.14), related to KIS,1 and KIS,2,
respectively. The numerical values of these bounds are Y qmid

b,(IS,1) = Y qact

b,(IS,1) =

0.152, Y yA

b,(IS,1) = 0.131 and Y qmid

b,(IS,2) = Y qact

b,(IS,2) = 0.164, Y yA

b,(IS,2) = 0.141,

respectively.
In Figures 4.11(a)-4.11(c), the graphs of

max
t∈[0 T ]

|q̄ω
mid(t)|/R(ω),

max
t∈[0 T ]

|q̄ω
act(t)|/R(ω)

and
max

t∈[0 T ]
|ȳω

A(t)|/R(ω)

are plotted for the closed-loop system for KIS,1, KIS,2. In these figures, the
solid curve corresponds to KIS,1, while the dashed curve corresponds to KIS,2.
The frequency range of interest is ω

2π ∈ [10, 60]Hz. The scaled values of the
ultimate asymptotic output bounds are:

Y qmid

b,(IS,1)/Rmax = Y qact

b,(IS,1)/Rmax = 0.00105, Y yA

b,(IS,1)/Rmax = 9.1 · 10−4

and
Y qmid

b,(IS,2) = Y qact

b,(IS,2) = 0.0013, Y yA

b,(IS,2)/Rmax = 9.81 · 10−4.
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Based on these numerical values and the Figures 4.11(a)-4.11(c), we notice that

max
t∈[0 T ]

|q̄ω,(IS,1)
mid (t)|/R(ω) < Y qmid

b,(IS,1)/Rmax,

max
t∈[0 T ]

|q̄ω,(IS,1)
act (t)|/R(ω) < Y qact

b,(IS,1)/Rmax,

max
t∈[0 T ]

|ȳω,(IS,1)
A (t)|/R(ω) < Y yA

b,(IS,1)/Rmax

and
max

t∈[0 T ]
|q̄ω,(IS,2)

mid (t)|/R(ω) < Y
qmiq

b,(IS,2)/Rmax,

max
t∈[0 T ]

|q̄ω,(IS,2)
act (t)|/R(ω) < Y qact

b,(IS,2)/Rmax,

max
t∈[0 T ]

|ȳω,(IS,2)
A (t)|/R(ω) < Y yA

b,(IS,2)/Rmax,

which is guaranteed by the theory. If one is interested in general disturbance
signals then the asymptotic ultimate output bounds Y qmid,qact,yA

b may very well
be a good indication for performance. However, if one is interested in harmonic
disturbances, then this might be a far too conservative measure; e.g. in the case
under study

max
t∈[0 T ]

|q̄ω
mid(t)|/R(ω), max

t∈[0 T ]
|q̄ω

act(t)|/R(ω), max
t∈[0 T ]

|ȳω
A(t)|/R(ω)

are in the order of 10−5 while Y qmid,qact,yA

b /Rmax are in the order of 10−3. Ad-
ditionally, these asymptotic ultimate bounds do not discriminate in terms of
the different steady-state behaviors for different excitation frequencies. Conse-
quently, we cannot compare which of these controllers performs better in terms
of disturbance attenuation for specific disturbances (such as harmonic ones).
In order to overcome this problem, we are going to study the performance
measures presented in Section 3.5.2, which are based on computed periodic,
asymptotically unique, steady-state responses of the system.

4.5.2 Controller evaluation based on performance mea-
sures

In the sequel, a definition of the term disturbance attenuation for this work
is given and the performance measures presented in Section 3.5.2 are used,
with minor adaptations based on the knowledge on the experimental setup, to
promote the controller with the ’best’ disturbance attenuation properties.

The attenuation of

max
ω∈[20π 120π]

max
t∈[0 T ]

|q̄ω
mid(t)|, (4.17)



72

Convergence-based controller design implementation on a PWL beam
system

max
ω∈[20π 120π]

max
t∈[0 T ]

|q̄ω
act(t)|, (4.18)

max
ω∈[20π 120π]

max
t∈[0 T ]

|ȳω
A(t)|, (4.19)

and
∫ 120π

20π

max
t∈[0 T ]

|q̄ω
mid(t)|dω, (4.20)

∫ 120π

20π

max
t∈[0 T ]

|q̄ω
act(t)|dω (4.21)

∫ 120π

20π

max
t∈[0 T ]

|ȳω
A(t)|dω (4.22)

are together defined as disturbance attenuation. The reason for choosing qmid,
qact and yA as system outputs and, consequently, as disturbance attenuation
variables is that they represent physical entities (transversal displacements of
the middle of the beam, of the point where the actuator is mounted on the
beam and of the point A in Figure 4.2(b)) and these variables can be easily
measured. In general, one can choose as output any displacement on the beam.
Since, both in experiments and simulations, we only have knowledge on the
steady-state solutions on a discrete set of frequencies, we will approximate the
integrals by their corresponding Riemmann sums.

Consider now the performance measures Πp
1, Πp

2, defined in (3.46), (3.50),
for p = ∞ and outputs qmid, qact and yA. As we have already mentioned in
Section 4.2.3, in the examined system, the excitation amplitude is a function
of ω, see (4.5). Therefore, the steady-state output response ȳω,R in (3.46) and
(3.50) only depends on ω and therefore ȳω,R can be written as ȳω. For the
same reason, the maximization over the disturbance amplitude R in Π∞

1 and
the integration over a range in R in Π∞

2 can be omitted.
Using the aforementioned remarks, the performance measures Π∞

1 and Π∞
2

for qmid, qact and yA can be written as:

Π∞,qmid

1 =
maxω∈[ωmin ωmax] ‖q̄ω

mid(t)‖L∞

maxω∈[ωmin ωmax] ‖q̄ω
mid,ref (t)‖L∞

, (4.23)

Π∞,qact

1 =
maxω∈[ωmin ωmax] ‖q̄ω

act(t)‖L∞

maxω∈[ωmin ωmax] ‖q̄ω
act,ref (t)‖L∞

, (4.24)

Π∞,yA

1 =
maxω∈[ωmin ωmax] ‖ȳω

A(t)‖L∞

maxω∈[ωmin ωmax] ‖ȳω
A,ref (t)‖L∞

, (4.25)

Πqmid,∞
2 =

∫ ωmax

ωmin
‖q̄ω

mid(t)‖L∞
dω

∫ ωmax

ωmin
‖q̄ω

mid,ref (t)‖L∞
dω

, (4.26)
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Πqact,∞
2 =

∫ ωmax

ωmin
‖q̄ω

act(t)‖L∞
dω

∫ ωmax

ωmin
‖q̄ω

act,ref (t)‖L∞
dω

, (4.27)

ΠyA,∞
2 =

∫ ωmax

ωmin
‖ȳω

A(t)‖L∞
dω

∫ ωmax

ωmin
‖ȳω

A,ref (t)‖L∞
dω

. (4.28)

The values of ωmin and ωmax are 20π rad
s and 120π rad

s , respectively (see also in
Section 4.2.2). It is obvious that the performance measures in (4.23)-(4.28) are
directly related to the disturbance attenuation definition for the PWL beam
system and, consequently, is a sensible choice to evaluate different controllers
for their disturbance attenuation properties.

At this point, the controllers KIS,1 and KIS,2 will be compared by using
these performance measures. As a reference control gain we choose KIS,2.
By computing the values of the performance measures in (4.23)-(4.28) for qmid,
qact, yA and for control gains KIS,1 and KIS,2 we derive the following numerical
values: Π∞,qmid

1 = 1.007, Π∞,qact

1 = 0.767, Π∞,yA

1 = 0.651, Π∞,qmid

2 = 1.013,
Π∞,qact

2 = 0.991, Π∞,yA

2 = 0.993. These computations are based on the infor-
mation on the closed-loop steady-state responses as depicted in Figure 4.11.
These performance measures clearly show that the control gain KIS,1 sup-
presses the vibrations in qact and yA to a higher extent than the control gain
KIS,2, since the performance measures Π∞,qact

1 = 0.767, Π∞,qact

2 = 0.991 and
Π∞,yA

1 = 0.651, Π∞,yA

2 = 0.993 are smaller than 1. On the other hand,
the control gain KIS,2 suppresses the vibrations in qmid to a higher extent
than the control gain KIS,1 since Π∞,qmid

1 = 1.007 and Π∞,qact

2 = 1.013. The
aforementioned conclusion also agrees with the observations based on Figures
4.11(a)-4.11(c). More specifically, in these figures maxt∈[0 T ] |q̄ω

mid(t)|/R(ω),
maxt∈[0 T ] |q̄ω

act(t)|/R(ω) and maxt∈[0 T ] |ȳω
A(t)|/R(ω) are plotted for the closed-

loop system for KIS,1 and KIS,2. In these figures, the solid curve corresponds
to KIS,1, while the dashed curve corresponds to KIS,2. The frequency range
of interest is [10, 60]Hz. Based on these figures, it is concluded, once again,
that KIS,1 suppresses qact and yA more than KIS,2 does, while the situation is
opposite in qmid. Note that in an integral sense (see value of the Π2-measures)
the performance difference between KIS,1 and KIS,2 is rather small. However,
when considering peak values (see values of the Π1-measures), KIS,1 performs
significantly better; especially with respect to qact and yA.

At this point, we will study the level of disturbance attenuation achieved
in the closed-loop system based on the performance measures in (4.23)-(4.28)
by comparing it to the open-loop behaviour. For the computation of these
measures we will consider the stable steady-state solutions of the open-loop
system. As a reference controller we choose KIS,1. By computing the values of
the proposed performance measures, denoted here as Π∞,qmid

1,ol , Π∞,qact

1,ol , Π∞,yA

1,ol ,

Π∞,qmid

2,ol , Π∞,qact

2,ol and Π∞,yA

2,ol , it is concluded that the periodic disturbances
acting on the PWL beam are considerably suppressed in the closed-loop system
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since,
Π∞,qmid

1,ol , Π∞,qact

1,ol , Π∞,yA

1,ol , Π∞,qmid

2,ol , Π∞,qact

2,ol , Π∞,yA

2,ol > 1.

The numerical values of the considered performance measures are:

Π∞,qmid

1,ol = 22.961, Π∞,qact

1,ol = 24.043, Π∞,yA

1,ol = 22.586,

Π∞,qmid

2,ol = 13.038, Π∞,qact

2,ol = 15.221, Π∞,yA

2,ol = 14.894.

These results also agree with the observations based on Figures 4.4, 4.5, where
it is shown that the open-loop responses are considerably larger than the closed-
loop responses for almost all ω

2π ∈ [10 60]Hz.

4.5.3 Experiments

In this section, we will implement the observer/controller combination of (3.12),
(4.9) with

L1 = [98.475 88.090 − 284.05 − 5.254 386.35 4626.0 − 18411.0 766.50] ,

L2 = [98.781 88.212 − 284.35 − 5.2469 1910.2 5031.8 − 19635.0 627.17]

(see also Appendix B) and K = KIS,1 on the experimental PWL beam system.
We will show, based on experimental results and the performance measures
presented in Section 4.5.2, that this observer/controller combination is able to
render this system convergent and significantly attenuate the vibrations caused
by the periodic disturbances acting on it. Note that for the remainder of this
section we will use only the responses of qmid and yA because there are no
available measurements of the response qact, since there are only two linear
variable displacement transducers on the setup (one is located in qmid and the
other in yA).

As it has been mentioned before, the available actuator in the experimental
PWL beam system, can only provide a control action limited to umax = 75N
for frequencies in the range of ω

2π ∈ [10 60]Hz. It is obvious that in this
case the control input will be saturated even when using control gains KIS,1

and KIS,2, see Figure 4.8. However, in Appendix C, it is shown based on
simulations that the control gain KIS,1 results in a closed-loop system with a
unique steady-state solution (x̄cl(t)) and a control action in steady-state that is
smaller than 75N. Consequently, no saturation occurs in that case. Moreover,
the resulting closed-loop steady-state solution is exactly the same with the
steady-state solution of the closed-loop system of the non-saturated control
input. Therefore, we achieve the same disturbance attenuation level as in the
non-saturated case. Finally, due to the fact that on x̄cl(t) no saturation occurs
the case that the controller is turned on before the perturbation will work.

In Figures 4.12 and 4.13, we depict the measured and simulated steady-
state transversal displacements qmid and yA. By comparing the measured and
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Figure 4.12: Open- and closed-loop steady-state responses of ȳA using simula-
tions and measurements.

simulated displacements, it is concluded that the model of the interconnected
system can reconstruct with high accuracy the steady-state dynamics of the
real PWL beam system (see also Section 4.2.3 for the open-loop model valida-
tion). In these figures, it is shown that the closed-loop system exhibits unique
steady-state solutions ∀ ω

2π ∈ [10, 60]Hz. This confirms that the experimental
closed-loop PWL beam system is (locally) uniformly convergent. The differ-
ence between simulations and measurements is due to measurement noise and
model uncertainties, as in the case of the open-loop system. Around 53Hz,
in both simulations and measurements, one can notice the contribution of the
third eigenmode to the system. Based on these figures, it is obvious that this
contribution is larger in the closed-loop system than the open-loop system.
Nevertheless, the related resonance peaks of the closed-loop response are very
small (maximum peak response of both qmid and yA around 2 · 10−5 m) with
respect to the open-loop resonance peaks at ω

2π = 19Hz and ω
2π = 43Hz (maxi-

mum peak response of qmid around 4 · 10−4 m and of yA around 3.5 · 10−4 m).
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Figure 4.13: Open- and closed-loop steady-state responses of q̄mid using simu-
lations and measurements.

Moreover, the performance measures
∫ 120π

20π

max
t∈[0 T ]

|q̄ω
mid(t)|dω,

∫ 120π

20π

max
t∈[0 T ]

|q̄ω
act(t)|dω and

∫ 120π

20π

max
t∈[0 T ]

|ȳω
A(t)|dω

of the closed-loop system are also significantly smaller than those in the open-
loop system. Therefore, we can say that significant disturbance attenuation is
achieved.

In Figure 4.14, umax and maxt∈[0 T ] |ū(t)| (i.e. the maximum (absolute value
of the) actuator force in steady-state) for the interconnected system are de-
picted using measurements and simulations. Based on this figure, the results
based on simulations (solid curve) and measurements (dashed curve) are sim-
ilar and maxt∈[0 T ] |ū(t)| ≤ umax at all times, for both cases. In these figures,
umax = 75N is depicted with a dash-dotted line. The small differences be-
tween the simulated and measured results are, most probably, due to model
inaccuracies and measurement noise.

For a better understanding of the results shown in Figures 4.12 and 4.13,
also time responses of qmid and yA are given in Figures 4.15-4.18. In these
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Figure 4.14: The actuator force in steady-state; simulations and measurements.

figures, the time responses of qmid and yA are depicted for three different initial
conditions x0,i, i = 1, 2, 3 and two excitation frequencies. More specifically,
in the main plot of these figures the measured responses of qmid and yA are
depicted (for x0,3) from the moment the observer is switched on until the
moment the system reaches its steady-state. In the left-hand subplots, the
transient of these responses is shown for x0,i, i = 1, 2. Finally, in the right-hand
subplots, the steady-state responses are presented for x0,i, i = 1, 2, 3. Based
on these subplots, once again, it is confirmed that the system is convergent
since all solutions converge to a unique steady-state solution with period T
equal to the excitation period. The frequencies and amplitudes of the periodic
disturbances in Figures 4.15, 4.16 and in Figures 4.17, 4.18 are ω

2π = 20Hz,
R = 16 N and ω

2π = 43Hz, R = 74 N , respectively. The values of the initial
conditions x0,i, i = 1, 2, 3 for ω

2π = 20Hz and ω
2π = 43Hz are:

x0,1 = [1.7845 · 10−3, 2.0815 · 10−3, 5, 1631 · 10−5, 1.0761 · 10−4]
x0,2 = [6.7622 · 10−4, 8.7611 · 10−4, 7.1132 · 10−4, 9.3131 · 10−4]
x0,3 = [6.4401 · 10−6, 3.4354 · 10−6, 3, 6317 · 10−6, −8.8223 · 10−6]
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Figure 4.15: Measured yA(t) for R = 16N and ω
2π = 20Hz for x0,i, i = 1, 2, 3.

and

x0,1 = [9.5569 · 10−4, 1.0931 · 10−3 −5.6771 · 10−5, −9.0715 · 10−5]
x0,2 = [−6.6816 · 10−4, −7.1977 · 10−4 −6.9195 · 10−4, −7.2106 · 10−4]
x0,3 = [6.4401 · 10−6, −1.3860 · 10−6 2.0495 · 10−6, 2.2913 · 10−6],

respectively.
The initial conditions are obtained by doing the following three experiments:

1. x0,1 : the disturbance w(t) is acting on the beam, the beam is in steady-
state and the observer and controller are switched off. Subsequently, the
observer and the controller are switched on simultaneously at the initial
time corresponding to x0,1.

2. x0,2 : the disturbance w(t) is acting on the beam, the beam is in steady-
state, the observer is switched on and the controller is still switched off.
Subsequently, the controller is switched on at the initial time correspond-
ing to x0,2.
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Figure 4.16: Measured qmid(t) for R = 16N and ω
2π = 20Hz for x0,i, i = 1, 2, 3.

3. x0,3 : the disturbance w(t) is not acting on the beam and the observer
and controller are switched on. Subsequently, the disturbance w(t) is
activated at the initial time corresponding to x0,3.

The comparison of the plots calculated for the open- and closed-loop system,
depicted in Figure 4.12 and 4.13, shows that for the frequency ranges where
the open-loop exhibits resonance peaks with high amplitudes, the closed-loop
system responses are significantly smaller than those of the open-loop system.
Based on this comparison, it is concluded that the effect of the disturbances
w(t) to the PWL beam is attenuated due to the control force u. Note that
especially the resonances are suppressed. This can also be noticed in Figure
4.19, where the time response of qmid and yA in steady-state are shown. In
these figures, the dashed line is the open-loop steady-state solution, while the
solid line is the closed-loop steady-state solution. The excitation frequencies
for these cases are 20Hz and 43Hz, respectively.

At this point we will study the level of disturbance attenuation achieved in
the closed-loop system based on the performance measures in (4.23)-(4.28). For
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Figure 4.17: Measured yA(t) for R = 74N and ω
2π = 43Hz for x0,i, i = 1, 2, 3.

the computation of these measures we will consider the steady-state open-loop
responses and the steady-state closed-loop responses. As a reference controller
we choose KIS,1. By computing the values of the proposed performance mea-
sures, denoted here as Π∞,qmid

1,ol,exp, Π∞,yA

1,ol,exp, Π∞,qmid

2,ol,exp and Π∞,yA

2,ol,exp, it is concluded
that the periodic disturbances acting on the PWL beam are considerably sup-
pressed in the closed-loop system since

Π∞,qmid

1,ol = 14.00, Π∞,yA

1,ol = 12.50,

Π∞,qmid

2,ol = 8.613, Π∞,yA

2,ol = 6.193.

The conclusion derived based on the performance measures agrees with
those derived from the observations of Figures 4.12 and 4.13. Namely, signifi-
cant disturbance attenuation is achieved.
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Figure 4.18: Measured qmid(t) for R = 74N and ω
2π = 43Hz for x0,i, i = 1, 2, 3.

4.6 Summary

In this chapter, we implemented a convergence-based output-feedback control
design on a real PWL system and evaluated the performance of this controller
in terms of disturbance attenuation. This performance evaluation is based
on ultimate bounds and performance measures for the system’s (measured)
periodic responses. The evaluation shows that the proposed design is able to
significantly attenuate the influence of periodic disturbance to the system. The
output-feedback controller is a combination of a state-feedback controller and a
model based switching observer. This observer exponentially recovers the state
of the experimental setup.

More specifically, in Section 4.2 we have presented an experimental setup
that can be modeled as a PWL system and we showed that a four degree-of-
freedom model can accurately describe the dynamics of the experimental setup.
In Section 4.3 we have used a switching observer to estimate the state of the
experimental system as the full state of the system is measured. In Section
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Figure 4.19: Experimental open- and closed-loop time responses of yA(t),
qmid(t), in steady-state, for (a), (b) R = 16N, ω

2π = 20Hz and (c), (d) R = 74N,
ω
2π = 43Hz.

4.4, we have designed four different output-feedback controllers that render the
PWL beam system convergent and we have studied, on a model level, their
applicability to the system and their performance in terms of disturbance at-
tenuation. Moreover, in that section we have also studied the case in which the
control action is bounded. In Section 4.5, we have evaluated the disturbance
attenuation properties of different controllers by using a bound in the control
action and performance measures based on computed periodic responses. The
controller with the best performance in terms of disturbance attenuation was
promoted for implementation on the experimental setup. Finally, we have also
applied the promoted controller to the experimental setup. Based on experi-
mental results and the aforementioned performance measures, it is shown that
this controller renders the system convergent and exhibits high performance in
terms of disturbance attenuation.
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5.4 Discussion

5.1 Introduction

In this chapter, we propose two observer-based output-feedback controller de-
sign strategies for a class of Lur’e type systems based on the notions of passiv-
ity and absolutely stability [72; 81; 137] (see Chapter 2). This class of systems
consists of a linear part in the forward path and decoupled, set-valued nonlin-
earities in the feedback path. The aim of the controller designs is to guarantee
the stabilization of the origin of such systems. It will be shown that passivity
properties of the (controlled) linear part of the system are beneficial to ensure
that these systems are asymptotically stable as long as the nonlinearities in the
feedback path are sector bounded.

The ultimate test for the developed controllers is their implementation on an
experimental mechanical system with non-collocated actuation and set-valued
friction characteristics. In order to support such practical applicability, the
controller designs will be designed such that they render the closed-loop system
absolutely stable meaning that global asymptotic stability of the equilibrium
of the closed-loop system is guaranteed for all the set-valued nonlinearities in
the sector [0, ∞]. This property is favorable in terms of the robustness as
uncertainties in the set-valued nonlinearities do not destroy the stability of the
closed-loop system as long as the nonlinearities remain in the sector [0, ∞].
This is very important for applications, because there are, for example, always
changes in the friction characteristics between the elements of a mechanical
system due to temperature changes, humidity, lubrication conditions etc.
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The proposed controller designs are based either on the circle criterion or
the Popov criterion, which are discussed for sector bounded Lipschitz nonlin-
earities, for instance, in [5; 6; 64; 72]. Especially in [5], [6] a circle criterion
controller design for Lur’e type systems with such nonlinearities is proposed
and feasibility conditions are given. One of the main differences with the work
here is that we do not constrain ourselves to Lipschitz continuous mappings but
allow general set-valued maps (such as set-valued friction laws). The controller
designs that we propose are discussed in Section 5.2 and aim to render the
system absolutely stable. For the controller design based on the circle criterion
a specific form of the circle criterion is used. This specific form guarantees that
the system is absolutely stable as long as the linear part is strictly passive and
the set-valued nonlinearities in the feedback loop are passive i.e. belong to the
sector [0, ∞], and this form of the circle criterion is related to the well known
passivity theorems (see e.g. [72]). For the case of linear complementarity sys-
tems an extension of this form of the circle criterion to set-valued nonlinearities
was given in [24].

In the controller design based on the Popov criterion the requirement of
strict passivity of the linear part of the closed-loop system is relaxed by us-
ing a dynamic multiplier. More specifically, the multiplication of the transfer
function of the linear part with a dynamic multiplier and the multiplication of
the inverse of this multiplier with the set-valued nonlinearities in the feedback
loop results in a new linear system and new set-valued nonlinearities. The
requirements for absolute stability for the new system are the strict passivity
of the new linear part and the passivity of the new system in the feedback
path (which is now a dynamical system with a set-valued output map). In
this manner, we will derive a generalization of the Popov criterion that applies
to Lur’e type systems with set-valued nonlinearities (instead of only Lipschitz
continuous maps). The main difficulty to apply the Popov criterion to this type
of systems is the non-smoothness of the Popov-inspired Lyapunov function.

In practice, the entire state of Lur’e type systems with set-valued nonlin-
earities is often not available for feedback. Therefore, an additional goal is to
construct output-feedback controllers based on the aforementioned criteria that
overcome this problem and render a Lur’e type system of the considered class
absolutely stable. The proposed output-feedback controllers are a combination
of a model-based observer and a state-feedback controller and are presented
in Section 5.3. Based on the theoretical results presented in this chapter we
guarantee that this combination yields globally asymptotically stable closed-
loop systems for both controller designs. The observer design is based on [36],
[55] where a constructive procedure for the considered type of systems is given.
Under certain passivity-related assumptions the observer is shown to asymp-
totically recover the state of the observed system. Finally, a discussion of the
results presented in this chapter and directions for future work are given in
Section 5.4.
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5.2 State-feedback controller design for Lur’e
type systems with set-valued nonlineari-

ties

Consider a Lur’e system described by the following differential inclusion (see
also Figure 5.1(a)):

ẋ = Ax + Gw + Bu (5.1a)

w ∈ −ϕ(z) (5.1b)

z = Hx (5.1c)

y = Cx, (5.1d)

where x ∈ Rn is the system state, w ∈ Rp, z ∈ Rp is the input of a set-valued
mapping ϕ(z), u ∈ Rm is the control input and y ∈ Rκ is the system output.
Moreover, the matrices A ∈ Rn×n, B ∈ Rn×m, H ∈ Rp×n, C ∈ Rκ×n are given
and the matrix G ∈ Rn×p has full column rank.

We use the following assumptions on the properties of the set-valued map-
ping ϕ(z).

Assumption 5.2.1 The set-valued map ϕ(z) : Rp →֒ Rp satisfies

• 0 ∈ ϕ(0);

• ϕ is upper semicontinuous (see [10]) and locally integrable with respect
to z;

• ϕ is decomposed as ϕ(z) = [ϕ1(z1), ..., ϕp(zp)]
T , z = [z1, ..., zp]

T and
ϕi(zi) : R →֒ R, for i = 1, ...p;

• for all v ∈ R the set ϕi(v) ⊆ R, i = 1, ..., p, is non-empty, convex, closed
and bounded;

• each ϕi satisfies the [0, ∞] sector condition in the sense that

ziwi ≤ 0 for all wi ∈ ϕi(zi) for i = 1, ..., p; (5.2)

• there exist positive constants γ1 and γ2 such that for any w ∈ ϕ(v) it
holds that

‖w‖ ≤ γ1‖v‖+ γ2. (5.3)

Remark 5.2.2 Note that the property in the last bullet in Assumption 5.2.1
is not needed for the state-feedback design that we will present in this section.
This property will be used for observer design (see Section 5.3.1) and for output-
feedback design (see Section 5.3.2).
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Figure 5.1: Block diagrams of the open-loop system and the closed-loop system.

The input functions u are assumed to be in the space of piecewise continuous1

bounded functions from [0,∞) to Rm, denoted by PC. Clearly, the mapping
(t, x) 7→ Ax − Gϕ(Hx) + Bu(t) is upper semicontinuous on intervals where u
is continuous and attains non-empty, convex, closed and bounded set-values.
From [10, p. 98] or [42, § 7], it follows that local existence of solutions2 is guar-
anteed given an initial state x0 at initial time 0. Due to the growth condition of
ϕ(v) it holds that ‖ẋ(t)‖ ≤ γ̃1‖x‖+ γ̃2, which prevents finite escape times and
thus any solution to (5.1) is globally defined on [0,∞). Hence, solutions x(t)
and also z(t) = Hx(t) are absolutely continuous functions. Note that 0 ∈ ϕ(0)
implies that the origin x = 0 is an equilibrium of system (5.1) for input u = 0.
The fourth bullet in Assumption 5.2.1 means that we have p ‘decoupled’ non-
linearities in the sense that the i-th component of ϕ only depends on zi. If ϕ
is a piecewise continuous map with only countably many ‘discontinuities’ (i.e.
points z at which ϕ(z) is not a singleton), then the integrability assumption of
bullet two is satisfied.

To control the system, we propose the linear static state-feedback law

u = Kx, (5.4)

where K ∈ Rm×n is the control gain matrix. Consequently, the resulting closed-
loop system is described by the following differential inclusion (see also Figure
5.1(b)):

ẋ = (A + BK)x + Gw (5.5a)

w ∈ −ϕ(z) (5.5b)

z = Hx. (5.5c)

1We call a function u defined on [0,∞) piecewise continuous, if any bounded interval
contains at most a finite number of discontinuity points of u.

2We call a function x : [a, b] → R
n a solution to the differential inclusion ẋ(t) ∈ F (t, x(t)),

if x is absolutely continuous and satisfies ẋ(t) ∈ F (t, x(t)) for almost all t ∈ (a, b).
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The transfer function Gcl(s) of the linear part of system (5.5) is

Gcl(s) = H(sI − (A + BK))−1G, s ∈ C. (5.6)

The control goal here is to render the closed-loop system (5.5) absolutely
stable by means of a proper choice for the control gain K. For the considered
closed-loop system, absolute stability means that the origin is globally asymp-
totically stable for any set-valued nonlinearity in the feedback loop belonging
to the [0,∞] sector. In the following sections, we will introduce two controller
design methods that are able to achieve this goal by exploiting the notion of
passivity.

5.2.1 Popov and circle criterion controller design

In this section, we will provide sufficient conditions for the absolute stability of
the equilibrium point x = 0 of the closed-loop system (5.5). Loosely speaking,
the conditions are as follows: the linear part of this system should be passive
and the set-valued nonlinearities should belong to the sector [0,∞] (this implies
that the nonlinearity is passive). In these results, the passivity of the linear part
will be expressed in a matrix inequality form based on the Kalman-Yakubovich-
Popov lemma, see [72] and Chapter 2.

Consider system (5.5) with the related transfer function Gcl(s) given in
(5.6) and satisfying Assumption 5.2.1. We choose the transfer function of a
so-called dynamic multiplier M(s) which is given by

M(s) = I + Γs, s ∈ C, (5.7)

where Γ = diag(η1, . . . ηp) ∈ Rp×p, with ηi > 0 for i = 1, . . . , p. This choice
is common for the case with a Lipschitz continuous nonlinearity, see [72]. The
inverse of M(s) will be chosen to be (strictly) passive, because (as we will
explain later) the multiplication of the set-valued nonlinearity in (5.5) with the
inverse of the dynamic multiplier must yield a passive system.

A cascade that represents system (5.5) is shown in Figure 5.2(a). In this
figure, both the post-multiplication of the linear part of system (5.5) with the
dynamic multiplier M(s) and the pre-multiplication of the nonlinear (feedback)
part of system (5.5) with the inverse of M(s) are depicted. Using the dynamic
multiplier M(s) we aim to transform the original system into a feedback in-
terconnection of two passive systems, as is done in [72]. In this figure, Σ1

represents a new linear system in the forward path and Σ2 is the new system
in the feedback path.

In state-space formulation, the interconnected system Σ1,Σ2 takes the fol-
lowing form:
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PSfrag

Σ1

Σ2

z̃

w

−w

ϕ(·)

Gcl(s) M(s)

M−1(s)

z

z

(a) Cascade representation of system (5.5) us-
ing the dynamic M(s).

-

Σ1

Σ2

z̃w

−w

ẋ = (A + BK)x + Gw −BKe
z = Hx,
y = Cx

ż = −Γ−1z + Γ−1z̃
w ∈ −ϕ(z)

(b) Closed-loop system after transformation
with dynamic multiplier M(s).

Figure 5.2: Block diagrams of the open-loop system and the closed-loop system.

Σ1 =

{

ẋ = (A + BK)x + Gw

z̃ = H̃x + D̃w
(5.8a)

Σ2 =

{

ż = −Γ−1z + Γ−1z̃

w ∈ −ϕ(z).
(5.8b)

Herein, z̃ ∈ Rp and the matrices H̃ ∈ Rp×n, D̃ ∈ Rp×p can be derived from the
fact that z̃ = z + Γż (as a consequence of the choice of the multiplier M(s) in
(5.7)):

z̃ = z + Γż
= Hx + ΓHẋ
= Hx + ΓH[(A + BK)x + Gw]
= [H + ΓH(A + BK)]x + ΓHGw

= H̃x + D̃w.

(5.9)

Hence,

H̃ = H + ΓH(A + BK) and D̃ = ΓHG. (5.10)

At this point we are going to formulate conditions that guarantee that the
equilibrium point x = 0 of the system (5.1), (5.4) (i.e. the closed-loop system
(5.5)) is absolutely stable. The following theorem states sufficient conditions
for the global asymptotic stability of the origin of (5.1). The analysis of that
theorem is based on a Lyapunov function inspired by the Popov criterion.
In [137], a result on the Popov criterion for systems with discontinuous non-
linearities is given. Here, we formulate a stability result, based on the Popov
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criterion, for the more general class of integrable, set-valued nonlinearities (and
an alternative proof is presented).

Theorem 5.2.3 Consider system (5.1), with ϕ(z) satisfying Assumption 5.2.1
and the linear static state-feedback law (5.4) with K ∈ Rm×n. If there exists
a diagonal matrix Γ = diag(η1, ..., ηp) ∈ Rp×p, with ηi > 0 for i = 1, ..., p
and a matrix P = PT > 0 that satisfy

[

(A + BK)T P + P (A + BK) PG− H̃T

GT P − H̃ −D̃ − D̃T

]

< 0, (5.11)

with H̃ and D̃ given in (5.10), then the origin x = 0 is a globally asymptotically
stable equilibrium of the closed-loop system (5.1) and (5.4).

Proof Consider the following Lyapunov candidate function:

V (x) = V1(x) + V2(Hx), (5.12)

with

V1(x) =
1

2
xT Px, P = PT > 0, (5.13)

and

V2(Hx) =

p
∑

i=1

V2,i(Hix) =

p
∑

i=1

V2,i(zi) = V2(z), for i = 1, ..., p, (5.14)

where Hi is the ith row of H and

V2,i(zi) = ηi

∫ zi

0

ϕi(s)ds for i = 1, ..., p. (5.15)

We aim to prove that along solutions x(t) of the system (5.1)-(5.4) we have
that V is strictly decreasing, i.e. when x(t1) 6= 0

V (x(t2))− V (x(t1)) < 0, ∀t2 > t1, t1, t2 ∈ R. (5.16)

For the V1 contribution with V1 as in (5.13), we have that:

V1(x(t2))− V1(x(t1)) =

t2
∫

t1

V̇1(s)ds, (5.17)

where the derivative of V1 with respect to time is computed as follows:

V̇1 = 1
2{ẋT Px + xT P ẋ}

= 1
2{[(A + BK)x + Gw]T Px + xT P [(A + BK)x + Gw]}

= 1
2{xT [(A + BK)T P + P (A + BK)]x + wT GT Px + xT PGw}.

(5.18)
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At this point we add and subtract 1
2 [z̃T w + wT z̃] from the above equation and

use (5.9):

V̇1 = V̇1 + 1
2 [−z̃T w − wT z̃ + z̃T w + wT z̃]

= V̇1 + 1
2 [−(H̃x + D̃w)T w − wT (H̃x + D̃w) + 2z̃T w]

= V̇1 + 1
2 [−xT H̃T w − wT D̃T w − wT H̃x− wT D̃w + 2z̃T w]

= 1
2ρ1 + z̃T w.

(5.19)

with ρ1 given by:

ρ1 = xT [(A + BK)T P + P (A + BK)]x + wT GT Px + xT PGw − xT H̃T w

−wT D̃T w − wT H̃x− wT D̃w

=

[

x
w

]T [
(A + BK)T P + P (A + BK) PG− H̃T

GT P − H̃ −D̃ − D̃T

] [

x
w

]

=

[

x
w

]T

F (P,K)

[

x
w

]

,

(5.20)
where

F (P,K) :=

[

(A + BK)T P + P (A + BK) PG− H̃T

GT P − H̃ −D̃ − D̃T

]

. (5.21)

Using (5.20) in the expression for V̇1 in (5.19), we obtain

V̇1 = 1
2

[

x
w

]T

F (P,K)

[

x
w

]

+ z̃T w. (5.22)

By substituting (5.22) in (5.17), we obtain that

V1(x(t2))− V1(x(t1)) =

t2
∫

t1

(

1

2

[

x(s)
w(s)

]T

F (P,K)

[

x(s)
w(s)

]

+ z̃T (s)w(s)

)

ds.

(5.23)
For the V2 contribution with V2 as in (5.14), (5.15) and z(t) = Hx(t), we have
that:

V2(Hx(t2))− V2(Hx(t1)) =

p
∑

i=1

(V2,i(zi(t2))− V2,i(zi(t1))), (5.24)

with

V2,i(zi(t2))− V2,i(zi(t1)) = ηi

zi(t2)
∫

zi(t1)

ϕi(zi)dzi, for i = 1, ..., p. (5.25)
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The integral
zi(t2)
∫

zi(t1)

ϕi(zi)dzi equals the integral
t2
∫

t1

ϕi(zi(s))dzi(s), which can be

interpreted as a Lebesgue-Stieltjes integral, see [73]. For this Lebesgue-Stieltjes
integral we can use the following result, see page 364 in [73],

t2
∫

t1

ϕi(zi(s))dzi(s) =

t2
∫

t1

(ϕi ◦ zi)(s)
dzi(s)

ds
ds. (5.26)

Using this fact in (5.25) and using that wi(t) = −(ϕi ◦ zi)(t), for i = 1, ..., p,
almost everywhere and żi = 1

ηi
(z̃i − zi) we obtain

V2,i(zi(t2))− V2,i(zi(t1)) =ηi

t2
∫

t1

(ϕi ◦ zi)(s)
dzi(s)

ds
ds =

t2
∫

t1

−wi(s) (z̃i(s)− zi(s)) ds,

(5.27)

for i = 1, ..., p. Combining (5.17), (5.24) and (5.27) yields

V (x(t2))− V (x(t1)) =

t2
∫

t1

(

1

2

[

x(s)
w(s)

]T

F (P,K)

[

x(s)
w(s)

]

+ z̃T (s)w(s)

)

ds

−
p
∑

i=1

t2
∫

t1

wi(s) (z̃i(s)− zi(s)) ds

=

t2
∫

t1

1

2

[

x(s)
w(s)

]T

F (P,K)

[

x(s)
w(s)

]

ds +

p
∑

i=1

t2
∫

t1

wi(s)zi(s)ds

=

t2
∫

t1

1

2

[

x(s)
w(s)

]T

F (P,K)

[

x(s)
w(s)

]

ds +

t2
∫

t1

zT (s)w(s)ds.

(5.28)

The satisfaction of the matrix inequality in (5.11) guarantees that F (P,K) < 0
and, consequently, that

1

2

[

x
w

]T

F (P,K)

[

x
w

]

< 0. (5.29)

Furthermore, due to (5.2) in Assumption 5.2.1 we have that zT w ≤ 0. There-
fore, we can conclude that (5.16) is satisfied, which proves global asymptotic
stability of the closed-loop system 5.5. �
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In case we take ηi = 0 for i = 1, ..., p, we can derive the following corollary
from Theorem 5.2.3, which actually leads to a controller design based on a
particular case of the circle criterion (see also the passivity theorem in [72])
with sector bounds [0, ∞]. In this corollary, we provide conditions that express
strict passivity of the linear part of system (5.1) from the input z to the output
w and passivity of the nonlinearity ϕ(z).

Corollary 5.2.4 Consider system (5.1), with ϕ(z) satisfying Assumption 5.2.1
and the linear static state-feedback law (5.4) with K ∈ Rm×n. If K is such
that (A + BK,G,H) is strictly passive, i.e. there exists a matrix P = PT > 0
that satisfy such that

(A + BK)T P + P (A + BK) < 0
PG = HT ,

(5.30)

then the origin x = 0 is a globally asymptotically stable equilibrium of the
closed-loop system (5.1) and (5.4).

Theorem 5.2.3 and Corollary 5.2.4 state sufficient conditions for the absolute
stability of Lur’e type systems with sector bounded set-valued nonlinearities in
the feedback loop. As such, Theorem 5.2.3 is a generalized Popov criterion and
Corollary 5.2.4 is a generalized circle criterion, in the sense that set-valued map-
pings are allowed. Both results have favorable properties from the perspective
of robustness with respect to changes in these nonlinearities. Indeed, for any
nonlinearity satisfying Assumption 5.2.1, closed-loop stability is guaranteed.
In addition to that, absolute stability is also useful for designing controllers
for a range of set-points using a common control gain K as will be shown in
Chapter 6. In Corollary 5.2.4, in order to achieve global asymptotic stability
of the equilibrium x = 0 for all the sector bounded nonlinearities in the sector
[0, ∞], strict passivity of the linear part of the system is required (see (5.30)).
This may be rather restrictive for some control applications. Note that this
work on the circle criterion is similar to the work in [19] for the general setup
and similiar to the work in [24] for the particular case of linear complementar-
ity systems. The main contribution of our work is in the generalization of the
Popov criterion to set-valued nonlinearities as formulated in Theorem 5.2.3.

5.3 Output-feedback controller design for Lur’e
systems with set-valued nonlinearities

In the previous sections, we proposed a state-feedback design for Lur’e type
systems with set-valued sector bounded nonlinearities. In this section, we will
construct an output-based controller using these state-feedbacks together with
an observer that recovers the system state exponentially by using only the
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information of the system output, see also [36], [55]. After that, we show
that the interconnection of this observer, the state-feedback controller and the
original plant yields a stable closed-loop system, which can be considered as a
hind of separation principle.

In general, the separation principle does not hold for nonlinear systems.
Even though the proposed observers will exhibit the property that the ob-
server error converges to zero exponentially, this is not sufficient in general to
guarantee stability of the interconnected system. Indeed, the observer error
may destabilize the closed-loop system before it converges to the equilibrium
(finite escape time of the controlled system perturbed by the observer error).
However, we can prove that the interconnection of the observer/controller com-
bination with the Lur’e type system is a cascade feedback system of an input-
to-state-stable system and a globally exponentially stable (GES) system. This
fact implies that the origin of the total closed-loop system is globally asymp-
totically stable (GAS).

In the following sections, the observer design and the output-feedback con-
troller designs based on the circle and Popov criteria are presented. For both
the observer design and the stability of the interconnected system, the linear
boundedness of the set-valued nonlinearities in Assumption 5.2.1 in the sys-
tem’s feedback loop will be used as an additional condition.

5.3.1 Observer design for Lur’e type systems with set-
valued nonlinearities

Consider system (5.1) (see Figure 5.1(a)) with the following additional assump-
tion,

Assumption 5.3.1 The set-valued map ϕ : Rp →֒ Rp is such that

• ϕ is monotone, i.e. for all x1 ∈ Rp and x2 ∈ Rp it holds that x∗
1 ∈ ϕ(x1)

and x∗
2 ∈ ϕ(x2) implies that 〈x∗

1 − x∗
2, x1 − x2〉 ≥ 0, where 〈·, ·〉 denotes

the inner product.

As an observer for the system (5.1), we propose the following differential
inclusion:

˙̂x = (A− LC)x̂ + Gw + Bu + Ly (5.31a)

ŵ ∈ −ϕ(ẑ) (5.31b)

ẑ = (H −NC)x̂ + Ny (5.31c)

ŷ = Cx̂. (5.31d)

with N ∈ Rp×κ and L ∈ Rn×κ.
Since the right-hand side of (5.31a)-(5.31d) is again upper semicontinuous

in (t, x) due to continuity of y and piecewise continuity of u, using Assumption
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5.2.1 of ϕ it can be shown that global solutions exist of (5.31). Knowing
that both the plant and the observer have global solutions, the observer error
e := x− x̂ has as dynamics:

ė = (A− LC)e + G(w − ŵ) (5.32a)

w ∈ −ϕ(Hx) (5.32b)

ŵ ∈ −ϕ(Hx̂ + N(y(t)− ŷ)). (5.32c)

The problem of the observer design is finding the gains L, N such that all
solutions to the observer error dynamics converge exponentially to the origin,
which implies that limt→∞ |x̂(t)− x(t)| = 0.

The following theorem presents a method for the observer design that re-
quires the concept of positive realness (see Chapter 2) and states sufficient
conditions for the global exponential stability of the origin e = 0 of the ob-
server error dynamics (5.32).

Theorem 5.3.2 [36; 55] Consider the observed system (5.1), the observer
(5.31) with (A − LC,G,H − NC) strictly passive and the observer error dy-
namics (5.32). Then, the point e = 0 is globally exponentially stable as long
as ϕ(·) satisfies Assumptions 5.2.1 and 5.3.1. Moreover, the following bound
holds:

1

2
λmin(Po)e

T (t)e(t) ≤ eT (0)Poe(0) exp

(

− λmin(Q)

λmin(Po)
t

)

, (5.33)

where λmin(·) denotes the minimal eigenvalue, and matrices Po and Q are given
by

Po = PT
o > 0, (A−LC)T Po+Po(A−LC)+Q < 0, GT Po = H−NC. (5.34)

To compute the gains L and N such that (A− LC,G,H −NC) is strictly
passive, one can solve the following matrix inequalities (see also in [55; 69]):

Po = PT
o > 0, (A− LC)T Po + Po(A− LC) + νI < 0, GT Po = H −NC,

(5.35)
where we substituted Q = νI for some ν > 0. For a given ν, inequality (5.35)
is a linear matrix inequality in Po, N and LT Po. According to the equation
(5.33) the rate of convergence depends on ν and the eigenvalues of the matrix
Po, which in turn depend on the system parameters. When solving the LMIs
for observer design, the size of the entries of the matrix Po can be ‘controlled’.
For example, by tuning ν or by adding the constraint Po < I and by including
scalar variables in the optimization objective. The computed output feedback
gains will then guarantee the rate of convergence as in (5.33). For details on
numerical schemes for computing the solutions to the observer dynamics (being
differential inclusion) we refer the reader to [80].
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5.3.2 Output-feedback based on the Popov and circle
criterion

Consider the following control law for the system (5.1):

u = Kx̂, (5.36)

with K ∈ Rm×n and x̂ the state estimation provided by the observer (5.31).
Using the circle and the Popov criteria, we will aim to render the interconnected
system (5.1), (5.31), (5.36) absolutely stable. In a state-space formulation, the
controlled system (5.1), (5.31), (5.36) can be written in the following form:

ẋ = (A + BK)x + Gw −BKe (5.37a)

ė = (A− LC)e + G(w − ŵ) (5.37b)

w ∈ −ϕ(z) (5.37c)

ŵ ∈ −ϕ(ẑ) (5.37d)

z = Hx (5.37e)

ẑ = Hx̂ + N(y − ŷ), (5.37f)

with ϕ(·) satisfying the Assumptions 5.2.1 and 5.3.1. Remark that the observer
error e can be considered to be an input to the closed-loop system (5.37a),
(5.37c), (5.37e). A cascade that represents system (5.1), (5.31), (5.36) or system
(5.37) is shown in Figure 5.3.

We want to prove global asymptotic stability (GAS) of the equilibrium
(x, e)=(0,0) of system (5.37). The approach we will take is a Lyapunov-based
one and the Lyapunov function we will adopt for the closed-loop system is
inspired by the Popov criterion.

In the proof of Theorem 5.2.3, it is shown that the origin of system (5.1),
(5.36) for e = 0 (i.e. x̂ = x) is GAS. Moreover, in the proof of Theorem 5.3.2 it
is shown that e = 0 is a GES equilibrium point of the observer error dynamics
(5.32). In the sequel, we will provide sufficient conditions under which the
system (5.1), (5.31), (5.36) or the equivalent system (5.37) is a cascade feedback
system of an ISS system and a GES system, which implies that the origin of
the total closed-loop system is GAS.

As far as the right part of Figure 5.3 is concerned (i.e. the system described
by (5.37a), (5.37c), (5.37e)) we apply the transformation using a dynamic mul-
tiplier as proposed before in Section 5.2.1 (see Figure 5.4). In this figure, we
post-multiply the linear part of system (5.1) with the dynamic multiplier M(s)
given in (5.7) and pre-multiply the nonlinear (feedback) part of system (5.1)
with the inverse of M(s). Using the dynamic multiplier M(s) we aim to trans-
form the original system into a feedback interconnection of two passive systems,
see [6] and [72]. Now, Σ1 represents a new linear system, in the forward path,
with the transfer function between w and z̃ given by Σ1(s) = M(s)Gcl(s), with
Gcl(s) as in (5.6) and Σ2 represents the new system in the feedback path.
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e

ϕ(·)

z

y

w

w

ẋ = (A + BK)x + Gw −BKe
z = Hx,
y = Cx

ė = (A− LC)e + G(w − ŵ)
ŵ ∈ −ϕ(ẑ)
ẑ = Hx̂ + N(y − ŷ)

Figure 5.3: Combination of the observer design and the controller design.

--

e

w
w

ϕ(·)

z̃

y

Gcl(s)ė = (A− LC)e + G(w − ŵ)
ŵ ∈ −ϕ(ẑ)
ẑ = Hx̂ + N(y − ŷ), z = Hz

M(s)

M−1(s)

z

z

Σ1

Σ2

Figure 5.4: Cascade representation of system (5.1), (5.31), (5.36) using the
dynamic multiplier M(s).

In state-space formulation the transformed controlled system (5.1), (5.31),
(5.36), i.e. system (Σ1,Σ2), has the following form:

Σ1 =

{

ẋ = (A + BK)x + Gw −BKe(t)

z̃ = H̃x + D̃w + Ze(t)
(5.38a)

Σ2 =

{

ż = −Γ−1z + Γ−1z̃

w ∈ −ϕ(z).
(5.38b)
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Herein, the matrices H̃, D̃ and Z can be derived from:

z̃ = z + Γż
= Hx + ΓHẋ
= Hx + ΓH[(A + BK)x + Gw −BKe]
= [H + ΓH(A + BK)]x + ΓHGw − ΓHBKe

= H̃x + D̃w + Ze,

(5.39)

with

H̃ = H + ΓH(A + BK), D̃ = ΓHG, Z = −ΓHBK. (5.40)

The following result proposes conditions under which system (5.38) is input-
to-state stable (ISS) with respect to the observer error e(t).

Theorem 5.3.3 Consider system (5.38) with ϕ satisfying the Assumptions
5.2.1 and 5.3.1. Suppose there exists Γ = diag(η1, ..., ηp) ∈ Rp×p, with ηi > 0
for i = 1, ..., p, a matrix P = PT > 0 and a feedback gain matrix K ∈ Rm×n

that satisfy the following matrix inequality

[

(A + BK)T P + P (A + BK) PG− H̃T

GT P − H̃ −D̃ − D̃T

]

< 0, (5.41)

with H̃ and D̃ defined in (5.40). Then system (5.38) is ISS with respect to the
input e(t).

Proof Consider the Lyapunov candidate function defined by (5.12), (5.13),
(5.14), (5.15) for the system (5.38). Similar to the proof of Theorem 5.2.3, we
study the evolution of time V in time along solutions of (5.38).
For the V1 contribution with V1 as in (5.13), we have that

V1(x(t2))− V1(x(t1)) =

t2
∫

t1

V̇1(s)ds. (5.42)

Herein, the time derivative of V1 can be written as follows:

V̇1 = 1
2{ẋT Px + xT P ẋ}

= 1
2{[(A + BK)x + Gw −BKe]T Px + xT P [(A + BK)x + Gw −BKe]}

= 1
2{xT [(A + BK)T P + P (A + BK)]x + wT GT Px + xT PGw + ρ2},

(5.43)
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with ρ2 = −eT KT BT Px − xT PBKe. At this point we add and subtract
1
2{z̃T w + wT z̃} from the above equation and use (5.39):

V̇1 = V̇1 + 1
2{−z̃T w − wT z̃ + z̃T w + wT z̃}

= V̇1 + 1
2{−(H̃x + D̃w + Ze)T w − wT (H̃x + D̃w + Ze)

+2z̃T w}
= V̇1 + 1

2{−xT H̃T w − wT D̃T w − eT ZT w − wT H̃x− wT D̃w − wT Ze
+2z̃T w}

= 1
2

[

x
w

]T

F (P,K)

[

x
w

]

− 1
2eT KT BT Px− 1

2xT PBKe− 1
2eT ZT w

− 1
2wT Ze + z̃T w,

(5.44)
with F (P,K) defined in (5.21).
Based on the proof of Theorem 5.2.3 the contribution of V2 to V , with V2 as
in (5.14), (5.15) obeys

V2(Hx(t2))− V2(Hx(t1)) =

t2
∫

t1

wT (s)(z(s)− z̃(s))ds ∀t2 > t1 and t1, t2 ∈ R,

(5.45)
along a solution x(t) with input w(t) and output z(t). Combining (5.12), (5.42),
(5.44) and (5.45) we can derive that

V (x(t2))− V (x(t1)) =
∫ t2

t1

{

1
2

[

x(s)
w(s)

]T

F (P,K)

[

x(s)
w(s)

]

+ zT (s)w(s)

− 1
2e(s)T KT BT Px(s)− 1

2xT (s)PBKe(s)
− 1

2eT (s)ZT w(s)− 1
2wT (s)Ze(s)

}

ds ∀t2 > t1and t1 ∈ R.
(5.46)

Hence, the derivative of V with respect to time, for all x ∈ Rn and zi ∈ R,
i = 1, ..., p, can be written as

V̇ = 1
2

[

x
w

]T

F (P,K)

[

x
w

]

+ zT w − 1
2eT KT BT Px− 1

2xT PBKe

− 1
2eT ZT w − 1

2wT Ze,
(5.47)

with

• zT w ≤ 0, see Assumption 5.2.1

• F (P,K) < 0 (due to (5.41)) and thus we have that 1
2

[

x
w

]T

F (P,K)

[

x
w

]

<

−ε‖x‖2 − ε‖w‖2 ≤ −ε‖x‖2, for some ε > 0.



5.3. Output-feedback controller design for Lur’e systems with set-valued
nonlinearities 99

Consequently, the first two components in the right-hand side of (5.47)
satisfy

1

2

[

x
w

]T

F (P,K)

[

x
w

]

+ zT w ≤ −ε‖x‖2. (5.48)

In the sequel, we will use the following inequality

2yT z ≤ yT Gy + zT G−1z for any G = GT > 0 and for all vectors y, z. (5.49)

More specifically, using (5.49) and the definitions X := KT BT P and Ḡ :=
XG−1XT we have that

− 1
2eT KT BT Px− 1

2xT PBKe = −eT KT BT Px
= −eT Xx
≤ 1

2eT XG−1XT e + 1
2xT Gx

= 1
2eT Ḡe + 1

2xT Gx.

(5.50)

Based on (5.48) and (5.50) and by choosing G = εI, V̇ in (5.47) takes the form

V̇ ≤ −ε

2
‖x‖2 +

1

2
eT Ḡe− eT Zw. (5.51)

Next, we use the following linear growth condition on w (see (5.3) in Assump-
tion 5.2.1):

‖w‖ ≤ γ1‖z‖+ γ2. (5.52)

With z = Hx it holds that ‖z‖ ≤ ‖H‖‖x‖ and thus

‖w‖ ≤ γ1‖H‖‖x‖+ γ2 = γ̄1‖x‖+ γ̄2, (5.53)

where γ̄1 := γ1‖H‖ and γ̄2 := γ2.
Using (5.53), we derive the following equality for the term −eT Zw in (5.51):

−eT Zw ≤ ‖eT Zw‖ ≤ ‖e‖‖Z‖w‖ ≤ ‖Z‖‖e‖(γ̄1‖x‖+ γ̄2) = γ̂1‖e‖‖x‖+ γ̂2‖e‖,
(5.54)

with γ̂1 := ‖Z‖γ̄1 and γ̂2 := ‖Z‖γ̄2.
Using (5.54) in (5.51) gives

V̇ ≤ −ε

2
‖x‖2 +

1

2
eT Ḡe + γ̂1‖e‖‖x‖+ γ̂2‖e‖. (5.55)

Since inequality (5.49) holds for any y, z, it also holds that (using G = αI) in
the inequality (5.49)

2‖y‖‖z‖ ≤ α‖y‖2 +
1

α
‖z‖2 for any α > 0. (5.56)

Therefore,

γ̂1‖x‖‖e‖ ≤
γ̂1

2
(α‖x‖2 +

1

α
‖e‖2) for any α > 0. (5.57)
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Using (5.57) in (5.55) and choosing α = ε
2γ̂1

yields

V̇ < − ε
2‖x‖2 + γ̂1

2 α‖x‖2 + 1
2eT Ḡe + γ̂2‖e‖+ γ̂1

2α‖e‖2
⇒ V̇ < − ε

4‖x‖2 + 1
2 [λmax(Ḡ) + 2

γ̂2
1

ε ]‖e‖2 + γ̂2‖e‖.
(5.58)

From (5.58) it follows that

V̇ < − ε
8‖x‖2 if ε

8‖x‖2 > 1
2 [λmax(Ḡ) + 2

γ̂2
1

ε ]‖e‖2 + γ̂2‖e‖
⇒ V̇ < − ε

8‖x‖2 if ‖x‖ >

√

4
ε ([λmax(Ḡ) + 2

γ̂2
1

ε ]‖e‖2 + 2γ̂2‖e‖).
(5.59)

We define

β2(‖e‖) :=

√

4

ε
([λmax(Ḡ) + 2

γ̂2
1

ε
]‖e‖2 + 2γ̂2‖e‖)

and
β1(‖x‖) :=

ε

8
‖x‖2,

where β1(‖x‖) is a positive definite function and β2(‖e‖) is a class K-function.
Consequently, the conditions for input-to-state stability, as formulated in The-
orem 4.19 in [72], are satisfied. This concludes the proof. �

Now, we combine Theorem 5.3.2 and Theorem 5.3.3 and use the fact that a
feedback interconnection of an ISS system with GES system yields an asymp-
totic stable interconnection (see Lemma 4.7 in [72] which can be viewed as
special version of Property 3.3.3 in this thesis). The latter line of reason-
ing is adopted in the following theorem, regarding the observer-based output-
feedback design for system (5.1).

Theorem 5.3.4 Consider system (5.1), observer (5.31) and control law (5.36)
with ϕ satisfying the Assumptions 5.2.1 and 5.3.1. Suppose there exists Γ =
diag(η1, ..., ηp) ∈ Rp×p, with ηi > 0 for i = 1, ..., p, a matrix P = PT > 0 and a
feedback gain matrix K ∈ Rm×n that satisfy the matrix inequality (5.41) with
H̃ and D̃ defined in (5.40). Suppose, (A− LC,G,H −NC) is strictly passive.
Then, (x, e) = (0, 0) is a globally asymptotically stable equilibrium point of the
closed-loop system (5.1), (5.31), (5.36).

Proof The closed-loop system (5.1), (5.31), (5.36) can be written as a feed-
back interconnection of system (5.37a), (5.37c), (5.37e) and the observer error
dynamics (5.37b), (5.37d), (5.37f).

According to Theorem 5.3.3, under the conditions of the current theorem,
system (5.1), (5.31), (5.36) is ISS with respect to the observer e(t). Moreover,
according to Theorem 5.3.2, the observer error dynamics is globally exponen-
tially stable for any w(t), x(t). Using Lemma 4.7 in [72] or, alternatively,
Property 3.3.3 in this thesis, we can conclude that (x, e) = (0, 0) is a globally
asymptotically stable equilibrium point of system (5.1), (5.31), (5.36). �
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In case we take ηi = 0 for i = 1, ..., p, in the definition of the Lyapunov
function in (5.12)-(5.15), i.e. V (x) = xT Px, P = PT > 0, we can derive the
corollary below from Theorem 5.3.3, which yields an output-feedback design
based on the circle criterion.

Corollary 5.3.5 Consider system (5.1), observer (5.31) and the control law
(5.36) with ϕ satisfying the Assumptions 5.2.1 and 5.3.1. Suppose there exists
a matrix P = PT > 0 and a feedback gain matrix K that satisfy the matrix
inequality in (5.30). Suppose, (A− LC,G,H −NC) is strictly passive. Then,
(x, e) = (0, 0) is a globally asymptotically stable equilibrium point of the closed-
loop system (5.1), (5.31), (5.36).

5.4 Discussion

In this chapter, we proposed two passivity-based controller designs for Lur’e
type systems with a linear part in the forward path and set-valued sector
bounded nonlinearities in the feedback loop to achieve absolute stability of
the closed-loop system. To obtain this goal, we extended the common rea-
soning based on the well known circle criterion and Popov criterion towards
set-valued nonlinearities that two interconnected passive systems of the Lur’e
type form again a passive system.

In the state-feedback controller design based on the circle criterion (using a
quadratic Lyapunov function), we guarantee that the closed-loop system is ab-
solutely stable under the condition that the linear part of the system is strictly
passive and the set-valued nonlinearities in the feedback loop are passive. In
the controller design based on the Popov criterion, the requirement of strict
passivity of the linear part of the closed-loop system is relaxed by using a dy-
namic multiplier. More specifically, by multiplying the transfer function of the
linear part with a dynamic multiplier and by multiplying the set-valued non-
linearities in the feedback loop by the inverse of this multiplier we derive a new
linear system in the forward path and new dynamic system with a set-valued
output map in the feedback path. For the interconnection of these subsystems
to be absolutely stable we require strict passivity of the new linear part and
passivity of the new set-valued nonlinearities.

For the case that not all states are available (measured), we also developed
a design method for output-feedback controllers that consist of a model-based
observer and a state-feedback controller. The state-feedback controller used
herein is based either on the (extended) circle or on the (extended) Popov
criterion, as mentioned before. We derived conditions under which the adopted
model-based observer recovers the system state exponentially by using only the
information of the system output. Moreover, conditions have been provided
under which the separation principle holds for the systems under study. More
specifically, the stability of the interconnected system is achieved if the observer
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error converges to zero exponentially and the controlled system is input-to-state
stable with respect to the observer error.

An interesting extension of this work is to relax the requirements of strict
passivity for the new linear system to requirements for passivity by using an-
other multiplier than the first order multiplier used in this chapter. This would
extend the applicability of the Popov criterion design to a broader class of
systems. Moreover, the Popov criterion controller design is only applicable to
Lur’e systems with time-independent nonlinearities. The extension of this de-
sign for time-dependent nonlinearities could be of interest (see [13]), although
it still has to be generalized to set-valued mappings. This might be a topic of
future research.
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6.1 Introduction

6.2 Experimental setup

6.3 An output-feedback controller

6.4 Summary

6.1 Introduction

In this chapter, we evaluate the practical use of the controller design strategy
presented in Chapter 5, using an experimental setup that describes a dynamic
rotor system with set-valued friction and non-collocated actuation. This exper-
imental setup consists of two discs coupled by a low stiffness spring (see Figure
6.1(a)). Both discs are subject to friction and one of them (the upper disc)
is driven by an actuator. The friction that acts on the upper disc is modeled
as dry friction and the friction that acts on the other disc (lower) is modeled
as dry friction with Stribeck effect [26]. The presence of negative damping
in one of the friction models leads to complex dynamical phenomena such as
the coexistence of steady-state solutions, discontinuous bifurcation points and
stick-slip limit cycling [86–88]. These vibrational phenomena are present in
many mechanical motion systems with flexibilities and friction. In such engi-
neering systems, especially limit cycling is an undesirable phenomenon because
it causes kinetic energy dissipation, noise, excessive wear of machine parts and
inferior positioning properties. Due to the fact that the examined setup repro-
duces this kind of behavior it can be considered as benchmark for this type
of systems. The goal of this chapter is the elimination of this limit-cycling
behavior in the setup. Common friction compensation techniques such as, for
instance, the ones proposed in [8; 26; 97] that deal with system subject to fric-
tion cannot be applied in the present system due to the fact that the control
action is non-collocated with the set-valued friction.

The model of the rotor dynamic system can be written as a Lur’e type
system with monotone sector bounded set-valued nonlinearities in the feedback
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loop. Since the model of the rotor dynamic system can be expressed as a Lur’e
type system, the output-feedback controller designs proposed in Chapter 5
can be applied. In the present chapter, we will apply the controller designs
that are based on the circle and Popov criterion, respectively, to the rotor
dynamic system. It will be shown that the circle criterion design cannot render
this system absolutely stable while the Popov criterion design can. Absolute
stability implies a favorable robustness property for the elimination of limit
cycling because it guarantees the stabilization of a unique equilibrium for any
friction model satisfying a sector condition. Moreover, it will be shown that the
robustness with respect to changes in set-valued nonlinearities (i.e. the friction)
also allows to stabilize a range of set-points (equilibria) using a single controller
design.

This chapter is organized as follows. In Section 6.2, the experimental setup
is described and a model for this setup is presented. The predictive quality
of the model with respect to the real system is studied based on simulations
and experiments. In Section 6.3, an output-feedback controller is designed for
this system to stabilize its equilibria for different friction situations, thereby
eliminating undesirable stick-slip limit-cycling. This output-feedback controller
consists of an observer and a state-feedback controller as discussed in Chapter
5. In this section, we also examine whether the closed-loop system is absolutely
stable based on experiments and simulations. At the end of this section, we
investigate the effect of controller saturation on the closed-loop performance.
Finally, a discussion of the results presented in this chapter is given in Section
6.4.

6.2 Experimental setup

In order to evaluate experimentally the controller design strategies proposed
in Chapter 5, an experimental setup that consists of two inertias coupled by
a flexibility and subject to friction has been built. This setup is available in
the Dynamics and Control Technology Laboratory at Eindhoven University of
Technology. For the remainder of this thesis we will call this setup the rotor
dynamic system.

6.2.1 Description of the rotor dynamic system

The experimental setup is shown in Figures 6.1(a)-6.1(b). The input voltage
from the computer, which is between −5V and 5V, is fed into the DC-motor
via the current-controlled amplifier. The DC-motor is connected to the upper
steel disc, via the gear box. The upper and lower discs are connected through a
low-stiffness steel string. Both discs can rotate around their geometric centers
and the related angular positions are measured using incremental encoders.
Moreover, a brake is applied at the lower disc and induces a friction torque that



6.2. Experimental setup 105

DC motor

kmu− Tfu(ωu)
Upper disc

ωu

ωl

String

Lower disc

Tfl(ωl)

(a)

upper
part

lower part

steel string

(b)

Figure 6.1: (a) Schematic representation of the experimental dynamic rotor
system (b) Photo of the experimental dynamic rotor system.

causes limit cycling in the system. More detailed photographs and descriptions
of the lower part of the setup and the brake are given in Figures 6.2 and 6.3,
respectively.

6.2.2 Model of the rotor dynamic system

In order to derive a simple, though predictive, model for the dynamic rotor
system we assume that

• the DC motor dynamics does not influence the system dynamics (the
inductance of the rotor circuit and the back electromagnetic phenomenon
(EMF) are neglected),

• the lower disc always remains horizontal and does not move in vertical
and lateral direction,

• the torsional damping in the string is negligible compared to the damping
of the bearings of the discs,
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brake device

lateral constraint
lateral constraint

encoder

lower disc

steel
string

Figure 6.2: Lower part of the experimental rotor dynamic set-up.

• the string is massless.

For more details on these modelling assumptions see [86], [87], [88]. The exper-
imental dynamic rotor system can then be described by the following model:

Juθ̈u + kθ(θu − θl) + Tfu(θ̇u)− kmu = 0

Jlθ̈l − kθ(θu − θl) + Tfl(θ̇l) = 0,
(6.1)

where θu and θl are the angular positions of the upper and lower discs, respec-
tively. Moreover, u is the input voltage to the power amplifier of the motor,
Ju and Jl are the moments of inertia of the upper and lower discs about their
respective centers of mass, kθ is the torsional spring stiffness and km is the
motor constant. The friction torques Tfu and Tfl act on the upper and lower
disc, respectively. The friction torque at the upper disc Tfu is caused by the
friction in the bearings of the upper disc and the electro-magnetic effect in the
DC-motor. The friction torque at the lower disc Tfl comprises the friction in
the bearings of the lower disc and the friction induced by the brake-mechanism.

The dynamics of the system (6.1) can be described by a third-order state-
space system since the dynamics only depends on the difference between the
velocities of the discs and the angular positions. Therefore, by choosing the
state variables as x1 = α = θu − θl, x2 = θ̇u and x3 = θ̇l, the following
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brake blocks

steel string

force sensor

adjustment
screw

Figure 6.3: Brake device.

state-space model is obtained:

ẋ1 = x2 − x3

ẋ2 = 1
Ju

[−kθx1 − Tfu(x2) + kmu]

ẋ3 = 1
Jl

[kθx1 − Tfl(x3)].
(6.2)

Both friction torques Tfu and Tfl are modelled by set-valued force laws to
account for the sticking effect of the real friction. Moreover, x = [x1 x2 x3]

T

is the state and xeq = [αeq ωeq ωeq]
T denotes an equilibrium of (6.2). Note

that the equilibrium xeq corresponds to the situation where both discs rotate
with the same constant velocity (x2 = x3 = ωeq) and a fixed distance αeq is
maintained between the angular positions of upper and lower disc.

The friction torque acting on the upper disc can be described by the set-
valued map:

Tfu(x2) ∈
{

Tcu(x2)sgn(x2) for x2 6= 0
[−Tsu + ∆Tsu, Tsu + ∆Tsu] for x2 = 0,

(6.3)

where the function Tcu(x2) is given by

Tcu(x2) = Tsu + ∆Tsusgn(x2) + bu|x2|+ ∆bux2. (6.4)

The constants Tsu, ∆Tsu, bu, ∆bu are the parameters of the friction model re-
lated to the friction at the upper disc. Moreover, −Tsu +∆Tsu and Tsu +∆Tsu

represent the minimum and the maximum static friction levels, respectively,
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Figure 6.4: Upper friction model Tfu.
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Figure 6.5: Friction torque of the lower disc for friction characteristic I and II.

and bu is the viscous friction coefficient of the friction in the upper disc. Fur-
thermore, the friction at the lower disc can be modeled accurately with an
algebraic inclusion that includes a dry friction model including the Stribeck
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effect [26] and viscous friction:

Tfl(x3) ∈
{

Tcl(x3)sgn(x3) for x3 6= 0
[−Tsl, Tsl] for x3 = 0,

(6.5)

where the continuous function Tcl(x3) is given by

Tcl(x3) = Tcl + (Tsl − Tcl)e
−|

x3
ωsl

|δsl

+ bl|x3|. (6.6)

The constants Tsl, δsl and bl are the parameters of the friction model related to
the friction at the lower disc. Moreover, −Tsl and Tsl represent the minimum
and the maximum static friction levels, respectively, and bl is the viscous fric-
tion coefficient. Note that the system (6.2)-(6.6) is a differential inclusion due
to the set-valued nature of the friction models (6.3)-(6.4) and (6.5)-(6.6). The
parameters km, Ju, Jl and kθ are identified experimentally in [86–88]. More-
over, the parameters of the friction model are identified using an approach as
described in [86; 87]. The identified parameters of the model (6.2)-(6.6) are
given in Tables 6.1 and 6.2 for different settings of the brake blocks. Indeed, we
can obtain different friction characteristics for the friction at the lower disc by
changing the normal force acting in the contact between the brake blocks and
the brake disc by using the adjustment screw (see Figure 6.3). This results in
two different friction characteristics with different parameters as in Table 6.1
for friction characteristic I and in Table 6.2 for friction characteristic II. The
nominal force for friction characteristic I is 17N and for friction characteristic
II is 25N. The resulting friction laws (6.3)-(6.4) and (6.5)-(6.6) are depicted in
Figures 6.4 and 6.5, respectively.

6.2.3 Nonlinear dynamics of the rotor dynamic system

In this section, we consider the case of constant inputs (i.e. constant voltage
inputs to the DC motor), since in this dynamic rotor system the steady-state
behavior to constant inputs is of great interest. Constants inputs are commonly
used to excite several mechanical motion systems such as drill-string systems,
printers, shafts in ship engines and many more. Equilibria, represented by
constant velocities, are considered desirable, whereas stick-slip limit-cycling is
considered to be an unwanted vibrational phenomenon as discussed in Section
6.1.

First of all, we will use simulations and experimental results to show that
the model of the rotor dynamic system, given in the previous section, captures
with accuracy the dynamics of the real system. In addition to that, we will
show that both the model and the considered system exhibits complex dynam-
ical phenomena such as the coexistence of steady-state solutions, bifurcations,
stable and unstable equilibria and periodic solutions. To validate the model
of the considered system two bifurcation diagrams are constructed. These di-
agrams represent properties of the steady-state trajectories versus a properly
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Table 6.1: Parameter values of the model (6.2)-(6.6) for friction characteristic
I.

parameter estimated value unit

km 4.3228 [Nm/V]
Ju 0.4765 [kg m2]
Tsu 0.3797 [Nm]

∆Tsu -0.0057 [Nm]
bu 2.4245 [kg m2/rad s]

∆bu -0.0084 [kg m2/rad s]
kθ 0.075 [Nm/rad]
Jl 0.035 [kg m2]
Tsl 0.26 [Nm]
Tcl 0.05 [Nm]
ωsl 2.2 [rad/s]
δsl 1.5 [-]
bl 0.009 [kg m2/rad s]

Table 6.2: Parameter values of the model (6.2)-(6.6) for friction characteristic
II.

parameter estimated value unit

km 4.3228 [Nm/V]
Ju 0.4765 [kg m2]
Tsu 0.37975 [Nm]

∆Tsu -0.00575 [Nm]
bu 2.4245 [kg m2/rad s]

∆bu -0.0084 [kg m2/rad s]
kθ 0.075 [Nm/rad]
Jl 0.035 [kg m2]
Tsl 0.24 [Nm]
Tcl 0.02 [Nm]
ωsl 2.0 [rad/s]
δsl 2.2 [-]
bl 0.01 [kg m2/rad s]

chosen bifurcation parameter. Furthermore, the period of the periodic solu-
tions is computed and measured. For all these diagrams together with time
responses, comparisons are made between the results obtained via the model
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Figure 6.6: Bifurcation diagram with the velocity of the lower disc for positive
constant input voltages.

and the measurements obtained from the setup.
Consider the system given by the differential inclusions (6.2)-(6.6) with

parameter values taken from Table 6.1. By using numerical computations,
the periodic steady-state solutions of the system state x for constant inputs
u = uc in the range [0, 5]V are derived. Moreover, we compute the equilibria
xeq = [αeq ωeq ωeq]

T by solving the algebraic inclusions originating from setting
ẋ1 = ẋ2 = ẋ3 = 0 is (6.2). It is proven in [86] that there exists an input voltage
uEq > 0 (uEq = 0.151V) such that for uc < uEq (for which ωeq = 0 there is an
equilibrium set (i.e. multiple equilibrium) and for uc > uEq a unique isolated
equilibrium exists for the given parameter set, see [88]. The technique used for
the numerical computation of solutions of the system (6.2)-(6.6) is based on the
switch model (see [80]). This algorithm is able to solve differential inclusions
with a limited number of discontinuities. Details on the switch model are given
in [80].

In Figures 6.6 and 6.7, two bifurcation diagrams of the rotor dynamic sys-
tem are given. The bifurcation diagram in Figure 6.6 depicts the steady-state
response of the velocity of the lower disc ωl versus the constant input voltage
uc, which is chosen as the bifurcation parameter. To be precise, the dotted
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Figure 6.7: Bifurcation diagram with the position difference between the upper
and the lower disc for positive constant input voltages.

line represents a region of unstable equilibria and the thick solid line a region
of stable equilibria. The thin solid curves correspond to the maximum and
minimum value, i.e. maxt∈[0, T ] ωl(t) and mint∈[0, T ] ωl(t), respectively, of the
steady-state periodic solutions (limit cycles) with period time T . In Figure 6.6,
the experimental results1 of ωl in steady-state are depicted with the marks ×
and ◦. The marks × correspond to stable equilibria and the marks ◦ correspond
to stable limit cycles.

Similarly, the bifurcation diagram in Figure 6.7 depicts the steady-state
response of the difference in displacements between the upper and lower disc
α versus the bifurcation parameter uc (for uc > uEq). Once again, the dotted
line represents a region of unstable equilibria and the thick solid line a region
of stable equilibria. The thin solid curves correspond to the maximum and
minimum value of α, i.e. maxt∈[0, T ] α(t) and mint∈[0, T ] α(t), respectively. By
using the two incremental encoders, located at the upper and the lower disc,
the system variable α is measured. The measurements of α are taken when the
system is in steady-state. The measured values of α are depicted in Figure 6.7

1Note that the experimental velocity signal is obtained by numerical differentiation (and
by using a low pass filter) of the measured position signals.
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Figure 6.8: Measured and simulated limit cycle responses of the rotor dynamic
system for uc = 1.8 V.

with the marks × and ◦. The marks × correspond to stable equilibria and the
marks ◦ correspond to stable limit cycles.

In order to gain a better understanding of the presented bifurcation dia-
grams, time responses of α(t) and ωl(t) are studied. In Figures 6.8, 6.9 and
6.10, α(t) and ωl(t) are depicted for constant input voltages of 1.8V, 2.8V and
3.8V, respectively. The dashed curves correspond to simulations and the solid
curves to measurements. In Figure 6.8, a limit cycle response is shown for
uc = 1.8V , while in Figures 6.9 and 6.10, equilibria are depicted for uc = 2.8V
and 3.5V, respectively.

Based on Figure 6.8, we notice that the stick-slip limit cycling is predicted
accurately by the model. From Figures 6.9 and 6.10, we notice that in prin-
ciple the system’s equilibria are also predicted well. However, there are some
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Figure 6.9: Measured and simulated equilibrium responses of the rotor dynamic
system for uc = 2.8 V.

fluctuations that remain in the experimental signals. Note that in Figures 6.6
and 6.7, both × and ◦ represent the average of ωl and α, respectively. This
implies that the considered model does not entirely capture the dynamics of
the real rotor dynamic system. Nevertheless, the error induced from this un-
modeled dynamics is not significant. To study the origin of these fluctuations,
a frequency-domain analysis is performed on the time responses of wl for in-
put voltages of 2.8V and 3.5V, see Figure 6.11. Figures 6.11(a) and 6.11(b)
correspond to the responses depicted in Figure 6.9(b) and Figure 6.10(b), re-
spectively. The rotational equilibrium velocity (in Hz) is plotted with a vertical
dashed line in the diagrams. The power spectral density diagrams in these fig-
ures show that there exists a dominant spectral component at 0.24 Hz for both
uc = 2.8V and uc = 3.5V. This frequency is due to the mechanical resonance
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Figure 6.10: Measured and simulated equilibrium responses of the rotor dy-
namic system for uc = 3.5 V.

frequency of the brake disc mechanism, which is independent of the rotational
frequency. This mechanical resonance frequency is also observed in [86]. For
all the constant input voltages uc, the rotational equilibrium velocity (in Hz)
represents another dominant spectral component. The fact that there are such
peaks in the power spectral density diagrams of the experimental steady-state
‘equilibrium’ responses indicates that there is unmodeled dynamics in the ex-
perimental system. Specifically, the presence of the frequency corresponding
to the rotational speed of the lower disc may indicate the presence of position-
dependent friction.

Finally, in Figure 6.12, we depict the period time T of the periodic solutions
of system (6.2)-(6.6). The solid curve represents simulations and the marks ◦
represent measurements.
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(a) uc = 2.8 V.
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(b) uc = 3.5 V.

Figure 6.11: Spectral analysis of responses of rotor dynamic system for different
input voltages.
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Figure 6.12: Diagram with the period times of the periodic solutions for positive
input voltages.

Based on Figures 6.6-6.10 and 6.12, we conclude that the model with the
estimated parameters describes the steady-state dynamics of the rotor dynamic
system with high accuracy. Some unmodeled dynamics are present in the ex-
perimental system, especially influencing the equilibria for the lower input volt-
ages. Nevertheless, these unmodeled dynamics are not dominating the modeled
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dynamics for ‘higher’ input voltages (and that is the range of our interest). The
accurate prediction of the equilibria is crucial within the controller design since
these will be the set-points provided to the feedback controller in Section 6.3.

6.3 An output-feedback controller

In this section, we will show that an output-feedback controller can eliminate
the limit cycle responses of the rotor dynamic system by stabilizing it over a
range of given set-points (corresponding to the open-loop equilibria for varying,
though constant, input voltages uc). Firstly, we will use the observer presented
in Section 6.3.1 to estimate the system state with high accuracy. Secondly,
we will use two output-feedback controllers with the goal to render the rotor
dynamic system absolutely stable. One of them is based on the circle criterion
and the other is based on the Popov criterion as presented in Section 5.3.2.
It will be shown that the closed-loop stability condition of the circle criterion-
based design (see Corollary 5.2.4) is not feasible for the rotor dynamic system.
However, the conditions imposed by Popov-based approach (see Theorem 5.2.3)
will turn out to be feasible. The absolute stability of the resulting closed-loop
system is studied both in simulations and in experiments. More specifically, by
studying two different friction situations (friction characteristics I and II) that
lead to two different nonlinearities in the feedback-loop we check whether the
resulting closed-loop system indeed has a unique asymptotically stable equilib-
rium for any contant input uc within a given range and whether the design is
robust for such friction changes. This will be done both in numerical simula-
tions and experimental measurements. It has already been mentioned in the
beginning of Section 6.2.1 that the control action provided by the motor (see
Figure 6.1(a)) to the rotor dynamic system may saturate (the maximum con-
trol input is 5V ). Therefore, we will also examine the influence of this input
saturation on the stabilization and limit cycle elimination of the closed-loop
system.

Consider the system (6.2)-(6.6) with parameter values taken from Table
6.1. In order to apply the observer and controller designs presented in Chapter
5, this system is presented as a Lur’e type system with monotone set-valued
nonlinearities in the feedback loop. For system (6.2)-(6.6) these set-valued non-
linearities are formed by the friction torques Tfu and Tfl, see Figures 6.4 and
6.5. Figure 6.5 shows that Tfl is not monotone. Nevertheless, it can be trans-
formed into a monotone mapping using the technique of loop transformation
[133]. The transformed system takes the form

ẋ = Atrx + Bu + Gw̄
z = Hx
w̄ ∈ −ϕ̄(z)
y = Cx,

(6.7)
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Figure 6.13: Transformation of the rotor dynamic system.

where w̄, z ∈ R2, the input u ∈ R, the measured output y ∈ R, and ϕ̄i : R→ R
for i = 1, 2. Note that both mappings ϕ̄i, i = 1, 2, are maximally monotone.
The system (6.7) is depicted schematically in Figure 6.13.

The system matrices in (6.7) are given by

Atr =





0 1 −1

− kθ

Ju
− b

Ju
0

kθ

Jl
0 m

Jl



 , B =





0
km

Ju

0



 , G =





0 0
1

Ju
0

0 1
Jl



 , (6.8)

H =

[

0 1 0
0 0 1

]

, ϕ̄(z) =

[

ϕ̄1(z1)
ϕ̄2(z2)

]

=

[

Tfu(z1)− bz1

Tfl(z2) + mz2

]

, (6.9)

with b = bu − ∆bu. Note that the loop transformation removes some viscous
friction from the friction model Tfu and creates a new friction model Tfu(z1)−
bz1 which thereby becomes monotone. Moreover, it adds viscous friction to the
friction model Tfl to create a new friction model, Tfl(z2)+mz2, which thereby
is monotone. m is the maximal negative slope of the friction curve (at the
lower disc). Herein,

m = min{ ∂

∂z2
Tfl(z2)|z2 ≥ 0}, (6.10)

with numerical value m = 0.1Nms/rad. The changes in the friction models are
compensated by changes in the linear system. In the present application it has
been noticed that by adding viscous damping (bx2) in the transformed linear
part of the system it becomes strictly passive.

6.3.1 Observer design implementations on the rotor dy-
namic system

We will use the observer (5.31) presented in Section 5.3.1 to estimate the state
of the rotor dynamic system, described in (6.7), as we consider the situation
where we can only measure the difference of the displacement between the
two discs (this implies that the full state is not available for feedback). In
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Appendix E, an observer is designed, based on the results of Theorem 5.3.2, and
implemented on the rotor dynamic system. It is shown that this observer is able
to estimate the system state adequately and that the observer error dynamics
is globally exponentially stable. Note that the observer error is defined as the
difference between the real state of the system and the estimated state of the
system. Moreover, the performance of this observer is investigated for different
observer gain settings in both simulations and experiments. Herein, both the
transient convergence speed and the steady-state sensitivity of the observer
error to modelling errors and measurement noise are taken into account to
support a choice for a particular gain setting. The observer gain settings with
the best performance is:

L2 = [195 − 312 − 9080 98.475] , N2 = [−2.22 − 37.8] .

In the following section, we will use the proposed observer with gains L2,
N2 for the rotor dynamic system in an output-feedback controller design and
we will show that the interconnection of the observer with a state-feedback
controller and the rotor dynamic system is stable. This is essential, due to the
fact that a successful design of an observer and a state feedback controller does
not necessarily imply a successful output-feedback design.

6.3.2 Feedback controller based on the circle criterion

In the present section, we aim to render the rotor dynamic system absolutely
stable by means of feedback. Since we consider the situation in which we can
only measure one state variable (the difference in displacement of the upper
and lower disc) we use an output-feedback controller to render the rotor dy-
namic system absolutely stable. This output-feedback controller consists of a
state-feedback controller that uses the observer estimates of the rotor dynamic
system state. These estimates are based on the observer as proposed in the
previous section. Both the state- and the output-feedback controllers are based
on the circle criterion (see Corollaries 5.2.4 and 5.3.5, respectively). Finally,
the proposed controllers use a single control gain to stabilize the system around
its entire equilibrium branch. In order to do so, we transform the system (6.7)
(i.e. system (6.2)-(6.6)) to a new system that has, for every constant input, the
origin as equilibrium.

The transformed system takes the form

ξ̇ = Atrξ + Bv + Gw̃
z = Hξ
w̃ ∈ −ϕtr(z)
y = Cξ,

(6.11)

where the state ξ ∈ R3 with ξ = x − xeq and xeq = [αeq ωeq ωeq]
T . Herein,

xeq is an equilibrium of system (6.7) (i.e. system (6.2)-(6.6)). Furthermore,
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Figure 6.14: Transformation of the rotor dynamic system.

w̃, z ∈ R2, the transformed input v = u− uc with v ∈ R, the measured output
y ∈ R, and ϕtr,i : R→ R for i = 1, 2. For the definition of the system matrices
see (6.8), (6.9). For further information related to the loop transformation the
reader is referred to Appendix D. Note that both mappings ϕtr,i, i = 1, 2, are
maximally monotone. The system (6.11) is depicted schematically in Figure
6.14.

The system matrices Atr, B, G and H are given as in (6.8) and (6.9). The
column ϕtr(z) is given by

ϕtr(z) =

[

ϕtr,1(z1)
ϕtr,2(z2)

]

=

[

Tfu,tr(z1)− bz1 − Tfu(ωeq)
Tfl,tr(z2) + mz2 − Tfl(ωeq)

]

, (6.12)

where, once again, b is the damping coefficient of the viscous friction bz1 that
is taken out from the friction model related to the upper disc. Moreover, m is
the maximal negative slope (see in (6.10)) of the viscous friction mz2 that is
added in the friction model related to the lower disc. In addition to that,

Tfu,tr(z1) ∈
{

Tcu,tr(z1)sgn(z1 + ωeq) for z1 6= −ωeq

[−Tsu + ∆Tsu, Tsu + ∆Tsu] for z1 = −ωeq,
(6.13)

with

Tcu,tr(z1) = Tsu + ∆Tsusgn(z1 + ωeq) + bu|z1 + ωeq|+ ∆bu(z1 + ωeq). (6.14)

Note that for ωeq > 0 both Tfu(ωeq) and Tfl(ωeq) are single-valued functions.
The function Tfl,tr(z2) is given by

Tfl,tr(z2) ∈
{

Tcl,tr(z2)sgn(z2 + ωeq) for z2 6= −ωeq

[−Tsl, Tsl] for z2 = −ωeq,
(6.15)

where

Tcl,tr(z2) = Tcl + (Tsl − Tcl)e
−|

z2+ωeq
ωsl

|δsl

+ bl|z2 + ωeq|. (6.16)

The transformed friction torques ϕtr,1 and ϕtr,2 are plotted in Figure 6.15 for
the constant input voltage uc = 1.0V and ωeq = 1.6rad/s.
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Figure 6.15: Transformed friction laws ϕtr,1 and ϕtr,1 for uc = 1.0 V and
ωeq = 1.6rad/s.

Consider system (6.11). The circle criterion controller design presented in
Corollary 5.2.4 involves the following linear state-feedback law:

v = Kξ, (6.17)

where K = [k1 k2 k3] is the feedback gain. In order to guarantee that
the closed-loop system (6.11), (6.17) is absolutely stable using Corollary 5.2.4,
firstly, the set-valued nonlinearities (ϕtr,1, ϕtr,2) in the feedback loop must be
monotone and lie within the sector [0 ∞] and, secondly, the linear part of this
system should be strictly passive. Based on Figure 6.15, both ϕtr,1, ϕtr,2 are
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monotone and belong to the sector [0∞] (since that is how we transformed the
nonlinearities). By using standard numerical LMI solvers (i.e the numerical
solver LMITOOL for MATLAB [38]) we did not succeed in finding a feasible
solution to the LMIs (5.30) with the system matrices defined in (6.8), (6.9).

As an extension, we apply a partial feedback cancellation of the friction
at the upper disc. The term ‘partial’ refers to the fact that we only cancel
the ‘Coulomb’ part of the friction at the upper disc. Next, we study whether
the new system can be rendered absolutely stable by means of feedback. This
study is based on results presented in [5] and [6]. The works [5] and [6] consider
Lur’e-type systems with a single nonlinearity in the feedback loop and provide
feasibility conditions for controllers based on the circle criterion.

Consider now the new control law

v = vcontrol + vcomp, (6.18)

vcontrol = Kξ, (6.19)

vcomp ∈































1
km

(Tsu + ∆Tsusgn(ξ2 + ωeq) + bu|ξ2 + ωeq|
+∆bu(ξ2 + ωeq))sgn(ξ2 + ωeq)− 1

km
Tfu(ωeq)

for ξ2 6= −ωeq

1
km

[−Tsu + ∆Tsu − Tfu(ωeq), Tsu + ∆Tsu − Tfu(ωeq)]

for ξ2 = −ωeq.

(6.20)

where vcomp is the partial friction cancellation term. For more information
about this friction compensation, see Appendix D.2. The reason for canceling
part of the friction at the upper and not part of the friction at the lower disc is
because the control action can only be applied to the upper disc (i.e. collocated
vs non-collocated friction). By applying the control law (6.18)-(6.20) in system
(6.2)-(6.6) and by using the technique of loop transformation as employed in
(6.12), the system takes the following form:

ξ̇ = Atr2ξ + Bvcontrol + Gtrw̃
z = Htrξ
w̃ ∈ −ϕtr,2(z),

(6.21)

with ϕtr,2 : R → R defined in (6.12). The system matrices Atr2, Gtr and Htr

are given by

Atr2 =





0 1 −1

− kθ

Ju
− 1

Ju
(bu −∆bu) 0

kθ

Jl
0 m

Jl



 , Gtr =





0
0
1
Jl



 , (6.22)

Htr =
[

0 0 1
]

. (6.23)



6.3. An output-feedback controller 123

For more information on the coordinate and loop transformations, see Ap-
pendix D. Next, we are going to apply the feasibility conditions presented in
[5] and [6] to system (6.21).

Consider system (6.21) and transform it into a normal form by a state and
feedback transformation.

ẏ1 = y2 + g1w̃
ẏ2 = y3 + g2w̃
ẏ3 = ṽ + g3w̃,

(6.24)

where ṽ is the new input and g1 = 1
Jl

, g2 = m
J2

l

and g3 = 1
Jl

(

m2

J2
l

− kθ

Jl

)

.

The coordinate transformation is applied according to the following definitions:

y1 = ξ3 = z

y2 = kθ

Jl
ξ1 + m

Jl
ξ3

y3 = kθm
J2

l

ξ1 + kθ

Jl
ξ2 +

(

m2

Jl
− kθ

Jl

)

ξ3.

(6.25)

The expression for the new control input ṽ is:

ṽ = kθkm

JlJu
vcontrol + kθ

Jl

(

m2

J2
l

− kθ

Jl
− kθ

Ju

)

ξ1

+kθ

Jl

(

∆bu

Ju
− bu

Ju
+ m2

Jl

)

ξ2 + m
J2

l

(

m
Jl
− 2kθ

)

ξ3.
(6.26)

If the conditions of the circle criterion as in (5.30) are feasible for system (6.21)
with the linear state-feedback control law (6.19), then the following conditions
must be satisfied: g1 > 0 and g2 < 0, see [5] and [6]. The circle criterion de-
sign for the system (6.21) with a linear state-feedback control law (6.19) is not
feasible because g2 > 0. This is caused by 1) the negative damping term mξ3

(actually mξ3 is due to the compensation of the negative damping (Stribeck
effect) in the friction of the lower disc needed to render the nonlinearity mono-
tone) in system (6.21), 2) the absence of a damping element in the link between
the upper disc and the lower disc.

The latter exposition explains that a controller design based on the circle-
criterion is not feasible for solving the stabilization problem for the rotor dy-
namic system with friction.

Consider now the case where there is damping in the link between the upper
disc and the lower disc. Then, the dynamics of the rotor dynamics system is
described as follows:

Juθ̈u + kθ(θu − θl) + ba(θ̇u − θ̇l) + Tfu(θ̇u)− kmu = 0

Jlθ̈l − kθ(θu − θl)− ba(θ̇u − θ̇l) + Tfl(θ̇l) = 0,
(6.27)

with ba the coefficient of the damping in the link between the upper disc and
the lower disc. By transforming system (6.27) into state-space form, applying
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the control law (6.18)-(6.20) in the new system and using the technique of loop
transformation as employed in (6.12), the system takes the following form:

ξ̇ = Atr3ξ + Bvcontrol + Gtrw̃
z = Htrξ
w̃ ∈ −ϕtr,2(z),

(6.28)

with the system matrix Atr3 given by

Atr3 =





0 1 −1

− kθ

Ju
− 1

Ju
(bu −∆bu + ba) ba

Ju
kθ

Jl

ba

Jl

1
Jl

(m− ba)



 . (6.29)

By applying in (6.28) the same transformations as in system (6.21) we derive
the following form for g1 and g2:

g1 =
1

Jl
, g2 =

m− ba

J2
l

.

It is obvious that for ba > m it holds that g2 < 0. Consequently, the circle
criterion design for the system (6.28) with a linear state-feedback control law
(6.19) is feasible.

In the following, we will use a Popov-based controller design to render the
rotor dynamic system absolutely stable.

6.3.3 Output-feedback controller based on the Popov
criterion

In this section, we aim to render the rotor dynamic system absolutely stable by
using an output-feedback controller based on the Popov criterion. Once again,
this output-feedback controller consists of a state-feedback controller that uses
the system state estimates of the observer proposed in Section 6.3.1. First,
we will apply partial feedback cancellation of the friction at the upper disc.
Next, we will show that there exists a control gain matrix that ensures that
the controlled system is absolutely stable. Finally, we will apply the proposed
output-feedback controller to the rotor dynamic system and we evaluate its
performance in both simulations and experiments. To examine the robustness
properties of this controller with respect to variations in the friction character-
istics, we use two properly chosen friction configurations and we check whether
there exists a unique asymptotically stable equilibrium for the closed-loop sys-
tem for both friction characteristics. Moreover, due to the fact that the control
action applied to the motor of the system is limited to ±5V, we will also study
the influence of the saturated control action to the system based on simulations
and experiments.
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Consider the system (6.21)-(6.23), the control law

vcontrol = Kξ̂ = K(ξ − e), (6.30)

where K = [k1 k2 k3], and the dynamics of the observer error e given in
(E.2). Note that

e = ξ − ξ̂ = x− xeq − x̂ + xeq = x− x̂. (6.31)

The system (6.21)-(6.23), (6.30) satisfies all the conditions in the Assumptions
5.2.1 and 5.3.1 and the observer error dynamics (E.2) is GES as it is shown
in Section 6.3.1. Therefore, by applying Theorem 5.3.3 to the interconnected
system (E.2), (6.21)-(6.23), (6.30) we can conclude that (ξ, e) = (0, 0) is a glob-
ally asymptotically stable equilibrium point for this system for every constant
input uc, as long as the matrix inequality (5.35) is feasible, i.e,

[

(Atr2 + BK)T P + P (Atr2 + BK) PGtr − H̃T

GT
trP − H̃ −D̃ − D̃T

]

< 0, (6.32)

for P = PT > 0 and D̃ and H̃ defined by (5.10).
By using the LMITOOL of MATLAB [38] we can solve the matrix inequality

(6.32) for a given K and η. Due to the fact that this LMI-toolbox can only
solve semi-definite LMIs we add the square matrix

[

−QP 03×1

01×3 0

]

, (6.33)

with QP = QT
P a positive definite matrix of a proper dimension, in the right-

hand side of (6.32).
In the following, we solve matrix inequality (6.32) (including QP ) for chosen

K and η and for the system parameters taken from Table 6.1. The derived
solution is:

K1 =
[

15.9 1.57 27.6
]

, η1 = 10,

P1 =





3.6243 0.4311 6.3725
0.4311 0.0702 0.7414
6.3725 0.7414 11.6411



 , QP1
=





16.6997 2.2968 29.1096
2.2968 0.3522 3.9707
29.1096 3.9707 50.8145



 .

(6.34)
The eigenvalues of P1 are 15.2, 0.108, 0.0175 and the eigenvalues of QP1

are
67.8, 0.0508, 0.0076.

6.3.4 Simulations for friction characteristic I

In this section, it will be shown in simulations, that stability of the closed-loop
system around the set-point is achieved. Moreover, due to the fact that the
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control input is limited to ±5V , control input saturation may occur. In the
following exposition, it will also be shown in simulations, that this fact does
not significantly influence the closed-loop system stability around the set-point.
The gains used for the observer that is included in the output-feedback con-
troller are L2, N2 (see (E.4)). These gains result in an observer error with
smaller amplitude and faster convergence to zero than the observer error ob-
tained using the gains L1, N1 (see (E.3)), as discussed in Section 6.3.1.

In Figure 6.16, we depict the total control input u = uc + v and in Figure
6.17, the state variables of system (6.2) for constant voltage input uc = 1.8V
and initial conditions x(0) = x̂(0) = [0 0 0]T . The control action v is given
by (6.18)-(6.20) or by v = vcomp + K1(x − xeq), with xeq = [αeq ωeq ωeq].
The numerical values of αeq and ωeq for uc = 1.8V are 1.55rad and 3.15rad/s,
respectively. More specifically, in these figures two graphs are depicted. The
graph with the dashed curve corresponds to a control input limited by ±5V and
the other graph, with the solid curve, corresponds to a non-saturated control
input. In Figure 6.18, we depict the absolute value of the components of the
control error x− xeq for the saturated and non-saturated control input. Based
on the depicted results in Figures 6.17 and 6.18, the solutions converge to
the system equilibrium both for the saturated and non-saturated case. The
only difference between these cases is that the solution of the system with the
saturated input requires more time to reach the equilibrium than that of the
system with the non-saturated input. Note that, of course the satisfaction of
the conditions of Theorem 5.3.4 only guarantees GAS of (ξ, e) = (0, 0) for the
unsaturated case.

Similar results to those depicted in Figures 6.16 and 6.17 are given in Figures
6.19 and 6.20, respectively. The constant input related to the results depicted
in this figure is uc = 4V and the initial conditions are x(0) = x̂(0) = [0 0 0]T (in
terms of system (6.2)). Once again, these figures show that the solutions of both
systems converge to the same steady state response which is an equilibrium (the
desired set-point). Again, the solution related to the system with the saturated
input takes more time until it reaches the system equilibrium than the solution
of the system with the non-saturated input. Note that for both uc = 1.8V and
uc = 4.0V, the open-loop system exhibits stick-slip limit cycling, see Figure
6.6. Clearly the proposed control strategy suppresses such undesirable limit
cycling.

6.3.5 Experiments for friction characteristic I

In Figures 6.21(a)-6.21(b), the bifurcation diagrams of ωl and α for bifurcation
parameter uc are depicted. The depicted results for ωl and α involve the exper-
imental steady-state responses of the closed-loop system. The control input u
is limited to ±5V. In these figures, the marks ◦ and × represent experimental
results and the solid line simulations. More specifically, ◦ depicts stable limit
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Figure 6.16: Total control input voltage of the closed-loop system with con-
troller with gain K1 = [15.9 1.57 27.6] switched on at t = 0 s; The solid line
corresponds to an unsaturated control input voltage and the dashed line cor-
responds to a saturated control input voltage; observer with gains L2 and N2;
the constant input voltage is uc = 1.8 V; the equilibrium values are αeq = 1.55
rad and ωeq = 3.15 rad/s.

cycles and × depicts stable equilibria. Actually, ◦ depicts the maximum and
minimum value of ωl and α over one period T of the steady-state solution. The
solid lines represent the simulated responses of ωl and α which represent glob-
ally asymptotically stable equilibrium branches (as guaranteed by the Theorem
5.3.3). Based on these figures, the equilibrium branches of the real system and
the model responses are very similar for the input range uc ∈ [1.4, 5]V . More-
over, in the range uc ∈ [1.3, 1.5]V it is shown that the experimental system has
two stable solutions, namely, a stable equilibrium and a stable limit cycle. On
the other hand, the model has a unique solution; a stable equilibrium. Finally,
for input voltages uc below 1.3V the experimental system exhibits only stable
limit cycles. Based on this analysis, it is clear that on a model level we can
achieve a unique equilibrium branch for the whole input range uc ∈ [0, 5]V , as
guaranteed by the theory. On the other hand, this is not possible in practice.
A reason for this fact can be the presence of unmodeled position dependent
friction in the system or noise in the measurement devices.

In Figures 6.22(a)-6.22(b), we compare the experimental bifurcation dia-
grams of the open-loop system with the experimental bifurcation diagram of
the closed-loop system. In these figures, the marks ◦, × represent closed-loop
results and the marks *, + open-loop results. The aforementioned diagrams
show that the output-feedback controller significantly extends the region with
only stable equilibria. For the open-loop system, this region covers the constant
input voltages uc ∈ [4.5, 5.0]V. The closed-loop system extends the region with
only stable equilibria to the constant input voltages uc ∈ [1.5, 5.0]V. Further-
more, the closed-loop limit cycles are different from those of the open-loop
system. This is to be expected since the control action changes the dynamics
of the closed-loop system with respect to those of the open-loop system.

For a better understanding of the presented results, we will also provide
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Figure 6.17: Responses of the closed-loop system with controller with gain
K1 = [15.9 1.57 27.6] switched on at t = 0 s, for input voltage unsaturated
(solid line) and for input voltage saturated (dashed line); observer with gains
L2 and N2; the constant input voltage is uc = 1.8 V; the equilibrium values
are αeq = 1.55 rad and ωeq = 3.15 rad/s.

time responses of the state variables of the rotor dynamic system for a number
of constant voltage inputs uc.

In Figures 6.23, 6.24 the total input uc + v and the state variables of the
experimental rotor dynamic system are depicted, respectively, for constant volt-
age input uc = 2.5V . As we have already mentioned, the total input is satu-
rated (uc ∈ [−5, 5]V). Initially, the open-loop system is in steady-state and the
observer is switched on. Note that, we can also switch on both the controller
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Figure 6.18: Control error for closed-loop system with controller with gain
K1 = [15.9 1.57 27.6] switched on at t = 0 s, for input voltage unsaturated
(solid line) and for input voltage saturated (dotted line); observer with gains
L2 and N2; the constant input voltage is uc = 1.8 V and the equilibrium values
are αeq = 1.55 rad and ωeq = 3.15 rad/s.

and the observer at the same time and the controller will still work. Never-
theless, we have not extensively studied this situation because a large initial
observer error will lead to a violent controller reaction in order to stabilize the
system. Such controller reaction is undesirable for the system’s safety because
it may lead to a damage in the motor. In the present study, we will only focus
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Figure 6.19: Total control input voltage of the closed-loop system with con-
troller with gain K1 = [15.9 1.57 27.6] switched on at t = 0 s; The solid line
corresponds to an unsaturated control input voltage and the dashed line cor-
responds to a saturated control input voltage; observer with gains L2 and N2;
the constant input voltage is uc = 4.0 V; the equilibrium values are αeq = 1.52
rad and ωeq = 7.06 rad/s.

on the case where the initial conditions of the open-loop system are chosen
such that the system converges to a stable limit cycle (see α and ωl in Figures
6.24(a) and 6.24(c), respectively). At t = 5s we switch on the controller. Then,
we wait until the closed-loop system reaches its steady-state. This figure shows
that the closed-loop steady-state response is a stable equilibrium. The values of
this stable equilibrium are equal with the equilibrium values of system (6.2) for
uc = 2.5V . In Figure 6.25, the absolute value of the components of the control
error x − xeq is depicted. In this figure, it is shown that the control error has
a non-zero steady-state response with very small amplitude. This reveals the
presence of small fluctuations in the steady-state solution of the experimental
system.

Similar results to those depicted in Figures 6.23, 6.24 are given in Figure
6.26. In this figure the steady-state response of the open-loop system is a limit
cycle. For this case the controller is switched on at t = 5s and the observer 10s
earlier such that it reaches its steady state before the controller is switched on.
In Figure 6.26, we depict the total control input and all state variables for a
constant input of 4V . The closed-loop system reaches its steady-state, which
is a stable equilibrium, approximately, 12s after we switch on the controller.
Once again, this closed-loop equilibrium is almost equal to the equilibrium
of system (6.1) for uc = 4V. The difference between the two equilibria is a
small fluctuation similar as in the results for the case with a constant input
uc = 2.5V . In Figures 6.27 and 6.29, we focus on the total system input and at
the velocity of the lower disc for constant inputs uc = 1.4V and uc = 0.9V . In
Figure 6.27, it is shown that the closed-loop steady-state response ωl fluctuates
around the equilibrium value ωeq. This fluctuation is more dominant than in
the cases of uc = 2.5 and uc = 4V . In order to gain insight in this phenomenon,
we perform a frequency-domain analysis of the signals ωl(t). More specifically,
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Figure 6.20: Responses of the closed-loop system with controller with gain
K1 = [15.9 1.57 27.6] switched on at t = 0 s, for input voltage unsaturated
(solid line) and for input voltage saturated (dashed line); observer with gains
L2 and N2; the constant input voltage is uc = 4.0 V and the equilibrium values
are αeq = 1.52 rad and ωeq = 7.06 rad/s.

we compute the power spectral density of the signals ωl(t). Once again, the last
50s of the signal history is recorded in order to asses steady-state properties.
The results of this analysis are shown in Fig 6.28. The power spectral density
of the observed velocity of the lower disc in this figure shows that the rotational
frequency (depicted with a vertical dashed line) is dominant. The dominance
of the rotational frequency indicates a position-dependent friction acting on
the lower disc. Moreover, a second dominant spectral component is present
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(a) Bifurcation diagram for the velocity of the lower disc.
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(b) Bifurcation diagram for the position difference between the
upper and the lower disc.

Figure 6.21: Experimental bifurcation diagrams of the closed-loop system with
control gain K1 = [15.9 1.57 27.6] for positive input voltages; observer gains
are L2 and N2.

in the signal at 0.22Hz. This frequency is close to the mechanical resonance
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Figure 6.22: Experimental bifurcation diagrams of the closed-loop system with
control gain K1 = [15.9 1.57 27.6] for positive input voltages; observer gains
are L2 and N2; comparison with the experimental bifurcation diagram of the
open-loop system.
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Figure 6.23: Total control input voltage of the closed-loop system response with
control gain K1 = [15.9 1.57 27.6] switched on at t = 5 s. The constant
input voltage is uc = 2.5V, the equilibrium values are αeq = 1.36 rad and
ωeq = 4.40 rad/s and the observer gains are L2 and N2.

frequency of the system, see also [86]. Both frequencies are present in all
the measured signals ωl(t). The combined results presented in Figures 6.23-
6.27 lead to the conclusion that the smaller the constant input the larger the
influence of the position-dependent friction acting on the lower disc on the
steady-state response ωl. Finally, in Figure 6.29, we show that the closed-loop
rotor dynamic system exhibits limit cycling for uc = 0.9. This implies that the
controller is not able to eliminate the limit cycles for low voltages due to the
presence of the position-dependent friction in the lower disc.

Remark 6.3.1 Theoretically, the output-feedback controller proposed in Sec-
tion 6.3.3 renders the rotor dynamic system absolutely stable for any friction
model of the form (6.5), as long as this friction model is a monotone set-valued
nonlinearity in the sector [0 ∞] (after the transformation as used before) and
the input w ∈ ϕ(z) is linearly bounded by z. In Appendix F, this robust-
ness property is also shown experimentally. For this purpose, the friction of
the lower disc is changed by applying an additional normal force on the brake
that creates an adapted friction characteristic. Moreover, the output-feedback
controller is applied, once more, to the system, see Figure 6.5 for the adapted
friction characteristic II.

6.4 Summary

In this chapter, we implemented a Popov criterion-based output-feedback con-
troller design on an experimental rotor dynamic setup. The setup can be con-
sidered as a benchmark system for mechanical motion systems with flexibilities
and friction. This setup consists of two inertias, a flexibility and discontinu-
ous friction acting on both inertias. An actuator drives one of these inertias.
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Figure 6.24: Closed-loop system response with control gain K1 =
[15.9 1.57 27.6] switched on at t = 5 s. The constant input voltage is
uc = 2.5V, the equilibrium values are αeq = 1.36 rad and ωeq = 4.40 rad/s
and the observer gains are L2 and N2.

Due to the presence of discontinuous friction this setup exhibits complex dy-
namical phenomena such as coexistence of steady-state solutions, discontinuous
bifurcation points and stick-slip limit cycling. Especially the limit cycling is
considered to be an undesirable phenomenon because it causes kinetic energy
dissipation, excessive wear of machine parts and inferior tracking performance.

Application of the proposed control strategy on a model-level shows that
indeed the limit-cycling is eliminated and a desired constant velocity solution
is globally asymptotically stabilized. Moreover, the fact that the controller
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Figure 6.25: Absolute value of the control error variables of the closed-loop
system with control gain K1 = [15.9 1.57 27.6]; the controller is switched
on at t = 5 s. The constant input voltage is uc = 2.5 V, the equilibrium values
are αeq = 1.36 rad and ωeq = 4.40 rad/s and the observer gains are L2 and N2.

design guarantees the absolute stability of the closed-loop system implies the
robustness of the stability properties with respect to changes in the friction
characteristics (which are inevitable in practice). Moreover, such robustness
is also shown to be favorable from the perspective of stabilizing a range of
set-points with a single controller. By applying the aforementioned output-
feedback controller design to the experimental system, we are able to eliminate
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the limit cycling for a large range of constant inputs.
The implementation of the proposed strategy on the experimental system

shows that the experimental results agree with the simulation results to great
extent. The implemented controller eliminates the stable limit cycles for ev-
ery constant input within a given range and stabilizes the closed-loop system
around a velocity equilibrium branch. Nevertheless, the presence of unmod-
elled position-dependent dynamics in the friction model limits the controller’s
performance for very small constant inputs. This is reflected by the fact that
the controller is not able to entirely eliminate the stick-slip limit cycles for
constant inputs below a certain value.
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Figure 6.26: Total control input voltage and closed-loop system response with
control gain K1 = [15.9 1.57 27.6] switched on at t = 5 s; the constant
input voltage uc = 4.0 V, the equilibrium values are αeq = 1.52 rad and
ωeq = 7.06 rad/s; observer gains are L2 and N2.
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Figure 6.27: Closed-loop system response with control gain K1 =
[15.9 1.57 27.6]; the constant input voltage is uc = 1.4 V, the equilibrium
values are αeq = 1.83 rad and ωeq = 2.43 rad/s; observer gains are L2 and N2.
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Figure 6.28: Power spectral density analysis of the equilibrium response ωl of
the rotor dynamic system for the input voltage uc = 1.4 V.
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Figure 6.29: Closed-loop system response with control gain K1 =
[15.9 1.57 27.6]; the constant input voltage is uc = 0.9 V, the equilibrium
values are αeq = 2.42 rad and ωeq = 1.52 rad/s; observer gains are L2 and N2.
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Conclusions and Recommendations

7.1 Conclusions 7.2 Recommendations

7.1 Conclusions

In this thesis, observer-based output-feedback controller design for classes of
non-smooth systems have been developed. Firstly, output-feedback controllers
aiming at disturbance rejection for continuous-time PWA systems have been
designed. Secondly, output-feedback controllers for the stabilization of Lur’e
type systems with set-valued nonlinearities (in particular mechanical motion
systems with non-collocated friction and actuation) have been developed. In
addition to that, the proposed controller design have been implemented on
experimental setups to show the strengths and weaknesses of the proposed
output-feedback controllers beyond their theoretical importance and demon-
strate the value of non-smooth modeling and observer-based controllers for
engineering systems in practice.

7.1.1 Disturbance attenuation for continuous PWA sys-
tems via output feedback

An observer-based output-feedback controller design that aims at disturbance
attenuation for periodically excited PWA systems has been developed. This
design is based on the notion of uniform convergence which has been exploited
for a number of reasons: 1) stabilize a PWA system, 2) design observer-based
output-feedback controllers, 3) develop bounds and performance measures for
the system’s input and output. In particular, the fact that a uniformly con-
vergent system has a unique globally asymptotically stable steady-state solu-
tion for bounded disturbance signals has been essential to our design. Finally,
the proposed observer-based output-feedback controller design has been imple-
mented on a setup with PWL restoring characteristics and it has proven to be
suitable for attenuating periodic disturbances acting on the setup.

First, state-feedback controllers have been used to render the closed-loop of
a PWA system (quadratic) convergent and to attain disturbance attenuation.
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Next, output-based controllers have been developed, as often in practice the
whole state is not available for feedback. These output-feedback controllers
consist of an interconnection of model-based observers and a state-feedback
that uses the estimated state of the observers as its input. Furthermore, it has
been shown that the ‘separation principle’ holds in this case in the sense that
input-to-state convergent closed-loop systems can be obtained by separately
designing the observer and the state-controller controller.

Moreover, an asymptotic ultimate bound for the control action induced by
these controllers has been provided. This bound holds for a given bound on
the disturbances and for a compact set of initial conditions. Such a guaran-
teed bound on the control action is very important for the implementation of
the proposed controller design strategy on real mechanical systems with PWA
characteristics as one always has to deal with actuation limitations in practice.

To compare the disturbance attenuation properties of different control laws,
performance measures have been proposed. These performance measures con-
sist of (i) asymptotic ultimate bounds on the output for all disturbance signals
included in a given bounded set. This measure does not discriminate between
particular shapes or classes of disturbances, such as harmonic functions, (ii)
frequency response functions that provide ‘nonlinear Bode-like’ plots for the
class of harmonic disturbances, (iii) quantitative performance measures, based
on these Bode-like plots, that capture ‘worst case’ or ‘averaged’ information
of the steady-state responses in a single number (which allows for quantitative
performance comparisons between different controller design).

Finally, the proposed observer-based output-feedback controller design has
been implemented experimentally on a setup with PWL restoring characteris-
tics (a flexible beam with flexible one-sided stop and mass-unbalance excita-
tion). Based on the theoretical developments and the performed experiments,
it has been shown that the proposed observer-based output-feedback controller
can render the setup convergent and attenuate the vibrations induced by peri-
odic excitations.

7.1.2 Stabilization of Lur’e type systems with set-valued
nonlinearities

An observer-based output-feedback controller design has been proposed for the
stabilization of Lur’e type systems with set-valued nonlinearities in the feed-
back loop. This design is based on the notion of the absolute stability. This
notion has been exploited, firstly, to stabilize a system of the considered type,
secondly, to design observer-based output-feedback controllers and, finally, to
provide robustness to the controlled system with respect to uncertainties in the
set-valued nonlinearities. In particular, the fact that an absolutely stable Lur’e
type system has a unique globally asymptotically stable equilibrium for every
set-valued nonlinearity that belong to a certain sector (in our case [0, ∞])
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has been essential in to our design. Moreover, the proposed observer-based
output-feedback controller design has been successfully implemented on an ex-
perimental rotor dynamics setup with non-collocated friction and actuation.

First, state-feedback controllers have been used to render the closed-loop
of a Lur’e type system with set-valued nonlinearities absolutely stable. One
of the controllers achieves absolute stability for the closed-loop system when
the closed-loop system satisfies the circle criterion. Due to the fact that some
systems may not satisfy the circle criterion, alternative design strategy has
been proposed. The conditions imposed on the circle criterion are relaxed by
a loop transformation with a dynamic multiplier. In this way we were able to
derive an extension of the wellknown Popov criterion that applies to Lur’e type
systems with set-valued nonlinearities in the feedback loop. Using these new
theoretical results we were able to render the closed-loop system absolutely
stable.

Next, output-based controllers have been developed by using these two cri-
teria, as often in practice the whole state is not available for feedback. As
for the PWA systems, these output-based controllers consist of an intercon-
nection of model-based observers and a state-feedback controller that uses the
estimated state of the observers as its input. Once again, it has been proven
that the ‘separation principle’ holds in both cases in the sense that asymp-
totically stable closed-loop systems have been obtained by separate observer
and controller designs. More specifically, the separation principle has proven
to hold for a combination of strictly passive Lur’e type systems with set-valued
nonlinearities in the feedback loop with an observer with exponentially stable
error dynamics.

The proposed observer-based output-feedback controllers have been tested
on an experimental rotor dynamics setup with non-collocated friction and ac-
tuation. This setup consists of two inertias subject to friction and a flexible
element between the inertias (see Figure 6.1(a)). Due to the presence of fric-
tion this system exhibits limit cycling. For this set, commonly applied friction
compensation techniques cannot be used. The reason is the non-collocatied
nature of the friction and actuation. Based on simulations, it has been shown
that the circle criterion design is not feasible. It has been proven that the ab-
sence of damping in the flexible connection between the inertias is responsible
for this fact. However, the design based on the extended version of the Popov
criterion has proven to be effective, in the sense that it was able to remove
the limit cycling and stabilize the system to its equilibrium. Moreover, it has
been shown experimentally that the proposed design uses a single control gain
to stabilize the system for whole range of set-points (equilibria). Finally, it is
worth noting that it has been shown experimentally that the design is indeed
robust for uncertainties in the friction characteristics.
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7.2 Recommendations

In the first part of this section, we will present some recommendations related
to the theoretical and experimental results for continuous PWA systems as
presented in this thesis (see Chapter 3 and 4).

• In the performance-based controller design strategy, we guarantee, firstly,
that a continuous PWA system in closed-loop with a linear static state-
feedback law is uniformly convergent as long as a set of constraints, given
in LMI form, are satisfied. Secondly, we guarantee that the control input
is bounded for bounded disturbances and a compact set of initial condi-
tions. To compute gain matrices of the controllers that satisfy the above
two properties and provides ‘optimal’ performance in terms of disturbance
attenuation, we follow a brute force approach that just generates many
controllers satisfying the LMI constraints after which we evaluate their
performance using the measures in Section 3.5.2. An interesting extension
of this work would be the formulation of the presented performance-based
controller design strategy in terms of an optimization problem. In such a
problem setting, the proposed performance measures can be used as ob-
jective functions and the convergence property together with the control
input saturation as LMI-based constraints for the optimization problem.
Such an approach may be more efficient in constructing a high perfor-
mance controller, although at the moment it is an open question how to
tackle such a complex optimization problem.

• In this work, we have chosen a linear state feedback control law for the
purpose of our design. Such choice allows us to check whether the closed-
loop system is convergent by using the developed LMI conditions. It
would be interested to examine whether a dynamic control law could
also be used in the considered systems. Such control law could result in
a controller dynamics that incorporates specific controller specifications
for every excitation frequency which, in turn, could result in a better
disturbance attenuation.

• It is important to mention that the disturbance attenuation approach
considered in this thesis is applicable to continuous PWA systems with
many switching modes. The fact that this approach has been successfully
implemented in experiments encourages us to apply it to more advanced
and complex engineering systems.

• In this thesis we have used conditions that guarantee convergence for
continuous PWA systems. Conditions for convergence also exist for dis-
continuous PWA systems. Therefore, it is very interesting to extend this
work in that direction.
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In the second part of this section, we will present some recommendations
related to the theoretical and experimental results for Lur’e type systems with
set-valued nonlinearities presented in Chapter 5 and 6.

• The Lur’e type systems we consider in this work consist of a linear part
in the forward loop and set-valued nonlinearities in the feedback loop. In
the state feedback controller design based on the Popov criterion, the re-
quirement of strict passivity of the linear part of the closed-loop system is
relaxed by using a dynamic multiplier. More specifically, the multiplica-
tion of the transfer function of the linear part with a dynamic multiplier
and the multiplication of the inverse of this multiplier with the set-valued
nonlinearities in the feedback loop result in a new linear system and new
set-valued nonlinearities. The requirements for absolute stability for the
new system are the strict passivity of the new linear part and the passivity
of the new system in the feedback path (which is now a dynamical system
with a set-valued output map). An interesting extension of this work is
to relax the requirements of strict passivity to requirements for passivity
by using another multiplier than the first order multiplier used here. This
would extend the applicability of the Popov criterion design to a broader
class of systems. Moreover, the Popov criterion controller design is only
applicable to Lur’e type systems with time-independent nonlinearities.
The extension of this design for time-dependent nonlinearities could be
of interest (see [13]), although it still has to be generalized to the case of
set-valued mappings.

• For the implementation of the Popov criterion-based output-feedback
controller on the rotor dynamic system we had to partially compensate
the friction acting at the upper disc. It is of great interest to design an
output-feedback controller for the uncompensated system due to the fact
that overcompensation and undercompensation can lead to undesirable
dynamic phenomena in the rotor dynamic system.

• For the implementation of the proposed model-based observer design to
the rotor dynamic system we use as observer output injection signal the
measured difference between the positions of the upper and lower disc (see
Figure 6.1(a)). It would be interesting to study under which conditions
we can use as output injection signal only the position of the upper disc.
This would be of interest especially for rotary drilling systems (see Figure
1.2) since in such systems down-hole measurements are hardly feasible.

• The output-feedback designs presented in this work use model-based ob-
servers. It has been shown experimentally that these observers are robust
with respect to changes in the friction characteristics. However, it has not
been proven whether they are robust with respect to unmodelled changes
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in the set-valued nonlinearities. It is of great importance to design ob-
servers and output-feedback controllers with such robustness property.

• In this work, we have proposed observer and controller designs for non-
smooth PWA systems described by differential equations with a contin-
uous though non-smooth vectorfield and Lur’e type systems with set-
valued nonlinearities. Both the observer and controller designs for the
latter class of systems are based on the Popov and circle criterion. It
would be interested to extend these designs also to non-smooth systems
with jumps in the state variables.



A

Lyapunov function matrices

In this appendix, the matrices P characterizing the Lyapunov function used to
design the four different controllers applied in the simulation and experimental
results in Chapter 4 are presented.

The controller design matrices PHG, PEI , PIS,1 and PIS,2 are:
PHG =

















8023, 412 89, 034 −1625, 452 92, 438 4, 650 −0, 193 0, 252 0, 122
89, 034 11, 129 −46, 768 −0, 526 0, 094 −0, 003 0, 001 0, 003

−1625, 452 −46, 768 549, 501 −7, 886 −1, 205 0, 048 −0, 0403 −0, 031
92, 438 −0, 526 −7, 886 5, 443 0, 0451 −0, 002 0, 002 0, 001
4, 650 0, 094 −1, 205 0, 045 0, 004 −0, 000 0, 000 0, 000
−0, 193 −0, 003 0, 048 −0, 002 −0, 000 0, 000 0, 000 −0, 000
0, 252 0, 001 −0, 040 0, 002 0, 000 0, 000 0, 000 0, 000
0, 122 0, 003 −0, 031 0, 001 0, 000 −0, 000 0, 000 0, 000

















PEI =

















10551, 247 539, 039 621, 138 −47, 865 0, 178 0, 346 −0, 686 −0, 048
539, 039 2393, 549 1257, 660 −866, 382 −0, 037 0, 019 −0, 062 −0, 029
621, 138 1257, 660 829, 531 −378, 783 0, 000 0, 087 0, 012 −0, 028
−47, 865 −866, 382 −378, 783 383, 575 0, 010 0, 013 0, 023 0, 006
0, 178 −0, 037 0, 000 0, 010 0, 001 0, 001 0, 000 −0, 000
0, 346 0, 019 0, 087 0, 013 0, 001 0, 014 0, 007 −0, 005
−0, 686 −0, 062 0, 012 0, 023 0, 000 0, 007 0, 005 −0, 002
−0, 048 −0, 029 −0, 028 0, 006 −0, 000 −0, 005 −0, 002 0, 002

















PIS,1 =

















1036, 701 62, 312 486, 638 −30, 836 −0, 003 −0, 075 0, 151 −0, 025
62, 312 3795, 354 1547, 835 −1369, 045 0, 040 0, 041 −0, 199 −0, 115
486, 638 1547, 835 927, 836 −583, 269 −0, 026 −0, 010 0, 097 −0, 030
−30, 836 −1369, 045 −583, 269 677, 259 0, 018 0, 108 −0, 039 0, 015
−0, 003 0, 040 −0, 026 0, 018 0, 001 0, 000 0, 000 −0, 000
−0, 075 0, 041 −0, 010 0, 108 0, 000 0, 023 0, 009 −0, 008
0, 151 −0, 199 0, 097 −0, 039 0, 000 0, 009 0, 006 −0, 003
−0, 025 −0, 115 −0, 030 0, 0153 −0, 000 −0, 008 −0, 003 0, 004
















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PIS,2 =

















1295, 120 37, 165 595, 466 −26, 714 −0, 000 −0, 037 0, 160 −0, 008
37, 165 3962, 781 1609, 094 −1415, 891 0, 044 0, 084 −0, 289 0, 002
595, 466 1609, 094 1000, 766 −604, 060 −0, 021 0, 047 0, 079 0, 031
−26, 714 −1415, 891 −604, 060 737, 074 0, 017 0, 023 −0, 116 0, 010
−0, 000 0, 044 −0, 021 0, 017 0, 002 0, 000 0, 000 −0, 000
−0, 037 0, 084 0, 047 0, 023 0, 000 0, 024 0, 009 −0, 008
0, 160 −0, 289 0, 079 −0, 116 0, 000 0, 009 0, 007 −0, 003
−0, 008 0, 002 0, 031 0, 010 −0, 000 −0, 008 −0, 003 0, 004

















.



B

Observer design implementations on

the PWL beam system

B.1 Simulation results B.2 Experimental results

In this Appendix, we design two observers for the PWL beam system by
using the theory presented in Section 3.3.1 and we validate their performance
based on simulation and experimental results. Firstly, we show that these ob-
servers exponentially reconstruct the state of the model that describes the real
system (simulations) and, secondly, we show that the observers accurately re-
construct the output and an additional state variable of the real system based
on experiments. In the first case, the system output is a transversal displace-
ment of a single point on the beam computed by the model. In the second
case, the system output is a measured signal that corresponds to the transver-
sal displacement of the same point on the beam. This signal is measured by a
linear displacement transducer mounted on the beam. In order to validate the
obtained results we measure the displacement of a second point on the beam.

B.1 Simulation results

In order to design the observer (3.7) or (3.12) for system (4.7a), the observer
output injection should be chosen such that the LMIs (3.11) are fulfilled for
the first observer and the LMIs (3.14) have to hold for the second observer.
By solving the LMIs (3.8) or the LMIs (3.14a)-(3.14b), we can compute the
observer gain L for the first observer or the observer gains L1, L2 for the second
observer, respectively. In the sequel, the observer gains L, L1, L2 are chosen
such that exponential stability of the observer error dynamics is guaranteed
and a balance between fast transient convergence and low sensitivity to model
errors and measurement noise is accomplished. This will be explained at the
end of this section. A detailed description of the computation of the observer
gains is given in the end of this section. The resulting numerical values of the
observer gains are

L = [93.059 89.959 − 225.506 − 7.496 4510.783 5736.746 13937.6 547.24]
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and

L1 = [98.475 88.090 − 284.05 − 5.254 386.35 4626.0 − 18411.0 766.50] ,

L2 = [98.781 88.212 − 284.35 − 5.2469 1910.2 5031.8 − 19635.0 627.17] .

In order to validate the observer performance using simulations, two model-
based signals (yA, qmid) that describe the displacements of two points along the
beam (point A and the middle of the beam in Figure 4.2(b), respectively) are
obtained by means of simulations with model (4.7)-(4.8) and

yA = CAx (B.1)

qmid = Cqmidx, (B.2)

where yA and qmid are the 68th- and 53rd-DOF of the 111DOF model, respec-
tively. Therefore, CA = [ τT

68 0T ] and Cqmid = [ τT
53 0T ], according to (4.8).

The numerical values of CA and Cqmid are given by

CA = [−0.317 − 0.334 − 0.667 − 0.3069 0 0 0 0]

and
Cqmid = [1 0 0 0 0 0 0 0] .

By using yA for observer output injection (y = yA), the observers provide
estimates of the full state (x̂) and consequently also of the displacement (q̂mid =
Cqmidx̂) of the middle point of the beam. By comparing the signals qmid and
q̂mid, we validate the observer state reconstruction. The initial conditions for
the model and the observers are x0 = 10−4 [1, 1, 1, 1, 1, 1, 1, 1]

T
and x̂0 =

100x0. Note that the focus here is on the open-loop system of the piecewise
linear beam (i.e. (4.7) for u = 0).

In the sequel, we will illustrate model estimations, observer estimations
and observer errors for both observers for different excitation frequencies and
excitation amplitudes.

In Figures B.1(a), B.1(b) and B.2(a), B.2(b), yA is compared with ŷA for
ω
2π = 43Hz, R = 74N and ω

2π = 20Hz, R = 16N, respectively. In these
figures, ŷA,L is the estimation based on the observer (3.7) and ŷA,(L1,L2) is the
estimation based on the observer (3.12).

Moreover, in Figures B.1(c), B.1(d) and B.2(c), B.2(d), qmid is compared
with q̂mid for ω

2π = 43Hz, R = 74N and ω
2π = 20Hz, R = 16N, respec-

tively. In these figures, q̂mid,L is the estimation based on the observer (3.7)
and q̂mid,(L1,L2) is the estimation based on the observer (3.12). Similar no-
tations will be used for other validations. In Figures B.3(a) and B.3(b), it
is shown that the model and the observers do not switch dynamics (e.g pass
through qmid = 0 and q̂mid = 0) simultaneously. Nevertheless, both converge to
the same steady-state solution as shown in Figures B.1(b), B.1(d) and B.2(b),
B.2(d), as guaranteed by Theorems 3.3.1 and 3.3.2.
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Furthermore, in Figures B.1(e), B.1(f) and B.2(e), B.2(f), we compare the
norm of the observer errors eo,L = x̂L − x and eo,(L1,L2) = x̂(L1,L2) − x with
each other and we provide an upper bound for ‖eo,(L1,L2)‖ based on (3.15), for
ω
2π = 43Hz, R(ω) = 74N and ω

2π = 20Hz, R(ω) = 16N, respectively. Based
on these figures, both observer errors converge to zero for both considered
excitation frequencies, as guaranteed by the theory. Moreover, ‖eo,(L1,L2)‖
indeed satisfies the bound as in (3.15).

Remark B.1.1 The steady-state solution of the displacements qmid and q̂mid

for an excitation frequency of 43Hz is a 1
2 subharmonic solution (Figures B.1(a),

B.1(b)), while for an excitation frequency of 20Hz it is a harmonic solution
(Figures B.2(a) and B.2(b)), see [58].

Remark B.1.2 Note that similar results are obtained if we use any other
signal y as output injection, as long as the LMIs (3.8) and (3.14a)-(3.14b) are
satisfied.

Remark B.1.3 If we compare the two observers based on simulation results
we realize that they both provide good estimations of the system state and
output, since the observer error converges to zero. Based on Figures B.1(f)
and B.2(f), we notice that eo,(L1,L2) converges to zero faster than eo,L. This
is probably due to the switching structure of the observer. From these figures,
note that the provided bound is only suitable for eo,(L1,L2).

B.2 Experimental results

In order to validate the observer performance using experimental results, we
measure two signals (yA,m, qmid,m) that describe the displacements of the point
A and middle point of the beam. These two signals are measured by two linear
variable displacement transducers. By using yA,m as observer output injection,
the observers construct an estimation of the full state (x̂) of the real system and
consequently also an estimation of the displacement q̂mid of the middle point.
By comparing qmid,m with q̂mid, an experimental validation for the observer
state reconstruction is performed. The initial conditions for the model are the
same as in the case of simulations. The observer error initial conditions, which
can be computed by using the position measurements by the LVDTs for qmid

and yA, are:

eo,qmid,L = 13.1 · 10−4m and eo,yA,L = 12.1 · 10−4m for 43Hz,

eo,qmid,(L1,L2) = 12.8 · 10−4m and eo,yA,(L1,L2) = 12.3 · 10−4m for 43Hz,

eo,qmid,L = 5.3 · 10−4m and eo,yA,L = 4.05 · 10−4m for 20Hz,
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ŷA,(L1,L2)

yA

(a)

1.85 1.9 1.95 2
−1

−0.5

0

0.5

1

1.5

2

2.5

3
x 10

−3
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Figure B.1: (a) Model prediction yA [m] and observer reconstruction ŷA [m]
based on (3.7) (ŷA,L) and (3.12) (ŷA,(L1,L2)) for excitation frequency ω

2π = 43Hz
and excitation amplitude R = 74N; (b) Zoomed version of (a) in steady-state;
(c) Model prediction qmid [m] and observer reconstruction q̂mid [m] based on
(3.7) (q̂mid,L) and (3.12) (q̂mid,(L1,L2)); (d) Zoomed version of (c) in steady-
state; (e) The norm of the observer error eo [m] of (3.7) (‖eo,L‖) and (3.12)
(‖eo,(L1,L2)‖) and the observer error bound (3.15); (f) Zoomed version of (e).
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Figure B.2: (a) Model prediction yA [m] and observer reconstruction ŷA [m]
based on (3.7) (ŷA,L) and (3.12) (ŷA,(L1,L2)) for excitation frequency ω

2π = 20Hz
and excitation amplitude R = 16N; (b) Zoomed version of (a) in steady-state;
(c) Model prediction qmid [m] and observer reconstruction q̂mid [m] based on
(3.7) (q̂mid,L) and (3.12) (q̂mid,(L1,L2)); (d) Zoomed version of (c) in steady-
state; (e) The norm of the observer error eo [m] of (3.7) (‖eo,L‖) and (3.12)
(‖eo,(L1,L2)‖) and the observer error bound (3.15); (f) Zoomed version of (e).



154 Observer design implementations on the PWL beam system

0.1 0.12 0.14 0.16 0.18 0.2
−5

0

5
x 10

−3

 

 

time [s]

q̂mid,L

qmid

q̂mid,(L1,L2)

q̂ m
id

,L
,

q̂ m
id

,(
L

1
,L

2
)
,

q m
id

[m
]

(a)

0.1 0.12 0.14 0.16 0.18 0.2
−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

−3

 

 

time [s]

q̂mid,L

qmid
q̂mid,(L1,L2)

q̂ m
id

,L
,

q̂ m
id

,(
L

1
,L

2
)
,

q m
id

[m
]

(b)

Figure B.3: Model prediction qmid [m] and observer reconstruction q̂mid [m]
based on (3.7) (q̂mid,L) and (3.12) (q̂mid,(L1,L2)): (a) ω

2π = 43Hz and R = 74N;
(b) ω

2π = 20Hz and R = 16N.

eo,qmid,(L1,L2) = 5.2 · 10−4m and eo,yA,(L1,L2) = 4.2 · 10−4m for 20Hz.

We will now illustrate observer estimations, measured signals and observer
errors, for both observers, (3.7) and (3.12), for different excitation frequencies
and excitation amplitudes.

In Figures B.4(a) and B.6(a), q̂mid is compared with qmid,m for ω
2π = 43Hz,

R = 74N and ω
2π = 20Hz, R = 16N, respectively. In these figures, q̂mid,L

is the estimation based on the observer (3.7) and q̂mid,(L1,L2) is the estima-
tion based on the observer (3.12). Furthermore, in Figures B.4(c), B.5(a) and
B.6(c), B.7(a), we compare the observer errors eo,qmid,L = q̂mid,L− qmid,m and
eo,qmid,(L1,L2) = q̂mid,(L1,L2)− qmid,m for ω

2π = 43Hz, R = 74N and ω
2π = 20Hz,

R = 16N, respectively. In Figures B.4(c) and B.6(c), eqmid,L and eqmid,(L1,L2)

are depicted in a transient, while in Figures B.5(a) and B.7(a) they are depicted
in steady-state.

In Figures B.4(b) and B.6(b), ŷA is compared with yA,m for ω
2π = 43Hz,

R = 74N and ω
2π = 20Hz, R = 16N, respectively. In these figures, ŷA,L is

the estimation based on the observer (3.7) and ŷA,(L1,L2) is the estimation
based on the observer (3.12). Furthermore, in Figures B.4(d), B.5(b) and
B.6(d), B.7(b), we compare the observer errors eo,yA,L = ŷyA,L − yA,m and
eo,yA,(L1,L2) = ŷA,(L1,L2) − yA,m for ω

2π = 43Hz, R = 74N and ω
2π = 20Hz,

R = 16N, respectively. In Figures B.4(d) and B.6(d), eA,L and eyA,(L1,L2)

are depicted in a transient phase, while in Figures B.5(b) and B.7(b) they are
depicted in steady-state.

Clearly, both observers accurately reconstruct the behavior of the real sys-
tem. The fact that eo,L and eo,(L1,L2) do not converge to zero exactly but
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Figure B.4: (a) Observer reconstruction q̂mid [m] based on (3.7) (q̂mid,L) and
(3.12) (q̂mid,(L1,L2)) and measured signal qmid,m [m] for excitation frequency
ω
2π = 43Hz and excitation amplitude R = 74N; (b) Observer reconstruc-
tion ŷA [m] based on (3.7) (ŷA,L) and (3.12) (ŷA,(L1,L2)) and measured sig-
nal yA,m [m]; (c) observer error eo,qmid [m] of (3.7) (eo,qmid,L) and (3.12)
(eo,qmid,(L1,L2)) in transient; (d) observer error eo,yA

[m] of (3.7) (eo,yA,L) and
(3.12) (eo,yA,(L1,L2)) in transient.

to a steady-state solution with small ‘amplitude’ (see Figures B.5(a), B.5(b),
B.7(a) and B.7(b)) is due to (inevitable) model mismatch and due to noise in
the measured signals. In both observers, the steady-state observer error has
the same order of magnitude, although the errors eo,L appear to be somewhat
smaller than eo,L1,L2

in steady-state.
The steady-state observer error is a measure for the performance of the ob-

servers with the computed observer gains (L1, L2) or L. Namely, it reflects the
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Figure B.5: (a) observer error eo,qmid [m] of (3.7) (eo,qmid,L) and (3.12)
(eo,qmid,(L1,L2)) in steady-state; (b) observer error eo,yA

[m] of (3.7) (eo,yA,L)
and (3.12) (eo,yA,(L1,L2)) in steady-state.

steady-state sensitivity to model errors and measurement noise. To investigate
the influence of the choice of the observer gains on these performance criteria,
we compute different observer gains that satisfy the LMI constraints (3.8) or
(3.14a)-(3.14b) by varying the constant α. For the obtained observer gains L
or (L1, L2), we can measure the magnitude of eo,L or eo,(L1,L2) in steady-state
and the time (called settling time ts) required for eo,L or eo,(L1,L2) to converge
to its steady-state.

This knowledge can then be used to asses the effect of the choice of the
observer gain on both the transient performance and the steady-state sensi-
tivity to modelling errors and measurement noise. It is exactly the trade off
between such transient and steady-state performance that determines the ul-
timate choice for the observer gains. Clearly, the desired balance between
transient and steady-state performance heavily depends on the performance
requirements for the system under study. The specific observer gains used in
this thesis are obtained by balancing such transient and steady-state perfor-
mance for the PWL beam system. The presented observer will be used for
control purposes. Therefore, the choice of the observer gains should be such
that the observer is faster than the controller and the observer error as small
as possible in steady-state.

In order to further reduce the model errors and the measurement noise in
the system aiming at even higher steady-state observer performance, we could
use more accurate (more complex) models to describe the system dynamics.
Furthermore, higher precision encoders are needed in order to decrease the
measurement noise in the signals that are used to recover the system state.
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Figure B.6: (a) Observer reconstruction q̂mid [m] based on (3.7) (q̂mid,L)
and (3.12) (q̂mid,(L1,L2)) and measured signal qmid,m [m] for excitation fre-
quency ω

2π = 20Hz and excitation amplitude R = 16N; (b) Observer recon-
struction ŷA [m] based on (3.7) (ŷA,L) and (3.12) (ŷA,(L1,L2)) and measured
signal yA,m [m] (c) observer error eo,qmid [m] of (3.7) (eo,qmid,L) and (3.12)
(eo,qmid,(L1,L2)) in transient; (d) observer error eo,yA

[m] of (3.7) (eo,yA,L) and
(3.12) (eo,yA,(L1,L2)) in transient.

The drawback of aiming at more accurate models is that, in most of the cases,
it will lead to models of higher order and/or higher complexity. As a result, the
calculation of the observer responses becomes (too) computationally expensive.
This is not favorable for the on-line implementation of the observers in real
systems. The drawback of using high precision encoders in a real system is
that they are generally expensive.

In Section 4.4, we will use the switching observer (3.12) for the PWL beam
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Figure B.7: (a) observer error eo,qmid [m] of (3.7) (eo,qmid,L) and (3.12)
(eo,qmid,(L1,L2)) in steady-state; (b) observer error eo,yA

[m] of (3.7) (eo,yA,L)
and (3.12) (eo,yA,(L1,L2)) in steady-state.

system in an output-feedback control design. As we have already mentioned,
for the given system, this observer yields somewhat higher steady-state error
levels compared to the observer (3.7). However, observer (3.12) yields, in turn,
faster transients, which is a favorable property when combining the observer
with a controller in an output feedback scheme. We will show, in Section 4.4,
that the accuracy of this observer is high enough for the control purposes in
the examined application.



C

Saturated control action on the PWL

beam system

As shown in Section 4.4.2, using an actuator with umax = 650N the PWL
beam system can be rendered (locally) uniformly convergent while the actuator
constraints will be respected if the controller is activated when the system
resides in any open-loop steady-state solution or when the system is at rest.
Nevertheless, the available actuator in the PWL beam system, can only provide
a control action limited to umax = 75N for frequencies in the range of ω

2π ∈
[10 60]Hz. It is obvious that in this case the control input will be saturated even
when using control gains KIS,1 and KIS,2, see Figure 4.8. Therefore, it will be
examined by means of simulations whether such control action can still render
the PWL beam system convergent and attenuate the periodic disturbances
acting on the system for initial conditions as mentioned above.

In the present study, we will use the control gain matrices KIS,1 and KIS,2.
Firstly, we will compute the control input (without saturation) provided to the
closed-loop system in steady-state (denoted by ū(t)). In case ‖ū(t)‖ > umax

for some t and some ω
2π ∈ [10 60]Hz, then the control gain matrix related to

this control input is rejected. On the other hand, if it holds that |ū(t)| ≤ umax

for all t and all ω
2π ∈ [10 60]Hz, then we investigate further whether the control

gain matrix related to this control input can 1) render the system (locally)
convergent, 2) attenuate the periodic disturbances acting on the system, by
performing further simulations.

In Figure C.1, we depict maxt∈[0 T ] |ū(t)| for all ω
2π ∈ [10 60]Hz for both

KIS,1 and KIS,2 together with the upper bound umax = 75 N . In this figure,
it is shown that |ūIS,1(t)| ≤ umax for all t ∈ [0 T ], ω

2π ∈ [10 60]Hz. On
the other hand, |ūIS,2(t)| > umax for some t ∈ [0 T ] and ω

2π ∈ [10 60]Hz.
Consequently, KIS,1 could eventually render the system (locally) convergent,
while KIS,2 cannot (at least not with the same steady-state solutions as for
the unsaturated system). Note that the control action related to the control
gain KIS,2 saturates only for ω

2π ∈ [53, 55]Hz. In case we are interested in
frequencies outside this region, KIS,2 might be of interest as well to further
investigate its convergence and disturbance attenuation properties . The fact
that |ūIS,2(t)| > umax for some t ∈ [0 T ] and ω

2π ∈ [10 60]Hz for KIS,2 implies
that Xcl * S and, therefore, Xcl * Θρ (where again Xcl is a set including
all closed-loop steady-state solutions). This is graphically illustrated in Figure
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Figure C.1: umax (dash-dotted line), maxt∈[0 T ] |ūIS,1(t)| (solid curve) and
maxt∈[0 T ] |ūIS,2(t)| (dashed curve) for the interconnected system in steady-
state.

Θρ

Xcl

S

Figure C.2: Graphical illustration of the situation where Xcl * S and Xcl * Θρ

for the PWL beam system for control gain KIS,2, umax = 75N, and R = 144N.

C.2. More specifically, in this figure we depict Xcl by a polyhedral with dark
grey color, Θρ by an ellipsoid with white color and S by a polyhedral with light
grey color. It is clear that the polyhedral Xcl is not included in the ellipsoid
Θρ nor in the polyhedral S.

In the sequel, we will numerically compute the responses of the closed-loop
system with K = KIS,1, firstly, for the case where there is saturation in the
control input and, secondly, in the case where there is no saturation in the
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control input. Moreover, based on these responses we will examine whether
the saturated control action renders the closed-loop system convergent. The
initial conditions x0 ∈ X0 * Θρ and the saturated control action is given by
u(t) = min{|KIS,1x(t)|, umax}sign(KIS,1x(t)) ∀t. In Figures C.3(a)-C.3(c),

max
t∈[0 T ]

|q̄ω
mid(t)|/R(ω), max

t∈[0 T ]
|q̄ω

act(t)|/R(ω) and max
t∈[0 T ]

|ȳω
A(t)|/R(ω)

are plotted for the closed-loop system. In these figures, the solid curves cor-
respond to the responses of the closed-loop system where the control action
does not saturate and umax = 650N, and the dashed curves correspond to
the responses of the closed-loop system where the control action saturates and
umax = 75N. Based on these curves, the system with saturated control action
exhibits the same steady-state responses as the one without saturated control
action. Recall in this respect that, for the control gain KIS,1, the control action
does not exceed umax = 75N in steady-state.

For a better understanding of this phenomenon, time responses of qmid, qact,
yA and u are given in Figures C.4 and C.5. In these figures, the dashed curves
correspond to responses for the saturated system, while the solid curves cor-
respond to responses for the non-saturated system. The excitation frequencies
and amplitudes in Figures C.4 and C.5 are 21Hz, R = 18N and 43Hz, R = 50N,
respectively. Figures C.4(d) and C.5(d) do indeed show that in steady-state
no saturation occurs, which guarantees that the globally asymptotically stable
steady-state solutions of the non-saturated system are also (at least locally)
asymptotically stable steady-state solutions of the saturated system. Moreover,
these figures show that for considerably deviating initial conditions, solutions
of the saturated system still converge to these steady-state solutions (although
this cannot be guaranteed in general). The latter results indicate that despite
the actuator saturation, the control design with gains KIS,1 may still perform
well in practice. Note that the results in Figures C.4 and C.5 correspond to
two test-cases in which the exited open-loop system resides in the harmonic
and 1

2 -subharmonic resonances which are (concerning actuator saturation) two
critical cases (see also Figure 4.8).

At this point, we will give a graphical illustration of the situation where
the control action, related to KIS,1, is saturated and the saturated closed-loop
system still converges to the steady-state solution of the non-saturated closed-
loop system. Once again, umax = 75N, R = 144N and ρ = 1. Moreover,
the numerical values of the variables γ (γIS,1) and µmax that characterize the
sets Θγ and Θµmax

are 53.48 and 72.5, respectively. Consider, hereto, the
Figure C.6 where the already defined sets Xcl, Θρ, Θγ , X0, Θµmax

and S are
depicted together with a new set Ω. This set includes all the initial states
of the saturated system such that the corresponding solution of this system
reaches Xcl for some t ≤ t0. This set is depicted by a polyhedral with light
grey color. The set X0 is depicted by a polyhedral with dark grey color and
the sets Xcl and S are depicted by polymorphic shapes with black color and
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Figure C.3: (a) maxt∈[0 T ] |q̄ω
mid(t)|/R(ω); (b) maxt∈[0 T ] |q̄ω

act(t)|/R(ω); (c)
maxt∈[0 T ] |ȳω

A(t)|/R(ω) non-saturated (solid curve) and saturated (dashed
curve) control action.
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Figure C.4: (a) qmid(t); (b) qact(t); (c) yA(t) and (d) u(t) for saturated (dashed
curves) and non-saturated (solid curves) control action. ω

2π = 21Hz, R = 18N
and umax = 75N for the saturated case.

thick solid curve, respectively. Once again, X0 is the set of initial condition for
both the saturated and non-saturated closed-loop systems, Xcl represents the
set that includes the steady-state solutions (x̄ω

cl(t)) of the non-saturated closed-
loop system (note that since Xcl ⊆ Θρ, these are also steady-state solutions of
the saturated system) and S reflects the largest set for which |u| ≤ umax (see
Section 3.4). Finally, the sets Θρ, Θγ and Θµmax

are depicted by the ellipsoids
with light grey color, white color and dark grey color, respectively. Due to the
fact that µmax > γ > ρ = 1, Θρ lies inside Θγ and Θγ inside Θµmax

. Since
Θγ * Θρ, we cannot guarantee, based on the theory, that Θρ is PI. Hence,
even if x0 ∈ Θρ it is possible that the system will leave Θρ and the actuator
may ultimate saturate. Nevertheless, in the examined simulation case, the set
of initial conditions X0 clearly is a subset of the set Ω, since, as it is shown
in Figures C.4 and C.5, the control action is saturated (i.e. solutions x(t) are
outside S for some t ≥ t0) but still the solutions of the saturated system starting
from X0 solutions eventually reach Xcl. Therefore, the fact that Θγ * Θρ does
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Figure C.5: (a) qmid(t); (b) qact(t); (c) yA(t)| and (d) u(t) for saturated (dashed
curves) and non-saturated (solid curves) control action. ω

2π = 43Hz, R = 50N
and umax = 75N for the saturated case.

not prevent the state of the saturated system to reach the steady-state solution
of the non-saturated system. The latter exposition aims to explain why indeed
the saturated controller still exhibits satisfactory performance, as shown in
simulations, while this is not guaranteed by the theory.
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Figure C.6: Graphical illustration of the situation where the control action,
related to KIS,1, is saturated by 75N and the saturated closed-loop system still
converges to the steady-state solution of the non-saturated closed-loop system.
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D

Transformations in the model of the

rotor dynamic system

D.1 Coordinate transformation

D.2 Friction compensation for

the friction at the upper disc

D.3 Loop transformation of

the rotor dynamic system

In this appendix we will describe in detail the transformations applied to
the model of the rotor dynamic system (6.2)-(6.6) in order to derive a new
system that belongs to the class of Lur’e-type systems under study. In Section
D.1, we apply a coordinate transformation to model (6.2)-(6.6) to transform
system it into a Lur’e-type form with two monotone set-valued nonlinearities
in the feedback-loop and to guarantee that it has the origin as equilibrium for
every constant external input uc. The set-valued nonlinearities correspond to
the friction laws of the upper and lower discs. In Section D.2, we partially
compensate the friction in the upper disc and we derive a Lur’e type system
with a single (scalar) nonlinearity in the feedback loop. Finally, in Section D.3,
we perform a loop transformation to the derived system to render the unique
set-valued nonlinearity monotone and apply the proposed control design.

D.1 Coordinate transformation

We consider the rotor dynamic system (6.2)-(6.6). For a constant input voltage
uc, such that xeq is a unique isolated equilibrium point of (6.2)-(6.6), we employ
a coordinate transformation. This coordinate transformation ensures that the
origin is the unique equilibrium point of the transformed system.

The new states are defined by:

ξ1 = x1 − x1eq = α− αeq

ξ2 = x2 − x2eq = ωu − ωeq

ξ3 = x3 − x3eq = ωl − ωeq.
(D.1)

The control input is u = uc + v = 1
km

[kθαeq + Tfu(ωeq)] + v, where v is the
input for the transformed model. The input voltage v will be zero for the
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uncontrolled system. The state-space equations of the transformed system are
given by

ξ̇1 = ξ2 − ξ3

ξ̇2 = 1
Ju

[−kθξ1 − kθαeq + kmuc − Tfu,tr(ξ2) + kmv]

ξ̇3 = 1
Jl

[kθξ1 + kθαeq − Tfl,tr(ξ3)],

(D.2)

with the transformed friction models for the upper disc Tfu,tr(ξ2) and the lower
disc Tfl,tr(ξ3) given by (6.13) and (6.15) (see also Figures D.1 and D.2).

Tsu + ∆Tsu

−Tsu + ∆Tsu

Tfu,tr

ξ2

(bu − ∆bu)(ξ2 + ωeq)

(bu + ∆bu)(ξ2 + ωeq)

−ωeq

Tfu,tr (0) = Tfu(ωeq)

Figure D.1: Transformed upper friction model Tfu,tr(ξ2).

The transformed rotor dynamic model can be written into a form with a
linear time-invariant system in the forward path and a set-valued nonlinearity
in the feedback part. This form of the model is convenient for application of the
circle criterion and the Popov criterion. These criteria will be used for observer
and control design in the Chapter 6. The constants −kθαeq + kmuc and kθαeq

in the right-hand side of the differential equations for ξ2 and ξ3 in (D.2), will be
added to the friction models Tfu,tr(ξ2) and Tfl,tr(ξ3), see Figures D.1 and D.2
to create new friction models Tfu,tr2(ξ2) and Tfl,tr2(ξ3), see Figures D.3 and
D.4. This results in a linear system for which zero input yields zero output, i.e
0 ∈ Tfu,tr2(0) and 0 ∈ Tfl,tr2(0).
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Tsl

−Tsl

ξ3

Tfl,tr

−Tcl(ξ3 + ωeq)

Tcl(ξ3 + ωeq)

−ωeq

Tfl,tr (0) = Tfl(ωeq)

Figure D.2: Transformed lower friction model Tfl,tr(ξ3).

Then the model of the rotor dynamic system can be written as follows,

ξ̇ = Aξ + Bv + Gw
z = Hξ
w ∈ −ϕ(z),

(D.3)

with ξ ∈ R3, z ∈ R2, ϕ : R2 → R2, w ∈ R2 and with the matrices given by

A =





0 1 −1

− kθ

Ju
0 0

kθ

Jl
0 0



 , B =





0
km

Ju

0



 , G =





0 0
1

Ju
0

0 1
Jl



 , (D.4)

H =

[

0 1 0
0 0 1

]

, ϕ(z) =

[

ϕ1(z1)
ϕ2(z2)

]

=

[

Tfu,tr2(z1)
Tfl,tr2(z2)

]

. (D.5)

The set-valued nonlinearities Tfu,tr2(z1), Tfl,tr2(z1) are given by

Tfu,tr2(z1) = Tfu,tr(z1)− Tfu(ωeq), (D.6)

Tfl,tr2(z2) = Tfl,tr(z2)− Tfl(ωeq), (D.7)

where Tfu,tr(z1) and Tfl,tr(z1) are given by (6.13) and (6.15), respectively.
Figures D.3 and D.4 show that the upper friction Tfu,tr2 is monotone, while

the lower friction Tfl,tr2 is not monotone. Therefore both the observer and
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−Tsu + ∆Tsu − Tfu(ωeq)

Tfu,tr2

z1

(bu − ∆bu)(z1 + ωeq) − Tfu(ωeq)

(bu + ∆bu)(z1 + ωeq) − Tfu(ωeq)

−ωeq
Tsu + ∆Tsu − Tfu(ωeq)

Figure D.3: Transformed upper friction model Tfu,tr2(z1).

control design can not be applied to the current form of the model of the
rotor dynamic system. To overcome this problem, we transform the system
via loop transformations, such that the lower friction Tfl,tr3 derived from this
transformation, is monotone. The lopp transformation is given by

[

Tfu,tr3

Tfl,tr3

]

=

[

Tfu,tr2

Tfl,tr2

]

+ M

[

ξ2

ξ3

]

. (D.8)

Herein, the loop transformation matrix M is given by

M =

[

−b 0
0 m

]

, (D.9)

where b = bu −∆buNms/rad and m = 0.1 Nms/rad. Further information for
the use of this loop transformation matrix M is given below. The minimum
linear damping needed to render the transformed friction Tfl,tr3 monotone
(i.e. to ensure that the derivative of Tfl,tr3 with respect to ξ3 is larger or
equal to zero ∀ξ3 6= 0), is less than the chosen value for m. In that way, a
certain level of robustness with respect to rendering a changed friction T ∗

fl,tr3

monotone is obtained, where T ∗
fl,tr3 represents the actual friction acting on
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Tsl − Tfl(ωeq)

−Tsl − Tfl(ωeq)

z2

Tfl,tr2

−Tcl(z2 + ωeq) − Tfl(ωeq)

Tcl(z2 + ωeq) − Tfl(ωeq)

−ωeq

Figure D.4: Transformed lower friction model Tfl,tr2(z2).

the lower disc which may differ from the modeled friction model Tfl,tr3 (due
to unavoidable modeling errors). By including the loop transformation matrix
(D.8) in the structure of system (D.3)-(D.5), we obtain the system in (6.11)
(with ϕtr,1(z1) = Tfu,tr3(z1) and ϕtr,2(z2) = Tfl,tr3(z2)).

D.2 Friction compensation for the friction at

the upper disc

We consider the rotor dynamic system (D.3)-(D.5) in Lur’e form. The Coulomb
friction and the asymmetric part of the viscous friction acting on the upper
disc (included in the friction map Tfu,tr2 of system (D.3)) are compensated by
applying the following control law v to the rotor dynamic system (D.3):

v = vcomp + vcontrol, (D.10)
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−Tsu + ∆Tsu

ωu

Tsu + ∆Tsu

kmv∗comp

2∆buωu

(a) Compensation kmv∗
comp for system (6.2)-(6.6).

−Tsu + ∆Tsu

ξ2Tsu + ∆Tsu

kmvcomp

2∆buξ2

−Tfu(ωeq)

−Tfu(ωeq)

−ωeq

(b) Compensation kmvcomp for system (D.3)-(D.5).

Figure D.5: Compensation for different rotor dynamic models.

with vcontrol as the new control input and where the friction compensation
control input vcomp is given by

vcomp(ξ2) ∈































1
km

(Tsu + ∆Tsusgn(ξ2 + ωeq) + bu|ξ2 + ωeq|
+∆bu(ξ2 + ωeq))sgn(ξ2 + ωeq)− 1

km
Tfu(ωeq)

for ξ2 6= −ωeq

1
km

[−Tsu + ∆Tsu − Tfu(ωeq), Tsu + ∆Tsu − Tfu(ωeq)]

for ξ2 = −ωeq.
(D.11)
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The set-valued nonlinearity Tfu is described by (6.3) and the equilibrium veloc-
ity ωeq is an element of xeq corresponds to an equilibrium of system (6.2)-(6.6).
The compensation control law vcomp partly compensates the friction acting on
the upper disc. The remaining viscous damping − 1

Ju
(bu − ∆bu)ξ2 will be in-

cluded in the linear part of the system. The reason for not compensating all the
friction acting at the upper disc is that the remaining viscous damping may ul-
timately help to render the linear part of the system passive, as required in the
control designs discussed in Chapters 5 and 6. The compensation kmvcomp for
the rotor dynamic system (D.3)-(D.5) is depicted in Figure D.5(b). We show in
Figure D.5(a), for clarity, the compensation kmv∗

comp for the rotor dynamic sys-
tem (6.2)-(6.6) with v∗

comp as the compensation control law. The compensation
kmv∗

comp represents a torque for this system. The relation between kmvcomp

and kmv∗
comp is given by

kmvcomp = kmv∗
comp + Tfu(ωeq).

After the application of the control law for v in (D.10), the model of the
rotor dynamic system (D.3) transforms to:

ξ̇ = Anewξ + Bvcontrol + Gtrw
z = Htrξ
w ∈ −ϕnew(z)

(D.12)

with ξ ∈ R3, vcontrol, w, z ∈ R, ϕnew : R → R, and with the matrices and the
set-valued nonlinearity ϕnew in the feedback loop given by

Anew =





0 1 −1

− kθ

Ju
− 1

Ju
(bu −∆bu) 0

kθ

Jl
0 0



 , B =





0
km

Ju

0



 , Gtr =





0
0
1
Jl



 ,

(D.13)

Htr =
[

0 0 1
]

, ϕnew(z) = Tfl,tr2(z). (D.14)

The set-valued nonlinearity Tfl,tr2 is given by (D.7).

D.3 Loop transformation of the rotor dynamic
system

For the application of the controller based on the Popov criterion to the rotor
dynamic system (D.12)-(D.14), the set-valued nonlinearity ϕnew in the feed-
back loop has to be monotone. Nevertheless, the set-valued nonlinearity Tfl,tr2,
depicted in Figure D.6, is not monotone. To overcome this problem, the loop
transformation presented in (D.8) and (D.9) is applied to the rotor dynamic sys-
tem (D.12)-(D.14). As we mentioned in Section D.1, the value m = 0.1Nms/rad
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Figure D.6: Model of the friction Tfl,tr2 acting on the lower disc.

is chosen for the loop transformation, which transforms the friction map Tfl,tr2

into the monotone friction map Tfl,tr3. The reason for such choice is also ex-
plained in that section. The transformed system is described by (6.21)- (6.23).



E

Observer design implementations on

the rotor dynamic system

In this Appendix, we design two observers for the rotor dynamic system
given in (6.7) based on the results presented in Section 5.3.1 and we validate
their performance based on simulations and experimental results. For the com-
plete state reconstruction of the dynamic rotor system, the difference between
the measured angular positions of the two discs is used as an output injection
signal. In other words, the output matrix in (6.7) is given by C = [1 0 0]. Once
again, these angular positions are measured using incremental encoders. For
the validation of the observer for the dynamic rotor system we, firstly, show
that the observer can reconstruct the state of the model. Secondly, we show
experimentally that this also holds for the state of the real system.

Consider the model-based observer, which is taken of the form as in (5.31),

˙̂x = Atrx̂ + L(y − Cx̂) + G ˆ̄w + Bu
ˆ̄w = −ϕ̄(ẑ)
ẑ = Hx̂ + N(y − Cx̂)
ŷ = Cx̂,

(E.1)

where x̂ ∈ R3, ẑ, ˆ̄w ∈ R2, and N ∈ R2×1, L ∈ R3×1 are the observer gain
matrices. The dynamics of the observer error e = x− x̂ is then given by

ė = (Atr − LC)e + G(w̄ − ˆ̄w) (E.2a)

w̄ ∈ −ϕ̄(Hx) (E.2b)

ˆ̄w ∈ −ϕ̄(Hx̂ + N(y − ŷ)). (E.2c)

The observer will provide estimates for the state variables (i.e. also the veloci-
ties of the upper and lower discs). In simulations and experiments, we will com-
pare the estimated values of the state variables with the simulated/measured
values. Due to the fact that velocities are not measured directly in the ex-
perimental setup and in order to still provide a comparison measure for the
estimated velocities provided by the observer (E.1), we will obtain estimates of
the velocities of the discs by numerically differentiating the angular positions
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of the discs and filtering the resulting signals using a low-pass filter. The high
resolution of the encoders allows for accurately computing the aforementioned
velocities.

The design of the observer (E.1) for system (6.7) entails finding gains L and
N such that the triple (Atr − LC,G,H − NC) is strictly passive. By solving
the LMIs in (5.35) using the LMITOOL for MATLAB [38] we can find L, N
guaranteeing strict passivity of the triple (Atr−LC,G,H−NC). In the present
case, two solutions are computed. The first solution to LMIs (5.35) is given by

L1 =





13.8
−4.37
−165



 , N1 =

[

−0.572
−7.07

]

, P1 =





3.1398 0.2726 0.2474
0.2726 0.4765 0.0000
0.2474 0.0000 0.0350



 .

(E.3)
for ν1 = 0.154. The eigenvalues of the matrix in the left-hand side of the second
matrix inequality in (5.35) for P = P1, L = L1 and N = N1 are: −1.4899,
−4.1335, −70.141. Now we aim at a faster transient response by increasing ν
in LMIs (5.35). The second solution to LMIs (5.35) is given by

L2 =





195
−312
−9080



 , N2 =

[

−2.22
−37.8

]

, P2 =





63.3492 1.0578 1.3230
1.0578 0.4765 0.0000
1.3230 0.0000 0.0350



 .

(E.4)
for ν2 = 2.20. The eigenvalues of the matrix in the left-hand side of the second
matrix inequality in (5.35) for P = P2, L = L2 and N = N2 are: −12.915,
−0.6783, −0.0691. For simulation purposes, the input signal u in (6.2) is chosen
to be a constant signal, u = 2V . At this point, we present simulations for the
initial state for the system taken as x(0) = [0 0 0]T and for the observer as
x̂(0) = [4 4 4]T . The observer is simulated, once again, using the dedicated
technique for systems with set-valued characteristics based on the switch model
presented in [80].

Simulation results

The simulation results are depicted in Figures E.1(a)-E.1(c) and E.2(a)-E.2(c).
These results show transient responses. When a constant input voltage uc = 2V
is applied (i.e a constant torque is applied to the upper disc) stick-slip oscilla-
tions (torsional vibrations) occur due to the negative damping in the friction
law (6.5) see Figures 6.6 and 6.7. During these oscillations, the velocity ωl of
the lower disc alternates between zero (stick phase) and positive values (slip
phase). As guaranteed by the theory, the designed observer is able to provide
the correct estimate of the state. In Figures E.1(a)-E.1(c), the responses α, α̂,
ωu, ω̂u and ωl, ω̂l are shown. Moreover, the absolute values of the elements
of the estimation error e are depicted in Figures E.2(a)-E.2(c). The observer
estimates for the state variables and the absolute values of the estimation error
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Figure E.1: Responses of the rotor dynamic system and the two observers with
different gains for the input voltage uc = 2.0 V.

values are given for two pairs of observer gains (L1, N1) and (L2, N2). Based
on these figures, the pair (L2, N2) leads to a faster transient convergence of
the observer estimate to the system state than the pair (L1, N1). This is to be
expected since the rate of the observer error to zero (given in (5.33)) related

to the pair (L2, N2) (λmin(ν2I)
λmin(P2)

= 349.82) is larger than this related to the pair

(L1, N1) (λmin(ν1I)
λmin(P1)

= 10.72). However, the pair (L2, N2) gives rise to larger

transients errors than this of the pair (L1, N1).
The (squared) vector norm of the estimation error ‖e‖22 for the two observer
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(c) Observer error |ωl − ω̂l|.

Figure E.2: Observer error responses for different observer gains for the input
voltage uc = 2.0 V.

gains together with an upper bound for the observer error, as given in (5.33),
are depicted in Figures E.3(a), E.3(b). The constant input is uc = 2V and the
time interval of the simulations is [0, 5]s. These figures show that the provided
error bound is conservative and that the estimation error converges to zero.

In Figure E.4(a), we depict the responses ω̂l, ωl, and in Figure E.4(b) we
depict the observer error |ωl − ω̂l| for (L1, N1) and for uc = 3.5V . The initial
condition for the rotor dynamic system is x(0) = [3.5 6 0]T and for the
observer x̂(0) = [4 4 4]T . Note that the choice for x(0) leads the system to
exhibit limit cycling. Based on the results of Figure E.4, the observer is able
to estimate the rotor dynamic state for both slip and stick phase.
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Figure E.3: Squared vector norm of (and a bound for) the observer error of the
two observer gains for the input voltage uc = 2.0V.

In Figures E.5(a)-E.5(c), we depict the observer estimates α̂l, ω̂u and ω̂l for
the observer gain (L1, N1) and the corresponding responses αl, ωu and ωl. In
these figures, the input voltage uc is changed from 2.7V to 2.2V at t = 0.25s.
The initial condition x(0) are the equilibrium values corresponding to the input
voltage uc = 2.7V i.e. x(0) = xeq = [1.35 4.62 4.62] and the initial condition
x̂(0) is x̂(0) = [0 3 3]T . As guaranteed by the theory, the observer error
converges to zero despite the sudden change in the input uc.

Experimental results

As it was mentioned in the beginning of Subsection 6.3.1, the response α of the
experimental setup is measured and the responses ωu, ωl are computed (using
numerical differentiation of the measured displacements of the upper and lower
discs). We use the same input voltage (u = 2V ) as for the first simulation
results. The measured state component α and the observer estimate α̂ for
(L1, N1) and (L2, N2) are depicted in Figures E.6(a) and E.9(a), respectively.
The absolute value of the observer error |α− α̂| and the observer error α− α̂ for
(L1, N1) and (L2, N2) are depicted in Figures E.6(b), E.6(c) and E.9(b), E.9(c),
respectively. Finally, the computed state components ωu, ωl and the estimated
state components ω̂u, ω̂l are depicted in Figures E.7 and E.8 for (L1, N1).
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Figure E.4: Response of the rotor dynamic system and the observer with the
gains L1 and N1 for the input voltage uc = 3.5 V.

The experimental results show that the designed observer is able to provide
accurate estimates of the state of the experimental setup. The observer error
related to α does not converge to zero exactly, but oscillates between 0.01 and
−0.03rad for (L1, N1) and between 5 ·10−4 and −8 ·10−4rad for (L2, N2). This
error is small compared to the magnitude of the state, but larger than in the
simulation results. The residual error can be attributed to (inevitable) model
errors and sensor imperfections.

The mismatch between the observer behavior and the dynamic rotor system
behavior in steady-state (see the remaining observer error in Figures E.6(c) and
E.9(c) and the transient convergence speed (see Figures E.6(b) and E.9(b)) form
the guideline for the evaluation of the computed observer gains (L1, N1) and
(L2, N2). Namely, the observer design aims at a fast transient convergence
and low sensitivity to model errors and measurement noise. More specifically,
we compute different observer gains that satisfy the LMI constraints (5.35) by
varying the constant ν, respectively. For every pair of observer gains (L, N)
we can measure the magnitude of the observer error in steady-state and the
time required for this error to converge to its steady-state. This knowledge
can then be used to assess the effect of the choice of the observer gain on
both the transient performance and the steady-state sensitivity to modeling
errors and measurement noise. This is exactly the trade off between such
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Figure E.5: Responses of the rotor dynamic system and the observer with the
gains L1 and N1, the input voltage decreases with a step on t = 0.25 s from
uc = 2.7 V to uc = 2.2 V.

transient and steady-state performance that determines the ultimate choice
for the observer gains. From this perspective, the observer gains L2, N2 (see
(E.4)) are preferable with respect to the observer gains L1, N1 (see (E.3)) for
the present application, because they result in an observer error with smaller
amplitude and faster convergence to zero than the observer error that uses the
gains L1, N1.
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(c) The observer error (α − α̂).

Figure E.6: Comparison of the measured state component α with the state
component α̂ of the observer with the gains L1 and N1 for uc = 2.0 V.

In case it is designed to further reduce the effects of model errors and mea-
surement noise in the examined system aiming at even higher steady-state
(estimation) performance, we could use more accurate models to describe the
system dynamics. Furthermore, encoders with higher precision are needed in
order to decrease the measurement noise in the signals that are used to recover
the system state. The drawback of aiming at more accurate models is that, in
most cases, this will lead to models of higher order and/or higher complexity.
As a result, the calculation of the observer responses becomes (too) compu-



183

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

time [s]

ω
u
,ω̂

u
[r

ad
/s

]
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(b) State component ωu and estimate ω̂u for 5 ≤ t ≤ 10.

Figure E.7: Comparison of the response ω̂u of the observer with the gains
L1 and N1 (black dashed line) and the response ωu, derived by numerically
differentiating the measured signal θu, (grey solid line) for uc = 2.0 V.

tationally expensive. This is not favorable for the on-line implementation of
observer designs in real systems. Moreover, the drawback of using high preci-
sion encoders is that these are generally expensive and hence often prohibitive
in commercial application.
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Figure E.8: Comparison of the response ω̂l of the observer with the gains
L1 and N1 (black dashed line) and the response ωl, derived by numerically
differentiating the measured signal θl, (grey solid line) for uc = 2.0 V.
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Figure E.9: Comparison of the measured state component α with the state
component α̂ of the observer with the gains L2 and N2 for uc = 2.0 V.
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F

Simulations-Experiments for friction

characteristic II

Theoretically, the output-feedback controller proposed in Section 6.3.3 renders
the rotor dynamic system absolutely stable for any friction model of the form
(6.5), as long as this friction model is a monotone set-valued nonlinearity in
the sector [0 ∞] (after the transformation as used before). We will show this
robustness property also experimentally. For this purpose, we will change the
friction of the lower disc by applying an additional normal force on the brake
that creates an adapted friction characteristic and we will apply the output-
feedback controller again to the system, see Figure 6.5 for the adapted friction
characteristic II.

Consider the system (6.2)-(6.6) with parameter values taken from Table 6.2
(friction characteristic II). As mentioned in Section 6.3, by performing the loop
transformation, this system can be written in a Lur’e type form that consists
of a linear part and a monotone set-valued nonlinearity in the feedback loop.
This system is described by (6.11) with system matrices given by (6.8) and
(6.9). As long as the value of m is larger than the maximal negative slope
of the graph related to friction (6.5), (6.6) with friction characteristic II (see
Figure 6.5) then the resulting nonlinearity ϕtr,1 in (6.12) is still monotone and
such changes in the values of the friction (6.5), (6.6) do not influence the linear
part of the system.

By using the observer (E.1), the state variables of the rotor dynamic system
are estimated. As the calculation of the observer gains (L, N) based on the
matrix inequality (5.35), only depends on the linear system matrices and the
control gain K, the solutions (L2, N2) and K for the system with friction
characteristic I is also applicable to the system with friction characteristic II.

In Figures F.1(a)-F.1(b), the bifurcation diagrams of ωl and α for bifurca-
tion parameter uc are depicted. The responses ωl and α are the steady-state
responses of the closed-loop system with friction characteristic II. The control
input u is limited to [−5, 5]V. In these figures, the marks ◦ and × represent
experimental results and the solid line simulations. More specifically, ◦ depicts
the maximum and minimum value of the state on the stable limit cycles and
× depicts stable equilibria. The solid lines represent the model-based globally
asymptotically stable equilibrium branches for ωl and α. These figures show
that the equilibrium branches of the experimental system and the model re-
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sponses correspond well for the input range uc ∈ [1.5, 5]V. Moreover, in the
range uc ∈ [1.5, 1.75]V it is shown that the experimental system has two sta-
ble steady-state solutions: a stable equilibrium and a stable limit cycle. On
the other hand, the model has a unique steady-state solution: a stable equi-
librium (as guaranteed by the theory). Finally, for input voltages below 1.5V
the experimental system exhibits only stable limit cycles and the model only
stable equilibria. Based on this analysis, it is clear that on simulation level we
can achieve a unique globally asymptotically stable equilibrium branch for the
whole input range uc ∈ [0, 5]V, as guaranteed by the theory. On the other
hand, this appears not to be possible in practice. Again, a possible reason for
this fact is the presence of position-dependent (unmodeled) friction or noise in
the measurement devices.

In Figures F.2(a)-F.2(b), we compare the experimental bifurcation dia-
grams of the open-loop system with the experimental bifurcation diagram of
the closed-loop system. In these figures, the marks ◦, × represent closed-loop
results and the marks *, + open-loop results. The aforementioned diagrams
show that the output-feedback controller significantly extends the region in
which only stable equilibria occur. For the open-loop system, this region cov-
ers the constant input voltages uc ∈ [4.0, 5.0]V. The closed-loop system ex-
tends the region with only stable equilibria to the constant input voltages in
uc ∈ [1.75, 5.0]V.

Based on Figures 6.21, 6.22, F.1 and F.2, we conclude that the output-
feedback controller (6.30) with control gain given in (6.34) is able to render
the rotor dynamic system with friction characteristics I and II (see Figure 6.5)
stable. This robustness property with respect to changes in the friction charac-
teristics is guaranteed by the absolute stability of the closed-loop system. Such
robustness property is crucial in practice since changes in friction characteris-
tics due to temperature variations, humidity changes, wear or contamination
of the lubricants is inevitable.
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Figure F.1: Bifurcation diagrams of the closed-loop system with control gain
K1 = [15.9 1.57 27.6] for positive input voltages (friction characteristic II
for friction at the lower disc); observer gains are L2 and N2.



190 Simulations-Experiments for friction characteristic II

0 1 2 3 4 5
−2

0

2

4

6

8

10

12

14

16

18

20

input voltage uc [V]

ve
lo

ci
ty

of
th

e
lo

w
er

d
is

c
ω

l
[r

ad
/s

]

open-loop: stable equilibrium

open-loop: stable limit cycle

closed-loop: stable equilibrium

closed-loop: stable limit cycle

(a) Bifurcation diagram with the velocity of the lower disc.

0 1 2 3 4 5
−4

−2

0

2

4

6

8

10

12

input voltage uc [V]

p
os

it
io

n
d
iff

er
en

ce
b
et

w
ee

n
th

e
d
is

cs
α

[r
ad

]

open-loop: stable equilibrium

open-loop: stable limit cycle

closed-loop: stable equilibrium

closed-loop: stable limit cycle

(b) Bifurcation diagram with the position difference between the
upper and the lower disc.

Figure F.2: Bifurcation diagrams of the open-loop and closed-loop system with
control gain K1 = [15.9 1.57 27.6] for positive input voltages (and using
friction characteristic II for friction at the lower disc).
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[103] A.V. Pavlov, A.Y. Pogromsky, N. van de Wouw, and H. Nijmeijer. On
convergence properties of piecewise affine systems. International Journal
of Control, accepted, 2007.

[104] D.R. Pavone and J.P. Desplans. Application of high sampling rate down-
hole measurements for analysis and cure of stick-slip in drilling. In SPE
Annual Technical Conf. and Exhibition, pages 335–345, 1994.

[105] F. Pfeiffer and Ch. Glocker. Multibody Dynamics with Unilateral Con-
tacts. John Wiley & Sons, New York, 1996.

[106] F. Pfeiffer and Ch. Glocker. IUTAM Symposium on Unilateral Multi-
body Contacts, volume 72. SOLID MECHANICS AND ITS APPLICA-
TIONS,Kluwer Academic Publishers, 1999.

[107] F. Pfeiffer and M. Hajek. Stick-slip motions in turbine blade dampers.
Philosophical Transactions of the Royal Society of London, No.1651,
338:503–517, 1992.

[108] D. Putra. Control of limit cycling in friction mechanical systems. PhD
thesis, Eindhoven University of Technology., 2004.

[109] A. Rantzer and M. Johansson. Piece-wise linear quadratic optimal con-
trol. IEEE transactions on automatic control, 45(4):629–637, 2000.

[110] F. Ricciardelli. Prediction of the response of suspension and cable-stayed
bridge towers to wind loading. Journal of wind engineering and industrial
aerodynamics, 64:145–159, 1996.

[111] R.T. Rockafellar and R.J.B. Wets. Variational Analysis. Springer, 1997.



200 BIBLIOGRAPHY

[112] L. Rodrigues, A. Hassibi, and J.P. How. Output feedback controller
synthesis for piecewise-affine systems with multiple equilibria. In Proc.
of the American control conf., pages 1784–1789, 2000.

[113] L. Rodrigues and J.P. How. Observer-based control of piecewise-affine
systems. In Proc. of the 40th IEEE Conf. of Decision and Control, vol-
ume 76, pages 459–477, Orlando, Florida USA, 2001.

[114] E. Ryan. A universal adaptive stabilizer for a class of nonlinear systems.
Systems & Control Letters, 16(3):209–218, 1991.

[115] P. Sananikone, O. Kamoshima, and D.B. White. A field method for
controlling drillstring torsional vibrations. In IADC/SPE Drilling Conf.,
pages 443–452, 1992.

[116] S. Sastry. Nonlinear systems: Analysis, Stability and Control. Springer,
New York, 1999.

[117] S. Sastry and T.A. Henzinger. Hybrid Systems: Computation and Con-
trol. Number 1386. Springer Verlag, 1985.

[118] E.B. Sontag. A Remark on the Converging-Input Converging-State Prop-
erty. IEEE Transactions on Automatic Control, 48(2):313–314, 2003.

[119] E.D. Sontag. Non-linear regulation: the piecewise linear approach. IEEE
Transactions on Automatic Control., 26:346–357, 1981.

[120] E.D. Sontag. On the input-to-state stability property. European J. Con-
trol, 1:24–36, 1995.

[121] S. Tafazoli and C.W. de Silva P.D. Lawrence. Friction estimation in a
planar electrohydrolic manipulator. In Proc. of the IEEE ACC, volume 5,
pages 3294–3298, Baltimore, USA, 1994.

[122] H.G. Tanner and K.J. Kyriakopoulos. Backstepping for nonsmooth sys-
tems. Automatica, 39(7):12591265, 2003.

[123] A. Taware, G. Tao, N. Pradhan, and C. Teolis. Friction compensation
for a sandwich dynamic system. Automatica, 39(3):481–488, 2003.

[124] J.M.T. Thompson and H.B. Stewart. Nonlinear dynamics and chaos;
geometrical methods for engineers and scientists. John Wiley and Sons
Ltd., 1986.

[125] J. Tlusty. Manufacturing processes and equipment. Prentice Hall, Upper
Saddle River, NJ, USA, 2000.

[126] W. van Bokhoven. Piecewise linear modeling analysis. Kluwer Academic
Publisher, 1981.



BIBLIOGRAPHY 201

[127] D.H. van Campen, R.H.B. Fey, F.P.H. van Liempt, and A. de Kraker.
Steady-state behaviour of a solar array system with elastic stops. In F.C.
Moon, editor, Proc:IUTAM Symposium on New Applications of Nonlin-
ear and Chaotic Dynamics in Mechanics, Kluwer Academic Publishers.,
pages 303–312, 1998.

[128] N. van de Wouw and R.I. Leine. Attractivity of equilibrium sets of sys-
tems with dry friction. Nonlinear Dynamics, 35:65–82, 2004.
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Summary

Output-feedback design for non-smooth mechanical systems:

Control synthesis and experiments

In this thesis, the focus is on two control problems for non-smooth systems.
Firstly, the disturbance attenuation problem for piecewise linear (PWL) and
piecewise affine (PWA) systems is studied. Here, we focus on applications in the
field of perturbed flexible mechanical systems with PWL restoring characteris-
tics. Secondly, the stabilization problem for Lur’e type systems with set-valued
nonlinearities is examined. In the latter context, the focus is on the application
area of mechanical systems with set-valued friction characteristics, where the
friction is non-collocated with the control action. In this thesis, in order to deal
with both the disturbance attenuation problem and the stabilization problem,
observer-based output-feedback control strategies are proposed.

More specifically, the disturbance attenuation problem for perturbed PWL
and PWA mechanical systems is an important control problem. Namely, the
attenuation of the disturbances acting on these systems is important because it
avoids damages to the structures and allows for increased system performance.
Classical examples of mechanical systems with PWL and PWA restoring char-
acteristics are tower cranes, suspension bridges, snubbers on solar panels on
satellites, floating platforms for oil exploration, etc.

Therefore, a controller design strategy is proposed for a class of perturbed
PWL/PWA systems based on the notions of convergence and input-to-state
convergence. The control design aims at the performance of such control de-
signs in terms of disturbance attenuation for the specific class of periodic distur-
bances and the more general class of bounded disturbances. Roughly speaking,
a system that is convergent, has, for each bounded disturbance, a unique glob-
ally asymptotically stable steady-state solution that is bounded for all time.
A system is input-to-state convergent for a class of bounded disturbances if it
is convergent and ISS with respect to the system’s unique steady-state solu-
tion. The input-to-state convergence property is instrumental in constructing
output-feedback schemes. In the present work, we render a system convergent
by means of feedback.

To guarantee the practical applicability of the convergence-based controllers,
a saturation constraint is proposed that provides a guaranteed upper bound on
the control input, given an upper bound for the disturbances and a set of initial
conditions. Next, an ultimate bound for the system state given a bound on the
disturbances is proposed. Finally, performance measures based on computed
steady-state responses for a specific class of disturbances (in our case harmonic
disturbances) are presented. The motivation for the choice of harmonic distur-
bances lies in the fact that in engineering practice many disturbances can be
approximated by a finite sum of harmonic signals (or are even harmonic as in
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systems with mass-unbalance). The ultimate objective of this part of the thesis
is the implementation of the controller design strategy in an experimental en-
vironment, which implies that only measurements of a limited number of state
variables will be available. Therefore, observers for PWL/PWA systems are
used and a result that combines the controller and the observer in an output-
feedback strategy is provided. The convergent-based controller design strategy
is applied to an experimental piecewise linear system and its effectiveness is
shown in experiments.

The stabilization of mechanical systems with friction is another challeng-
ing unsolved control problem because the presence of friction can induce un-
wanted phenomena such as self-sustained vibrations, chatter and squeal. These
phenomena are unwanted in many engineering applications because they can
destabilize a system and/or limit the system performance. Classical examples
of mechanical systems with friction are industrial robots, drilling rigs, turbine
blade dampers, accurate mirror positioning systems on satellites, printers and
many more.

Therefore, a control design strategy is proposed for a class of discontinu-
ous systems; namely Lur’e systems with set-valued mappings. Here the focus
is on the application area of mechanical systems with discontinuous friction.
These systems exhibit unwanted (stick-slip) limit cycling which we aim to avoid
entirely by the control design. In this work, we consider the problem of non-
collocated friction and actuation, which rules out the application of common
friction compensation techniques. The control design strategy proposed here
is based on the notion of passivity and the Popov criterion. In addition to
that, it is shown that the resulting closed-loop system is robust with respect to
uncertainties in the discontinuous friction model under some mild constraints
for the model that describes the friction. Once again, the aim is to implement
this strategy on a mechanical experimental set-up with limited measurements.
Therefore, an observer for Lur’e systems with multi-valued mappings is used as
a state estimator and a result that combines the controller and the observer in
an output-feedback strategy is provided. The passivity-based controller design
strategy is implemented on a dynamic rotor system with friction in one of its
components. The implemented output-feedback controller is evaluated in both
simulations and experiments.

Generally speaking, to show the strengths, weaknesses and potential of
output-feedback controllers beyond their theoretical importance, it is indis-
pensable to evaluate them in experimental and industrial setups. As such
the presented case studies can be considered as benchmarks for the proposed
observer-based controller designs for non-smooth and discontinuous systems.
The value of non-smooth and discontinuous models and observer-based con-
trollers is also evidenced by this work, as it demonstrates the effectiveness for
real-life applications.



Samenvatting

Output-feedback design for non-smooth mechanical systems:

Control synthesis and experiments

Dit proefschrift betreft de studie van een tweetal regelproblemen voor niet-
gladde en discontinue dynamische systemen. Eerst wordt het storingsonder-
drukking-probleem voor stuksgewijs affiene en stuksgewijs lineaire systemen
bestudeerd. Hierbij richten we ons met name op toepassingen van flexibele me-
chanische systemen met stuksgewijs lineaire stijfheidkarakteristieken en externe
tijdsvariërende excitaties. Als tweede wordt het stabilisatieprobleem voor Lur’e
systemen met meerwaardige niet-lineariteiten bestudeerd. Hierbij concentreren
we ons op het applicatiegebied van mechanische systemen met wrijvingskarak-
teristieken beschreven door meerwaardige functies, waarbij de regelactie en de
wrijving op verschillende plaatsen in het systeem aangrijpen. Om deze twee
problemen aan te pakken, worden in dit proefschrift waarnemergebaseerde uit-
gangsterugkoppelingen ontworpen.

De storingsonderdrukking voor stuksgewijs lineaire/affiene systemen onder
externe excitatie is een belangrijk regelprobleem. De onderdrukking van versto-
ringen in dergelijke systemen is belangrijk om structuurschade te voorkomen en
een hoge systeem (bijv. positionerings) prestatie te kunnen garanderen. Klas-
sieke voorbeelden in deze context zijn hijskranen, hangbruggen, zonnepanelen
(op satellieten) met eenzijdige veiligheidsstoppers, drijvende platformen voor
de olie-industrie etc.

Als oplossing stellen we een ontwerpstrategie voor regelaars voor stuksgewijs
lineaire/affiene systemen voor, welke gebaseerd is op de notie van convergente
systemen (en dat van zogenaamde ’ingang-naar-toestand convergentie’). Het
doel van het regelaarontwerp is de onderdrukking van, ten eerste, de specifieke
klasse van periodieke verstoringen en, ten tweede, de meer generieke klasse van
begrensde verstoringen. Een convergent systeem heeft, voor elke begrensde
verstoring, een unieke globaal asymptotisch begrensde stabiele limietoplossing.
Een systeem heeft de eigenschap van ingang-naar-toestand convergentie voor
een klasse van begrensde verstoringen als het convergent is en het ingang-naar-
toestand stabiel is met betrekking tot de unieke limietoplossing. De eigenschap
van ingang-naar-toestand convergentie is met name bruikbaar bij het ontwerpen
van een uitgangsterugkoppeling. In dit proefschrift, maken we een dynamisch
systeem convergent door terugkoppeling.

Met het oog op de praktische toepassing van deze convergentiegebaseerde
regelaars, wordt een beperking op de regelingang in rekening gebracht die ga-
randeert dat een gegeven bovengrens op de regelactie niet wordt overschreden
(gegeven een bovengrens voor de verstoringen en een verzameling van begin-
condities). Verder wordt, gegeven een bovengrens voor de verstoringen, een bo-
vengrens voor de grootte van de toestandsrespons afgeleid. Bovendien, worden
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prestatiematen gepresenteerd gebaseerd op limietoplossingen voor de klasse van
harmonische verstoringen. De studie van deze specifieke klasse van verstoringen
wordt gemotiveerd door het feit dat in de praktijk verstoringen vaak harmo-
nisch zijn (denk aan verstoringen als gevolg van massaonbalans-gerelateerde
excitaties) of benaderd kunnen worden door een eindige som van harmonische
componenten. Het uiteindelijke doel van dit deel van het proefschrift is de im-
plementatie van de ontwikkelde regelaars in een experimentele omgeving, waar-
in doorgaans slechts een beperkt aantal toestanden gemeten kunnen worden.
Daarom worden waarnemers gebruikt die, samen met de ontwikkelde regelaars,
een uitgangsterugkoppeling vormen. De convergentiegebaseerde regelaars zijn
toegepast op een laboratorium opstelling die gemodelleerd kan worden als een
stuksgewijs lineair systeem en de verbeterde prestatie van deze regelaar is in
experimenten aangetoond.

De stabilisatie van mechanische systemen met wrijving is een ander uitda-
gend (en onopgelost) regelprobleem, aangezien wrijving ongewenste trillingen
kan veroorzaken. Deze trillingen zijn ongewenst omdat ze een systeem kunnen
destabiliseren en/of de prestatie kunnen beperken. Klassieke voorbeelden zijn
industriële robots, rotorinstallaties, dempers voor turbinesystemen, positione-
ringssystemen voor spiegels op satellieten, printers en vele andere.

Daarom ontwikkelen we in dit proefschrift een regelstrategie voor een klas-
se van discontinue systemen, namelijk Lur’e systemen met meerwaardige niet-
lineariteiten. Hierbij ligt de focus op de toepassing in mechanische systemen
met discontinue wrijvingskarakteristieken. Dergelijke systemen kunnen onge-
wenste ’stick-slip’ trillingen vertonen welke door middel van een goed ontworpen
regelaar geheel onderdrukt dienen te worden. In het proefschrift, beschouwen
we bovendien het probleem waarbij de actuatie en de wrijving niet op dezelfde
plaats in het systeem aangrijpen. Daardoor is de toepassing van standaard
wrijvingscompensatietechnieken niet mogelijk. De voorgestelde regelstrategie
is gebaseerd op de notie van passiviteit en het Popov-criterium. Bovendien
laten we zien dat het geregelde system robuust is met betrekking tot onze-
kerheden in het wrijvingsmodel (onder milde aannames met betrekking tot
het wrijvingsmodel). Wederom ligt het uiteindelijke doel bij de implementatie
van de ontwikkelde regelaars in een experimentele omgeving met beperkte toe-
standsmetingen.
Daarom wordt een waarnemer voor Lur’e systemen met meerwaardige niet-
lineariteiten gebruikt en een resultaat voorgesteld, dat deze waarnemer com-
bineert met de ontworpen regelaar tot een uitgangsterugkoppeling. De regel-
strategie is gëımplementeerd op een rotor-dynamisch systeem met wrijving. De
prestatie van de ontwikkelde regelstrategie is aangetoond in zowel simulaties
als experimenten.

Om de voordelen, nadelen en de potentie van uitgangsterugkoppeling-regelaars
voor niet-gladde en discontinue systemen aan te tonen is het onontbeerlijk de-
ze regelaars te evalueren in experimentele en industriële systemen. De in dit
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proefschrift gepresenteerde studies kunnen als ’benchmarks’ voor de ontworpen
regelaars voor niet-gladde systemen beschouwd worden. De waarde van niet-
gladde modellen en de ontworpen regelaars wordt door dit werk benadrukt,
daar het de effectiviteit ervan in toepassingen aantoont.
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